1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
69 #include <asm/debugreg.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
87 #include <clocksource/hyperv_timer.h>
89 #define CREATE_TRACE_POINTS
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
95 struct kvm_caps kvm_caps __read_mostly = {
96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
98 EXPORT_SYMBOL_GPL(kvm_caps);
100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
102 #define emul_to_vcpu(ctxt) \
103 ((struct kvm_vcpu *)(ctxt)->vcpu)
106 * - enable syscall per default because its emulated by KVM
107 * - enable LME and LMA per default on 64 bit KVM
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
138 #define KVM_X86_OP(func) \
139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
140 *(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, 0644);
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, 0644);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, 0644);
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, 0444);
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, 0644);
165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
166 * adaptive tuning starting from default advancement of 1000ns. '0' disables
167 * advancement entirely. Any other value is used as-is and disables adaptive
168 * tuning, i.e. allows privileged userspace to set an exact advancement time.
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, 0644);
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, 0444);
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, 0444);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
181 * Flags to manipulate forced emulation behavior (any non-zero value will
182 * enable forced emulation).
184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, 0644);
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
204 * Restoring the host value for MSRs that are only consumed when running in
205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206 * returns to userspace, i.e. the kernel can run with the guest's value.
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
210 struct kvm_user_return_msrs {
211 struct user_return_notifier urn;
213 struct kvm_user_return_msr_values {
216 } values[KVM_MAX_NR_USER_RETURN_MSRS];
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 KVM_GENERIC_VM_STATS(),
246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 STATS_DESC_COUNTER(VM, mmu_pte_write),
248 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 STATS_DESC_COUNTER(VM, mmu_flooded),
250 STATS_DESC_COUNTER(VM, mmu_recycled),
251 STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 STATS_DESC_ICOUNTER(VM, pages_4k),
254 STATS_DESC_ICOUNTER(VM, pages_2m),
255 STATS_DESC_ICOUNTER(VM, pages_1g),
256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 .name_size = KVM_STATS_NAME_SIZE,
263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 .id_offset = sizeof(struct kvm_stats_header),
265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 sizeof(kvm_vm_stats_desc),
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 KVM_GENERIC_VCPU_STATS(),
272 STATS_DESC_COUNTER(VCPU, pf_taken),
273 STATS_DESC_COUNTER(VCPU, pf_fixed),
274 STATS_DESC_COUNTER(VCPU, pf_emulate),
275 STATS_DESC_COUNTER(VCPU, pf_spurious),
276 STATS_DESC_COUNTER(VCPU, pf_fast),
277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 STATS_DESC_COUNTER(VCPU, pf_guest),
279 STATS_DESC_COUNTER(VCPU, tlb_flush),
280 STATS_DESC_COUNTER(VCPU, invlpg),
281 STATS_DESC_COUNTER(VCPU, exits),
282 STATS_DESC_COUNTER(VCPU, io_exits),
283 STATS_DESC_COUNTER(VCPU, mmio_exits),
284 STATS_DESC_COUNTER(VCPU, signal_exits),
285 STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 STATS_DESC_COUNTER(VCPU, l1d_flush),
288 STATS_DESC_COUNTER(VCPU, halt_exits),
289 STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 STATS_DESC_COUNTER(VCPU, irq_exits),
291 STATS_DESC_COUNTER(VCPU, host_state_reload),
292 STATS_DESC_COUNTER(VCPU, fpu_reload),
293 STATS_DESC_COUNTER(VCPU, insn_emulation),
294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 STATS_DESC_COUNTER(VCPU, hypercalls),
296 STATS_DESC_COUNTER(VCPU, irq_injections),
297 STATS_DESC_COUNTER(VCPU, nmi_injections),
298 STATS_DESC_COUNTER(VCPU, req_event),
299 STATS_DESC_COUNTER(VCPU, nested_run),
300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 STATS_DESC_COUNTER(VCPU, preemption_reported),
303 STATS_DESC_COUNTER(VCPU, preemption_other),
304 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 STATS_DESC_COUNTER(VCPU, notify_window_exits),
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 .name_size = KVM_STATS_NAME_SIZE,
310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 .id_offset = sizeof(struct kvm_stats_header),
312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 sizeof(kvm_vcpu_stats_desc),
317 u64 __read_mostly host_xcr0;
319 static struct kmem_cache *x86_emulator_cache;
322 * When called, it means the previous get/set msr reached an invalid msr.
323 * Return true if we want to ignore/silent this failed msr access.
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
327 const char *op = write ? "wrmsr" : "rdmsr";
330 if (report_ignored_msrs)
331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 unsigned int size = sizeof(struct x86_emulate_ctxt);
347 return kmem_cache_create_usercopy("x86_emulator", size,
348 __alignof__(struct x86_emulate_ctxt),
349 SLAB_ACCOUNT, useroffset,
350 size - useroffset, NULL);
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 vcpu->arch.apf.gfns[i] = ~0;
362 static void kvm_on_user_return(struct user_return_notifier *urn)
365 struct kvm_user_return_msrs *msrs
366 = container_of(urn, struct kvm_user_return_msrs, urn);
367 struct kvm_user_return_msr_values *values;
371 * Disabling irqs at this point since the following code could be
372 * interrupted and executed through kvm_arch_hardware_disable()
374 local_irq_save(flags);
375 if (msrs->registered) {
376 msrs->registered = false;
377 user_return_notifier_unregister(urn);
379 local_irq_restore(flags);
380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 values = &msrs->values[slot];
382 if (values->host != values->curr) {
383 wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 values->curr = values->host;
389 static int kvm_probe_user_return_msr(u32 msr)
395 ret = rdmsrl_safe(msr, &val);
398 ret = wrmsrl_safe(msr, val);
404 int kvm_add_user_return_msr(u32 msr)
406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
408 if (kvm_probe_user_return_msr(msr))
411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 return kvm_nr_uret_msrs++;
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
416 int kvm_find_user_return_msr(u32 msr)
420 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 if (kvm_uret_msrs_list[i] == msr)
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
428 static void kvm_user_return_msr_cpu_online(void)
430 unsigned int cpu = smp_processor_id();
431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
435 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 msrs->values[i].host = value;
438 msrs->values[i].curr = value;
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
444 unsigned int cpu = smp_processor_id();
445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448 value = (value & mask) | (msrs->values[slot].host & ~mask);
449 if (value == msrs->values[slot].curr)
451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
455 msrs->values[slot].curr = value;
456 if (!msrs->registered) {
457 msrs->urn.on_user_return = kvm_on_user_return;
458 user_return_notifier_register(&msrs->urn);
459 msrs->registered = true;
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
465 static void drop_user_return_notifiers(void)
467 unsigned int cpu = smp_processor_id();
468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
470 if (msrs->registered)
471 kvm_on_user_return(&msrs->urn);
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
476 return vcpu->arch.apic_base;
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
481 return kvm_apic_mode(kvm_get_apic_base(vcpu));
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
494 if (!msr_info->host_initiated) {
495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
501 kvm_lapic_set_base(vcpu, msr_info->data);
502 kvm_recalculate_apic_map(vcpu->kvm);
507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
509 * Hardware virtualization extension instructions may fault if a reboot turns
510 * off virtualization while processes are running. Usually after catching the
511 * fault we just panic; during reboot instead the instruction is ignored.
513 noinstr void kvm_spurious_fault(void)
515 /* Fault while not rebooting. We want the trace. */
516 BUG_ON(!kvm_rebooting);
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
520 #define EXCPT_BENIGN 0
521 #define EXCPT_CONTRIBUTORY 1
524 static int exception_class(int vector)
534 return EXCPT_CONTRIBUTORY;
541 #define EXCPT_FAULT 0
543 #define EXCPT_ABORT 2
544 #define EXCPT_INTERRUPT 3
547 static int exception_type(int vector)
551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 return EXCPT_INTERRUPT;
557 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
560 if (mask & (1 << DB_VECTOR))
563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
569 /* Reserved exceptions will result in fault */
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 struct kvm_queued_exception *ex)
576 if (!ex->has_payload)
579 switch (ex->vector) {
582 * "Certain debug exceptions may clear bit 0-3. The
583 * remaining contents of the DR6 register are never
584 * cleared by the processor".
586 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
588 * In order to reflect the #DB exception payload in guest
589 * dr6, three components need to be considered: active low
590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 * In the target guest dr6:
594 * FIXED_1 bits should always be set.
595 * Active low bits should be cleared if 1-setting in payload.
596 * Active high bits should be set if 1-setting in payload.
598 * Note, the payload is compatible with the pending debug
599 * exceptions/exit qualification under VMX, that active_low bits
600 * are active high in payload.
601 * So they need to be flipped for DR6.
603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 vcpu->arch.dr6 |= ex->payload;
605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
608 * The #DB payload is defined as compatible with the 'pending
609 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 * defined in the 'pending debug exceptions' field (enabled
611 * breakpoint), it is reserved and must be zero in DR6.
613 vcpu->arch.dr6 &= ~BIT(12);
616 vcpu->arch.cr2 = ex->payload;
620 ex->has_payload = false;
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 bool has_error_code, u32 error_code,
627 bool has_payload, unsigned long payload)
629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
632 ex->injected = false;
634 ex->has_error_code = has_error_code;
635 ex->error_code = error_code;
636 ex->has_payload = has_payload;
637 ex->payload = payload;
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
643 kvm_x86_ops.nested_ops->leave_nested(vcpu);
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 unsigned nr, bool has_error, u32 error_code,
648 bool has_payload, unsigned long payload, bool reinject)
653 kvm_make_request(KVM_REQ_EVENT, vcpu);
656 * If the exception is destined for L2 and isn't being reinjected,
657 * morph it to a VM-Exit if L1 wants to intercept the exception. A
658 * previously injected exception is not checked because it was checked
659 * when it was original queued, and re-checking is incorrect if _L1_
660 * injected the exception, in which case it's exempt from interception.
662 if (!reinject && is_guest_mode(vcpu) &&
663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 has_payload, payload);
669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
673 * On VM-Entry, an exception can be pending if and only
674 * if event injection was blocked by nested_run_pending.
675 * In that case, however, vcpu_enter_guest() requests an
676 * immediate exit, and the guest shouldn't proceed far
677 * enough to need reinjection.
679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 vcpu->arch.exception.injected = true;
681 if (WARN_ON_ONCE(has_payload)) {
683 * A reinjected event has already
684 * delivered its payload.
690 vcpu->arch.exception.pending = true;
691 vcpu->arch.exception.injected = false;
693 vcpu->arch.exception.has_error_code = has_error;
694 vcpu->arch.exception.vector = nr;
695 vcpu->arch.exception.error_code = error_code;
696 vcpu->arch.exception.has_payload = has_payload;
697 vcpu->arch.exception.payload = payload;
698 if (!is_guest_mode(vcpu))
699 kvm_deliver_exception_payload(vcpu,
700 &vcpu->arch.exception);
704 /* to check exception */
705 prev_nr = vcpu->arch.exception.vector;
706 if (prev_nr == DF_VECTOR) {
707 /* triple fault -> shutdown */
708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
711 class1 = exception_class(prev_nr);
712 class2 = exception_class(nr);
713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
716 * Synthesize #DF. Clear the previously injected or pending
717 * exception so as not to incorrectly trigger shutdown.
719 vcpu->arch.exception.injected = false;
720 vcpu->arch.exception.pending = false;
722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
724 /* replace previous exception with a new one in a hope
725 that instruction re-execution will regenerate lost
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 unsigned long payload)
746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 u32 error_code, unsigned long payload)
753 kvm_multiple_exception(vcpu, nr, true, error_code,
754 true, payload, false);
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
760 kvm_inject_gp(vcpu, 0);
762 return kvm_skip_emulated_instruction(vcpu);
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
771 kvm_inject_gp(vcpu, 0);
775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 EMULTYPE_COMPLETE_USER_EXIT);
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
781 ++vcpu->stat.pf_guest;
784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 * whether or not L1 wants to intercept "regular" #PF.
787 if (is_guest_mode(vcpu) && fault->async_page_fault)
788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 true, fault->error_code,
790 true, fault->address);
792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 struct x86_exception *fault)
799 struct kvm_mmu *fault_mmu;
800 WARN_ON_ONCE(fault->vector != PF_VECTOR);
802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
806 * Invalidate the TLB entry for the faulting address, if it exists,
807 * else the access will fault indefinitely (and to emulate hardware).
809 if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 !(fault->error_code & PFERR_RSVD_MASK))
811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 KVM_MMU_ROOT_CURRENT);
814 fault_mmu->inject_page_fault(vcpu, fault);
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
820 atomic_inc(&vcpu->arch.nmi_queued);
821 kvm_make_request(KVM_REQ_NMI, vcpu);
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
838 * a #GP and return false.
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
853 kvm_queue_exception(vcpu, UD_VECTOR);
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 if (real_gpa == INVALID_GPA)
884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 cr3 & GENMASK(11, 5), sizeof(pdpte));
890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 if ((pdpte[i] & PT_PRESENT_MASK) &&
892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 * Shadow page roots need to be reconstructed instead.
901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 vcpu->arch.pdptrs_from_userspace = false;
911 EXPORT_SYMBOL_GPL(load_pdptrs);
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
916 if (cr0 & 0xffffffff00000000UL)
920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
932 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 * indirect shadow MMUs. If paging is disabled, no updates are needed
934 * as there are no permission bits to emulate. If TDP is enabled, the
935 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 * translations does the right thing, but there's no need to unload the
937 * root as CR0.WP doesn't affect SPTEs.
939 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 if (!(cr0 & X86_CR0_PG))
949 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 kvm_clear_async_pf_completion_queue(vcpu);
951 kvm_async_pf_hash_reset(vcpu);
954 * Clearing CR0.PG is defined to flush the TLB from the guest's
957 if (!(cr0 & X86_CR0_PG))
958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 kvm_mmu_reset_context(vcpu);
964 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
973 unsigned long old_cr0 = kvm_read_cr0(vcpu);
975 if (!kvm_is_valid_cr0(vcpu, cr0))
980 /* Write to CR0 reserved bits are ignored, even on Intel. */
981 cr0 &= ~CR0_RESERVED_BITS;
984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 (cr0 & X86_CR0_PG)) {
990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1000 if (!(cr0 & X86_CR0_PG) &&
1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1004 static_call(kvm_x86_set_cr0)(vcpu, cr0);
1006 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1020 if (vcpu->arch.guest_state_protected)
1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1025 if (vcpu->arch.xcr0 != host_xcr0)
1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 vcpu->arch.ia32_xss != host_xss)
1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1033 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 write_pkru(vcpu->arch.pkru);
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1043 if (vcpu->arch.guest_state_protected)
1046 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 vcpu->arch.pkru = rdpkru();
1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 write_pkru(vcpu->arch.host_pkru);
1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1056 if (vcpu->arch.xcr0 != host_xcr0)
1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 vcpu->arch.ia32_xss != host_xss)
1061 wrmsrl(MSR_IA32_XSS, host_xss);
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1077 u64 old_xcr0 = vcpu->arch.xcr0;
1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1081 if (index != XCR_XFEATURE_ENABLED_MASK)
1083 if (!(xcr0 & XFEATURE_MASK_FP))
1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1089 * Do not allow the guest to set bits that we do not support
1090 * saving. However, xcr0 bit 0 is always set, even if the
1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 if (xcr0 & ~valid_bits)
1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1101 if (xcr0 & XFEATURE_MASK_AVX512) {
1102 if (!(xcr0 & XFEATURE_MASK_YMM))
1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1108 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1112 vcpu->arch.xcr0 = xcr0;
1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 kvm_update_cpuid_runtime(vcpu);
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 kvm_inject_gp(vcpu, 0);
1128 return kvm_skip_emulated_instruction(vcpu);
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1134 if (cr4 & cr4_reserved_bits)
1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1146 return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 kvm_mmu_reset_context(vcpu);
1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 * according to the SDM; however, stale prev_roots could be reused
1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 kvm_mmu_unload(vcpu);
1168 * The TLB has to be flushed for all PCIDs if any of the following
1169 * (architecturally required) changes happen:
1170 * - CR4.PCIDE is changed from 1 to 0
1171 * - CR4.PGE is toggled
1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1180 * The TLB has to be flushed for the current PCID if any of the
1181 * following (architecturally required) changes happen:
1182 * - CR4.SMEP is changed from 0 to 1
1183 * - CR4.PAE is toggled
1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1194 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1196 if (!kvm_is_valid_cr4(vcpu, cr4))
1199 if (is_long_mode(vcpu)) {
1200 if (!(cr4 & X86_CR4_PAE))
1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1215 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1217 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1225 struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 unsigned long roots_to_free = 0;
1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1232 * also via the emulator. KVM's TDP page tables are not in the scope of
1233 * the invalidation, but the guest's TLB entries need to be flushed as
1234 * the CPU may have cached entries in its TLB for the target PCID.
1236 if (unlikely(tdp_enabled)) {
1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1242 * If neither the current CR3 nor any of the prev_roots use the given
1243 * PCID, then nothing needs to be done here because a resync will
1244 * happen anyway before switching to any other CR3.
1246 if (kvm_get_active_pcid(vcpu) == pcid) {
1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1252 * If PCID is disabled, there is no need to free prev_roots even if the
1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1268 bool skip_tlb_flush = false;
1269 unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 pcid = cr3 & X86_CR3_PCID_MASK;
1278 /* PDPTRs are always reloaded for PAE paging. */
1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 goto handle_tlb_flush;
1283 * Do not condition the GPA check on long mode, this helper is used to
1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 * the current vCPU mode is accurate.
1287 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1293 if (cr3 != kvm_read_cr3(vcpu))
1294 kvm_mmu_new_pgd(vcpu, cr3);
1296 vcpu->arch.cr3 = cr3;
1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1302 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1304 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 * i.e. only PCID=0 can be relevant.
1308 if (!skip_tlb_flush)
1309 kvm_invalidate_pcid(vcpu, pcid);
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1317 if (cr8 & CR8_RESERVED_BITS)
1319 if (lapic_in_kernel(vcpu))
1320 kvm_lapic_set_tpr(vcpu, cr8);
1322 vcpu->arch.cr8 = cr8;
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1329 if (lapic_in_kernel(vcpu))
1330 return kvm_lapic_get_cr8(vcpu);
1332 return vcpu->arch.cr8;
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 dr7 = vcpu->arch.guest_debug_dr7;
1353 dr7 = vcpu->arch.dr7;
1354 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 if (dr7 & DR7_BP_EN_MASK)
1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1363 u64 fixed = DR6_FIXED_1;
1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 fixed |= DR6_BUS_LOCK;
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1375 size_t size = ARRAY_SIZE(vcpu->arch.db);
1379 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 vcpu->arch.eff_db[dr] = val;
1385 if (!kvm_dr6_valid(val))
1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1391 if (!kvm_dr7_valid(val))
1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 kvm_update_dr7(vcpu);
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1404 size_t size = ARRAY_SIZE(vcpu->arch.db);
1408 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1412 *val = vcpu->arch.dr6;
1416 *val = vcpu->arch.dr7;
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1424 u32 ecx = kvm_rcx_read(vcpu);
1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 kvm_inject_gp(vcpu, 0);
1432 kvm_rax_write(vcpu, (u32)data);
1433 kvm_rdx_write(vcpu, data >> 32);
1434 return kvm_skip_emulated_instruction(vcpu);
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
1443 * MSRs that KVM emulates without strictly requiring host support.
1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
1446 * msrs_to_save and emulated_msrs.
1449 static const u32 msrs_to_save_base[] = {
1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1452 #ifdef CONFIG_X86_64
1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 MSR_IA32_UMWAIT_CONTROL,
1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1469 static const u32 msrs_to_save_pmu[] = {
1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1504 static const u32 emulated_msrs_all[] = {
1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1508 #ifdef CONFIG_KVM_HYPERV
1509 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1510 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1511 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1512 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1513 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1515 HV_X64_MSR_VP_INDEX,
1516 HV_X64_MSR_VP_RUNTIME,
1517 HV_X64_MSR_SCONTROL,
1518 HV_X64_MSR_STIMER0_CONFIG,
1519 HV_X64_MSR_VP_ASSIST_PAGE,
1520 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1521 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1522 HV_X64_MSR_SYNDBG_OPTIONS,
1523 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1524 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1525 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1528 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1529 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1531 MSR_IA32_TSC_ADJUST,
1532 MSR_IA32_TSC_DEADLINE,
1533 MSR_IA32_ARCH_CAPABILITIES,
1534 MSR_IA32_PERF_CAPABILITIES,
1535 MSR_IA32_MISC_ENABLE,
1536 MSR_IA32_MCG_STATUS,
1538 MSR_IA32_MCG_EXT_CTL,
1542 MSR_MISC_FEATURES_ENABLES,
1543 MSR_AMD64_VIRT_SPEC_CTRL,
1544 MSR_AMD64_TSC_RATIO,
1549 * KVM always supports the "true" VMX control MSRs, even if the host
1550 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
1551 * doesn't strictly require them to exist in the host (ignoring that
1552 * KVM would refuse to load in the first place if the core set of MSRs
1553 * aren't supported).
1556 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1557 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1558 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1559 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1561 MSR_IA32_VMX_CR0_FIXED0,
1562 MSR_IA32_VMX_CR4_FIXED0,
1563 MSR_IA32_VMX_VMCS_ENUM,
1564 MSR_IA32_VMX_PROCBASED_CTLS2,
1565 MSR_IA32_VMX_EPT_VPID_CAP,
1566 MSR_IA32_VMX_VMFUNC,
1569 MSR_KVM_POLL_CONTROL,
1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1573 static unsigned num_emulated_msrs;
1576 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1577 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
1578 * feature MSRs, but are handled separately to allow expedited lookups.
1580 static const u32 msr_based_features_all_except_vmx[] = {
1583 MSR_IA32_ARCH_CAPABILITIES,
1584 MSR_IA32_PERF_CAPABILITIES,
1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1588 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1589 static unsigned int num_msr_based_features;
1592 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1593 * patch, are immutable once the vCPU model is defined.
1595 static bool kvm_is_immutable_feature_msr(u32 msr)
1599 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1602 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1603 if (msr == msr_based_features_all_except_vmx[i])
1604 return msr != MSR_IA32_UCODE_REV;
1611 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1612 * does not yet virtualize. These include:
1613 * 10 - MISC_PACKAGE_CTRLS
1614 * 11 - ENERGY_FILTERING_CTL
1616 * 18 - FB_CLEAR_CTRL
1617 * 21 - XAPIC_DISABLE_STATUS
1618 * 23 - OVERCLOCKING_STATUS
1621 #define KVM_SUPPORTED_ARCH_CAP \
1622 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1623 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1624 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1625 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1626 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1628 static u64 kvm_get_arch_capabilities(void)
1630 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1633 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1634 * the nested hypervisor runs with NX huge pages. If it is not,
1635 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1636 * L1 guests, so it need not worry about its own (L2) guests.
1638 data |= ARCH_CAP_PSCHANGE_MC_NO;
1641 * If we're doing cache flushes (either "always" or "cond")
1642 * we will do one whenever the guest does a vmlaunch/vmresume.
1643 * If an outer hypervisor is doing the cache flush for us
1644 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1645 * capability to the guest too, and if EPT is disabled we're not
1646 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1647 * require a nested hypervisor to do a flush of its own.
1649 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1650 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1652 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1653 data |= ARCH_CAP_RDCL_NO;
1654 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1655 data |= ARCH_CAP_SSB_NO;
1656 if (!boot_cpu_has_bug(X86_BUG_MDS))
1657 data |= ARCH_CAP_MDS_NO;
1659 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1661 * If RTM=0 because the kernel has disabled TSX, the host might
1662 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1663 * and therefore knows that there cannot be TAA) but keep
1664 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1665 * and we want to allow migrating those guests to tsx=off hosts.
1667 data &= ~ARCH_CAP_TAA_NO;
1668 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1669 data |= ARCH_CAP_TAA_NO;
1672 * Nothing to do here; we emulate TSX_CTRL if present on the
1673 * host so the guest can choose between disabling TSX or
1674 * using VERW to clear CPU buffers.
1678 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1679 data |= ARCH_CAP_GDS_NO;
1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1686 switch (msr->index) {
1687 case MSR_IA32_ARCH_CAPABILITIES:
1688 msr->data = kvm_get_arch_capabilities();
1690 case MSR_IA32_PERF_CAPABILITIES:
1691 msr->data = kvm_caps.supported_perf_cap;
1693 case MSR_IA32_UCODE_REV:
1694 rdmsrl_safe(msr->index, &msr->data);
1697 return static_call(kvm_x86_get_msr_feature)(msr);
1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1704 struct kvm_msr_entry msr;
1708 r = kvm_get_msr_feature(&msr);
1710 if (r == KVM_MSR_RET_INVALID) {
1711 /* Unconditionally clear the output for simplicity */
1713 if (kvm_msr_ignored_check(index, 0, false))
1725 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1727 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1730 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1733 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1736 if (efer & (EFER_LME | EFER_LMA) &&
1737 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1740 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1746 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1748 if (efer & efer_reserved_bits)
1751 return __kvm_valid_efer(vcpu, efer);
1753 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1755 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1757 u64 old_efer = vcpu->arch.efer;
1758 u64 efer = msr_info->data;
1761 if (efer & efer_reserved_bits)
1764 if (!msr_info->host_initiated) {
1765 if (!__kvm_valid_efer(vcpu, efer))
1768 if (is_paging(vcpu) &&
1769 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1774 efer |= vcpu->arch.efer & EFER_LMA;
1776 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1782 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1783 kvm_mmu_reset_context(vcpu);
1788 void kvm_enable_efer_bits(u64 mask)
1790 efer_reserved_bits &= ~mask;
1792 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1794 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1796 struct kvm_x86_msr_filter *msr_filter;
1797 struct msr_bitmap_range *ranges;
1798 struct kvm *kvm = vcpu->kvm;
1803 /* x2APIC MSRs do not support filtering. */
1804 if (index >= 0x800 && index <= 0x8ff)
1807 idx = srcu_read_lock(&kvm->srcu);
1809 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1815 allowed = msr_filter->default_allow;
1816 ranges = msr_filter->ranges;
1818 for (i = 0; i < msr_filter->count; i++) {
1819 u32 start = ranges[i].base;
1820 u32 end = start + ranges[i].nmsrs;
1821 u32 flags = ranges[i].flags;
1822 unsigned long *bitmap = ranges[i].bitmap;
1824 if ((index >= start) && (index < end) && (flags & type)) {
1825 allowed = test_bit(index - start, bitmap);
1831 srcu_read_unlock(&kvm->srcu, idx);
1835 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1838 * Write @data into the MSR specified by @index. Select MSR specific fault
1839 * checks are bypassed if @host_initiated is %true.
1840 * Returns 0 on success, non-0 otherwise.
1841 * Assumes vcpu_load() was already called.
1843 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1844 bool host_initiated)
1846 struct msr_data msr;
1851 case MSR_KERNEL_GS_BASE:
1854 if (is_noncanonical_address(data, vcpu))
1857 case MSR_IA32_SYSENTER_EIP:
1858 case MSR_IA32_SYSENTER_ESP:
1860 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1861 * non-canonical address is written on Intel but not on
1862 * AMD (which ignores the top 32-bits, because it does
1863 * not implement 64-bit SYSENTER).
1865 * 64-bit code should hence be able to write a non-canonical
1866 * value on AMD. Making the address canonical ensures that
1867 * vmentry does not fail on Intel after writing a non-canonical
1868 * value, and that something deterministic happens if the guest
1869 * invokes 64-bit SYSENTER.
1871 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1874 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1877 if (!host_initiated &&
1878 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1879 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1883 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1884 * incomplete and conflicting architectural behavior. Current
1885 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1886 * reserved and always read as zeros. Enforce Intel's reserved
1887 * bits check if and only if the guest CPU is Intel, and clear
1888 * the bits in all other cases. This ensures cross-vendor
1889 * migration will provide consistent behavior for the guest.
1891 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1900 msr.host_initiated = host_initiated;
1902 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1905 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1906 u32 index, u64 data, bool host_initiated)
1908 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1910 if (ret == KVM_MSR_RET_INVALID)
1911 if (kvm_msr_ignored_check(index, data, true))
1918 * Read the MSR specified by @index into @data. Select MSR specific fault
1919 * checks are bypassed if @host_initiated is %true.
1920 * Returns 0 on success, non-0 otherwise.
1921 * Assumes vcpu_load() was already called.
1923 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1924 bool host_initiated)
1926 struct msr_data msr;
1931 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1934 if (!host_initiated &&
1935 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1936 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1942 msr.host_initiated = host_initiated;
1944 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1950 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1951 u32 index, u64 *data, bool host_initiated)
1953 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1955 if (ret == KVM_MSR_RET_INVALID) {
1956 /* Unconditionally clear *data for simplicity */
1958 if (kvm_msr_ignored_check(index, 0, false))
1965 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1967 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1968 return KVM_MSR_RET_FILTERED;
1969 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1972 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1974 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1975 return KVM_MSR_RET_FILTERED;
1976 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1979 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1981 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1983 EXPORT_SYMBOL_GPL(kvm_get_msr);
1985 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1987 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1989 EXPORT_SYMBOL_GPL(kvm_set_msr);
1991 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1993 if (!vcpu->run->msr.error) {
1994 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1995 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1999 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2001 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2004 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2006 complete_userspace_rdmsr(vcpu);
2007 return complete_emulated_msr_access(vcpu);
2010 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2012 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2015 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2017 complete_userspace_rdmsr(vcpu);
2018 return complete_fast_msr_access(vcpu);
2021 static u64 kvm_msr_reason(int r)
2024 case KVM_MSR_RET_INVALID:
2025 return KVM_MSR_EXIT_REASON_UNKNOWN;
2026 case KVM_MSR_RET_FILTERED:
2027 return KVM_MSR_EXIT_REASON_FILTER;
2029 return KVM_MSR_EXIT_REASON_INVAL;
2033 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2034 u32 exit_reason, u64 data,
2035 int (*completion)(struct kvm_vcpu *vcpu),
2038 u64 msr_reason = kvm_msr_reason(r);
2040 /* Check if the user wanted to know about this MSR fault */
2041 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2044 vcpu->run->exit_reason = exit_reason;
2045 vcpu->run->msr.error = 0;
2046 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2047 vcpu->run->msr.reason = msr_reason;
2048 vcpu->run->msr.index = index;
2049 vcpu->run->msr.data = data;
2050 vcpu->arch.complete_userspace_io = completion;
2055 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2057 u32 ecx = kvm_rcx_read(vcpu);
2061 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2064 trace_kvm_msr_read(ecx, data);
2066 kvm_rax_write(vcpu, data & -1u);
2067 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2069 /* MSR read failed? See if we should ask user space */
2070 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2071 complete_fast_rdmsr, r))
2073 trace_kvm_msr_read_ex(ecx);
2076 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2078 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2080 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2082 u32 ecx = kvm_rcx_read(vcpu);
2083 u64 data = kvm_read_edx_eax(vcpu);
2086 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2089 trace_kvm_msr_write(ecx, data);
2091 /* MSR write failed? See if we should ask user space */
2092 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2093 complete_fast_msr_access, r))
2095 /* Signal all other negative errors to userspace */
2098 trace_kvm_msr_write_ex(ecx, data);
2101 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2103 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2105 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2107 return kvm_skip_emulated_instruction(vcpu);
2110 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2112 /* Treat an INVD instruction as a NOP and just skip it. */
2113 return kvm_emulate_as_nop(vcpu);
2115 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2117 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2119 kvm_queue_exception(vcpu, UD_VECTOR);
2122 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2125 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2127 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2128 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2129 return kvm_handle_invalid_op(vcpu);
2131 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2132 return kvm_emulate_as_nop(vcpu);
2134 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2136 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2138 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2140 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2142 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2144 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2146 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2148 xfer_to_guest_mode_prepare();
2149 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2150 xfer_to_guest_mode_work_pending();
2154 * The fast path for frequent and performance sensitive wrmsr emulation,
2155 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2156 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2157 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2158 * other cases which must be called after interrupts are enabled on the host.
2160 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2162 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2165 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2166 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2167 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2168 ((u32)(data >> 32) != X2APIC_BROADCAST))
2169 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2174 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2176 if (!kvm_can_use_hv_timer(vcpu))
2179 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2183 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2185 u32 msr = kvm_rcx_read(vcpu);
2187 fastpath_t ret = EXIT_FASTPATH_NONE;
2189 kvm_vcpu_srcu_read_lock(vcpu);
2192 case APIC_BASE_MSR + (APIC_ICR >> 4):
2193 data = kvm_read_edx_eax(vcpu);
2194 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2195 kvm_skip_emulated_instruction(vcpu);
2196 ret = EXIT_FASTPATH_EXIT_HANDLED;
2199 case MSR_IA32_TSC_DEADLINE:
2200 data = kvm_read_edx_eax(vcpu);
2201 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2202 kvm_skip_emulated_instruction(vcpu);
2203 ret = EXIT_FASTPATH_REENTER_GUEST;
2210 if (ret != EXIT_FASTPATH_NONE)
2211 trace_kvm_msr_write(msr, data);
2213 kvm_vcpu_srcu_read_unlock(vcpu);
2217 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2220 * Adapt set_msr() to msr_io()'s calling convention
2222 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2224 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2227 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2232 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2233 * not support modifying the guest vCPU model on the fly, e.g. changing
2234 * the nVMX capabilities while L2 is running is nonsensical. Ignore
2235 * writes of the same value, e.g. to allow userspace to blindly stuff
2236 * all MSRs when emulating RESET.
2238 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2239 if (do_get_msr(vcpu, index, &val) || *data != val)
2245 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2248 #ifdef CONFIG_X86_64
2249 struct pvclock_clock {
2259 struct pvclock_gtod_data {
2262 struct pvclock_clock clock; /* extract of a clocksource struct */
2263 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2269 static struct pvclock_gtod_data pvclock_gtod_data;
2271 static void update_pvclock_gtod(struct timekeeper *tk)
2273 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2275 write_seqcount_begin(&vdata->seq);
2277 /* copy pvclock gtod data */
2278 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2279 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2280 vdata->clock.mask = tk->tkr_mono.mask;
2281 vdata->clock.mult = tk->tkr_mono.mult;
2282 vdata->clock.shift = tk->tkr_mono.shift;
2283 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2284 vdata->clock.offset = tk->tkr_mono.base;
2286 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2287 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2288 vdata->raw_clock.mask = tk->tkr_raw.mask;
2289 vdata->raw_clock.mult = tk->tkr_raw.mult;
2290 vdata->raw_clock.shift = tk->tkr_raw.shift;
2291 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2292 vdata->raw_clock.offset = tk->tkr_raw.base;
2294 vdata->wall_time_sec = tk->xtime_sec;
2296 vdata->offs_boot = tk->offs_boot;
2298 write_seqcount_end(&vdata->seq);
2301 static s64 get_kvmclock_base_ns(void)
2303 /* Count up from boot time, but with the frequency of the raw clock. */
2304 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2307 static s64 get_kvmclock_base_ns(void)
2309 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2310 return ktime_get_boottime_ns();
2314 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2318 struct pvclock_wall_clock wc;
2325 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2330 ++version; /* first time write, random junk */
2334 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2337 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2339 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2340 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2341 wc.version = version;
2343 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2346 wc_sec_hi = wall_nsec >> 32;
2347 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2348 &wc_sec_hi, sizeof(wc_sec_hi));
2352 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2355 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2356 bool old_msr, bool host_initiated)
2358 struct kvm_arch *ka = &vcpu->kvm->arch;
2360 if (vcpu->vcpu_id == 0 && !host_initiated) {
2361 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2362 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2364 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2367 vcpu->arch.time = system_time;
2368 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2370 /* we verify if the enable bit is set... */
2371 if (system_time & 1)
2372 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2373 sizeof(struct pvclock_vcpu_time_info));
2375 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2380 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2382 do_shl32_div32(dividend, divisor);
2386 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2387 s8 *pshift, u32 *pmultiplier)
2395 scaled64 = scaled_hz;
2396 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2401 tps32 = (uint32_t)tps64;
2402 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2403 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2411 *pmultiplier = div_frac(scaled64, tps32);
2414 #ifdef CONFIG_X86_64
2415 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2418 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2419 static unsigned long max_tsc_khz;
2421 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2423 u64 v = (u64)khz * (1000000 + ppm);
2428 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2430 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2434 /* Guest TSC same frequency as host TSC? */
2436 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2440 /* TSC scaling supported? */
2441 if (!kvm_caps.has_tsc_control) {
2442 if (user_tsc_khz > tsc_khz) {
2443 vcpu->arch.tsc_catchup = 1;
2444 vcpu->arch.tsc_always_catchup = 1;
2447 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2452 /* TSC scaling required - calculate ratio */
2453 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2454 user_tsc_khz, tsc_khz);
2456 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2457 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2462 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2466 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2468 u32 thresh_lo, thresh_hi;
2469 int use_scaling = 0;
2471 /* tsc_khz can be zero if TSC calibration fails */
2472 if (user_tsc_khz == 0) {
2473 /* set tsc_scaling_ratio to a safe value */
2474 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2478 /* Compute a scale to convert nanoseconds in TSC cycles */
2479 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2480 &vcpu->arch.virtual_tsc_shift,
2481 &vcpu->arch.virtual_tsc_mult);
2482 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2485 * Compute the variation in TSC rate which is acceptable
2486 * within the range of tolerance and decide if the
2487 * rate being applied is within that bounds of the hardware
2488 * rate. If so, no scaling or compensation need be done.
2490 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2491 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2492 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2493 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2494 user_tsc_khz, thresh_lo, thresh_hi);
2497 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2500 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2502 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2503 vcpu->arch.virtual_tsc_mult,
2504 vcpu->arch.virtual_tsc_shift);
2505 tsc += vcpu->arch.this_tsc_write;
2509 #ifdef CONFIG_X86_64
2510 static inline int gtod_is_based_on_tsc(int mode)
2512 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2516 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2518 #ifdef CONFIG_X86_64
2519 struct kvm_arch *ka = &vcpu->kvm->arch;
2520 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2523 * To use the masterclock, the host clocksource must be based on TSC
2524 * and all vCPUs must have matching TSCs. Note, the count for matching
2525 * vCPUs doesn't include the reference vCPU, hence "+1".
2527 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2528 atomic_read(&vcpu->kvm->online_vcpus)) &&
2529 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2532 * Request a masterclock update if the masterclock needs to be toggled
2533 * on/off, or when starting a new generation and the masterclock is
2534 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2535 * taken _after_ the new generation is created).
2537 if ((ka->use_master_clock && new_generation) ||
2538 (ka->use_master_clock != use_master_clock))
2539 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2541 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2542 atomic_read(&vcpu->kvm->online_vcpus),
2543 ka->use_master_clock, gtod->clock.vclock_mode);
2548 * Multiply tsc by a fixed point number represented by ratio.
2550 * The most significant 64-N bits (mult) of ratio represent the
2551 * integral part of the fixed point number; the remaining N bits
2552 * (frac) represent the fractional part, ie. ratio represents a fixed
2553 * point number (mult + frac * 2^(-N)).
2555 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2557 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2559 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2562 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2566 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2567 _tsc = __scale_tsc(ratio, tsc);
2572 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2576 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2578 return target_tsc - tsc;
2581 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2583 return vcpu->arch.l1_tsc_offset +
2584 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2586 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2588 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2592 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2593 nested_offset = l1_offset;
2595 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2596 kvm_caps.tsc_scaling_ratio_frac_bits);
2598 nested_offset += l2_offset;
2599 return nested_offset;
2601 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2603 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2605 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2606 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2607 kvm_caps.tsc_scaling_ratio_frac_bits);
2609 return l1_multiplier;
2611 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2613 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2615 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2616 vcpu->arch.l1_tsc_offset,
2619 vcpu->arch.l1_tsc_offset = l1_offset;
2622 * If we are here because L1 chose not to trap WRMSR to TSC then
2623 * according to the spec this should set L1's TSC (as opposed to
2624 * setting L1's offset for L2).
2626 if (is_guest_mode(vcpu))
2627 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2629 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2630 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2632 vcpu->arch.tsc_offset = l1_offset;
2634 static_call(kvm_x86_write_tsc_offset)(vcpu);
2637 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2639 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2641 /* Userspace is changing the multiplier while L2 is active */
2642 if (is_guest_mode(vcpu))
2643 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2645 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2647 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2649 if (kvm_caps.has_tsc_control)
2650 static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2653 static inline bool kvm_check_tsc_unstable(void)
2655 #ifdef CONFIG_X86_64
2657 * TSC is marked unstable when we're running on Hyper-V,
2658 * 'TSC page' clocksource is good.
2660 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2663 return check_tsc_unstable();
2667 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2668 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2671 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2672 u64 ns, bool matched)
2674 struct kvm *kvm = vcpu->kvm;
2676 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2679 * We also track th most recent recorded KHZ, write and time to
2680 * allow the matching interval to be extended at each write.
2682 kvm->arch.last_tsc_nsec = ns;
2683 kvm->arch.last_tsc_write = tsc;
2684 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2685 kvm->arch.last_tsc_offset = offset;
2687 vcpu->arch.last_guest_tsc = tsc;
2689 kvm_vcpu_write_tsc_offset(vcpu, offset);
2693 * We split periods of matched TSC writes into generations.
2694 * For each generation, we track the original measured
2695 * nanosecond time, offset, and write, so if TSCs are in
2696 * sync, we can match exact offset, and if not, we can match
2697 * exact software computation in compute_guest_tsc()
2699 * These values are tracked in kvm->arch.cur_xxx variables.
2701 kvm->arch.cur_tsc_generation++;
2702 kvm->arch.cur_tsc_nsec = ns;
2703 kvm->arch.cur_tsc_write = tsc;
2704 kvm->arch.cur_tsc_offset = offset;
2705 kvm->arch.nr_vcpus_matched_tsc = 0;
2706 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2707 kvm->arch.nr_vcpus_matched_tsc++;
2710 /* Keep track of which generation this VCPU has synchronized to */
2711 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2712 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2713 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2715 kvm_track_tsc_matching(vcpu, !matched);
2718 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2720 u64 data = user_value ? *user_value : 0;
2721 struct kvm *kvm = vcpu->kvm;
2722 u64 offset, ns, elapsed;
2723 unsigned long flags;
2724 bool matched = false;
2725 bool synchronizing = false;
2727 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2728 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2729 ns = get_kvmclock_base_ns();
2730 elapsed = ns - kvm->arch.last_tsc_nsec;
2732 if (vcpu->arch.virtual_tsc_khz) {
2735 * Force synchronization when creating a vCPU, or when
2736 * userspace explicitly writes a zero value.
2738 synchronizing = true;
2739 } else if (kvm->arch.user_set_tsc) {
2740 u64 tsc_exp = kvm->arch.last_tsc_write +
2741 nsec_to_cycles(vcpu, elapsed);
2742 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2744 * Here lies UAPI baggage: when a user-initiated TSC write has
2745 * a small delta (1 second) of virtual cycle time against the
2746 * previously set vCPU, we assume that they were intended to be
2747 * in sync and the delta was only due to the racy nature of the
2750 * This trick falls down when restoring a guest which genuinely
2751 * has been running for less time than the 1 second of imprecision
2752 * which we allow for in the legacy API. In this case, the first
2753 * value written by userspace (on any vCPU) should not be subject
2754 * to this 'correction' to make it sync up with values that only
2755 * come from the kernel's default vCPU creation. Make the 1-second
2756 * slop hack only trigger if the user_set_tsc flag is already set.
2758 synchronizing = data < tsc_exp + tsc_hz &&
2759 data + tsc_hz > tsc_exp;
2764 kvm->arch.user_set_tsc = true;
2767 * For a reliable TSC, we can match TSC offsets, and for an unstable
2768 * TSC, we add elapsed time in this computation. We could let the
2769 * compensation code attempt to catch up if we fall behind, but
2770 * it's better to try to match offsets from the beginning.
2772 if (synchronizing &&
2773 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2774 if (!kvm_check_tsc_unstable()) {
2775 offset = kvm->arch.cur_tsc_offset;
2777 u64 delta = nsec_to_cycles(vcpu, elapsed);
2779 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2784 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2785 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2788 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2791 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2792 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2795 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2797 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2798 WARN_ON(adjustment < 0);
2799 adjustment = kvm_scale_tsc((u64) adjustment,
2800 vcpu->arch.l1_tsc_scaling_ratio);
2801 adjust_tsc_offset_guest(vcpu, adjustment);
2804 #ifdef CONFIG_X86_64
2806 static u64 read_tsc(void)
2808 u64 ret = (u64)rdtsc_ordered();
2809 u64 last = pvclock_gtod_data.clock.cycle_last;
2811 if (likely(ret >= last))
2815 * GCC likes to generate cmov here, but this branch is extremely
2816 * predictable (it's just a function of time and the likely is
2817 * very likely) and there's a data dependence, so force GCC
2818 * to generate a branch instead. I don't barrier() because
2819 * we don't actually need a barrier, and if this function
2820 * ever gets inlined it will generate worse code.
2826 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2832 switch (clock->vclock_mode) {
2833 case VDSO_CLOCKMODE_HVCLOCK:
2834 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2835 tsc_timestamp, &tsc_pg_val)) {
2836 /* TSC page valid */
2837 *mode = VDSO_CLOCKMODE_HVCLOCK;
2838 v = (tsc_pg_val - clock->cycle_last) &
2841 /* TSC page invalid */
2842 *mode = VDSO_CLOCKMODE_NONE;
2845 case VDSO_CLOCKMODE_TSC:
2846 *mode = VDSO_CLOCKMODE_TSC;
2847 *tsc_timestamp = read_tsc();
2848 v = (*tsc_timestamp - clock->cycle_last) &
2852 *mode = VDSO_CLOCKMODE_NONE;
2855 if (*mode == VDSO_CLOCKMODE_NONE)
2856 *tsc_timestamp = v = 0;
2858 return v * clock->mult;
2861 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2863 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2869 seq = read_seqcount_begin(>od->seq);
2870 ns = gtod->raw_clock.base_cycles;
2871 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2872 ns >>= gtod->raw_clock.shift;
2873 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2874 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2880 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2882 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2888 seq = read_seqcount_begin(>od->seq);
2889 ts->tv_sec = gtod->wall_time_sec;
2890 ns = gtod->clock.base_cycles;
2891 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2892 ns >>= gtod->clock.shift;
2893 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2895 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2901 /* returns true if host is using TSC based clocksource */
2902 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2904 /* checked again under seqlock below */
2905 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2908 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2912 /* returns true if host is using TSC based clocksource */
2913 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2916 /* checked again under seqlock below */
2917 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2920 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2926 * Assuming a stable TSC across physical CPUS, and a stable TSC
2927 * across virtual CPUs, the following condition is possible.
2928 * Each numbered line represents an event visible to both
2929 * CPUs at the next numbered event.
2931 * "timespecX" represents host monotonic time. "tscX" represents
2934 * VCPU0 on CPU0 | VCPU1 on CPU1
2936 * 1. read timespec0,tsc0
2937 * 2. | timespec1 = timespec0 + N
2939 * 3. transition to guest | transition to guest
2940 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2941 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2942 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2944 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2947 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2949 * - 0 < N - M => M < N
2951 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2952 * always the case (the difference between two distinct xtime instances
2953 * might be smaller then the difference between corresponding TSC reads,
2954 * when updating guest vcpus pvclock areas).
2956 * To avoid that problem, do not allow visibility of distinct
2957 * system_timestamp/tsc_timestamp values simultaneously: use a master
2958 * copy of host monotonic time values. Update that master copy
2961 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2965 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2967 #ifdef CONFIG_X86_64
2968 struct kvm_arch *ka = &kvm->arch;
2970 bool host_tsc_clocksource, vcpus_matched;
2972 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2973 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2974 atomic_read(&kvm->online_vcpus));
2977 * If the host uses TSC clock, then passthrough TSC as stable
2980 host_tsc_clocksource = kvm_get_time_and_clockread(
2981 &ka->master_kernel_ns,
2982 &ka->master_cycle_now);
2984 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2985 && !ka->backwards_tsc_observed
2986 && !ka->boot_vcpu_runs_old_kvmclock;
2988 if (ka->use_master_clock)
2989 atomic_set(&kvm_guest_has_master_clock, 1);
2991 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2992 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2997 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2999 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3002 static void __kvm_start_pvclock_update(struct kvm *kvm)
3004 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3005 write_seqcount_begin(&kvm->arch.pvclock_sc);
3008 static void kvm_start_pvclock_update(struct kvm *kvm)
3010 kvm_make_mclock_inprogress_request(kvm);
3012 /* no guest entries from this point */
3013 __kvm_start_pvclock_update(kvm);
3016 static void kvm_end_pvclock_update(struct kvm *kvm)
3018 struct kvm_arch *ka = &kvm->arch;
3019 struct kvm_vcpu *vcpu;
3022 write_seqcount_end(&ka->pvclock_sc);
3023 raw_spin_unlock_irq(&ka->tsc_write_lock);
3024 kvm_for_each_vcpu(i, vcpu, kvm)
3025 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3027 /* guest entries allowed */
3028 kvm_for_each_vcpu(i, vcpu, kvm)
3029 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3032 static void kvm_update_masterclock(struct kvm *kvm)
3034 kvm_hv_request_tsc_page_update(kvm);
3035 kvm_start_pvclock_update(kvm);
3036 pvclock_update_vm_gtod_copy(kvm);
3037 kvm_end_pvclock_update(kvm);
3041 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3042 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3043 * can change during boot even if the TSC is constant, as it's possible for KVM
3044 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3045 * notification when calibration completes, but practically speaking calibration
3046 * will complete before userspace is alive enough to create VMs.
3048 static unsigned long get_cpu_tsc_khz(void)
3050 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3053 return __this_cpu_read(cpu_tsc_khz);
3056 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
3057 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3059 struct kvm_arch *ka = &kvm->arch;
3060 struct pvclock_vcpu_time_info hv_clock;
3062 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3066 if (ka->use_master_clock &&
3067 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3068 #ifdef CONFIG_X86_64
3069 struct timespec64 ts;
3071 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3072 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3073 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3076 data->host_tsc = rdtsc();
3078 data->flags |= KVM_CLOCK_TSC_STABLE;
3079 hv_clock.tsc_timestamp = ka->master_cycle_now;
3080 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3081 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3082 &hv_clock.tsc_shift,
3083 &hv_clock.tsc_to_system_mul);
3084 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3086 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3092 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3094 struct kvm_arch *ka = &kvm->arch;
3098 seq = read_seqcount_begin(&ka->pvclock_sc);
3099 __get_kvmclock(kvm, data);
3100 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3103 u64 get_kvmclock_ns(struct kvm *kvm)
3105 struct kvm_clock_data data;
3107 get_kvmclock(kvm, &data);
3111 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3112 struct gfn_to_pfn_cache *gpc,
3113 unsigned int offset)
3115 struct kvm_vcpu_arch *vcpu = &v->arch;
3116 struct pvclock_vcpu_time_info *guest_hv_clock;
3117 unsigned long flags;
3119 read_lock_irqsave(&gpc->lock, flags);
3120 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3121 read_unlock_irqrestore(&gpc->lock, flags);
3123 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3126 read_lock_irqsave(&gpc->lock, flags);
3129 guest_hv_clock = (void *)(gpc->khva + offset);
3132 * This VCPU is paused, but it's legal for a guest to read another
3133 * VCPU's kvmclock, so we really have to follow the specification where
3134 * it says that version is odd if data is being modified, and even after
3138 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3141 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3142 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3144 if (vcpu->pvclock_set_guest_stopped_request) {
3145 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3146 vcpu->pvclock_set_guest_stopped_request = false;
3149 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3152 guest_hv_clock->version = ++vcpu->hv_clock.version;
3154 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3155 read_unlock_irqrestore(&gpc->lock, flags);
3157 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3160 static int kvm_guest_time_update(struct kvm_vcpu *v)
3162 unsigned long flags, tgt_tsc_khz;
3164 struct kvm_vcpu_arch *vcpu = &v->arch;
3165 struct kvm_arch *ka = &v->kvm->arch;
3167 u64 tsc_timestamp, host_tsc;
3169 bool use_master_clock;
3175 * If the host uses TSC clock, then passthrough TSC as stable
3179 seq = read_seqcount_begin(&ka->pvclock_sc);
3180 use_master_clock = ka->use_master_clock;
3181 if (use_master_clock) {
3182 host_tsc = ka->master_cycle_now;
3183 kernel_ns = ka->master_kernel_ns;
3185 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3187 /* Keep irq disabled to prevent changes to the clock */
3188 local_irq_save(flags);
3189 tgt_tsc_khz = get_cpu_tsc_khz();
3190 if (unlikely(tgt_tsc_khz == 0)) {
3191 local_irq_restore(flags);
3192 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3195 if (!use_master_clock) {
3197 kernel_ns = get_kvmclock_base_ns();
3200 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3203 * We may have to catch up the TSC to match elapsed wall clock
3204 * time for two reasons, even if kvmclock is used.
3205 * 1) CPU could have been running below the maximum TSC rate
3206 * 2) Broken TSC compensation resets the base at each VCPU
3207 * entry to avoid unknown leaps of TSC even when running
3208 * again on the same CPU. This may cause apparent elapsed
3209 * time to disappear, and the guest to stand still or run
3212 if (vcpu->tsc_catchup) {
3213 u64 tsc = compute_guest_tsc(v, kernel_ns);
3214 if (tsc > tsc_timestamp) {
3215 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3216 tsc_timestamp = tsc;
3220 local_irq_restore(flags);
3222 /* With all the info we got, fill in the values */
3224 if (kvm_caps.has_tsc_control)
3225 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3226 v->arch.l1_tsc_scaling_ratio);
3228 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3229 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3230 &vcpu->hv_clock.tsc_shift,
3231 &vcpu->hv_clock.tsc_to_system_mul);
3232 vcpu->hw_tsc_khz = tgt_tsc_khz;
3233 kvm_xen_update_tsc_info(v);
3236 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3237 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3238 vcpu->last_guest_tsc = tsc_timestamp;
3240 /* If the host uses TSC clocksource, then it is stable */
3242 if (use_master_clock)
3243 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3245 vcpu->hv_clock.flags = pvclock_flags;
3247 if (vcpu->pv_time.active)
3248 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3249 #ifdef CONFIG_KVM_XEN
3250 if (vcpu->xen.vcpu_info_cache.active)
3251 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3252 offsetof(struct compat_vcpu_info, time));
3253 if (vcpu->xen.vcpu_time_info_cache.active)
3254 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3256 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3261 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3262 * which it started (i.e. its epoch, when its kvmclock was zero).
3264 * In fact those clocks are subtly different; wall clock frequency is
3265 * adjusted by NTP and has leap seconds, while the kvmclock is a
3266 * simple function of the TSC without any such adjustment.
3268 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3269 * that and kvmclock, but even that would be subject to change over
3272 * Attempt to calculate the epoch at a given moment using the *same*
3273 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3274 * wallclock and kvmclock times, and subtracting one from the other.
3276 * Fall back to using their values at slightly different moments by
3277 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3279 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3281 #ifdef CONFIG_X86_64
3282 struct pvclock_vcpu_time_info hv_clock;
3283 struct kvm_arch *ka = &kvm->arch;
3284 unsigned long seq, local_tsc_khz;
3285 struct timespec64 ts;
3289 seq = read_seqcount_begin(&ka->pvclock_sc);
3292 if (!ka->use_master_clock)
3296 * The TSC read and the call to get_cpu_tsc_khz() must happen
3301 local_tsc_khz = get_cpu_tsc_khz();
3303 if (local_tsc_khz &&
3304 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3305 local_tsc_khz = 0; /* Fall back to old method */
3310 * These values must be snapshotted within the seqcount loop.
3311 * After that, it's just mathematics which can happen on any
3314 hv_clock.tsc_timestamp = ka->master_cycle_now;
3315 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3317 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3320 * If the conditions were right, and obtaining the wallclock+TSC was
3321 * successful, calculate the KVM clock at the corresponding time and
3322 * subtract one from the other to get the guest's epoch in nanoseconds
3325 if (local_tsc_khz) {
3326 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3327 &hv_clock.tsc_shift,
3328 &hv_clock.tsc_to_system_mul);
3329 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3330 __pvclock_read_cycles(&hv_clock, host_tsc);
3333 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3337 * kvmclock updates which are isolated to a given vcpu, such as
3338 * vcpu->cpu migration, should not allow system_timestamp from
3339 * the rest of the vcpus to remain static. Otherwise ntp frequency
3340 * correction applies to one vcpu's system_timestamp but not
3343 * So in those cases, request a kvmclock update for all vcpus.
3344 * We need to rate-limit these requests though, as they can
3345 * considerably slow guests that have a large number of vcpus.
3346 * The time for a remote vcpu to update its kvmclock is bound
3347 * by the delay we use to rate-limit the updates.
3350 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3352 static void kvmclock_update_fn(struct work_struct *work)
3355 struct delayed_work *dwork = to_delayed_work(work);
3356 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3357 kvmclock_update_work);
3358 struct kvm *kvm = container_of(ka, struct kvm, arch);
3359 struct kvm_vcpu *vcpu;
3361 kvm_for_each_vcpu(i, vcpu, kvm) {
3362 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3363 kvm_vcpu_kick(vcpu);
3367 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3369 struct kvm *kvm = v->kvm;
3371 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3372 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3373 KVMCLOCK_UPDATE_DELAY);
3376 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3378 static void kvmclock_sync_fn(struct work_struct *work)
3380 struct delayed_work *dwork = to_delayed_work(work);
3381 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3382 kvmclock_sync_work);
3383 struct kvm *kvm = container_of(ka, struct kvm, arch);
3385 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3386 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3387 KVMCLOCK_SYNC_PERIOD);
3390 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3391 static bool is_mci_control_msr(u32 msr)
3393 return (msr & 3) == 0;
3395 static bool is_mci_status_msr(u32 msr)
3397 return (msr & 3) == 1;
3401 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3403 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3405 /* McStatusWrEn enabled? */
3406 if (guest_cpuid_is_amd_or_hygon(vcpu))
3407 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3412 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3414 u64 mcg_cap = vcpu->arch.mcg_cap;
3415 unsigned bank_num = mcg_cap & 0xff;
3416 u32 msr = msr_info->index;
3417 u64 data = msr_info->data;
3418 u32 offset, last_msr;
3421 case MSR_IA32_MCG_STATUS:
3422 vcpu->arch.mcg_status = data;
3424 case MSR_IA32_MCG_CTL:
3425 if (!(mcg_cap & MCG_CTL_P) &&
3426 (data || !msr_info->host_initiated))
3428 if (data != 0 && data != ~(u64)0)
3430 vcpu->arch.mcg_ctl = data;
3432 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3433 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3437 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3439 /* An attempt to write a 1 to a reserved bit raises #GP */
3440 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3442 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3443 last_msr + 1 - MSR_IA32_MC0_CTL2);
3444 vcpu->arch.mci_ctl2_banks[offset] = data;
3446 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3447 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3452 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3453 * values are architecturally undefined. But, some Linux
3454 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3455 * issue on AMD K8s, allow bit 10 to be clear when setting all
3456 * other bits in order to avoid an uncaught #GP in the guest.
3458 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3459 * single-bit ECC data errors.
3461 if (is_mci_control_msr(msr) &&
3462 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3466 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3467 * AMD-based CPUs allow non-zero values, but if and only if
3468 * HWCR[McStatusWrEn] is set.
3470 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3471 data != 0 && !can_set_mci_status(vcpu))
3474 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3475 last_msr + 1 - MSR_IA32_MC0_CTL);
3476 vcpu->arch.mce_banks[offset] = data;
3484 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3486 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3488 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3491 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3493 gpa_t gpa = data & ~0x3f;
3495 /* Bits 4:5 are reserved, Should be zero */
3499 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3500 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3503 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3504 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3507 if (!lapic_in_kernel(vcpu))
3508 return data ? 1 : 0;
3510 vcpu->arch.apf.msr_en_val = data;
3512 if (!kvm_pv_async_pf_enabled(vcpu)) {
3513 kvm_clear_async_pf_completion_queue(vcpu);
3514 kvm_async_pf_hash_reset(vcpu);
3518 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3522 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3523 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3525 kvm_async_pf_wakeup_all(vcpu);
3530 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3532 /* Bits 8-63 are reserved */
3536 if (!lapic_in_kernel(vcpu))
3539 vcpu->arch.apf.msr_int_val = data;
3541 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3546 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3548 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3549 vcpu->arch.time = 0;
3552 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3554 ++vcpu->stat.tlb_flush;
3555 static_call(kvm_x86_flush_tlb_all)(vcpu);
3557 /* Flushing all ASIDs flushes the current ASID... */
3558 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3561 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3563 ++vcpu->stat.tlb_flush;
3567 * A TLB flush on behalf of the guest is equivalent to
3568 * INVPCID(all), toggling CR4.PGE, etc., which requires
3569 * a forced sync of the shadow page tables. Ensure all the
3570 * roots are synced and the guest TLB in hardware is clean.
3572 kvm_mmu_sync_roots(vcpu);
3573 kvm_mmu_sync_prev_roots(vcpu);
3576 static_call(kvm_x86_flush_tlb_guest)(vcpu);
3579 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3582 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3586 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3588 ++vcpu->stat.tlb_flush;
3589 static_call(kvm_x86_flush_tlb_current)(vcpu);
3593 * Service "local" TLB flush requests, which are specific to the current MMU
3594 * context. In addition to the generic event handling in vcpu_enter_guest(),
3595 * TLB flushes that are targeted at an MMU context also need to be serviced
3596 * prior before nested VM-Enter/VM-Exit.
3598 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3600 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3601 kvm_vcpu_flush_tlb_current(vcpu);
3603 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3604 kvm_vcpu_flush_tlb_guest(vcpu);
3606 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3608 static void record_steal_time(struct kvm_vcpu *vcpu)
3610 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3611 struct kvm_steal_time __user *st;
3612 struct kvm_memslots *slots;
3613 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3617 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3618 kvm_xen_runstate_set_running(vcpu);
3622 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3625 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3628 slots = kvm_memslots(vcpu->kvm);
3630 if (unlikely(slots->generation != ghc->generation ||
3632 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3633 /* We rely on the fact that it fits in a single page. */
3634 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3636 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3637 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3641 st = (struct kvm_steal_time __user *)ghc->hva;
3643 * Doing a TLB flush here, on the guest's behalf, can avoid
3646 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3647 u8 st_preempted = 0;
3650 if (!user_access_begin(st, sizeof(*st)))
3653 asm volatile("1: xchgb %0, %2\n"
3656 _ASM_EXTABLE_UA(1b, 2b)
3657 : "+q" (st_preempted),
3659 "+m" (st->preempted));
3665 vcpu->arch.st.preempted = 0;
3667 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3668 st_preempted & KVM_VCPU_FLUSH_TLB);
3669 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3670 kvm_vcpu_flush_tlb_guest(vcpu);
3672 if (!user_access_begin(st, sizeof(*st)))
3675 if (!user_access_begin(st, sizeof(*st)))
3678 unsafe_put_user(0, &st->preempted, out);
3679 vcpu->arch.st.preempted = 0;
3682 unsafe_get_user(version, &st->version, out);
3684 version += 1; /* first time write, random junk */
3687 unsafe_put_user(version, &st->version, out);
3691 unsafe_get_user(steal, &st->steal, out);
3692 steal += current->sched_info.run_delay -
3693 vcpu->arch.st.last_steal;
3694 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3695 unsafe_put_user(steal, &st->steal, out);
3698 unsafe_put_user(version, &st->version, out);
3703 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3706 static bool kvm_is_msr_to_save(u32 msr_index)
3710 for (i = 0; i < num_msrs_to_save; i++) {
3711 if (msrs_to_save[i] == msr_index)
3718 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3720 u32 msr = msr_info->index;
3721 u64 data = msr_info->data;
3723 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3724 return kvm_xen_write_hypercall_page(vcpu, data);
3727 case MSR_AMD64_NB_CFG:
3728 case MSR_IA32_UCODE_WRITE:
3729 case MSR_VM_HSAVE_PA:
3730 case MSR_AMD64_PATCH_LOADER:
3731 case MSR_AMD64_BU_CFG2:
3732 case MSR_AMD64_DC_CFG:
3733 case MSR_AMD64_TW_CFG:
3734 case MSR_F15H_EX_CFG:
3737 case MSR_IA32_UCODE_REV:
3738 if (msr_info->host_initiated)
3739 vcpu->arch.microcode_version = data;
3741 case MSR_IA32_ARCH_CAPABILITIES:
3742 if (!msr_info->host_initiated)
3744 vcpu->arch.arch_capabilities = data;
3746 case MSR_IA32_PERF_CAPABILITIES:
3747 if (!msr_info->host_initiated)
3749 if (data & ~kvm_caps.supported_perf_cap)
3753 * Note, this is not just a performance optimization! KVM
3754 * disallows changing feature MSRs after the vCPU has run; PMU
3755 * refresh will bug the VM if called after the vCPU has run.
3757 if (vcpu->arch.perf_capabilities == data)
3760 vcpu->arch.perf_capabilities = data;
3761 kvm_pmu_refresh(vcpu);
3763 case MSR_IA32_PRED_CMD: {
3764 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3766 if (!msr_info->host_initiated) {
3767 if ((!guest_has_pred_cmd_msr(vcpu)))
3770 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3771 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3772 reserved_bits |= PRED_CMD_IBPB;
3774 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3775 reserved_bits |= PRED_CMD_SBPB;
3778 if (!boot_cpu_has(X86_FEATURE_IBPB))
3779 reserved_bits |= PRED_CMD_IBPB;
3781 if (!boot_cpu_has(X86_FEATURE_SBPB))
3782 reserved_bits |= PRED_CMD_SBPB;
3784 if (data & reserved_bits)
3790 wrmsrl(MSR_IA32_PRED_CMD, data);
3793 case MSR_IA32_FLUSH_CMD:
3794 if (!msr_info->host_initiated &&
3795 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3798 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3803 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3806 return set_efer(vcpu, msr_info);
3808 data &= ~(u64)0x40; /* ignore flush filter disable */
3809 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3810 data &= ~(u64)0x8; /* ignore TLB cache disable */
3813 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3814 * through at least v6.6 whine if TscFreqSel is clear,
3815 * depending on F/M/S.
3817 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3818 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3821 vcpu->arch.msr_hwcr = data;
3823 case MSR_FAM10H_MMIO_CONF_BASE:
3825 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3829 case MSR_IA32_CR_PAT:
3830 if (!kvm_pat_valid(data))
3833 vcpu->arch.pat = data;
3835 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3836 case MSR_MTRRdefType:
3837 return kvm_mtrr_set_msr(vcpu, msr, data);
3838 case MSR_IA32_APICBASE:
3839 return kvm_set_apic_base(vcpu, msr_info);
3840 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3841 return kvm_x2apic_msr_write(vcpu, msr, data);
3842 case MSR_IA32_TSC_DEADLINE:
3843 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3845 case MSR_IA32_TSC_ADJUST:
3846 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3847 if (!msr_info->host_initiated) {
3848 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3849 adjust_tsc_offset_guest(vcpu, adj);
3850 /* Before back to guest, tsc_timestamp must be adjusted
3851 * as well, otherwise guest's percpu pvclock time could jump.
3853 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3855 vcpu->arch.ia32_tsc_adjust_msr = data;
3858 case MSR_IA32_MISC_ENABLE: {
3859 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3861 if (!msr_info->host_initiated) {
3863 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3866 /* R bits, i.e. writes are ignored, but don't fault. */
3867 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3868 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3871 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3872 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3873 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3875 vcpu->arch.ia32_misc_enable_msr = data;
3876 kvm_update_cpuid_runtime(vcpu);
3878 vcpu->arch.ia32_misc_enable_msr = data;
3882 case MSR_IA32_SMBASE:
3883 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3885 vcpu->arch.smbase = data;
3887 case MSR_IA32_POWER_CTL:
3888 vcpu->arch.msr_ia32_power_ctl = data;
3891 if (msr_info->host_initiated) {
3892 kvm_synchronize_tsc(vcpu, &data);
3894 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3895 adjust_tsc_offset_guest(vcpu, adj);
3896 vcpu->arch.ia32_tsc_adjust_msr += adj;
3900 if (!msr_info->host_initiated &&
3901 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3904 * KVM supports exposing PT to the guest, but does not support
3905 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3906 * XSAVES/XRSTORS to save/restore PT MSRs.
3908 if (data & ~kvm_caps.supported_xss)
3910 vcpu->arch.ia32_xss = data;
3911 kvm_update_cpuid_runtime(vcpu);
3914 if (!msr_info->host_initiated)
3916 vcpu->arch.smi_count = data;
3918 case MSR_KVM_WALL_CLOCK_NEW:
3919 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3922 vcpu->kvm->arch.wall_clock = data;
3923 kvm_write_wall_clock(vcpu->kvm, data, 0);
3925 case MSR_KVM_WALL_CLOCK:
3926 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3929 vcpu->kvm->arch.wall_clock = data;
3930 kvm_write_wall_clock(vcpu->kvm, data, 0);
3932 case MSR_KVM_SYSTEM_TIME_NEW:
3933 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3936 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3938 case MSR_KVM_SYSTEM_TIME:
3939 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3942 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3944 case MSR_KVM_ASYNC_PF_EN:
3945 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3948 if (kvm_pv_enable_async_pf(vcpu, data))
3951 case MSR_KVM_ASYNC_PF_INT:
3952 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3955 if (kvm_pv_enable_async_pf_int(vcpu, data))
3958 case MSR_KVM_ASYNC_PF_ACK:
3959 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3962 vcpu->arch.apf.pageready_pending = false;
3963 kvm_check_async_pf_completion(vcpu);
3966 case MSR_KVM_STEAL_TIME:
3967 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3970 if (unlikely(!sched_info_on()))
3973 if (data & KVM_STEAL_RESERVED_MASK)
3976 vcpu->arch.st.msr_val = data;
3978 if (!(data & KVM_MSR_ENABLED))
3981 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3984 case MSR_KVM_PV_EOI_EN:
3985 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3988 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3992 case MSR_KVM_POLL_CONTROL:
3993 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3996 /* only enable bit supported */
3997 if (data & (-1ULL << 1))
4000 vcpu->arch.msr_kvm_poll_control = data;
4003 case MSR_IA32_MCG_CTL:
4004 case MSR_IA32_MCG_STATUS:
4005 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4006 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4007 return set_msr_mce(vcpu, msr_info);
4009 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4010 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4011 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4012 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4013 if (kvm_pmu_is_valid_msr(vcpu, msr))
4014 return kvm_pmu_set_msr(vcpu, msr_info);
4017 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4019 case MSR_K7_CLK_CTL:
4021 * Ignore all writes to this no longer documented MSR.
4022 * Writes are only relevant for old K7 processors,
4023 * all pre-dating SVM, but a recommended workaround from
4024 * AMD for these chips. It is possible to specify the
4025 * affected processor models on the command line, hence
4026 * the need to ignore the workaround.
4029 #ifdef CONFIG_KVM_HYPERV
4030 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4031 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4032 case HV_X64_MSR_SYNDBG_OPTIONS:
4033 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4034 case HV_X64_MSR_CRASH_CTL:
4035 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4036 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4037 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4038 case HV_X64_MSR_TSC_EMULATION_STATUS:
4039 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4040 return kvm_hv_set_msr_common(vcpu, msr, data,
4041 msr_info->host_initiated);
4043 case MSR_IA32_BBL_CR_CTL3:
4044 /* Drop writes to this legacy MSR -- see rdmsr
4045 * counterpart for further detail.
4047 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4049 case MSR_AMD64_OSVW_ID_LENGTH:
4050 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4052 vcpu->arch.osvw.length = data;
4054 case MSR_AMD64_OSVW_STATUS:
4055 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4057 vcpu->arch.osvw.status = data;
4059 case MSR_PLATFORM_INFO:
4060 if (!msr_info->host_initiated ||
4061 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4062 cpuid_fault_enabled(vcpu)))
4064 vcpu->arch.msr_platform_info = data;
4066 case MSR_MISC_FEATURES_ENABLES:
4067 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4068 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4069 !supports_cpuid_fault(vcpu)))
4071 vcpu->arch.msr_misc_features_enables = data;
4073 #ifdef CONFIG_X86_64
4075 if (!msr_info->host_initiated &&
4076 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4079 if (data & ~kvm_guest_supported_xfd(vcpu))
4082 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4084 case MSR_IA32_XFD_ERR:
4085 if (!msr_info->host_initiated &&
4086 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4089 if (data & ~kvm_guest_supported_xfd(vcpu))
4092 vcpu->arch.guest_fpu.xfd_err = data;
4096 if (kvm_pmu_is_valid_msr(vcpu, msr))
4097 return kvm_pmu_set_msr(vcpu, msr_info);
4100 * Userspace is allowed to write '0' to MSRs that KVM reports
4101 * as to-be-saved, even if an MSRs isn't fully supported.
4103 if (msr_info->host_initiated && !data &&
4104 kvm_is_msr_to_save(msr))
4107 return KVM_MSR_RET_INVALID;
4111 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4113 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4116 u64 mcg_cap = vcpu->arch.mcg_cap;
4117 unsigned bank_num = mcg_cap & 0xff;
4118 u32 offset, last_msr;
4121 case MSR_IA32_P5_MC_ADDR:
4122 case MSR_IA32_P5_MC_TYPE:
4125 case MSR_IA32_MCG_CAP:
4126 data = vcpu->arch.mcg_cap;
4128 case MSR_IA32_MCG_CTL:
4129 if (!(mcg_cap & MCG_CTL_P) && !host)
4131 data = vcpu->arch.mcg_ctl;
4133 case MSR_IA32_MCG_STATUS:
4134 data = vcpu->arch.mcg_status;
4136 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4137 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4141 if (!(mcg_cap & MCG_CMCI_P) && !host)
4143 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4144 last_msr + 1 - MSR_IA32_MC0_CTL2);
4145 data = vcpu->arch.mci_ctl2_banks[offset];
4147 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4148 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4152 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4153 last_msr + 1 - MSR_IA32_MC0_CTL);
4154 data = vcpu->arch.mce_banks[offset];
4163 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4165 switch (msr_info->index) {
4166 case MSR_IA32_PLATFORM_ID:
4167 case MSR_IA32_EBL_CR_POWERON:
4168 case MSR_IA32_LASTBRANCHFROMIP:
4169 case MSR_IA32_LASTBRANCHTOIP:
4170 case MSR_IA32_LASTINTFROMIP:
4171 case MSR_IA32_LASTINTTOIP:
4172 case MSR_AMD64_SYSCFG:
4173 case MSR_K8_TSEG_ADDR:
4174 case MSR_K8_TSEG_MASK:
4175 case MSR_VM_HSAVE_PA:
4176 case MSR_K8_INT_PENDING_MSG:
4177 case MSR_AMD64_NB_CFG:
4178 case MSR_FAM10H_MMIO_CONF_BASE:
4179 case MSR_AMD64_BU_CFG2:
4180 case MSR_IA32_PERF_CTL:
4181 case MSR_AMD64_DC_CFG:
4182 case MSR_AMD64_TW_CFG:
4183 case MSR_F15H_EX_CFG:
4185 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4186 * limit) MSRs. Just return 0, as we do not want to expose the host
4187 * data here. Do not conditionalize this on CPUID, as KVM does not do
4188 * so for existing CPU-specific MSRs.
4190 case MSR_RAPL_POWER_UNIT:
4191 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4192 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4193 case MSR_PKG_ENERGY_STATUS: /* Total package */
4194 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4197 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4198 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4199 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4200 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4201 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4202 return kvm_pmu_get_msr(vcpu, msr_info);
4205 case MSR_IA32_UCODE_REV:
4206 msr_info->data = vcpu->arch.microcode_version;
4208 case MSR_IA32_ARCH_CAPABILITIES:
4209 if (!msr_info->host_initiated &&
4210 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4212 msr_info->data = vcpu->arch.arch_capabilities;
4214 case MSR_IA32_PERF_CAPABILITIES:
4215 if (!msr_info->host_initiated &&
4216 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4218 msr_info->data = vcpu->arch.perf_capabilities;
4220 case MSR_IA32_POWER_CTL:
4221 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4223 case MSR_IA32_TSC: {
4225 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4226 * even when not intercepted. AMD manual doesn't explicitly
4227 * state this but appears to behave the same.
4229 * On userspace reads and writes, however, we unconditionally
4230 * return L1's TSC value to ensure backwards-compatible
4231 * behavior for migration.
4235 if (msr_info->host_initiated) {
4236 offset = vcpu->arch.l1_tsc_offset;
4237 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4239 offset = vcpu->arch.tsc_offset;
4240 ratio = vcpu->arch.tsc_scaling_ratio;
4243 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4246 case MSR_IA32_CR_PAT:
4247 msr_info->data = vcpu->arch.pat;
4250 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4251 case MSR_MTRRdefType:
4252 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4253 case 0xcd: /* fsb frequency */
4257 * MSR_EBC_FREQUENCY_ID
4258 * Conservative value valid for even the basic CPU models.
4259 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4260 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4261 * and 266MHz for model 3, or 4. Set Core Clock
4262 * Frequency to System Bus Frequency Ratio to 1 (bits
4263 * 31:24) even though these are only valid for CPU
4264 * models > 2, however guests may end up dividing or
4265 * multiplying by zero otherwise.
4267 case MSR_EBC_FREQUENCY_ID:
4268 msr_info->data = 1 << 24;
4270 case MSR_IA32_APICBASE:
4271 msr_info->data = kvm_get_apic_base(vcpu);
4273 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4274 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4275 case MSR_IA32_TSC_DEADLINE:
4276 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4278 case MSR_IA32_TSC_ADJUST:
4279 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4281 case MSR_IA32_MISC_ENABLE:
4282 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4284 case MSR_IA32_SMBASE:
4285 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4287 msr_info->data = vcpu->arch.smbase;
4290 msr_info->data = vcpu->arch.smi_count;
4292 case MSR_IA32_PERF_STATUS:
4293 /* TSC increment by tick */
4294 msr_info->data = 1000ULL;
4295 /* CPU multiplier */
4296 msr_info->data |= (((uint64_t)4ULL) << 40);
4299 msr_info->data = vcpu->arch.efer;
4301 case MSR_KVM_WALL_CLOCK:
4302 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4305 msr_info->data = vcpu->kvm->arch.wall_clock;
4307 case MSR_KVM_WALL_CLOCK_NEW:
4308 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4311 msr_info->data = vcpu->kvm->arch.wall_clock;
4313 case MSR_KVM_SYSTEM_TIME:
4314 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4317 msr_info->data = vcpu->arch.time;
4319 case MSR_KVM_SYSTEM_TIME_NEW:
4320 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4323 msr_info->data = vcpu->arch.time;
4325 case MSR_KVM_ASYNC_PF_EN:
4326 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4329 msr_info->data = vcpu->arch.apf.msr_en_val;
4331 case MSR_KVM_ASYNC_PF_INT:
4332 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4335 msr_info->data = vcpu->arch.apf.msr_int_val;
4337 case MSR_KVM_ASYNC_PF_ACK:
4338 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4343 case MSR_KVM_STEAL_TIME:
4344 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4347 msr_info->data = vcpu->arch.st.msr_val;
4349 case MSR_KVM_PV_EOI_EN:
4350 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4353 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4355 case MSR_KVM_POLL_CONTROL:
4356 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4359 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4361 case MSR_IA32_P5_MC_ADDR:
4362 case MSR_IA32_P5_MC_TYPE:
4363 case MSR_IA32_MCG_CAP:
4364 case MSR_IA32_MCG_CTL:
4365 case MSR_IA32_MCG_STATUS:
4366 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4367 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4368 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4369 msr_info->host_initiated);
4371 if (!msr_info->host_initiated &&
4372 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4374 msr_info->data = vcpu->arch.ia32_xss;
4376 case MSR_K7_CLK_CTL:
4378 * Provide expected ramp-up count for K7. All other
4379 * are set to zero, indicating minimum divisors for
4382 * This prevents guest kernels on AMD host with CPU
4383 * type 6, model 8 and higher from exploding due to
4384 * the rdmsr failing.
4386 msr_info->data = 0x20000000;
4388 #ifdef CONFIG_KVM_HYPERV
4389 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4390 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4391 case HV_X64_MSR_SYNDBG_OPTIONS:
4392 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4393 case HV_X64_MSR_CRASH_CTL:
4394 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4395 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4396 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4397 case HV_X64_MSR_TSC_EMULATION_STATUS:
4398 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4399 return kvm_hv_get_msr_common(vcpu,
4400 msr_info->index, &msr_info->data,
4401 msr_info->host_initiated);
4403 case MSR_IA32_BBL_CR_CTL3:
4404 /* This legacy MSR exists but isn't fully documented in current
4405 * silicon. It is however accessed by winxp in very narrow
4406 * scenarios where it sets bit #19, itself documented as
4407 * a "reserved" bit. Best effort attempt to source coherent
4408 * read data here should the balance of the register be
4409 * interpreted by the guest:
4411 * L2 cache control register 3: 64GB range, 256KB size,
4412 * enabled, latency 0x1, configured
4414 msr_info->data = 0xbe702111;
4416 case MSR_AMD64_OSVW_ID_LENGTH:
4417 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4419 msr_info->data = vcpu->arch.osvw.length;
4421 case MSR_AMD64_OSVW_STATUS:
4422 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4424 msr_info->data = vcpu->arch.osvw.status;
4426 case MSR_PLATFORM_INFO:
4427 if (!msr_info->host_initiated &&
4428 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4430 msr_info->data = vcpu->arch.msr_platform_info;
4432 case MSR_MISC_FEATURES_ENABLES:
4433 msr_info->data = vcpu->arch.msr_misc_features_enables;
4436 msr_info->data = vcpu->arch.msr_hwcr;
4438 #ifdef CONFIG_X86_64
4440 if (!msr_info->host_initiated &&
4441 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4444 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4446 case MSR_IA32_XFD_ERR:
4447 if (!msr_info->host_initiated &&
4448 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4451 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4455 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4456 return kvm_pmu_get_msr(vcpu, msr_info);
4459 * Userspace is allowed to read MSRs that KVM reports as
4460 * to-be-saved, even if an MSR isn't fully supported.
4462 if (msr_info->host_initiated &&
4463 kvm_is_msr_to_save(msr_info->index)) {
4468 return KVM_MSR_RET_INVALID;
4472 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4475 * Read or write a bunch of msrs. All parameters are kernel addresses.
4477 * @return number of msrs set successfully.
4479 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4480 struct kvm_msr_entry *entries,
4481 int (*do_msr)(struct kvm_vcpu *vcpu,
4482 unsigned index, u64 *data))
4486 for (i = 0; i < msrs->nmsrs; ++i)
4487 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4494 * Read or write a bunch of msrs. Parameters are user addresses.
4496 * @return number of msrs set successfully.
4498 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4499 int (*do_msr)(struct kvm_vcpu *vcpu,
4500 unsigned index, u64 *data),
4503 struct kvm_msrs msrs;
4504 struct kvm_msr_entry *entries;
4509 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4513 if (msrs.nmsrs >= MAX_IO_MSRS)
4516 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4517 entries = memdup_user(user_msrs->entries, size);
4518 if (IS_ERR(entries)) {
4519 r = PTR_ERR(entries);
4523 r = __msr_io(vcpu, &msrs, entries, do_msr);
4525 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4533 static inline bool kvm_can_mwait_in_guest(void)
4535 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4536 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4537 boot_cpu_has(X86_FEATURE_ARAT);
4540 #ifdef CONFIG_KVM_HYPERV
4541 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4542 struct kvm_cpuid2 __user *cpuid_arg)
4544 struct kvm_cpuid2 cpuid;
4548 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4551 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4556 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4563 static bool kvm_is_vm_type_supported(unsigned long type)
4565 return type == KVM_X86_DEFAULT_VM ||
4566 (type == KVM_X86_SW_PROTECTED_VM &&
4567 IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_enabled);
4570 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4575 case KVM_CAP_IRQCHIP:
4577 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4578 case KVM_CAP_SET_TSS_ADDR:
4579 case KVM_CAP_EXT_CPUID:
4580 case KVM_CAP_EXT_EMUL_CPUID:
4581 case KVM_CAP_CLOCKSOURCE:
4583 case KVM_CAP_NOP_IO_DELAY:
4584 case KVM_CAP_MP_STATE:
4585 case KVM_CAP_SYNC_MMU:
4586 case KVM_CAP_USER_NMI:
4587 case KVM_CAP_REINJECT_CONTROL:
4588 case KVM_CAP_IRQ_INJECT_STATUS:
4589 case KVM_CAP_IOEVENTFD:
4590 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4592 case KVM_CAP_PIT_STATE2:
4593 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4594 case KVM_CAP_VCPU_EVENTS:
4595 #ifdef CONFIG_KVM_HYPERV
4596 case KVM_CAP_HYPERV:
4597 case KVM_CAP_HYPERV_VAPIC:
4598 case KVM_CAP_HYPERV_SPIN:
4599 case KVM_CAP_HYPERV_TIME:
4600 case KVM_CAP_HYPERV_SYNIC:
4601 case KVM_CAP_HYPERV_SYNIC2:
4602 case KVM_CAP_HYPERV_VP_INDEX:
4603 case KVM_CAP_HYPERV_EVENTFD:
4604 case KVM_CAP_HYPERV_TLBFLUSH:
4605 case KVM_CAP_HYPERV_SEND_IPI:
4606 case KVM_CAP_HYPERV_CPUID:
4607 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4608 case KVM_CAP_SYS_HYPERV_CPUID:
4610 case KVM_CAP_PCI_SEGMENT:
4611 case KVM_CAP_DEBUGREGS:
4612 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4614 case KVM_CAP_ASYNC_PF:
4615 case KVM_CAP_ASYNC_PF_INT:
4616 case KVM_CAP_GET_TSC_KHZ:
4617 case KVM_CAP_KVMCLOCK_CTRL:
4618 case KVM_CAP_READONLY_MEM:
4619 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4620 case KVM_CAP_TSC_DEADLINE_TIMER:
4621 case KVM_CAP_DISABLE_QUIRKS:
4622 case KVM_CAP_SET_BOOT_CPU_ID:
4623 case KVM_CAP_SPLIT_IRQCHIP:
4624 case KVM_CAP_IMMEDIATE_EXIT:
4625 case KVM_CAP_PMU_EVENT_FILTER:
4626 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4627 case KVM_CAP_GET_MSR_FEATURES:
4628 case KVM_CAP_MSR_PLATFORM_INFO:
4629 case KVM_CAP_EXCEPTION_PAYLOAD:
4630 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4631 case KVM_CAP_SET_GUEST_DEBUG:
4632 case KVM_CAP_LAST_CPU:
4633 case KVM_CAP_X86_USER_SPACE_MSR:
4634 case KVM_CAP_X86_MSR_FILTER:
4635 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4636 #ifdef CONFIG_X86_SGX_KVM
4637 case KVM_CAP_SGX_ATTRIBUTE:
4639 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4640 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4641 case KVM_CAP_SREGS2:
4642 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4643 case KVM_CAP_VCPU_ATTRIBUTES:
4644 case KVM_CAP_SYS_ATTRIBUTES:
4646 case KVM_CAP_ENABLE_CAP:
4647 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4648 case KVM_CAP_IRQFD_RESAMPLE:
4649 case KVM_CAP_MEMORY_FAULT_INFO:
4652 case KVM_CAP_EXIT_HYPERCALL:
4653 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4655 case KVM_CAP_SET_GUEST_DEBUG2:
4656 return KVM_GUESTDBG_VALID_MASK;
4657 #ifdef CONFIG_KVM_XEN
4658 case KVM_CAP_XEN_HVM:
4659 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4660 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4661 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4662 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4663 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4664 if (sched_info_on())
4665 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4666 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4669 case KVM_CAP_SYNC_REGS:
4670 r = KVM_SYNC_X86_VALID_FIELDS;
4672 case KVM_CAP_ADJUST_CLOCK:
4673 r = KVM_CLOCK_VALID_FLAGS;
4675 case KVM_CAP_X86_DISABLE_EXITS:
4676 r = KVM_X86_DISABLE_EXITS_PAUSE;
4678 if (!mitigate_smt_rsb) {
4679 r |= KVM_X86_DISABLE_EXITS_HLT |
4680 KVM_X86_DISABLE_EXITS_CSTATE;
4682 if (kvm_can_mwait_in_guest())
4683 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4686 case KVM_CAP_X86_SMM:
4687 if (!IS_ENABLED(CONFIG_KVM_SMM))
4690 /* SMBASE is usually relocated above 1M on modern chipsets,
4691 * and SMM handlers might indeed rely on 4G segment limits,
4692 * so do not report SMM to be available if real mode is
4693 * emulated via vm86 mode. Still, do not go to great lengths
4694 * to avoid userspace's usage of the feature, because it is a
4695 * fringe case that is not enabled except via specific settings
4696 * of the module parameters.
4698 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4700 case KVM_CAP_NR_VCPUS:
4701 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4703 case KVM_CAP_MAX_VCPUS:
4706 case KVM_CAP_MAX_VCPU_ID:
4707 r = KVM_MAX_VCPU_IDS;
4709 case KVM_CAP_PV_MMU: /* obsolete */
4713 r = KVM_MAX_MCE_BANKS;
4716 r = boot_cpu_has(X86_FEATURE_XSAVE);
4718 case KVM_CAP_TSC_CONTROL:
4719 case KVM_CAP_VM_TSC_CONTROL:
4720 r = kvm_caps.has_tsc_control;
4722 case KVM_CAP_X2APIC_API:
4723 r = KVM_X2APIC_API_VALID_FLAGS;
4725 case KVM_CAP_NESTED_STATE:
4726 r = kvm_x86_ops.nested_ops->get_state ?
4727 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4729 #ifdef CONFIG_KVM_HYPERV
4730 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4731 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4733 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4734 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4737 case KVM_CAP_SMALLER_MAXPHYADDR:
4738 r = (int) allow_smaller_maxphyaddr;
4740 case KVM_CAP_STEAL_TIME:
4741 r = sched_info_on();
4743 case KVM_CAP_X86_BUS_LOCK_EXIT:
4744 if (kvm_caps.has_bus_lock_exit)
4745 r = KVM_BUS_LOCK_DETECTION_OFF |
4746 KVM_BUS_LOCK_DETECTION_EXIT;
4750 case KVM_CAP_XSAVE2: {
4751 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4752 if (r < sizeof(struct kvm_xsave))
4753 r = sizeof(struct kvm_xsave);
4756 case KVM_CAP_PMU_CAPABILITY:
4757 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4759 case KVM_CAP_DISABLE_QUIRKS2:
4760 r = KVM_X86_VALID_QUIRKS;
4762 case KVM_CAP_X86_NOTIFY_VMEXIT:
4763 r = kvm_caps.has_notify_vmexit;
4765 case KVM_CAP_VM_TYPES:
4766 r = BIT(KVM_X86_DEFAULT_VM);
4767 if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM))
4768 r |= BIT(KVM_X86_SW_PROTECTED_VM);
4776 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4778 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4780 if ((u64)(unsigned long)uaddr != attr->addr)
4781 return ERR_PTR_USR(-EFAULT);
4785 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4787 u64 __user *uaddr = kvm_get_attr_addr(attr);
4793 return PTR_ERR(uaddr);
4795 switch (attr->attr) {
4796 case KVM_X86_XCOMP_GUEST_SUPP:
4797 if (put_user(kvm_caps.supported_xcr0, uaddr))
4805 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4810 switch (attr->attr) {
4811 case KVM_X86_XCOMP_GUEST_SUPP:
4818 long kvm_arch_dev_ioctl(struct file *filp,
4819 unsigned int ioctl, unsigned long arg)
4821 void __user *argp = (void __user *)arg;
4825 case KVM_GET_MSR_INDEX_LIST: {
4826 struct kvm_msr_list __user *user_msr_list = argp;
4827 struct kvm_msr_list msr_list;
4831 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4834 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4835 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4838 if (n < msr_list.nmsrs)
4841 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4842 num_msrs_to_save * sizeof(u32)))
4844 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4846 num_emulated_msrs * sizeof(u32)))
4851 case KVM_GET_SUPPORTED_CPUID:
4852 case KVM_GET_EMULATED_CPUID: {
4853 struct kvm_cpuid2 __user *cpuid_arg = argp;
4854 struct kvm_cpuid2 cpuid;
4857 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4860 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4866 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4871 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4873 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4874 sizeof(kvm_caps.supported_mce_cap)))
4878 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4879 struct kvm_msr_list __user *user_msr_list = argp;
4880 struct kvm_msr_list msr_list;
4884 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4887 msr_list.nmsrs = num_msr_based_features;
4888 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4891 if (n < msr_list.nmsrs)
4894 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4895 num_msr_based_features * sizeof(u32)))
4901 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4903 #ifdef CONFIG_KVM_HYPERV
4904 case KVM_GET_SUPPORTED_HV_CPUID:
4905 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4908 case KVM_GET_DEVICE_ATTR: {
4909 struct kvm_device_attr attr;
4911 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4913 r = kvm_x86_dev_get_attr(&attr);
4916 case KVM_HAS_DEVICE_ATTR: {
4917 struct kvm_device_attr attr;
4919 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4921 r = kvm_x86_dev_has_attr(&attr);
4932 static void wbinvd_ipi(void *garbage)
4937 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4939 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4942 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4944 /* Address WBINVD may be executed by guest */
4945 if (need_emulate_wbinvd(vcpu)) {
4946 if (static_call(kvm_x86_has_wbinvd_exit)())
4947 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4948 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4949 smp_call_function_single(vcpu->cpu,
4950 wbinvd_ipi, NULL, 1);
4953 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4955 /* Save host pkru register if supported */
4956 vcpu->arch.host_pkru = read_pkru();
4958 /* Apply any externally detected TSC adjustments (due to suspend) */
4959 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4960 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4961 vcpu->arch.tsc_offset_adjustment = 0;
4962 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4965 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4966 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4967 rdtsc() - vcpu->arch.last_host_tsc;
4969 mark_tsc_unstable("KVM discovered backwards TSC");
4971 if (kvm_check_tsc_unstable()) {
4972 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4973 vcpu->arch.last_guest_tsc);
4974 kvm_vcpu_write_tsc_offset(vcpu, offset);
4975 vcpu->arch.tsc_catchup = 1;
4978 if (kvm_lapic_hv_timer_in_use(vcpu))
4979 kvm_lapic_restart_hv_timer(vcpu);
4982 * On a host with synchronized TSC, there is no need to update
4983 * kvmclock on vcpu->cpu migration
4985 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4986 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4987 if (vcpu->cpu != cpu)
4988 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4992 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4995 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4997 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4998 struct kvm_steal_time __user *st;
4999 struct kvm_memslots *slots;
5000 static const u8 preempted = KVM_VCPU_PREEMPTED;
5001 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5004 * The vCPU can be marked preempted if and only if the VM-Exit was on
5005 * an instruction boundary and will not trigger guest emulation of any
5006 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5007 * when this is true, for example allowing the vCPU to be marked
5008 * preempted if and only if the VM-Exit was due to a host interrupt.
5010 if (!vcpu->arch.at_instruction_boundary) {
5011 vcpu->stat.preemption_other++;
5015 vcpu->stat.preemption_reported++;
5016 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5019 if (vcpu->arch.st.preempted)
5022 /* This happens on process exit */
5023 if (unlikely(current->mm != vcpu->kvm->mm))
5026 slots = kvm_memslots(vcpu->kvm);
5028 if (unlikely(slots->generation != ghc->generation ||
5030 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5033 st = (struct kvm_steal_time __user *)ghc->hva;
5034 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5036 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5037 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5039 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5042 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5046 if (vcpu->preempted) {
5047 if (!vcpu->arch.guest_state_protected)
5048 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
5051 * Take the srcu lock as memslots will be accessed to check the gfn
5052 * cache generation against the memslots generation.
5054 idx = srcu_read_lock(&vcpu->kvm->srcu);
5055 if (kvm_xen_msr_enabled(vcpu->kvm))
5056 kvm_xen_runstate_set_preempted(vcpu);
5058 kvm_steal_time_set_preempted(vcpu);
5059 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5062 static_call(kvm_x86_vcpu_put)(vcpu);
5063 vcpu->arch.last_host_tsc = rdtsc();
5066 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5067 struct kvm_lapic_state *s)
5069 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5071 return kvm_apic_get_state(vcpu, s);
5074 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5075 struct kvm_lapic_state *s)
5079 r = kvm_apic_set_state(vcpu, s);
5082 update_cr8_intercept(vcpu);
5087 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5090 * We can accept userspace's request for interrupt injection
5091 * as long as we have a place to store the interrupt number.
5092 * The actual injection will happen when the CPU is able to
5093 * deliver the interrupt.
5095 if (kvm_cpu_has_extint(vcpu))
5098 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5099 return (!lapic_in_kernel(vcpu) ||
5100 kvm_apic_accept_pic_intr(vcpu));
5103 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5106 * Do not cause an interrupt window exit if an exception
5107 * is pending or an event needs reinjection; userspace
5108 * might want to inject the interrupt manually using KVM_SET_REGS
5109 * or KVM_SET_SREGS. For that to work, we must be at an
5110 * instruction boundary and with no events half-injected.
5112 return (kvm_arch_interrupt_allowed(vcpu) &&
5113 kvm_cpu_accept_dm_intr(vcpu) &&
5114 !kvm_event_needs_reinjection(vcpu) &&
5115 !kvm_is_exception_pending(vcpu));
5118 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5119 struct kvm_interrupt *irq)
5121 if (irq->irq >= KVM_NR_INTERRUPTS)
5124 if (!irqchip_in_kernel(vcpu->kvm)) {
5125 kvm_queue_interrupt(vcpu, irq->irq, false);
5126 kvm_make_request(KVM_REQ_EVENT, vcpu);
5131 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5132 * fail for in-kernel 8259.
5134 if (pic_in_kernel(vcpu->kvm))
5137 if (vcpu->arch.pending_external_vector != -1)
5140 vcpu->arch.pending_external_vector = irq->irq;
5141 kvm_make_request(KVM_REQ_EVENT, vcpu);
5145 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5147 kvm_inject_nmi(vcpu);
5152 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5153 struct kvm_tpr_access_ctl *tac)
5157 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5161 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5165 unsigned bank_num = mcg_cap & 0xff, bank;
5168 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5170 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5173 vcpu->arch.mcg_cap = mcg_cap;
5174 /* Init IA32_MCG_CTL to all 1s */
5175 if (mcg_cap & MCG_CTL_P)
5176 vcpu->arch.mcg_ctl = ~(u64)0;
5177 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5178 for (bank = 0; bank < bank_num; bank++) {
5179 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5180 if (mcg_cap & MCG_CMCI_P)
5181 vcpu->arch.mci_ctl2_banks[bank] = 0;
5184 kvm_apic_after_set_mcg_cap(vcpu);
5186 static_call(kvm_x86_setup_mce)(vcpu);
5192 * Validate this is an UCNA (uncorrectable no action) error by checking the
5193 * MCG_STATUS and MCi_STATUS registers:
5194 * - none of the bits for Machine Check Exceptions are set
5195 * - both the VAL (valid) and UC (uncorrectable) bits are set
5196 * MCI_STATUS_PCC - Processor Context Corrupted
5197 * MCI_STATUS_S - Signaled as a Machine Check Exception
5198 * MCI_STATUS_AR - Software recoverable Action Required
5200 static bool is_ucna(struct kvm_x86_mce *mce)
5202 return !mce->mcg_status &&
5203 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5204 (mce->status & MCI_STATUS_VAL) &&
5205 (mce->status & MCI_STATUS_UC);
5208 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5210 u64 mcg_cap = vcpu->arch.mcg_cap;
5212 banks[1] = mce->status;
5213 banks[2] = mce->addr;
5214 banks[3] = mce->misc;
5215 vcpu->arch.mcg_status = mce->mcg_status;
5217 if (!(mcg_cap & MCG_CMCI_P) ||
5218 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5221 if (lapic_in_kernel(vcpu))
5222 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5227 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5228 struct kvm_x86_mce *mce)
5230 u64 mcg_cap = vcpu->arch.mcg_cap;
5231 unsigned bank_num = mcg_cap & 0xff;
5232 u64 *banks = vcpu->arch.mce_banks;
5234 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5237 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5240 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5243 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5244 * reporting is disabled
5246 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5247 vcpu->arch.mcg_ctl != ~(u64)0)
5250 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5251 * reporting is disabled for the bank
5253 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5255 if (mce->status & MCI_STATUS_UC) {
5256 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5257 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5258 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5261 if (banks[1] & MCI_STATUS_VAL)
5262 mce->status |= MCI_STATUS_OVER;
5263 banks[2] = mce->addr;
5264 banks[3] = mce->misc;
5265 vcpu->arch.mcg_status = mce->mcg_status;
5266 banks[1] = mce->status;
5267 kvm_queue_exception(vcpu, MC_VECTOR);
5268 } else if (!(banks[1] & MCI_STATUS_VAL)
5269 || !(banks[1] & MCI_STATUS_UC)) {
5270 if (banks[1] & MCI_STATUS_VAL)
5271 mce->status |= MCI_STATUS_OVER;
5272 banks[2] = mce->addr;
5273 banks[3] = mce->misc;
5274 banks[1] = mce->status;
5276 banks[1] |= MCI_STATUS_OVER;
5280 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5281 struct kvm_vcpu_events *events)
5283 struct kvm_queued_exception *ex;
5287 #ifdef CONFIG_KVM_SMM
5288 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5293 * KVM's ABI only allows for one exception to be migrated. Luckily,
5294 * the only time there can be two queued exceptions is if there's a
5295 * non-exiting _injected_ exception, and a pending exiting exception.
5296 * In that case, ignore the VM-Exiting exception as it's an extension
5297 * of the injected exception.
5299 if (vcpu->arch.exception_vmexit.pending &&
5300 !vcpu->arch.exception.pending &&
5301 !vcpu->arch.exception.injected)
5302 ex = &vcpu->arch.exception_vmexit;
5304 ex = &vcpu->arch.exception;
5307 * In guest mode, payload delivery should be deferred if the exception
5308 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5309 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5310 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5311 * propagate the payload and so it cannot be safely deferred. Deliver
5312 * the payload if the capability hasn't been requested.
5314 if (!vcpu->kvm->arch.exception_payload_enabled &&
5315 ex->pending && ex->has_payload)
5316 kvm_deliver_exception_payload(vcpu, ex);
5318 memset(events, 0, sizeof(*events));
5321 * The API doesn't provide the instruction length for software
5322 * exceptions, so don't report them. As long as the guest RIP
5323 * isn't advanced, we should expect to encounter the exception
5326 if (!kvm_exception_is_soft(ex->vector)) {
5327 events->exception.injected = ex->injected;
5328 events->exception.pending = ex->pending;
5330 * For ABI compatibility, deliberately conflate
5331 * pending and injected exceptions when
5332 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5334 if (!vcpu->kvm->arch.exception_payload_enabled)
5335 events->exception.injected |= ex->pending;
5337 events->exception.nr = ex->vector;
5338 events->exception.has_error_code = ex->has_error_code;
5339 events->exception.error_code = ex->error_code;
5340 events->exception_has_payload = ex->has_payload;
5341 events->exception_payload = ex->payload;
5343 events->interrupt.injected =
5344 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5345 events->interrupt.nr = vcpu->arch.interrupt.nr;
5346 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5348 events->nmi.injected = vcpu->arch.nmi_injected;
5349 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5350 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5352 /* events->sipi_vector is never valid when reporting to user space */
5354 #ifdef CONFIG_KVM_SMM
5355 events->smi.smm = is_smm(vcpu);
5356 events->smi.pending = vcpu->arch.smi_pending;
5357 events->smi.smm_inside_nmi =
5358 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5360 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5362 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5363 | KVM_VCPUEVENT_VALID_SHADOW
5364 | KVM_VCPUEVENT_VALID_SMM);
5365 if (vcpu->kvm->arch.exception_payload_enabled)
5366 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5367 if (vcpu->kvm->arch.triple_fault_event) {
5368 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5369 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5373 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5374 struct kvm_vcpu_events *events)
5376 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5377 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5378 | KVM_VCPUEVENT_VALID_SHADOW
5379 | KVM_VCPUEVENT_VALID_SMM
5380 | KVM_VCPUEVENT_VALID_PAYLOAD
5381 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5384 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5385 if (!vcpu->kvm->arch.exception_payload_enabled)
5387 if (events->exception.pending)
5388 events->exception.injected = 0;
5390 events->exception_has_payload = 0;
5392 events->exception.pending = 0;
5393 events->exception_has_payload = 0;
5396 if ((events->exception.injected || events->exception.pending) &&
5397 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5400 /* INITs are latched while in SMM */
5401 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5402 (events->smi.smm || events->smi.pending) &&
5403 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5409 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5410 * morph the exception to a VM-Exit if appropriate. Do this only for
5411 * pending exceptions, already-injected exceptions are not subject to
5412 * intercpetion. Note, userspace that conflates pending and injected
5413 * is hosed, and will incorrectly convert an injected exception into a
5414 * pending exception, which in turn may cause a spurious VM-Exit.
5416 vcpu->arch.exception_from_userspace = events->exception.pending;
5418 vcpu->arch.exception_vmexit.pending = false;
5420 vcpu->arch.exception.injected = events->exception.injected;
5421 vcpu->arch.exception.pending = events->exception.pending;
5422 vcpu->arch.exception.vector = events->exception.nr;
5423 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5424 vcpu->arch.exception.error_code = events->exception.error_code;
5425 vcpu->arch.exception.has_payload = events->exception_has_payload;
5426 vcpu->arch.exception.payload = events->exception_payload;
5428 vcpu->arch.interrupt.injected = events->interrupt.injected;
5429 vcpu->arch.interrupt.nr = events->interrupt.nr;
5430 vcpu->arch.interrupt.soft = events->interrupt.soft;
5431 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5432 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5433 events->interrupt.shadow);
5435 vcpu->arch.nmi_injected = events->nmi.injected;
5436 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5437 vcpu->arch.nmi_pending = 0;
5438 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5439 kvm_make_request(KVM_REQ_NMI, vcpu);
5441 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5443 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5444 lapic_in_kernel(vcpu))
5445 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5447 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5448 #ifdef CONFIG_KVM_SMM
5449 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5450 kvm_leave_nested(vcpu);
5451 kvm_smm_changed(vcpu, events->smi.smm);
5454 vcpu->arch.smi_pending = events->smi.pending;
5456 if (events->smi.smm) {
5457 if (events->smi.smm_inside_nmi)
5458 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5460 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5464 if (events->smi.smm || events->smi.pending ||
5465 events->smi.smm_inside_nmi)
5469 if (lapic_in_kernel(vcpu)) {
5470 if (events->smi.latched_init)
5471 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5473 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5477 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5478 if (!vcpu->kvm->arch.triple_fault_event)
5480 if (events->triple_fault.pending)
5481 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5483 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5486 kvm_make_request(KVM_REQ_EVENT, vcpu);
5491 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5492 struct kvm_debugregs *dbgregs)
5496 memset(dbgregs, 0, sizeof(*dbgregs));
5497 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5498 kvm_get_dr(vcpu, 6, &val);
5500 dbgregs->dr7 = vcpu->arch.dr7;
5503 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5504 struct kvm_debugregs *dbgregs)
5509 if (!kvm_dr6_valid(dbgregs->dr6))
5511 if (!kvm_dr7_valid(dbgregs->dr7))
5514 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5515 kvm_update_dr0123(vcpu);
5516 vcpu->arch.dr6 = dbgregs->dr6;
5517 vcpu->arch.dr7 = dbgregs->dr7;
5518 kvm_update_dr7(vcpu);
5524 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5525 u8 *state, unsigned int size)
5528 * Only copy state for features that are enabled for the guest. The
5529 * state itself isn't problematic, but setting bits in the header for
5530 * features that are supported in *this* host but not exposed to the
5531 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5532 * compatible host without the features that are NOT exposed to the
5535 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5536 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5537 * supported by the host.
5539 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5540 XFEATURE_MASK_FPSSE;
5542 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5545 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5546 supported_xcr0, vcpu->arch.pkru);
5549 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5550 struct kvm_xsave *guest_xsave)
5552 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5553 sizeof(guest_xsave->region));
5556 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5557 struct kvm_xsave *guest_xsave)
5559 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5562 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5563 guest_xsave->region,
5564 kvm_caps.supported_xcr0,
5568 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5569 struct kvm_xcrs *guest_xcrs)
5571 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5572 guest_xcrs->nr_xcrs = 0;
5576 guest_xcrs->nr_xcrs = 1;
5577 guest_xcrs->flags = 0;
5578 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5579 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5582 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5583 struct kvm_xcrs *guest_xcrs)
5587 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5590 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5593 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5594 /* Only support XCR0 currently */
5595 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5596 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5597 guest_xcrs->xcrs[i].value);
5606 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5607 * stopped by the hypervisor. This function will be called from the host only.
5608 * EINVAL is returned when the host attempts to set the flag for a guest that
5609 * does not support pv clocks.
5611 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5613 if (!vcpu->arch.pv_time.active)
5615 vcpu->arch.pvclock_set_guest_stopped_request = true;
5616 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5620 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5621 struct kvm_device_attr *attr)
5625 switch (attr->attr) {
5626 case KVM_VCPU_TSC_OFFSET:
5636 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5637 struct kvm_device_attr *attr)
5639 u64 __user *uaddr = kvm_get_attr_addr(attr);
5643 return PTR_ERR(uaddr);
5645 switch (attr->attr) {
5646 case KVM_VCPU_TSC_OFFSET:
5648 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5659 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5660 struct kvm_device_attr *attr)
5662 u64 __user *uaddr = kvm_get_attr_addr(attr);
5663 struct kvm *kvm = vcpu->kvm;
5667 return PTR_ERR(uaddr);
5669 switch (attr->attr) {
5670 case KVM_VCPU_TSC_OFFSET: {
5671 u64 offset, tsc, ns;
5672 unsigned long flags;
5676 if (get_user(offset, uaddr))
5679 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5681 matched = (vcpu->arch.virtual_tsc_khz &&
5682 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5683 kvm->arch.last_tsc_offset == offset);
5685 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5686 ns = get_kvmclock_base_ns();
5688 kvm->arch.user_set_tsc = true;
5689 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5690 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5702 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5706 struct kvm_device_attr attr;
5709 if (copy_from_user(&attr, argp, sizeof(attr)))
5712 if (attr.group != KVM_VCPU_TSC_CTRL)
5716 case KVM_HAS_DEVICE_ATTR:
5717 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5719 case KVM_GET_DEVICE_ATTR:
5720 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5722 case KVM_SET_DEVICE_ATTR:
5723 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5730 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5731 struct kvm_enable_cap *cap)
5737 #ifdef CONFIG_KVM_HYPERV
5738 case KVM_CAP_HYPERV_SYNIC2:
5743 case KVM_CAP_HYPERV_SYNIC:
5744 if (!irqchip_in_kernel(vcpu->kvm))
5746 return kvm_hv_activate_synic(vcpu, cap->cap ==
5747 KVM_CAP_HYPERV_SYNIC2);
5748 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5751 uint16_t vmcs_version;
5752 void __user *user_ptr;
5754 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5756 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5758 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5759 if (copy_to_user(user_ptr, &vmcs_version,
5760 sizeof(vmcs_version)))
5765 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5766 if (!kvm_x86_ops.enable_l2_tlb_flush)
5769 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5771 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5772 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5775 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5776 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5777 if (vcpu->arch.pv_cpuid.enforce)
5778 kvm_update_pv_runtime(vcpu);
5786 long kvm_arch_vcpu_ioctl(struct file *filp,
5787 unsigned int ioctl, unsigned long arg)
5789 struct kvm_vcpu *vcpu = filp->private_data;
5790 void __user *argp = (void __user *)arg;
5793 struct kvm_sregs2 *sregs2;
5794 struct kvm_lapic_state *lapic;
5795 struct kvm_xsave *xsave;
5796 struct kvm_xcrs *xcrs;
5804 case KVM_GET_LAPIC: {
5806 if (!lapic_in_kernel(vcpu))
5808 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5809 GFP_KERNEL_ACCOUNT);
5814 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5818 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5823 case KVM_SET_LAPIC: {
5825 if (!lapic_in_kernel(vcpu))
5827 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5828 if (IS_ERR(u.lapic)) {
5829 r = PTR_ERR(u.lapic);
5833 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5836 case KVM_INTERRUPT: {
5837 struct kvm_interrupt irq;
5840 if (copy_from_user(&irq, argp, sizeof(irq)))
5842 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5846 r = kvm_vcpu_ioctl_nmi(vcpu);
5850 r = kvm_inject_smi(vcpu);
5853 case KVM_SET_CPUID: {
5854 struct kvm_cpuid __user *cpuid_arg = argp;
5855 struct kvm_cpuid cpuid;
5858 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5860 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5863 case KVM_SET_CPUID2: {
5864 struct kvm_cpuid2 __user *cpuid_arg = argp;
5865 struct kvm_cpuid2 cpuid;
5868 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5870 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5871 cpuid_arg->entries);
5874 case KVM_GET_CPUID2: {
5875 struct kvm_cpuid2 __user *cpuid_arg = argp;
5876 struct kvm_cpuid2 cpuid;
5879 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5881 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5882 cpuid_arg->entries);
5886 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5891 case KVM_GET_MSRS: {
5892 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5893 r = msr_io(vcpu, argp, do_get_msr, 1);
5894 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5897 case KVM_SET_MSRS: {
5898 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5899 r = msr_io(vcpu, argp, do_set_msr, 0);
5900 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5903 case KVM_TPR_ACCESS_REPORTING: {
5904 struct kvm_tpr_access_ctl tac;
5907 if (copy_from_user(&tac, argp, sizeof(tac)))
5909 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5913 if (copy_to_user(argp, &tac, sizeof(tac)))
5918 case KVM_SET_VAPIC_ADDR: {
5919 struct kvm_vapic_addr va;
5923 if (!lapic_in_kernel(vcpu))
5926 if (copy_from_user(&va, argp, sizeof(va)))
5928 idx = srcu_read_lock(&vcpu->kvm->srcu);
5929 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5930 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5933 case KVM_X86_SETUP_MCE: {
5937 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5939 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5942 case KVM_X86_SET_MCE: {
5943 struct kvm_x86_mce mce;
5946 if (copy_from_user(&mce, argp, sizeof(mce)))
5948 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5951 case KVM_GET_VCPU_EVENTS: {
5952 struct kvm_vcpu_events events;
5954 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5957 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5962 case KVM_SET_VCPU_EVENTS: {
5963 struct kvm_vcpu_events events;
5966 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5969 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5972 case KVM_GET_DEBUGREGS: {
5973 struct kvm_debugregs dbgregs;
5975 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5978 if (copy_to_user(argp, &dbgregs,
5979 sizeof(struct kvm_debugregs)))
5984 case KVM_SET_DEBUGREGS: {
5985 struct kvm_debugregs dbgregs;
5988 if (copy_from_user(&dbgregs, argp,
5989 sizeof(struct kvm_debugregs)))
5992 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5995 case KVM_GET_XSAVE: {
5997 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6000 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
6005 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6008 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6013 case KVM_SET_XSAVE: {
6014 int size = vcpu->arch.guest_fpu.uabi_size;
6016 u.xsave = memdup_user(argp, size);
6017 if (IS_ERR(u.xsave)) {
6018 r = PTR_ERR(u.xsave);
6022 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6026 case KVM_GET_XSAVE2: {
6027 int size = vcpu->arch.guest_fpu.uabi_size;
6029 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
6034 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6037 if (copy_to_user(argp, u.xsave, size))
6044 case KVM_GET_XCRS: {
6045 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6050 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6053 if (copy_to_user(argp, u.xcrs,
6054 sizeof(struct kvm_xcrs)))
6059 case KVM_SET_XCRS: {
6060 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6061 if (IS_ERR(u.xcrs)) {
6062 r = PTR_ERR(u.xcrs);
6066 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6069 case KVM_SET_TSC_KHZ: {
6073 user_tsc_khz = (u32)arg;
6075 if (kvm_caps.has_tsc_control &&
6076 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6079 if (user_tsc_khz == 0)
6080 user_tsc_khz = tsc_khz;
6082 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6087 case KVM_GET_TSC_KHZ: {
6088 r = vcpu->arch.virtual_tsc_khz;
6091 case KVM_KVMCLOCK_CTRL: {
6092 r = kvm_set_guest_paused(vcpu);
6095 case KVM_ENABLE_CAP: {
6096 struct kvm_enable_cap cap;
6099 if (copy_from_user(&cap, argp, sizeof(cap)))
6101 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6104 case KVM_GET_NESTED_STATE: {
6105 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6109 if (!kvm_x86_ops.nested_ops->get_state)
6112 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6114 if (get_user(user_data_size, &user_kvm_nested_state->size))
6117 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6122 if (r > user_data_size) {
6123 if (put_user(r, &user_kvm_nested_state->size))
6133 case KVM_SET_NESTED_STATE: {
6134 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6135 struct kvm_nested_state kvm_state;
6139 if (!kvm_x86_ops.nested_ops->set_state)
6143 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6147 if (kvm_state.size < sizeof(kvm_state))
6150 if (kvm_state.flags &
6151 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6152 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6153 | KVM_STATE_NESTED_GIF_SET))
6156 /* nested_run_pending implies guest_mode. */
6157 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6158 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6161 idx = srcu_read_lock(&vcpu->kvm->srcu);
6162 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6163 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6166 #ifdef CONFIG_KVM_HYPERV
6167 case KVM_GET_SUPPORTED_HV_CPUID:
6168 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6171 #ifdef CONFIG_KVM_XEN
6172 case KVM_XEN_VCPU_GET_ATTR: {
6173 struct kvm_xen_vcpu_attr xva;
6176 if (copy_from_user(&xva, argp, sizeof(xva)))
6178 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6179 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6183 case KVM_XEN_VCPU_SET_ATTR: {
6184 struct kvm_xen_vcpu_attr xva;
6187 if (copy_from_user(&xva, argp, sizeof(xva)))
6189 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6193 case KVM_GET_SREGS2: {
6194 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6198 __get_sregs2(vcpu, u.sregs2);
6200 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6205 case KVM_SET_SREGS2: {
6206 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6207 if (IS_ERR(u.sregs2)) {
6208 r = PTR_ERR(u.sregs2);
6212 r = __set_sregs2(vcpu, u.sregs2);
6215 case KVM_HAS_DEVICE_ATTR:
6216 case KVM_GET_DEVICE_ATTR:
6217 case KVM_SET_DEVICE_ATTR:
6218 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6230 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6232 return VM_FAULT_SIGBUS;
6235 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6239 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6241 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6245 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6248 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6251 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6252 unsigned long kvm_nr_mmu_pages)
6254 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6257 mutex_lock(&kvm->slots_lock);
6259 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6260 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6262 mutex_unlock(&kvm->slots_lock);
6266 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6268 struct kvm_pic *pic = kvm->arch.vpic;
6272 switch (chip->chip_id) {
6273 case KVM_IRQCHIP_PIC_MASTER:
6274 memcpy(&chip->chip.pic, &pic->pics[0],
6275 sizeof(struct kvm_pic_state));
6277 case KVM_IRQCHIP_PIC_SLAVE:
6278 memcpy(&chip->chip.pic, &pic->pics[1],
6279 sizeof(struct kvm_pic_state));
6281 case KVM_IRQCHIP_IOAPIC:
6282 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6291 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6293 struct kvm_pic *pic = kvm->arch.vpic;
6297 switch (chip->chip_id) {
6298 case KVM_IRQCHIP_PIC_MASTER:
6299 spin_lock(&pic->lock);
6300 memcpy(&pic->pics[0], &chip->chip.pic,
6301 sizeof(struct kvm_pic_state));
6302 spin_unlock(&pic->lock);
6304 case KVM_IRQCHIP_PIC_SLAVE:
6305 spin_lock(&pic->lock);
6306 memcpy(&pic->pics[1], &chip->chip.pic,
6307 sizeof(struct kvm_pic_state));
6308 spin_unlock(&pic->lock);
6310 case KVM_IRQCHIP_IOAPIC:
6311 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6317 kvm_pic_update_irq(pic);
6321 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6323 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6325 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6327 mutex_lock(&kps->lock);
6328 memcpy(ps, &kps->channels, sizeof(*ps));
6329 mutex_unlock(&kps->lock);
6333 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6336 struct kvm_pit *pit = kvm->arch.vpit;
6338 mutex_lock(&pit->pit_state.lock);
6339 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6340 for (i = 0; i < 3; i++)
6341 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6342 mutex_unlock(&pit->pit_state.lock);
6346 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6348 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6349 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6350 sizeof(ps->channels));
6351 ps->flags = kvm->arch.vpit->pit_state.flags;
6352 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6353 memset(&ps->reserved, 0, sizeof(ps->reserved));
6357 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6361 u32 prev_legacy, cur_legacy;
6362 struct kvm_pit *pit = kvm->arch.vpit;
6364 mutex_lock(&pit->pit_state.lock);
6365 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6366 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6367 if (!prev_legacy && cur_legacy)
6369 memcpy(&pit->pit_state.channels, &ps->channels,
6370 sizeof(pit->pit_state.channels));
6371 pit->pit_state.flags = ps->flags;
6372 for (i = 0; i < 3; i++)
6373 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6375 mutex_unlock(&pit->pit_state.lock);
6379 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6380 struct kvm_reinject_control *control)
6382 struct kvm_pit *pit = kvm->arch.vpit;
6384 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6385 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6386 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6388 mutex_lock(&pit->pit_state.lock);
6389 kvm_pit_set_reinject(pit, control->pit_reinject);
6390 mutex_unlock(&pit->pit_state.lock);
6395 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6399 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6400 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6401 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6404 struct kvm_vcpu *vcpu;
6407 if (!kvm_x86_ops.cpu_dirty_log_size)
6410 kvm_for_each_vcpu(i, vcpu, kvm)
6411 kvm_vcpu_kick(vcpu);
6414 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6417 if (!irqchip_in_kernel(kvm))
6420 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6421 irq_event->irq, irq_event->level,
6426 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6427 struct kvm_enable_cap *cap)
6435 case KVM_CAP_DISABLE_QUIRKS2:
6437 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6440 case KVM_CAP_DISABLE_QUIRKS:
6441 kvm->arch.disabled_quirks = cap->args[0];
6444 case KVM_CAP_SPLIT_IRQCHIP: {
6445 mutex_lock(&kvm->lock);
6447 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6448 goto split_irqchip_unlock;
6450 if (irqchip_in_kernel(kvm))
6451 goto split_irqchip_unlock;
6452 if (kvm->created_vcpus)
6453 goto split_irqchip_unlock;
6454 r = kvm_setup_empty_irq_routing(kvm);
6456 goto split_irqchip_unlock;
6457 /* Pairs with irqchip_in_kernel. */
6459 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6460 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6461 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6463 split_irqchip_unlock:
6464 mutex_unlock(&kvm->lock);
6467 case KVM_CAP_X2APIC_API:
6469 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6472 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6473 kvm->arch.x2apic_format = true;
6474 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6475 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6479 case KVM_CAP_X86_DISABLE_EXITS:
6481 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6484 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6485 kvm->arch.pause_in_guest = true;
6487 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6488 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6490 if (!mitigate_smt_rsb) {
6491 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6492 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6493 pr_warn_once(SMT_RSB_MSG);
6495 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6496 kvm_can_mwait_in_guest())
6497 kvm->arch.mwait_in_guest = true;
6498 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6499 kvm->arch.hlt_in_guest = true;
6500 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6501 kvm->arch.cstate_in_guest = true;
6506 case KVM_CAP_MSR_PLATFORM_INFO:
6507 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6510 case KVM_CAP_EXCEPTION_PAYLOAD:
6511 kvm->arch.exception_payload_enabled = cap->args[0];
6514 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6515 kvm->arch.triple_fault_event = cap->args[0];
6518 case KVM_CAP_X86_USER_SPACE_MSR:
6520 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6522 kvm->arch.user_space_msr_mask = cap->args[0];
6525 case KVM_CAP_X86_BUS_LOCK_EXIT:
6527 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6530 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6531 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6534 if (kvm_caps.has_bus_lock_exit &&
6535 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6536 kvm->arch.bus_lock_detection_enabled = true;
6539 #ifdef CONFIG_X86_SGX_KVM
6540 case KVM_CAP_SGX_ATTRIBUTE: {
6541 unsigned long allowed_attributes = 0;
6543 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6547 /* KVM only supports the PROVISIONKEY privileged attribute. */
6548 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6549 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6550 kvm->arch.sgx_provisioning_allowed = true;
6556 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6558 if (!kvm_x86_ops.vm_copy_enc_context_from)
6561 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6563 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6565 if (!kvm_x86_ops.vm_move_enc_context_from)
6568 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6570 case KVM_CAP_EXIT_HYPERCALL:
6571 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6575 kvm->arch.hypercall_exit_enabled = cap->args[0];
6578 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6580 if (cap->args[0] & ~1)
6582 kvm->arch.exit_on_emulation_error = cap->args[0];
6585 case KVM_CAP_PMU_CAPABILITY:
6587 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6590 mutex_lock(&kvm->lock);
6591 if (!kvm->created_vcpus) {
6592 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6595 mutex_unlock(&kvm->lock);
6597 case KVM_CAP_MAX_VCPU_ID:
6599 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6602 mutex_lock(&kvm->lock);
6603 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6605 } else if (!kvm->arch.max_vcpu_ids) {
6606 kvm->arch.max_vcpu_ids = cap->args[0];
6609 mutex_unlock(&kvm->lock);
6611 case KVM_CAP_X86_NOTIFY_VMEXIT:
6613 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6615 if (!kvm_caps.has_notify_vmexit)
6617 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6619 mutex_lock(&kvm->lock);
6620 if (!kvm->created_vcpus) {
6621 kvm->arch.notify_window = cap->args[0] >> 32;
6622 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6625 mutex_unlock(&kvm->lock);
6627 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6631 * Since the risk of disabling NX hugepages is a guest crashing
6632 * the system, ensure the userspace process has permission to
6633 * reboot the system.
6635 * Note that unlike the reboot() syscall, the process must have
6636 * this capability in the root namespace because exposing
6637 * /dev/kvm into a container does not limit the scope of the
6638 * iTLB multihit bug to that container. In other words,
6639 * this must use capable(), not ns_capable().
6641 if (!capable(CAP_SYS_BOOT)) {
6649 mutex_lock(&kvm->lock);
6650 if (!kvm->created_vcpus) {
6651 kvm->arch.disable_nx_huge_pages = true;
6654 mutex_unlock(&kvm->lock);
6663 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6665 struct kvm_x86_msr_filter *msr_filter;
6667 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6671 msr_filter->default_allow = default_allow;
6675 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6682 for (i = 0; i < msr_filter->count; i++)
6683 kfree(msr_filter->ranges[i].bitmap);
6688 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6689 struct kvm_msr_filter_range *user_range)
6691 unsigned long *bitmap;
6694 if (!user_range->nmsrs)
6697 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6700 if (!user_range->flags)
6703 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6704 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6707 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6709 return PTR_ERR(bitmap);
6711 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6712 .flags = user_range->flags,
6713 .base = user_range->base,
6714 .nmsrs = user_range->nmsrs,
6718 msr_filter->count++;
6722 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6723 struct kvm_msr_filter *filter)
6725 struct kvm_x86_msr_filter *new_filter, *old_filter;
6731 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6734 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6735 empty &= !filter->ranges[i].nmsrs;
6737 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6738 if (empty && !default_allow)
6741 new_filter = kvm_alloc_msr_filter(default_allow);
6745 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6746 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6748 kvm_free_msr_filter(new_filter);
6753 mutex_lock(&kvm->lock);
6754 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6755 mutex_is_locked(&kvm->lock));
6756 mutex_unlock(&kvm->lock);
6757 synchronize_srcu(&kvm->srcu);
6759 kvm_free_msr_filter(old_filter);
6761 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6766 #ifdef CONFIG_KVM_COMPAT
6767 /* for KVM_X86_SET_MSR_FILTER */
6768 struct kvm_msr_filter_range_compat {
6775 struct kvm_msr_filter_compat {
6777 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6780 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6782 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6785 void __user *argp = (void __user *)arg;
6786 struct kvm *kvm = filp->private_data;
6790 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6791 struct kvm_msr_filter __user *user_msr_filter = argp;
6792 struct kvm_msr_filter_compat filter_compat;
6793 struct kvm_msr_filter filter;
6796 if (copy_from_user(&filter_compat, user_msr_filter,
6797 sizeof(filter_compat)))
6800 filter.flags = filter_compat.flags;
6801 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6802 struct kvm_msr_filter_range_compat *cr;
6804 cr = &filter_compat.ranges[i];
6805 filter.ranges[i] = (struct kvm_msr_filter_range) {
6809 .bitmap = (__u8 *)(ulong)cr->bitmap,
6813 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6822 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6823 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6825 struct kvm_vcpu *vcpu;
6829 mutex_lock(&kvm->lock);
6830 kvm_for_each_vcpu(i, vcpu, kvm) {
6831 if (!vcpu->arch.pv_time.active)
6834 ret = kvm_set_guest_paused(vcpu);
6836 kvm_err("Failed to pause guest VCPU%d: %d\n",
6837 vcpu->vcpu_id, ret);
6841 mutex_unlock(&kvm->lock);
6843 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6846 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6849 case PM_HIBERNATION_PREPARE:
6850 case PM_SUSPEND_PREPARE:
6851 return kvm_arch_suspend_notifier(kvm);
6856 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6858 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6860 struct kvm_clock_data data = { 0 };
6862 get_kvmclock(kvm, &data);
6863 if (copy_to_user(argp, &data, sizeof(data)))
6869 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6871 struct kvm_arch *ka = &kvm->arch;
6872 struct kvm_clock_data data;
6875 if (copy_from_user(&data, argp, sizeof(data)))
6879 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6880 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6882 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6885 kvm_hv_request_tsc_page_update(kvm);
6886 kvm_start_pvclock_update(kvm);
6887 pvclock_update_vm_gtod_copy(kvm);
6890 * This pairs with kvm_guest_time_update(): when masterclock is
6891 * in use, we use master_kernel_ns + kvmclock_offset to set
6892 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6893 * is slightly ahead) here we risk going negative on unsigned
6894 * 'system_time' when 'data.clock' is very small.
6896 if (data.flags & KVM_CLOCK_REALTIME) {
6897 u64 now_real_ns = ktime_get_real_ns();
6900 * Avoid stepping the kvmclock backwards.
6902 if (now_real_ns > data.realtime)
6903 data.clock += now_real_ns - data.realtime;
6906 if (ka->use_master_clock)
6907 now_raw_ns = ka->master_kernel_ns;
6909 now_raw_ns = get_kvmclock_base_ns();
6910 ka->kvmclock_offset = data.clock - now_raw_ns;
6911 kvm_end_pvclock_update(kvm);
6915 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6917 struct kvm *kvm = filp->private_data;
6918 void __user *argp = (void __user *)arg;
6921 * This union makes it completely explicit to gcc-3.x
6922 * that these two variables' stack usage should be
6923 * combined, not added together.
6926 struct kvm_pit_state ps;
6927 struct kvm_pit_state2 ps2;
6928 struct kvm_pit_config pit_config;
6932 case KVM_SET_TSS_ADDR:
6933 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6935 case KVM_SET_IDENTITY_MAP_ADDR: {
6938 mutex_lock(&kvm->lock);
6940 if (kvm->created_vcpus)
6941 goto set_identity_unlock;
6943 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6944 goto set_identity_unlock;
6945 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6946 set_identity_unlock:
6947 mutex_unlock(&kvm->lock);
6950 case KVM_SET_NR_MMU_PAGES:
6951 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6953 case KVM_CREATE_IRQCHIP: {
6954 mutex_lock(&kvm->lock);
6957 if (irqchip_in_kernel(kvm))
6958 goto create_irqchip_unlock;
6961 if (kvm->created_vcpus)
6962 goto create_irqchip_unlock;
6964 r = kvm_pic_init(kvm);
6966 goto create_irqchip_unlock;
6968 r = kvm_ioapic_init(kvm);
6970 kvm_pic_destroy(kvm);
6971 goto create_irqchip_unlock;
6974 r = kvm_setup_default_irq_routing(kvm);
6976 kvm_ioapic_destroy(kvm);
6977 kvm_pic_destroy(kvm);
6978 goto create_irqchip_unlock;
6980 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6982 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6983 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6984 create_irqchip_unlock:
6985 mutex_unlock(&kvm->lock);
6988 case KVM_CREATE_PIT:
6989 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6991 case KVM_CREATE_PIT2:
6993 if (copy_from_user(&u.pit_config, argp,
6994 sizeof(struct kvm_pit_config)))
6997 mutex_lock(&kvm->lock);
7000 goto create_pit_unlock;
7002 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7006 mutex_unlock(&kvm->lock);
7008 case KVM_GET_IRQCHIP: {
7009 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7010 struct kvm_irqchip *chip;
7012 chip = memdup_user(argp, sizeof(*chip));
7019 if (!irqchip_kernel(kvm))
7020 goto get_irqchip_out;
7021 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7023 goto get_irqchip_out;
7025 if (copy_to_user(argp, chip, sizeof(*chip)))
7026 goto get_irqchip_out;
7032 case KVM_SET_IRQCHIP: {
7033 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7034 struct kvm_irqchip *chip;
7036 chip = memdup_user(argp, sizeof(*chip));
7043 if (!irqchip_kernel(kvm))
7044 goto set_irqchip_out;
7045 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7052 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7055 if (!kvm->arch.vpit)
7057 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7061 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7068 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7070 mutex_lock(&kvm->lock);
7072 if (!kvm->arch.vpit)
7074 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7076 mutex_unlock(&kvm->lock);
7079 case KVM_GET_PIT2: {
7081 if (!kvm->arch.vpit)
7083 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7087 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7092 case KVM_SET_PIT2: {
7094 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7096 mutex_lock(&kvm->lock);
7098 if (!kvm->arch.vpit)
7100 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7102 mutex_unlock(&kvm->lock);
7105 case KVM_REINJECT_CONTROL: {
7106 struct kvm_reinject_control control;
7108 if (copy_from_user(&control, argp, sizeof(control)))
7111 if (!kvm->arch.vpit)
7113 r = kvm_vm_ioctl_reinject(kvm, &control);
7116 case KVM_SET_BOOT_CPU_ID:
7118 mutex_lock(&kvm->lock);
7119 if (kvm->created_vcpus)
7122 kvm->arch.bsp_vcpu_id = arg;
7123 mutex_unlock(&kvm->lock);
7125 #ifdef CONFIG_KVM_XEN
7126 case KVM_XEN_HVM_CONFIG: {
7127 struct kvm_xen_hvm_config xhc;
7129 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7131 r = kvm_xen_hvm_config(kvm, &xhc);
7134 case KVM_XEN_HVM_GET_ATTR: {
7135 struct kvm_xen_hvm_attr xha;
7138 if (copy_from_user(&xha, argp, sizeof(xha)))
7140 r = kvm_xen_hvm_get_attr(kvm, &xha);
7141 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7145 case KVM_XEN_HVM_SET_ATTR: {
7146 struct kvm_xen_hvm_attr xha;
7149 if (copy_from_user(&xha, argp, sizeof(xha)))
7151 r = kvm_xen_hvm_set_attr(kvm, &xha);
7154 case KVM_XEN_HVM_EVTCHN_SEND: {
7155 struct kvm_irq_routing_xen_evtchn uxe;
7158 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7160 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7165 r = kvm_vm_ioctl_set_clock(kvm, argp);
7168 r = kvm_vm_ioctl_get_clock(kvm, argp);
7170 case KVM_SET_TSC_KHZ: {
7174 user_tsc_khz = (u32)arg;
7176 if (kvm_caps.has_tsc_control &&
7177 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7180 if (user_tsc_khz == 0)
7181 user_tsc_khz = tsc_khz;
7183 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7188 case KVM_GET_TSC_KHZ: {
7189 r = READ_ONCE(kvm->arch.default_tsc_khz);
7192 case KVM_MEMORY_ENCRYPT_OP: {
7194 if (!kvm_x86_ops.mem_enc_ioctl)
7197 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7200 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7201 struct kvm_enc_region region;
7204 if (copy_from_user(®ion, argp, sizeof(region)))
7208 if (!kvm_x86_ops.mem_enc_register_region)
7211 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion);
7214 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7215 struct kvm_enc_region region;
7218 if (copy_from_user(®ion, argp, sizeof(region)))
7222 if (!kvm_x86_ops.mem_enc_unregister_region)
7225 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion);
7228 #ifdef CONFIG_KVM_HYPERV
7229 case KVM_HYPERV_EVENTFD: {
7230 struct kvm_hyperv_eventfd hvevfd;
7233 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7235 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7239 case KVM_SET_PMU_EVENT_FILTER:
7240 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7242 case KVM_X86_SET_MSR_FILTER: {
7243 struct kvm_msr_filter __user *user_msr_filter = argp;
7244 struct kvm_msr_filter filter;
7246 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7249 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7259 static void kvm_probe_feature_msr(u32 msr_index)
7261 struct kvm_msr_entry msr = {
7265 if (kvm_get_msr_feature(&msr))
7268 msr_based_features[num_msr_based_features++] = msr_index;
7271 static void kvm_probe_msr_to_save(u32 msr_index)
7275 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7279 * Even MSRs that are valid in the host may not be exposed to guests in
7282 switch (msr_index) {
7283 case MSR_IA32_BNDCFGS:
7284 if (!kvm_mpx_supported())
7288 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7289 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7292 case MSR_IA32_UMWAIT_CONTROL:
7293 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7296 case MSR_IA32_RTIT_CTL:
7297 case MSR_IA32_RTIT_STATUS:
7298 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7301 case MSR_IA32_RTIT_CR3_MATCH:
7302 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7303 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7306 case MSR_IA32_RTIT_OUTPUT_BASE:
7307 case MSR_IA32_RTIT_OUTPUT_MASK:
7308 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7309 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7310 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7313 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7314 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7315 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7316 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7319 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7320 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7321 kvm_pmu_cap.num_counters_gp)
7324 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7325 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7326 kvm_pmu_cap.num_counters_gp)
7329 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7330 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7331 kvm_pmu_cap.num_counters_fixed)
7334 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7335 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7336 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7337 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7341 case MSR_IA32_XFD_ERR:
7342 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7345 case MSR_IA32_TSX_CTRL:
7346 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7353 msrs_to_save[num_msrs_to_save++] = msr_index;
7356 static void kvm_init_msr_lists(void)
7360 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7361 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7363 num_msrs_to_save = 0;
7364 num_emulated_msrs = 0;
7365 num_msr_based_features = 0;
7367 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7368 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7371 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7372 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7375 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7376 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7379 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7382 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7383 kvm_probe_feature_msr(i);
7385 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7386 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7389 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7397 if (!(lapic_in_kernel(vcpu) &&
7398 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7399 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7410 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7417 if (!(lapic_in_kernel(vcpu) &&
7418 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7420 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7422 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7432 void kvm_set_segment(struct kvm_vcpu *vcpu,
7433 struct kvm_segment *var, int seg)
7435 static_call(kvm_x86_set_segment)(vcpu, var, seg);
7438 void kvm_get_segment(struct kvm_vcpu *vcpu,
7439 struct kvm_segment *var, int seg)
7441 static_call(kvm_x86_get_segment)(vcpu, var, seg);
7444 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7445 struct x86_exception *exception)
7447 struct kvm_mmu *mmu = vcpu->arch.mmu;
7450 BUG_ON(!mmu_is_nested(vcpu));
7452 /* NPT walks are always user-walks */
7453 access |= PFERR_USER_MASK;
7454 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7459 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7460 struct x86_exception *exception)
7462 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7464 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7465 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7467 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7469 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7470 struct x86_exception *exception)
7472 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7474 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7475 access |= PFERR_WRITE_MASK;
7476 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7478 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7480 /* uses this to access any guest's mapped memory without checking CPL */
7481 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7482 struct x86_exception *exception)
7484 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7486 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7489 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7490 struct kvm_vcpu *vcpu, u64 access,
7491 struct x86_exception *exception)
7493 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7495 int r = X86EMUL_CONTINUE;
7498 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7499 unsigned offset = addr & (PAGE_SIZE-1);
7500 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7503 if (gpa == INVALID_GPA)
7504 return X86EMUL_PROPAGATE_FAULT;
7505 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7508 r = X86EMUL_IO_NEEDED;
7520 /* used for instruction fetching */
7521 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7522 gva_t addr, void *val, unsigned int bytes,
7523 struct x86_exception *exception)
7525 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7526 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7527 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7531 /* Inline kvm_read_guest_virt_helper for speed. */
7532 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7534 if (unlikely(gpa == INVALID_GPA))
7535 return X86EMUL_PROPAGATE_FAULT;
7537 offset = addr & (PAGE_SIZE-1);
7538 if (WARN_ON(offset + bytes > PAGE_SIZE))
7539 bytes = (unsigned)PAGE_SIZE - offset;
7540 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7542 if (unlikely(ret < 0))
7543 return X86EMUL_IO_NEEDED;
7545 return X86EMUL_CONTINUE;
7548 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7549 gva_t addr, void *val, unsigned int bytes,
7550 struct x86_exception *exception)
7552 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7555 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7556 * is returned, but our callers are not ready for that and they blindly
7557 * call kvm_inject_page_fault. Ensure that they at least do not leak
7558 * uninitialized kernel stack memory into cr2 and error code.
7560 memset(exception, 0, sizeof(*exception));
7561 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7564 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7566 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7567 gva_t addr, void *val, unsigned int bytes,
7568 struct x86_exception *exception, bool system)
7570 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7574 access |= PFERR_IMPLICIT_ACCESS;
7575 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7576 access |= PFERR_USER_MASK;
7578 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7581 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7582 struct kvm_vcpu *vcpu, u64 access,
7583 struct x86_exception *exception)
7585 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7587 int r = X86EMUL_CONTINUE;
7590 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7591 unsigned offset = addr & (PAGE_SIZE-1);
7592 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7595 if (gpa == INVALID_GPA)
7596 return X86EMUL_PROPAGATE_FAULT;
7597 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7599 r = X86EMUL_IO_NEEDED;
7611 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7612 unsigned int bytes, struct x86_exception *exception,
7615 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7616 u64 access = PFERR_WRITE_MASK;
7619 access |= PFERR_IMPLICIT_ACCESS;
7620 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7621 access |= PFERR_USER_MASK;
7623 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7627 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7628 unsigned int bytes, struct x86_exception *exception)
7630 /* kvm_write_guest_virt_system can pull in tons of pages. */
7631 vcpu->arch.l1tf_flush_l1d = true;
7633 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7634 PFERR_WRITE_MASK, exception);
7636 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7638 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7639 void *insn, int insn_len)
7641 return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7645 int handle_ud(struct kvm_vcpu *vcpu)
7647 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7648 int fep_flags = READ_ONCE(force_emulation_prefix);
7649 int emul_type = EMULTYPE_TRAP_UD;
7650 char sig[5]; /* ud2; .ascii "kvm" */
7651 struct x86_exception e;
7654 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7655 if (r != X86EMUL_CONTINUE)
7659 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7660 sig, sizeof(sig), &e) == 0 &&
7661 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7662 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7663 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7664 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7665 emul_type = EMULTYPE_TRAP_UD_FORCED;
7668 return kvm_emulate_instruction(vcpu, emul_type);
7670 EXPORT_SYMBOL_GPL(handle_ud);
7672 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7673 gpa_t gpa, bool write)
7675 /* For APIC access vmexit */
7676 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7679 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7680 trace_vcpu_match_mmio(gva, gpa, write, true);
7687 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7688 gpa_t *gpa, struct x86_exception *exception,
7691 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7692 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7693 | (write ? PFERR_WRITE_MASK : 0);
7696 * currently PKRU is only applied to ept enabled guest so
7697 * there is no pkey in EPT page table for L1 guest or EPT
7698 * shadow page table for L2 guest.
7700 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7701 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7702 vcpu->arch.mmio_access, 0, access))) {
7703 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7704 (gva & (PAGE_SIZE - 1));
7705 trace_vcpu_match_mmio(gva, *gpa, write, false);
7709 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7711 if (*gpa == INVALID_GPA)
7714 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7717 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7718 const void *val, int bytes)
7722 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7725 kvm_page_track_write(vcpu, gpa, val, bytes);
7729 struct read_write_emulator_ops {
7730 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7732 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7733 void *val, int bytes);
7734 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7735 int bytes, void *val);
7736 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7737 void *val, int bytes);
7741 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7743 if (vcpu->mmio_read_completed) {
7744 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7745 vcpu->mmio_fragments[0].gpa, val);
7746 vcpu->mmio_read_completed = 0;
7753 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7754 void *val, int bytes)
7756 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7759 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7760 void *val, int bytes)
7762 return emulator_write_phys(vcpu, gpa, val, bytes);
7765 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7767 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7768 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7771 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7772 void *val, int bytes)
7774 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7775 return X86EMUL_IO_NEEDED;
7778 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7779 void *val, int bytes)
7781 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7783 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7784 return X86EMUL_CONTINUE;
7787 static const struct read_write_emulator_ops read_emultor = {
7788 .read_write_prepare = read_prepare,
7789 .read_write_emulate = read_emulate,
7790 .read_write_mmio = vcpu_mmio_read,
7791 .read_write_exit_mmio = read_exit_mmio,
7794 static const struct read_write_emulator_ops write_emultor = {
7795 .read_write_emulate = write_emulate,
7796 .read_write_mmio = write_mmio,
7797 .read_write_exit_mmio = write_exit_mmio,
7801 static int emulator_read_write_onepage(unsigned long addr, void *val,
7803 struct x86_exception *exception,
7804 struct kvm_vcpu *vcpu,
7805 const struct read_write_emulator_ops *ops)
7809 bool write = ops->write;
7810 struct kvm_mmio_fragment *frag;
7811 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7814 * If the exit was due to a NPF we may already have a GPA.
7815 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7816 * Note, this cannot be used on string operations since string
7817 * operation using rep will only have the initial GPA from the NPF
7820 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7821 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7822 gpa = ctxt->gpa_val;
7823 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7825 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7827 return X86EMUL_PROPAGATE_FAULT;
7830 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7831 return X86EMUL_CONTINUE;
7834 * Is this MMIO handled locally?
7836 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7837 if (handled == bytes)
7838 return X86EMUL_CONTINUE;
7844 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7845 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7849 return X86EMUL_CONTINUE;
7852 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7854 void *val, unsigned int bytes,
7855 struct x86_exception *exception,
7856 const struct read_write_emulator_ops *ops)
7858 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7862 if (ops->read_write_prepare &&
7863 ops->read_write_prepare(vcpu, val, bytes))
7864 return X86EMUL_CONTINUE;
7866 vcpu->mmio_nr_fragments = 0;
7868 /* Crossing a page boundary? */
7869 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7872 now = -addr & ~PAGE_MASK;
7873 rc = emulator_read_write_onepage(addr, val, now, exception,
7876 if (rc != X86EMUL_CONTINUE)
7879 if (ctxt->mode != X86EMUL_MODE_PROT64)
7885 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7887 if (rc != X86EMUL_CONTINUE)
7890 if (!vcpu->mmio_nr_fragments)
7893 gpa = vcpu->mmio_fragments[0].gpa;
7895 vcpu->mmio_needed = 1;
7896 vcpu->mmio_cur_fragment = 0;
7898 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7899 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7900 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7901 vcpu->run->mmio.phys_addr = gpa;
7903 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7906 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7910 struct x86_exception *exception)
7912 return emulator_read_write(ctxt, addr, val, bytes,
7913 exception, &read_emultor);
7916 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7920 struct x86_exception *exception)
7922 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7923 exception, &write_emultor);
7926 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7927 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7929 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7934 struct x86_exception *exception)
7936 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7942 /* guests cmpxchg8b have to be emulated atomically */
7943 if (bytes > 8 || (bytes & (bytes - 1)))
7946 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7948 if (gpa == INVALID_GPA ||
7949 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7953 * Emulate the atomic as a straight write to avoid #AC if SLD is
7954 * enabled in the host and the access splits a cache line.
7956 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7957 page_line_mask = ~(cache_line_size() - 1);
7959 page_line_mask = PAGE_MASK;
7961 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7964 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7965 if (kvm_is_error_hva(hva))
7968 hva += offset_in_page(gpa);
7972 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7975 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7978 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7981 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7988 return X86EMUL_UNHANDLEABLE;
7990 return X86EMUL_CMPXCHG_FAILED;
7992 kvm_page_track_write(vcpu, gpa, new, bytes);
7994 return X86EMUL_CONTINUE;
7997 pr_warn_once("emulating exchange as write\n");
7999 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8002 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8003 unsigned short port, void *data,
8004 unsigned int count, bool in)
8009 WARN_ON_ONCE(vcpu->arch.pio.count);
8010 for (i = 0; i < count; i++) {
8012 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8014 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8021 * Userspace must have unregistered the device while PIO
8022 * was running. Drop writes / read as 0.
8025 memset(data, 0, size * (count - i));
8034 vcpu->arch.pio.port = port;
8035 vcpu->arch.pio.in = in;
8036 vcpu->arch.pio.count = count;
8037 vcpu->arch.pio.size = size;
8040 memset(vcpu->arch.pio_data, 0, size * count);
8042 memcpy(vcpu->arch.pio_data, data, size * count);
8044 vcpu->run->exit_reason = KVM_EXIT_IO;
8045 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8046 vcpu->run->io.size = size;
8047 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8048 vcpu->run->io.count = count;
8049 vcpu->run->io.port = port;
8053 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8054 unsigned short port, void *val, unsigned int count)
8056 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8058 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8063 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8065 int size = vcpu->arch.pio.size;
8066 unsigned int count = vcpu->arch.pio.count;
8067 memcpy(val, vcpu->arch.pio_data, size * count);
8068 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8069 vcpu->arch.pio.count = 0;
8072 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8073 int size, unsigned short port, void *val,
8076 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8077 if (vcpu->arch.pio.count) {
8079 * Complete a previous iteration that required userspace I/O.
8080 * Note, @count isn't guaranteed to match pio.count as userspace
8081 * can modify ECX before rerunning the vCPU. Ignore any such
8082 * shenanigans as KVM doesn't support modifying the rep count,
8083 * and the emulator ensures @count doesn't overflow the buffer.
8085 complete_emulator_pio_in(vcpu, val);
8089 return emulator_pio_in(vcpu, size, port, val, count);
8092 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8093 unsigned short port, const void *val,
8096 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8097 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8100 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8101 int size, unsigned short port,
8102 const void *val, unsigned int count)
8104 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8107 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8109 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8112 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8114 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8117 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8119 if (!need_emulate_wbinvd(vcpu))
8120 return X86EMUL_CONTINUE;
8122 if (static_call(kvm_x86_has_wbinvd_exit)()) {
8123 int cpu = get_cpu();
8125 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8126 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8127 wbinvd_ipi, NULL, 1);
8129 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8132 return X86EMUL_CONTINUE;
8135 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8137 kvm_emulate_wbinvd_noskip(vcpu);
8138 return kvm_skip_emulated_instruction(vcpu);
8140 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8144 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8146 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8149 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8150 unsigned long *dest)
8152 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8155 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8156 unsigned long value)
8159 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8162 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8164 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8167 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8169 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8170 unsigned long value;
8174 value = kvm_read_cr0(vcpu);
8177 value = vcpu->arch.cr2;
8180 value = kvm_read_cr3(vcpu);
8183 value = kvm_read_cr4(vcpu);
8186 value = kvm_get_cr8(vcpu);
8189 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8196 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8198 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8203 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8206 vcpu->arch.cr2 = val;
8209 res = kvm_set_cr3(vcpu, val);
8212 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8215 res = kvm_set_cr8(vcpu, val);
8218 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8225 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8227 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8230 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8232 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8235 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8237 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8240 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8242 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8245 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8247 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8250 static unsigned long emulator_get_cached_segment_base(
8251 struct x86_emulate_ctxt *ctxt, int seg)
8253 return get_segment_base(emul_to_vcpu(ctxt), seg);
8256 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8257 struct desc_struct *desc, u32 *base3,
8260 struct kvm_segment var;
8262 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8263 *selector = var.selector;
8266 memset(desc, 0, sizeof(*desc));
8274 set_desc_limit(desc, var.limit);
8275 set_desc_base(desc, (unsigned long)var.base);
8276 #ifdef CONFIG_X86_64
8278 *base3 = var.base >> 32;
8280 desc->type = var.type;
8282 desc->dpl = var.dpl;
8283 desc->p = var.present;
8284 desc->avl = var.avl;
8292 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8293 struct desc_struct *desc, u32 base3,
8296 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8297 struct kvm_segment var;
8299 var.selector = selector;
8300 var.base = get_desc_base(desc);
8301 #ifdef CONFIG_X86_64
8302 var.base |= ((u64)base3) << 32;
8304 var.limit = get_desc_limit(desc);
8306 var.limit = (var.limit << 12) | 0xfff;
8307 var.type = desc->type;
8308 var.dpl = desc->dpl;
8313 var.avl = desc->avl;
8314 var.present = desc->p;
8315 var.unusable = !var.present;
8318 kvm_set_segment(vcpu, &var, seg);
8322 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8323 u32 msr_index, u64 *pdata)
8325 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8328 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8330 return X86EMUL_UNHANDLEABLE;
8333 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8334 complete_emulated_rdmsr, r))
8335 return X86EMUL_IO_NEEDED;
8337 trace_kvm_msr_read_ex(msr_index);
8338 return X86EMUL_PROPAGATE_FAULT;
8341 trace_kvm_msr_read(msr_index, *pdata);
8342 return X86EMUL_CONTINUE;
8345 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8346 u32 msr_index, u64 data)
8348 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8351 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8353 return X86EMUL_UNHANDLEABLE;
8356 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8357 complete_emulated_msr_access, r))
8358 return X86EMUL_IO_NEEDED;
8360 trace_kvm_msr_write_ex(msr_index, data);
8361 return X86EMUL_PROPAGATE_FAULT;
8364 trace_kvm_msr_write(msr_index, data);
8365 return X86EMUL_CONTINUE;
8368 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8369 u32 msr_index, u64 *pdata)
8371 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8374 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8377 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8382 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8383 u32 pmc, u64 *pdata)
8385 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8388 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8390 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8393 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8394 struct x86_instruction_info *info,
8395 enum x86_intercept_stage stage)
8397 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8401 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8402 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8405 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8408 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8410 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8413 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8415 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8418 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8420 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8423 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8425 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8428 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8430 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8433 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8435 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8438 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8440 return is_smm(emul_to_vcpu(ctxt));
8443 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8445 return is_guest_mode(emul_to_vcpu(ctxt));
8448 #ifndef CONFIG_KVM_SMM
8449 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8452 return X86EMUL_UNHANDLEABLE;
8456 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8458 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8461 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8463 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8466 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8468 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8470 if (!kvm->vm_bugged)
8474 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8475 gva_t addr, unsigned int flags)
8477 if (!kvm_x86_ops.get_untagged_addr)
8480 return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags);
8483 static const struct x86_emulate_ops emulate_ops = {
8484 .vm_bugged = emulator_vm_bugged,
8485 .read_gpr = emulator_read_gpr,
8486 .write_gpr = emulator_write_gpr,
8487 .read_std = emulator_read_std,
8488 .write_std = emulator_write_std,
8489 .fetch = kvm_fetch_guest_virt,
8490 .read_emulated = emulator_read_emulated,
8491 .write_emulated = emulator_write_emulated,
8492 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8493 .invlpg = emulator_invlpg,
8494 .pio_in_emulated = emulator_pio_in_emulated,
8495 .pio_out_emulated = emulator_pio_out_emulated,
8496 .get_segment = emulator_get_segment,
8497 .set_segment = emulator_set_segment,
8498 .get_cached_segment_base = emulator_get_cached_segment_base,
8499 .get_gdt = emulator_get_gdt,
8500 .get_idt = emulator_get_idt,
8501 .set_gdt = emulator_set_gdt,
8502 .set_idt = emulator_set_idt,
8503 .get_cr = emulator_get_cr,
8504 .set_cr = emulator_set_cr,
8505 .cpl = emulator_get_cpl,
8506 .get_dr = emulator_get_dr,
8507 .set_dr = emulator_set_dr,
8508 .set_msr_with_filter = emulator_set_msr_with_filter,
8509 .get_msr_with_filter = emulator_get_msr_with_filter,
8510 .get_msr = emulator_get_msr,
8511 .check_pmc = emulator_check_pmc,
8512 .read_pmc = emulator_read_pmc,
8513 .halt = emulator_halt,
8514 .wbinvd = emulator_wbinvd,
8515 .fix_hypercall = emulator_fix_hypercall,
8516 .intercept = emulator_intercept,
8517 .get_cpuid = emulator_get_cpuid,
8518 .guest_has_movbe = emulator_guest_has_movbe,
8519 .guest_has_fxsr = emulator_guest_has_fxsr,
8520 .guest_has_rdpid = emulator_guest_has_rdpid,
8521 .set_nmi_mask = emulator_set_nmi_mask,
8522 .is_smm = emulator_is_smm,
8523 .is_guest_mode = emulator_is_guest_mode,
8524 .leave_smm = emulator_leave_smm,
8525 .triple_fault = emulator_triple_fault,
8526 .set_xcr = emulator_set_xcr,
8527 .get_untagged_addr = emulator_get_untagged_addr,
8530 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8532 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8534 * an sti; sti; sequence only disable interrupts for the first
8535 * instruction. So, if the last instruction, be it emulated or
8536 * not, left the system with the INT_STI flag enabled, it
8537 * means that the last instruction is an sti. We should not
8538 * leave the flag on in this case. The same goes for mov ss
8540 if (int_shadow & mask)
8542 if (unlikely(int_shadow || mask)) {
8543 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8545 kvm_make_request(KVM_REQ_EVENT, vcpu);
8549 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8551 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8553 if (ctxt->exception.vector == PF_VECTOR)
8554 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8555 else if (ctxt->exception.error_code_valid)
8556 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8557 ctxt->exception.error_code);
8559 kvm_queue_exception(vcpu, ctxt->exception.vector);
8562 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8564 struct x86_emulate_ctxt *ctxt;
8566 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8568 pr_err("failed to allocate vcpu's emulator\n");
8573 ctxt->ops = &emulate_ops;
8574 vcpu->arch.emulate_ctxt = ctxt;
8579 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8581 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8584 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8586 ctxt->gpa_available = false;
8587 ctxt->eflags = kvm_get_rflags(vcpu);
8588 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8590 ctxt->eip = kvm_rip_read(vcpu);
8591 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8592 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8593 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8594 cs_db ? X86EMUL_MODE_PROT32 :
8595 X86EMUL_MODE_PROT16;
8596 ctxt->interruptibility = 0;
8597 ctxt->have_exception = false;
8598 ctxt->exception.vector = -1;
8599 ctxt->perm_ok = false;
8601 init_decode_cache(ctxt);
8602 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8605 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8607 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8610 init_emulate_ctxt(vcpu);
8614 ctxt->_eip = ctxt->eip + inc_eip;
8615 ret = emulate_int_real(ctxt, irq);
8617 if (ret != X86EMUL_CONTINUE) {
8618 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8620 ctxt->eip = ctxt->_eip;
8621 kvm_rip_write(vcpu, ctxt->eip);
8622 kvm_set_rflags(vcpu, ctxt->eflags);
8625 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8627 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8628 u8 ndata, u8 *insn_bytes, u8 insn_size)
8630 struct kvm_run *run = vcpu->run;
8635 * Zero the whole array used to retrieve the exit info, as casting to
8636 * u32 for select entries will leave some chunks uninitialized.
8638 memset(&info, 0, sizeof(info));
8640 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8641 &info[2], (u32 *)&info[3],
8644 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8645 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8648 * There's currently space for 13 entries, but 5 are used for the exit
8649 * reason and info. Restrict to 4 to reduce the maintenance burden
8650 * when expanding kvm_run.emulation_failure in the future.
8652 if (WARN_ON_ONCE(ndata > 4))
8655 /* Always include the flags as a 'data' entry. */
8657 run->emulation_failure.flags = 0;
8660 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8661 sizeof(run->emulation_failure.insn_bytes) != 16));
8663 run->emulation_failure.flags |=
8664 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8665 run->emulation_failure.insn_size = insn_size;
8666 memset(run->emulation_failure.insn_bytes, 0x90,
8667 sizeof(run->emulation_failure.insn_bytes));
8668 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8671 memcpy(&run->internal.data[info_start], info, sizeof(info));
8672 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8673 ndata * sizeof(data[0]));
8675 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8678 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8680 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8682 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8683 ctxt->fetch.end - ctxt->fetch.data);
8686 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8689 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8691 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8693 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8695 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8697 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8699 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8701 struct kvm *kvm = vcpu->kvm;
8703 ++vcpu->stat.insn_emulation_fail;
8704 trace_kvm_emulate_insn_failed(vcpu);
8706 if (emulation_type & EMULTYPE_VMWARE_GP) {
8707 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8711 if (kvm->arch.exit_on_emulation_error ||
8712 (emulation_type & EMULTYPE_SKIP)) {
8713 prepare_emulation_ctxt_failure_exit(vcpu);
8717 kvm_queue_exception(vcpu, UD_VECTOR);
8719 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8720 prepare_emulation_ctxt_failure_exit(vcpu);
8727 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8730 gpa_t gpa = cr2_or_gpa;
8733 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8736 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8737 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8740 if (!vcpu->arch.mmu->root_role.direct) {
8742 * Write permission should be allowed since only
8743 * write access need to be emulated.
8745 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8748 * If the mapping is invalid in guest, let cpu retry
8749 * it to generate fault.
8751 if (gpa == INVALID_GPA)
8756 * Do not retry the unhandleable instruction if it faults on the
8757 * readonly host memory, otherwise it will goto a infinite loop:
8758 * retry instruction -> write #PF -> emulation fail -> retry
8759 * instruction -> ...
8761 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8764 * If the instruction failed on the error pfn, it can not be fixed,
8765 * report the error to userspace.
8767 if (is_error_noslot_pfn(pfn))
8770 kvm_release_pfn_clean(pfn);
8772 /* The instructions are well-emulated on direct mmu. */
8773 if (vcpu->arch.mmu->root_role.direct) {
8774 unsigned int indirect_shadow_pages;
8776 write_lock(&vcpu->kvm->mmu_lock);
8777 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8778 write_unlock(&vcpu->kvm->mmu_lock);
8780 if (indirect_shadow_pages)
8781 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8787 * if emulation was due to access to shadowed page table
8788 * and it failed try to unshadow page and re-enter the
8789 * guest to let CPU execute the instruction.
8791 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8794 * If the access faults on its page table, it can not
8795 * be fixed by unprotecting shadow page and it should
8796 * be reported to userspace.
8798 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8801 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8802 gpa_t cr2_or_gpa, int emulation_type)
8804 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8805 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8807 last_retry_eip = vcpu->arch.last_retry_eip;
8808 last_retry_addr = vcpu->arch.last_retry_addr;
8811 * If the emulation is caused by #PF and it is non-page_table
8812 * writing instruction, it means the VM-EXIT is caused by shadow
8813 * page protected, we can zap the shadow page and retry this
8814 * instruction directly.
8816 * Note: if the guest uses a non-page-table modifying instruction
8817 * on the PDE that points to the instruction, then we will unmap
8818 * the instruction and go to an infinite loop. So, we cache the
8819 * last retried eip and the last fault address, if we meet the eip
8820 * and the address again, we can break out of the potential infinite
8823 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8825 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8828 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8829 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8832 if (x86_page_table_writing_insn(ctxt))
8835 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8838 vcpu->arch.last_retry_eip = ctxt->eip;
8839 vcpu->arch.last_retry_addr = cr2_or_gpa;
8841 if (!vcpu->arch.mmu->root_role.direct)
8842 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8844 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8849 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8850 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8852 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8861 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8862 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8867 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8869 struct kvm_run *kvm_run = vcpu->run;
8871 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8872 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8873 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8874 kvm_run->debug.arch.exception = DB_VECTOR;
8875 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8878 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8882 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8884 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8887 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8891 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8894 * rflags is the old, "raw" value of the flags. The new value has
8895 * not been saved yet.
8897 * This is correct even for TF set by the guest, because "the
8898 * processor will not generate this exception after the instruction
8899 * that sets the TF flag".
8901 if (unlikely(rflags & X86_EFLAGS_TF))
8902 r = kvm_vcpu_do_singlestep(vcpu);
8905 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8907 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8911 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8915 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8916 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first
8917 * to avoid the relatively expensive CPUID lookup.
8919 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8920 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8921 guest_cpuid_is_intel(vcpu);
8924 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8925 int emulation_type, int *r)
8927 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8930 * Do not check for code breakpoints if hardware has already done the
8931 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8932 * the instruction has passed all exception checks, and all intercepted
8933 * exceptions that trigger emulation have lower priority than code
8934 * breakpoints, i.e. the fact that the intercepted exception occurred
8935 * means any code breakpoints have already been serviced.
8937 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8938 * hardware has checked the RIP of the magic prefix, but not the RIP of
8939 * the instruction being emulated. The intent of forced emulation is
8940 * to behave as if KVM intercepted the instruction without an exception
8941 * and without a prefix.
8943 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8944 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8947 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8948 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8949 struct kvm_run *kvm_run = vcpu->run;
8950 unsigned long eip = kvm_get_linear_rip(vcpu);
8951 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8952 vcpu->arch.guest_debug_dr7,
8956 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8957 kvm_run->debug.arch.pc = eip;
8958 kvm_run->debug.arch.exception = DB_VECTOR;
8959 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8965 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8966 !kvm_is_code_breakpoint_inhibited(vcpu)) {
8967 unsigned long eip = kvm_get_linear_rip(vcpu);
8968 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8973 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8982 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8984 switch (ctxt->opcode_len) {
8991 case 0xe6: /* OUT */
8995 case 0x6c: /* INS */
8997 case 0x6e: /* OUTS */
9004 case 0x33: /* RDPMC */
9014 * Decode an instruction for emulation. The caller is responsible for handling
9015 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9016 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9017 * code breakpoints have higher priority and thus have already been done by
9020 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9021 * response to a machine check.
9023 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9024 void *insn, int insn_len)
9026 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9029 init_emulate_ctxt(vcpu);
9031 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9033 trace_kvm_emulate_insn_start(vcpu);
9034 ++vcpu->stat.insn_emulation;
9038 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9040 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9041 int emulation_type, void *insn, int insn_len)
9044 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9045 bool writeback = true;
9047 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9048 if (r != X86EMUL_CONTINUE) {
9049 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9052 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9053 return handle_emulation_failure(vcpu, emulation_type);
9056 vcpu->arch.l1tf_flush_l1d = true;
9058 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9059 kvm_clear_exception_queue(vcpu);
9062 * Return immediately if RIP hits a code breakpoint, such #DBs
9063 * are fault-like and are higher priority than any faults on
9064 * the code fetch itself.
9066 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9069 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9071 if (r != EMULATION_OK) {
9072 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9073 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9074 kvm_queue_exception(vcpu, UD_VECTOR);
9077 if (reexecute_instruction(vcpu, cr2_or_gpa,
9081 if (ctxt->have_exception &&
9082 !(emulation_type & EMULTYPE_SKIP)) {
9084 * #UD should result in just EMULATION_FAILED, and trap-like
9085 * exception should not be encountered during decode.
9087 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9088 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9089 inject_emulated_exception(vcpu);
9092 return handle_emulation_failure(vcpu, emulation_type);
9096 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9097 !is_vmware_backdoor_opcode(ctxt)) {
9098 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9103 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9104 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9105 * The caller is responsible for updating interruptibility state and
9106 * injecting single-step #DBs.
9108 if (emulation_type & EMULTYPE_SKIP) {
9109 if (ctxt->mode != X86EMUL_MODE_PROT64)
9110 ctxt->eip = (u32)ctxt->_eip;
9112 ctxt->eip = ctxt->_eip;
9114 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9119 kvm_rip_write(vcpu, ctxt->eip);
9120 if (ctxt->eflags & X86_EFLAGS_RF)
9121 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9125 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9128 /* this is needed for vmware backdoor interface to work since it
9129 changes registers values during IO operation */
9130 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9131 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9132 emulator_invalidate_register_cache(ctxt);
9136 if (emulation_type & EMULTYPE_PF) {
9137 /* Save the faulting GPA (cr2) in the address field */
9138 ctxt->exception.address = cr2_or_gpa;
9140 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9141 if (vcpu->arch.mmu->root_role.direct) {
9142 ctxt->gpa_available = true;
9143 ctxt->gpa_val = cr2_or_gpa;
9146 /* Sanitize the address out of an abundance of paranoia. */
9147 ctxt->exception.address = 0;
9150 r = x86_emulate_insn(ctxt);
9152 if (r == EMULATION_INTERCEPTED)
9155 if (r == EMULATION_FAILED) {
9156 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9159 return handle_emulation_failure(vcpu, emulation_type);
9162 if (ctxt->have_exception) {
9163 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9164 vcpu->mmio_needed = false;
9166 inject_emulated_exception(vcpu);
9167 } else if (vcpu->arch.pio.count) {
9168 if (!vcpu->arch.pio.in) {
9169 /* FIXME: return into emulator if single-stepping. */
9170 vcpu->arch.pio.count = 0;
9173 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9176 } else if (vcpu->mmio_needed) {
9177 ++vcpu->stat.mmio_exits;
9179 if (!vcpu->mmio_is_write)
9182 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9183 } else if (vcpu->arch.complete_userspace_io) {
9186 } else if (r == EMULATION_RESTART)
9193 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9194 toggle_interruptibility(vcpu, ctxt->interruptibility);
9195 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9198 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9199 * only supports code breakpoints and general detect #DB, both
9200 * of which are fault-like.
9202 if (!ctxt->have_exception ||
9203 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9204 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9205 if (ctxt->is_branch)
9206 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9207 kvm_rip_write(vcpu, ctxt->eip);
9208 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9209 r = kvm_vcpu_do_singlestep(vcpu);
9210 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9211 __kvm_set_rflags(vcpu, ctxt->eflags);
9215 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9216 * do nothing, and it will be requested again as soon as
9217 * the shadow expires. But we still need to check here,
9218 * because POPF has no interrupt shadow.
9220 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9221 kvm_make_request(KVM_REQ_EVENT, vcpu);
9223 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9228 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9230 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9232 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9234 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9235 void *insn, int insn_len)
9237 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9239 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9241 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9243 vcpu->arch.pio.count = 0;
9247 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9249 vcpu->arch.pio.count = 0;
9251 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9254 return kvm_skip_emulated_instruction(vcpu);
9257 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9258 unsigned short port)
9260 unsigned long val = kvm_rax_read(vcpu);
9261 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9267 * Workaround userspace that relies on old KVM behavior of %rip being
9268 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9271 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9272 vcpu->arch.complete_userspace_io =
9273 complete_fast_pio_out_port_0x7e;
9274 kvm_skip_emulated_instruction(vcpu);
9276 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9277 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9282 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9286 /* We should only ever be called with arch.pio.count equal to 1 */
9287 BUG_ON(vcpu->arch.pio.count != 1);
9289 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9290 vcpu->arch.pio.count = 0;
9294 /* For size less than 4 we merge, else we zero extend */
9295 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9297 complete_emulator_pio_in(vcpu, &val);
9298 kvm_rax_write(vcpu, val);
9300 return kvm_skip_emulated_instruction(vcpu);
9303 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9304 unsigned short port)
9309 /* For size less than 4 we merge, else we zero extend */
9310 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9312 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9314 kvm_rax_write(vcpu, val);
9318 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9319 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9324 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9329 ret = kvm_fast_pio_in(vcpu, size, port);
9331 ret = kvm_fast_pio_out(vcpu, size, port);
9332 return ret && kvm_skip_emulated_instruction(vcpu);
9334 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9336 static int kvmclock_cpu_down_prep(unsigned int cpu)
9338 __this_cpu_write(cpu_tsc_khz, 0);
9342 static void tsc_khz_changed(void *data)
9344 struct cpufreq_freqs *freq = data;
9347 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9352 khz = cpufreq_quick_get(raw_smp_processor_id());
9355 __this_cpu_write(cpu_tsc_khz, khz);
9358 #ifdef CONFIG_X86_64
9359 static void kvm_hyperv_tsc_notifier(void)
9364 mutex_lock(&kvm_lock);
9365 list_for_each_entry(kvm, &vm_list, vm_list)
9366 kvm_make_mclock_inprogress_request(kvm);
9368 /* no guest entries from this point */
9369 hyperv_stop_tsc_emulation();
9371 /* TSC frequency always matches when on Hyper-V */
9372 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9373 for_each_present_cpu(cpu)
9374 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9376 kvm_caps.max_guest_tsc_khz = tsc_khz;
9378 list_for_each_entry(kvm, &vm_list, vm_list) {
9379 __kvm_start_pvclock_update(kvm);
9380 pvclock_update_vm_gtod_copy(kvm);
9381 kvm_end_pvclock_update(kvm);
9384 mutex_unlock(&kvm_lock);
9388 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9391 struct kvm_vcpu *vcpu;
9396 * We allow guests to temporarily run on slowing clocks,
9397 * provided we notify them after, or to run on accelerating
9398 * clocks, provided we notify them before. Thus time never
9401 * However, we have a problem. We can't atomically update
9402 * the frequency of a given CPU from this function; it is
9403 * merely a notifier, which can be called from any CPU.
9404 * Changing the TSC frequency at arbitrary points in time
9405 * requires a recomputation of local variables related to
9406 * the TSC for each VCPU. We must flag these local variables
9407 * to be updated and be sure the update takes place with the
9408 * new frequency before any guests proceed.
9410 * Unfortunately, the combination of hotplug CPU and frequency
9411 * change creates an intractable locking scenario; the order
9412 * of when these callouts happen is undefined with respect to
9413 * CPU hotplug, and they can race with each other. As such,
9414 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9415 * undefined; you can actually have a CPU frequency change take
9416 * place in between the computation of X and the setting of the
9417 * variable. To protect against this problem, all updates of
9418 * the per_cpu tsc_khz variable are done in an interrupt
9419 * protected IPI, and all callers wishing to update the value
9420 * must wait for a synchronous IPI to complete (which is trivial
9421 * if the caller is on the CPU already). This establishes the
9422 * necessary total order on variable updates.
9424 * Note that because a guest time update may take place
9425 * anytime after the setting of the VCPU's request bit, the
9426 * correct TSC value must be set before the request. However,
9427 * to ensure the update actually makes it to any guest which
9428 * starts running in hardware virtualization between the set
9429 * and the acquisition of the spinlock, we must also ping the
9430 * CPU after setting the request bit.
9434 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9436 mutex_lock(&kvm_lock);
9437 list_for_each_entry(kvm, &vm_list, vm_list) {
9438 kvm_for_each_vcpu(i, vcpu, kvm) {
9439 if (vcpu->cpu != cpu)
9441 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9442 if (vcpu->cpu != raw_smp_processor_id())
9446 mutex_unlock(&kvm_lock);
9448 if (freq->old < freq->new && send_ipi) {
9450 * We upscale the frequency. Must make the guest
9451 * doesn't see old kvmclock values while running with
9452 * the new frequency, otherwise we risk the guest sees
9453 * time go backwards.
9455 * In case we update the frequency for another cpu
9456 * (which might be in guest context) send an interrupt
9457 * to kick the cpu out of guest context. Next time
9458 * guest context is entered kvmclock will be updated,
9459 * so the guest will not see stale values.
9461 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9465 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9468 struct cpufreq_freqs *freq = data;
9471 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9473 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9476 for_each_cpu(cpu, freq->policy->cpus)
9477 __kvmclock_cpufreq_notifier(freq, cpu);
9482 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9483 .notifier_call = kvmclock_cpufreq_notifier
9486 static int kvmclock_cpu_online(unsigned int cpu)
9488 tsc_khz_changed(NULL);
9492 static void kvm_timer_init(void)
9494 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9495 max_tsc_khz = tsc_khz;
9497 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9498 struct cpufreq_policy *policy;
9502 policy = cpufreq_cpu_get(cpu);
9504 if (policy->cpuinfo.max_freq)
9505 max_tsc_khz = policy->cpuinfo.max_freq;
9506 cpufreq_cpu_put(policy);
9510 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9511 CPUFREQ_TRANSITION_NOTIFIER);
9513 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9514 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9518 #ifdef CONFIG_X86_64
9519 static void pvclock_gtod_update_fn(struct work_struct *work)
9522 struct kvm_vcpu *vcpu;
9525 mutex_lock(&kvm_lock);
9526 list_for_each_entry(kvm, &vm_list, vm_list)
9527 kvm_for_each_vcpu(i, vcpu, kvm)
9528 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9529 atomic_set(&kvm_guest_has_master_clock, 0);
9530 mutex_unlock(&kvm_lock);
9533 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9536 * Indirection to move queue_work() out of the tk_core.seq write held
9537 * region to prevent possible deadlocks against time accessors which
9538 * are invoked with work related locks held.
9540 static void pvclock_irq_work_fn(struct irq_work *w)
9542 queue_work(system_long_wq, &pvclock_gtod_work);
9545 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9548 * Notification about pvclock gtod data update.
9550 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9553 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9554 struct timekeeper *tk = priv;
9556 update_pvclock_gtod(tk);
9559 * Disable master clock if host does not trust, or does not use,
9560 * TSC based clocksource. Delegate queue_work() to irq_work as
9561 * this is invoked with tk_core.seq write held.
9563 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9564 atomic_read(&kvm_guest_has_master_clock) != 0)
9565 irq_work_queue(&pvclock_irq_work);
9569 static struct notifier_block pvclock_gtod_notifier = {
9570 .notifier_call = pvclock_gtod_notify,
9574 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9576 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9578 #define __KVM_X86_OP(func) \
9579 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9580 #define KVM_X86_OP(func) \
9581 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9582 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9583 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9584 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9585 (void *)__static_call_return0);
9586 #include <asm/kvm-x86-ops.h>
9589 kvm_pmu_ops_update(ops->pmu_ops);
9592 static int kvm_x86_check_processor_compatibility(void)
9594 int cpu = smp_processor_id();
9595 struct cpuinfo_x86 *c = &cpu_data(cpu);
9598 * Compatibility checks are done when loading KVM and when enabling
9599 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9600 * compatible, i.e. KVM should never perform a compatibility check on
9603 WARN_ON(!cpu_online(cpu));
9605 if (__cr4_reserved_bits(cpu_has, c) !=
9606 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9609 return static_call(kvm_x86_check_processor_compatibility)();
9612 static void kvm_x86_check_cpu_compat(void *ret)
9614 *(int *)ret = kvm_x86_check_processor_compatibility();
9617 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9622 if (kvm_x86_ops.hardware_enable) {
9623 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9628 * KVM explicitly assumes that the guest has an FPU and
9629 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9630 * vCPU's FPU state as a fxregs_state struct.
9632 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9633 pr_err("inadequate fpu\n");
9637 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9638 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9643 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9644 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9645 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9646 * with an exception. PAT[0] is set to WB on RESET and also by the
9647 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9649 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9650 (host_pat & GENMASK(2, 0)) != 6) {
9651 pr_err("host PAT[0] is not WB\n");
9655 x86_emulator_cache = kvm_alloc_emulator_cache();
9656 if (!x86_emulator_cache) {
9657 pr_err("failed to allocate cache for x86 emulator\n");
9661 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9662 if (!user_return_msrs) {
9663 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9665 goto out_free_x86_emulator_cache;
9667 kvm_nr_uret_msrs = 0;
9669 r = kvm_mmu_vendor_module_init();
9671 goto out_free_percpu;
9673 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9674 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9675 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9678 rdmsrl_safe(MSR_EFER, &host_efer);
9680 if (boot_cpu_has(X86_FEATURE_XSAVES))
9681 rdmsrl(MSR_IA32_XSS, host_xss);
9683 kvm_init_pmu_capability(ops->pmu_ops);
9685 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9686 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9688 r = ops->hardware_setup();
9692 kvm_ops_update(ops);
9694 for_each_online_cpu(cpu) {
9695 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9697 goto out_unwind_ops;
9701 * Point of no return! DO NOT add error paths below this point unless
9702 * absolutely necessary, as most operations from this point forward
9703 * require unwinding.
9707 if (pi_inject_timer == -1)
9708 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9709 #ifdef CONFIG_X86_64
9710 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9712 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9713 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9716 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9718 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9719 kvm_caps.supported_xss = 0;
9721 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9722 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9723 #undef __kvm_cpu_cap_has
9725 if (kvm_caps.has_tsc_control) {
9727 * Make sure the user can only configure tsc_khz values that
9728 * fit into a signed integer.
9729 * A min value is not calculated because it will always
9730 * be 1 on all machines.
9732 u64 max = min(0x7fffffffULL,
9733 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9734 kvm_caps.max_guest_tsc_khz = max;
9736 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9737 kvm_init_msr_lists();
9741 kvm_x86_ops.hardware_enable = NULL;
9742 static_call(kvm_x86_hardware_unsetup)();
9744 kvm_mmu_vendor_module_exit();
9746 free_percpu(user_return_msrs);
9747 out_free_x86_emulator_cache:
9748 kmem_cache_destroy(x86_emulator_cache);
9752 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9756 mutex_lock(&vendor_module_lock);
9757 r = __kvm_x86_vendor_init(ops);
9758 mutex_unlock(&vendor_module_lock);
9762 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9764 void kvm_x86_vendor_exit(void)
9766 kvm_unregister_perf_callbacks();
9768 #ifdef CONFIG_X86_64
9769 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9770 clear_hv_tscchange_cb();
9774 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9775 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9776 CPUFREQ_TRANSITION_NOTIFIER);
9777 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9779 #ifdef CONFIG_X86_64
9780 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9781 irq_work_sync(&pvclock_irq_work);
9782 cancel_work_sync(&pvclock_gtod_work);
9784 static_call(kvm_x86_hardware_unsetup)();
9785 kvm_mmu_vendor_module_exit();
9786 free_percpu(user_return_msrs);
9787 kmem_cache_destroy(x86_emulator_cache);
9788 #ifdef CONFIG_KVM_XEN
9789 static_key_deferred_flush(&kvm_xen_enabled);
9790 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9792 mutex_lock(&vendor_module_lock);
9793 kvm_x86_ops.hardware_enable = NULL;
9794 mutex_unlock(&vendor_module_lock);
9796 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9798 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9801 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9802 * local APIC is in-kernel, the run loop will detect the non-runnable
9803 * state and halt the vCPU. Exit to userspace if the local APIC is
9804 * managed by userspace, in which case userspace is responsible for
9805 * handling wake events.
9807 ++vcpu->stat.halt_exits;
9808 if (lapic_in_kernel(vcpu)) {
9809 vcpu->arch.mp_state = state;
9812 vcpu->run->exit_reason = reason;
9817 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9819 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9821 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9823 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9825 int ret = kvm_skip_emulated_instruction(vcpu);
9827 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9828 * KVM_EXIT_DEBUG here.
9830 return kvm_emulate_halt_noskip(vcpu) && ret;
9832 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9834 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9836 int ret = kvm_skip_emulated_instruction(vcpu);
9838 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9839 KVM_EXIT_AP_RESET_HOLD) && ret;
9841 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9843 #ifdef CONFIG_X86_64
9844 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9845 unsigned long clock_type)
9847 struct kvm_clock_pairing clock_pairing;
9848 struct timespec64 ts;
9852 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9853 return -KVM_EOPNOTSUPP;
9856 * When tsc is in permanent catchup mode guests won't be able to use
9857 * pvclock_read_retry loop to get consistent view of pvclock
9859 if (vcpu->arch.tsc_always_catchup)
9860 return -KVM_EOPNOTSUPP;
9862 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9863 return -KVM_EOPNOTSUPP;
9865 clock_pairing.sec = ts.tv_sec;
9866 clock_pairing.nsec = ts.tv_nsec;
9867 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9868 clock_pairing.flags = 0;
9869 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9872 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9873 sizeof(struct kvm_clock_pairing)))
9881 * kvm_pv_kick_cpu_op: Kick a vcpu.
9883 * @apicid - apicid of vcpu to be kicked.
9885 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9888 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9889 * common code, e.g. for tracing. Defer initialization to the compiler.
9891 struct kvm_lapic_irq lapic_irq = {
9892 .delivery_mode = APIC_DM_REMRD,
9893 .dest_mode = APIC_DEST_PHYSICAL,
9894 .shorthand = APIC_DEST_NOSHORT,
9898 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9901 bool kvm_apicv_activated(struct kvm *kvm)
9903 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9905 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9907 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9909 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9910 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9912 return (vm_reasons | vcpu_reasons) == 0;
9914 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9916 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9917 enum kvm_apicv_inhibit reason, bool set)
9920 __set_bit(reason, inhibits);
9922 __clear_bit(reason, inhibits);
9924 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9927 static void kvm_apicv_init(struct kvm *kvm)
9929 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9931 init_rwsem(&kvm->arch.apicv_update_lock);
9933 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9936 set_or_clear_apicv_inhibit(inhibits,
9937 APICV_INHIBIT_REASON_DISABLE, true);
9940 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9942 struct kvm_vcpu *target = NULL;
9943 struct kvm_apic_map *map;
9945 vcpu->stat.directed_yield_attempted++;
9947 if (single_task_running())
9951 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9953 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9954 target = map->phys_map[dest_id]->vcpu;
9958 if (!target || !READ_ONCE(target->ready))
9961 /* Ignore requests to yield to self */
9965 if (kvm_vcpu_yield_to(target) <= 0)
9968 vcpu->stat.directed_yield_successful++;
9974 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9976 u64 ret = vcpu->run->hypercall.ret;
9978 if (!is_64_bit_mode(vcpu))
9980 kvm_rax_write(vcpu, ret);
9981 ++vcpu->stat.hypercalls;
9982 return kvm_skip_emulated_instruction(vcpu);
9985 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9987 unsigned long nr, a0, a1, a2, a3, ret;
9990 if (kvm_xen_hypercall_enabled(vcpu->kvm))
9991 return kvm_xen_hypercall(vcpu);
9993 if (kvm_hv_hypercall_enabled(vcpu))
9994 return kvm_hv_hypercall(vcpu);
9996 nr = kvm_rax_read(vcpu);
9997 a0 = kvm_rbx_read(vcpu);
9998 a1 = kvm_rcx_read(vcpu);
9999 a2 = kvm_rdx_read(vcpu);
10000 a3 = kvm_rsi_read(vcpu);
10002 trace_kvm_hypercall(nr, a0, a1, a2, a3);
10004 op_64_bit = is_64_bit_hypercall(vcpu);
10013 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
10021 case KVM_HC_VAPIC_POLL_IRQ:
10024 case KVM_HC_KICK_CPU:
10025 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10028 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10029 kvm_sched_yield(vcpu, a1);
10032 #ifdef CONFIG_X86_64
10033 case KVM_HC_CLOCK_PAIRING:
10034 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10037 case KVM_HC_SEND_IPI:
10038 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10041 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10043 case KVM_HC_SCHED_YIELD:
10044 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10047 kvm_sched_yield(vcpu, a0);
10050 case KVM_HC_MAP_GPA_RANGE: {
10051 u64 gpa = a0, npages = a1, attrs = a2;
10054 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10057 if (!PAGE_ALIGNED(gpa) || !npages ||
10058 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10063 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10064 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10065 vcpu->run->hypercall.args[0] = gpa;
10066 vcpu->run->hypercall.args[1] = npages;
10067 vcpu->run->hypercall.args[2] = attrs;
10068 vcpu->run->hypercall.flags = 0;
10070 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10072 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10073 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10083 kvm_rax_write(vcpu, ret);
10085 ++vcpu->stat.hypercalls;
10086 return kvm_skip_emulated_instruction(vcpu);
10088 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10090 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10092 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10093 char instruction[3];
10094 unsigned long rip = kvm_rip_read(vcpu);
10097 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10100 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10101 ctxt->exception.error_code_valid = false;
10102 ctxt->exception.vector = UD_VECTOR;
10103 ctxt->have_exception = true;
10104 return X86EMUL_PROPAGATE_FAULT;
10107 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10109 return emulator_write_emulated(ctxt, rip, instruction, 3,
10113 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10115 return vcpu->run->request_interrupt_window &&
10116 likely(!pic_in_kernel(vcpu->kvm));
10119 /* Called within kvm->srcu read side. */
10120 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10122 struct kvm_run *kvm_run = vcpu->run;
10124 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10125 kvm_run->cr8 = kvm_get_cr8(vcpu);
10126 kvm_run->apic_base = kvm_get_apic_base(vcpu);
10128 kvm_run->ready_for_interrupt_injection =
10129 pic_in_kernel(vcpu->kvm) ||
10130 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10133 kvm_run->flags |= KVM_RUN_X86_SMM;
10136 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10140 if (!kvm_x86_ops.update_cr8_intercept)
10143 if (!lapic_in_kernel(vcpu))
10146 if (vcpu->arch.apic->apicv_active)
10149 if (!vcpu->arch.apic->vapic_addr)
10150 max_irr = kvm_lapic_find_highest_irr(vcpu);
10157 tpr = kvm_lapic_get_cr8(vcpu);
10159 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10163 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10165 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10166 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10170 return kvm_x86_ops.nested_ops->check_events(vcpu);
10173 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10176 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10177 * exceptions don't report error codes. The presence of an error code
10178 * is carried with the exception and only stripped when the exception
10179 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10180 * report an error code despite the CPU being in Real Mode.
10182 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10184 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10185 vcpu->arch.exception.has_error_code,
10186 vcpu->arch.exception.error_code,
10187 vcpu->arch.exception.injected);
10189 static_call(kvm_x86_inject_exception)(vcpu);
10193 * Check for any event (interrupt or exception) that is ready to be injected,
10194 * and if there is at least one event, inject the event with the highest
10195 * priority. This handles both "pending" events, i.e. events that have never
10196 * been injected into the guest, and "injected" events, i.e. events that were
10197 * injected as part of a previous VM-Enter, but weren't successfully delivered
10198 * and need to be re-injected.
10200 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10201 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10202 * be able to inject exceptions in the "middle" of an instruction, and so must
10203 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10204 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10205 * boundaries is necessary and correct.
10207 * For simplicity, KVM uses a single path to inject all events (except events
10208 * that are injected directly from L1 to L2) and doesn't explicitly track
10209 * instruction boundaries for asynchronous events. However, because VM-Exits
10210 * that can occur during instruction execution typically result in KVM skipping
10211 * the instruction or injecting an exception, e.g. instruction and exception
10212 * intercepts, and because pending exceptions have higher priority than pending
10213 * interrupts, KVM still honors instruction boundaries in most scenarios.
10215 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10216 * the instruction or inject an exception, then KVM can incorrecty inject a new
10217 * asynchrounous event if the event became pending after the CPU fetched the
10218 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10219 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10220 * injected on the restarted instruction instead of being deferred until the
10221 * instruction completes.
10223 * In practice, this virtualization hole is unlikely to be observed by the
10224 * guest, and even less likely to cause functional problems. To detect the
10225 * hole, the guest would have to trigger an event on a side effect of an early
10226 * phase of instruction execution, e.g. on the instruction fetch from memory.
10227 * And for it to be a functional problem, the guest would need to depend on the
10228 * ordering between that side effect, the instruction completing, _and_ the
10229 * delivery of the asynchronous event.
10231 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10232 bool *req_immediate_exit)
10238 * Process nested events first, as nested VM-Exit supercedes event
10239 * re-injection. If there's an event queued for re-injection, it will
10240 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10242 if (is_guest_mode(vcpu))
10243 r = kvm_check_nested_events(vcpu);
10248 * Re-inject exceptions and events *especially* if immediate entry+exit
10249 * to/from L2 is needed, as any event that has already been injected
10250 * into L2 needs to complete its lifecycle before injecting a new event.
10252 * Don't re-inject an NMI or interrupt if there is a pending exception.
10253 * This collision arises if an exception occurred while vectoring the
10254 * injected event, KVM intercepted said exception, and KVM ultimately
10255 * determined the fault belongs to the guest and queues the exception
10256 * for injection back into the guest.
10258 * "Injected" interrupts can also collide with pending exceptions if
10259 * userspace ignores the "ready for injection" flag and blindly queues
10260 * an interrupt. In that case, prioritizing the exception is correct,
10261 * as the exception "occurred" before the exit to userspace. Trap-like
10262 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10263 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10264 * priority, they're only generated (pended) during instruction
10265 * execution, and interrupts are recognized at instruction boundaries.
10266 * Thus a pending fault-like exception means the fault occurred on the
10267 * *previous* instruction and must be serviced prior to recognizing any
10268 * new events in order to fully complete the previous instruction.
10270 if (vcpu->arch.exception.injected)
10271 kvm_inject_exception(vcpu);
10272 else if (kvm_is_exception_pending(vcpu))
10274 else if (vcpu->arch.nmi_injected)
10275 static_call(kvm_x86_inject_nmi)(vcpu);
10276 else if (vcpu->arch.interrupt.injected)
10277 static_call(kvm_x86_inject_irq)(vcpu, true);
10280 * Exceptions that morph to VM-Exits are handled above, and pending
10281 * exceptions on top of injected exceptions that do not VM-Exit should
10282 * either morph to #DF or, sadly, override the injected exception.
10284 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10285 vcpu->arch.exception.pending);
10288 * Bail if immediate entry+exit to/from the guest is needed to complete
10289 * nested VM-Enter or event re-injection so that a different pending
10290 * event can be serviced (or if KVM needs to exit to userspace).
10292 * Otherwise, continue processing events even if VM-Exit occurred. The
10293 * VM-Exit will have cleared exceptions that were meant for L2, but
10294 * there may now be events that can be injected into L1.
10300 * A pending exception VM-Exit should either result in nested VM-Exit
10301 * or force an immediate re-entry and exit to/from L2, and exception
10302 * VM-Exits cannot be injected (flag should _never_ be set).
10304 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10305 vcpu->arch.exception_vmexit.pending);
10308 * New events, other than exceptions, cannot be injected if KVM needs
10309 * to re-inject a previous event. See above comments on re-injecting
10310 * for why pending exceptions get priority.
10312 can_inject = !kvm_event_needs_reinjection(vcpu);
10314 if (vcpu->arch.exception.pending) {
10316 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10317 * value pushed on the stack. Trap-like exception and all #DBs
10318 * leave RF as-is (KVM follows Intel's behavior in this regard;
10319 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10321 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10322 * describe the behavior of General Detect #DBs, which are
10323 * fault-like. They do _not_ set RF, a la code breakpoints.
10325 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10326 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10329 if (vcpu->arch.exception.vector == DB_VECTOR) {
10330 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10331 if (vcpu->arch.dr7 & DR7_GD) {
10332 vcpu->arch.dr7 &= ~DR7_GD;
10333 kvm_update_dr7(vcpu);
10337 kvm_inject_exception(vcpu);
10339 vcpu->arch.exception.pending = false;
10340 vcpu->arch.exception.injected = true;
10342 can_inject = false;
10345 /* Don't inject interrupts if the user asked to avoid doing so */
10346 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10350 * Finally, inject interrupt events. If an event cannot be injected
10351 * due to architectural conditions (e.g. IF=0) a window-open exit
10352 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10353 * and can architecturally be injected, but we cannot do it right now:
10354 * an interrupt could have arrived just now and we have to inject it
10355 * as a vmexit, or there could already an event in the queue, which is
10356 * indicated by can_inject. In that case we request an immediate exit
10357 * in order to make progress and get back here for another iteration.
10358 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10360 #ifdef CONFIG_KVM_SMM
10361 if (vcpu->arch.smi_pending) {
10362 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10366 vcpu->arch.smi_pending = false;
10367 ++vcpu->arch.smi_count;
10369 can_inject = false;
10371 static_call(kvm_x86_enable_smi_window)(vcpu);
10375 if (vcpu->arch.nmi_pending) {
10376 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10380 --vcpu->arch.nmi_pending;
10381 vcpu->arch.nmi_injected = true;
10382 static_call(kvm_x86_inject_nmi)(vcpu);
10383 can_inject = false;
10384 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10386 if (vcpu->arch.nmi_pending)
10387 static_call(kvm_x86_enable_nmi_window)(vcpu);
10390 if (kvm_cpu_has_injectable_intr(vcpu)) {
10391 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10395 int irq = kvm_cpu_get_interrupt(vcpu);
10397 if (!WARN_ON_ONCE(irq == -1)) {
10398 kvm_queue_interrupt(vcpu, irq, false);
10399 static_call(kvm_x86_inject_irq)(vcpu, false);
10400 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10403 if (kvm_cpu_has_injectable_intr(vcpu))
10404 static_call(kvm_x86_enable_irq_window)(vcpu);
10407 if (is_guest_mode(vcpu) &&
10408 kvm_x86_ops.nested_ops->has_events &&
10409 kvm_x86_ops.nested_ops->has_events(vcpu))
10410 *req_immediate_exit = true;
10413 * KVM must never queue a new exception while injecting an event; KVM
10414 * is done emulating and should only propagate the to-be-injected event
10415 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10416 * infinite loop as KVM will bail from VM-Enter to inject the pending
10417 * exception and start the cycle all over.
10419 * Exempt triple faults as they have special handling and won't put the
10420 * vCPU into an infinite loop. Triple fault can be queued when running
10421 * VMX without unrestricted guest, as that requires KVM to emulate Real
10422 * Mode events (see kvm_inject_realmode_interrupt()).
10424 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10425 vcpu->arch.exception_vmexit.pending);
10430 *req_immediate_exit = true;
10436 static void process_nmi(struct kvm_vcpu *vcpu)
10438 unsigned int limit;
10441 * x86 is limited to one NMI pending, but because KVM can't react to
10442 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10443 * scheduled out, KVM needs to play nice with two queued NMIs showing
10444 * up at the same time. To handle this scenario, allow two NMIs to be
10445 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10446 * waiting for a previous NMI injection to complete (which effectively
10447 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10448 * will request an NMI window to handle the second NMI.
10450 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10456 * Adjust the limit to account for pending virtual NMIs, which aren't
10457 * tracked in vcpu->arch.nmi_pending.
10459 if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10462 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10463 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10465 if (vcpu->arch.nmi_pending &&
10466 (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10467 vcpu->arch.nmi_pending--;
10469 if (vcpu->arch.nmi_pending)
10470 kvm_make_request(KVM_REQ_EVENT, vcpu);
10473 /* Return total number of NMIs pending injection to the VM */
10474 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10476 return vcpu->arch.nmi_pending +
10477 static_call(kvm_x86_is_vnmi_pending)(vcpu);
10480 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10481 unsigned long *vcpu_bitmap)
10483 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10486 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10488 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10491 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10493 struct kvm_lapic *apic = vcpu->arch.apic;
10496 if (!lapic_in_kernel(vcpu))
10499 down_read(&vcpu->kvm->arch.apicv_update_lock);
10502 /* Do not activate APICV when APIC is disabled */
10503 activate = kvm_vcpu_apicv_activated(vcpu) &&
10504 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10506 if (apic->apicv_active == activate)
10509 apic->apicv_active = activate;
10510 kvm_apic_update_apicv(vcpu);
10511 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10514 * When APICv gets disabled, we may still have injected interrupts
10515 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10516 * still active when the interrupt got accepted. Make sure
10517 * kvm_check_and_inject_events() is called to check for that.
10519 if (!apic->apicv_active)
10520 kvm_make_request(KVM_REQ_EVENT, vcpu);
10524 up_read(&vcpu->kvm->arch.apicv_update_lock);
10526 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10528 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10530 if (!lapic_in_kernel(vcpu))
10534 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10535 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10536 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10537 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10538 * this case so that KVM can the AVIC doorbell to inject interrupts to
10539 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10540 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10541 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10542 * access page is sticky.
10544 if (apic_x2apic_mode(vcpu->arch.apic) &&
10545 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10546 kvm_inhibit_apic_access_page(vcpu);
10548 __kvm_vcpu_update_apicv(vcpu);
10551 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10552 enum kvm_apicv_inhibit reason, bool set)
10554 unsigned long old, new;
10556 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10558 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10561 old = new = kvm->arch.apicv_inhibit_reasons;
10563 set_or_clear_apicv_inhibit(&new, reason, set);
10565 if (!!old != !!new) {
10567 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10568 * false positives in the sanity check WARN in svm_vcpu_run().
10569 * This task will wait for all vCPUs to ack the kick IRQ before
10570 * updating apicv_inhibit_reasons, and all other vCPUs will
10571 * block on acquiring apicv_update_lock so that vCPUs can't
10572 * redo svm_vcpu_run() without seeing the new inhibit state.
10574 * Note, holding apicv_update_lock and taking it in the read
10575 * side (handling the request) also prevents other vCPUs from
10576 * servicing the request with a stale apicv_inhibit_reasons.
10578 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10579 kvm->arch.apicv_inhibit_reasons = new;
10581 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10582 int idx = srcu_read_lock(&kvm->srcu);
10584 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10585 srcu_read_unlock(&kvm->srcu, idx);
10588 kvm->arch.apicv_inhibit_reasons = new;
10592 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10593 enum kvm_apicv_inhibit reason, bool set)
10598 down_write(&kvm->arch.apicv_update_lock);
10599 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10600 up_write(&kvm->arch.apicv_update_lock);
10602 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10604 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10606 if (!kvm_apic_present(vcpu))
10609 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10611 if (irqchip_split(vcpu->kvm))
10612 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10614 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10615 if (ioapic_in_kernel(vcpu->kvm))
10616 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10619 if (is_guest_mode(vcpu))
10620 vcpu->arch.load_eoi_exitmap_pending = true;
10622 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10625 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10627 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10630 #ifdef CONFIG_KVM_HYPERV
10631 if (to_hv_vcpu(vcpu)) {
10632 u64 eoi_exit_bitmap[4];
10634 bitmap_or((ulong *)eoi_exit_bitmap,
10635 vcpu->arch.ioapic_handled_vectors,
10636 to_hv_synic(vcpu)->vec_bitmap, 256);
10637 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10641 static_call_cond(kvm_x86_load_eoi_exitmap)(
10642 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10645 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10647 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10650 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10652 if (!lapic_in_kernel(vcpu))
10655 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10658 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10660 smp_send_reschedule(vcpu->cpu);
10662 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10665 * Called within kvm->srcu read side.
10666 * Returns 1 to let vcpu_run() continue the guest execution loop without
10667 * exiting to the userspace. Otherwise, the value will be returned to the
10670 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10674 dm_request_for_irq_injection(vcpu) &&
10675 kvm_cpu_accept_dm_intr(vcpu);
10676 fastpath_t exit_fastpath;
10678 bool req_immediate_exit = false;
10680 if (kvm_request_pending(vcpu)) {
10681 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10686 if (kvm_dirty_ring_check_request(vcpu)) {
10691 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10692 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10697 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10698 kvm_mmu_free_obsolete_roots(vcpu);
10699 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10700 __kvm_migrate_timers(vcpu);
10701 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10702 kvm_update_masterclock(vcpu->kvm);
10703 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10704 kvm_gen_kvmclock_update(vcpu);
10705 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10706 r = kvm_guest_time_update(vcpu);
10710 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10711 kvm_mmu_sync_roots(vcpu);
10712 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10713 kvm_mmu_load_pgd(vcpu);
10716 * Note, the order matters here, as flushing "all" TLB entries
10717 * also flushes the "current" TLB entries, i.e. servicing the
10718 * flush "all" will clear any request to flush "current".
10720 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10721 kvm_vcpu_flush_tlb_all(vcpu);
10723 kvm_service_local_tlb_flush_requests(vcpu);
10726 * Fall back to a "full" guest flush if Hyper-V's precise
10727 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10728 * the flushes are considered "remote" and not "local" because
10729 * the requests can be initiated from other vCPUs.
10731 #ifdef CONFIG_KVM_HYPERV
10732 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10733 kvm_hv_vcpu_flush_tlb(vcpu))
10734 kvm_vcpu_flush_tlb_guest(vcpu);
10737 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10738 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10742 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10743 if (is_guest_mode(vcpu))
10744 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10746 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10747 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10748 vcpu->mmio_needed = 0;
10753 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10754 /* Page is swapped out. Do synthetic halt */
10755 vcpu->arch.apf.halted = true;
10759 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10760 record_steal_time(vcpu);
10761 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10762 kvm_pmu_handle_event(vcpu);
10763 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10764 kvm_pmu_deliver_pmi(vcpu);
10765 #ifdef CONFIG_KVM_SMM
10766 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10769 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10771 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10772 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10773 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10774 vcpu->arch.ioapic_handled_vectors)) {
10775 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10776 vcpu->run->eoi.vector =
10777 vcpu->arch.pending_ioapic_eoi;
10782 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10783 vcpu_scan_ioapic(vcpu);
10784 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10785 vcpu_load_eoi_exitmap(vcpu);
10786 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10787 kvm_vcpu_reload_apic_access_page(vcpu);
10788 #ifdef CONFIG_KVM_HYPERV
10789 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10790 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10791 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10792 vcpu->run->system_event.ndata = 0;
10796 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10797 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10798 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10799 vcpu->run->system_event.ndata = 0;
10803 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10804 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10806 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10807 vcpu->run->hyperv = hv_vcpu->exit;
10813 * KVM_REQ_HV_STIMER has to be processed after
10814 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10815 * depend on the guest clock being up-to-date
10817 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10818 kvm_hv_process_stimers(vcpu);
10820 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10821 kvm_vcpu_update_apicv(vcpu);
10822 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10823 kvm_check_async_pf_completion(vcpu);
10824 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10825 static_call(kvm_x86_msr_filter_changed)(vcpu);
10827 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10828 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10831 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10832 kvm_xen_has_interrupt(vcpu)) {
10833 ++vcpu->stat.req_event;
10834 r = kvm_apic_accept_events(vcpu);
10839 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10844 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10850 static_call(kvm_x86_enable_irq_window)(vcpu);
10852 if (kvm_lapic_enabled(vcpu)) {
10853 update_cr8_intercept(vcpu);
10854 kvm_lapic_sync_to_vapic(vcpu);
10858 r = kvm_mmu_reload(vcpu);
10860 goto cancel_injection;
10865 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10868 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10869 * IPI are then delayed after guest entry, which ensures that they
10870 * result in virtual interrupt delivery.
10872 local_irq_disable();
10874 /* Store vcpu->apicv_active before vcpu->mode. */
10875 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10877 kvm_vcpu_srcu_read_unlock(vcpu);
10880 * 1) We should set ->mode before checking ->requests. Please see
10881 * the comment in kvm_vcpu_exiting_guest_mode().
10883 * 2) For APICv, we should set ->mode before checking PID.ON. This
10884 * pairs with the memory barrier implicit in pi_test_and_set_on
10885 * (see vmx_deliver_posted_interrupt).
10887 * 3) This also orders the write to mode from any reads to the page
10888 * tables done while the VCPU is running. Please see the comment
10889 * in kvm_flush_remote_tlbs.
10891 smp_mb__after_srcu_read_unlock();
10894 * Process pending posted interrupts to handle the case where the
10895 * notification IRQ arrived in the host, or was never sent (because the
10896 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10897 * status, KVM doesn't update assigned devices when APICv is inhibited,
10898 * i.e. they can post interrupts even if APICv is temporarily disabled.
10900 if (kvm_lapic_enabled(vcpu))
10901 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10903 if (kvm_vcpu_exit_request(vcpu)) {
10904 vcpu->mode = OUTSIDE_GUEST_MODE;
10906 local_irq_enable();
10908 kvm_vcpu_srcu_read_lock(vcpu);
10910 goto cancel_injection;
10913 if (req_immediate_exit) {
10914 kvm_make_request(KVM_REQ_EVENT, vcpu);
10915 static_call(kvm_x86_request_immediate_exit)(vcpu);
10918 fpregs_assert_state_consistent();
10919 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10920 switch_fpu_return();
10922 if (vcpu->arch.guest_fpu.xfd_err)
10923 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10925 if (unlikely(vcpu->arch.switch_db_regs)) {
10926 set_debugreg(0, 7);
10927 set_debugreg(vcpu->arch.eff_db[0], 0);
10928 set_debugreg(vcpu->arch.eff_db[1], 1);
10929 set_debugreg(vcpu->arch.eff_db[2], 2);
10930 set_debugreg(vcpu->arch.eff_db[3], 3);
10931 } else if (unlikely(hw_breakpoint_active())) {
10932 set_debugreg(0, 7);
10935 guest_timing_enter_irqoff();
10939 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10940 * update must kick and wait for all vCPUs before toggling the
10941 * per-VM state, and responsing vCPUs must wait for the update
10942 * to complete before servicing KVM_REQ_APICV_UPDATE.
10944 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10945 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10947 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10948 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10951 if (kvm_lapic_enabled(vcpu))
10952 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10954 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10955 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10959 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10960 ++vcpu->stat.exits;
10964 * Do this here before restoring debug registers on the host. And
10965 * since we do this before handling the vmexit, a DR access vmexit
10966 * can (a) read the correct value of the debug registers, (b) set
10967 * KVM_DEBUGREG_WONT_EXIT again.
10969 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10970 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10971 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10972 kvm_update_dr0123(vcpu);
10973 kvm_update_dr7(vcpu);
10977 * If the guest has used debug registers, at least dr7
10978 * will be disabled while returning to the host.
10979 * If we don't have active breakpoints in the host, we don't
10980 * care about the messed up debug address registers. But if
10981 * we have some of them active, restore the old state.
10983 if (hw_breakpoint_active())
10984 hw_breakpoint_restore();
10986 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10987 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10989 vcpu->mode = OUTSIDE_GUEST_MODE;
10993 * Sync xfd before calling handle_exit_irqoff() which may
10994 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10995 * in #NM irqoff handler).
10997 if (vcpu->arch.xfd_no_write_intercept)
10998 fpu_sync_guest_vmexit_xfd_state();
11000 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
11002 if (vcpu->arch.guest_fpu.xfd_err)
11003 wrmsrl(MSR_IA32_XFD_ERR, 0);
11006 * Consume any pending interrupts, including the possible source of
11007 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11008 * An instruction is required after local_irq_enable() to fully unblock
11009 * interrupts on processors that implement an interrupt shadow, the
11010 * stat.exits increment will do nicely.
11012 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11013 local_irq_enable();
11014 ++vcpu->stat.exits;
11015 local_irq_disable();
11016 kvm_after_interrupt(vcpu);
11019 * Wait until after servicing IRQs to account guest time so that any
11020 * ticks that occurred while running the guest are properly accounted
11021 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11022 * of accounting via context tracking, but the loss of accuracy is
11023 * acceptable for all known use cases.
11025 guest_timing_exit_irqoff();
11027 local_irq_enable();
11030 kvm_vcpu_srcu_read_lock(vcpu);
11033 * Profile KVM exit RIPs:
11035 if (unlikely(prof_on == KVM_PROFILING)) {
11036 unsigned long rip = kvm_rip_read(vcpu);
11037 profile_hit(KVM_PROFILING, (void *)rip);
11040 if (unlikely(vcpu->arch.tsc_always_catchup))
11041 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11043 if (vcpu->arch.apic_attention)
11044 kvm_lapic_sync_from_vapic(vcpu);
11046 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
11050 if (req_immediate_exit)
11051 kvm_make_request(KVM_REQ_EVENT, vcpu);
11052 static_call(kvm_x86_cancel_injection)(vcpu);
11053 if (unlikely(vcpu->arch.apic_attention))
11054 kvm_lapic_sync_from_vapic(vcpu);
11059 /* Called within kvm->srcu read side. */
11060 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11064 if (!kvm_arch_vcpu_runnable(vcpu)) {
11066 * Switch to the software timer before halt-polling/blocking as
11067 * the guest's timer may be a break event for the vCPU, and the
11068 * hypervisor timer runs only when the CPU is in guest mode.
11069 * Switch before halt-polling so that KVM recognizes an expired
11070 * timer before blocking.
11072 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11074 kvm_lapic_switch_to_sw_timer(vcpu);
11076 kvm_vcpu_srcu_read_unlock(vcpu);
11077 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11078 kvm_vcpu_halt(vcpu);
11080 kvm_vcpu_block(vcpu);
11081 kvm_vcpu_srcu_read_lock(vcpu);
11084 kvm_lapic_switch_to_hv_timer(vcpu);
11087 * If the vCPU is not runnable, a signal or another host event
11088 * of some kind is pending; service it without changing the
11089 * vCPU's activity state.
11091 if (!kvm_arch_vcpu_runnable(vcpu))
11096 * Evaluate nested events before exiting the halted state. This allows
11097 * the halt state to be recorded properly in the VMCS12's activity
11098 * state field (AMD does not have a similar field and a VM-Exit always
11099 * causes a spurious wakeup from HLT).
11101 if (is_guest_mode(vcpu)) {
11102 if (kvm_check_nested_events(vcpu) < 0)
11106 if (kvm_apic_accept_events(vcpu) < 0)
11108 switch(vcpu->arch.mp_state) {
11109 case KVM_MP_STATE_HALTED:
11110 case KVM_MP_STATE_AP_RESET_HOLD:
11111 vcpu->arch.pv.pv_unhalted = false;
11112 vcpu->arch.mp_state =
11113 KVM_MP_STATE_RUNNABLE;
11115 case KVM_MP_STATE_RUNNABLE:
11116 vcpu->arch.apf.halted = false;
11118 case KVM_MP_STATE_INIT_RECEIVED:
11127 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11129 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11130 !vcpu->arch.apf.halted);
11133 /* Called within kvm->srcu read side. */
11134 static int vcpu_run(struct kvm_vcpu *vcpu)
11138 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11139 vcpu->arch.l1tf_flush_l1d = true;
11143 * If another guest vCPU requests a PV TLB flush in the middle
11144 * of instruction emulation, the rest of the emulation could
11145 * use a stale page translation. Assume that any code after
11146 * this point can start executing an instruction.
11148 vcpu->arch.at_instruction_boundary = false;
11149 if (kvm_vcpu_running(vcpu)) {
11150 r = vcpu_enter_guest(vcpu);
11152 r = vcpu_block(vcpu);
11158 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11159 if (kvm_xen_has_pending_events(vcpu))
11160 kvm_xen_inject_pending_events(vcpu);
11162 if (kvm_cpu_has_pending_timer(vcpu))
11163 kvm_inject_pending_timer_irqs(vcpu);
11165 if (dm_request_for_irq_injection(vcpu) &&
11166 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11168 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11169 ++vcpu->stat.request_irq_exits;
11173 if (__xfer_to_guest_mode_work_pending()) {
11174 kvm_vcpu_srcu_read_unlock(vcpu);
11175 r = xfer_to_guest_mode_handle_work(vcpu);
11176 kvm_vcpu_srcu_read_lock(vcpu);
11185 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11187 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11190 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11192 BUG_ON(!vcpu->arch.pio.count);
11194 return complete_emulated_io(vcpu);
11198 * Implements the following, as a state machine:
11201 * for each fragment
11202 * for each mmio piece in the fragment
11209 * for each fragment
11210 * for each mmio piece in the fragment
11215 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11217 struct kvm_run *run = vcpu->run;
11218 struct kvm_mmio_fragment *frag;
11221 BUG_ON(!vcpu->mmio_needed);
11223 /* Complete previous fragment */
11224 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11225 len = min(8u, frag->len);
11226 if (!vcpu->mmio_is_write)
11227 memcpy(frag->data, run->mmio.data, len);
11229 if (frag->len <= 8) {
11230 /* Switch to the next fragment. */
11232 vcpu->mmio_cur_fragment++;
11234 /* Go forward to the next mmio piece. */
11240 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11241 vcpu->mmio_needed = 0;
11243 /* FIXME: return into emulator if single-stepping. */
11244 if (vcpu->mmio_is_write)
11246 vcpu->mmio_read_completed = 1;
11247 return complete_emulated_io(vcpu);
11250 run->exit_reason = KVM_EXIT_MMIO;
11251 run->mmio.phys_addr = frag->gpa;
11252 if (vcpu->mmio_is_write)
11253 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11254 run->mmio.len = min(8u, frag->len);
11255 run->mmio.is_write = vcpu->mmio_is_write;
11256 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11260 /* Swap (qemu) user FPU context for the guest FPU context. */
11261 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11263 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11264 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11268 /* When vcpu_run ends, restore user space FPU context. */
11269 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11271 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11272 ++vcpu->stat.fpu_reload;
11276 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11278 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11279 struct kvm_run *kvm_run = vcpu->run;
11283 kvm_sigset_activate(vcpu);
11284 kvm_run->flags = 0;
11285 kvm_load_guest_fpu(vcpu);
11287 kvm_vcpu_srcu_read_lock(vcpu);
11288 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11289 if (kvm_run->immediate_exit) {
11295 * Don't bother switching APIC timer emulation from the
11296 * hypervisor timer to the software timer, the only way for the
11297 * APIC timer to be active is if userspace stuffed vCPU state,
11298 * i.e. put the vCPU into a nonsensical state. Only an INIT
11299 * will transition the vCPU out of UNINITIALIZED (without more
11300 * state stuffing from userspace), which will reset the local
11301 * APIC and thus cancel the timer or drop the IRQ (if the timer
11302 * already expired).
11304 kvm_vcpu_srcu_read_unlock(vcpu);
11305 kvm_vcpu_block(vcpu);
11306 kvm_vcpu_srcu_read_lock(vcpu);
11308 if (kvm_apic_accept_events(vcpu) < 0) {
11313 if (signal_pending(current)) {
11315 kvm_run->exit_reason = KVM_EXIT_INTR;
11316 ++vcpu->stat.signal_exits;
11321 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11322 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11327 if (kvm_run->kvm_dirty_regs) {
11328 r = sync_regs(vcpu);
11333 /* re-sync apic's tpr */
11334 if (!lapic_in_kernel(vcpu)) {
11335 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11342 * If userspace set a pending exception and L2 is active, convert it to
11343 * a pending VM-Exit if L1 wants to intercept the exception.
11345 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11346 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11348 kvm_queue_exception_vmexit(vcpu, ex->vector,
11349 ex->has_error_code, ex->error_code,
11350 ex->has_payload, ex->payload);
11351 ex->injected = false;
11352 ex->pending = false;
11354 vcpu->arch.exception_from_userspace = false;
11356 if (unlikely(vcpu->arch.complete_userspace_io)) {
11357 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11358 vcpu->arch.complete_userspace_io = NULL;
11363 WARN_ON_ONCE(vcpu->arch.pio.count);
11364 WARN_ON_ONCE(vcpu->mmio_needed);
11367 if (kvm_run->immediate_exit) {
11372 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11376 r = vcpu_run(vcpu);
11379 kvm_put_guest_fpu(vcpu);
11380 if (kvm_run->kvm_valid_regs)
11382 post_kvm_run_save(vcpu);
11383 kvm_vcpu_srcu_read_unlock(vcpu);
11385 kvm_sigset_deactivate(vcpu);
11390 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11392 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11394 * We are here if userspace calls get_regs() in the middle of
11395 * instruction emulation. Registers state needs to be copied
11396 * back from emulation context to vcpu. Userspace shouldn't do
11397 * that usually, but some bad designed PV devices (vmware
11398 * backdoor interface) need this to work
11400 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11401 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11403 regs->rax = kvm_rax_read(vcpu);
11404 regs->rbx = kvm_rbx_read(vcpu);
11405 regs->rcx = kvm_rcx_read(vcpu);
11406 regs->rdx = kvm_rdx_read(vcpu);
11407 regs->rsi = kvm_rsi_read(vcpu);
11408 regs->rdi = kvm_rdi_read(vcpu);
11409 regs->rsp = kvm_rsp_read(vcpu);
11410 regs->rbp = kvm_rbp_read(vcpu);
11411 #ifdef CONFIG_X86_64
11412 regs->r8 = kvm_r8_read(vcpu);
11413 regs->r9 = kvm_r9_read(vcpu);
11414 regs->r10 = kvm_r10_read(vcpu);
11415 regs->r11 = kvm_r11_read(vcpu);
11416 regs->r12 = kvm_r12_read(vcpu);
11417 regs->r13 = kvm_r13_read(vcpu);
11418 regs->r14 = kvm_r14_read(vcpu);
11419 regs->r15 = kvm_r15_read(vcpu);
11422 regs->rip = kvm_rip_read(vcpu);
11423 regs->rflags = kvm_get_rflags(vcpu);
11426 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11429 __get_regs(vcpu, regs);
11434 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11436 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11437 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11439 kvm_rax_write(vcpu, regs->rax);
11440 kvm_rbx_write(vcpu, regs->rbx);
11441 kvm_rcx_write(vcpu, regs->rcx);
11442 kvm_rdx_write(vcpu, regs->rdx);
11443 kvm_rsi_write(vcpu, regs->rsi);
11444 kvm_rdi_write(vcpu, regs->rdi);
11445 kvm_rsp_write(vcpu, regs->rsp);
11446 kvm_rbp_write(vcpu, regs->rbp);
11447 #ifdef CONFIG_X86_64
11448 kvm_r8_write(vcpu, regs->r8);
11449 kvm_r9_write(vcpu, regs->r9);
11450 kvm_r10_write(vcpu, regs->r10);
11451 kvm_r11_write(vcpu, regs->r11);
11452 kvm_r12_write(vcpu, regs->r12);
11453 kvm_r13_write(vcpu, regs->r13);
11454 kvm_r14_write(vcpu, regs->r14);
11455 kvm_r15_write(vcpu, regs->r15);
11458 kvm_rip_write(vcpu, regs->rip);
11459 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11461 vcpu->arch.exception.pending = false;
11462 vcpu->arch.exception_vmexit.pending = false;
11464 kvm_make_request(KVM_REQ_EVENT, vcpu);
11467 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11470 __set_regs(vcpu, regs);
11475 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11477 struct desc_ptr dt;
11479 if (vcpu->arch.guest_state_protected)
11480 goto skip_protected_regs;
11482 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11483 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11484 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11485 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11486 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11487 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11489 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11490 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11492 static_call(kvm_x86_get_idt)(vcpu, &dt);
11493 sregs->idt.limit = dt.size;
11494 sregs->idt.base = dt.address;
11495 static_call(kvm_x86_get_gdt)(vcpu, &dt);
11496 sregs->gdt.limit = dt.size;
11497 sregs->gdt.base = dt.address;
11499 sregs->cr2 = vcpu->arch.cr2;
11500 sregs->cr3 = kvm_read_cr3(vcpu);
11502 skip_protected_regs:
11503 sregs->cr0 = kvm_read_cr0(vcpu);
11504 sregs->cr4 = kvm_read_cr4(vcpu);
11505 sregs->cr8 = kvm_get_cr8(vcpu);
11506 sregs->efer = vcpu->arch.efer;
11507 sregs->apic_base = kvm_get_apic_base(vcpu);
11510 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11512 __get_sregs_common(vcpu, sregs);
11514 if (vcpu->arch.guest_state_protected)
11517 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11518 set_bit(vcpu->arch.interrupt.nr,
11519 (unsigned long *)sregs->interrupt_bitmap);
11522 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11526 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11528 if (vcpu->arch.guest_state_protected)
11531 if (is_pae_paging(vcpu)) {
11532 for (i = 0 ; i < 4 ; i++)
11533 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11534 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11538 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11539 struct kvm_sregs *sregs)
11542 __get_sregs(vcpu, sregs);
11547 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11548 struct kvm_mp_state *mp_state)
11553 if (kvm_mpx_supported())
11554 kvm_load_guest_fpu(vcpu);
11556 r = kvm_apic_accept_events(vcpu);
11561 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11562 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11563 vcpu->arch.pv.pv_unhalted)
11564 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11566 mp_state->mp_state = vcpu->arch.mp_state;
11569 if (kvm_mpx_supported())
11570 kvm_put_guest_fpu(vcpu);
11575 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11576 struct kvm_mp_state *mp_state)
11582 switch (mp_state->mp_state) {
11583 case KVM_MP_STATE_UNINITIALIZED:
11584 case KVM_MP_STATE_HALTED:
11585 case KVM_MP_STATE_AP_RESET_HOLD:
11586 case KVM_MP_STATE_INIT_RECEIVED:
11587 case KVM_MP_STATE_SIPI_RECEIVED:
11588 if (!lapic_in_kernel(vcpu))
11592 case KVM_MP_STATE_RUNNABLE:
11600 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11601 * forcing the guest into INIT/SIPI if those events are supposed to be
11602 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11603 * if an SMI is pending as well.
11605 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11606 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11607 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11610 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11611 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11612 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11614 vcpu->arch.mp_state = mp_state->mp_state;
11615 kvm_make_request(KVM_REQ_EVENT, vcpu);
11623 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11624 int reason, bool has_error_code, u32 error_code)
11626 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11629 init_emulate_ctxt(vcpu);
11631 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11632 has_error_code, error_code);
11634 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11635 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11636 vcpu->run->internal.ndata = 0;
11640 kvm_rip_write(vcpu, ctxt->eip);
11641 kvm_set_rflags(vcpu, ctxt->eflags);
11644 EXPORT_SYMBOL_GPL(kvm_task_switch);
11646 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11648 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11650 * When EFER.LME and CR0.PG are set, the processor is in
11651 * 64-bit mode (though maybe in a 32-bit code segment).
11652 * CR4.PAE and EFER.LMA must be set.
11654 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11656 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11660 * Not in 64-bit mode: EFER.LMA is clear and the code
11661 * segment cannot be 64-bit.
11663 if (sregs->efer & EFER_LMA || sregs->cs.l)
11667 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11668 kvm_is_valid_cr0(vcpu, sregs->cr0);
11671 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11672 int *mmu_reset_needed, bool update_pdptrs)
11674 struct msr_data apic_base_msr;
11676 struct desc_ptr dt;
11678 if (!kvm_is_valid_sregs(vcpu, sregs))
11681 apic_base_msr.data = sregs->apic_base;
11682 apic_base_msr.host_initiated = true;
11683 if (kvm_set_apic_base(vcpu, &apic_base_msr))
11686 if (vcpu->arch.guest_state_protected)
11689 dt.size = sregs->idt.limit;
11690 dt.address = sregs->idt.base;
11691 static_call(kvm_x86_set_idt)(vcpu, &dt);
11692 dt.size = sregs->gdt.limit;
11693 dt.address = sregs->gdt.base;
11694 static_call(kvm_x86_set_gdt)(vcpu, &dt);
11696 vcpu->arch.cr2 = sregs->cr2;
11697 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11698 vcpu->arch.cr3 = sregs->cr3;
11699 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11700 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11702 kvm_set_cr8(vcpu, sregs->cr8);
11704 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11705 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11707 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11708 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11710 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11711 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11713 if (update_pdptrs) {
11714 idx = srcu_read_lock(&vcpu->kvm->srcu);
11715 if (is_pae_paging(vcpu)) {
11716 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11717 *mmu_reset_needed = 1;
11719 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11722 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11723 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11724 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11725 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11726 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11727 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11729 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11730 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11732 update_cr8_intercept(vcpu);
11734 /* Older userspace won't unhalt the vcpu on reset. */
11735 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11736 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11737 !is_protmode(vcpu))
11738 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11743 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11745 int pending_vec, max_bits;
11746 int mmu_reset_needed = 0;
11747 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11752 if (mmu_reset_needed) {
11753 kvm_mmu_reset_context(vcpu);
11754 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11757 max_bits = KVM_NR_INTERRUPTS;
11758 pending_vec = find_first_bit(
11759 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11761 if (pending_vec < max_bits) {
11762 kvm_queue_interrupt(vcpu, pending_vec, false);
11763 pr_debug("Set back pending irq %d\n", pending_vec);
11764 kvm_make_request(KVM_REQ_EVENT, vcpu);
11769 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11771 int mmu_reset_needed = 0;
11772 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11773 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11774 !(sregs2->efer & EFER_LMA);
11777 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11780 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11783 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11784 &mmu_reset_needed, !valid_pdptrs);
11788 if (valid_pdptrs) {
11789 for (i = 0; i < 4 ; i++)
11790 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11792 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11793 mmu_reset_needed = 1;
11794 vcpu->arch.pdptrs_from_userspace = true;
11796 if (mmu_reset_needed) {
11797 kvm_mmu_reset_context(vcpu);
11798 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11803 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11804 struct kvm_sregs *sregs)
11809 ret = __set_sregs(vcpu, sregs);
11814 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11817 struct kvm_vcpu *vcpu;
11823 down_write(&kvm->arch.apicv_update_lock);
11825 kvm_for_each_vcpu(i, vcpu, kvm) {
11826 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11831 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11832 up_write(&kvm->arch.apicv_update_lock);
11835 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11836 struct kvm_guest_debug *dbg)
11838 unsigned long rflags;
11841 if (vcpu->arch.guest_state_protected)
11846 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11848 if (kvm_is_exception_pending(vcpu))
11850 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11851 kvm_queue_exception(vcpu, DB_VECTOR);
11853 kvm_queue_exception(vcpu, BP_VECTOR);
11857 * Read rflags as long as potentially injected trace flags are still
11860 rflags = kvm_get_rflags(vcpu);
11862 vcpu->guest_debug = dbg->control;
11863 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11864 vcpu->guest_debug = 0;
11866 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11867 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11868 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11869 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11871 for (i = 0; i < KVM_NR_DB_REGS; i++)
11872 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11874 kvm_update_dr7(vcpu);
11876 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11877 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11880 * Trigger an rflags update that will inject or remove the trace
11883 kvm_set_rflags(vcpu, rflags);
11885 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11887 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11897 * Translate a guest virtual address to a guest physical address.
11899 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11900 struct kvm_translation *tr)
11902 unsigned long vaddr = tr->linear_address;
11908 idx = srcu_read_lock(&vcpu->kvm->srcu);
11909 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11910 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11911 tr->physical_address = gpa;
11912 tr->valid = gpa != INVALID_GPA;
11920 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11922 struct fxregs_state *fxsave;
11924 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11929 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11930 memcpy(fpu->fpr, fxsave->st_space, 128);
11931 fpu->fcw = fxsave->cwd;
11932 fpu->fsw = fxsave->swd;
11933 fpu->ftwx = fxsave->twd;
11934 fpu->last_opcode = fxsave->fop;
11935 fpu->last_ip = fxsave->rip;
11936 fpu->last_dp = fxsave->rdp;
11937 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11943 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11945 struct fxregs_state *fxsave;
11947 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11952 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11954 memcpy(fxsave->st_space, fpu->fpr, 128);
11955 fxsave->cwd = fpu->fcw;
11956 fxsave->swd = fpu->fsw;
11957 fxsave->twd = fpu->ftwx;
11958 fxsave->fop = fpu->last_opcode;
11959 fxsave->rip = fpu->last_ip;
11960 fxsave->rdp = fpu->last_dp;
11961 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11967 static void store_regs(struct kvm_vcpu *vcpu)
11969 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11971 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11972 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11974 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11975 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11977 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11978 kvm_vcpu_ioctl_x86_get_vcpu_events(
11979 vcpu, &vcpu->run->s.regs.events);
11982 static int sync_regs(struct kvm_vcpu *vcpu)
11984 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11985 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11986 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11989 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11990 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11992 if (__set_sregs(vcpu, &sregs))
11995 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11998 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11999 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12001 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12004 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12010 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12012 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12013 pr_warn_once("SMP vm created on host with unstable TSC; "
12014 "guest TSC will not be reliable\n");
12016 if (!kvm->arch.max_vcpu_ids)
12017 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12019 if (id >= kvm->arch.max_vcpu_ids)
12022 return static_call(kvm_x86_vcpu_precreate)(kvm);
12025 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12030 vcpu->arch.last_vmentry_cpu = -1;
12031 vcpu->arch.regs_avail = ~0;
12032 vcpu->arch.regs_dirty = ~0;
12034 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
12036 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12037 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12039 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12041 r = kvm_mmu_create(vcpu);
12045 if (irqchip_in_kernel(vcpu->kvm)) {
12046 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
12048 goto fail_mmu_destroy;
12051 * Defer evaluating inhibits until the vCPU is first run, as
12052 * this vCPU will not get notified of any changes until this
12053 * vCPU is visible to other vCPUs (marked online and added to
12054 * the set of vCPUs). Opportunistically mark APICv active as
12055 * VMX in particularly is highly unlikely to have inhibits.
12056 * Ignore the current per-VM APICv state so that vCPU creation
12057 * is guaranteed to run with a deterministic value, the request
12058 * will ensure the vCPU gets the correct state before VM-Entry.
12060 if (enable_apicv) {
12061 vcpu->arch.apic->apicv_active = true;
12062 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
12065 static_branch_inc(&kvm_has_noapic_vcpu);
12069 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12071 goto fail_free_lapic;
12072 vcpu->arch.pio_data = page_address(page);
12074 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12075 GFP_KERNEL_ACCOUNT);
12076 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12077 GFP_KERNEL_ACCOUNT);
12078 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12079 goto fail_free_mce_banks;
12080 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12082 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12083 GFP_KERNEL_ACCOUNT))
12084 goto fail_free_mce_banks;
12086 if (!alloc_emulate_ctxt(vcpu))
12087 goto free_wbinvd_dirty_mask;
12089 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12090 pr_err("failed to allocate vcpu's fpu\n");
12091 goto free_emulate_ctxt;
12094 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12095 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12097 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12099 kvm_async_pf_hash_reset(vcpu);
12101 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12102 kvm_pmu_init(vcpu);
12104 vcpu->arch.pending_external_vector = -1;
12105 vcpu->arch.preempted_in_kernel = false;
12107 #if IS_ENABLED(CONFIG_HYPERV)
12108 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12111 r = static_call(kvm_x86_vcpu_create)(vcpu);
12113 goto free_guest_fpu;
12115 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12116 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12117 kvm_xen_init_vcpu(vcpu);
12118 kvm_vcpu_mtrr_init(vcpu);
12120 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12121 kvm_vcpu_reset(vcpu, false);
12122 kvm_init_mmu(vcpu);
12127 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12129 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12130 free_wbinvd_dirty_mask:
12131 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12132 fail_free_mce_banks:
12133 kfree(vcpu->arch.mce_banks);
12134 kfree(vcpu->arch.mci_ctl2_banks);
12135 free_page((unsigned long)vcpu->arch.pio_data);
12137 kvm_free_lapic(vcpu);
12139 kvm_mmu_destroy(vcpu);
12143 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12145 struct kvm *kvm = vcpu->kvm;
12147 if (mutex_lock_killable(&vcpu->mutex))
12150 kvm_synchronize_tsc(vcpu, NULL);
12153 /* poll control enabled by default */
12154 vcpu->arch.msr_kvm_poll_control = 1;
12156 mutex_unlock(&vcpu->mutex);
12158 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12159 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12160 KVMCLOCK_SYNC_PERIOD);
12163 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12167 kvmclock_reset(vcpu);
12169 static_call(kvm_x86_vcpu_free)(vcpu);
12171 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12172 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12173 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12175 kvm_xen_destroy_vcpu(vcpu);
12176 kvm_hv_vcpu_uninit(vcpu);
12177 kvm_pmu_destroy(vcpu);
12178 kfree(vcpu->arch.mce_banks);
12179 kfree(vcpu->arch.mci_ctl2_banks);
12180 kvm_free_lapic(vcpu);
12181 idx = srcu_read_lock(&vcpu->kvm->srcu);
12182 kvm_mmu_destroy(vcpu);
12183 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12184 free_page((unsigned long)vcpu->arch.pio_data);
12185 kvfree(vcpu->arch.cpuid_entries);
12186 if (!lapic_in_kernel(vcpu))
12187 static_branch_dec(&kvm_has_noapic_vcpu);
12190 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12192 struct kvm_cpuid_entry2 *cpuid_0x1;
12193 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12194 unsigned long new_cr0;
12197 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12198 * to handle side effects. RESET emulation hits those flows and relies
12199 * on emulated/virtualized registers, including those that are loaded
12200 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12201 * to detect improper or missing initialization.
12203 WARN_ON_ONCE(!init_event &&
12204 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12207 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12208 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12209 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12210 * bits), i.e. virtualization is disabled.
12212 if (is_guest_mode(vcpu))
12213 kvm_leave_nested(vcpu);
12215 kvm_lapic_reset(vcpu, init_event);
12217 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12218 vcpu->arch.hflags = 0;
12220 vcpu->arch.smi_pending = 0;
12221 vcpu->arch.smi_count = 0;
12222 atomic_set(&vcpu->arch.nmi_queued, 0);
12223 vcpu->arch.nmi_pending = 0;
12224 vcpu->arch.nmi_injected = false;
12225 kvm_clear_interrupt_queue(vcpu);
12226 kvm_clear_exception_queue(vcpu);
12228 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12229 kvm_update_dr0123(vcpu);
12230 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12231 vcpu->arch.dr7 = DR7_FIXED_1;
12232 kvm_update_dr7(vcpu);
12234 vcpu->arch.cr2 = 0;
12236 kvm_make_request(KVM_REQ_EVENT, vcpu);
12237 vcpu->arch.apf.msr_en_val = 0;
12238 vcpu->arch.apf.msr_int_val = 0;
12239 vcpu->arch.st.msr_val = 0;
12241 kvmclock_reset(vcpu);
12243 kvm_clear_async_pf_completion_queue(vcpu);
12244 kvm_async_pf_hash_reset(vcpu);
12245 vcpu->arch.apf.halted = false;
12247 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12248 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12251 * All paths that lead to INIT are required to load the guest's
12252 * FPU state (because most paths are buried in KVM_RUN).
12255 kvm_put_guest_fpu(vcpu);
12257 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12258 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12261 kvm_load_guest_fpu(vcpu);
12265 vcpu->arch.smbase = 0x30000;
12267 vcpu->arch.msr_misc_features_enables = 0;
12268 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12269 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12271 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12272 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12275 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12276 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12277 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12280 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12281 * if no CPUID match is found. Note, it's impossible to get a match at
12282 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12283 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12284 * on RESET. But, go through the motions in case that's ever remedied.
12286 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12287 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12289 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12291 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12292 kvm_rip_write(vcpu, 0xfff0);
12294 vcpu->arch.cr3 = 0;
12295 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12298 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12299 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12300 * (or qualify) that with a footnote stating that CD/NW are preserved.
12302 new_cr0 = X86_CR0_ET;
12304 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12306 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12308 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12309 static_call(kvm_x86_set_cr4)(vcpu, 0);
12310 static_call(kvm_x86_set_efer)(vcpu, 0);
12311 static_call(kvm_x86_update_exception_bitmap)(vcpu);
12314 * On the standard CR0/CR4/EFER modification paths, there are several
12315 * complex conditions determining whether the MMU has to be reset and/or
12316 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12317 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12318 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12319 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12321 if (old_cr0 & X86_CR0_PG) {
12322 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12323 kvm_mmu_reset_context(vcpu);
12327 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12328 * APM states the TLBs are untouched by INIT, but it also states that
12329 * the TLBs are flushed on "External initialization of the processor."
12330 * Flush the guest TLB regardless of vendor, there is no meaningful
12331 * benefit in relying on the guest to flush the TLB immediately after
12332 * INIT. A spurious TLB flush is benign and likely negligible from a
12333 * performance perspective.
12336 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12338 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12340 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12342 struct kvm_segment cs;
12344 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12345 cs.selector = vector << 8;
12346 cs.base = vector << 12;
12347 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12348 kvm_rip_write(vcpu, 0);
12350 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12352 int kvm_arch_hardware_enable(void)
12355 struct kvm_vcpu *vcpu;
12360 bool stable, backwards_tsc = false;
12362 kvm_user_return_msr_cpu_online();
12364 ret = kvm_x86_check_processor_compatibility();
12368 ret = static_call(kvm_x86_hardware_enable)();
12372 local_tsc = rdtsc();
12373 stable = !kvm_check_tsc_unstable();
12374 list_for_each_entry(kvm, &vm_list, vm_list) {
12375 kvm_for_each_vcpu(i, vcpu, kvm) {
12376 if (!stable && vcpu->cpu == smp_processor_id())
12377 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12378 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12379 backwards_tsc = true;
12380 if (vcpu->arch.last_host_tsc > max_tsc)
12381 max_tsc = vcpu->arch.last_host_tsc;
12387 * Sometimes, even reliable TSCs go backwards. This happens on
12388 * platforms that reset TSC during suspend or hibernate actions, but
12389 * maintain synchronization. We must compensate. Fortunately, we can
12390 * detect that condition here, which happens early in CPU bringup,
12391 * before any KVM threads can be running. Unfortunately, we can't
12392 * bring the TSCs fully up to date with real time, as we aren't yet far
12393 * enough into CPU bringup that we know how much real time has actually
12394 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12395 * variables that haven't been updated yet.
12397 * So we simply find the maximum observed TSC above, then record the
12398 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12399 * the adjustment will be applied. Note that we accumulate
12400 * adjustments, in case multiple suspend cycles happen before some VCPU
12401 * gets a chance to run again. In the event that no KVM threads get a
12402 * chance to run, we will miss the entire elapsed period, as we'll have
12403 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12404 * loose cycle time. This isn't too big a deal, since the loss will be
12405 * uniform across all VCPUs (not to mention the scenario is extremely
12406 * unlikely). It is possible that a second hibernate recovery happens
12407 * much faster than a first, causing the observed TSC here to be
12408 * smaller; this would require additional padding adjustment, which is
12409 * why we set last_host_tsc to the local tsc observed here.
12411 * N.B. - this code below runs only on platforms with reliable TSC,
12412 * as that is the only way backwards_tsc is set above. Also note
12413 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12414 * have the same delta_cyc adjustment applied if backwards_tsc
12415 * is detected. Note further, this adjustment is only done once,
12416 * as we reset last_host_tsc on all VCPUs to stop this from being
12417 * called multiple times (one for each physical CPU bringup).
12419 * Platforms with unreliable TSCs don't have to deal with this, they
12420 * will be compensated by the logic in vcpu_load, which sets the TSC to
12421 * catchup mode. This will catchup all VCPUs to real time, but cannot
12422 * guarantee that they stay in perfect synchronization.
12424 if (backwards_tsc) {
12425 u64 delta_cyc = max_tsc - local_tsc;
12426 list_for_each_entry(kvm, &vm_list, vm_list) {
12427 kvm->arch.backwards_tsc_observed = true;
12428 kvm_for_each_vcpu(i, vcpu, kvm) {
12429 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12430 vcpu->arch.last_host_tsc = local_tsc;
12431 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12435 * We have to disable TSC offset matching.. if you were
12436 * booting a VM while issuing an S4 host suspend....
12437 * you may have some problem. Solving this issue is
12438 * left as an exercise to the reader.
12440 kvm->arch.last_tsc_nsec = 0;
12441 kvm->arch.last_tsc_write = 0;
12448 void kvm_arch_hardware_disable(void)
12450 static_call(kvm_x86_hardware_disable)();
12451 drop_user_return_notifiers();
12454 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12456 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12459 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12461 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12464 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12465 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12467 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12469 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12471 vcpu->arch.l1tf_flush_l1d = true;
12472 if (pmu->version && unlikely(pmu->event_count)) {
12473 pmu->need_cleanup = true;
12474 kvm_make_request(KVM_REQ_PMU, vcpu);
12476 static_call(kvm_x86_sched_in)(vcpu, cpu);
12479 void kvm_arch_free_vm(struct kvm *kvm)
12481 #if IS_ENABLED(CONFIG_HYPERV)
12482 kfree(kvm->arch.hv_pa_pg);
12484 __kvm_arch_free_vm(kvm);
12488 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12491 unsigned long flags;
12493 if (!kvm_is_vm_type_supported(type))
12496 kvm->arch.vm_type = type;
12498 ret = kvm_page_track_init(kvm);
12502 kvm_mmu_init_vm(kvm);
12504 ret = static_call(kvm_x86_vm_init)(kvm);
12506 goto out_uninit_mmu;
12508 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12509 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12511 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12512 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12513 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12514 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12515 &kvm->arch.irq_sources_bitmap);
12517 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12518 mutex_init(&kvm->arch.apic_map_lock);
12519 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12520 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12522 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12523 pvclock_update_vm_gtod_copy(kvm);
12524 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12526 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12527 kvm->arch.guest_can_read_msr_platform_info = true;
12528 kvm->arch.enable_pmu = enable_pmu;
12530 #if IS_ENABLED(CONFIG_HYPERV)
12531 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12532 kvm->arch.hv_root_tdp = INVALID_PAGE;
12535 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12536 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12538 kvm_apicv_init(kvm);
12539 kvm_hv_init_vm(kvm);
12540 kvm_xen_init_vm(kvm);
12545 kvm_mmu_uninit_vm(kvm);
12546 kvm_page_track_cleanup(kvm);
12551 int kvm_arch_post_init_vm(struct kvm *kvm)
12553 return kvm_mmu_post_init_vm(kvm);
12556 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12559 kvm_mmu_unload(vcpu);
12563 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12566 struct kvm_vcpu *vcpu;
12568 kvm_for_each_vcpu(i, vcpu, kvm) {
12569 kvm_clear_async_pf_completion_queue(vcpu);
12570 kvm_unload_vcpu_mmu(vcpu);
12574 void kvm_arch_sync_events(struct kvm *kvm)
12576 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12577 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12582 * __x86_set_memory_region: Setup KVM internal memory slot
12584 * @kvm: the kvm pointer to the VM.
12585 * @id: the slot ID to setup.
12586 * @gpa: the GPA to install the slot (unused when @size == 0).
12587 * @size: the size of the slot. Set to zero to uninstall a slot.
12589 * This function helps to setup a KVM internal memory slot. Specify
12590 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12591 * slot. The return code can be one of the following:
12593 * HVA: on success (uninstall will return a bogus HVA)
12596 * The caller should always use IS_ERR() to check the return value
12597 * before use. Note, the KVM internal memory slots are guaranteed to
12598 * remain valid and unchanged until the VM is destroyed, i.e., the
12599 * GPA->HVA translation will not change. However, the HVA is a user
12600 * address, i.e. its accessibility is not guaranteed, and must be
12601 * accessed via __copy_{to,from}_user().
12603 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12607 unsigned long hva, old_npages;
12608 struct kvm_memslots *slots = kvm_memslots(kvm);
12609 struct kvm_memory_slot *slot;
12611 /* Called with kvm->slots_lock held. */
12612 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12613 return ERR_PTR_USR(-EINVAL);
12615 slot = id_to_memslot(slots, id);
12617 if (slot && slot->npages)
12618 return ERR_PTR_USR(-EEXIST);
12621 * MAP_SHARED to prevent internal slot pages from being moved
12624 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12625 MAP_SHARED | MAP_ANONYMOUS, 0);
12626 if (IS_ERR_VALUE(hva))
12627 return (void __user *)hva;
12629 if (!slot || !slot->npages)
12632 old_npages = slot->npages;
12633 hva = slot->userspace_addr;
12636 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12637 struct kvm_userspace_memory_region2 m;
12639 m.slot = id | (i << 16);
12641 m.guest_phys_addr = gpa;
12642 m.userspace_addr = hva;
12643 m.memory_size = size;
12644 r = __kvm_set_memory_region(kvm, &m);
12646 return ERR_PTR_USR(r);
12650 vm_munmap(hva, old_npages * PAGE_SIZE);
12652 return (void __user *)hva;
12654 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12656 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12658 kvm_mmu_pre_destroy_vm(kvm);
12661 void kvm_arch_destroy_vm(struct kvm *kvm)
12663 if (current->mm == kvm->mm) {
12665 * Free memory regions allocated on behalf of userspace,
12666 * unless the memory map has changed due to process exit
12669 mutex_lock(&kvm->slots_lock);
12670 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12672 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12674 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12675 mutex_unlock(&kvm->slots_lock);
12677 kvm_unload_vcpu_mmus(kvm);
12678 static_call_cond(kvm_x86_vm_destroy)(kvm);
12679 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12680 kvm_pic_destroy(kvm);
12681 kvm_ioapic_destroy(kvm);
12682 kvm_destroy_vcpus(kvm);
12683 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12684 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12685 kvm_mmu_uninit_vm(kvm);
12686 kvm_page_track_cleanup(kvm);
12687 kvm_xen_destroy_vm(kvm);
12688 kvm_hv_destroy_vm(kvm);
12691 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12695 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12696 kvfree(slot->arch.rmap[i]);
12697 slot->arch.rmap[i] = NULL;
12701 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12705 memslot_rmap_free(slot);
12707 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12708 kvfree(slot->arch.lpage_info[i - 1]);
12709 slot->arch.lpage_info[i - 1] = NULL;
12712 kvm_page_track_free_memslot(slot);
12715 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12717 const int sz = sizeof(*slot->arch.rmap[0]);
12720 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12722 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12724 if (slot->arch.rmap[i])
12727 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12728 if (!slot->arch.rmap[i]) {
12729 memslot_rmap_free(slot);
12737 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12738 struct kvm_memory_slot *slot)
12740 unsigned long npages = slot->npages;
12744 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12745 * old arrays will be freed by __kvm_set_memory_region() if installing
12746 * the new memslot is successful.
12748 memset(&slot->arch, 0, sizeof(slot->arch));
12750 if (kvm_memslots_have_rmaps(kvm)) {
12751 r = memslot_rmap_alloc(slot, npages);
12756 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12757 struct kvm_lpage_info *linfo;
12758 unsigned long ugfn;
12762 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12764 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12768 slot->arch.lpage_info[i - 1] = linfo;
12770 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12771 linfo[0].disallow_lpage = 1;
12772 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12773 linfo[lpages - 1].disallow_lpage = 1;
12774 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12776 * If the gfn and userspace address are not aligned wrt each
12777 * other, disable large page support for this slot.
12779 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12782 for (j = 0; j < lpages; ++j)
12783 linfo[j].disallow_lpage = 1;
12787 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12788 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12791 if (kvm_page_track_create_memslot(kvm, slot, npages))
12797 memslot_rmap_free(slot);
12799 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12800 kvfree(slot->arch.lpage_info[i - 1]);
12801 slot->arch.lpage_info[i - 1] = NULL;
12806 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12808 struct kvm_vcpu *vcpu;
12812 * memslots->generation has been incremented.
12813 * mmio generation may have reached its maximum value.
12815 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12817 /* Force re-initialization of steal_time cache */
12818 kvm_for_each_vcpu(i, vcpu, kvm)
12819 kvm_vcpu_kick(vcpu);
12822 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12823 const struct kvm_memory_slot *old,
12824 struct kvm_memory_slot *new,
12825 enum kvm_mr_change change)
12828 * KVM doesn't support moving memslots when there are external page
12829 * trackers attached to the VM, i.e. if KVMGT is in use.
12831 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12834 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12835 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12838 return kvm_alloc_memslot_metadata(kvm, new);
12841 if (change == KVM_MR_FLAGS_ONLY)
12842 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12843 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12850 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12854 if (!kvm_x86_ops.cpu_dirty_log_size)
12857 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12858 if ((enable && nr_slots == 1) || !nr_slots)
12859 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12862 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12863 struct kvm_memory_slot *old,
12864 const struct kvm_memory_slot *new,
12865 enum kvm_mr_change change)
12867 u32 old_flags = old ? old->flags : 0;
12868 u32 new_flags = new ? new->flags : 0;
12869 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12872 * Update CPU dirty logging if dirty logging is being toggled. This
12873 * applies to all operations.
12875 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12876 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12879 * Nothing more to do for RO slots (which can't be dirtied and can't be
12880 * made writable) or CREATE/MOVE/DELETE of a slot.
12882 * For a memslot with dirty logging disabled:
12883 * CREATE: No dirty mappings will already exist.
12884 * MOVE/DELETE: The old mappings will already have been cleaned up by
12885 * kvm_arch_flush_shadow_memslot()
12887 * For a memslot with dirty logging enabled:
12888 * CREATE: No shadow pages exist, thus nothing to write-protect
12889 * and no dirty bits to clear.
12890 * MOVE/DELETE: The old mappings will already have been cleaned up by
12891 * kvm_arch_flush_shadow_memslot().
12893 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12897 * READONLY and non-flags changes were filtered out above, and the only
12898 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12899 * logging isn't being toggled on or off.
12901 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12904 if (!log_dirty_pages) {
12906 * Dirty logging tracks sptes in 4k granularity, meaning that
12907 * large sptes have to be split. If live migration succeeds,
12908 * the guest in the source machine will be destroyed and large
12909 * sptes will be created in the destination. However, if the
12910 * guest continues to run in the source machine (for example if
12911 * live migration fails), small sptes will remain around and
12912 * cause bad performance.
12914 * Scan sptes if dirty logging has been stopped, dropping those
12915 * which can be collapsed into a single large-page spte. Later
12916 * page faults will create the large-page sptes.
12918 kvm_mmu_zap_collapsible_sptes(kvm, new);
12921 * Initially-all-set does not require write protecting any page,
12922 * because they're all assumed to be dirty.
12924 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12927 if (READ_ONCE(eager_page_split))
12928 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12930 if (kvm_x86_ops.cpu_dirty_log_size) {
12931 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12932 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12934 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12938 * Unconditionally flush the TLBs after enabling dirty logging.
12939 * A flush is almost always going to be necessary (see below),
12940 * and unconditionally flushing allows the helpers to omit
12941 * the subtly complex checks when removing write access.
12943 * Do the flush outside of mmu_lock to reduce the amount of
12944 * time mmu_lock is held. Flushing after dropping mmu_lock is
12945 * safe as KVM only needs to guarantee the slot is fully
12946 * write-protected before returning to userspace, i.e. before
12947 * userspace can consume the dirty status.
12949 * Flushing outside of mmu_lock requires KVM to be careful when
12950 * making decisions based on writable status of an SPTE, e.g. a
12951 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12953 * Specifically, KVM also write-protects guest page tables to
12954 * monitor changes when using shadow paging, and must guarantee
12955 * no CPUs can write to those page before mmu_lock is dropped.
12956 * Because CPUs may have stale TLB entries at this point, a
12957 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12959 * KVM also allows making SPTES writable outside of mmu_lock,
12960 * e.g. to allow dirty logging without taking mmu_lock.
12962 * To handle these scenarios, KVM uses a separate software-only
12963 * bit (MMU-writable) to track if a SPTE is !writable due to
12964 * a guest page table being write-protected (KVM clears the
12965 * MMU-writable flag when write-protecting for shadow paging).
12967 * The use of MMU-writable is also the primary motivation for
12968 * the unconditional flush. Because KVM must guarantee that a
12969 * CPU doesn't contain stale, writable TLB entries for a
12970 * !MMU-writable SPTE, KVM must flush if it encounters any
12971 * MMU-writable SPTE regardless of whether the actual hardware
12972 * writable bit was set. I.e. KVM is almost guaranteed to need
12973 * to flush, while unconditionally flushing allows the "remove
12974 * write access" helpers to ignore MMU-writable entirely.
12976 * See is_writable_pte() for more details (the case involving
12977 * access-tracked SPTEs is particularly relevant).
12979 kvm_flush_remote_tlbs_memslot(kvm, new);
12983 void kvm_arch_commit_memory_region(struct kvm *kvm,
12984 struct kvm_memory_slot *old,
12985 const struct kvm_memory_slot *new,
12986 enum kvm_mr_change change)
12988 if (change == KVM_MR_DELETE)
12989 kvm_page_track_delete_slot(kvm, old);
12991 if (!kvm->arch.n_requested_mmu_pages &&
12992 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12993 unsigned long nr_mmu_pages;
12995 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12996 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12997 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13000 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13002 /* Free the arrays associated with the old memslot. */
13003 if (change == KVM_MR_MOVE)
13004 kvm_arch_free_memslot(kvm, old);
13007 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
13009 return (is_guest_mode(vcpu) &&
13010 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
13013 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13015 if (!list_empty_careful(&vcpu->async_pf.done))
13018 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13019 kvm_apic_init_sipi_allowed(vcpu))
13022 if (vcpu->arch.pv.pv_unhalted)
13025 if (kvm_is_exception_pending(vcpu))
13028 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13029 (vcpu->arch.nmi_pending &&
13030 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
13033 #ifdef CONFIG_KVM_SMM
13034 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13035 (vcpu->arch.smi_pending &&
13036 static_call(kvm_x86_smi_allowed)(vcpu, false)))
13040 if (kvm_test_request(KVM_REQ_PMI, vcpu))
13043 if (kvm_arch_interrupt_allowed(vcpu) &&
13044 (kvm_cpu_has_interrupt(vcpu) ||
13045 kvm_guest_apic_has_interrupt(vcpu)))
13048 if (kvm_hv_has_stimer_pending(vcpu))
13051 if (is_guest_mode(vcpu) &&
13052 kvm_x86_ops.nested_ops->has_events &&
13053 kvm_x86_ops.nested_ops->has_events(vcpu))
13056 if (kvm_xen_has_pending_events(vcpu))
13062 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13064 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13067 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13069 if (kvm_vcpu_apicv_active(vcpu) &&
13070 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
13076 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13078 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13081 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13082 #ifdef CONFIG_KVM_SMM
13083 kvm_test_request(KVM_REQ_SMI, vcpu) ||
13085 kvm_test_request(KVM_REQ_EVENT, vcpu))
13088 return kvm_arch_dy_has_pending_interrupt(vcpu);
13091 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13093 if (vcpu->arch.guest_state_protected)
13096 if (vcpu != kvm_get_running_vcpu())
13097 return vcpu->arch.preempted_in_kernel;
13099 return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13102 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13104 return kvm_rip_read(vcpu);
13107 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13109 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13112 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13114 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13117 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13119 /* Can't read the RIP when guest state is protected, just return 0 */
13120 if (vcpu->arch.guest_state_protected)
13123 if (is_64_bit_mode(vcpu))
13124 return kvm_rip_read(vcpu);
13125 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13126 kvm_rip_read(vcpu));
13128 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13130 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13132 return kvm_get_linear_rip(vcpu) == linear_rip;
13134 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13136 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13138 unsigned long rflags;
13140 rflags = static_call(kvm_x86_get_rflags)(vcpu);
13141 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13142 rflags &= ~X86_EFLAGS_TF;
13145 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13147 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13149 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13150 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13151 rflags |= X86_EFLAGS_TF;
13152 static_call(kvm_x86_set_rflags)(vcpu, rflags);
13155 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13157 __kvm_set_rflags(vcpu, rflags);
13158 kvm_make_request(KVM_REQ_EVENT, vcpu);
13160 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13162 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13164 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13166 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13169 static inline u32 kvm_async_pf_next_probe(u32 key)
13171 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13174 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13176 u32 key = kvm_async_pf_hash_fn(gfn);
13178 while (vcpu->arch.apf.gfns[key] != ~0)
13179 key = kvm_async_pf_next_probe(key);
13181 vcpu->arch.apf.gfns[key] = gfn;
13184 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13187 u32 key = kvm_async_pf_hash_fn(gfn);
13189 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13190 (vcpu->arch.apf.gfns[key] != gfn &&
13191 vcpu->arch.apf.gfns[key] != ~0); i++)
13192 key = kvm_async_pf_next_probe(key);
13197 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13199 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13202 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13206 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13208 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13212 vcpu->arch.apf.gfns[i] = ~0;
13214 j = kvm_async_pf_next_probe(j);
13215 if (vcpu->arch.apf.gfns[j] == ~0)
13217 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13219 * k lies cyclically in ]i,j]
13221 * |....j i.k.| or |.k..j i...|
13223 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13224 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13229 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13231 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13233 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13237 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13239 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13241 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13242 &token, offset, sizeof(token));
13245 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13247 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13250 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13251 &val, offset, sizeof(val)))
13257 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13260 if (!kvm_pv_async_pf_enabled(vcpu))
13263 if (vcpu->arch.apf.send_user_only &&
13264 static_call(kvm_x86_get_cpl)(vcpu) == 0)
13267 if (is_guest_mode(vcpu)) {
13269 * L1 needs to opt into the special #PF vmexits that are
13270 * used to deliver async page faults.
13272 return vcpu->arch.apf.delivery_as_pf_vmexit;
13275 * Play it safe in case the guest temporarily disables paging.
13276 * The real mode IDT in particular is unlikely to have a #PF
13279 return is_paging(vcpu);
13283 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13285 if (unlikely(!lapic_in_kernel(vcpu) ||
13286 kvm_event_needs_reinjection(vcpu) ||
13287 kvm_is_exception_pending(vcpu)))
13290 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13294 * If interrupts are off we cannot even use an artificial
13297 return kvm_arch_interrupt_allowed(vcpu);
13300 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13301 struct kvm_async_pf *work)
13303 struct x86_exception fault;
13305 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13306 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13308 if (kvm_can_deliver_async_pf(vcpu) &&
13309 !apf_put_user_notpresent(vcpu)) {
13310 fault.vector = PF_VECTOR;
13311 fault.error_code_valid = true;
13312 fault.error_code = 0;
13313 fault.nested_page_fault = false;
13314 fault.address = work->arch.token;
13315 fault.async_page_fault = true;
13316 kvm_inject_page_fault(vcpu, &fault);
13320 * It is not possible to deliver a paravirtualized asynchronous
13321 * page fault, but putting the guest in an artificial halt state
13322 * can be beneficial nevertheless: if an interrupt arrives, we
13323 * can deliver it timely and perhaps the guest will schedule
13324 * another process. When the instruction that triggered a page
13325 * fault is retried, hopefully the page will be ready in the host.
13327 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13332 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13333 struct kvm_async_pf *work)
13335 struct kvm_lapic_irq irq = {
13336 .delivery_mode = APIC_DM_FIXED,
13337 .vector = vcpu->arch.apf.vec
13340 if (work->wakeup_all)
13341 work->arch.token = ~0; /* broadcast wakeup */
13343 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13344 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13346 if ((work->wakeup_all || work->notpresent_injected) &&
13347 kvm_pv_async_pf_enabled(vcpu) &&
13348 !apf_put_user_ready(vcpu, work->arch.token)) {
13349 vcpu->arch.apf.pageready_pending = true;
13350 kvm_apic_set_irq(vcpu, &irq, NULL);
13353 vcpu->arch.apf.halted = false;
13354 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13357 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13359 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13360 if (!vcpu->arch.apf.pageready_pending)
13361 kvm_vcpu_kick(vcpu);
13364 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13366 if (!kvm_pv_async_pf_enabled(vcpu))
13369 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13372 void kvm_arch_start_assignment(struct kvm *kvm)
13374 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13375 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13377 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13379 void kvm_arch_end_assignment(struct kvm *kvm)
13381 atomic_dec(&kvm->arch.assigned_device_count);
13383 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13385 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13387 return raw_atomic_read(&kvm->arch.assigned_device_count);
13389 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13391 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13394 * Non-coherent DMA assignment and de-assignment will affect
13395 * whether KVM honors guest MTRRs and cause changes in memtypes
13397 * So, pass %true unconditionally to indicate non-coherent DMA was,
13398 * or will be involved, and that zapping SPTEs might be necessary.
13400 if (__kvm_mmu_honors_guest_mtrrs(true))
13401 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13404 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13406 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13407 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13409 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13411 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13413 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13414 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13416 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13418 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13420 return atomic_read(&kvm->arch.noncoherent_dma_count);
13422 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13424 bool kvm_arch_has_irq_bypass(void)
13426 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13429 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13430 struct irq_bypass_producer *prod)
13432 struct kvm_kernel_irqfd *irqfd =
13433 container_of(cons, struct kvm_kernel_irqfd, consumer);
13436 irqfd->producer = prod;
13437 kvm_arch_start_assignment(irqfd->kvm);
13438 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13439 prod->irq, irqfd->gsi, 1);
13442 kvm_arch_end_assignment(irqfd->kvm);
13447 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13448 struct irq_bypass_producer *prod)
13451 struct kvm_kernel_irqfd *irqfd =
13452 container_of(cons, struct kvm_kernel_irqfd, consumer);
13454 WARN_ON(irqfd->producer != prod);
13455 irqfd->producer = NULL;
13458 * When producer of consumer is unregistered, we change back to
13459 * remapped mode, so we can re-use the current implementation
13460 * when the irq is masked/disabled or the consumer side (KVM
13461 * int this case doesn't want to receive the interrupts.
13463 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13465 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13466 " fails: %d\n", irqfd->consumer.token, ret);
13468 kvm_arch_end_assignment(irqfd->kvm);
13471 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13472 uint32_t guest_irq, bool set)
13474 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13477 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13478 struct kvm_kernel_irq_routing_entry *new)
13480 if (new->type != KVM_IRQ_ROUTING_MSI)
13483 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13486 bool kvm_vector_hashing_enabled(void)
13488 return vector_hashing;
13491 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13493 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13495 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13498 int kvm_spec_ctrl_test_value(u64 value)
13501 * test that setting IA32_SPEC_CTRL to given value
13502 * is allowed by the host processor
13506 unsigned long flags;
13509 local_irq_save(flags);
13511 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13513 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13516 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13518 local_irq_restore(flags);
13522 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13524 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13526 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13527 struct x86_exception fault;
13528 u64 access = error_code &
13529 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13531 if (!(error_code & PFERR_PRESENT_MASK) ||
13532 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13534 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13535 * tables probably do not match the TLB. Just proceed
13536 * with the error code that the processor gave.
13538 fault.vector = PF_VECTOR;
13539 fault.error_code_valid = true;
13540 fault.error_code = error_code;
13541 fault.nested_page_fault = false;
13542 fault.address = gva;
13543 fault.async_page_fault = false;
13545 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13547 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13550 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13551 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13552 * indicates whether exit to userspace is needed.
13554 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13555 struct x86_exception *e)
13557 if (r == X86EMUL_PROPAGATE_FAULT) {
13558 if (KVM_BUG_ON(!e, vcpu->kvm))
13561 kvm_inject_emulated_page_fault(vcpu, e);
13566 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13567 * while handling a VMX instruction KVM could've handled the request
13568 * correctly by exiting to userspace and performing I/O but there
13569 * doesn't seem to be a real use-case behind such requests, just return
13570 * KVM_EXIT_INTERNAL_ERROR for now.
13572 kvm_prepare_emulation_failure_exit(vcpu);
13576 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13578 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13581 struct x86_exception e;
13588 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13589 if (r != X86EMUL_CONTINUE)
13590 return kvm_handle_memory_failure(vcpu, r, &e);
13592 if (operand.pcid >> 12 != 0) {
13593 kvm_inject_gp(vcpu, 0);
13597 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13600 case INVPCID_TYPE_INDIV_ADDR:
13602 * LAM doesn't apply to addresses that are inputs to TLB
13605 if ((!pcid_enabled && (operand.pcid != 0)) ||
13606 is_noncanonical_address(operand.gla, vcpu)) {
13607 kvm_inject_gp(vcpu, 0);
13610 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13611 return kvm_skip_emulated_instruction(vcpu);
13613 case INVPCID_TYPE_SINGLE_CTXT:
13614 if (!pcid_enabled && (operand.pcid != 0)) {
13615 kvm_inject_gp(vcpu, 0);
13619 kvm_invalidate_pcid(vcpu, operand.pcid);
13620 return kvm_skip_emulated_instruction(vcpu);
13622 case INVPCID_TYPE_ALL_NON_GLOBAL:
13624 * Currently, KVM doesn't mark global entries in the shadow
13625 * page tables, so a non-global flush just degenerates to a
13626 * global flush. If needed, we could optimize this later by
13627 * keeping track of global entries in shadow page tables.
13631 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13632 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13633 return kvm_skip_emulated_instruction(vcpu);
13636 kvm_inject_gp(vcpu, 0);
13640 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13642 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13644 struct kvm_run *run = vcpu->run;
13645 struct kvm_mmio_fragment *frag;
13648 BUG_ON(!vcpu->mmio_needed);
13650 /* Complete previous fragment */
13651 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13652 len = min(8u, frag->len);
13653 if (!vcpu->mmio_is_write)
13654 memcpy(frag->data, run->mmio.data, len);
13656 if (frag->len <= 8) {
13657 /* Switch to the next fragment. */
13659 vcpu->mmio_cur_fragment++;
13661 /* Go forward to the next mmio piece. */
13667 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13668 vcpu->mmio_needed = 0;
13670 // VMG change, at this point, we're always done
13671 // RIP has already been advanced
13675 // More MMIO is needed
13676 run->mmio.phys_addr = frag->gpa;
13677 run->mmio.len = min(8u, frag->len);
13678 run->mmio.is_write = vcpu->mmio_is_write;
13679 if (run->mmio.is_write)
13680 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13681 run->exit_reason = KVM_EXIT_MMIO;
13683 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13688 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13692 struct kvm_mmio_fragment *frag;
13697 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13698 if (handled == bytes)
13705 /*TODO: Check if need to increment number of frags */
13706 frag = vcpu->mmio_fragments;
13707 vcpu->mmio_nr_fragments = 1;
13712 vcpu->mmio_needed = 1;
13713 vcpu->mmio_cur_fragment = 0;
13715 vcpu->run->mmio.phys_addr = gpa;
13716 vcpu->run->mmio.len = min(8u, frag->len);
13717 vcpu->run->mmio.is_write = 1;
13718 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13719 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13721 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13725 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13727 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13731 struct kvm_mmio_fragment *frag;
13736 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13737 if (handled == bytes)
13744 /*TODO: Check if need to increment number of frags */
13745 frag = vcpu->mmio_fragments;
13746 vcpu->mmio_nr_fragments = 1;
13751 vcpu->mmio_needed = 1;
13752 vcpu->mmio_cur_fragment = 0;
13754 vcpu->run->mmio.phys_addr = gpa;
13755 vcpu->run->mmio.len = min(8u, frag->len);
13756 vcpu->run->mmio.is_write = 0;
13757 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13759 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13763 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13765 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13767 vcpu->arch.sev_pio_count -= count;
13768 vcpu->arch.sev_pio_data += count * size;
13771 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13772 unsigned int port);
13774 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13776 int size = vcpu->arch.pio.size;
13777 int port = vcpu->arch.pio.port;
13779 vcpu->arch.pio.count = 0;
13780 if (vcpu->arch.sev_pio_count)
13781 return kvm_sev_es_outs(vcpu, size, port);
13785 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13789 unsigned int count =
13790 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13791 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13793 /* memcpy done already by emulator_pio_out. */
13794 advance_sev_es_emulated_pio(vcpu, count, size);
13798 /* Emulation done by the kernel. */
13799 if (!vcpu->arch.sev_pio_count)
13803 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13807 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13808 unsigned int port);
13810 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13812 unsigned count = vcpu->arch.pio.count;
13813 int size = vcpu->arch.pio.size;
13814 int port = vcpu->arch.pio.port;
13816 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13817 advance_sev_es_emulated_pio(vcpu, count, size);
13818 if (vcpu->arch.sev_pio_count)
13819 return kvm_sev_es_ins(vcpu, size, port);
13823 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13827 unsigned int count =
13828 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13829 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13832 /* Emulation done by the kernel. */
13833 advance_sev_es_emulated_pio(vcpu, count, size);
13834 if (!vcpu->arch.sev_pio_count)
13838 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13842 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13843 unsigned int port, void *data, unsigned int count,
13846 vcpu->arch.sev_pio_data = data;
13847 vcpu->arch.sev_pio_count = count;
13848 return in ? kvm_sev_es_ins(vcpu, size, port)
13849 : kvm_sev_es_outs(vcpu, size, port);
13851 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13858 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13859 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13860 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13861 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13862 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13863 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13864 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13865 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13866 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13867 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13868 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13869 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13870 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13872 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13873 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13883 static int __init kvm_x86_init(void)
13885 kvm_mmu_x86_module_init();
13886 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13889 module_init(kvm_x86_init);
13891 static void __exit kvm_x86_exit(void)
13894 * If module_init() is implemented, module_exit() must also be
13895 * implemented to allow module unload.
13898 module_exit(kvm_x86_exit);