]> Git Repo - linux.git/blob - arch/x86/kvm/x86.c
Merge tag 'kvm-x86-lam-6.8' of https://github.com/kvm-x86/linux into HEAD
[linux.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <[email protected]>
14  *   Yaniv Kamay  <[email protected]>
15  *   Amit Shah    <[email protected]>
16  *   Ben-Ami Yassour <[email protected]>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 struct kvm_caps kvm_caps __read_mostly = {
96         .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99
100 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101
102 #define emul_to_vcpu(ctxt) \
103         ((struct kvm_vcpu *)(ctxt)->vcpu)
104
105 /* EFER defaults:
106  * - enable syscall per default because its emulated by KVM
107  * - enable LME and LMA per default on 64 bit KVM
108  */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137
138 #define KVM_X86_OP(func)                                             \
139         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
140                                 *(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, 0644);
149
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, 0644);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, 0644);
156
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, 0444);
159
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, 0644);
163
164 /*
165  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167  * advancement entirely.  Any other value is used as-is and disables adaptive
168  * tuning, i.e. allows privileged userspace to set an exact advancement time.
169  */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, 0644);
172
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, 0444);
175
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, 0444);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179
180 /*
181  * Flags to manipulate forced emulation behavior (any non-zero value will
182  * enable forced emulation).
183  */
184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, 0644);
190
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202
203 /*
204  * Restoring the host value for MSRs that are only consumed when running in
205  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206  * returns to userspace, i.e. the kernel can run with the guest's value.
207  */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209
210 struct kvm_user_return_msrs {
211         struct user_return_notifier urn;
212         bool registered;
213         struct kvm_user_return_msr_values {
214                 u64 host;
215                 u64 curr;
216         } values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223
224 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245         KVM_GENERIC_VM_STATS(),
246         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247         STATS_DESC_COUNTER(VM, mmu_pte_write),
248         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249         STATS_DESC_COUNTER(VM, mmu_flooded),
250         STATS_DESC_COUNTER(VM, mmu_recycled),
251         STATS_DESC_COUNTER(VM, mmu_cache_miss),
252         STATS_DESC_ICOUNTER(VM, mmu_unsync),
253         STATS_DESC_ICOUNTER(VM, pages_4k),
254         STATS_DESC_ICOUNTER(VM, pages_2m),
255         STATS_DESC_ICOUNTER(VM, pages_1g),
256         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260
261 const struct kvm_stats_header kvm_vm_stats_header = {
262         .name_size = KVM_STATS_NAME_SIZE,
263         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264         .id_offset = sizeof(struct kvm_stats_header),
265         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267                        sizeof(kvm_vm_stats_desc),
268 };
269
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271         KVM_GENERIC_VCPU_STATS(),
272         STATS_DESC_COUNTER(VCPU, pf_taken),
273         STATS_DESC_COUNTER(VCPU, pf_fixed),
274         STATS_DESC_COUNTER(VCPU, pf_emulate),
275         STATS_DESC_COUNTER(VCPU, pf_spurious),
276         STATS_DESC_COUNTER(VCPU, pf_fast),
277         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278         STATS_DESC_COUNTER(VCPU, pf_guest),
279         STATS_DESC_COUNTER(VCPU, tlb_flush),
280         STATS_DESC_COUNTER(VCPU, invlpg),
281         STATS_DESC_COUNTER(VCPU, exits),
282         STATS_DESC_COUNTER(VCPU, io_exits),
283         STATS_DESC_COUNTER(VCPU, mmio_exits),
284         STATS_DESC_COUNTER(VCPU, signal_exits),
285         STATS_DESC_COUNTER(VCPU, irq_window_exits),
286         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287         STATS_DESC_COUNTER(VCPU, l1d_flush),
288         STATS_DESC_COUNTER(VCPU, halt_exits),
289         STATS_DESC_COUNTER(VCPU, request_irq_exits),
290         STATS_DESC_COUNTER(VCPU, irq_exits),
291         STATS_DESC_COUNTER(VCPU, host_state_reload),
292         STATS_DESC_COUNTER(VCPU, fpu_reload),
293         STATS_DESC_COUNTER(VCPU, insn_emulation),
294         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295         STATS_DESC_COUNTER(VCPU, hypercalls),
296         STATS_DESC_COUNTER(VCPU, irq_injections),
297         STATS_DESC_COUNTER(VCPU, nmi_injections),
298         STATS_DESC_COUNTER(VCPU, req_event),
299         STATS_DESC_COUNTER(VCPU, nested_run),
300         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302         STATS_DESC_COUNTER(VCPU, preemption_reported),
303         STATS_DESC_COUNTER(VCPU, preemption_other),
304         STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305         STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309         .name_size = KVM_STATS_NAME_SIZE,
310         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311         .id_offset = sizeof(struct kvm_stats_header),
312         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314                        sizeof(kvm_vcpu_stats_desc),
315 };
316
317 u64 __read_mostly host_xcr0;
318
319 static struct kmem_cache *x86_emulator_cache;
320
321 /*
322  * When called, it means the previous get/set msr reached an invalid msr.
323  * Return true if we want to ignore/silent this failed msr access.
324  */
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327         const char *op = write ? "wrmsr" : "rdmsr";
328
329         if (ignore_msrs) {
330                 if (report_ignored_msrs)
331                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332                                       op, msr, data);
333                 /* Mask the error */
334                 return true;
335         } else {
336                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337                                       op, msr, data);
338                 return false;
339         }
340 }
341
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345         unsigned int size = sizeof(struct x86_emulate_ctxt);
346
347         return kmem_cache_create_usercopy("x86_emulator", size,
348                                           __alignof__(struct x86_emulate_ctxt),
349                                           SLAB_ACCOUNT, useroffset,
350                                           size - useroffset, NULL);
351 }
352
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357         int i;
358         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359                 vcpu->arch.apf.gfns[i] = ~0;
360 }
361
362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364         unsigned slot;
365         struct kvm_user_return_msrs *msrs
366                 = container_of(urn, struct kvm_user_return_msrs, urn);
367         struct kvm_user_return_msr_values *values;
368         unsigned long flags;
369
370         /*
371          * Disabling irqs at this point since the following code could be
372          * interrupted and executed through kvm_arch_hardware_disable()
373          */
374         local_irq_save(flags);
375         if (msrs->registered) {
376                 msrs->registered = false;
377                 user_return_notifier_unregister(urn);
378         }
379         local_irq_restore(flags);
380         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381                 values = &msrs->values[slot];
382                 if (values->host != values->curr) {
383                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
384                         values->curr = values->host;
385                 }
386         }
387 }
388
389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391         u64 val;
392         int ret;
393
394         preempt_disable();
395         ret = rdmsrl_safe(msr, &val);
396         if (ret)
397                 goto out;
398         ret = wrmsrl_safe(msr, val);
399 out:
400         preempt_enable();
401         return ret;
402 }
403
404 int kvm_add_user_return_msr(u32 msr)
405 {
406         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407
408         if (kvm_probe_user_return_msr(msr))
409                 return -1;
410
411         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412         return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415
416 int kvm_find_user_return_msr(u32 msr)
417 {
418         int i;
419
420         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421                 if (kvm_uret_msrs_list[i] == msr)
422                         return i;
423         }
424         return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427
428 static void kvm_user_return_msr_cpu_online(void)
429 {
430         unsigned int cpu = smp_processor_id();
431         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432         u64 value;
433         int i;
434
435         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437                 msrs->values[i].host = value;
438                 msrs->values[i].curr = value;
439         }
440 }
441
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444         unsigned int cpu = smp_processor_id();
445         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446         int err;
447
448         value = (value & mask) | (msrs->values[slot].host & ~mask);
449         if (value == msrs->values[slot].curr)
450                 return 0;
451         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452         if (err)
453                 return 1;
454
455         msrs->values[slot].curr = value;
456         if (!msrs->registered) {
457                 msrs->urn.on_user_return = kvm_on_user_return;
458                 user_return_notifier_register(&msrs->urn);
459                 msrs->registered = true;
460         }
461         return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464
465 static void drop_user_return_notifiers(void)
466 {
467         unsigned int cpu = smp_processor_id();
468         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469
470         if (msrs->registered)
471                 kvm_on_user_return(&msrs->urn);
472 }
473
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476         return vcpu->arch.apic_base;
477 }
478
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481         return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491
492         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493                 return 1;
494         if (!msr_info->host_initiated) {
495                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496                         return 1;
497                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498                         return 1;
499         }
500
501         kvm_lapic_set_base(vcpu, msr_info->data);
502         kvm_recalculate_apic_map(vcpu->kvm);
503         return 0;
504 }
505
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515         /* Fault while not rebooting.  We want the trace. */
516         BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520 #define EXCPT_BENIGN            0
521 #define EXCPT_CONTRIBUTORY      1
522 #define EXCPT_PF                2
523
524 static int exception_class(int vector)
525 {
526         switch (vector) {
527         case PF_VECTOR:
528                 return EXCPT_PF;
529         case DE_VECTOR:
530         case TS_VECTOR:
531         case NP_VECTOR:
532         case SS_VECTOR:
533         case GP_VECTOR:
534                 return EXCPT_CONTRIBUTORY;
535         default:
536                 break;
537         }
538         return EXCPT_BENIGN;
539 }
540
541 #define EXCPT_FAULT             0
542 #define EXCPT_TRAP              1
543 #define EXCPT_ABORT             2
544 #define EXCPT_INTERRUPT         3
545 #define EXCPT_DB                4
546
547 static int exception_type(int vector)
548 {
549         unsigned int mask;
550
551         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552                 return EXCPT_INTERRUPT;
553
554         mask = 1 << vector;
555
556         /*
557          * #DBs can be trap-like or fault-like, the caller must check other CPU
558          * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559          */
560         if (mask & (1 << DB_VECTOR))
561                 return EXCPT_DB;
562
563         if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564                 return EXCPT_TRAP;
565
566         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567                 return EXCPT_ABORT;
568
569         /* Reserved exceptions will result in fault */
570         return EXCPT_FAULT;
571 }
572
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574                                    struct kvm_queued_exception *ex)
575 {
576         if (!ex->has_payload)
577                 return;
578
579         switch (ex->vector) {
580         case DB_VECTOR:
581                 /*
582                  * "Certain debug exceptions may clear bit 0-3.  The
583                  * remaining contents of the DR6 register are never
584                  * cleared by the processor".
585                  */
586                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587                 /*
588                  * In order to reflect the #DB exception payload in guest
589                  * dr6, three components need to be considered: active low
590                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591                  * DR6_BS and DR6_BT)
592                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593                  * In the target guest dr6:
594                  * FIXED_1 bits should always be set.
595                  * Active low bits should be cleared if 1-setting in payload.
596                  * Active high bits should be set if 1-setting in payload.
597                  *
598                  * Note, the payload is compatible with the pending debug
599                  * exceptions/exit qualification under VMX, that active_low bits
600                  * are active high in payload.
601                  * So they need to be flipped for DR6.
602                  */
603                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604                 vcpu->arch.dr6 |= ex->payload;
605                 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606
607                 /*
608                  * The #DB payload is defined as compatible with the 'pending
609                  * debug exceptions' field under VMX, not DR6. While bit 12 is
610                  * defined in the 'pending debug exceptions' field (enabled
611                  * breakpoint), it is reserved and must be zero in DR6.
612                  */
613                 vcpu->arch.dr6 &= ~BIT(12);
614                 break;
615         case PF_VECTOR:
616                 vcpu->arch.cr2 = ex->payload;
617                 break;
618         }
619
620         ex->has_payload = false;
621         ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626                                        bool has_error_code, u32 error_code,
627                                        bool has_payload, unsigned long payload)
628 {
629         struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630
631         ex->vector = vector;
632         ex->injected = false;
633         ex->pending = true;
634         ex->has_error_code = has_error_code;
635         ex->error_code = error_code;
636         ex->has_payload = has_payload;
637         ex->payload = payload;
638 }
639
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643         kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647                 unsigned nr, bool has_error, u32 error_code,
648                 bool has_payload, unsigned long payload, bool reinject)
649 {
650         u32 prev_nr;
651         int class1, class2;
652
653         kvm_make_request(KVM_REQ_EVENT, vcpu);
654
655         /*
656          * If the exception is destined for L2 and isn't being reinjected,
657          * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658          * previously injected exception is not checked because it was checked
659          * when it was original queued, and re-checking is incorrect if _L1_
660          * injected the exception, in which case it's exempt from interception.
661          */
662         if (!reinject && is_guest_mode(vcpu) &&
663             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664                 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665                                            has_payload, payload);
666                 return;
667         }
668
669         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670         queue:
671                 if (reinject) {
672                         /*
673                          * On VM-Entry, an exception can be pending if and only
674                          * if event injection was blocked by nested_run_pending.
675                          * In that case, however, vcpu_enter_guest() requests an
676                          * immediate exit, and the guest shouldn't proceed far
677                          * enough to need reinjection.
678                          */
679                         WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680                         vcpu->arch.exception.injected = true;
681                         if (WARN_ON_ONCE(has_payload)) {
682                                 /*
683                                  * A reinjected event has already
684                                  * delivered its payload.
685                                  */
686                                 has_payload = false;
687                                 payload = 0;
688                         }
689                 } else {
690                         vcpu->arch.exception.pending = true;
691                         vcpu->arch.exception.injected = false;
692                 }
693                 vcpu->arch.exception.has_error_code = has_error;
694                 vcpu->arch.exception.vector = nr;
695                 vcpu->arch.exception.error_code = error_code;
696                 vcpu->arch.exception.has_payload = has_payload;
697                 vcpu->arch.exception.payload = payload;
698                 if (!is_guest_mode(vcpu))
699                         kvm_deliver_exception_payload(vcpu,
700                                                       &vcpu->arch.exception);
701                 return;
702         }
703
704         /* to check exception */
705         prev_nr = vcpu->arch.exception.vector;
706         if (prev_nr == DF_VECTOR) {
707                 /* triple fault -> shutdown */
708                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709                 return;
710         }
711         class1 = exception_class(prev_nr);
712         class2 = exception_class(nr);
713         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714             (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715                 /*
716                  * Synthesize #DF.  Clear the previously injected or pending
717                  * exception so as not to incorrectly trigger shutdown.
718                  */
719                 vcpu->arch.exception.injected = false;
720                 vcpu->arch.exception.pending = false;
721
722                 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723         } else {
724                 /* replace previous exception with a new one in a hope
725                    that instruction re-execution will regenerate lost
726                    exception */
727                 goto queue;
728         }
729 }
730
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744                            unsigned long payload)
745 {
746         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751                                     u32 error_code, unsigned long payload)
752 {
753         kvm_multiple_exception(vcpu, nr, true, error_code,
754                                true, payload, false);
755 }
756
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759         if (err)
760                 kvm_inject_gp(vcpu, 0);
761         else
762                 return kvm_skip_emulated_instruction(vcpu);
763
764         return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770         if (err) {
771                 kvm_inject_gp(vcpu, 0);
772                 return 1;
773         }
774
775         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776                                        EMULTYPE_COMPLETE_USER_EXIT);
777 }
778
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781         ++vcpu->stat.pf_guest;
782
783         /*
784          * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785          * whether or not L1 wants to intercept "regular" #PF.
786          */
787         if (is_guest_mode(vcpu) && fault->async_page_fault)
788                 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789                                            true, fault->error_code,
790                                            true, fault->address);
791         else
792                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793                                         fault->address);
794 }
795
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797                                     struct x86_exception *fault)
798 {
799         struct kvm_mmu *fault_mmu;
800         WARN_ON_ONCE(fault->vector != PF_VECTOR);
801
802         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803                                                vcpu->arch.walk_mmu;
804
805         /*
806          * Invalidate the TLB entry for the faulting address, if it exists,
807          * else the access will fault indefinitely (and to emulate hardware).
808          */
809         if ((fault->error_code & PFERR_PRESENT_MASK) &&
810             !(fault->error_code & PFERR_RSVD_MASK))
811                 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812                                         KVM_MMU_ROOT_CURRENT);
813
814         fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820         atomic_inc(&vcpu->arch.nmi_queued);
821         kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835
836 /*
837  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838  * a #GP and return false.
839  */
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843                 return true;
844         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845         return false;
846 }
847
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850         if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851                 return true;
852
853         kvm_queue_exception(vcpu, UD_VECTOR);
854         return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862
863 /*
864  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865  */
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870         gpa_t real_gpa;
871         int i;
872         int ret;
873         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874
875         /*
876          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877          * to an L1 GPA.
878          */
879         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881         if (real_gpa == INVALID_GPA)
882                 return 0;
883
884         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
887         if (ret < 0)
888                 return 0;
889
890         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891                 if ((pdpte[i] & PT_PRESENT_MASK) &&
892                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893                         return 0;
894                 }
895         }
896
897         /*
898          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899          * Shadow page roots need to be reconstructed instead.
900          */
901         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903
904         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907         vcpu->arch.pdptrs_from_userspace = false;
908
909         return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916         if (cr0 & 0xffffffff00000000UL)
917                 return false;
918 #endif
919
920         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921                 return false;
922
923         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924                 return false;
925
926         return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931         /*
932          * CR0.WP is incorporated into the MMU role, but only for non-nested,
933          * indirect shadow MMUs.  If paging is disabled, no updates are needed
934          * as there are no permission bits to emulate.  If TDP is enabled, the
935          * MMU's metadata needs to be updated, e.g. so that emulating guest
936          * translations does the right thing, but there's no need to unload the
937          * root as CR0.WP doesn't affect SPTEs.
938          */
939         if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940                 if (!(cr0 & X86_CR0_PG))
941                         return;
942
943                 if (tdp_enabled) {
944                         kvm_init_mmu(vcpu);
945                         return;
946                 }
947         }
948
949         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950                 kvm_clear_async_pf_completion_queue(vcpu);
951                 kvm_async_pf_hash_reset(vcpu);
952
953                 /*
954                  * Clearing CR0.PG is defined to flush the TLB from the guest's
955                  * perspective.
956                  */
957                 if (!(cr0 & X86_CR0_PG))
958                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959         }
960
961         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962                 kvm_mmu_reset_context(vcpu);
963
964         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965             kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
966             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973         unsigned long old_cr0 = kvm_read_cr0(vcpu);
974
975         if (!kvm_is_valid_cr0(vcpu, cr0))
976                 return 1;
977
978         cr0 |= X86_CR0_ET;
979
980         /* Write to CR0 reserved bits are ignored, even on Intel. */
981         cr0 &= ~CR0_RESERVED_BITS;
982
983 #ifdef CONFIG_X86_64
984         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985             (cr0 & X86_CR0_PG)) {
986                 int cs_db, cs_l;
987
988                 if (!is_pae(vcpu))
989                         return 1;
990                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991                 if (cs_l)
992                         return 1;
993         }
994 #endif
995         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998                 return 1;
999
1000         if (!(cr0 & X86_CR0_PG) &&
1001             (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002                 return 1;
1003
1004         static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005
1006         kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007
1008         return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020         if (vcpu->arch.guest_state_protected)
1021                 return;
1022
1023         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024
1025                 if (vcpu->arch.xcr0 != host_xcr0)
1026                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027
1028                 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029                     vcpu->arch.ia32_xss != host_xss)
1030                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031         }
1032
1033         if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034             vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037                 write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043         if (vcpu->arch.guest_state_protected)
1044                 return;
1045
1046         if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049                 vcpu->arch.pkru = rdpkru();
1050                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051                         write_pkru(vcpu->arch.host_pkru);
1052         }
1053
1054         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055
1056                 if (vcpu->arch.xcr0 != host_xcr0)
1057                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058
1059                 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060                     vcpu->arch.ia32_xss != host_xss)
1061                         wrmsrl(MSR_IA32_XSS, host_xss);
1062         }
1063
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070         return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076         u64 xcr0 = xcr;
1077         u64 old_xcr0 = vcpu->arch.xcr0;
1078         u64 valid_bits;
1079
1080         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081         if (index != XCR_XFEATURE_ENABLED_MASK)
1082                 return 1;
1083         if (!(xcr0 & XFEATURE_MASK_FP))
1084                 return 1;
1085         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086                 return 1;
1087
1088         /*
1089          * Do not allow the guest to set bits that we do not support
1090          * saving.  However, xcr0 bit 0 is always set, even if the
1091          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092          */
1093         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094         if (xcr0 & ~valid_bits)
1095                 return 1;
1096
1097         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099                 return 1;
1100
1101         if (xcr0 & XFEATURE_MASK_AVX512) {
1102                 if (!(xcr0 & XFEATURE_MASK_YMM))
1103                         return 1;
1104                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105                         return 1;
1106         }
1107
1108         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110                 return 1;
1111
1112         vcpu->arch.xcr0 = xcr0;
1113
1114         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115                 kvm_update_cpuid_runtime(vcpu);
1116         return 0;
1117 }
1118
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121         /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124                 kvm_inject_gp(vcpu, 0);
1125                 return 1;
1126         }
1127
1128         return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134         if (cr4 & cr4_reserved_bits)
1135                 return false;
1136
1137         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138                 return false;
1139
1140         return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146         return __kvm_is_valid_cr4(vcpu, cr4) &&
1147                static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153                 kvm_mmu_reset_context(vcpu);
1154
1155         /*
1156          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157          * according to the SDM; however, stale prev_roots could be reused
1158          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161          * so fall through.
1162          */
1163         if (!tdp_enabled &&
1164             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165                 kvm_mmu_unload(vcpu);
1166
1167         /*
1168          * The TLB has to be flushed for all PCIDs if any of the following
1169          * (architecturally required) changes happen:
1170          * - CR4.PCIDE is changed from 1 to 0
1171          * - CR4.PGE is toggled
1172          *
1173          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174          */
1175         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178
1179         /*
1180          * The TLB has to be flushed for the current PCID if any of the
1181          * following (architecturally required) changes happen:
1182          * - CR4.SMEP is changed from 0 to 1
1183          * - CR4.PAE is toggled
1184          */
1185         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195
1196         if (!kvm_is_valid_cr4(vcpu, cr4))
1197                 return 1;
1198
1199         if (is_long_mode(vcpu)) {
1200                 if (!(cr4 & X86_CR4_PAE))
1201                         return 1;
1202                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203                         return 1;
1204         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207                 return 1;
1208
1209         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212                         return 1;
1213         }
1214
1215         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216
1217         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218
1219         return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225         struct kvm_mmu *mmu = vcpu->arch.mmu;
1226         unsigned long roots_to_free = 0;
1227         int i;
1228
1229         /*
1230          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232          * also via the emulator.  KVM's TDP page tables are not in the scope of
1233          * the invalidation, but the guest's TLB entries need to be flushed as
1234          * the CPU may have cached entries in its TLB for the target PCID.
1235          */
1236         if (unlikely(tdp_enabled)) {
1237                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238                 return;
1239         }
1240
1241         /*
1242          * If neither the current CR3 nor any of the prev_roots use the given
1243          * PCID, then nothing needs to be done here because a resync will
1244          * happen anyway before switching to any other CR3.
1245          */
1246         if (kvm_get_active_pcid(vcpu) == pcid) {
1247                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249         }
1250
1251         /*
1252          * If PCID is disabled, there is no need to free prev_roots even if the
1253          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254          * with PCIDE=0.
1255          */
1256         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257                 return;
1258
1259         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262
1263         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268         bool skip_tlb_flush = false;
1269         unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274                 pcid = cr3 & X86_CR3_PCID_MASK;
1275         }
1276 #endif
1277
1278         /* PDPTRs are always reloaded for PAE paging. */
1279         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280                 goto handle_tlb_flush;
1281
1282         /*
1283          * Do not condition the GPA check on long mode, this helper is used to
1284          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285          * the current vCPU mode is accurate.
1286          */
1287         if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1288                 return 1;
1289
1290         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291                 return 1;
1292
1293         if (cr3 != kvm_read_cr3(vcpu))
1294                 kvm_mmu_new_pgd(vcpu, cr3);
1295
1296         vcpu->arch.cr3 = cr3;
1297         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299
1300 handle_tlb_flush:
1301         /*
1302          * A load of CR3 that flushes the TLB flushes only the current PCID,
1303          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305          * and it's impossible to use a non-zero PCID when PCID is disabled,
1306          * i.e. only PCID=0 can be relevant.
1307          */
1308         if (!skip_tlb_flush)
1309                 kvm_invalidate_pcid(vcpu, pcid);
1310
1311         return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317         if (cr8 & CR8_RESERVED_BITS)
1318                 return 1;
1319         if (lapic_in_kernel(vcpu))
1320                 kvm_lapic_set_tpr(vcpu, cr8);
1321         else
1322                 vcpu->arch.cr8 = cr8;
1323         return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329         if (lapic_in_kernel(vcpu))
1330                 return kvm_lapic_get_cr8(vcpu);
1331         else
1332                 return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338         int i;
1339
1340         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1342                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343         }
1344 }
1345
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348         unsigned long dr7;
1349
1350         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351                 dr7 = vcpu->arch.guest_debug_dr7;
1352         else
1353                 dr7 = vcpu->arch.dr7;
1354         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356         if (dr7 & DR7_BP_EN_MASK)
1357                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363         u64 fixed = DR6_FIXED_1;
1364
1365         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366                 fixed |= DR6_RTM;
1367
1368         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369                 fixed |= DR6_BUS_LOCK;
1370         return fixed;
1371 }
1372
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375         size_t size = ARRAY_SIZE(vcpu->arch.db);
1376
1377         switch (dr) {
1378         case 0 ... 3:
1379                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381                         vcpu->arch.eff_db[dr] = val;
1382                 break;
1383         case 4:
1384         case 6:
1385                 if (!kvm_dr6_valid(val))
1386                         return 1; /* #GP */
1387                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388                 break;
1389         case 5:
1390         default: /* 7 */
1391                 if (!kvm_dr7_valid(val))
1392                         return 1; /* #GP */
1393                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394                 kvm_update_dr7(vcpu);
1395                 break;
1396         }
1397
1398         return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401
1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404         size_t size = ARRAY_SIZE(vcpu->arch.db);
1405
1406         switch (dr) {
1407         case 0 ... 3:
1408                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1409                 break;
1410         case 4:
1411         case 6:
1412                 *val = vcpu->arch.dr6;
1413                 break;
1414         case 5:
1415         default: /* 7 */
1416                 *val = vcpu->arch.dr7;
1417                 break;
1418         }
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424         u32 ecx = kvm_rcx_read(vcpu);
1425         u64 data;
1426
1427         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428                 kvm_inject_gp(vcpu, 0);
1429                 return 1;
1430         }
1431
1432         kvm_rax_write(vcpu, (u32)data);
1433         kvm_rdx_write(vcpu, data >> 32);
1434         return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437
1438 /*
1439  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1442  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1443  * MSRs that KVM emulates without strictly requiring host support.
1444  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1446  * msrs_to_save and emulated_msrs.
1447  */
1448
1449 static const u32 msrs_to_save_base[] = {
1450         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451         MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457         MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464         MSR_IA32_UMWAIT_CONTROL,
1465
1466         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468
1469 static const u32 msrs_to_save_pmu[] = {
1470         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474         MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475
1476         /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485
1486         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488
1489         /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494
1495         MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496         MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497         MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501                         ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503
1504 static const u32 emulated_msrs_all[] = {
1505         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507
1508 #ifdef CONFIG_KVM_HYPERV
1509         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1510         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1511         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1512         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1513         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1514         HV_X64_MSR_RESET,
1515         HV_X64_MSR_VP_INDEX,
1516         HV_X64_MSR_VP_RUNTIME,
1517         HV_X64_MSR_SCONTROL,
1518         HV_X64_MSR_STIMER0_CONFIG,
1519         HV_X64_MSR_VP_ASSIST_PAGE,
1520         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1521         HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1522         HV_X64_MSR_SYNDBG_OPTIONS,
1523         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1524         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1525         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1526 #endif
1527
1528         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1529         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1530
1531         MSR_IA32_TSC_ADJUST,
1532         MSR_IA32_TSC_DEADLINE,
1533         MSR_IA32_ARCH_CAPABILITIES,
1534         MSR_IA32_PERF_CAPABILITIES,
1535         MSR_IA32_MISC_ENABLE,
1536         MSR_IA32_MCG_STATUS,
1537         MSR_IA32_MCG_CTL,
1538         MSR_IA32_MCG_EXT_CTL,
1539         MSR_IA32_SMBASE,
1540         MSR_SMI_COUNT,
1541         MSR_PLATFORM_INFO,
1542         MSR_MISC_FEATURES_ENABLES,
1543         MSR_AMD64_VIRT_SPEC_CTRL,
1544         MSR_AMD64_TSC_RATIO,
1545         MSR_IA32_POWER_CTL,
1546         MSR_IA32_UCODE_REV,
1547
1548         /*
1549          * KVM always supports the "true" VMX control MSRs, even if the host
1550          * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1551          * doesn't strictly require them to exist in the host (ignoring that
1552          * KVM would refuse to load in the first place if the core set of MSRs
1553          * aren't supported).
1554          */
1555         MSR_IA32_VMX_BASIC,
1556         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1557         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1558         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1559         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1560         MSR_IA32_VMX_MISC,
1561         MSR_IA32_VMX_CR0_FIXED0,
1562         MSR_IA32_VMX_CR4_FIXED0,
1563         MSR_IA32_VMX_VMCS_ENUM,
1564         MSR_IA32_VMX_PROCBASED_CTLS2,
1565         MSR_IA32_VMX_EPT_VPID_CAP,
1566         MSR_IA32_VMX_VMFUNC,
1567
1568         MSR_K7_HWCR,
1569         MSR_KVM_POLL_CONTROL,
1570 };
1571
1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1573 static unsigned num_emulated_msrs;
1574
1575 /*
1576  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1577  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1578  * feature MSRs, but are handled separately to allow expedited lookups.
1579  */
1580 static const u32 msr_based_features_all_except_vmx[] = {
1581         MSR_AMD64_DE_CFG,
1582         MSR_IA32_UCODE_REV,
1583         MSR_IA32_ARCH_CAPABILITIES,
1584         MSR_IA32_PERF_CAPABILITIES,
1585 };
1586
1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1588                               (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1589 static unsigned int num_msr_based_features;
1590
1591 /*
1592  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1593  * patch, are immutable once the vCPU model is defined.
1594  */
1595 static bool kvm_is_immutable_feature_msr(u32 msr)
1596 {
1597         int i;
1598
1599         if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1600                 return true;
1601
1602         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1603                 if (msr == msr_based_features_all_except_vmx[i])
1604                         return msr != MSR_IA32_UCODE_REV;
1605         }
1606
1607         return false;
1608 }
1609
1610 /*
1611  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1612  * does not yet virtualize. These include:
1613  *   10 - MISC_PACKAGE_CTRLS
1614  *   11 - ENERGY_FILTERING_CTL
1615  *   12 - DOITM
1616  *   18 - FB_CLEAR_CTRL
1617  *   21 - XAPIC_DISABLE_STATUS
1618  *   23 - OVERCLOCKING_STATUS
1619  */
1620
1621 #define KVM_SUPPORTED_ARCH_CAP \
1622         (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1623          ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1624          ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1625          ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1626          ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1627
1628 static u64 kvm_get_arch_capabilities(void)
1629 {
1630         u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1631
1632         /*
1633          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1634          * the nested hypervisor runs with NX huge pages.  If it is not,
1635          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1636          * L1 guests, so it need not worry about its own (L2) guests.
1637          */
1638         data |= ARCH_CAP_PSCHANGE_MC_NO;
1639
1640         /*
1641          * If we're doing cache flushes (either "always" or "cond")
1642          * we will do one whenever the guest does a vmlaunch/vmresume.
1643          * If an outer hypervisor is doing the cache flush for us
1644          * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1645          * capability to the guest too, and if EPT is disabled we're not
1646          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1647          * require a nested hypervisor to do a flush of its own.
1648          */
1649         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1650                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1651
1652         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1653                 data |= ARCH_CAP_RDCL_NO;
1654         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1655                 data |= ARCH_CAP_SSB_NO;
1656         if (!boot_cpu_has_bug(X86_BUG_MDS))
1657                 data |= ARCH_CAP_MDS_NO;
1658
1659         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1660                 /*
1661                  * If RTM=0 because the kernel has disabled TSX, the host might
1662                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1663                  * and therefore knows that there cannot be TAA) but keep
1664                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1665                  * and we want to allow migrating those guests to tsx=off hosts.
1666                  */
1667                 data &= ~ARCH_CAP_TAA_NO;
1668         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1669                 data |= ARCH_CAP_TAA_NO;
1670         } else {
1671                 /*
1672                  * Nothing to do here; we emulate TSX_CTRL if present on the
1673                  * host so the guest can choose between disabling TSX or
1674                  * using VERW to clear CPU buffers.
1675                  */
1676         }
1677
1678         if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1679                 data |= ARCH_CAP_GDS_NO;
1680
1681         return data;
1682 }
1683
1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1685 {
1686         switch (msr->index) {
1687         case MSR_IA32_ARCH_CAPABILITIES:
1688                 msr->data = kvm_get_arch_capabilities();
1689                 break;
1690         case MSR_IA32_PERF_CAPABILITIES:
1691                 msr->data = kvm_caps.supported_perf_cap;
1692                 break;
1693         case MSR_IA32_UCODE_REV:
1694                 rdmsrl_safe(msr->index, &msr->data);
1695                 break;
1696         default:
1697                 return static_call(kvm_x86_get_msr_feature)(msr);
1698         }
1699         return 0;
1700 }
1701
1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1703 {
1704         struct kvm_msr_entry msr;
1705         int r;
1706
1707         msr.index = index;
1708         r = kvm_get_msr_feature(&msr);
1709
1710         if (r == KVM_MSR_RET_INVALID) {
1711                 /* Unconditionally clear the output for simplicity */
1712                 *data = 0;
1713                 if (kvm_msr_ignored_check(index, 0, false))
1714                         r = 0;
1715         }
1716
1717         if (r)
1718                 return r;
1719
1720         *data = msr.data;
1721
1722         return 0;
1723 }
1724
1725 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1726 {
1727         if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1728                 return false;
1729
1730         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1731                 return false;
1732
1733         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1734                 return false;
1735
1736         if (efer & (EFER_LME | EFER_LMA) &&
1737             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1738                 return false;
1739
1740         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1741                 return false;
1742
1743         return true;
1744
1745 }
1746 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1747 {
1748         if (efer & efer_reserved_bits)
1749                 return false;
1750
1751         return __kvm_valid_efer(vcpu, efer);
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1754
1755 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1756 {
1757         u64 old_efer = vcpu->arch.efer;
1758         u64 efer = msr_info->data;
1759         int r;
1760
1761         if (efer & efer_reserved_bits)
1762                 return 1;
1763
1764         if (!msr_info->host_initiated) {
1765                 if (!__kvm_valid_efer(vcpu, efer))
1766                         return 1;
1767
1768                 if (is_paging(vcpu) &&
1769                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1770                         return 1;
1771         }
1772
1773         efer &= ~EFER_LMA;
1774         efer |= vcpu->arch.efer & EFER_LMA;
1775
1776         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1777         if (r) {
1778                 WARN_ON(r > 0);
1779                 return r;
1780         }
1781
1782         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1783                 kvm_mmu_reset_context(vcpu);
1784
1785         return 0;
1786 }
1787
1788 void kvm_enable_efer_bits(u64 mask)
1789 {
1790        efer_reserved_bits &= ~mask;
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1793
1794 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1795 {
1796         struct kvm_x86_msr_filter *msr_filter;
1797         struct msr_bitmap_range *ranges;
1798         struct kvm *kvm = vcpu->kvm;
1799         bool allowed;
1800         int idx;
1801         u32 i;
1802
1803         /* x2APIC MSRs do not support filtering. */
1804         if (index >= 0x800 && index <= 0x8ff)
1805                 return true;
1806
1807         idx = srcu_read_lock(&kvm->srcu);
1808
1809         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1810         if (!msr_filter) {
1811                 allowed = true;
1812                 goto out;
1813         }
1814
1815         allowed = msr_filter->default_allow;
1816         ranges = msr_filter->ranges;
1817
1818         for (i = 0; i < msr_filter->count; i++) {
1819                 u32 start = ranges[i].base;
1820                 u32 end = start + ranges[i].nmsrs;
1821                 u32 flags = ranges[i].flags;
1822                 unsigned long *bitmap = ranges[i].bitmap;
1823
1824                 if ((index >= start) && (index < end) && (flags & type)) {
1825                         allowed = test_bit(index - start, bitmap);
1826                         break;
1827                 }
1828         }
1829
1830 out:
1831         srcu_read_unlock(&kvm->srcu, idx);
1832
1833         return allowed;
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1836
1837 /*
1838  * Write @data into the MSR specified by @index.  Select MSR specific fault
1839  * checks are bypassed if @host_initiated is %true.
1840  * Returns 0 on success, non-0 otherwise.
1841  * Assumes vcpu_load() was already called.
1842  */
1843 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1844                          bool host_initiated)
1845 {
1846         struct msr_data msr;
1847
1848         switch (index) {
1849         case MSR_FS_BASE:
1850         case MSR_GS_BASE:
1851         case MSR_KERNEL_GS_BASE:
1852         case MSR_CSTAR:
1853         case MSR_LSTAR:
1854                 if (is_noncanonical_address(data, vcpu))
1855                         return 1;
1856                 break;
1857         case MSR_IA32_SYSENTER_EIP:
1858         case MSR_IA32_SYSENTER_ESP:
1859                 /*
1860                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1861                  * non-canonical address is written on Intel but not on
1862                  * AMD (which ignores the top 32-bits, because it does
1863                  * not implement 64-bit SYSENTER).
1864                  *
1865                  * 64-bit code should hence be able to write a non-canonical
1866                  * value on AMD.  Making the address canonical ensures that
1867                  * vmentry does not fail on Intel after writing a non-canonical
1868                  * value, and that something deterministic happens if the guest
1869                  * invokes 64-bit SYSENTER.
1870                  */
1871                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1872                 break;
1873         case MSR_TSC_AUX:
1874                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1875                         return 1;
1876
1877                 if (!host_initiated &&
1878                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1879                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1880                         return 1;
1881
1882                 /*
1883                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1884                  * incomplete and conflicting architectural behavior.  Current
1885                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1886                  * reserved and always read as zeros.  Enforce Intel's reserved
1887                  * bits check if and only if the guest CPU is Intel, and clear
1888                  * the bits in all other cases.  This ensures cross-vendor
1889                  * migration will provide consistent behavior for the guest.
1890                  */
1891                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1892                         return 1;
1893
1894                 data = (u32)data;
1895                 break;
1896         }
1897
1898         msr.data = data;
1899         msr.index = index;
1900         msr.host_initiated = host_initiated;
1901
1902         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1903 }
1904
1905 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1906                                      u32 index, u64 data, bool host_initiated)
1907 {
1908         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1909
1910         if (ret == KVM_MSR_RET_INVALID)
1911                 if (kvm_msr_ignored_check(index, data, true))
1912                         ret = 0;
1913
1914         return ret;
1915 }
1916
1917 /*
1918  * Read the MSR specified by @index into @data.  Select MSR specific fault
1919  * checks are bypassed if @host_initiated is %true.
1920  * Returns 0 on success, non-0 otherwise.
1921  * Assumes vcpu_load() was already called.
1922  */
1923 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1924                   bool host_initiated)
1925 {
1926         struct msr_data msr;
1927         int ret;
1928
1929         switch (index) {
1930         case MSR_TSC_AUX:
1931                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1932                         return 1;
1933
1934                 if (!host_initiated &&
1935                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1936                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1937                         return 1;
1938                 break;
1939         }
1940
1941         msr.index = index;
1942         msr.host_initiated = host_initiated;
1943
1944         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1945         if (!ret)
1946                 *data = msr.data;
1947         return ret;
1948 }
1949
1950 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1951                                      u32 index, u64 *data, bool host_initiated)
1952 {
1953         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1954
1955         if (ret == KVM_MSR_RET_INVALID) {
1956                 /* Unconditionally clear *data for simplicity */
1957                 *data = 0;
1958                 if (kvm_msr_ignored_check(index, 0, false))
1959                         ret = 0;
1960         }
1961
1962         return ret;
1963 }
1964
1965 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1966 {
1967         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1968                 return KVM_MSR_RET_FILTERED;
1969         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1970 }
1971
1972 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1973 {
1974         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1975                 return KVM_MSR_RET_FILTERED;
1976         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1977 }
1978
1979 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1980 {
1981         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_get_msr);
1984
1985 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1986 {
1987         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_set_msr);
1990
1991 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1992 {
1993         if (!vcpu->run->msr.error) {
1994                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1995                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1996         }
1997 }
1998
1999 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2000 {
2001         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2002 }
2003
2004 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2005 {
2006         complete_userspace_rdmsr(vcpu);
2007         return complete_emulated_msr_access(vcpu);
2008 }
2009
2010 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2011 {
2012         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2013 }
2014
2015 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2016 {
2017         complete_userspace_rdmsr(vcpu);
2018         return complete_fast_msr_access(vcpu);
2019 }
2020
2021 static u64 kvm_msr_reason(int r)
2022 {
2023         switch (r) {
2024         case KVM_MSR_RET_INVALID:
2025                 return KVM_MSR_EXIT_REASON_UNKNOWN;
2026         case KVM_MSR_RET_FILTERED:
2027                 return KVM_MSR_EXIT_REASON_FILTER;
2028         default:
2029                 return KVM_MSR_EXIT_REASON_INVAL;
2030         }
2031 }
2032
2033 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2034                               u32 exit_reason, u64 data,
2035                               int (*completion)(struct kvm_vcpu *vcpu),
2036                               int r)
2037 {
2038         u64 msr_reason = kvm_msr_reason(r);
2039
2040         /* Check if the user wanted to know about this MSR fault */
2041         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2042                 return 0;
2043
2044         vcpu->run->exit_reason = exit_reason;
2045         vcpu->run->msr.error = 0;
2046         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2047         vcpu->run->msr.reason = msr_reason;
2048         vcpu->run->msr.index = index;
2049         vcpu->run->msr.data = data;
2050         vcpu->arch.complete_userspace_io = completion;
2051
2052         return 1;
2053 }
2054
2055 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2056 {
2057         u32 ecx = kvm_rcx_read(vcpu);
2058         u64 data;
2059         int r;
2060
2061         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2062
2063         if (!r) {
2064                 trace_kvm_msr_read(ecx, data);
2065
2066                 kvm_rax_write(vcpu, data & -1u);
2067                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2068         } else {
2069                 /* MSR read failed? See if we should ask user space */
2070                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2071                                        complete_fast_rdmsr, r))
2072                         return 0;
2073                 trace_kvm_msr_read_ex(ecx);
2074         }
2075
2076         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2079
2080 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2081 {
2082         u32 ecx = kvm_rcx_read(vcpu);
2083         u64 data = kvm_read_edx_eax(vcpu);
2084         int r;
2085
2086         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2087
2088         if (!r) {
2089                 trace_kvm_msr_write(ecx, data);
2090         } else {
2091                 /* MSR write failed? See if we should ask user space */
2092                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2093                                        complete_fast_msr_access, r))
2094                         return 0;
2095                 /* Signal all other negative errors to userspace */
2096                 if (r < 0)
2097                         return r;
2098                 trace_kvm_msr_write_ex(ecx, data);
2099         }
2100
2101         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2102 }
2103 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2104
2105 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2106 {
2107         return kvm_skip_emulated_instruction(vcpu);
2108 }
2109
2110 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2111 {
2112         /* Treat an INVD instruction as a NOP and just skip it. */
2113         return kvm_emulate_as_nop(vcpu);
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2116
2117 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2118 {
2119         kvm_queue_exception(vcpu, UD_VECTOR);
2120         return 1;
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2123
2124
2125 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2126 {
2127         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2128             !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2129                 return kvm_handle_invalid_op(vcpu);
2130
2131         pr_warn_once("%s instruction emulated as NOP!\n", insn);
2132         return kvm_emulate_as_nop(vcpu);
2133 }
2134 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2135 {
2136         return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2137 }
2138 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2139
2140 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2141 {
2142         return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2143 }
2144 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2145
2146 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2147 {
2148         xfer_to_guest_mode_prepare();
2149         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2150                 xfer_to_guest_mode_work_pending();
2151 }
2152
2153 /*
2154  * The fast path for frequent and performance sensitive wrmsr emulation,
2155  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2156  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2157  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2158  * other cases which must be called after interrupts are enabled on the host.
2159  */
2160 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2161 {
2162         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2163                 return 1;
2164
2165         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2166             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2167             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2168             ((u32)(data >> 32) != X2APIC_BROADCAST))
2169                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2170
2171         return 1;
2172 }
2173
2174 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2175 {
2176         if (!kvm_can_use_hv_timer(vcpu))
2177                 return 1;
2178
2179         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2180         return 0;
2181 }
2182
2183 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2184 {
2185         u32 msr = kvm_rcx_read(vcpu);
2186         u64 data;
2187         fastpath_t ret = EXIT_FASTPATH_NONE;
2188
2189         kvm_vcpu_srcu_read_lock(vcpu);
2190
2191         switch (msr) {
2192         case APIC_BASE_MSR + (APIC_ICR >> 4):
2193                 data = kvm_read_edx_eax(vcpu);
2194                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2195                         kvm_skip_emulated_instruction(vcpu);
2196                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2197                 }
2198                 break;
2199         case MSR_IA32_TSC_DEADLINE:
2200                 data = kvm_read_edx_eax(vcpu);
2201                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2202                         kvm_skip_emulated_instruction(vcpu);
2203                         ret = EXIT_FASTPATH_REENTER_GUEST;
2204                 }
2205                 break;
2206         default:
2207                 break;
2208         }
2209
2210         if (ret != EXIT_FASTPATH_NONE)
2211                 trace_kvm_msr_write(msr, data);
2212
2213         kvm_vcpu_srcu_read_unlock(vcpu);
2214
2215         return ret;
2216 }
2217 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2218
2219 /*
2220  * Adapt set_msr() to msr_io()'s calling convention
2221  */
2222 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2223 {
2224         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2225 }
2226
2227 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2228 {
2229         u64 val;
2230
2231         /*
2232          * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2233          * not support modifying the guest vCPU model on the fly, e.g. changing
2234          * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2235          * writes of the same value, e.g. to allow userspace to blindly stuff
2236          * all MSRs when emulating RESET.
2237          */
2238         if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2239                 if (do_get_msr(vcpu, index, &val) || *data != val)
2240                         return -EINVAL;
2241
2242                 return 0;
2243         }
2244
2245         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2246 }
2247
2248 #ifdef CONFIG_X86_64
2249 struct pvclock_clock {
2250         int vclock_mode;
2251         u64 cycle_last;
2252         u64 mask;
2253         u32 mult;
2254         u32 shift;
2255         u64 base_cycles;
2256         u64 offset;
2257 };
2258
2259 struct pvclock_gtod_data {
2260         seqcount_t      seq;
2261
2262         struct pvclock_clock clock; /* extract of a clocksource struct */
2263         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2264
2265         ktime_t         offs_boot;
2266         u64             wall_time_sec;
2267 };
2268
2269 static struct pvclock_gtod_data pvclock_gtod_data;
2270
2271 static void update_pvclock_gtod(struct timekeeper *tk)
2272 {
2273         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2274
2275         write_seqcount_begin(&vdata->seq);
2276
2277         /* copy pvclock gtod data */
2278         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2279         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2280         vdata->clock.mask               = tk->tkr_mono.mask;
2281         vdata->clock.mult               = tk->tkr_mono.mult;
2282         vdata->clock.shift              = tk->tkr_mono.shift;
2283         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2284         vdata->clock.offset             = tk->tkr_mono.base;
2285
2286         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2287         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2288         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2289         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2290         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2291         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2292         vdata->raw_clock.offset         = tk->tkr_raw.base;
2293
2294         vdata->wall_time_sec            = tk->xtime_sec;
2295
2296         vdata->offs_boot                = tk->offs_boot;
2297
2298         write_seqcount_end(&vdata->seq);
2299 }
2300
2301 static s64 get_kvmclock_base_ns(void)
2302 {
2303         /* Count up from boot time, but with the frequency of the raw clock.  */
2304         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2305 }
2306 #else
2307 static s64 get_kvmclock_base_ns(void)
2308 {
2309         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2310         return ktime_get_boottime_ns();
2311 }
2312 #endif
2313
2314 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2315 {
2316         int version;
2317         int r;
2318         struct pvclock_wall_clock wc;
2319         u32 wc_sec_hi;
2320         u64 wall_nsec;
2321
2322         if (!wall_clock)
2323                 return;
2324
2325         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2326         if (r)
2327                 return;
2328
2329         if (version & 1)
2330                 ++version;  /* first time write, random junk */
2331
2332         ++version;
2333
2334         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2335                 return;
2336
2337         wall_nsec = kvm_get_wall_clock_epoch(kvm);
2338
2339         wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2340         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2341         wc.version = version;
2342
2343         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2344
2345         if (sec_hi_ofs) {
2346                 wc_sec_hi = wall_nsec >> 32;
2347                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2348                                 &wc_sec_hi, sizeof(wc_sec_hi));
2349         }
2350
2351         version++;
2352         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2353 }
2354
2355 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2356                                   bool old_msr, bool host_initiated)
2357 {
2358         struct kvm_arch *ka = &vcpu->kvm->arch;
2359
2360         if (vcpu->vcpu_id == 0 && !host_initiated) {
2361                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2362                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2363
2364                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2365         }
2366
2367         vcpu->arch.time = system_time;
2368         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2369
2370         /* we verify if the enable bit is set... */
2371         if (system_time & 1)
2372                 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2373                                  sizeof(struct pvclock_vcpu_time_info));
2374         else
2375                 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2376
2377         return;
2378 }
2379
2380 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2381 {
2382         do_shl32_div32(dividend, divisor);
2383         return dividend;
2384 }
2385
2386 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2387                                s8 *pshift, u32 *pmultiplier)
2388 {
2389         uint64_t scaled64;
2390         int32_t  shift = 0;
2391         uint64_t tps64;
2392         uint32_t tps32;
2393
2394         tps64 = base_hz;
2395         scaled64 = scaled_hz;
2396         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2397                 tps64 >>= 1;
2398                 shift--;
2399         }
2400
2401         tps32 = (uint32_t)tps64;
2402         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2403                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2404                         scaled64 >>= 1;
2405                 else
2406                         tps32 <<= 1;
2407                 shift++;
2408         }
2409
2410         *pshift = shift;
2411         *pmultiplier = div_frac(scaled64, tps32);
2412 }
2413
2414 #ifdef CONFIG_X86_64
2415 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2416 #endif
2417
2418 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2419 static unsigned long max_tsc_khz;
2420
2421 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2422 {
2423         u64 v = (u64)khz * (1000000 + ppm);
2424         do_div(v, 1000000);
2425         return v;
2426 }
2427
2428 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2429
2430 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2431 {
2432         u64 ratio;
2433
2434         /* Guest TSC same frequency as host TSC? */
2435         if (!scale) {
2436                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2437                 return 0;
2438         }
2439
2440         /* TSC scaling supported? */
2441         if (!kvm_caps.has_tsc_control) {
2442                 if (user_tsc_khz > tsc_khz) {
2443                         vcpu->arch.tsc_catchup = 1;
2444                         vcpu->arch.tsc_always_catchup = 1;
2445                         return 0;
2446                 } else {
2447                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2448                         return -1;
2449                 }
2450         }
2451
2452         /* TSC scaling required  - calculate ratio */
2453         ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2454                                 user_tsc_khz, tsc_khz);
2455
2456         if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2457                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2458                                     user_tsc_khz);
2459                 return -1;
2460         }
2461
2462         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2463         return 0;
2464 }
2465
2466 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2467 {
2468         u32 thresh_lo, thresh_hi;
2469         int use_scaling = 0;
2470
2471         /* tsc_khz can be zero if TSC calibration fails */
2472         if (user_tsc_khz == 0) {
2473                 /* set tsc_scaling_ratio to a safe value */
2474                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2475                 return -1;
2476         }
2477
2478         /* Compute a scale to convert nanoseconds in TSC cycles */
2479         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2480                            &vcpu->arch.virtual_tsc_shift,
2481                            &vcpu->arch.virtual_tsc_mult);
2482         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2483
2484         /*
2485          * Compute the variation in TSC rate which is acceptable
2486          * within the range of tolerance and decide if the
2487          * rate being applied is within that bounds of the hardware
2488          * rate.  If so, no scaling or compensation need be done.
2489          */
2490         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2491         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2492         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2493                 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2494                          user_tsc_khz, thresh_lo, thresh_hi);
2495                 use_scaling = 1;
2496         }
2497         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2498 }
2499
2500 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2501 {
2502         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2503                                       vcpu->arch.virtual_tsc_mult,
2504                                       vcpu->arch.virtual_tsc_shift);
2505         tsc += vcpu->arch.this_tsc_write;
2506         return tsc;
2507 }
2508
2509 #ifdef CONFIG_X86_64
2510 static inline int gtod_is_based_on_tsc(int mode)
2511 {
2512         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2513 }
2514 #endif
2515
2516 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2517 {
2518 #ifdef CONFIG_X86_64
2519         struct kvm_arch *ka = &vcpu->kvm->arch;
2520         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2521
2522         /*
2523          * To use the masterclock, the host clocksource must be based on TSC
2524          * and all vCPUs must have matching TSCs.  Note, the count for matching
2525          * vCPUs doesn't include the reference vCPU, hence "+1".
2526          */
2527         bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2528                                  atomic_read(&vcpu->kvm->online_vcpus)) &&
2529                                 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2530
2531         /*
2532          * Request a masterclock update if the masterclock needs to be toggled
2533          * on/off, or when starting a new generation and the masterclock is
2534          * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2535          * taken _after_ the new generation is created).
2536          */
2537         if ((ka->use_master_clock && new_generation) ||
2538             (ka->use_master_clock != use_master_clock))
2539                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2540
2541         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2542                             atomic_read(&vcpu->kvm->online_vcpus),
2543                             ka->use_master_clock, gtod->clock.vclock_mode);
2544 #endif
2545 }
2546
2547 /*
2548  * Multiply tsc by a fixed point number represented by ratio.
2549  *
2550  * The most significant 64-N bits (mult) of ratio represent the
2551  * integral part of the fixed point number; the remaining N bits
2552  * (frac) represent the fractional part, ie. ratio represents a fixed
2553  * point number (mult + frac * 2^(-N)).
2554  *
2555  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2556  */
2557 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2558 {
2559         return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2560 }
2561
2562 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2563 {
2564         u64 _tsc = tsc;
2565
2566         if (ratio != kvm_caps.default_tsc_scaling_ratio)
2567                 _tsc = __scale_tsc(ratio, tsc);
2568
2569         return _tsc;
2570 }
2571
2572 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2573 {
2574         u64 tsc;
2575
2576         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2577
2578         return target_tsc - tsc;
2579 }
2580
2581 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2582 {
2583         return vcpu->arch.l1_tsc_offset +
2584                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2585 }
2586 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2587
2588 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2589 {
2590         u64 nested_offset;
2591
2592         if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2593                 nested_offset = l1_offset;
2594         else
2595                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2596                                                 kvm_caps.tsc_scaling_ratio_frac_bits);
2597
2598         nested_offset += l2_offset;
2599         return nested_offset;
2600 }
2601 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2602
2603 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2604 {
2605         if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2606                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2607                                        kvm_caps.tsc_scaling_ratio_frac_bits);
2608
2609         return l1_multiplier;
2610 }
2611 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2612
2613 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2614 {
2615         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2616                                    vcpu->arch.l1_tsc_offset,
2617                                    l1_offset);
2618
2619         vcpu->arch.l1_tsc_offset = l1_offset;
2620
2621         /*
2622          * If we are here because L1 chose not to trap WRMSR to TSC then
2623          * according to the spec this should set L1's TSC (as opposed to
2624          * setting L1's offset for L2).
2625          */
2626         if (is_guest_mode(vcpu))
2627                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2628                         l1_offset,
2629                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2630                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2631         else
2632                 vcpu->arch.tsc_offset = l1_offset;
2633
2634         static_call(kvm_x86_write_tsc_offset)(vcpu);
2635 }
2636
2637 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2638 {
2639         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2640
2641         /* Userspace is changing the multiplier while L2 is active */
2642         if (is_guest_mode(vcpu))
2643                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2644                         l1_multiplier,
2645                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2646         else
2647                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2648
2649         if (kvm_caps.has_tsc_control)
2650                 static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2651 }
2652
2653 static inline bool kvm_check_tsc_unstable(void)
2654 {
2655 #ifdef CONFIG_X86_64
2656         /*
2657          * TSC is marked unstable when we're running on Hyper-V,
2658          * 'TSC page' clocksource is good.
2659          */
2660         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2661                 return false;
2662 #endif
2663         return check_tsc_unstable();
2664 }
2665
2666 /*
2667  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2668  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2669  * participates in.
2670  */
2671 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2672                                   u64 ns, bool matched)
2673 {
2674         struct kvm *kvm = vcpu->kvm;
2675
2676         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2677
2678         /*
2679          * We also track th most recent recorded KHZ, write and time to
2680          * allow the matching interval to be extended at each write.
2681          */
2682         kvm->arch.last_tsc_nsec = ns;
2683         kvm->arch.last_tsc_write = tsc;
2684         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2685         kvm->arch.last_tsc_offset = offset;
2686
2687         vcpu->arch.last_guest_tsc = tsc;
2688
2689         kvm_vcpu_write_tsc_offset(vcpu, offset);
2690
2691         if (!matched) {
2692                 /*
2693                  * We split periods of matched TSC writes into generations.
2694                  * For each generation, we track the original measured
2695                  * nanosecond time, offset, and write, so if TSCs are in
2696                  * sync, we can match exact offset, and if not, we can match
2697                  * exact software computation in compute_guest_tsc()
2698                  *
2699                  * These values are tracked in kvm->arch.cur_xxx variables.
2700                  */
2701                 kvm->arch.cur_tsc_generation++;
2702                 kvm->arch.cur_tsc_nsec = ns;
2703                 kvm->arch.cur_tsc_write = tsc;
2704                 kvm->arch.cur_tsc_offset = offset;
2705                 kvm->arch.nr_vcpus_matched_tsc = 0;
2706         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2707                 kvm->arch.nr_vcpus_matched_tsc++;
2708         }
2709
2710         /* Keep track of which generation this VCPU has synchronized to */
2711         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2712         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2713         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2714
2715         kvm_track_tsc_matching(vcpu, !matched);
2716 }
2717
2718 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2719 {
2720         u64 data = user_value ? *user_value : 0;
2721         struct kvm *kvm = vcpu->kvm;
2722         u64 offset, ns, elapsed;
2723         unsigned long flags;
2724         bool matched = false;
2725         bool synchronizing = false;
2726
2727         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2728         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2729         ns = get_kvmclock_base_ns();
2730         elapsed = ns - kvm->arch.last_tsc_nsec;
2731
2732         if (vcpu->arch.virtual_tsc_khz) {
2733                 if (data == 0) {
2734                         /*
2735                          * Force synchronization when creating a vCPU, or when
2736                          * userspace explicitly writes a zero value.
2737                          */
2738                         synchronizing = true;
2739                 } else if (kvm->arch.user_set_tsc) {
2740                         u64 tsc_exp = kvm->arch.last_tsc_write +
2741                                                 nsec_to_cycles(vcpu, elapsed);
2742                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2743                         /*
2744                          * Here lies UAPI baggage: when a user-initiated TSC write has
2745                          * a small delta (1 second) of virtual cycle time against the
2746                          * previously set vCPU, we assume that they were intended to be
2747                          * in sync and the delta was only due to the racy nature of the
2748                          * legacy API.
2749                          *
2750                          * This trick falls down when restoring a guest which genuinely
2751                          * has been running for less time than the 1 second of imprecision
2752                          * which we allow for in the legacy API. In this case, the first
2753                          * value written by userspace (on any vCPU) should not be subject
2754                          * to this 'correction' to make it sync up with values that only
2755                          * come from the kernel's default vCPU creation. Make the 1-second
2756                          * slop hack only trigger if the user_set_tsc flag is already set.
2757                          */
2758                         synchronizing = data < tsc_exp + tsc_hz &&
2759                                         data + tsc_hz > tsc_exp;
2760                 }
2761         }
2762
2763         if (user_value)
2764                 kvm->arch.user_set_tsc = true;
2765
2766         /*
2767          * For a reliable TSC, we can match TSC offsets, and for an unstable
2768          * TSC, we add elapsed time in this computation.  We could let the
2769          * compensation code attempt to catch up if we fall behind, but
2770          * it's better to try to match offsets from the beginning.
2771          */
2772         if (synchronizing &&
2773             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2774                 if (!kvm_check_tsc_unstable()) {
2775                         offset = kvm->arch.cur_tsc_offset;
2776                 } else {
2777                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2778                         data += delta;
2779                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2780                 }
2781                 matched = true;
2782         }
2783
2784         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2785         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2786 }
2787
2788 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2789                                            s64 adjustment)
2790 {
2791         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2792         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2793 }
2794
2795 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2796 {
2797         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2798                 WARN_ON(adjustment < 0);
2799         adjustment = kvm_scale_tsc((u64) adjustment,
2800                                    vcpu->arch.l1_tsc_scaling_ratio);
2801         adjust_tsc_offset_guest(vcpu, adjustment);
2802 }
2803
2804 #ifdef CONFIG_X86_64
2805
2806 static u64 read_tsc(void)
2807 {
2808         u64 ret = (u64)rdtsc_ordered();
2809         u64 last = pvclock_gtod_data.clock.cycle_last;
2810
2811         if (likely(ret >= last))
2812                 return ret;
2813
2814         /*
2815          * GCC likes to generate cmov here, but this branch is extremely
2816          * predictable (it's just a function of time and the likely is
2817          * very likely) and there's a data dependence, so force GCC
2818          * to generate a branch instead.  I don't barrier() because
2819          * we don't actually need a barrier, and if this function
2820          * ever gets inlined it will generate worse code.
2821          */
2822         asm volatile ("");
2823         return last;
2824 }
2825
2826 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2827                           int *mode)
2828 {
2829         u64 tsc_pg_val;
2830         long v;
2831
2832         switch (clock->vclock_mode) {
2833         case VDSO_CLOCKMODE_HVCLOCK:
2834                 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2835                                          tsc_timestamp, &tsc_pg_val)) {
2836                         /* TSC page valid */
2837                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2838                         v = (tsc_pg_val - clock->cycle_last) &
2839                                 clock->mask;
2840                 } else {
2841                         /* TSC page invalid */
2842                         *mode = VDSO_CLOCKMODE_NONE;
2843                 }
2844                 break;
2845         case VDSO_CLOCKMODE_TSC:
2846                 *mode = VDSO_CLOCKMODE_TSC;
2847                 *tsc_timestamp = read_tsc();
2848                 v = (*tsc_timestamp - clock->cycle_last) &
2849                         clock->mask;
2850                 break;
2851         default:
2852                 *mode = VDSO_CLOCKMODE_NONE;
2853         }
2854
2855         if (*mode == VDSO_CLOCKMODE_NONE)
2856                 *tsc_timestamp = v = 0;
2857
2858         return v * clock->mult;
2859 }
2860
2861 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2862 {
2863         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2864         unsigned long seq;
2865         int mode;
2866         u64 ns;
2867
2868         do {
2869                 seq = read_seqcount_begin(&gtod->seq);
2870                 ns = gtod->raw_clock.base_cycles;
2871                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2872                 ns >>= gtod->raw_clock.shift;
2873                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2874         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2875         *t = ns;
2876
2877         return mode;
2878 }
2879
2880 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2881 {
2882         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2883         unsigned long seq;
2884         int mode;
2885         u64 ns;
2886
2887         do {
2888                 seq = read_seqcount_begin(&gtod->seq);
2889                 ts->tv_sec = gtod->wall_time_sec;
2890                 ns = gtod->clock.base_cycles;
2891                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2892                 ns >>= gtod->clock.shift;
2893         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2894
2895         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2896         ts->tv_nsec = ns;
2897
2898         return mode;
2899 }
2900
2901 /* returns true if host is using TSC based clocksource */
2902 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2903 {
2904         /* checked again under seqlock below */
2905         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2906                 return false;
2907
2908         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2909                                                       tsc_timestamp));
2910 }
2911
2912 /* returns true if host is using TSC based clocksource */
2913 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2914                                            u64 *tsc_timestamp)
2915 {
2916         /* checked again under seqlock below */
2917         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2918                 return false;
2919
2920         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2921 }
2922 #endif
2923
2924 /*
2925  *
2926  * Assuming a stable TSC across physical CPUS, and a stable TSC
2927  * across virtual CPUs, the following condition is possible.
2928  * Each numbered line represents an event visible to both
2929  * CPUs at the next numbered event.
2930  *
2931  * "timespecX" represents host monotonic time. "tscX" represents
2932  * RDTSC value.
2933  *
2934  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2935  *
2936  * 1.  read timespec0,tsc0
2937  * 2.                                   | timespec1 = timespec0 + N
2938  *                                      | tsc1 = tsc0 + M
2939  * 3. transition to guest               | transition to guest
2940  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2941  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2942  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2943  *
2944  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2945  *
2946  *      - ret0 < ret1
2947  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2948  *              ...
2949  *      - 0 < N - M => M < N
2950  *
2951  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2952  * always the case (the difference between two distinct xtime instances
2953  * might be smaller then the difference between corresponding TSC reads,
2954  * when updating guest vcpus pvclock areas).
2955  *
2956  * To avoid that problem, do not allow visibility of distinct
2957  * system_timestamp/tsc_timestamp values simultaneously: use a master
2958  * copy of host monotonic time values. Update that master copy
2959  * in lockstep.
2960  *
2961  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2962  *
2963  */
2964
2965 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2966 {
2967 #ifdef CONFIG_X86_64
2968         struct kvm_arch *ka = &kvm->arch;
2969         int vclock_mode;
2970         bool host_tsc_clocksource, vcpus_matched;
2971
2972         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2973         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2974                         atomic_read(&kvm->online_vcpus));
2975
2976         /*
2977          * If the host uses TSC clock, then passthrough TSC as stable
2978          * to the guest.
2979          */
2980         host_tsc_clocksource = kvm_get_time_and_clockread(
2981                                         &ka->master_kernel_ns,
2982                                         &ka->master_cycle_now);
2983
2984         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2985                                 && !ka->backwards_tsc_observed
2986                                 && !ka->boot_vcpu_runs_old_kvmclock;
2987
2988         if (ka->use_master_clock)
2989                 atomic_set(&kvm_guest_has_master_clock, 1);
2990
2991         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2992         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2993                                         vcpus_matched);
2994 #endif
2995 }
2996
2997 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2998 {
2999         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3000 }
3001
3002 static void __kvm_start_pvclock_update(struct kvm *kvm)
3003 {
3004         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3005         write_seqcount_begin(&kvm->arch.pvclock_sc);
3006 }
3007
3008 static void kvm_start_pvclock_update(struct kvm *kvm)
3009 {
3010         kvm_make_mclock_inprogress_request(kvm);
3011
3012         /* no guest entries from this point */
3013         __kvm_start_pvclock_update(kvm);
3014 }
3015
3016 static void kvm_end_pvclock_update(struct kvm *kvm)
3017 {
3018         struct kvm_arch *ka = &kvm->arch;
3019         struct kvm_vcpu *vcpu;
3020         unsigned long i;
3021
3022         write_seqcount_end(&ka->pvclock_sc);
3023         raw_spin_unlock_irq(&ka->tsc_write_lock);
3024         kvm_for_each_vcpu(i, vcpu, kvm)
3025                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3026
3027         /* guest entries allowed */
3028         kvm_for_each_vcpu(i, vcpu, kvm)
3029                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3030 }
3031
3032 static void kvm_update_masterclock(struct kvm *kvm)
3033 {
3034         kvm_hv_request_tsc_page_update(kvm);
3035         kvm_start_pvclock_update(kvm);
3036         pvclock_update_vm_gtod_copy(kvm);
3037         kvm_end_pvclock_update(kvm);
3038 }
3039
3040 /*
3041  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3042  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3043  * can change during boot even if the TSC is constant, as it's possible for KVM
3044  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3045  * notification when calibration completes, but practically speaking calibration
3046  * will complete before userspace is alive enough to create VMs.
3047  */
3048 static unsigned long get_cpu_tsc_khz(void)
3049 {
3050         if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3051                 return tsc_khz;
3052         else
3053                 return __this_cpu_read(cpu_tsc_khz);
3054 }
3055
3056 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3057 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3058 {
3059         struct kvm_arch *ka = &kvm->arch;
3060         struct pvclock_vcpu_time_info hv_clock;
3061
3062         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3063         get_cpu();
3064
3065         data->flags = 0;
3066         if (ka->use_master_clock &&
3067             (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3068 #ifdef CONFIG_X86_64
3069                 struct timespec64 ts;
3070
3071                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3072                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3073                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3074                 } else
3075 #endif
3076                 data->host_tsc = rdtsc();
3077
3078                 data->flags |= KVM_CLOCK_TSC_STABLE;
3079                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3080                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3081                 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3082                                    &hv_clock.tsc_shift,
3083                                    &hv_clock.tsc_to_system_mul);
3084                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3085         } else {
3086                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3087         }
3088
3089         put_cpu();
3090 }
3091
3092 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3093 {
3094         struct kvm_arch *ka = &kvm->arch;
3095         unsigned seq;
3096
3097         do {
3098                 seq = read_seqcount_begin(&ka->pvclock_sc);
3099                 __get_kvmclock(kvm, data);
3100         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3101 }
3102
3103 u64 get_kvmclock_ns(struct kvm *kvm)
3104 {
3105         struct kvm_clock_data data;
3106
3107         get_kvmclock(kvm, &data);
3108         return data.clock;
3109 }
3110
3111 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3112                                     struct gfn_to_pfn_cache *gpc,
3113                                     unsigned int offset)
3114 {
3115         struct kvm_vcpu_arch *vcpu = &v->arch;
3116         struct pvclock_vcpu_time_info *guest_hv_clock;
3117         unsigned long flags;
3118
3119         read_lock_irqsave(&gpc->lock, flags);
3120         while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3121                 read_unlock_irqrestore(&gpc->lock, flags);
3122
3123                 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3124                         return;
3125
3126                 read_lock_irqsave(&gpc->lock, flags);
3127         }
3128
3129         guest_hv_clock = (void *)(gpc->khva + offset);
3130
3131         /*
3132          * This VCPU is paused, but it's legal for a guest to read another
3133          * VCPU's kvmclock, so we really have to follow the specification where
3134          * it says that version is odd if data is being modified, and even after
3135          * it is consistent.
3136          */
3137
3138         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3139         smp_wmb();
3140
3141         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3142         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3143
3144         if (vcpu->pvclock_set_guest_stopped_request) {
3145                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3146                 vcpu->pvclock_set_guest_stopped_request = false;
3147         }
3148
3149         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3150         smp_wmb();
3151
3152         guest_hv_clock->version = ++vcpu->hv_clock.version;
3153
3154         mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3155         read_unlock_irqrestore(&gpc->lock, flags);
3156
3157         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3158 }
3159
3160 static int kvm_guest_time_update(struct kvm_vcpu *v)
3161 {
3162         unsigned long flags, tgt_tsc_khz;
3163         unsigned seq;
3164         struct kvm_vcpu_arch *vcpu = &v->arch;
3165         struct kvm_arch *ka = &v->kvm->arch;
3166         s64 kernel_ns;
3167         u64 tsc_timestamp, host_tsc;
3168         u8 pvclock_flags;
3169         bool use_master_clock;
3170
3171         kernel_ns = 0;
3172         host_tsc = 0;
3173
3174         /*
3175          * If the host uses TSC clock, then passthrough TSC as stable
3176          * to the guest.
3177          */
3178         do {
3179                 seq = read_seqcount_begin(&ka->pvclock_sc);
3180                 use_master_clock = ka->use_master_clock;
3181                 if (use_master_clock) {
3182                         host_tsc = ka->master_cycle_now;
3183                         kernel_ns = ka->master_kernel_ns;
3184                 }
3185         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3186
3187         /* Keep irq disabled to prevent changes to the clock */
3188         local_irq_save(flags);
3189         tgt_tsc_khz = get_cpu_tsc_khz();
3190         if (unlikely(tgt_tsc_khz == 0)) {
3191                 local_irq_restore(flags);
3192                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3193                 return 1;
3194         }
3195         if (!use_master_clock) {
3196                 host_tsc = rdtsc();
3197                 kernel_ns = get_kvmclock_base_ns();
3198         }
3199
3200         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3201
3202         /*
3203          * We may have to catch up the TSC to match elapsed wall clock
3204          * time for two reasons, even if kvmclock is used.
3205          *   1) CPU could have been running below the maximum TSC rate
3206          *   2) Broken TSC compensation resets the base at each VCPU
3207          *      entry to avoid unknown leaps of TSC even when running
3208          *      again on the same CPU.  This may cause apparent elapsed
3209          *      time to disappear, and the guest to stand still or run
3210          *      very slowly.
3211          */
3212         if (vcpu->tsc_catchup) {
3213                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3214                 if (tsc > tsc_timestamp) {
3215                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3216                         tsc_timestamp = tsc;
3217                 }
3218         }
3219
3220         local_irq_restore(flags);
3221
3222         /* With all the info we got, fill in the values */
3223
3224         if (kvm_caps.has_tsc_control)
3225                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3226                                             v->arch.l1_tsc_scaling_ratio);
3227
3228         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3229                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3230                                    &vcpu->hv_clock.tsc_shift,
3231                                    &vcpu->hv_clock.tsc_to_system_mul);
3232                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3233                 kvm_xen_update_tsc_info(v);
3234         }
3235
3236         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3237         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3238         vcpu->last_guest_tsc = tsc_timestamp;
3239
3240         /* If the host uses TSC clocksource, then it is stable */
3241         pvclock_flags = 0;
3242         if (use_master_clock)
3243                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3244
3245         vcpu->hv_clock.flags = pvclock_flags;
3246
3247         if (vcpu->pv_time.active)
3248                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3249 #ifdef CONFIG_KVM_XEN
3250         if (vcpu->xen.vcpu_info_cache.active)
3251                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3252                                         offsetof(struct compat_vcpu_info, time));
3253         if (vcpu->xen.vcpu_time_info_cache.active)
3254                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3255 #endif
3256         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3257         return 0;
3258 }
3259
3260 /*
3261  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3262  * which it started (i.e. its epoch, when its kvmclock was zero).
3263  *
3264  * In fact those clocks are subtly different; wall clock frequency is
3265  * adjusted by NTP and has leap seconds, while the kvmclock is a
3266  * simple function of the TSC without any such adjustment.
3267  *
3268  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3269  * that and kvmclock, but even that would be subject to change over
3270  * time.
3271  *
3272  * Attempt to calculate the epoch at a given moment using the *same*
3273  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3274  * wallclock and kvmclock times, and subtracting one from the other.
3275  *
3276  * Fall back to using their values at slightly different moments by
3277  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3278  */
3279 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3280 {
3281 #ifdef CONFIG_X86_64
3282         struct pvclock_vcpu_time_info hv_clock;
3283         struct kvm_arch *ka = &kvm->arch;
3284         unsigned long seq, local_tsc_khz;
3285         struct timespec64 ts;
3286         uint64_t host_tsc;
3287
3288         do {
3289                 seq = read_seqcount_begin(&ka->pvclock_sc);
3290
3291                 local_tsc_khz = 0;
3292                 if (!ka->use_master_clock)
3293                         break;
3294
3295                 /*
3296                  * The TSC read and the call to get_cpu_tsc_khz() must happen
3297                  * on the same CPU.
3298                  */
3299                 get_cpu();
3300
3301                 local_tsc_khz = get_cpu_tsc_khz();
3302
3303                 if (local_tsc_khz &&
3304                     !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3305                         local_tsc_khz = 0; /* Fall back to old method */
3306
3307                 put_cpu();
3308
3309                 /*
3310                  * These values must be snapshotted within the seqcount loop.
3311                  * After that, it's just mathematics which can happen on any
3312                  * CPU at any time.
3313                  */
3314                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3315                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3316
3317         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3318
3319         /*
3320          * If the conditions were right, and obtaining the wallclock+TSC was
3321          * successful, calculate the KVM clock at the corresponding time and
3322          * subtract one from the other to get the guest's epoch in nanoseconds
3323          * since 1970-01-01.
3324          */
3325         if (local_tsc_khz) {
3326                 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3327                                    &hv_clock.tsc_shift,
3328                                    &hv_clock.tsc_to_system_mul);
3329                 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3330                         __pvclock_read_cycles(&hv_clock, host_tsc);
3331         }
3332 #endif
3333         return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3334 }
3335
3336 /*
3337  * kvmclock updates which are isolated to a given vcpu, such as
3338  * vcpu->cpu migration, should not allow system_timestamp from
3339  * the rest of the vcpus to remain static. Otherwise ntp frequency
3340  * correction applies to one vcpu's system_timestamp but not
3341  * the others.
3342  *
3343  * So in those cases, request a kvmclock update for all vcpus.
3344  * We need to rate-limit these requests though, as they can
3345  * considerably slow guests that have a large number of vcpus.
3346  * The time for a remote vcpu to update its kvmclock is bound
3347  * by the delay we use to rate-limit the updates.
3348  */
3349
3350 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3351
3352 static void kvmclock_update_fn(struct work_struct *work)
3353 {
3354         unsigned long i;
3355         struct delayed_work *dwork = to_delayed_work(work);
3356         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3357                                            kvmclock_update_work);
3358         struct kvm *kvm = container_of(ka, struct kvm, arch);
3359         struct kvm_vcpu *vcpu;
3360
3361         kvm_for_each_vcpu(i, vcpu, kvm) {
3362                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3363                 kvm_vcpu_kick(vcpu);
3364         }
3365 }
3366
3367 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3368 {
3369         struct kvm *kvm = v->kvm;
3370
3371         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3372         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3373                                         KVMCLOCK_UPDATE_DELAY);
3374 }
3375
3376 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3377
3378 static void kvmclock_sync_fn(struct work_struct *work)
3379 {
3380         struct delayed_work *dwork = to_delayed_work(work);
3381         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3382                                            kvmclock_sync_work);
3383         struct kvm *kvm = container_of(ka, struct kvm, arch);
3384
3385         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3386         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3387                                         KVMCLOCK_SYNC_PERIOD);
3388 }
3389
3390 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3391 static bool is_mci_control_msr(u32 msr)
3392 {
3393         return (msr & 3) == 0;
3394 }
3395 static bool is_mci_status_msr(u32 msr)
3396 {
3397         return (msr & 3) == 1;
3398 }
3399
3400 /*
3401  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3402  */
3403 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3404 {
3405         /* McStatusWrEn enabled? */
3406         if (guest_cpuid_is_amd_or_hygon(vcpu))
3407                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3408
3409         return false;
3410 }
3411
3412 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3413 {
3414         u64 mcg_cap = vcpu->arch.mcg_cap;
3415         unsigned bank_num = mcg_cap & 0xff;
3416         u32 msr = msr_info->index;
3417         u64 data = msr_info->data;
3418         u32 offset, last_msr;
3419
3420         switch (msr) {
3421         case MSR_IA32_MCG_STATUS:
3422                 vcpu->arch.mcg_status = data;
3423                 break;
3424         case MSR_IA32_MCG_CTL:
3425                 if (!(mcg_cap & MCG_CTL_P) &&
3426                     (data || !msr_info->host_initiated))
3427                         return 1;
3428                 if (data != 0 && data != ~(u64)0)
3429                         return 1;
3430                 vcpu->arch.mcg_ctl = data;
3431                 break;
3432         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3433                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3434                 if (msr > last_msr)
3435                         return 1;
3436
3437                 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3438                         return 1;
3439                 /* An attempt to write a 1 to a reserved bit raises #GP */
3440                 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3441                         return 1;
3442                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3443                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3444                 vcpu->arch.mci_ctl2_banks[offset] = data;
3445                 break;
3446         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3447                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3448                 if (msr > last_msr)
3449                         return 1;
3450
3451                 /*
3452                  * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3453                  * values are architecturally undefined.  But, some Linux
3454                  * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3455                  * issue on AMD K8s, allow bit 10 to be clear when setting all
3456                  * other bits in order to avoid an uncaught #GP in the guest.
3457                  *
3458                  * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3459                  * single-bit ECC data errors.
3460                  */
3461                 if (is_mci_control_msr(msr) &&
3462                     data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3463                         return 1;
3464
3465                 /*
3466                  * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3467                  * AMD-based CPUs allow non-zero values, but if and only if
3468                  * HWCR[McStatusWrEn] is set.
3469                  */
3470                 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3471                     data != 0 && !can_set_mci_status(vcpu))
3472                         return 1;
3473
3474                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3475                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3476                 vcpu->arch.mce_banks[offset] = data;
3477                 break;
3478         default:
3479                 return 1;
3480         }
3481         return 0;
3482 }
3483
3484 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3485 {
3486         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3487
3488         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3489 }
3490
3491 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3492 {
3493         gpa_t gpa = data & ~0x3f;
3494
3495         /* Bits 4:5 are reserved, Should be zero */
3496         if (data & 0x30)
3497                 return 1;
3498
3499         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3500             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3501                 return 1;
3502
3503         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3504             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3505                 return 1;
3506
3507         if (!lapic_in_kernel(vcpu))
3508                 return data ? 1 : 0;
3509
3510         vcpu->arch.apf.msr_en_val = data;
3511
3512         if (!kvm_pv_async_pf_enabled(vcpu)) {
3513                 kvm_clear_async_pf_completion_queue(vcpu);
3514                 kvm_async_pf_hash_reset(vcpu);
3515                 return 0;
3516         }
3517
3518         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3519                                         sizeof(u64)))
3520                 return 1;
3521
3522         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3523         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3524
3525         kvm_async_pf_wakeup_all(vcpu);
3526
3527         return 0;
3528 }
3529
3530 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3531 {
3532         /* Bits 8-63 are reserved */
3533         if (data >> 8)
3534                 return 1;
3535
3536         if (!lapic_in_kernel(vcpu))
3537                 return 1;
3538
3539         vcpu->arch.apf.msr_int_val = data;
3540
3541         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3542
3543         return 0;
3544 }
3545
3546 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3547 {
3548         kvm_gpc_deactivate(&vcpu->arch.pv_time);
3549         vcpu->arch.time = 0;
3550 }
3551
3552 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3553 {
3554         ++vcpu->stat.tlb_flush;
3555         static_call(kvm_x86_flush_tlb_all)(vcpu);
3556
3557         /* Flushing all ASIDs flushes the current ASID... */
3558         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3559 }
3560
3561 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3562 {
3563         ++vcpu->stat.tlb_flush;
3564
3565         if (!tdp_enabled) {
3566                 /*
3567                  * A TLB flush on behalf of the guest is equivalent to
3568                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3569                  * a forced sync of the shadow page tables.  Ensure all the
3570                  * roots are synced and the guest TLB in hardware is clean.
3571                  */
3572                 kvm_mmu_sync_roots(vcpu);
3573                 kvm_mmu_sync_prev_roots(vcpu);
3574         }
3575
3576         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3577
3578         /*
3579          * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3580          * grained flushing.
3581          */
3582         kvm_hv_vcpu_purge_flush_tlb(vcpu);
3583 }
3584
3585
3586 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3587 {
3588         ++vcpu->stat.tlb_flush;
3589         static_call(kvm_x86_flush_tlb_current)(vcpu);
3590 }
3591
3592 /*
3593  * Service "local" TLB flush requests, which are specific to the current MMU
3594  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3595  * TLB flushes that are targeted at an MMU context also need to be serviced
3596  * prior before nested VM-Enter/VM-Exit.
3597  */
3598 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3599 {
3600         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3601                 kvm_vcpu_flush_tlb_current(vcpu);
3602
3603         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3604                 kvm_vcpu_flush_tlb_guest(vcpu);
3605 }
3606 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3607
3608 static void record_steal_time(struct kvm_vcpu *vcpu)
3609 {
3610         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3611         struct kvm_steal_time __user *st;
3612         struct kvm_memslots *slots;
3613         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3614         u64 steal;
3615         u32 version;
3616
3617         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3618                 kvm_xen_runstate_set_running(vcpu);
3619                 return;
3620         }
3621
3622         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3623                 return;
3624
3625         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3626                 return;
3627
3628         slots = kvm_memslots(vcpu->kvm);
3629
3630         if (unlikely(slots->generation != ghc->generation ||
3631                      gpa != ghc->gpa ||
3632                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3633                 /* We rely on the fact that it fits in a single page. */
3634                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3635
3636                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3637                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3638                         return;
3639         }
3640
3641         st = (struct kvm_steal_time __user *)ghc->hva;
3642         /*
3643          * Doing a TLB flush here, on the guest's behalf, can avoid
3644          * expensive IPIs.
3645          */
3646         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3647                 u8 st_preempted = 0;
3648                 int err = -EFAULT;
3649
3650                 if (!user_access_begin(st, sizeof(*st)))
3651                         return;
3652
3653                 asm volatile("1: xchgb %0, %2\n"
3654                              "xor %1, %1\n"
3655                              "2:\n"
3656                              _ASM_EXTABLE_UA(1b, 2b)
3657                              : "+q" (st_preempted),
3658                                "+&r" (err),
3659                                "+m" (st->preempted));
3660                 if (err)
3661                         goto out;
3662
3663                 user_access_end();
3664
3665                 vcpu->arch.st.preempted = 0;
3666
3667                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3668                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3669                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3670                         kvm_vcpu_flush_tlb_guest(vcpu);
3671
3672                 if (!user_access_begin(st, sizeof(*st)))
3673                         goto dirty;
3674         } else {
3675                 if (!user_access_begin(st, sizeof(*st)))
3676                         return;
3677
3678                 unsafe_put_user(0, &st->preempted, out);
3679                 vcpu->arch.st.preempted = 0;
3680         }
3681
3682         unsafe_get_user(version, &st->version, out);
3683         if (version & 1)
3684                 version += 1;  /* first time write, random junk */
3685
3686         version += 1;
3687         unsafe_put_user(version, &st->version, out);
3688
3689         smp_wmb();
3690
3691         unsafe_get_user(steal, &st->steal, out);
3692         steal += current->sched_info.run_delay -
3693                 vcpu->arch.st.last_steal;
3694         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3695         unsafe_put_user(steal, &st->steal, out);
3696
3697         version += 1;
3698         unsafe_put_user(version, &st->version, out);
3699
3700  out:
3701         user_access_end();
3702  dirty:
3703         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3704 }
3705
3706 static bool kvm_is_msr_to_save(u32 msr_index)
3707 {
3708         unsigned int i;
3709
3710         for (i = 0; i < num_msrs_to_save; i++) {
3711                 if (msrs_to_save[i] == msr_index)
3712                         return true;
3713         }
3714
3715         return false;
3716 }
3717
3718 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3719 {
3720         u32 msr = msr_info->index;
3721         u64 data = msr_info->data;
3722
3723         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3724                 return kvm_xen_write_hypercall_page(vcpu, data);
3725
3726         switch (msr) {
3727         case MSR_AMD64_NB_CFG:
3728         case MSR_IA32_UCODE_WRITE:
3729         case MSR_VM_HSAVE_PA:
3730         case MSR_AMD64_PATCH_LOADER:
3731         case MSR_AMD64_BU_CFG2:
3732         case MSR_AMD64_DC_CFG:
3733         case MSR_AMD64_TW_CFG:
3734         case MSR_F15H_EX_CFG:
3735                 break;
3736
3737         case MSR_IA32_UCODE_REV:
3738                 if (msr_info->host_initiated)
3739                         vcpu->arch.microcode_version = data;
3740                 break;
3741         case MSR_IA32_ARCH_CAPABILITIES:
3742                 if (!msr_info->host_initiated)
3743                         return 1;
3744                 vcpu->arch.arch_capabilities = data;
3745                 break;
3746         case MSR_IA32_PERF_CAPABILITIES:
3747                 if (!msr_info->host_initiated)
3748                         return 1;
3749                 if (data & ~kvm_caps.supported_perf_cap)
3750                         return 1;
3751
3752                 /*
3753                  * Note, this is not just a performance optimization!  KVM
3754                  * disallows changing feature MSRs after the vCPU has run; PMU
3755                  * refresh will bug the VM if called after the vCPU has run.
3756                  */
3757                 if (vcpu->arch.perf_capabilities == data)
3758                         break;
3759
3760                 vcpu->arch.perf_capabilities = data;
3761                 kvm_pmu_refresh(vcpu);
3762                 break;
3763         case MSR_IA32_PRED_CMD: {
3764                 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3765
3766                 if (!msr_info->host_initiated) {
3767                         if ((!guest_has_pred_cmd_msr(vcpu)))
3768                                 return 1;
3769
3770                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3771                             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3772                                 reserved_bits |= PRED_CMD_IBPB;
3773
3774                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3775                                 reserved_bits |= PRED_CMD_SBPB;
3776                 }
3777
3778                 if (!boot_cpu_has(X86_FEATURE_IBPB))
3779                         reserved_bits |= PRED_CMD_IBPB;
3780
3781                 if (!boot_cpu_has(X86_FEATURE_SBPB))
3782                         reserved_bits |= PRED_CMD_SBPB;
3783
3784                 if (data & reserved_bits)
3785                         return 1;
3786
3787                 if (!data)
3788                         break;
3789
3790                 wrmsrl(MSR_IA32_PRED_CMD, data);
3791                 break;
3792         }
3793         case MSR_IA32_FLUSH_CMD:
3794                 if (!msr_info->host_initiated &&
3795                     !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3796                         return 1;
3797
3798                 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3799                         return 1;
3800                 if (!data)
3801                         break;
3802
3803                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3804                 break;
3805         case MSR_EFER:
3806                 return set_efer(vcpu, msr_info);
3807         case MSR_K7_HWCR:
3808                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3809                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3810                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3811
3812                 /*
3813                  * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3814                  * through at least v6.6 whine if TscFreqSel is clear,
3815                  * depending on F/M/S.
3816                  */
3817                 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3818                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3819                         return 1;
3820                 }
3821                 vcpu->arch.msr_hwcr = data;
3822                 break;
3823         case MSR_FAM10H_MMIO_CONF_BASE:
3824                 if (data != 0) {
3825                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3826                         return 1;
3827                 }
3828                 break;
3829         case MSR_IA32_CR_PAT:
3830                 if (!kvm_pat_valid(data))
3831                         return 1;
3832
3833                 vcpu->arch.pat = data;
3834                 break;
3835         case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3836         case MSR_MTRRdefType:
3837                 return kvm_mtrr_set_msr(vcpu, msr, data);
3838         case MSR_IA32_APICBASE:
3839                 return kvm_set_apic_base(vcpu, msr_info);
3840         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3841                 return kvm_x2apic_msr_write(vcpu, msr, data);
3842         case MSR_IA32_TSC_DEADLINE:
3843                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3844                 break;
3845         case MSR_IA32_TSC_ADJUST:
3846                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3847                         if (!msr_info->host_initiated) {
3848                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3849                                 adjust_tsc_offset_guest(vcpu, adj);
3850                                 /* Before back to guest, tsc_timestamp must be adjusted
3851                                  * as well, otherwise guest's percpu pvclock time could jump.
3852                                  */
3853                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3854                         }
3855                         vcpu->arch.ia32_tsc_adjust_msr = data;
3856                 }
3857                 break;
3858         case MSR_IA32_MISC_ENABLE: {
3859                 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3860
3861                 if (!msr_info->host_initiated) {
3862                         /* RO bits */
3863                         if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3864                                 return 1;
3865
3866                         /* R bits, i.e. writes are ignored, but don't fault. */
3867                         data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3868                         data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3869                 }
3870
3871                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3872                     ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3873                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3874                                 return 1;
3875                         vcpu->arch.ia32_misc_enable_msr = data;
3876                         kvm_update_cpuid_runtime(vcpu);
3877                 } else {
3878                         vcpu->arch.ia32_misc_enable_msr = data;
3879                 }
3880                 break;
3881         }
3882         case MSR_IA32_SMBASE:
3883                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3884                         return 1;
3885                 vcpu->arch.smbase = data;
3886                 break;
3887         case MSR_IA32_POWER_CTL:
3888                 vcpu->arch.msr_ia32_power_ctl = data;
3889                 break;
3890         case MSR_IA32_TSC:
3891                 if (msr_info->host_initiated) {
3892                         kvm_synchronize_tsc(vcpu, &data);
3893                 } else {
3894                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3895                         adjust_tsc_offset_guest(vcpu, adj);
3896                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3897                 }
3898                 break;
3899         case MSR_IA32_XSS:
3900                 if (!msr_info->host_initiated &&
3901                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3902                         return 1;
3903                 /*
3904                  * KVM supports exposing PT to the guest, but does not support
3905                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3906                  * XSAVES/XRSTORS to save/restore PT MSRs.
3907                  */
3908                 if (data & ~kvm_caps.supported_xss)
3909                         return 1;
3910                 vcpu->arch.ia32_xss = data;
3911                 kvm_update_cpuid_runtime(vcpu);
3912                 break;
3913         case MSR_SMI_COUNT:
3914                 if (!msr_info->host_initiated)
3915                         return 1;
3916                 vcpu->arch.smi_count = data;
3917                 break;
3918         case MSR_KVM_WALL_CLOCK_NEW:
3919                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3920                         return 1;
3921
3922                 vcpu->kvm->arch.wall_clock = data;
3923                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3924                 break;
3925         case MSR_KVM_WALL_CLOCK:
3926                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3927                         return 1;
3928
3929                 vcpu->kvm->arch.wall_clock = data;
3930                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3931                 break;
3932         case MSR_KVM_SYSTEM_TIME_NEW:
3933                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3934                         return 1;
3935
3936                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3937                 break;
3938         case MSR_KVM_SYSTEM_TIME:
3939                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3940                         return 1;
3941
3942                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3943                 break;
3944         case MSR_KVM_ASYNC_PF_EN:
3945                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3946                         return 1;
3947
3948                 if (kvm_pv_enable_async_pf(vcpu, data))
3949                         return 1;
3950                 break;
3951         case MSR_KVM_ASYNC_PF_INT:
3952                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3953                         return 1;
3954
3955                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3956                         return 1;
3957                 break;
3958         case MSR_KVM_ASYNC_PF_ACK:
3959                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3960                         return 1;
3961                 if (data & 0x1) {
3962                         vcpu->arch.apf.pageready_pending = false;
3963                         kvm_check_async_pf_completion(vcpu);
3964                 }
3965                 break;
3966         case MSR_KVM_STEAL_TIME:
3967                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3968                         return 1;
3969
3970                 if (unlikely(!sched_info_on()))
3971                         return 1;
3972
3973                 if (data & KVM_STEAL_RESERVED_MASK)
3974                         return 1;
3975
3976                 vcpu->arch.st.msr_val = data;
3977
3978                 if (!(data & KVM_MSR_ENABLED))
3979                         break;
3980
3981                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3982
3983                 break;
3984         case MSR_KVM_PV_EOI_EN:
3985                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3986                         return 1;
3987
3988                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3989                         return 1;
3990                 break;
3991
3992         case MSR_KVM_POLL_CONTROL:
3993                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3994                         return 1;
3995
3996                 /* only enable bit supported */
3997                 if (data & (-1ULL << 1))
3998                         return 1;
3999
4000                 vcpu->arch.msr_kvm_poll_control = data;
4001                 break;
4002
4003         case MSR_IA32_MCG_CTL:
4004         case MSR_IA32_MCG_STATUS:
4005         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4006         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4007                 return set_msr_mce(vcpu, msr_info);
4008
4009         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4010         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4011         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4012         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4013                 if (kvm_pmu_is_valid_msr(vcpu, msr))
4014                         return kvm_pmu_set_msr(vcpu, msr_info);
4015
4016                 if (data)
4017                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4018                 break;
4019         case MSR_K7_CLK_CTL:
4020                 /*
4021                  * Ignore all writes to this no longer documented MSR.
4022                  * Writes are only relevant for old K7 processors,
4023                  * all pre-dating SVM, but a recommended workaround from
4024                  * AMD for these chips. It is possible to specify the
4025                  * affected processor models on the command line, hence
4026                  * the need to ignore the workaround.
4027                  */
4028                 break;
4029 #ifdef CONFIG_KVM_HYPERV
4030         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4031         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4032         case HV_X64_MSR_SYNDBG_OPTIONS:
4033         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4034         case HV_X64_MSR_CRASH_CTL:
4035         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4036         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4037         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4038         case HV_X64_MSR_TSC_EMULATION_STATUS:
4039         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4040                 return kvm_hv_set_msr_common(vcpu, msr, data,
4041                                              msr_info->host_initiated);
4042 #endif
4043         case MSR_IA32_BBL_CR_CTL3:
4044                 /* Drop writes to this legacy MSR -- see rdmsr
4045                  * counterpart for further detail.
4046                  */
4047                 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4048                 break;
4049         case MSR_AMD64_OSVW_ID_LENGTH:
4050                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4051                         return 1;
4052                 vcpu->arch.osvw.length = data;
4053                 break;
4054         case MSR_AMD64_OSVW_STATUS:
4055                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4056                         return 1;
4057                 vcpu->arch.osvw.status = data;
4058                 break;
4059         case MSR_PLATFORM_INFO:
4060                 if (!msr_info->host_initiated ||
4061                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4062                      cpuid_fault_enabled(vcpu)))
4063                         return 1;
4064                 vcpu->arch.msr_platform_info = data;
4065                 break;
4066         case MSR_MISC_FEATURES_ENABLES:
4067                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4068                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4069                      !supports_cpuid_fault(vcpu)))
4070                         return 1;
4071                 vcpu->arch.msr_misc_features_enables = data;
4072                 break;
4073 #ifdef CONFIG_X86_64
4074         case MSR_IA32_XFD:
4075                 if (!msr_info->host_initiated &&
4076                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4077                         return 1;
4078
4079                 if (data & ~kvm_guest_supported_xfd(vcpu))
4080                         return 1;
4081
4082                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4083                 break;
4084         case MSR_IA32_XFD_ERR:
4085                 if (!msr_info->host_initiated &&
4086                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4087                         return 1;
4088
4089                 if (data & ~kvm_guest_supported_xfd(vcpu))
4090                         return 1;
4091
4092                 vcpu->arch.guest_fpu.xfd_err = data;
4093                 break;
4094 #endif
4095         default:
4096                 if (kvm_pmu_is_valid_msr(vcpu, msr))
4097                         return kvm_pmu_set_msr(vcpu, msr_info);
4098
4099                 /*
4100                  * Userspace is allowed to write '0' to MSRs that KVM reports
4101                  * as to-be-saved, even if an MSRs isn't fully supported.
4102                  */
4103                 if (msr_info->host_initiated && !data &&
4104                     kvm_is_msr_to_save(msr))
4105                         break;
4106
4107                 return KVM_MSR_RET_INVALID;
4108         }
4109         return 0;
4110 }
4111 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4112
4113 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4114 {
4115         u64 data;
4116         u64 mcg_cap = vcpu->arch.mcg_cap;
4117         unsigned bank_num = mcg_cap & 0xff;
4118         u32 offset, last_msr;
4119
4120         switch (msr) {
4121         case MSR_IA32_P5_MC_ADDR:
4122         case MSR_IA32_P5_MC_TYPE:
4123                 data = 0;
4124                 break;
4125         case MSR_IA32_MCG_CAP:
4126                 data = vcpu->arch.mcg_cap;
4127                 break;
4128         case MSR_IA32_MCG_CTL:
4129                 if (!(mcg_cap & MCG_CTL_P) && !host)
4130                         return 1;
4131                 data = vcpu->arch.mcg_ctl;
4132                 break;
4133         case MSR_IA32_MCG_STATUS:
4134                 data = vcpu->arch.mcg_status;
4135                 break;
4136         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4137                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4138                 if (msr > last_msr)
4139                         return 1;
4140
4141                 if (!(mcg_cap & MCG_CMCI_P) && !host)
4142                         return 1;
4143                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4144                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
4145                 data = vcpu->arch.mci_ctl2_banks[offset];
4146                 break;
4147         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4148                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4149                 if (msr > last_msr)
4150                         return 1;
4151
4152                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4153                                             last_msr + 1 - MSR_IA32_MC0_CTL);
4154                 data = vcpu->arch.mce_banks[offset];
4155                 break;
4156         default:
4157                 return 1;
4158         }
4159         *pdata = data;
4160         return 0;
4161 }
4162
4163 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4164 {
4165         switch (msr_info->index) {
4166         case MSR_IA32_PLATFORM_ID:
4167         case MSR_IA32_EBL_CR_POWERON:
4168         case MSR_IA32_LASTBRANCHFROMIP:
4169         case MSR_IA32_LASTBRANCHTOIP:
4170         case MSR_IA32_LASTINTFROMIP:
4171         case MSR_IA32_LASTINTTOIP:
4172         case MSR_AMD64_SYSCFG:
4173         case MSR_K8_TSEG_ADDR:
4174         case MSR_K8_TSEG_MASK:
4175         case MSR_VM_HSAVE_PA:
4176         case MSR_K8_INT_PENDING_MSG:
4177         case MSR_AMD64_NB_CFG:
4178         case MSR_FAM10H_MMIO_CONF_BASE:
4179         case MSR_AMD64_BU_CFG2:
4180         case MSR_IA32_PERF_CTL:
4181         case MSR_AMD64_DC_CFG:
4182         case MSR_AMD64_TW_CFG:
4183         case MSR_F15H_EX_CFG:
4184         /*
4185          * Intel Sandy Bridge CPUs must support the RAPL (running average power
4186          * limit) MSRs. Just return 0, as we do not want to expose the host
4187          * data here. Do not conditionalize this on CPUID, as KVM does not do
4188          * so for existing CPU-specific MSRs.
4189          */
4190         case MSR_RAPL_POWER_UNIT:
4191         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
4192         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
4193         case MSR_PKG_ENERGY_STATUS:     /* Total package */
4194         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
4195                 msr_info->data = 0;
4196                 break;
4197         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4198         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4199         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4200         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4201                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4202                         return kvm_pmu_get_msr(vcpu, msr_info);
4203                 msr_info->data = 0;
4204                 break;
4205         case MSR_IA32_UCODE_REV:
4206                 msr_info->data = vcpu->arch.microcode_version;
4207                 break;
4208         case MSR_IA32_ARCH_CAPABILITIES:
4209                 if (!msr_info->host_initiated &&
4210                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4211                         return 1;
4212                 msr_info->data = vcpu->arch.arch_capabilities;
4213                 break;
4214         case MSR_IA32_PERF_CAPABILITIES:
4215                 if (!msr_info->host_initiated &&
4216                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4217                         return 1;
4218                 msr_info->data = vcpu->arch.perf_capabilities;
4219                 break;
4220         case MSR_IA32_POWER_CTL:
4221                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4222                 break;
4223         case MSR_IA32_TSC: {
4224                 /*
4225                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4226                  * even when not intercepted. AMD manual doesn't explicitly
4227                  * state this but appears to behave the same.
4228                  *
4229                  * On userspace reads and writes, however, we unconditionally
4230                  * return L1's TSC value to ensure backwards-compatible
4231                  * behavior for migration.
4232                  */
4233                 u64 offset, ratio;
4234
4235                 if (msr_info->host_initiated) {
4236                         offset = vcpu->arch.l1_tsc_offset;
4237                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
4238                 } else {
4239                         offset = vcpu->arch.tsc_offset;
4240                         ratio = vcpu->arch.tsc_scaling_ratio;
4241                 }
4242
4243                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4244                 break;
4245         }
4246         case MSR_IA32_CR_PAT:
4247                 msr_info->data = vcpu->arch.pat;
4248                 break;
4249         case MSR_MTRRcap:
4250         case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4251         case MSR_MTRRdefType:
4252                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4253         case 0xcd: /* fsb frequency */
4254                 msr_info->data = 3;
4255                 break;
4256                 /*
4257                  * MSR_EBC_FREQUENCY_ID
4258                  * Conservative value valid for even the basic CPU models.
4259                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4260                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4261                  * and 266MHz for model 3, or 4. Set Core Clock
4262                  * Frequency to System Bus Frequency Ratio to 1 (bits
4263                  * 31:24) even though these are only valid for CPU
4264                  * models > 2, however guests may end up dividing or
4265                  * multiplying by zero otherwise.
4266                  */
4267         case MSR_EBC_FREQUENCY_ID:
4268                 msr_info->data = 1 << 24;
4269                 break;
4270         case MSR_IA32_APICBASE:
4271                 msr_info->data = kvm_get_apic_base(vcpu);
4272                 break;
4273         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4274                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4275         case MSR_IA32_TSC_DEADLINE:
4276                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4277                 break;
4278         case MSR_IA32_TSC_ADJUST:
4279                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4280                 break;
4281         case MSR_IA32_MISC_ENABLE:
4282                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4283                 break;
4284         case MSR_IA32_SMBASE:
4285                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4286                         return 1;
4287                 msr_info->data = vcpu->arch.smbase;
4288                 break;
4289         case MSR_SMI_COUNT:
4290                 msr_info->data = vcpu->arch.smi_count;
4291                 break;
4292         case MSR_IA32_PERF_STATUS:
4293                 /* TSC increment by tick */
4294                 msr_info->data = 1000ULL;
4295                 /* CPU multiplier */
4296                 msr_info->data |= (((uint64_t)4ULL) << 40);
4297                 break;
4298         case MSR_EFER:
4299                 msr_info->data = vcpu->arch.efer;
4300                 break;
4301         case MSR_KVM_WALL_CLOCK:
4302                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4303                         return 1;
4304
4305                 msr_info->data = vcpu->kvm->arch.wall_clock;
4306                 break;
4307         case MSR_KVM_WALL_CLOCK_NEW:
4308                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4309                         return 1;
4310
4311                 msr_info->data = vcpu->kvm->arch.wall_clock;
4312                 break;
4313         case MSR_KVM_SYSTEM_TIME:
4314                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4315                         return 1;
4316
4317                 msr_info->data = vcpu->arch.time;
4318                 break;
4319         case MSR_KVM_SYSTEM_TIME_NEW:
4320                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4321                         return 1;
4322
4323                 msr_info->data = vcpu->arch.time;
4324                 break;
4325         case MSR_KVM_ASYNC_PF_EN:
4326                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4327                         return 1;
4328
4329                 msr_info->data = vcpu->arch.apf.msr_en_val;
4330                 break;
4331         case MSR_KVM_ASYNC_PF_INT:
4332                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4333                         return 1;
4334
4335                 msr_info->data = vcpu->arch.apf.msr_int_val;
4336                 break;
4337         case MSR_KVM_ASYNC_PF_ACK:
4338                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4339                         return 1;
4340
4341                 msr_info->data = 0;
4342                 break;
4343         case MSR_KVM_STEAL_TIME:
4344                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4345                         return 1;
4346
4347                 msr_info->data = vcpu->arch.st.msr_val;
4348                 break;
4349         case MSR_KVM_PV_EOI_EN:
4350                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4351                         return 1;
4352
4353                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4354                 break;
4355         case MSR_KVM_POLL_CONTROL:
4356                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4357                         return 1;
4358
4359                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4360                 break;
4361         case MSR_IA32_P5_MC_ADDR:
4362         case MSR_IA32_P5_MC_TYPE:
4363         case MSR_IA32_MCG_CAP:
4364         case MSR_IA32_MCG_CTL:
4365         case MSR_IA32_MCG_STATUS:
4366         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4367         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4368                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4369                                    msr_info->host_initiated);
4370         case MSR_IA32_XSS:
4371                 if (!msr_info->host_initiated &&
4372                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4373                         return 1;
4374                 msr_info->data = vcpu->arch.ia32_xss;
4375                 break;
4376         case MSR_K7_CLK_CTL:
4377                 /*
4378                  * Provide expected ramp-up count for K7. All other
4379                  * are set to zero, indicating minimum divisors for
4380                  * every field.
4381                  *
4382                  * This prevents guest kernels on AMD host with CPU
4383                  * type 6, model 8 and higher from exploding due to
4384                  * the rdmsr failing.
4385                  */
4386                 msr_info->data = 0x20000000;
4387                 break;
4388 #ifdef CONFIG_KVM_HYPERV
4389         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4390         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4391         case HV_X64_MSR_SYNDBG_OPTIONS:
4392         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4393         case HV_X64_MSR_CRASH_CTL:
4394         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4395         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4396         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4397         case HV_X64_MSR_TSC_EMULATION_STATUS:
4398         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4399                 return kvm_hv_get_msr_common(vcpu,
4400                                              msr_info->index, &msr_info->data,
4401                                              msr_info->host_initiated);
4402 #endif
4403         case MSR_IA32_BBL_CR_CTL3:
4404                 /* This legacy MSR exists but isn't fully documented in current
4405                  * silicon.  It is however accessed by winxp in very narrow
4406                  * scenarios where it sets bit #19, itself documented as
4407                  * a "reserved" bit.  Best effort attempt to source coherent
4408                  * read data here should the balance of the register be
4409                  * interpreted by the guest:
4410                  *
4411                  * L2 cache control register 3: 64GB range, 256KB size,
4412                  * enabled, latency 0x1, configured
4413                  */
4414                 msr_info->data = 0xbe702111;
4415                 break;
4416         case MSR_AMD64_OSVW_ID_LENGTH:
4417                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4418                         return 1;
4419                 msr_info->data = vcpu->arch.osvw.length;
4420                 break;
4421         case MSR_AMD64_OSVW_STATUS:
4422                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4423                         return 1;
4424                 msr_info->data = vcpu->arch.osvw.status;
4425                 break;
4426         case MSR_PLATFORM_INFO:
4427                 if (!msr_info->host_initiated &&
4428                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4429                         return 1;
4430                 msr_info->data = vcpu->arch.msr_platform_info;
4431                 break;
4432         case MSR_MISC_FEATURES_ENABLES:
4433                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4434                 break;
4435         case MSR_K7_HWCR:
4436                 msr_info->data = vcpu->arch.msr_hwcr;
4437                 break;
4438 #ifdef CONFIG_X86_64
4439         case MSR_IA32_XFD:
4440                 if (!msr_info->host_initiated &&
4441                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4442                         return 1;
4443
4444                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4445                 break;
4446         case MSR_IA32_XFD_ERR:
4447                 if (!msr_info->host_initiated &&
4448                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4449                         return 1;
4450
4451                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4452                 break;
4453 #endif
4454         default:
4455                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4456                         return kvm_pmu_get_msr(vcpu, msr_info);
4457
4458                 /*
4459                  * Userspace is allowed to read MSRs that KVM reports as
4460                  * to-be-saved, even if an MSR isn't fully supported.
4461                  */
4462                 if (msr_info->host_initiated &&
4463                     kvm_is_msr_to_save(msr_info->index)) {
4464                         msr_info->data = 0;
4465                         break;
4466                 }
4467
4468                 return KVM_MSR_RET_INVALID;
4469         }
4470         return 0;
4471 }
4472 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4473
4474 /*
4475  * Read or write a bunch of msrs. All parameters are kernel addresses.
4476  *
4477  * @return number of msrs set successfully.
4478  */
4479 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4480                     struct kvm_msr_entry *entries,
4481                     int (*do_msr)(struct kvm_vcpu *vcpu,
4482                                   unsigned index, u64 *data))
4483 {
4484         int i;
4485
4486         for (i = 0; i < msrs->nmsrs; ++i)
4487                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4488                         break;
4489
4490         return i;
4491 }
4492
4493 /*
4494  * Read or write a bunch of msrs. Parameters are user addresses.
4495  *
4496  * @return number of msrs set successfully.
4497  */
4498 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4499                   int (*do_msr)(struct kvm_vcpu *vcpu,
4500                                 unsigned index, u64 *data),
4501                   int writeback)
4502 {
4503         struct kvm_msrs msrs;
4504         struct kvm_msr_entry *entries;
4505         unsigned size;
4506         int r;
4507
4508         r = -EFAULT;
4509         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4510                 goto out;
4511
4512         r = -E2BIG;
4513         if (msrs.nmsrs >= MAX_IO_MSRS)
4514                 goto out;
4515
4516         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4517         entries = memdup_user(user_msrs->entries, size);
4518         if (IS_ERR(entries)) {
4519                 r = PTR_ERR(entries);
4520                 goto out;
4521         }
4522
4523         r = __msr_io(vcpu, &msrs, entries, do_msr);
4524
4525         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4526                 r = -EFAULT;
4527
4528         kfree(entries);
4529 out:
4530         return r;
4531 }
4532
4533 static inline bool kvm_can_mwait_in_guest(void)
4534 {
4535         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4536                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4537                 boot_cpu_has(X86_FEATURE_ARAT);
4538 }
4539
4540 #ifdef CONFIG_KVM_HYPERV
4541 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4542                                             struct kvm_cpuid2 __user *cpuid_arg)
4543 {
4544         struct kvm_cpuid2 cpuid;
4545         int r;
4546
4547         r = -EFAULT;
4548         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4549                 return r;
4550
4551         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4552         if (r)
4553                 return r;
4554
4555         r = -EFAULT;
4556         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4557                 return r;
4558
4559         return 0;
4560 }
4561 #endif
4562
4563 static bool kvm_is_vm_type_supported(unsigned long type)
4564 {
4565         return type == KVM_X86_DEFAULT_VM ||
4566                (type == KVM_X86_SW_PROTECTED_VM &&
4567                 IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_enabled);
4568 }
4569
4570 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4571 {
4572         int r = 0;
4573
4574         switch (ext) {
4575         case KVM_CAP_IRQCHIP:
4576         case KVM_CAP_HLT:
4577         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4578         case KVM_CAP_SET_TSS_ADDR:
4579         case KVM_CAP_EXT_CPUID:
4580         case KVM_CAP_EXT_EMUL_CPUID:
4581         case KVM_CAP_CLOCKSOURCE:
4582         case KVM_CAP_PIT:
4583         case KVM_CAP_NOP_IO_DELAY:
4584         case KVM_CAP_MP_STATE:
4585         case KVM_CAP_SYNC_MMU:
4586         case KVM_CAP_USER_NMI:
4587         case KVM_CAP_REINJECT_CONTROL:
4588         case KVM_CAP_IRQ_INJECT_STATUS:
4589         case KVM_CAP_IOEVENTFD:
4590         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4591         case KVM_CAP_PIT2:
4592         case KVM_CAP_PIT_STATE2:
4593         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4594         case KVM_CAP_VCPU_EVENTS:
4595 #ifdef CONFIG_KVM_HYPERV
4596         case KVM_CAP_HYPERV:
4597         case KVM_CAP_HYPERV_VAPIC:
4598         case KVM_CAP_HYPERV_SPIN:
4599         case KVM_CAP_HYPERV_TIME:
4600         case KVM_CAP_HYPERV_SYNIC:
4601         case KVM_CAP_HYPERV_SYNIC2:
4602         case KVM_CAP_HYPERV_VP_INDEX:
4603         case KVM_CAP_HYPERV_EVENTFD:
4604         case KVM_CAP_HYPERV_TLBFLUSH:
4605         case KVM_CAP_HYPERV_SEND_IPI:
4606         case KVM_CAP_HYPERV_CPUID:
4607         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4608         case KVM_CAP_SYS_HYPERV_CPUID:
4609 #endif
4610         case KVM_CAP_PCI_SEGMENT:
4611         case KVM_CAP_DEBUGREGS:
4612         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4613         case KVM_CAP_XSAVE:
4614         case KVM_CAP_ASYNC_PF:
4615         case KVM_CAP_ASYNC_PF_INT:
4616         case KVM_CAP_GET_TSC_KHZ:
4617         case KVM_CAP_KVMCLOCK_CTRL:
4618         case KVM_CAP_READONLY_MEM:
4619         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4620         case KVM_CAP_TSC_DEADLINE_TIMER:
4621         case KVM_CAP_DISABLE_QUIRKS:
4622         case KVM_CAP_SET_BOOT_CPU_ID:
4623         case KVM_CAP_SPLIT_IRQCHIP:
4624         case KVM_CAP_IMMEDIATE_EXIT:
4625         case KVM_CAP_PMU_EVENT_FILTER:
4626         case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4627         case KVM_CAP_GET_MSR_FEATURES:
4628         case KVM_CAP_MSR_PLATFORM_INFO:
4629         case KVM_CAP_EXCEPTION_PAYLOAD:
4630         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4631         case KVM_CAP_SET_GUEST_DEBUG:
4632         case KVM_CAP_LAST_CPU:
4633         case KVM_CAP_X86_USER_SPACE_MSR:
4634         case KVM_CAP_X86_MSR_FILTER:
4635         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4636 #ifdef CONFIG_X86_SGX_KVM
4637         case KVM_CAP_SGX_ATTRIBUTE:
4638 #endif
4639         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4640         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4641         case KVM_CAP_SREGS2:
4642         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4643         case KVM_CAP_VCPU_ATTRIBUTES:
4644         case KVM_CAP_SYS_ATTRIBUTES:
4645         case KVM_CAP_VAPIC:
4646         case KVM_CAP_ENABLE_CAP:
4647         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4648         case KVM_CAP_IRQFD_RESAMPLE:
4649         case KVM_CAP_MEMORY_FAULT_INFO:
4650                 r = 1;
4651                 break;
4652         case KVM_CAP_EXIT_HYPERCALL:
4653                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4654                 break;
4655         case KVM_CAP_SET_GUEST_DEBUG2:
4656                 return KVM_GUESTDBG_VALID_MASK;
4657 #ifdef CONFIG_KVM_XEN
4658         case KVM_CAP_XEN_HVM:
4659                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4660                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4661                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4662                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4663                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4664                 if (sched_info_on())
4665                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4666                              KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4667                 break;
4668 #endif
4669         case KVM_CAP_SYNC_REGS:
4670                 r = KVM_SYNC_X86_VALID_FIELDS;
4671                 break;
4672         case KVM_CAP_ADJUST_CLOCK:
4673                 r = KVM_CLOCK_VALID_FLAGS;
4674                 break;
4675         case KVM_CAP_X86_DISABLE_EXITS:
4676                 r = KVM_X86_DISABLE_EXITS_PAUSE;
4677
4678                 if (!mitigate_smt_rsb) {
4679                         r |= KVM_X86_DISABLE_EXITS_HLT |
4680                              KVM_X86_DISABLE_EXITS_CSTATE;
4681
4682                         if (kvm_can_mwait_in_guest())
4683                                 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4684                 }
4685                 break;
4686         case KVM_CAP_X86_SMM:
4687                 if (!IS_ENABLED(CONFIG_KVM_SMM))
4688                         break;
4689
4690                 /* SMBASE is usually relocated above 1M on modern chipsets,
4691                  * and SMM handlers might indeed rely on 4G segment limits,
4692                  * so do not report SMM to be available if real mode is
4693                  * emulated via vm86 mode.  Still, do not go to great lengths
4694                  * to avoid userspace's usage of the feature, because it is a
4695                  * fringe case that is not enabled except via specific settings
4696                  * of the module parameters.
4697                  */
4698                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4699                 break;
4700         case KVM_CAP_NR_VCPUS:
4701                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4702                 break;
4703         case KVM_CAP_MAX_VCPUS:
4704                 r = KVM_MAX_VCPUS;
4705                 break;
4706         case KVM_CAP_MAX_VCPU_ID:
4707                 r = KVM_MAX_VCPU_IDS;
4708                 break;
4709         case KVM_CAP_PV_MMU:    /* obsolete */
4710                 r = 0;
4711                 break;
4712         case KVM_CAP_MCE:
4713                 r = KVM_MAX_MCE_BANKS;
4714                 break;
4715         case KVM_CAP_XCRS:
4716                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4717                 break;
4718         case KVM_CAP_TSC_CONTROL:
4719         case KVM_CAP_VM_TSC_CONTROL:
4720                 r = kvm_caps.has_tsc_control;
4721                 break;
4722         case KVM_CAP_X2APIC_API:
4723                 r = KVM_X2APIC_API_VALID_FLAGS;
4724                 break;
4725         case KVM_CAP_NESTED_STATE:
4726                 r = kvm_x86_ops.nested_ops->get_state ?
4727                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4728                 break;
4729 #ifdef CONFIG_KVM_HYPERV
4730         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4731                 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4732                 break;
4733         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4734                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4735                 break;
4736 #endif
4737         case KVM_CAP_SMALLER_MAXPHYADDR:
4738                 r = (int) allow_smaller_maxphyaddr;
4739                 break;
4740         case KVM_CAP_STEAL_TIME:
4741                 r = sched_info_on();
4742                 break;
4743         case KVM_CAP_X86_BUS_LOCK_EXIT:
4744                 if (kvm_caps.has_bus_lock_exit)
4745                         r = KVM_BUS_LOCK_DETECTION_OFF |
4746                             KVM_BUS_LOCK_DETECTION_EXIT;
4747                 else
4748                         r = 0;
4749                 break;
4750         case KVM_CAP_XSAVE2: {
4751                 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4752                 if (r < sizeof(struct kvm_xsave))
4753                         r = sizeof(struct kvm_xsave);
4754                 break;
4755         }
4756         case KVM_CAP_PMU_CAPABILITY:
4757                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4758                 break;
4759         case KVM_CAP_DISABLE_QUIRKS2:
4760                 r = KVM_X86_VALID_QUIRKS;
4761                 break;
4762         case KVM_CAP_X86_NOTIFY_VMEXIT:
4763                 r = kvm_caps.has_notify_vmexit;
4764                 break;
4765         case KVM_CAP_VM_TYPES:
4766                 r = BIT(KVM_X86_DEFAULT_VM);
4767                 if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM))
4768                         r |= BIT(KVM_X86_SW_PROTECTED_VM);
4769                 break;
4770         default:
4771                 break;
4772         }
4773         return r;
4774 }
4775
4776 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4777 {
4778         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4779
4780         if ((u64)(unsigned long)uaddr != attr->addr)
4781                 return ERR_PTR_USR(-EFAULT);
4782         return uaddr;
4783 }
4784
4785 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4786 {
4787         u64 __user *uaddr = kvm_get_attr_addr(attr);
4788
4789         if (attr->group)
4790                 return -ENXIO;
4791
4792         if (IS_ERR(uaddr))
4793                 return PTR_ERR(uaddr);
4794
4795         switch (attr->attr) {
4796         case KVM_X86_XCOMP_GUEST_SUPP:
4797                 if (put_user(kvm_caps.supported_xcr0, uaddr))
4798                         return -EFAULT;
4799                 return 0;
4800         default:
4801                 return -ENXIO;
4802         }
4803 }
4804
4805 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4806 {
4807         if (attr->group)
4808                 return -ENXIO;
4809
4810         switch (attr->attr) {
4811         case KVM_X86_XCOMP_GUEST_SUPP:
4812                 return 0;
4813         default:
4814                 return -ENXIO;
4815         }
4816 }
4817
4818 long kvm_arch_dev_ioctl(struct file *filp,
4819                         unsigned int ioctl, unsigned long arg)
4820 {
4821         void __user *argp = (void __user *)arg;
4822         long r;
4823
4824         switch (ioctl) {
4825         case KVM_GET_MSR_INDEX_LIST: {
4826                 struct kvm_msr_list __user *user_msr_list = argp;
4827                 struct kvm_msr_list msr_list;
4828                 unsigned n;
4829
4830                 r = -EFAULT;
4831                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4832                         goto out;
4833                 n = msr_list.nmsrs;
4834                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4835                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4836                         goto out;
4837                 r = -E2BIG;
4838                 if (n < msr_list.nmsrs)
4839                         goto out;
4840                 r = -EFAULT;
4841                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4842                                  num_msrs_to_save * sizeof(u32)))
4843                         goto out;
4844                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4845                                  &emulated_msrs,
4846                                  num_emulated_msrs * sizeof(u32)))
4847                         goto out;
4848                 r = 0;
4849                 break;
4850         }
4851         case KVM_GET_SUPPORTED_CPUID:
4852         case KVM_GET_EMULATED_CPUID: {
4853                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4854                 struct kvm_cpuid2 cpuid;
4855
4856                 r = -EFAULT;
4857                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4858                         goto out;
4859
4860                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4861                                             ioctl);
4862                 if (r)
4863                         goto out;
4864
4865                 r = -EFAULT;
4866                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4867                         goto out;
4868                 r = 0;
4869                 break;
4870         }
4871         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4872                 r = -EFAULT;
4873                 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4874                                  sizeof(kvm_caps.supported_mce_cap)))
4875                         goto out;
4876                 r = 0;
4877                 break;
4878         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4879                 struct kvm_msr_list __user *user_msr_list = argp;
4880                 struct kvm_msr_list msr_list;
4881                 unsigned int n;
4882
4883                 r = -EFAULT;
4884                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4885                         goto out;
4886                 n = msr_list.nmsrs;
4887                 msr_list.nmsrs = num_msr_based_features;
4888                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4889                         goto out;
4890                 r = -E2BIG;
4891                 if (n < msr_list.nmsrs)
4892                         goto out;
4893                 r = -EFAULT;
4894                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4895                                  num_msr_based_features * sizeof(u32)))
4896                         goto out;
4897                 r = 0;
4898                 break;
4899         }
4900         case KVM_GET_MSRS:
4901                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4902                 break;
4903 #ifdef CONFIG_KVM_HYPERV
4904         case KVM_GET_SUPPORTED_HV_CPUID:
4905                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4906                 break;
4907 #endif
4908         case KVM_GET_DEVICE_ATTR: {
4909                 struct kvm_device_attr attr;
4910                 r = -EFAULT;
4911                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4912                         break;
4913                 r = kvm_x86_dev_get_attr(&attr);
4914                 break;
4915         }
4916         case KVM_HAS_DEVICE_ATTR: {
4917                 struct kvm_device_attr attr;
4918                 r = -EFAULT;
4919                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4920                         break;
4921                 r = kvm_x86_dev_has_attr(&attr);
4922                 break;
4923         }
4924         default:
4925                 r = -EINVAL;
4926                 break;
4927         }
4928 out:
4929         return r;
4930 }
4931
4932 static void wbinvd_ipi(void *garbage)
4933 {
4934         wbinvd();
4935 }
4936
4937 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4938 {
4939         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4940 }
4941
4942 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4943 {
4944         /* Address WBINVD may be executed by guest */
4945         if (need_emulate_wbinvd(vcpu)) {
4946                 if (static_call(kvm_x86_has_wbinvd_exit)())
4947                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4948                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4949                         smp_call_function_single(vcpu->cpu,
4950                                         wbinvd_ipi, NULL, 1);
4951         }
4952
4953         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4954
4955         /* Save host pkru register if supported */
4956         vcpu->arch.host_pkru = read_pkru();
4957
4958         /* Apply any externally detected TSC adjustments (due to suspend) */
4959         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4960                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4961                 vcpu->arch.tsc_offset_adjustment = 0;
4962                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4963         }
4964
4965         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4966                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4967                                 rdtsc() - vcpu->arch.last_host_tsc;
4968                 if (tsc_delta < 0)
4969                         mark_tsc_unstable("KVM discovered backwards TSC");
4970
4971                 if (kvm_check_tsc_unstable()) {
4972                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4973                                                 vcpu->arch.last_guest_tsc);
4974                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4975                         vcpu->arch.tsc_catchup = 1;
4976                 }
4977
4978                 if (kvm_lapic_hv_timer_in_use(vcpu))
4979                         kvm_lapic_restart_hv_timer(vcpu);
4980
4981                 /*
4982                  * On a host with synchronized TSC, there is no need to update
4983                  * kvmclock on vcpu->cpu migration
4984                  */
4985                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4986                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4987                 if (vcpu->cpu != cpu)
4988                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4989                 vcpu->cpu = cpu;
4990         }
4991
4992         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4993 }
4994
4995 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4996 {
4997         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4998         struct kvm_steal_time __user *st;
4999         struct kvm_memslots *slots;
5000         static const u8 preempted = KVM_VCPU_PREEMPTED;
5001         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5002
5003         /*
5004          * The vCPU can be marked preempted if and only if the VM-Exit was on
5005          * an instruction boundary and will not trigger guest emulation of any
5006          * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5007          * when this is true, for example allowing the vCPU to be marked
5008          * preempted if and only if the VM-Exit was due to a host interrupt.
5009          */
5010         if (!vcpu->arch.at_instruction_boundary) {
5011                 vcpu->stat.preemption_other++;
5012                 return;
5013         }
5014
5015         vcpu->stat.preemption_reported++;
5016         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5017                 return;
5018
5019         if (vcpu->arch.st.preempted)
5020                 return;
5021
5022         /* This happens on process exit */
5023         if (unlikely(current->mm != vcpu->kvm->mm))
5024                 return;
5025
5026         slots = kvm_memslots(vcpu->kvm);
5027
5028         if (unlikely(slots->generation != ghc->generation ||
5029                      gpa != ghc->gpa ||
5030                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5031                 return;
5032
5033         st = (struct kvm_steal_time __user *)ghc->hva;
5034         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5035
5036         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5037                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5038
5039         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5040 }
5041
5042 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5043 {
5044         int idx;
5045
5046         if (vcpu->preempted) {
5047                 if (!vcpu->arch.guest_state_protected)
5048                         vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
5049
5050                 /*
5051                  * Take the srcu lock as memslots will be accessed to check the gfn
5052                  * cache generation against the memslots generation.
5053                  */
5054                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5055                 if (kvm_xen_msr_enabled(vcpu->kvm))
5056                         kvm_xen_runstate_set_preempted(vcpu);
5057                 else
5058                         kvm_steal_time_set_preempted(vcpu);
5059                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5060         }
5061
5062         static_call(kvm_x86_vcpu_put)(vcpu);
5063         vcpu->arch.last_host_tsc = rdtsc();
5064 }
5065
5066 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5067                                     struct kvm_lapic_state *s)
5068 {
5069         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5070
5071         return kvm_apic_get_state(vcpu, s);
5072 }
5073
5074 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5075                                     struct kvm_lapic_state *s)
5076 {
5077         int r;
5078
5079         r = kvm_apic_set_state(vcpu, s);
5080         if (r)
5081                 return r;
5082         update_cr8_intercept(vcpu);
5083
5084         return 0;
5085 }
5086
5087 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5088 {
5089         /*
5090          * We can accept userspace's request for interrupt injection
5091          * as long as we have a place to store the interrupt number.
5092          * The actual injection will happen when the CPU is able to
5093          * deliver the interrupt.
5094          */
5095         if (kvm_cpu_has_extint(vcpu))
5096                 return false;
5097
5098         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5099         return (!lapic_in_kernel(vcpu) ||
5100                 kvm_apic_accept_pic_intr(vcpu));
5101 }
5102
5103 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5104 {
5105         /*
5106          * Do not cause an interrupt window exit if an exception
5107          * is pending or an event needs reinjection; userspace
5108          * might want to inject the interrupt manually using KVM_SET_REGS
5109          * or KVM_SET_SREGS.  For that to work, we must be at an
5110          * instruction boundary and with no events half-injected.
5111          */
5112         return (kvm_arch_interrupt_allowed(vcpu) &&
5113                 kvm_cpu_accept_dm_intr(vcpu) &&
5114                 !kvm_event_needs_reinjection(vcpu) &&
5115                 !kvm_is_exception_pending(vcpu));
5116 }
5117
5118 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5119                                     struct kvm_interrupt *irq)
5120 {
5121         if (irq->irq >= KVM_NR_INTERRUPTS)
5122                 return -EINVAL;
5123
5124         if (!irqchip_in_kernel(vcpu->kvm)) {
5125                 kvm_queue_interrupt(vcpu, irq->irq, false);
5126                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5127                 return 0;
5128         }
5129
5130         /*
5131          * With in-kernel LAPIC, we only use this to inject EXTINT, so
5132          * fail for in-kernel 8259.
5133          */
5134         if (pic_in_kernel(vcpu->kvm))
5135                 return -ENXIO;
5136
5137         if (vcpu->arch.pending_external_vector != -1)
5138                 return -EEXIST;
5139
5140         vcpu->arch.pending_external_vector = irq->irq;
5141         kvm_make_request(KVM_REQ_EVENT, vcpu);
5142         return 0;
5143 }
5144
5145 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5146 {
5147         kvm_inject_nmi(vcpu);
5148
5149         return 0;
5150 }
5151
5152 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5153                                            struct kvm_tpr_access_ctl *tac)
5154 {
5155         if (tac->flags)
5156                 return -EINVAL;
5157         vcpu->arch.tpr_access_reporting = !!tac->enabled;
5158         return 0;
5159 }
5160
5161 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5162                                         u64 mcg_cap)
5163 {
5164         int r;
5165         unsigned bank_num = mcg_cap & 0xff, bank;
5166
5167         r = -EINVAL;
5168         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5169                 goto out;
5170         if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5171                 goto out;
5172         r = 0;
5173         vcpu->arch.mcg_cap = mcg_cap;
5174         /* Init IA32_MCG_CTL to all 1s */
5175         if (mcg_cap & MCG_CTL_P)
5176                 vcpu->arch.mcg_ctl = ~(u64)0;
5177         /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5178         for (bank = 0; bank < bank_num; bank++) {
5179                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5180                 if (mcg_cap & MCG_CMCI_P)
5181                         vcpu->arch.mci_ctl2_banks[bank] = 0;
5182         }
5183
5184         kvm_apic_after_set_mcg_cap(vcpu);
5185
5186         static_call(kvm_x86_setup_mce)(vcpu);
5187 out:
5188         return r;
5189 }
5190
5191 /*
5192  * Validate this is an UCNA (uncorrectable no action) error by checking the
5193  * MCG_STATUS and MCi_STATUS registers:
5194  * - none of the bits for Machine Check Exceptions are set
5195  * - both the VAL (valid) and UC (uncorrectable) bits are set
5196  * MCI_STATUS_PCC - Processor Context Corrupted
5197  * MCI_STATUS_S - Signaled as a Machine Check Exception
5198  * MCI_STATUS_AR - Software recoverable Action Required
5199  */
5200 static bool is_ucna(struct kvm_x86_mce *mce)
5201 {
5202         return  !mce->mcg_status &&
5203                 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5204                 (mce->status & MCI_STATUS_VAL) &&
5205                 (mce->status & MCI_STATUS_UC);
5206 }
5207
5208 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5209 {
5210         u64 mcg_cap = vcpu->arch.mcg_cap;
5211
5212         banks[1] = mce->status;
5213         banks[2] = mce->addr;
5214         banks[3] = mce->misc;
5215         vcpu->arch.mcg_status = mce->mcg_status;
5216
5217         if (!(mcg_cap & MCG_CMCI_P) ||
5218             !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5219                 return 0;
5220
5221         if (lapic_in_kernel(vcpu))
5222                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5223
5224         return 0;
5225 }
5226
5227 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5228                                       struct kvm_x86_mce *mce)
5229 {
5230         u64 mcg_cap = vcpu->arch.mcg_cap;
5231         unsigned bank_num = mcg_cap & 0xff;
5232         u64 *banks = vcpu->arch.mce_banks;
5233
5234         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5235                 return -EINVAL;
5236
5237         banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5238
5239         if (is_ucna(mce))
5240                 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5241
5242         /*
5243          * if IA32_MCG_CTL is not all 1s, the uncorrected error
5244          * reporting is disabled
5245          */
5246         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5247             vcpu->arch.mcg_ctl != ~(u64)0)
5248                 return 0;
5249         /*
5250          * if IA32_MCi_CTL is not all 1s, the uncorrected error
5251          * reporting is disabled for the bank
5252          */
5253         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5254                 return 0;
5255         if (mce->status & MCI_STATUS_UC) {
5256                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5257                     !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5258                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5259                         return 0;
5260                 }
5261                 if (banks[1] & MCI_STATUS_VAL)
5262                         mce->status |= MCI_STATUS_OVER;
5263                 banks[2] = mce->addr;
5264                 banks[3] = mce->misc;
5265                 vcpu->arch.mcg_status = mce->mcg_status;
5266                 banks[1] = mce->status;
5267                 kvm_queue_exception(vcpu, MC_VECTOR);
5268         } else if (!(banks[1] & MCI_STATUS_VAL)
5269                    || !(banks[1] & MCI_STATUS_UC)) {
5270                 if (banks[1] & MCI_STATUS_VAL)
5271                         mce->status |= MCI_STATUS_OVER;
5272                 banks[2] = mce->addr;
5273                 banks[3] = mce->misc;
5274                 banks[1] = mce->status;
5275         } else
5276                 banks[1] |= MCI_STATUS_OVER;
5277         return 0;
5278 }
5279
5280 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5281                                                struct kvm_vcpu_events *events)
5282 {
5283         struct kvm_queued_exception *ex;
5284
5285         process_nmi(vcpu);
5286
5287 #ifdef CONFIG_KVM_SMM
5288         if (kvm_check_request(KVM_REQ_SMI, vcpu))
5289                 process_smi(vcpu);
5290 #endif
5291
5292         /*
5293          * KVM's ABI only allows for one exception to be migrated.  Luckily,
5294          * the only time there can be two queued exceptions is if there's a
5295          * non-exiting _injected_ exception, and a pending exiting exception.
5296          * In that case, ignore the VM-Exiting exception as it's an extension
5297          * of the injected exception.
5298          */
5299         if (vcpu->arch.exception_vmexit.pending &&
5300             !vcpu->arch.exception.pending &&
5301             !vcpu->arch.exception.injected)
5302                 ex = &vcpu->arch.exception_vmexit;
5303         else
5304                 ex = &vcpu->arch.exception;
5305
5306         /*
5307          * In guest mode, payload delivery should be deferred if the exception
5308          * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5309          * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5310          * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5311          * propagate the payload and so it cannot be safely deferred.  Deliver
5312          * the payload if the capability hasn't been requested.
5313          */
5314         if (!vcpu->kvm->arch.exception_payload_enabled &&
5315             ex->pending && ex->has_payload)
5316                 kvm_deliver_exception_payload(vcpu, ex);
5317
5318         memset(events, 0, sizeof(*events));
5319
5320         /*
5321          * The API doesn't provide the instruction length for software
5322          * exceptions, so don't report them. As long as the guest RIP
5323          * isn't advanced, we should expect to encounter the exception
5324          * again.
5325          */
5326         if (!kvm_exception_is_soft(ex->vector)) {
5327                 events->exception.injected = ex->injected;
5328                 events->exception.pending = ex->pending;
5329                 /*
5330                  * For ABI compatibility, deliberately conflate
5331                  * pending and injected exceptions when
5332                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5333                  */
5334                 if (!vcpu->kvm->arch.exception_payload_enabled)
5335                         events->exception.injected |= ex->pending;
5336         }
5337         events->exception.nr = ex->vector;
5338         events->exception.has_error_code = ex->has_error_code;
5339         events->exception.error_code = ex->error_code;
5340         events->exception_has_payload = ex->has_payload;
5341         events->exception_payload = ex->payload;
5342
5343         events->interrupt.injected =
5344                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5345         events->interrupt.nr = vcpu->arch.interrupt.nr;
5346         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5347
5348         events->nmi.injected = vcpu->arch.nmi_injected;
5349         events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5350         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5351
5352         /* events->sipi_vector is never valid when reporting to user space */
5353
5354 #ifdef CONFIG_KVM_SMM
5355         events->smi.smm = is_smm(vcpu);
5356         events->smi.pending = vcpu->arch.smi_pending;
5357         events->smi.smm_inside_nmi =
5358                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5359 #endif
5360         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5361
5362         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5363                          | KVM_VCPUEVENT_VALID_SHADOW
5364                          | KVM_VCPUEVENT_VALID_SMM);
5365         if (vcpu->kvm->arch.exception_payload_enabled)
5366                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5367         if (vcpu->kvm->arch.triple_fault_event) {
5368                 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5369                 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5370         }
5371 }
5372
5373 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5374                                               struct kvm_vcpu_events *events)
5375 {
5376         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5377                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5378                               | KVM_VCPUEVENT_VALID_SHADOW
5379                               | KVM_VCPUEVENT_VALID_SMM
5380                               | KVM_VCPUEVENT_VALID_PAYLOAD
5381                               | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5382                 return -EINVAL;
5383
5384         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5385                 if (!vcpu->kvm->arch.exception_payload_enabled)
5386                         return -EINVAL;
5387                 if (events->exception.pending)
5388                         events->exception.injected = 0;
5389                 else
5390                         events->exception_has_payload = 0;
5391         } else {
5392                 events->exception.pending = 0;
5393                 events->exception_has_payload = 0;
5394         }
5395
5396         if ((events->exception.injected || events->exception.pending) &&
5397             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5398                 return -EINVAL;
5399
5400         /* INITs are latched while in SMM */
5401         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5402             (events->smi.smm || events->smi.pending) &&
5403             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5404                 return -EINVAL;
5405
5406         process_nmi(vcpu);
5407
5408         /*
5409          * Flag that userspace is stuffing an exception, the next KVM_RUN will
5410          * morph the exception to a VM-Exit if appropriate.  Do this only for
5411          * pending exceptions, already-injected exceptions are not subject to
5412          * intercpetion.  Note, userspace that conflates pending and injected
5413          * is hosed, and will incorrectly convert an injected exception into a
5414          * pending exception, which in turn may cause a spurious VM-Exit.
5415          */
5416         vcpu->arch.exception_from_userspace = events->exception.pending;
5417
5418         vcpu->arch.exception_vmexit.pending = false;
5419
5420         vcpu->arch.exception.injected = events->exception.injected;
5421         vcpu->arch.exception.pending = events->exception.pending;
5422         vcpu->arch.exception.vector = events->exception.nr;
5423         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5424         vcpu->arch.exception.error_code = events->exception.error_code;
5425         vcpu->arch.exception.has_payload = events->exception_has_payload;
5426         vcpu->arch.exception.payload = events->exception_payload;
5427
5428         vcpu->arch.interrupt.injected = events->interrupt.injected;
5429         vcpu->arch.interrupt.nr = events->interrupt.nr;
5430         vcpu->arch.interrupt.soft = events->interrupt.soft;
5431         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5432                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5433                                                 events->interrupt.shadow);
5434
5435         vcpu->arch.nmi_injected = events->nmi.injected;
5436         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5437                 vcpu->arch.nmi_pending = 0;
5438                 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5439                 kvm_make_request(KVM_REQ_NMI, vcpu);
5440         }
5441         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5442
5443         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5444             lapic_in_kernel(vcpu))
5445                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5446
5447         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5448 #ifdef CONFIG_KVM_SMM
5449                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5450                         kvm_leave_nested(vcpu);
5451                         kvm_smm_changed(vcpu, events->smi.smm);
5452                 }
5453
5454                 vcpu->arch.smi_pending = events->smi.pending;
5455
5456                 if (events->smi.smm) {
5457                         if (events->smi.smm_inside_nmi)
5458                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5459                         else
5460                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5461                 }
5462
5463 #else
5464                 if (events->smi.smm || events->smi.pending ||
5465                     events->smi.smm_inside_nmi)
5466                         return -EINVAL;
5467 #endif
5468
5469                 if (lapic_in_kernel(vcpu)) {
5470                         if (events->smi.latched_init)
5471                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5472                         else
5473                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5474                 }
5475         }
5476
5477         if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5478                 if (!vcpu->kvm->arch.triple_fault_event)
5479                         return -EINVAL;
5480                 if (events->triple_fault.pending)
5481                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5482                 else
5483                         kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5484         }
5485
5486         kvm_make_request(KVM_REQ_EVENT, vcpu);
5487
5488         return 0;
5489 }
5490
5491 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5492                                              struct kvm_debugregs *dbgregs)
5493 {
5494         unsigned long val;
5495
5496         memset(dbgregs, 0, sizeof(*dbgregs));
5497         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5498         kvm_get_dr(vcpu, 6, &val);
5499         dbgregs->dr6 = val;
5500         dbgregs->dr7 = vcpu->arch.dr7;
5501 }
5502
5503 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5504                                             struct kvm_debugregs *dbgregs)
5505 {
5506         if (dbgregs->flags)
5507                 return -EINVAL;
5508
5509         if (!kvm_dr6_valid(dbgregs->dr6))
5510                 return -EINVAL;
5511         if (!kvm_dr7_valid(dbgregs->dr7))
5512                 return -EINVAL;
5513
5514         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5515         kvm_update_dr0123(vcpu);
5516         vcpu->arch.dr6 = dbgregs->dr6;
5517         vcpu->arch.dr7 = dbgregs->dr7;
5518         kvm_update_dr7(vcpu);
5519
5520         return 0;
5521 }
5522
5523
5524 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5525                                           u8 *state, unsigned int size)
5526 {
5527         /*
5528          * Only copy state for features that are enabled for the guest.  The
5529          * state itself isn't problematic, but setting bits in the header for
5530          * features that are supported in *this* host but not exposed to the
5531          * guest can result in KVM_SET_XSAVE failing when live migrating to a
5532          * compatible host without the features that are NOT exposed to the
5533          * guest.
5534          *
5535          * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5536          * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5537          * supported by the host.
5538          */
5539         u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5540                              XFEATURE_MASK_FPSSE;
5541
5542         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5543                 return;
5544
5545         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5546                                        supported_xcr0, vcpu->arch.pkru);
5547 }
5548
5549 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5550                                          struct kvm_xsave *guest_xsave)
5551 {
5552         kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5553                                       sizeof(guest_xsave->region));
5554 }
5555
5556 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5557                                         struct kvm_xsave *guest_xsave)
5558 {
5559         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5560                 return 0;
5561
5562         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5563                                               guest_xsave->region,
5564                                               kvm_caps.supported_xcr0,
5565                                               &vcpu->arch.pkru);
5566 }
5567
5568 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5569                                         struct kvm_xcrs *guest_xcrs)
5570 {
5571         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5572                 guest_xcrs->nr_xcrs = 0;
5573                 return;
5574         }
5575
5576         guest_xcrs->nr_xcrs = 1;
5577         guest_xcrs->flags = 0;
5578         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5579         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5580 }
5581
5582 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5583                                        struct kvm_xcrs *guest_xcrs)
5584 {
5585         int i, r = 0;
5586
5587         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5588                 return -EINVAL;
5589
5590         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5591                 return -EINVAL;
5592
5593         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5594                 /* Only support XCR0 currently */
5595                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5596                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5597                                 guest_xcrs->xcrs[i].value);
5598                         break;
5599                 }
5600         if (r)
5601                 r = -EINVAL;
5602         return r;
5603 }
5604
5605 /*
5606  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5607  * stopped by the hypervisor.  This function will be called from the host only.
5608  * EINVAL is returned when the host attempts to set the flag for a guest that
5609  * does not support pv clocks.
5610  */
5611 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5612 {
5613         if (!vcpu->arch.pv_time.active)
5614                 return -EINVAL;
5615         vcpu->arch.pvclock_set_guest_stopped_request = true;
5616         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5617         return 0;
5618 }
5619
5620 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5621                                  struct kvm_device_attr *attr)
5622 {
5623         int r;
5624
5625         switch (attr->attr) {
5626         case KVM_VCPU_TSC_OFFSET:
5627                 r = 0;
5628                 break;
5629         default:
5630                 r = -ENXIO;
5631         }
5632
5633         return r;
5634 }
5635
5636 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5637                                  struct kvm_device_attr *attr)
5638 {
5639         u64 __user *uaddr = kvm_get_attr_addr(attr);
5640         int r;
5641
5642         if (IS_ERR(uaddr))
5643                 return PTR_ERR(uaddr);
5644
5645         switch (attr->attr) {
5646         case KVM_VCPU_TSC_OFFSET:
5647                 r = -EFAULT;
5648                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5649                         break;
5650                 r = 0;
5651                 break;
5652         default:
5653                 r = -ENXIO;
5654         }
5655
5656         return r;
5657 }
5658
5659 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5660                                  struct kvm_device_attr *attr)
5661 {
5662         u64 __user *uaddr = kvm_get_attr_addr(attr);
5663         struct kvm *kvm = vcpu->kvm;
5664         int r;
5665
5666         if (IS_ERR(uaddr))
5667                 return PTR_ERR(uaddr);
5668
5669         switch (attr->attr) {
5670         case KVM_VCPU_TSC_OFFSET: {
5671                 u64 offset, tsc, ns;
5672                 unsigned long flags;
5673                 bool matched;
5674
5675                 r = -EFAULT;
5676                 if (get_user(offset, uaddr))
5677                         break;
5678
5679                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5680
5681                 matched = (vcpu->arch.virtual_tsc_khz &&
5682                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5683                            kvm->arch.last_tsc_offset == offset);
5684
5685                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5686                 ns = get_kvmclock_base_ns();
5687
5688                 kvm->arch.user_set_tsc = true;
5689                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5690                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5691
5692                 r = 0;
5693                 break;
5694         }
5695         default:
5696                 r = -ENXIO;
5697         }
5698
5699         return r;
5700 }
5701
5702 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5703                                       unsigned int ioctl,
5704                                       void __user *argp)
5705 {
5706         struct kvm_device_attr attr;
5707         int r;
5708
5709         if (copy_from_user(&attr, argp, sizeof(attr)))
5710                 return -EFAULT;
5711
5712         if (attr.group != KVM_VCPU_TSC_CTRL)
5713                 return -ENXIO;
5714
5715         switch (ioctl) {
5716         case KVM_HAS_DEVICE_ATTR:
5717                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5718                 break;
5719         case KVM_GET_DEVICE_ATTR:
5720                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5721                 break;
5722         case KVM_SET_DEVICE_ATTR:
5723                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5724                 break;
5725         }
5726
5727         return r;
5728 }
5729
5730 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5731                                      struct kvm_enable_cap *cap)
5732 {
5733         if (cap->flags)
5734                 return -EINVAL;
5735
5736         switch (cap->cap) {
5737 #ifdef CONFIG_KVM_HYPERV
5738         case KVM_CAP_HYPERV_SYNIC2:
5739                 if (cap->args[0])
5740                         return -EINVAL;
5741                 fallthrough;
5742
5743         case KVM_CAP_HYPERV_SYNIC:
5744                 if (!irqchip_in_kernel(vcpu->kvm))
5745                         return -EINVAL;
5746                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5747                                              KVM_CAP_HYPERV_SYNIC2);
5748         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5749                 {
5750                         int r;
5751                         uint16_t vmcs_version;
5752                         void __user *user_ptr;
5753
5754                         if (!kvm_x86_ops.nested_ops->enable_evmcs)
5755                                 return -ENOTTY;
5756                         r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5757                         if (!r) {
5758                                 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5759                                 if (copy_to_user(user_ptr, &vmcs_version,
5760                                                  sizeof(vmcs_version)))
5761                                         r = -EFAULT;
5762                         }
5763                         return r;
5764                 }
5765         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5766                 if (!kvm_x86_ops.enable_l2_tlb_flush)
5767                         return -ENOTTY;
5768
5769                 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5770
5771         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5772                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5773 #endif
5774
5775         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5776                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5777                 if (vcpu->arch.pv_cpuid.enforce)
5778                         kvm_update_pv_runtime(vcpu);
5779
5780                 return 0;
5781         default:
5782                 return -EINVAL;
5783         }
5784 }
5785
5786 long kvm_arch_vcpu_ioctl(struct file *filp,
5787                          unsigned int ioctl, unsigned long arg)
5788 {
5789         struct kvm_vcpu *vcpu = filp->private_data;
5790         void __user *argp = (void __user *)arg;
5791         int r;
5792         union {
5793                 struct kvm_sregs2 *sregs2;
5794                 struct kvm_lapic_state *lapic;
5795                 struct kvm_xsave *xsave;
5796                 struct kvm_xcrs *xcrs;
5797                 void *buffer;
5798         } u;
5799
5800         vcpu_load(vcpu);
5801
5802         u.buffer = NULL;
5803         switch (ioctl) {
5804         case KVM_GET_LAPIC: {
5805                 r = -EINVAL;
5806                 if (!lapic_in_kernel(vcpu))
5807                         goto out;
5808                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5809                                 GFP_KERNEL_ACCOUNT);
5810
5811                 r = -ENOMEM;
5812                 if (!u.lapic)
5813                         goto out;
5814                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5815                 if (r)
5816                         goto out;
5817                 r = -EFAULT;
5818                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5819                         goto out;
5820                 r = 0;
5821                 break;
5822         }
5823         case KVM_SET_LAPIC: {
5824                 r = -EINVAL;
5825                 if (!lapic_in_kernel(vcpu))
5826                         goto out;
5827                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5828                 if (IS_ERR(u.lapic)) {
5829                         r = PTR_ERR(u.lapic);
5830                         goto out_nofree;
5831                 }
5832
5833                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5834                 break;
5835         }
5836         case KVM_INTERRUPT: {
5837                 struct kvm_interrupt irq;
5838
5839                 r = -EFAULT;
5840                 if (copy_from_user(&irq, argp, sizeof(irq)))
5841                         goto out;
5842                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5843                 break;
5844         }
5845         case KVM_NMI: {
5846                 r = kvm_vcpu_ioctl_nmi(vcpu);
5847                 break;
5848         }
5849         case KVM_SMI: {
5850                 r = kvm_inject_smi(vcpu);
5851                 break;
5852         }
5853         case KVM_SET_CPUID: {
5854                 struct kvm_cpuid __user *cpuid_arg = argp;
5855                 struct kvm_cpuid cpuid;
5856
5857                 r = -EFAULT;
5858                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5859                         goto out;
5860                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5861                 break;
5862         }
5863         case KVM_SET_CPUID2: {
5864                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5865                 struct kvm_cpuid2 cpuid;
5866
5867                 r = -EFAULT;
5868                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5869                         goto out;
5870                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5871                                               cpuid_arg->entries);
5872                 break;
5873         }
5874         case KVM_GET_CPUID2: {
5875                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5876                 struct kvm_cpuid2 cpuid;
5877
5878                 r = -EFAULT;
5879                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5880                         goto out;
5881                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5882                                               cpuid_arg->entries);
5883                 if (r)
5884                         goto out;
5885                 r = -EFAULT;
5886                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5887                         goto out;
5888                 r = 0;
5889                 break;
5890         }
5891         case KVM_GET_MSRS: {
5892                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5893                 r = msr_io(vcpu, argp, do_get_msr, 1);
5894                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5895                 break;
5896         }
5897         case KVM_SET_MSRS: {
5898                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5899                 r = msr_io(vcpu, argp, do_set_msr, 0);
5900                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5901                 break;
5902         }
5903         case KVM_TPR_ACCESS_REPORTING: {
5904                 struct kvm_tpr_access_ctl tac;
5905
5906                 r = -EFAULT;
5907                 if (copy_from_user(&tac, argp, sizeof(tac)))
5908                         goto out;
5909                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5910                 if (r)
5911                         goto out;
5912                 r = -EFAULT;
5913                 if (copy_to_user(argp, &tac, sizeof(tac)))
5914                         goto out;
5915                 r = 0;
5916                 break;
5917         };
5918         case KVM_SET_VAPIC_ADDR: {
5919                 struct kvm_vapic_addr va;
5920                 int idx;
5921
5922                 r = -EINVAL;
5923                 if (!lapic_in_kernel(vcpu))
5924                         goto out;
5925                 r = -EFAULT;
5926                 if (copy_from_user(&va, argp, sizeof(va)))
5927                         goto out;
5928                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5929                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5930                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5931                 break;
5932         }
5933         case KVM_X86_SETUP_MCE: {
5934                 u64 mcg_cap;
5935
5936                 r = -EFAULT;
5937                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5938                         goto out;
5939                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5940                 break;
5941         }
5942         case KVM_X86_SET_MCE: {
5943                 struct kvm_x86_mce mce;
5944
5945                 r = -EFAULT;
5946                 if (copy_from_user(&mce, argp, sizeof(mce)))
5947                         goto out;
5948                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5949                 break;
5950         }
5951         case KVM_GET_VCPU_EVENTS: {
5952                 struct kvm_vcpu_events events;
5953
5954                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5955
5956                 r = -EFAULT;
5957                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5958                         break;
5959                 r = 0;
5960                 break;
5961         }
5962         case KVM_SET_VCPU_EVENTS: {
5963                 struct kvm_vcpu_events events;
5964
5965                 r = -EFAULT;
5966                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5967                         break;
5968
5969                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5970                 break;
5971         }
5972         case KVM_GET_DEBUGREGS: {
5973                 struct kvm_debugregs dbgregs;
5974
5975                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5976
5977                 r = -EFAULT;
5978                 if (copy_to_user(argp, &dbgregs,
5979                                  sizeof(struct kvm_debugregs)))
5980                         break;
5981                 r = 0;
5982                 break;
5983         }
5984         case KVM_SET_DEBUGREGS: {
5985                 struct kvm_debugregs dbgregs;
5986
5987                 r = -EFAULT;
5988                 if (copy_from_user(&dbgregs, argp,
5989                                    sizeof(struct kvm_debugregs)))
5990                         break;
5991
5992                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5993                 break;
5994         }
5995         case KVM_GET_XSAVE: {
5996                 r = -EINVAL;
5997                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5998                         break;
5999
6000                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
6001                 r = -ENOMEM;
6002                 if (!u.xsave)
6003                         break;
6004
6005                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6006
6007                 r = -EFAULT;
6008                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6009                         break;
6010                 r = 0;
6011                 break;
6012         }
6013         case KVM_SET_XSAVE: {
6014                 int size = vcpu->arch.guest_fpu.uabi_size;
6015
6016                 u.xsave = memdup_user(argp, size);
6017                 if (IS_ERR(u.xsave)) {
6018                         r = PTR_ERR(u.xsave);
6019                         goto out_nofree;
6020                 }
6021
6022                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6023                 break;
6024         }
6025
6026         case KVM_GET_XSAVE2: {
6027                 int size = vcpu->arch.guest_fpu.uabi_size;
6028
6029                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
6030                 r = -ENOMEM;
6031                 if (!u.xsave)
6032                         break;
6033
6034                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6035
6036                 r = -EFAULT;
6037                 if (copy_to_user(argp, u.xsave, size))
6038                         break;
6039
6040                 r = 0;
6041                 break;
6042         }
6043
6044         case KVM_GET_XCRS: {
6045                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6046                 r = -ENOMEM;
6047                 if (!u.xcrs)
6048                         break;
6049
6050                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6051
6052                 r = -EFAULT;
6053                 if (copy_to_user(argp, u.xcrs,
6054                                  sizeof(struct kvm_xcrs)))
6055                         break;
6056                 r = 0;
6057                 break;
6058         }
6059         case KVM_SET_XCRS: {
6060                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6061                 if (IS_ERR(u.xcrs)) {
6062                         r = PTR_ERR(u.xcrs);
6063                         goto out_nofree;
6064                 }
6065
6066                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6067                 break;
6068         }
6069         case KVM_SET_TSC_KHZ: {
6070                 u32 user_tsc_khz;
6071
6072                 r = -EINVAL;
6073                 user_tsc_khz = (u32)arg;
6074
6075                 if (kvm_caps.has_tsc_control &&
6076                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6077                         goto out;
6078
6079                 if (user_tsc_khz == 0)
6080                         user_tsc_khz = tsc_khz;
6081
6082                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6083                         r = 0;
6084
6085                 goto out;
6086         }
6087         case KVM_GET_TSC_KHZ: {
6088                 r = vcpu->arch.virtual_tsc_khz;
6089                 goto out;
6090         }
6091         case KVM_KVMCLOCK_CTRL: {
6092                 r = kvm_set_guest_paused(vcpu);
6093                 goto out;
6094         }
6095         case KVM_ENABLE_CAP: {
6096                 struct kvm_enable_cap cap;
6097
6098                 r = -EFAULT;
6099                 if (copy_from_user(&cap, argp, sizeof(cap)))
6100                         goto out;
6101                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6102                 break;
6103         }
6104         case KVM_GET_NESTED_STATE: {
6105                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6106                 u32 user_data_size;
6107
6108                 r = -EINVAL;
6109                 if (!kvm_x86_ops.nested_ops->get_state)
6110                         break;
6111
6112                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6113                 r = -EFAULT;
6114                 if (get_user(user_data_size, &user_kvm_nested_state->size))
6115                         break;
6116
6117                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6118                                                      user_data_size);
6119                 if (r < 0)
6120                         break;
6121
6122                 if (r > user_data_size) {
6123                         if (put_user(r, &user_kvm_nested_state->size))
6124                                 r = -EFAULT;
6125                         else
6126                                 r = -E2BIG;
6127                         break;
6128                 }
6129
6130                 r = 0;
6131                 break;
6132         }
6133         case KVM_SET_NESTED_STATE: {
6134                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6135                 struct kvm_nested_state kvm_state;
6136                 int idx;
6137
6138                 r = -EINVAL;
6139                 if (!kvm_x86_ops.nested_ops->set_state)
6140                         break;
6141
6142                 r = -EFAULT;
6143                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6144                         break;
6145
6146                 r = -EINVAL;
6147                 if (kvm_state.size < sizeof(kvm_state))
6148                         break;
6149
6150                 if (kvm_state.flags &
6151                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6152                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6153                       | KVM_STATE_NESTED_GIF_SET))
6154                         break;
6155
6156                 /* nested_run_pending implies guest_mode.  */
6157                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6158                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6159                         break;
6160
6161                 idx = srcu_read_lock(&vcpu->kvm->srcu);
6162                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6163                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6164                 break;
6165         }
6166 #ifdef CONFIG_KVM_HYPERV
6167         case KVM_GET_SUPPORTED_HV_CPUID:
6168                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6169                 break;
6170 #endif
6171 #ifdef CONFIG_KVM_XEN
6172         case KVM_XEN_VCPU_GET_ATTR: {
6173                 struct kvm_xen_vcpu_attr xva;
6174
6175                 r = -EFAULT;
6176                 if (copy_from_user(&xva, argp, sizeof(xva)))
6177                         goto out;
6178                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6179                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6180                         r = -EFAULT;
6181                 break;
6182         }
6183         case KVM_XEN_VCPU_SET_ATTR: {
6184                 struct kvm_xen_vcpu_attr xva;
6185
6186                 r = -EFAULT;
6187                 if (copy_from_user(&xva, argp, sizeof(xva)))
6188                         goto out;
6189                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6190                 break;
6191         }
6192 #endif
6193         case KVM_GET_SREGS2: {
6194                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6195                 r = -ENOMEM;
6196                 if (!u.sregs2)
6197                         goto out;
6198                 __get_sregs2(vcpu, u.sregs2);
6199                 r = -EFAULT;
6200                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6201                         goto out;
6202                 r = 0;
6203                 break;
6204         }
6205         case KVM_SET_SREGS2: {
6206                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6207                 if (IS_ERR(u.sregs2)) {
6208                         r = PTR_ERR(u.sregs2);
6209                         u.sregs2 = NULL;
6210                         goto out;
6211                 }
6212                 r = __set_sregs2(vcpu, u.sregs2);
6213                 break;
6214         }
6215         case KVM_HAS_DEVICE_ATTR:
6216         case KVM_GET_DEVICE_ATTR:
6217         case KVM_SET_DEVICE_ATTR:
6218                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6219                 break;
6220         default:
6221                 r = -EINVAL;
6222         }
6223 out:
6224         kfree(u.buffer);
6225 out_nofree:
6226         vcpu_put(vcpu);
6227         return r;
6228 }
6229
6230 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6231 {
6232         return VM_FAULT_SIGBUS;
6233 }
6234
6235 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6236 {
6237         int ret;
6238
6239         if (addr > (unsigned int)(-3 * PAGE_SIZE))
6240                 return -EINVAL;
6241         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6242         return ret;
6243 }
6244
6245 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6246                                               u64 ident_addr)
6247 {
6248         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6249 }
6250
6251 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6252                                          unsigned long kvm_nr_mmu_pages)
6253 {
6254         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6255                 return -EINVAL;
6256
6257         mutex_lock(&kvm->slots_lock);
6258
6259         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6260         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6261
6262         mutex_unlock(&kvm->slots_lock);
6263         return 0;
6264 }
6265
6266 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6267 {
6268         struct kvm_pic *pic = kvm->arch.vpic;
6269         int r;
6270
6271         r = 0;
6272         switch (chip->chip_id) {
6273         case KVM_IRQCHIP_PIC_MASTER:
6274                 memcpy(&chip->chip.pic, &pic->pics[0],
6275                         sizeof(struct kvm_pic_state));
6276                 break;
6277         case KVM_IRQCHIP_PIC_SLAVE:
6278                 memcpy(&chip->chip.pic, &pic->pics[1],
6279                         sizeof(struct kvm_pic_state));
6280                 break;
6281         case KVM_IRQCHIP_IOAPIC:
6282                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6283                 break;
6284         default:
6285                 r = -EINVAL;
6286                 break;
6287         }
6288         return r;
6289 }
6290
6291 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6292 {
6293         struct kvm_pic *pic = kvm->arch.vpic;
6294         int r;
6295
6296         r = 0;
6297         switch (chip->chip_id) {
6298         case KVM_IRQCHIP_PIC_MASTER:
6299                 spin_lock(&pic->lock);
6300                 memcpy(&pic->pics[0], &chip->chip.pic,
6301                         sizeof(struct kvm_pic_state));
6302                 spin_unlock(&pic->lock);
6303                 break;
6304         case KVM_IRQCHIP_PIC_SLAVE:
6305                 spin_lock(&pic->lock);
6306                 memcpy(&pic->pics[1], &chip->chip.pic,
6307                         sizeof(struct kvm_pic_state));
6308                 spin_unlock(&pic->lock);
6309                 break;
6310         case KVM_IRQCHIP_IOAPIC:
6311                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6312                 break;
6313         default:
6314                 r = -EINVAL;
6315                 break;
6316         }
6317         kvm_pic_update_irq(pic);
6318         return r;
6319 }
6320
6321 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6322 {
6323         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6324
6325         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6326
6327         mutex_lock(&kps->lock);
6328         memcpy(ps, &kps->channels, sizeof(*ps));
6329         mutex_unlock(&kps->lock);
6330         return 0;
6331 }
6332
6333 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6334 {
6335         int i;
6336         struct kvm_pit *pit = kvm->arch.vpit;
6337
6338         mutex_lock(&pit->pit_state.lock);
6339         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6340         for (i = 0; i < 3; i++)
6341                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6342         mutex_unlock(&pit->pit_state.lock);
6343         return 0;
6344 }
6345
6346 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6347 {
6348         mutex_lock(&kvm->arch.vpit->pit_state.lock);
6349         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6350                 sizeof(ps->channels));
6351         ps->flags = kvm->arch.vpit->pit_state.flags;
6352         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6353         memset(&ps->reserved, 0, sizeof(ps->reserved));
6354         return 0;
6355 }
6356
6357 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6358 {
6359         int start = 0;
6360         int i;
6361         u32 prev_legacy, cur_legacy;
6362         struct kvm_pit *pit = kvm->arch.vpit;
6363
6364         mutex_lock(&pit->pit_state.lock);
6365         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6366         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6367         if (!prev_legacy && cur_legacy)
6368                 start = 1;
6369         memcpy(&pit->pit_state.channels, &ps->channels,
6370                sizeof(pit->pit_state.channels));
6371         pit->pit_state.flags = ps->flags;
6372         for (i = 0; i < 3; i++)
6373                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6374                                    start && i == 0);
6375         mutex_unlock(&pit->pit_state.lock);
6376         return 0;
6377 }
6378
6379 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6380                                  struct kvm_reinject_control *control)
6381 {
6382         struct kvm_pit *pit = kvm->arch.vpit;
6383
6384         /* pit->pit_state.lock was overloaded to prevent userspace from getting
6385          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6386          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6387          */
6388         mutex_lock(&pit->pit_state.lock);
6389         kvm_pit_set_reinject(pit, control->pit_reinject);
6390         mutex_unlock(&pit->pit_state.lock);
6391
6392         return 0;
6393 }
6394
6395 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6396 {
6397
6398         /*
6399          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6400          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6401          * on all VM-Exits, thus we only need to kick running vCPUs to force a
6402          * VM-Exit.
6403          */
6404         struct kvm_vcpu *vcpu;
6405         unsigned long i;
6406
6407         if (!kvm_x86_ops.cpu_dirty_log_size)
6408                 return;
6409
6410         kvm_for_each_vcpu(i, vcpu, kvm)
6411                 kvm_vcpu_kick(vcpu);
6412 }
6413
6414 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6415                         bool line_status)
6416 {
6417         if (!irqchip_in_kernel(kvm))
6418                 return -ENXIO;
6419
6420         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6421                                         irq_event->irq, irq_event->level,
6422                                         line_status);
6423         return 0;
6424 }
6425
6426 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6427                             struct kvm_enable_cap *cap)
6428 {
6429         int r;
6430
6431         if (cap->flags)
6432                 return -EINVAL;
6433
6434         switch (cap->cap) {
6435         case KVM_CAP_DISABLE_QUIRKS2:
6436                 r = -EINVAL;
6437                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6438                         break;
6439                 fallthrough;
6440         case KVM_CAP_DISABLE_QUIRKS:
6441                 kvm->arch.disabled_quirks = cap->args[0];
6442                 r = 0;
6443                 break;
6444         case KVM_CAP_SPLIT_IRQCHIP: {
6445                 mutex_lock(&kvm->lock);
6446                 r = -EINVAL;
6447                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6448                         goto split_irqchip_unlock;
6449                 r = -EEXIST;
6450                 if (irqchip_in_kernel(kvm))
6451                         goto split_irqchip_unlock;
6452                 if (kvm->created_vcpus)
6453                         goto split_irqchip_unlock;
6454                 r = kvm_setup_empty_irq_routing(kvm);
6455                 if (r)
6456                         goto split_irqchip_unlock;
6457                 /* Pairs with irqchip_in_kernel. */
6458                 smp_wmb();
6459                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6460                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6461                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6462                 r = 0;
6463 split_irqchip_unlock:
6464                 mutex_unlock(&kvm->lock);
6465                 break;
6466         }
6467         case KVM_CAP_X2APIC_API:
6468                 r = -EINVAL;
6469                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6470                         break;
6471
6472                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6473                         kvm->arch.x2apic_format = true;
6474                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6475                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
6476
6477                 r = 0;
6478                 break;
6479         case KVM_CAP_X86_DISABLE_EXITS:
6480                 r = -EINVAL;
6481                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6482                         break;
6483
6484                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6485                         kvm->arch.pause_in_guest = true;
6486
6487 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6488                     "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6489
6490                 if (!mitigate_smt_rsb) {
6491                         if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6492                             (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6493                                 pr_warn_once(SMT_RSB_MSG);
6494
6495                         if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6496                             kvm_can_mwait_in_guest())
6497                                 kvm->arch.mwait_in_guest = true;
6498                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6499                                 kvm->arch.hlt_in_guest = true;
6500                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6501                                 kvm->arch.cstate_in_guest = true;
6502                 }
6503
6504                 r = 0;
6505                 break;
6506         case KVM_CAP_MSR_PLATFORM_INFO:
6507                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6508                 r = 0;
6509                 break;
6510         case KVM_CAP_EXCEPTION_PAYLOAD:
6511                 kvm->arch.exception_payload_enabled = cap->args[0];
6512                 r = 0;
6513                 break;
6514         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6515                 kvm->arch.triple_fault_event = cap->args[0];
6516                 r = 0;
6517                 break;
6518         case KVM_CAP_X86_USER_SPACE_MSR:
6519                 r = -EINVAL;
6520                 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6521                         break;
6522                 kvm->arch.user_space_msr_mask = cap->args[0];
6523                 r = 0;
6524                 break;
6525         case KVM_CAP_X86_BUS_LOCK_EXIT:
6526                 r = -EINVAL;
6527                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6528                         break;
6529
6530                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6531                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6532                         break;
6533
6534                 if (kvm_caps.has_bus_lock_exit &&
6535                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6536                         kvm->arch.bus_lock_detection_enabled = true;
6537                 r = 0;
6538                 break;
6539 #ifdef CONFIG_X86_SGX_KVM
6540         case KVM_CAP_SGX_ATTRIBUTE: {
6541                 unsigned long allowed_attributes = 0;
6542
6543                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6544                 if (r)
6545                         break;
6546
6547                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6548                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6549                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6550                         kvm->arch.sgx_provisioning_allowed = true;
6551                 else
6552                         r = -EINVAL;
6553                 break;
6554         }
6555 #endif
6556         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6557                 r = -EINVAL;
6558                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6559                         break;
6560
6561                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6562                 break;
6563         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6564                 r = -EINVAL;
6565                 if (!kvm_x86_ops.vm_move_enc_context_from)
6566                         break;
6567
6568                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6569                 break;
6570         case KVM_CAP_EXIT_HYPERCALL:
6571                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6572                         r = -EINVAL;
6573                         break;
6574                 }
6575                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6576                 r = 0;
6577                 break;
6578         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6579                 r = -EINVAL;
6580                 if (cap->args[0] & ~1)
6581                         break;
6582                 kvm->arch.exit_on_emulation_error = cap->args[0];
6583                 r = 0;
6584                 break;
6585         case KVM_CAP_PMU_CAPABILITY:
6586                 r = -EINVAL;
6587                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6588                         break;
6589
6590                 mutex_lock(&kvm->lock);
6591                 if (!kvm->created_vcpus) {
6592                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6593                         r = 0;
6594                 }
6595                 mutex_unlock(&kvm->lock);
6596                 break;
6597         case KVM_CAP_MAX_VCPU_ID:
6598                 r = -EINVAL;
6599                 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6600                         break;
6601
6602                 mutex_lock(&kvm->lock);
6603                 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6604                         r = 0;
6605                 } else if (!kvm->arch.max_vcpu_ids) {
6606                         kvm->arch.max_vcpu_ids = cap->args[0];
6607                         r = 0;
6608                 }
6609                 mutex_unlock(&kvm->lock);
6610                 break;
6611         case KVM_CAP_X86_NOTIFY_VMEXIT:
6612                 r = -EINVAL;
6613                 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6614                         break;
6615                 if (!kvm_caps.has_notify_vmexit)
6616                         break;
6617                 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6618                         break;
6619                 mutex_lock(&kvm->lock);
6620                 if (!kvm->created_vcpus) {
6621                         kvm->arch.notify_window = cap->args[0] >> 32;
6622                         kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6623                         r = 0;
6624                 }
6625                 mutex_unlock(&kvm->lock);
6626                 break;
6627         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6628                 r = -EINVAL;
6629
6630                 /*
6631                  * Since the risk of disabling NX hugepages is a guest crashing
6632                  * the system, ensure the userspace process has permission to
6633                  * reboot the system.
6634                  *
6635                  * Note that unlike the reboot() syscall, the process must have
6636                  * this capability in the root namespace because exposing
6637                  * /dev/kvm into a container does not limit the scope of the
6638                  * iTLB multihit bug to that container. In other words,
6639                  * this must use capable(), not ns_capable().
6640                  */
6641                 if (!capable(CAP_SYS_BOOT)) {
6642                         r = -EPERM;
6643                         break;
6644                 }
6645
6646                 if (cap->args[0])
6647                         break;
6648
6649                 mutex_lock(&kvm->lock);
6650                 if (!kvm->created_vcpus) {
6651                         kvm->arch.disable_nx_huge_pages = true;
6652                         r = 0;
6653                 }
6654                 mutex_unlock(&kvm->lock);
6655                 break;
6656         default:
6657                 r = -EINVAL;
6658                 break;
6659         }
6660         return r;
6661 }
6662
6663 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6664 {
6665         struct kvm_x86_msr_filter *msr_filter;
6666
6667         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6668         if (!msr_filter)
6669                 return NULL;
6670
6671         msr_filter->default_allow = default_allow;
6672         return msr_filter;
6673 }
6674
6675 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6676 {
6677         u32 i;
6678
6679         if (!msr_filter)
6680                 return;
6681
6682         for (i = 0; i < msr_filter->count; i++)
6683                 kfree(msr_filter->ranges[i].bitmap);
6684
6685         kfree(msr_filter);
6686 }
6687
6688 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6689                               struct kvm_msr_filter_range *user_range)
6690 {
6691         unsigned long *bitmap;
6692         size_t bitmap_size;
6693
6694         if (!user_range->nmsrs)
6695                 return 0;
6696
6697         if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6698                 return -EINVAL;
6699
6700         if (!user_range->flags)
6701                 return -EINVAL;
6702
6703         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6704         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6705                 return -EINVAL;
6706
6707         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6708         if (IS_ERR(bitmap))
6709                 return PTR_ERR(bitmap);
6710
6711         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6712                 .flags = user_range->flags,
6713                 .base = user_range->base,
6714                 .nmsrs = user_range->nmsrs,
6715                 .bitmap = bitmap,
6716         };
6717
6718         msr_filter->count++;
6719         return 0;
6720 }
6721
6722 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6723                                        struct kvm_msr_filter *filter)
6724 {
6725         struct kvm_x86_msr_filter *new_filter, *old_filter;
6726         bool default_allow;
6727         bool empty = true;
6728         int r;
6729         u32 i;
6730
6731         if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6732                 return -EINVAL;
6733
6734         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6735                 empty &= !filter->ranges[i].nmsrs;
6736
6737         default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6738         if (empty && !default_allow)
6739                 return -EINVAL;
6740
6741         new_filter = kvm_alloc_msr_filter(default_allow);
6742         if (!new_filter)
6743                 return -ENOMEM;
6744
6745         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6746                 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6747                 if (r) {
6748                         kvm_free_msr_filter(new_filter);
6749                         return r;
6750                 }
6751         }
6752
6753         mutex_lock(&kvm->lock);
6754         old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6755                                          mutex_is_locked(&kvm->lock));
6756         mutex_unlock(&kvm->lock);
6757         synchronize_srcu(&kvm->srcu);
6758
6759         kvm_free_msr_filter(old_filter);
6760
6761         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6762
6763         return 0;
6764 }
6765
6766 #ifdef CONFIG_KVM_COMPAT
6767 /* for KVM_X86_SET_MSR_FILTER */
6768 struct kvm_msr_filter_range_compat {
6769         __u32 flags;
6770         __u32 nmsrs;
6771         __u32 base;
6772         __u32 bitmap;
6773 };
6774
6775 struct kvm_msr_filter_compat {
6776         __u32 flags;
6777         struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6778 };
6779
6780 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6781
6782 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6783                               unsigned long arg)
6784 {
6785         void __user *argp = (void __user *)arg;
6786         struct kvm *kvm = filp->private_data;
6787         long r = -ENOTTY;
6788
6789         switch (ioctl) {
6790         case KVM_X86_SET_MSR_FILTER_COMPAT: {
6791                 struct kvm_msr_filter __user *user_msr_filter = argp;
6792                 struct kvm_msr_filter_compat filter_compat;
6793                 struct kvm_msr_filter filter;
6794                 int i;
6795
6796                 if (copy_from_user(&filter_compat, user_msr_filter,
6797                                    sizeof(filter_compat)))
6798                         return -EFAULT;
6799
6800                 filter.flags = filter_compat.flags;
6801                 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6802                         struct kvm_msr_filter_range_compat *cr;
6803
6804                         cr = &filter_compat.ranges[i];
6805                         filter.ranges[i] = (struct kvm_msr_filter_range) {
6806                                 .flags = cr->flags,
6807                                 .nmsrs = cr->nmsrs,
6808                                 .base = cr->base,
6809                                 .bitmap = (__u8 *)(ulong)cr->bitmap,
6810                         };
6811                 }
6812
6813                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6814                 break;
6815         }
6816         }
6817
6818         return r;
6819 }
6820 #endif
6821
6822 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6823 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6824 {
6825         struct kvm_vcpu *vcpu;
6826         unsigned long i;
6827         int ret = 0;
6828
6829         mutex_lock(&kvm->lock);
6830         kvm_for_each_vcpu(i, vcpu, kvm) {
6831                 if (!vcpu->arch.pv_time.active)
6832                         continue;
6833
6834                 ret = kvm_set_guest_paused(vcpu);
6835                 if (ret) {
6836                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6837                                 vcpu->vcpu_id, ret);
6838                         break;
6839                 }
6840         }
6841         mutex_unlock(&kvm->lock);
6842
6843         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6844 }
6845
6846 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6847 {
6848         switch (state) {
6849         case PM_HIBERNATION_PREPARE:
6850         case PM_SUSPEND_PREPARE:
6851                 return kvm_arch_suspend_notifier(kvm);
6852         }
6853
6854         return NOTIFY_DONE;
6855 }
6856 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6857
6858 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6859 {
6860         struct kvm_clock_data data = { 0 };
6861
6862         get_kvmclock(kvm, &data);
6863         if (copy_to_user(argp, &data, sizeof(data)))
6864                 return -EFAULT;
6865
6866         return 0;
6867 }
6868
6869 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6870 {
6871         struct kvm_arch *ka = &kvm->arch;
6872         struct kvm_clock_data data;
6873         u64 now_raw_ns;
6874
6875         if (copy_from_user(&data, argp, sizeof(data)))
6876                 return -EFAULT;
6877
6878         /*
6879          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6880          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6881          */
6882         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6883                 return -EINVAL;
6884
6885         kvm_hv_request_tsc_page_update(kvm);
6886         kvm_start_pvclock_update(kvm);
6887         pvclock_update_vm_gtod_copy(kvm);
6888
6889         /*
6890          * This pairs with kvm_guest_time_update(): when masterclock is
6891          * in use, we use master_kernel_ns + kvmclock_offset to set
6892          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6893          * is slightly ahead) here we risk going negative on unsigned
6894          * 'system_time' when 'data.clock' is very small.
6895          */
6896         if (data.flags & KVM_CLOCK_REALTIME) {
6897                 u64 now_real_ns = ktime_get_real_ns();
6898
6899                 /*
6900                  * Avoid stepping the kvmclock backwards.
6901                  */
6902                 if (now_real_ns > data.realtime)
6903                         data.clock += now_real_ns - data.realtime;
6904         }
6905
6906         if (ka->use_master_clock)
6907                 now_raw_ns = ka->master_kernel_ns;
6908         else
6909                 now_raw_ns = get_kvmclock_base_ns();
6910         ka->kvmclock_offset = data.clock - now_raw_ns;
6911         kvm_end_pvclock_update(kvm);
6912         return 0;
6913 }
6914
6915 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6916 {
6917         struct kvm *kvm = filp->private_data;
6918         void __user *argp = (void __user *)arg;
6919         int r = -ENOTTY;
6920         /*
6921          * This union makes it completely explicit to gcc-3.x
6922          * that these two variables' stack usage should be
6923          * combined, not added together.
6924          */
6925         union {
6926                 struct kvm_pit_state ps;
6927                 struct kvm_pit_state2 ps2;
6928                 struct kvm_pit_config pit_config;
6929         } u;
6930
6931         switch (ioctl) {
6932         case KVM_SET_TSS_ADDR:
6933                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6934                 break;
6935         case KVM_SET_IDENTITY_MAP_ADDR: {
6936                 u64 ident_addr;
6937
6938                 mutex_lock(&kvm->lock);
6939                 r = -EINVAL;
6940                 if (kvm->created_vcpus)
6941                         goto set_identity_unlock;
6942                 r = -EFAULT;
6943                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6944                         goto set_identity_unlock;
6945                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6946 set_identity_unlock:
6947                 mutex_unlock(&kvm->lock);
6948                 break;
6949         }
6950         case KVM_SET_NR_MMU_PAGES:
6951                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6952                 break;
6953         case KVM_CREATE_IRQCHIP: {
6954                 mutex_lock(&kvm->lock);
6955
6956                 r = -EEXIST;
6957                 if (irqchip_in_kernel(kvm))
6958                         goto create_irqchip_unlock;
6959
6960                 r = -EINVAL;
6961                 if (kvm->created_vcpus)
6962                         goto create_irqchip_unlock;
6963
6964                 r = kvm_pic_init(kvm);
6965                 if (r)
6966                         goto create_irqchip_unlock;
6967
6968                 r = kvm_ioapic_init(kvm);
6969                 if (r) {
6970                         kvm_pic_destroy(kvm);
6971                         goto create_irqchip_unlock;
6972                 }
6973
6974                 r = kvm_setup_default_irq_routing(kvm);
6975                 if (r) {
6976                         kvm_ioapic_destroy(kvm);
6977                         kvm_pic_destroy(kvm);
6978                         goto create_irqchip_unlock;
6979                 }
6980                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6981                 smp_wmb();
6982                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6983                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6984         create_irqchip_unlock:
6985                 mutex_unlock(&kvm->lock);
6986                 break;
6987         }
6988         case KVM_CREATE_PIT:
6989                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6990                 goto create_pit;
6991         case KVM_CREATE_PIT2:
6992                 r = -EFAULT;
6993                 if (copy_from_user(&u.pit_config, argp,
6994                                    sizeof(struct kvm_pit_config)))
6995                         goto out;
6996         create_pit:
6997                 mutex_lock(&kvm->lock);
6998                 r = -EEXIST;
6999                 if (kvm->arch.vpit)
7000                         goto create_pit_unlock;
7001                 r = -ENOMEM;
7002                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7003                 if (kvm->arch.vpit)
7004                         r = 0;
7005         create_pit_unlock:
7006                 mutex_unlock(&kvm->lock);
7007                 break;
7008         case KVM_GET_IRQCHIP: {
7009                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7010                 struct kvm_irqchip *chip;
7011
7012                 chip = memdup_user(argp, sizeof(*chip));
7013                 if (IS_ERR(chip)) {
7014                         r = PTR_ERR(chip);
7015                         goto out;
7016                 }
7017
7018                 r = -ENXIO;
7019                 if (!irqchip_kernel(kvm))
7020                         goto get_irqchip_out;
7021                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7022                 if (r)
7023                         goto get_irqchip_out;
7024                 r = -EFAULT;
7025                 if (copy_to_user(argp, chip, sizeof(*chip)))
7026                         goto get_irqchip_out;
7027                 r = 0;
7028         get_irqchip_out:
7029                 kfree(chip);
7030                 break;
7031         }
7032         case KVM_SET_IRQCHIP: {
7033                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7034                 struct kvm_irqchip *chip;
7035
7036                 chip = memdup_user(argp, sizeof(*chip));
7037                 if (IS_ERR(chip)) {
7038                         r = PTR_ERR(chip);
7039                         goto out;
7040                 }
7041
7042                 r = -ENXIO;
7043                 if (!irqchip_kernel(kvm))
7044                         goto set_irqchip_out;
7045                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7046         set_irqchip_out:
7047                 kfree(chip);
7048                 break;
7049         }
7050         case KVM_GET_PIT: {
7051                 r = -EFAULT;
7052                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7053                         goto out;
7054                 r = -ENXIO;
7055                 if (!kvm->arch.vpit)
7056                         goto out;
7057                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7058                 if (r)
7059                         goto out;
7060                 r = -EFAULT;
7061                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7062                         goto out;
7063                 r = 0;
7064                 break;
7065         }
7066         case KVM_SET_PIT: {
7067                 r = -EFAULT;
7068                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7069                         goto out;
7070                 mutex_lock(&kvm->lock);
7071                 r = -ENXIO;
7072                 if (!kvm->arch.vpit)
7073                         goto set_pit_out;
7074                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7075 set_pit_out:
7076                 mutex_unlock(&kvm->lock);
7077                 break;
7078         }
7079         case KVM_GET_PIT2: {
7080                 r = -ENXIO;
7081                 if (!kvm->arch.vpit)
7082                         goto out;
7083                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7084                 if (r)
7085                         goto out;
7086                 r = -EFAULT;
7087                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7088                         goto out;
7089                 r = 0;
7090                 break;
7091         }
7092         case KVM_SET_PIT2: {
7093                 r = -EFAULT;
7094                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7095                         goto out;
7096                 mutex_lock(&kvm->lock);
7097                 r = -ENXIO;
7098                 if (!kvm->arch.vpit)
7099                         goto set_pit2_out;
7100                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7101 set_pit2_out:
7102                 mutex_unlock(&kvm->lock);
7103                 break;
7104         }
7105         case KVM_REINJECT_CONTROL: {
7106                 struct kvm_reinject_control control;
7107                 r =  -EFAULT;
7108                 if (copy_from_user(&control, argp, sizeof(control)))
7109                         goto out;
7110                 r = -ENXIO;
7111                 if (!kvm->arch.vpit)
7112                         goto out;
7113                 r = kvm_vm_ioctl_reinject(kvm, &control);
7114                 break;
7115         }
7116         case KVM_SET_BOOT_CPU_ID:
7117                 r = 0;
7118                 mutex_lock(&kvm->lock);
7119                 if (kvm->created_vcpus)
7120                         r = -EBUSY;
7121                 else
7122                         kvm->arch.bsp_vcpu_id = arg;
7123                 mutex_unlock(&kvm->lock);
7124                 break;
7125 #ifdef CONFIG_KVM_XEN
7126         case KVM_XEN_HVM_CONFIG: {
7127                 struct kvm_xen_hvm_config xhc;
7128                 r = -EFAULT;
7129                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7130                         goto out;
7131                 r = kvm_xen_hvm_config(kvm, &xhc);
7132                 break;
7133         }
7134         case KVM_XEN_HVM_GET_ATTR: {
7135                 struct kvm_xen_hvm_attr xha;
7136
7137                 r = -EFAULT;
7138                 if (copy_from_user(&xha, argp, sizeof(xha)))
7139                         goto out;
7140                 r = kvm_xen_hvm_get_attr(kvm, &xha);
7141                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7142                         r = -EFAULT;
7143                 break;
7144         }
7145         case KVM_XEN_HVM_SET_ATTR: {
7146                 struct kvm_xen_hvm_attr xha;
7147
7148                 r = -EFAULT;
7149                 if (copy_from_user(&xha, argp, sizeof(xha)))
7150                         goto out;
7151                 r = kvm_xen_hvm_set_attr(kvm, &xha);
7152                 break;
7153         }
7154         case KVM_XEN_HVM_EVTCHN_SEND: {
7155                 struct kvm_irq_routing_xen_evtchn uxe;
7156
7157                 r = -EFAULT;
7158                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7159                         goto out;
7160                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7161                 break;
7162         }
7163 #endif
7164         case KVM_SET_CLOCK:
7165                 r = kvm_vm_ioctl_set_clock(kvm, argp);
7166                 break;
7167         case KVM_GET_CLOCK:
7168                 r = kvm_vm_ioctl_get_clock(kvm, argp);
7169                 break;
7170         case KVM_SET_TSC_KHZ: {
7171                 u32 user_tsc_khz;
7172
7173                 r = -EINVAL;
7174                 user_tsc_khz = (u32)arg;
7175
7176                 if (kvm_caps.has_tsc_control &&
7177                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7178                         goto out;
7179
7180                 if (user_tsc_khz == 0)
7181                         user_tsc_khz = tsc_khz;
7182
7183                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7184                 r = 0;
7185
7186                 goto out;
7187         }
7188         case KVM_GET_TSC_KHZ: {
7189                 r = READ_ONCE(kvm->arch.default_tsc_khz);
7190                 goto out;
7191         }
7192         case KVM_MEMORY_ENCRYPT_OP: {
7193                 r = -ENOTTY;
7194                 if (!kvm_x86_ops.mem_enc_ioctl)
7195                         goto out;
7196
7197                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7198                 break;
7199         }
7200         case KVM_MEMORY_ENCRYPT_REG_REGION: {
7201                 struct kvm_enc_region region;
7202
7203                 r = -EFAULT;
7204                 if (copy_from_user(&region, argp, sizeof(region)))
7205                         goto out;
7206
7207                 r = -ENOTTY;
7208                 if (!kvm_x86_ops.mem_enc_register_region)
7209                         goto out;
7210
7211                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7212                 break;
7213         }
7214         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7215                 struct kvm_enc_region region;
7216
7217                 r = -EFAULT;
7218                 if (copy_from_user(&region, argp, sizeof(region)))
7219                         goto out;
7220
7221                 r = -ENOTTY;
7222                 if (!kvm_x86_ops.mem_enc_unregister_region)
7223                         goto out;
7224
7225                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7226                 break;
7227         }
7228 #ifdef CONFIG_KVM_HYPERV
7229         case KVM_HYPERV_EVENTFD: {
7230                 struct kvm_hyperv_eventfd hvevfd;
7231
7232                 r = -EFAULT;
7233                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7234                         goto out;
7235                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7236                 break;
7237         }
7238 #endif
7239         case KVM_SET_PMU_EVENT_FILTER:
7240                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7241                 break;
7242         case KVM_X86_SET_MSR_FILTER: {
7243                 struct kvm_msr_filter __user *user_msr_filter = argp;
7244                 struct kvm_msr_filter filter;
7245
7246                 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7247                         return -EFAULT;
7248
7249                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7250                 break;
7251         }
7252         default:
7253                 r = -ENOTTY;
7254         }
7255 out:
7256         return r;
7257 }
7258
7259 static void kvm_probe_feature_msr(u32 msr_index)
7260 {
7261         struct kvm_msr_entry msr = {
7262                 .index = msr_index,
7263         };
7264
7265         if (kvm_get_msr_feature(&msr))
7266                 return;
7267
7268         msr_based_features[num_msr_based_features++] = msr_index;
7269 }
7270
7271 static void kvm_probe_msr_to_save(u32 msr_index)
7272 {
7273         u32 dummy[2];
7274
7275         if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7276                 return;
7277
7278         /*
7279          * Even MSRs that are valid in the host may not be exposed to guests in
7280          * some cases.
7281          */
7282         switch (msr_index) {
7283         case MSR_IA32_BNDCFGS:
7284                 if (!kvm_mpx_supported())
7285                         return;
7286                 break;
7287         case MSR_TSC_AUX:
7288                 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7289                     !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7290                         return;
7291                 break;
7292         case MSR_IA32_UMWAIT_CONTROL:
7293                 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7294                         return;
7295                 break;
7296         case MSR_IA32_RTIT_CTL:
7297         case MSR_IA32_RTIT_STATUS:
7298                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7299                         return;
7300                 break;
7301         case MSR_IA32_RTIT_CR3_MATCH:
7302                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7303                     !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7304                         return;
7305                 break;
7306         case MSR_IA32_RTIT_OUTPUT_BASE:
7307         case MSR_IA32_RTIT_OUTPUT_MASK:
7308                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7309                     (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7310                      !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7311                         return;
7312                 break;
7313         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7314                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7315                     (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7316                      intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7317                         return;
7318                 break;
7319         case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7320                 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7321                     kvm_pmu_cap.num_counters_gp)
7322                         return;
7323                 break;
7324         case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7325                 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7326                     kvm_pmu_cap.num_counters_gp)
7327                         return;
7328                 break;
7329         case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7330                 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7331                     kvm_pmu_cap.num_counters_fixed)
7332                         return;
7333                 break;
7334         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7335         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7336         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7337                 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7338                         return;
7339                 break;
7340         case MSR_IA32_XFD:
7341         case MSR_IA32_XFD_ERR:
7342                 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7343                         return;
7344                 break;
7345         case MSR_IA32_TSX_CTRL:
7346                 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7347                         return;
7348                 break;
7349         default:
7350                 break;
7351         }
7352
7353         msrs_to_save[num_msrs_to_save++] = msr_index;
7354 }
7355
7356 static void kvm_init_msr_lists(void)
7357 {
7358         unsigned i;
7359
7360         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7361                          "Please update the fixed PMCs in msrs_to_save_pmu[]");
7362
7363         num_msrs_to_save = 0;
7364         num_emulated_msrs = 0;
7365         num_msr_based_features = 0;
7366
7367         for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7368                 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7369
7370         if (enable_pmu) {
7371                 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7372                         kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7373         }
7374
7375         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7376                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7377                         continue;
7378
7379                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7380         }
7381
7382         for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7383                 kvm_probe_feature_msr(i);
7384
7385         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7386                 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7387 }
7388
7389 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7390                            const void *v)
7391 {
7392         int handled = 0;
7393         int n;
7394
7395         do {
7396                 n = min(len, 8);
7397                 if (!(lapic_in_kernel(vcpu) &&
7398                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7399                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7400                         break;
7401                 handled += n;
7402                 addr += n;
7403                 len -= n;
7404                 v += n;
7405         } while (len);
7406
7407         return handled;
7408 }
7409
7410 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7411 {
7412         int handled = 0;
7413         int n;
7414
7415         do {
7416                 n = min(len, 8);
7417                 if (!(lapic_in_kernel(vcpu) &&
7418                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7419                                          addr, n, v))
7420                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7421                         break;
7422                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7423                 handled += n;
7424                 addr += n;
7425                 len -= n;
7426                 v += n;
7427         } while (len);
7428
7429         return handled;
7430 }
7431
7432 void kvm_set_segment(struct kvm_vcpu *vcpu,
7433                      struct kvm_segment *var, int seg)
7434 {
7435         static_call(kvm_x86_set_segment)(vcpu, var, seg);
7436 }
7437
7438 void kvm_get_segment(struct kvm_vcpu *vcpu,
7439                      struct kvm_segment *var, int seg)
7440 {
7441         static_call(kvm_x86_get_segment)(vcpu, var, seg);
7442 }
7443
7444 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7445                            struct x86_exception *exception)
7446 {
7447         struct kvm_mmu *mmu = vcpu->arch.mmu;
7448         gpa_t t_gpa;
7449
7450         BUG_ON(!mmu_is_nested(vcpu));
7451
7452         /* NPT walks are always user-walks */
7453         access |= PFERR_USER_MASK;
7454         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7455
7456         return t_gpa;
7457 }
7458
7459 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7460                               struct x86_exception *exception)
7461 {
7462         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7463
7464         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7465         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7466 }
7467 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7468
7469 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7470                                struct x86_exception *exception)
7471 {
7472         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7473
7474         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7475         access |= PFERR_WRITE_MASK;
7476         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7477 }
7478 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7479
7480 /* uses this to access any guest's mapped memory without checking CPL */
7481 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7482                                 struct x86_exception *exception)
7483 {
7484         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7485
7486         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7487 }
7488
7489 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7490                                       struct kvm_vcpu *vcpu, u64 access,
7491                                       struct x86_exception *exception)
7492 {
7493         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7494         void *data = val;
7495         int r = X86EMUL_CONTINUE;
7496
7497         while (bytes) {
7498                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7499                 unsigned offset = addr & (PAGE_SIZE-1);
7500                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7501                 int ret;
7502
7503                 if (gpa == INVALID_GPA)
7504                         return X86EMUL_PROPAGATE_FAULT;
7505                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7506                                                offset, toread);
7507                 if (ret < 0) {
7508                         r = X86EMUL_IO_NEEDED;
7509                         goto out;
7510                 }
7511
7512                 bytes -= toread;
7513                 data += toread;
7514                 addr += toread;
7515         }
7516 out:
7517         return r;
7518 }
7519
7520 /* used for instruction fetching */
7521 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7522                                 gva_t addr, void *val, unsigned int bytes,
7523                                 struct x86_exception *exception)
7524 {
7525         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7526         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7527         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7528         unsigned offset;
7529         int ret;
7530
7531         /* Inline kvm_read_guest_virt_helper for speed.  */
7532         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7533                                     exception);
7534         if (unlikely(gpa == INVALID_GPA))
7535                 return X86EMUL_PROPAGATE_FAULT;
7536
7537         offset = addr & (PAGE_SIZE-1);
7538         if (WARN_ON(offset + bytes > PAGE_SIZE))
7539                 bytes = (unsigned)PAGE_SIZE - offset;
7540         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7541                                        offset, bytes);
7542         if (unlikely(ret < 0))
7543                 return X86EMUL_IO_NEEDED;
7544
7545         return X86EMUL_CONTINUE;
7546 }
7547
7548 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7549                                gva_t addr, void *val, unsigned int bytes,
7550                                struct x86_exception *exception)
7551 {
7552         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7553
7554         /*
7555          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7556          * is returned, but our callers are not ready for that and they blindly
7557          * call kvm_inject_page_fault.  Ensure that they at least do not leak
7558          * uninitialized kernel stack memory into cr2 and error code.
7559          */
7560         memset(exception, 0, sizeof(*exception));
7561         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7562                                           exception);
7563 }
7564 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7565
7566 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7567                              gva_t addr, void *val, unsigned int bytes,
7568                              struct x86_exception *exception, bool system)
7569 {
7570         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7571         u64 access = 0;
7572
7573         if (system)
7574                 access |= PFERR_IMPLICIT_ACCESS;
7575         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7576                 access |= PFERR_USER_MASK;
7577
7578         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7579 }
7580
7581 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7582                                       struct kvm_vcpu *vcpu, u64 access,
7583                                       struct x86_exception *exception)
7584 {
7585         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7586         void *data = val;
7587         int r = X86EMUL_CONTINUE;
7588
7589         while (bytes) {
7590                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7591                 unsigned offset = addr & (PAGE_SIZE-1);
7592                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7593                 int ret;
7594
7595                 if (gpa == INVALID_GPA)
7596                         return X86EMUL_PROPAGATE_FAULT;
7597                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7598                 if (ret < 0) {
7599                         r = X86EMUL_IO_NEEDED;
7600                         goto out;
7601                 }
7602
7603                 bytes -= towrite;
7604                 data += towrite;
7605                 addr += towrite;
7606         }
7607 out:
7608         return r;
7609 }
7610
7611 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7612                               unsigned int bytes, struct x86_exception *exception,
7613                               bool system)
7614 {
7615         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7616         u64 access = PFERR_WRITE_MASK;
7617
7618         if (system)
7619                 access |= PFERR_IMPLICIT_ACCESS;
7620         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7621                 access |= PFERR_USER_MASK;
7622
7623         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7624                                            access, exception);
7625 }
7626
7627 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7628                                 unsigned int bytes, struct x86_exception *exception)
7629 {
7630         /* kvm_write_guest_virt_system can pull in tons of pages. */
7631         vcpu->arch.l1tf_flush_l1d = true;
7632
7633         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7634                                            PFERR_WRITE_MASK, exception);
7635 }
7636 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7637
7638 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7639                                   void *insn, int insn_len)
7640 {
7641         return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7642                                                               insn, insn_len);
7643 }
7644
7645 int handle_ud(struct kvm_vcpu *vcpu)
7646 {
7647         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7648         int fep_flags = READ_ONCE(force_emulation_prefix);
7649         int emul_type = EMULTYPE_TRAP_UD;
7650         char sig[5]; /* ud2; .ascii "kvm" */
7651         struct x86_exception e;
7652         int r;
7653
7654         r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7655         if (r != X86EMUL_CONTINUE)
7656                 return 1;
7657
7658         if (fep_flags &&
7659             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7660                                 sig, sizeof(sig), &e) == 0 &&
7661             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7662                 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7663                         kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7664                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7665                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7666         }
7667
7668         return kvm_emulate_instruction(vcpu, emul_type);
7669 }
7670 EXPORT_SYMBOL_GPL(handle_ud);
7671
7672 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7673                             gpa_t gpa, bool write)
7674 {
7675         /* For APIC access vmexit */
7676         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7677                 return 1;
7678
7679         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7680                 trace_vcpu_match_mmio(gva, gpa, write, true);
7681                 return 1;
7682         }
7683
7684         return 0;
7685 }
7686
7687 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7688                                 gpa_t *gpa, struct x86_exception *exception,
7689                                 bool write)
7690 {
7691         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7692         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7693                 | (write ? PFERR_WRITE_MASK : 0);
7694
7695         /*
7696          * currently PKRU is only applied to ept enabled guest so
7697          * there is no pkey in EPT page table for L1 guest or EPT
7698          * shadow page table for L2 guest.
7699          */
7700         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7701             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7702                               vcpu->arch.mmio_access, 0, access))) {
7703                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7704                                         (gva & (PAGE_SIZE - 1));
7705                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7706                 return 1;
7707         }
7708
7709         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7710
7711         if (*gpa == INVALID_GPA)
7712                 return -1;
7713
7714         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7715 }
7716
7717 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7718                         const void *val, int bytes)
7719 {
7720         int ret;
7721
7722         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7723         if (ret < 0)
7724                 return 0;
7725         kvm_page_track_write(vcpu, gpa, val, bytes);
7726         return 1;
7727 }
7728
7729 struct read_write_emulator_ops {
7730         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7731                                   int bytes);
7732         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7733                                   void *val, int bytes);
7734         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7735                                int bytes, void *val);
7736         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7737                                     void *val, int bytes);
7738         bool write;
7739 };
7740
7741 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7742 {
7743         if (vcpu->mmio_read_completed) {
7744                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7745                                vcpu->mmio_fragments[0].gpa, val);
7746                 vcpu->mmio_read_completed = 0;
7747                 return 1;
7748         }
7749
7750         return 0;
7751 }
7752
7753 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7754                         void *val, int bytes)
7755 {
7756         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7757 }
7758
7759 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7760                          void *val, int bytes)
7761 {
7762         return emulator_write_phys(vcpu, gpa, val, bytes);
7763 }
7764
7765 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7766 {
7767         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7768         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7769 }
7770
7771 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7772                           void *val, int bytes)
7773 {
7774         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7775         return X86EMUL_IO_NEEDED;
7776 }
7777
7778 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7779                            void *val, int bytes)
7780 {
7781         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7782
7783         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7784         return X86EMUL_CONTINUE;
7785 }
7786
7787 static const struct read_write_emulator_ops read_emultor = {
7788         .read_write_prepare = read_prepare,
7789         .read_write_emulate = read_emulate,
7790         .read_write_mmio = vcpu_mmio_read,
7791         .read_write_exit_mmio = read_exit_mmio,
7792 };
7793
7794 static const struct read_write_emulator_ops write_emultor = {
7795         .read_write_emulate = write_emulate,
7796         .read_write_mmio = write_mmio,
7797         .read_write_exit_mmio = write_exit_mmio,
7798         .write = true,
7799 };
7800
7801 static int emulator_read_write_onepage(unsigned long addr, void *val,
7802                                        unsigned int bytes,
7803                                        struct x86_exception *exception,
7804                                        struct kvm_vcpu *vcpu,
7805                                        const struct read_write_emulator_ops *ops)
7806 {
7807         gpa_t gpa;
7808         int handled, ret;
7809         bool write = ops->write;
7810         struct kvm_mmio_fragment *frag;
7811         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7812
7813         /*
7814          * If the exit was due to a NPF we may already have a GPA.
7815          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7816          * Note, this cannot be used on string operations since string
7817          * operation using rep will only have the initial GPA from the NPF
7818          * occurred.
7819          */
7820         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7821             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7822                 gpa = ctxt->gpa_val;
7823                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7824         } else {
7825                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7826                 if (ret < 0)
7827                         return X86EMUL_PROPAGATE_FAULT;
7828         }
7829
7830         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7831                 return X86EMUL_CONTINUE;
7832
7833         /*
7834          * Is this MMIO handled locally?
7835          */
7836         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7837         if (handled == bytes)
7838                 return X86EMUL_CONTINUE;
7839
7840         gpa += handled;
7841         bytes -= handled;
7842         val += handled;
7843
7844         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7845         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7846         frag->gpa = gpa;
7847         frag->data = val;
7848         frag->len = bytes;
7849         return X86EMUL_CONTINUE;
7850 }
7851
7852 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7853                         unsigned long addr,
7854                         void *val, unsigned int bytes,
7855                         struct x86_exception *exception,
7856                         const struct read_write_emulator_ops *ops)
7857 {
7858         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7859         gpa_t gpa;
7860         int rc;
7861
7862         if (ops->read_write_prepare &&
7863                   ops->read_write_prepare(vcpu, val, bytes))
7864                 return X86EMUL_CONTINUE;
7865
7866         vcpu->mmio_nr_fragments = 0;
7867
7868         /* Crossing a page boundary? */
7869         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7870                 int now;
7871
7872                 now = -addr & ~PAGE_MASK;
7873                 rc = emulator_read_write_onepage(addr, val, now, exception,
7874                                                  vcpu, ops);
7875
7876                 if (rc != X86EMUL_CONTINUE)
7877                         return rc;
7878                 addr += now;
7879                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7880                         addr = (u32)addr;
7881                 val += now;
7882                 bytes -= now;
7883         }
7884
7885         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7886                                          vcpu, ops);
7887         if (rc != X86EMUL_CONTINUE)
7888                 return rc;
7889
7890         if (!vcpu->mmio_nr_fragments)
7891                 return rc;
7892
7893         gpa = vcpu->mmio_fragments[0].gpa;
7894
7895         vcpu->mmio_needed = 1;
7896         vcpu->mmio_cur_fragment = 0;
7897
7898         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7899         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7900         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7901         vcpu->run->mmio.phys_addr = gpa;
7902
7903         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7904 }
7905
7906 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7907                                   unsigned long addr,
7908                                   void *val,
7909                                   unsigned int bytes,
7910                                   struct x86_exception *exception)
7911 {
7912         return emulator_read_write(ctxt, addr, val, bytes,
7913                                    exception, &read_emultor);
7914 }
7915
7916 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7917                             unsigned long addr,
7918                             const void *val,
7919                             unsigned int bytes,
7920                             struct x86_exception *exception)
7921 {
7922         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7923                                    exception, &write_emultor);
7924 }
7925
7926 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7927         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7928
7929 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7930                                      unsigned long addr,
7931                                      const void *old,
7932                                      const void *new,
7933                                      unsigned int bytes,
7934                                      struct x86_exception *exception)
7935 {
7936         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7937         u64 page_line_mask;
7938         unsigned long hva;
7939         gpa_t gpa;
7940         int r;
7941
7942         /* guests cmpxchg8b have to be emulated atomically */
7943         if (bytes > 8 || (bytes & (bytes - 1)))
7944                 goto emul_write;
7945
7946         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7947
7948         if (gpa == INVALID_GPA ||
7949             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7950                 goto emul_write;
7951
7952         /*
7953          * Emulate the atomic as a straight write to avoid #AC if SLD is
7954          * enabled in the host and the access splits a cache line.
7955          */
7956         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7957                 page_line_mask = ~(cache_line_size() - 1);
7958         else
7959                 page_line_mask = PAGE_MASK;
7960
7961         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7962                 goto emul_write;
7963
7964         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7965         if (kvm_is_error_hva(hva))
7966                 goto emul_write;
7967
7968         hva += offset_in_page(gpa);
7969
7970         switch (bytes) {
7971         case 1:
7972                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7973                 break;
7974         case 2:
7975                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7976                 break;
7977         case 4:
7978                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7979                 break;
7980         case 8:
7981                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7982                 break;
7983         default:
7984                 BUG();
7985         }
7986
7987         if (r < 0)
7988                 return X86EMUL_UNHANDLEABLE;
7989         if (r)
7990                 return X86EMUL_CMPXCHG_FAILED;
7991
7992         kvm_page_track_write(vcpu, gpa, new, bytes);
7993
7994         return X86EMUL_CONTINUE;
7995
7996 emul_write:
7997         pr_warn_once("emulating exchange as write\n");
7998
7999         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8000 }
8001
8002 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8003                                unsigned short port, void *data,
8004                                unsigned int count, bool in)
8005 {
8006         unsigned i;
8007         int r;
8008
8009         WARN_ON_ONCE(vcpu->arch.pio.count);
8010         for (i = 0; i < count; i++) {
8011                 if (in)
8012                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8013                 else
8014                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8015
8016                 if (r) {
8017                         if (i == 0)
8018                                 goto userspace_io;
8019
8020                         /*
8021                          * Userspace must have unregistered the device while PIO
8022                          * was running.  Drop writes / read as 0.
8023                          */
8024                         if (in)
8025                                 memset(data, 0, size * (count - i));
8026                         break;
8027                 }
8028
8029                 data += size;
8030         }
8031         return 1;
8032
8033 userspace_io:
8034         vcpu->arch.pio.port = port;
8035         vcpu->arch.pio.in = in;
8036         vcpu->arch.pio.count = count;
8037         vcpu->arch.pio.size = size;
8038
8039         if (in)
8040                 memset(vcpu->arch.pio_data, 0, size * count);
8041         else
8042                 memcpy(vcpu->arch.pio_data, data, size * count);
8043
8044         vcpu->run->exit_reason = KVM_EXIT_IO;
8045         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8046         vcpu->run->io.size = size;
8047         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8048         vcpu->run->io.count = count;
8049         vcpu->run->io.port = port;
8050         return 0;
8051 }
8052
8053 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8054                            unsigned short port, void *val, unsigned int count)
8055 {
8056         int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8057         if (r)
8058                 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8059
8060         return r;
8061 }
8062
8063 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8064 {
8065         int size = vcpu->arch.pio.size;
8066         unsigned int count = vcpu->arch.pio.count;
8067         memcpy(val, vcpu->arch.pio_data, size * count);
8068         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8069         vcpu->arch.pio.count = 0;
8070 }
8071
8072 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8073                                     int size, unsigned short port, void *val,
8074                                     unsigned int count)
8075 {
8076         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8077         if (vcpu->arch.pio.count) {
8078                 /*
8079                  * Complete a previous iteration that required userspace I/O.
8080                  * Note, @count isn't guaranteed to match pio.count as userspace
8081                  * can modify ECX before rerunning the vCPU.  Ignore any such
8082                  * shenanigans as KVM doesn't support modifying the rep count,
8083                  * and the emulator ensures @count doesn't overflow the buffer.
8084                  */
8085                 complete_emulator_pio_in(vcpu, val);
8086                 return 1;
8087         }
8088
8089         return emulator_pio_in(vcpu, size, port, val, count);
8090 }
8091
8092 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8093                             unsigned short port, const void *val,
8094                             unsigned int count)
8095 {
8096         trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8097         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8098 }
8099
8100 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8101                                      int size, unsigned short port,
8102                                      const void *val, unsigned int count)
8103 {
8104         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8105 }
8106
8107 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8108 {
8109         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8110 }
8111
8112 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8113 {
8114         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8115 }
8116
8117 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8118 {
8119         if (!need_emulate_wbinvd(vcpu))
8120                 return X86EMUL_CONTINUE;
8121
8122         if (static_call(kvm_x86_has_wbinvd_exit)()) {
8123                 int cpu = get_cpu();
8124
8125                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8126                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8127                                 wbinvd_ipi, NULL, 1);
8128                 put_cpu();
8129                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8130         } else
8131                 wbinvd();
8132         return X86EMUL_CONTINUE;
8133 }
8134
8135 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8136 {
8137         kvm_emulate_wbinvd_noskip(vcpu);
8138         return kvm_skip_emulated_instruction(vcpu);
8139 }
8140 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8141
8142
8143
8144 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8145 {
8146         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8147 }
8148
8149 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8150                             unsigned long *dest)
8151 {
8152         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8153 }
8154
8155 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8156                            unsigned long value)
8157 {
8158
8159         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8160 }
8161
8162 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8163 {
8164         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8165 }
8166
8167 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8168 {
8169         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8170         unsigned long value;
8171
8172         switch (cr) {
8173         case 0:
8174                 value = kvm_read_cr0(vcpu);
8175                 break;
8176         case 2:
8177                 value = vcpu->arch.cr2;
8178                 break;
8179         case 3:
8180                 value = kvm_read_cr3(vcpu);
8181                 break;
8182         case 4:
8183                 value = kvm_read_cr4(vcpu);
8184                 break;
8185         case 8:
8186                 value = kvm_get_cr8(vcpu);
8187                 break;
8188         default:
8189                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8190                 return 0;
8191         }
8192
8193         return value;
8194 }
8195
8196 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8197 {
8198         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8199         int res = 0;
8200
8201         switch (cr) {
8202         case 0:
8203                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8204                 break;
8205         case 2:
8206                 vcpu->arch.cr2 = val;
8207                 break;
8208         case 3:
8209                 res = kvm_set_cr3(vcpu, val);
8210                 break;
8211         case 4:
8212                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8213                 break;
8214         case 8:
8215                 res = kvm_set_cr8(vcpu, val);
8216                 break;
8217         default:
8218                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8219                 res = -1;
8220         }
8221
8222         return res;
8223 }
8224
8225 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8226 {
8227         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8228 }
8229
8230 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8231 {
8232         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8233 }
8234
8235 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8236 {
8237         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8238 }
8239
8240 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8241 {
8242         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8243 }
8244
8245 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8246 {
8247         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8248 }
8249
8250 static unsigned long emulator_get_cached_segment_base(
8251         struct x86_emulate_ctxt *ctxt, int seg)
8252 {
8253         return get_segment_base(emul_to_vcpu(ctxt), seg);
8254 }
8255
8256 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8257                                  struct desc_struct *desc, u32 *base3,
8258                                  int seg)
8259 {
8260         struct kvm_segment var;
8261
8262         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8263         *selector = var.selector;
8264
8265         if (var.unusable) {
8266                 memset(desc, 0, sizeof(*desc));
8267                 if (base3)
8268                         *base3 = 0;
8269                 return false;
8270         }
8271
8272         if (var.g)
8273                 var.limit >>= 12;
8274         set_desc_limit(desc, var.limit);
8275         set_desc_base(desc, (unsigned long)var.base);
8276 #ifdef CONFIG_X86_64
8277         if (base3)
8278                 *base3 = var.base >> 32;
8279 #endif
8280         desc->type = var.type;
8281         desc->s = var.s;
8282         desc->dpl = var.dpl;
8283         desc->p = var.present;
8284         desc->avl = var.avl;
8285         desc->l = var.l;
8286         desc->d = var.db;
8287         desc->g = var.g;
8288
8289         return true;
8290 }
8291
8292 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8293                                  struct desc_struct *desc, u32 base3,
8294                                  int seg)
8295 {
8296         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8297         struct kvm_segment var;
8298
8299         var.selector = selector;
8300         var.base = get_desc_base(desc);
8301 #ifdef CONFIG_X86_64
8302         var.base |= ((u64)base3) << 32;
8303 #endif
8304         var.limit = get_desc_limit(desc);
8305         if (desc->g)
8306                 var.limit = (var.limit << 12) | 0xfff;
8307         var.type = desc->type;
8308         var.dpl = desc->dpl;
8309         var.db = desc->d;
8310         var.s = desc->s;
8311         var.l = desc->l;
8312         var.g = desc->g;
8313         var.avl = desc->avl;
8314         var.present = desc->p;
8315         var.unusable = !var.present;
8316         var.padding = 0;
8317
8318         kvm_set_segment(vcpu, &var, seg);
8319         return;
8320 }
8321
8322 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8323                                         u32 msr_index, u64 *pdata)
8324 {
8325         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8326         int r;
8327
8328         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8329         if (r < 0)
8330                 return X86EMUL_UNHANDLEABLE;
8331
8332         if (r) {
8333                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8334                                        complete_emulated_rdmsr, r))
8335                         return X86EMUL_IO_NEEDED;
8336
8337                 trace_kvm_msr_read_ex(msr_index);
8338                 return X86EMUL_PROPAGATE_FAULT;
8339         }
8340
8341         trace_kvm_msr_read(msr_index, *pdata);
8342         return X86EMUL_CONTINUE;
8343 }
8344
8345 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8346                                         u32 msr_index, u64 data)
8347 {
8348         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8349         int r;
8350
8351         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8352         if (r < 0)
8353                 return X86EMUL_UNHANDLEABLE;
8354
8355         if (r) {
8356                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8357                                        complete_emulated_msr_access, r))
8358                         return X86EMUL_IO_NEEDED;
8359
8360                 trace_kvm_msr_write_ex(msr_index, data);
8361                 return X86EMUL_PROPAGATE_FAULT;
8362         }
8363
8364         trace_kvm_msr_write(msr_index, data);
8365         return X86EMUL_CONTINUE;
8366 }
8367
8368 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8369                             u32 msr_index, u64 *pdata)
8370 {
8371         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8372 }
8373
8374 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8375                               u32 pmc)
8376 {
8377         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8378                 return 0;
8379         return -EINVAL;
8380 }
8381
8382 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8383                              u32 pmc, u64 *pdata)
8384 {
8385         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8386 }
8387
8388 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8389 {
8390         emul_to_vcpu(ctxt)->arch.halt_request = 1;
8391 }
8392
8393 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8394                               struct x86_instruction_info *info,
8395                               enum x86_intercept_stage stage)
8396 {
8397         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8398                                             &ctxt->exception);
8399 }
8400
8401 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8402                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8403                               bool exact_only)
8404 {
8405         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8406 }
8407
8408 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8409 {
8410         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8411 }
8412
8413 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8414 {
8415         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8416 }
8417
8418 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8419 {
8420         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8421 }
8422
8423 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8424 {
8425         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8426 }
8427
8428 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8429 {
8430         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8431 }
8432
8433 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8434 {
8435         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8436 }
8437
8438 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8439 {
8440         return is_smm(emul_to_vcpu(ctxt));
8441 }
8442
8443 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8444 {
8445         return is_guest_mode(emul_to_vcpu(ctxt));
8446 }
8447
8448 #ifndef CONFIG_KVM_SMM
8449 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8450 {
8451         WARN_ON_ONCE(1);
8452         return X86EMUL_UNHANDLEABLE;
8453 }
8454 #endif
8455
8456 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8457 {
8458         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8459 }
8460
8461 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8462 {
8463         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8464 }
8465
8466 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8467 {
8468         struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8469
8470         if (!kvm->vm_bugged)
8471                 kvm_vm_bugged(kvm);
8472 }
8473
8474 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8475                                         gva_t addr, unsigned int flags)
8476 {
8477         if (!kvm_x86_ops.get_untagged_addr)
8478                 return addr;
8479
8480         return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags);
8481 }
8482
8483 static const struct x86_emulate_ops emulate_ops = {
8484         .vm_bugged           = emulator_vm_bugged,
8485         .read_gpr            = emulator_read_gpr,
8486         .write_gpr           = emulator_write_gpr,
8487         .read_std            = emulator_read_std,
8488         .write_std           = emulator_write_std,
8489         .fetch               = kvm_fetch_guest_virt,
8490         .read_emulated       = emulator_read_emulated,
8491         .write_emulated      = emulator_write_emulated,
8492         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
8493         .invlpg              = emulator_invlpg,
8494         .pio_in_emulated     = emulator_pio_in_emulated,
8495         .pio_out_emulated    = emulator_pio_out_emulated,
8496         .get_segment         = emulator_get_segment,
8497         .set_segment         = emulator_set_segment,
8498         .get_cached_segment_base = emulator_get_cached_segment_base,
8499         .get_gdt             = emulator_get_gdt,
8500         .get_idt             = emulator_get_idt,
8501         .set_gdt             = emulator_set_gdt,
8502         .set_idt             = emulator_set_idt,
8503         .get_cr              = emulator_get_cr,
8504         .set_cr              = emulator_set_cr,
8505         .cpl                 = emulator_get_cpl,
8506         .get_dr              = emulator_get_dr,
8507         .set_dr              = emulator_set_dr,
8508         .set_msr_with_filter = emulator_set_msr_with_filter,
8509         .get_msr_with_filter = emulator_get_msr_with_filter,
8510         .get_msr             = emulator_get_msr,
8511         .check_pmc           = emulator_check_pmc,
8512         .read_pmc            = emulator_read_pmc,
8513         .halt                = emulator_halt,
8514         .wbinvd              = emulator_wbinvd,
8515         .fix_hypercall       = emulator_fix_hypercall,
8516         .intercept           = emulator_intercept,
8517         .get_cpuid           = emulator_get_cpuid,
8518         .guest_has_movbe     = emulator_guest_has_movbe,
8519         .guest_has_fxsr      = emulator_guest_has_fxsr,
8520         .guest_has_rdpid     = emulator_guest_has_rdpid,
8521         .set_nmi_mask        = emulator_set_nmi_mask,
8522         .is_smm              = emulator_is_smm,
8523         .is_guest_mode       = emulator_is_guest_mode,
8524         .leave_smm           = emulator_leave_smm,
8525         .triple_fault        = emulator_triple_fault,
8526         .set_xcr             = emulator_set_xcr,
8527         .get_untagged_addr   = emulator_get_untagged_addr,
8528 };
8529
8530 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8531 {
8532         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8533         /*
8534          * an sti; sti; sequence only disable interrupts for the first
8535          * instruction. So, if the last instruction, be it emulated or
8536          * not, left the system with the INT_STI flag enabled, it
8537          * means that the last instruction is an sti. We should not
8538          * leave the flag on in this case. The same goes for mov ss
8539          */
8540         if (int_shadow & mask)
8541                 mask = 0;
8542         if (unlikely(int_shadow || mask)) {
8543                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8544                 if (!mask)
8545                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8546         }
8547 }
8548
8549 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8550 {
8551         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8552
8553         if (ctxt->exception.vector == PF_VECTOR)
8554                 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8555         else if (ctxt->exception.error_code_valid)
8556                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8557                                       ctxt->exception.error_code);
8558         else
8559                 kvm_queue_exception(vcpu, ctxt->exception.vector);
8560 }
8561
8562 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8563 {
8564         struct x86_emulate_ctxt *ctxt;
8565
8566         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8567         if (!ctxt) {
8568                 pr_err("failed to allocate vcpu's emulator\n");
8569                 return NULL;
8570         }
8571
8572         ctxt->vcpu = vcpu;
8573         ctxt->ops = &emulate_ops;
8574         vcpu->arch.emulate_ctxt = ctxt;
8575
8576         return ctxt;
8577 }
8578
8579 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8580 {
8581         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8582         int cs_db, cs_l;
8583
8584         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8585
8586         ctxt->gpa_available = false;
8587         ctxt->eflags = kvm_get_rflags(vcpu);
8588         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8589
8590         ctxt->eip = kvm_rip_read(vcpu);
8591         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
8592                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
8593                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
8594                      cs_db                              ? X86EMUL_MODE_PROT32 :
8595                                                           X86EMUL_MODE_PROT16;
8596         ctxt->interruptibility = 0;
8597         ctxt->have_exception = false;
8598         ctxt->exception.vector = -1;
8599         ctxt->perm_ok = false;
8600
8601         init_decode_cache(ctxt);
8602         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8603 }
8604
8605 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8606 {
8607         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8608         int ret;
8609
8610         init_emulate_ctxt(vcpu);
8611
8612         ctxt->op_bytes = 2;
8613         ctxt->ad_bytes = 2;
8614         ctxt->_eip = ctxt->eip + inc_eip;
8615         ret = emulate_int_real(ctxt, irq);
8616
8617         if (ret != X86EMUL_CONTINUE) {
8618                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8619         } else {
8620                 ctxt->eip = ctxt->_eip;
8621                 kvm_rip_write(vcpu, ctxt->eip);
8622                 kvm_set_rflags(vcpu, ctxt->eflags);
8623         }
8624 }
8625 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8626
8627 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8628                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8629 {
8630         struct kvm_run *run = vcpu->run;
8631         u64 info[5];
8632         u8 info_start;
8633
8634         /*
8635          * Zero the whole array used to retrieve the exit info, as casting to
8636          * u32 for select entries will leave some chunks uninitialized.
8637          */
8638         memset(&info, 0, sizeof(info));
8639
8640         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8641                                            &info[2], (u32 *)&info[3],
8642                                            (u32 *)&info[4]);
8643
8644         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8645         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8646
8647         /*
8648          * There's currently space for 13 entries, but 5 are used for the exit
8649          * reason and info.  Restrict to 4 to reduce the maintenance burden
8650          * when expanding kvm_run.emulation_failure in the future.
8651          */
8652         if (WARN_ON_ONCE(ndata > 4))
8653                 ndata = 4;
8654
8655         /* Always include the flags as a 'data' entry. */
8656         info_start = 1;
8657         run->emulation_failure.flags = 0;
8658
8659         if (insn_size) {
8660                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8661                               sizeof(run->emulation_failure.insn_bytes) != 16));
8662                 info_start += 2;
8663                 run->emulation_failure.flags |=
8664                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8665                 run->emulation_failure.insn_size = insn_size;
8666                 memset(run->emulation_failure.insn_bytes, 0x90,
8667                        sizeof(run->emulation_failure.insn_bytes));
8668                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8669         }
8670
8671         memcpy(&run->internal.data[info_start], info, sizeof(info));
8672         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8673                ndata * sizeof(data[0]));
8674
8675         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8676 }
8677
8678 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8679 {
8680         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8681
8682         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8683                                        ctxt->fetch.end - ctxt->fetch.data);
8684 }
8685
8686 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8687                                           u8 ndata)
8688 {
8689         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8690 }
8691 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8692
8693 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8694 {
8695         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8696 }
8697 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8698
8699 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8700 {
8701         struct kvm *kvm = vcpu->kvm;
8702
8703         ++vcpu->stat.insn_emulation_fail;
8704         trace_kvm_emulate_insn_failed(vcpu);
8705
8706         if (emulation_type & EMULTYPE_VMWARE_GP) {
8707                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8708                 return 1;
8709         }
8710
8711         if (kvm->arch.exit_on_emulation_error ||
8712             (emulation_type & EMULTYPE_SKIP)) {
8713                 prepare_emulation_ctxt_failure_exit(vcpu);
8714                 return 0;
8715         }
8716
8717         kvm_queue_exception(vcpu, UD_VECTOR);
8718
8719         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8720                 prepare_emulation_ctxt_failure_exit(vcpu);
8721                 return 0;
8722         }
8723
8724         return 1;
8725 }
8726
8727 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8728                                   int emulation_type)
8729 {
8730         gpa_t gpa = cr2_or_gpa;
8731         kvm_pfn_t pfn;
8732
8733         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8734                 return false;
8735
8736         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8737             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8738                 return false;
8739
8740         if (!vcpu->arch.mmu->root_role.direct) {
8741                 /*
8742                  * Write permission should be allowed since only
8743                  * write access need to be emulated.
8744                  */
8745                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8746
8747                 /*
8748                  * If the mapping is invalid in guest, let cpu retry
8749                  * it to generate fault.
8750                  */
8751                 if (gpa == INVALID_GPA)
8752                         return true;
8753         }
8754
8755         /*
8756          * Do not retry the unhandleable instruction if it faults on the
8757          * readonly host memory, otherwise it will goto a infinite loop:
8758          * retry instruction -> write #PF -> emulation fail -> retry
8759          * instruction -> ...
8760          */
8761         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8762
8763         /*
8764          * If the instruction failed on the error pfn, it can not be fixed,
8765          * report the error to userspace.
8766          */
8767         if (is_error_noslot_pfn(pfn))
8768                 return false;
8769
8770         kvm_release_pfn_clean(pfn);
8771
8772         /* The instructions are well-emulated on direct mmu. */
8773         if (vcpu->arch.mmu->root_role.direct) {
8774                 unsigned int indirect_shadow_pages;
8775
8776                 write_lock(&vcpu->kvm->mmu_lock);
8777                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8778                 write_unlock(&vcpu->kvm->mmu_lock);
8779
8780                 if (indirect_shadow_pages)
8781                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8782
8783                 return true;
8784         }
8785
8786         /*
8787          * if emulation was due to access to shadowed page table
8788          * and it failed try to unshadow page and re-enter the
8789          * guest to let CPU execute the instruction.
8790          */
8791         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8792
8793         /*
8794          * If the access faults on its page table, it can not
8795          * be fixed by unprotecting shadow page and it should
8796          * be reported to userspace.
8797          */
8798         return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8799 }
8800
8801 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8802                               gpa_t cr2_or_gpa,  int emulation_type)
8803 {
8804         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8805         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8806
8807         last_retry_eip = vcpu->arch.last_retry_eip;
8808         last_retry_addr = vcpu->arch.last_retry_addr;
8809
8810         /*
8811          * If the emulation is caused by #PF and it is non-page_table
8812          * writing instruction, it means the VM-EXIT is caused by shadow
8813          * page protected, we can zap the shadow page and retry this
8814          * instruction directly.
8815          *
8816          * Note: if the guest uses a non-page-table modifying instruction
8817          * on the PDE that points to the instruction, then we will unmap
8818          * the instruction and go to an infinite loop. So, we cache the
8819          * last retried eip and the last fault address, if we meet the eip
8820          * and the address again, we can break out of the potential infinite
8821          * loop.
8822          */
8823         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8824
8825         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8826                 return false;
8827
8828         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8829             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8830                 return false;
8831
8832         if (x86_page_table_writing_insn(ctxt))
8833                 return false;
8834
8835         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8836                 return false;
8837
8838         vcpu->arch.last_retry_eip = ctxt->eip;
8839         vcpu->arch.last_retry_addr = cr2_or_gpa;
8840
8841         if (!vcpu->arch.mmu->root_role.direct)
8842                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8843
8844         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8845
8846         return true;
8847 }
8848
8849 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8850 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8851
8852 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8853                                 unsigned long *db)
8854 {
8855         u32 dr6 = 0;
8856         int i;
8857         u32 enable, rwlen;
8858
8859         enable = dr7;
8860         rwlen = dr7 >> 16;
8861         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8862                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8863                         dr6 |= (1 << i);
8864         return dr6;
8865 }
8866
8867 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8868 {
8869         struct kvm_run *kvm_run = vcpu->run;
8870
8871         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8872                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8873                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8874                 kvm_run->debug.arch.exception = DB_VECTOR;
8875                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8876                 return 0;
8877         }
8878         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8879         return 1;
8880 }
8881
8882 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8883 {
8884         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8885         int r;
8886
8887         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8888         if (unlikely(!r))
8889                 return 0;
8890
8891         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8892
8893         /*
8894          * rflags is the old, "raw" value of the flags.  The new value has
8895          * not been saved yet.
8896          *
8897          * This is correct even for TF set by the guest, because "the
8898          * processor will not generate this exception after the instruction
8899          * that sets the TF flag".
8900          */
8901         if (unlikely(rflags & X86_EFLAGS_TF))
8902                 r = kvm_vcpu_do_singlestep(vcpu);
8903         return r;
8904 }
8905 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8906
8907 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8908 {
8909         u32 shadow;
8910
8911         if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8912                 return true;
8913
8914         /*
8915          * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8916          * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8917          * to avoid the relatively expensive CPUID lookup.
8918          */
8919         shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8920         return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8921                guest_cpuid_is_intel(vcpu);
8922 }
8923
8924 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8925                                            int emulation_type, int *r)
8926 {
8927         WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8928
8929         /*
8930          * Do not check for code breakpoints if hardware has already done the
8931          * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8932          * the instruction has passed all exception checks, and all intercepted
8933          * exceptions that trigger emulation have lower priority than code
8934          * breakpoints, i.e. the fact that the intercepted exception occurred
8935          * means any code breakpoints have already been serviced.
8936          *
8937          * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8938          * hardware has checked the RIP of the magic prefix, but not the RIP of
8939          * the instruction being emulated.  The intent of forced emulation is
8940          * to behave as if KVM intercepted the instruction without an exception
8941          * and without a prefix.
8942          */
8943         if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8944                               EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8945                 return false;
8946
8947         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8948             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8949                 struct kvm_run *kvm_run = vcpu->run;
8950                 unsigned long eip = kvm_get_linear_rip(vcpu);
8951                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8952                                            vcpu->arch.guest_debug_dr7,
8953                                            vcpu->arch.eff_db);
8954
8955                 if (dr6 != 0) {
8956                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8957                         kvm_run->debug.arch.pc = eip;
8958                         kvm_run->debug.arch.exception = DB_VECTOR;
8959                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8960                         *r = 0;
8961                         return true;
8962                 }
8963         }
8964
8965         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8966             !kvm_is_code_breakpoint_inhibited(vcpu)) {
8967                 unsigned long eip = kvm_get_linear_rip(vcpu);
8968                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8969                                            vcpu->arch.dr7,
8970                                            vcpu->arch.db);
8971
8972                 if (dr6 != 0) {
8973                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8974                         *r = 1;
8975                         return true;
8976                 }
8977         }
8978
8979         return false;
8980 }
8981
8982 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8983 {
8984         switch (ctxt->opcode_len) {
8985         case 1:
8986                 switch (ctxt->b) {
8987                 case 0xe4:      /* IN */
8988                 case 0xe5:
8989                 case 0xec:
8990                 case 0xed:
8991                 case 0xe6:      /* OUT */
8992                 case 0xe7:
8993                 case 0xee:
8994                 case 0xef:
8995                 case 0x6c:      /* INS */
8996                 case 0x6d:
8997                 case 0x6e:      /* OUTS */
8998                 case 0x6f:
8999                         return true;
9000                 }
9001                 break;
9002         case 2:
9003                 switch (ctxt->b) {
9004                 case 0x33:      /* RDPMC */
9005                         return true;
9006                 }
9007                 break;
9008         }
9009
9010         return false;
9011 }
9012
9013 /*
9014  * Decode an instruction for emulation.  The caller is responsible for handling
9015  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9016  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9017  * code breakpoints have higher priority and thus have already been done by
9018  * hardware.
9019  *
9020  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9021  *     response to a machine check.
9022  */
9023 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9024                                     void *insn, int insn_len)
9025 {
9026         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9027         int r;
9028
9029         init_emulate_ctxt(vcpu);
9030
9031         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9032
9033         trace_kvm_emulate_insn_start(vcpu);
9034         ++vcpu->stat.insn_emulation;
9035
9036         return r;
9037 }
9038 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9039
9040 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9041                             int emulation_type, void *insn, int insn_len)
9042 {
9043         int r;
9044         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9045         bool writeback = true;
9046
9047         r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9048         if (r != X86EMUL_CONTINUE) {
9049                 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9050                         return 1;
9051
9052                 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9053                 return handle_emulation_failure(vcpu, emulation_type);
9054         }
9055
9056         vcpu->arch.l1tf_flush_l1d = true;
9057
9058         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9059                 kvm_clear_exception_queue(vcpu);
9060
9061                 /*
9062                  * Return immediately if RIP hits a code breakpoint, such #DBs
9063                  * are fault-like and are higher priority than any faults on
9064                  * the code fetch itself.
9065                  */
9066                 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9067                         return r;
9068
9069                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9070                                                     insn, insn_len);
9071                 if (r != EMULATION_OK)  {
9072                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
9073                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9074                                 kvm_queue_exception(vcpu, UD_VECTOR);
9075                                 return 1;
9076                         }
9077                         if (reexecute_instruction(vcpu, cr2_or_gpa,
9078                                                   emulation_type))
9079                                 return 1;
9080
9081                         if (ctxt->have_exception &&
9082                             !(emulation_type & EMULTYPE_SKIP)) {
9083                                 /*
9084                                  * #UD should result in just EMULATION_FAILED, and trap-like
9085                                  * exception should not be encountered during decode.
9086                                  */
9087                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9088                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9089                                 inject_emulated_exception(vcpu);
9090                                 return 1;
9091                         }
9092                         return handle_emulation_failure(vcpu, emulation_type);
9093                 }
9094         }
9095
9096         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9097             !is_vmware_backdoor_opcode(ctxt)) {
9098                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9099                 return 1;
9100         }
9101
9102         /*
9103          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9104          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9105          * The caller is responsible for updating interruptibility state and
9106          * injecting single-step #DBs.
9107          */
9108         if (emulation_type & EMULTYPE_SKIP) {
9109                 if (ctxt->mode != X86EMUL_MODE_PROT64)
9110                         ctxt->eip = (u32)ctxt->_eip;
9111                 else
9112                         ctxt->eip = ctxt->_eip;
9113
9114                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9115                         r = 1;
9116                         goto writeback;
9117                 }
9118
9119                 kvm_rip_write(vcpu, ctxt->eip);
9120                 if (ctxt->eflags & X86_EFLAGS_RF)
9121                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9122                 return 1;
9123         }
9124
9125         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9126                 return 1;
9127
9128         /* this is needed for vmware backdoor interface to work since it
9129            changes registers values  during IO operation */
9130         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9131                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9132                 emulator_invalidate_register_cache(ctxt);
9133         }
9134
9135 restart:
9136         if (emulation_type & EMULTYPE_PF) {
9137                 /* Save the faulting GPA (cr2) in the address field */
9138                 ctxt->exception.address = cr2_or_gpa;
9139
9140                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9141                 if (vcpu->arch.mmu->root_role.direct) {
9142                         ctxt->gpa_available = true;
9143                         ctxt->gpa_val = cr2_or_gpa;
9144                 }
9145         } else {
9146                 /* Sanitize the address out of an abundance of paranoia. */
9147                 ctxt->exception.address = 0;
9148         }
9149
9150         r = x86_emulate_insn(ctxt);
9151
9152         if (r == EMULATION_INTERCEPTED)
9153                 return 1;
9154
9155         if (r == EMULATION_FAILED) {
9156                 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9157                         return 1;
9158
9159                 return handle_emulation_failure(vcpu, emulation_type);
9160         }
9161
9162         if (ctxt->have_exception) {
9163                 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9164                 vcpu->mmio_needed = false;
9165                 r = 1;
9166                 inject_emulated_exception(vcpu);
9167         } else if (vcpu->arch.pio.count) {
9168                 if (!vcpu->arch.pio.in) {
9169                         /* FIXME: return into emulator if single-stepping.  */
9170                         vcpu->arch.pio.count = 0;
9171                 } else {
9172                         writeback = false;
9173                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
9174                 }
9175                 r = 0;
9176         } else if (vcpu->mmio_needed) {
9177                 ++vcpu->stat.mmio_exits;
9178
9179                 if (!vcpu->mmio_is_write)
9180                         writeback = false;
9181                 r = 0;
9182                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9183         } else if (vcpu->arch.complete_userspace_io) {
9184                 writeback = false;
9185                 r = 0;
9186         } else if (r == EMULATION_RESTART)
9187                 goto restart;
9188         else
9189                 r = 1;
9190
9191 writeback:
9192         if (writeback) {
9193                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9194                 toggle_interruptibility(vcpu, ctxt->interruptibility);
9195                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9196
9197                 /*
9198                  * Note, EXCPT_DB is assumed to be fault-like as the emulator
9199                  * only supports code breakpoints and general detect #DB, both
9200                  * of which are fault-like.
9201                  */
9202                 if (!ctxt->have_exception ||
9203                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9204                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9205                         if (ctxt->is_branch)
9206                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9207                         kvm_rip_write(vcpu, ctxt->eip);
9208                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9209                                 r = kvm_vcpu_do_singlestep(vcpu);
9210                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9211                         __kvm_set_rflags(vcpu, ctxt->eflags);
9212                 }
9213
9214                 /*
9215                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9216                  * do nothing, and it will be requested again as soon as
9217                  * the shadow expires.  But we still need to check here,
9218                  * because POPF has no interrupt shadow.
9219                  */
9220                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9221                         kvm_make_request(KVM_REQ_EVENT, vcpu);
9222         } else
9223                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9224
9225         return r;
9226 }
9227
9228 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9229 {
9230         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9231 }
9232 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9233
9234 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9235                                         void *insn, int insn_len)
9236 {
9237         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9238 }
9239 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9240
9241 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9242 {
9243         vcpu->arch.pio.count = 0;
9244         return 1;
9245 }
9246
9247 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9248 {
9249         vcpu->arch.pio.count = 0;
9250
9251         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9252                 return 1;
9253
9254         return kvm_skip_emulated_instruction(vcpu);
9255 }
9256
9257 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9258                             unsigned short port)
9259 {
9260         unsigned long val = kvm_rax_read(vcpu);
9261         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9262
9263         if (ret)
9264                 return ret;
9265
9266         /*
9267          * Workaround userspace that relies on old KVM behavior of %rip being
9268          * incremented prior to exiting to userspace to handle "OUT 0x7e".
9269          */
9270         if (port == 0x7e &&
9271             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9272                 vcpu->arch.complete_userspace_io =
9273                         complete_fast_pio_out_port_0x7e;
9274                 kvm_skip_emulated_instruction(vcpu);
9275         } else {
9276                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9277                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9278         }
9279         return 0;
9280 }
9281
9282 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9283 {
9284         unsigned long val;
9285
9286         /* We should only ever be called with arch.pio.count equal to 1 */
9287         BUG_ON(vcpu->arch.pio.count != 1);
9288
9289         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9290                 vcpu->arch.pio.count = 0;
9291                 return 1;
9292         }
9293
9294         /* For size less than 4 we merge, else we zero extend */
9295         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9296
9297         complete_emulator_pio_in(vcpu, &val);
9298         kvm_rax_write(vcpu, val);
9299
9300         return kvm_skip_emulated_instruction(vcpu);
9301 }
9302
9303 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9304                            unsigned short port)
9305 {
9306         unsigned long val;
9307         int ret;
9308
9309         /* For size less than 4 we merge, else we zero extend */
9310         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9311
9312         ret = emulator_pio_in(vcpu, size, port, &val, 1);
9313         if (ret) {
9314                 kvm_rax_write(vcpu, val);
9315                 return ret;
9316         }
9317
9318         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9319         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9320
9321         return 0;
9322 }
9323
9324 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9325 {
9326         int ret;
9327
9328         if (in)
9329                 ret = kvm_fast_pio_in(vcpu, size, port);
9330         else
9331                 ret = kvm_fast_pio_out(vcpu, size, port);
9332         return ret && kvm_skip_emulated_instruction(vcpu);
9333 }
9334 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9335
9336 static int kvmclock_cpu_down_prep(unsigned int cpu)
9337 {
9338         __this_cpu_write(cpu_tsc_khz, 0);
9339         return 0;
9340 }
9341
9342 static void tsc_khz_changed(void *data)
9343 {
9344         struct cpufreq_freqs *freq = data;
9345         unsigned long khz;
9346
9347         WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9348
9349         if (data)
9350                 khz = freq->new;
9351         else
9352                 khz = cpufreq_quick_get(raw_smp_processor_id());
9353         if (!khz)
9354                 khz = tsc_khz;
9355         __this_cpu_write(cpu_tsc_khz, khz);
9356 }
9357
9358 #ifdef CONFIG_X86_64
9359 static void kvm_hyperv_tsc_notifier(void)
9360 {
9361         struct kvm *kvm;
9362         int cpu;
9363
9364         mutex_lock(&kvm_lock);
9365         list_for_each_entry(kvm, &vm_list, vm_list)
9366                 kvm_make_mclock_inprogress_request(kvm);
9367
9368         /* no guest entries from this point */
9369         hyperv_stop_tsc_emulation();
9370
9371         /* TSC frequency always matches when on Hyper-V */
9372         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9373                 for_each_present_cpu(cpu)
9374                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9375         }
9376         kvm_caps.max_guest_tsc_khz = tsc_khz;
9377
9378         list_for_each_entry(kvm, &vm_list, vm_list) {
9379                 __kvm_start_pvclock_update(kvm);
9380                 pvclock_update_vm_gtod_copy(kvm);
9381                 kvm_end_pvclock_update(kvm);
9382         }
9383
9384         mutex_unlock(&kvm_lock);
9385 }
9386 #endif
9387
9388 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9389 {
9390         struct kvm *kvm;
9391         struct kvm_vcpu *vcpu;
9392         int send_ipi = 0;
9393         unsigned long i;
9394
9395         /*
9396          * We allow guests to temporarily run on slowing clocks,
9397          * provided we notify them after, or to run on accelerating
9398          * clocks, provided we notify them before.  Thus time never
9399          * goes backwards.
9400          *
9401          * However, we have a problem.  We can't atomically update
9402          * the frequency of a given CPU from this function; it is
9403          * merely a notifier, which can be called from any CPU.
9404          * Changing the TSC frequency at arbitrary points in time
9405          * requires a recomputation of local variables related to
9406          * the TSC for each VCPU.  We must flag these local variables
9407          * to be updated and be sure the update takes place with the
9408          * new frequency before any guests proceed.
9409          *
9410          * Unfortunately, the combination of hotplug CPU and frequency
9411          * change creates an intractable locking scenario; the order
9412          * of when these callouts happen is undefined with respect to
9413          * CPU hotplug, and they can race with each other.  As such,
9414          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9415          * undefined; you can actually have a CPU frequency change take
9416          * place in between the computation of X and the setting of the
9417          * variable.  To protect against this problem, all updates of
9418          * the per_cpu tsc_khz variable are done in an interrupt
9419          * protected IPI, and all callers wishing to update the value
9420          * must wait for a synchronous IPI to complete (which is trivial
9421          * if the caller is on the CPU already).  This establishes the
9422          * necessary total order on variable updates.
9423          *
9424          * Note that because a guest time update may take place
9425          * anytime after the setting of the VCPU's request bit, the
9426          * correct TSC value must be set before the request.  However,
9427          * to ensure the update actually makes it to any guest which
9428          * starts running in hardware virtualization between the set
9429          * and the acquisition of the spinlock, we must also ping the
9430          * CPU after setting the request bit.
9431          *
9432          */
9433
9434         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9435
9436         mutex_lock(&kvm_lock);
9437         list_for_each_entry(kvm, &vm_list, vm_list) {
9438                 kvm_for_each_vcpu(i, vcpu, kvm) {
9439                         if (vcpu->cpu != cpu)
9440                                 continue;
9441                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9442                         if (vcpu->cpu != raw_smp_processor_id())
9443                                 send_ipi = 1;
9444                 }
9445         }
9446         mutex_unlock(&kvm_lock);
9447
9448         if (freq->old < freq->new && send_ipi) {
9449                 /*
9450                  * We upscale the frequency.  Must make the guest
9451                  * doesn't see old kvmclock values while running with
9452                  * the new frequency, otherwise we risk the guest sees
9453                  * time go backwards.
9454                  *
9455                  * In case we update the frequency for another cpu
9456                  * (which might be in guest context) send an interrupt
9457                  * to kick the cpu out of guest context.  Next time
9458                  * guest context is entered kvmclock will be updated,
9459                  * so the guest will not see stale values.
9460                  */
9461                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9462         }
9463 }
9464
9465 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9466                                      void *data)
9467 {
9468         struct cpufreq_freqs *freq = data;
9469         int cpu;
9470
9471         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9472                 return 0;
9473         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9474                 return 0;
9475
9476         for_each_cpu(cpu, freq->policy->cpus)
9477                 __kvmclock_cpufreq_notifier(freq, cpu);
9478
9479         return 0;
9480 }
9481
9482 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9483         .notifier_call  = kvmclock_cpufreq_notifier
9484 };
9485
9486 static int kvmclock_cpu_online(unsigned int cpu)
9487 {
9488         tsc_khz_changed(NULL);
9489         return 0;
9490 }
9491
9492 static void kvm_timer_init(void)
9493 {
9494         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9495                 max_tsc_khz = tsc_khz;
9496
9497                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9498                         struct cpufreq_policy *policy;
9499                         int cpu;
9500
9501                         cpu = get_cpu();
9502                         policy = cpufreq_cpu_get(cpu);
9503                         if (policy) {
9504                                 if (policy->cpuinfo.max_freq)
9505                                         max_tsc_khz = policy->cpuinfo.max_freq;
9506                                 cpufreq_cpu_put(policy);
9507                         }
9508                         put_cpu();
9509                 }
9510                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9511                                           CPUFREQ_TRANSITION_NOTIFIER);
9512
9513                 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9514                                   kvmclock_cpu_online, kvmclock_cpu_down_prep);
9515         }
9516 }
9517
9518 #ifdef CONFIG_X86_64
9519 static void pvclock_gtod_update_fn(struct work_struct *work)
9520 {
9521         struct kvm *kvm;
9522         struct kvm_vcpu *vcpu;
9523         unsigned long i;
9524
9525         mutex_lock(&kvm_lock);
9526         list_for_each_entry(kvm, &vm_list, vm_list)
9527                 kvm_for_each_vcpu(i, vcpu, kvm)
9528                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9529         atomic_set(&kvm_guest_has_master_clock, 0);
9530         mutex_unlock(&kvm_lock);
9531 }
9532
9533 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9534
9535 /*
9536  * Indirection to move queue_work() out of the tk_core.seq write held
9537  * region to prevent possible deadlocks against time accessors which
9538  * are invoked with work related locks held.
9539  */
9540 static void pvclock_irq_work_fn(struct irq_work *w)
9541 {
9542         queue_work(system_long_wq, &pvclock_gtod_work);
9543 }
9544
9545 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9546
9547 /*
9548  * Notification about pvclock gtod data update.
9549  */
9550 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9551                                void *priv)
9552 {
9553         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9554         struct timekeeper *tk = priv;
9555
9556         update_pvclock_gtod(tk);
9557
9558         /*
9559          * Disable master clock if host does not trust, or does not use,
9560          * TSC based clocksource. Delegate queue_work() to irq_work as
9561          * this is invoked with tk_core.seq write held.
9562          */
9563         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9564             atomic_read(&kvm_guest_has_master_clock) != 0)
9565                 irq_work_queue(&pvclock_irq_work);
9566         return 0;
9567 }
9568
9569 static struct notifier_block pvclock_gtod_notifier = {
9570         .notifier_call = pvclock_gtod_notify,
9571 };
9572 #endif
9573
9574 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9575 {
9576         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9577
9578 #define __KVM_X86_OP(func) \
9579         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9580 #define KVM_X86_OP(func) \
9581         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9582 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9583 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9584         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9585                                            (void *)__static_call_return0);
9586 #include <asm/kvm-x86-ops.h>
9587 #undef __KVM_X86_OP
9588
9589         kvm_pmu_ops_update(ops->pmu_ops);
9590 }
9591
9592 static int kvm_x86_check_processor_compatibility(void)
9593 {
9594         int cpu = smp_processor_id();
9595         struct cpuinfo_x86 *c = &cpu_data(cpu);
9596
9597         /*
9598          * Compatibility checks are done when loading KVM and when enabling
9599          * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9600          * compatible, i.e. KVM should never perform a compatibility check on
9601          * an offline CPU.
9602          */
9603         WARN_ON(!cpu_online(cpu));
9604
9605         if (__cr4_reserved_bits(cpu_has, c) !=
9606             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9607                 return -EIO;
9608
9609         return static_call(kvm_x86_check_processor_compatibility)();
9610 }
9611
9612 static void kvm_x86_check_cpu_compat(void *ret)
9613 {
9614         *(int *)ret = kvm_x86_check_processor_compatibility();
9615 }
9616
9617 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9618 {
9619         u64 host_pat;
9620         int r, cpu;
9621
9622         if (kvm_x86_ops.hardware_enable) {
9623                 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9624                 return -EEXIST;
9625         }
9626
9627         /*
9628          * KVM explicitly assumes that the guest has an FPU and
9629          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9630          * vCPU's FPU state as a fxregs_state struct.
9631          */
9632         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9633                 pr_err("inadequate fpu\n");
9634                 return -EOPNOTSUPP;
9635         }
9636
9637         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9638                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9639                 return -EOPNOTSUPP;
9640         }
9641
9642         /*
9643          * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9644          * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9645          * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9646          * with an exception.  PAT[0] is set to WB on RESET and also by the
9647          * kernel, i.e. failure indicates a kernel bug or broken firmware.
9648          */
9649         if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9650             (host_pat & GENMASK(2, 0)) != 6) {
9651                 pr_err("host PAT[0] is not WB\n");
9652                 return -EIO;
9653         }
9654
9655         x86_emulator_cache = kvm_alloc_emulator_cache();
9656         if (!x86_emulator_cache) {
9657                 pr_err("failed to allocate cache for x86 emulator\n");
9658                 return -ENOMEM;
9659         }
9660
9661         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9662         if (!user_return_msrs) {
9663                 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9664                 r = -ENOMEM;
9665                 goto out_free_x86_emulator_cache;
9666         }
9667         kvm_nr_uret_msrs = 0;
9668
9669         r = kvm_mmu_vendor_module_init();
9670         if (r)
9671                 goto out_free_percpu;
9672
9673         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9674                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9675                 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9676         }
9677
9678         rdmsrl_safe(MSR_EFER, &host_efer);
9679
9680         if (boot_cpu_has(X86_FEATURE_XSAVES))
9681                 rdmsrl(MSR_IA32_XSS, host_xss);
9682
9683         kvm_init_pmu_capability(ops->pmu_ops);
9684
9685         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9686                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9687
9688         r = ops->hardware_setup();
9689         if (r != 0)
9690                 goto out_mmu_exit;
9691
9692         kvm_ops_update(ops);
9693
9694         for_each_online_cpu(cpu) {
9695                 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9696                 if (r < 0)
9697                         goto out_unwind_ops;
9698         }
9699
9700         /*
9701          * Point of no return!  DO NOT add error paths below this point unless
9702          * absolutely necessary, as most operations from this point forward
9703          * require unwinding.
9704          */
9705         kvm_timer_init();
9706
9707         if (pi_inject_timer == -1)
9708                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9709 #ifdef CONFIG_X86_64
9710         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9711
9712         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9713                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9714 #endif
9715
9716         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9717
9718         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9719                 kvm_caps.supported_xss = 0;
9720
9721 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9722         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9723 #undef __kvm_cpu_cap_has
9724
9725         if (kvm_caps.has_tsc_control) {
9726                 /*
9727                  * Make sure the user can only configure tsc_khz values that
9728                  * fit into a signed integer.
9729                  * A min value is not calculated because it will always
9730                  * be 1 on all machines.
9731                  */
9732                 u64 max = min(0x7fffffffULL,
9733                               __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9734                 kvm_caps.max_guest_tsc_khz = max;
9735         }
9736         kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9737         kvm_init_msr_lists();
9738         return 0;
9739
9740 out_unwind_ops:
9741         kvm_x86_ops.hardware_enable = NULL;
9742         static_call(kvm_x86_hardware_unsetup)();
9743 out_mmu_exit:
9744         kvm_mmu_vendor_module_exit();
9745 out_free_percpu:
9746         free_percpu(user_return_msrs);
9747 out_free_x86_emulator_cache:
9748         kmem_cache_destroy(x86_emulator_cache);
9749         return r;
9750 }
9751
9752 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9753 {
9754         int r;
9755
9756         mutex_lock(&vendor_module_lock);
9757         r = __kvm_x86_vendor_init(ops);
9758         mutex_unlock(&vendor_module_lock);
9759
9760         return r;
9761 }
9762 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9763
9764 void kvm_x86_vendor_exit(void)
9765 {
9766         kvm_unregister_perf_callbacks();
9767
9768 #ifdef CONFIG_X86_64
9769         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9770                 clear_hv_tscchange_cb();
9771 #endif
9772         kvm_lapic_exit();
9773
9774         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9775                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9776                                             CPUFREQ_TRANSITION_NOTIFIER);
9777                 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9778         }
9779 #ifdef CONFIG_X86_64
9780         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9781         irq_work_sync(&pvclock_irq_work);
9782         cancel_work_sync(&pvclock_gtod_work);
9783 #endif
9784         static_call(kvm_x86_hardware_unsetup)();
9785         kvm_mmu_vendor_module_exit();
9786         free_percpu(user_return_msrs);
9787         kmem_cache_destroy(x86_emulator_cache);
9788 #ifdef CONFIG_KVM_XEN
9789         static_key_deferred_flush(&kvm_xen_enabled);
9790         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9791 #endif
9792         mutex_lock(&vendor_module_lock);
9793         kvm_x86_ops.hardware_enable = NULL;
9794         mutex_unlock(&vendor_module_lock);
9795 }
9796 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9797
9798 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9799 {
9800         /*
9801          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9802          * local APIC is in-kernel, the run loop will detect the non-runnable
9803          * state and halt the vCPU.  Exit to userspace if the local APIC is
9804          * managed by userspace, in which case userspace is responsible for
9805          * handling wake events.
9806          */
9807         ++vcpu->stat.halt_exits;
9808         if (lapic_in_kernel(vcpu)) {
9809                 vcpu->arch.mp_state = state;
9810                 return 1;
9811         } else {
9812                 vcpu->run->exit_reason = reason;
9813                 return 0;
9814         }
9815 }
9816
9817 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9818 {
9819         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9820 }
9821 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9822
9823 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9824 {
9825         int ret = kvm_skip_emulated_instruction(vcpu);
9826         /*
9827          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9828          * KVM_EXIT_DEBUG here.
9829          */
9830         return kvm_emulate_halt_noskip(vcpu) && ret;
9831 }
9832 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9833
9834 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9835 {
9836         int ret = kvm_skip_emulated_instruction(vcpu);
9837
9838         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9839                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9840 }
9841 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9842
9843 #ifdef CONFIG_X86_64
9844 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9845                                 unsigned long clock_type)
9846 {
9847         struct kvm_clock_pairing clock_pairing;
9848         struct timespec64 ts;
9849         u64 cycle;
9850         int ret;
9851
9852         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9853                 return -KVM_EOPNOTSUPP;
9854
9855         /*
9856          * When tsc is in permanent catchup mode guests won't be able to use
9857          * pvclock_read_retry loop to get consistent view of pvclock
9858          */
9859         if (vcpu->arch.tsc_always_catchup)
9860                 return -KVM_EOPNOTSUPP;
9861
9862         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9863                 return -KVM_EOPNOTSUPP;
9864
9865         clock_pairing.sec = ts.tv_sec;
9866         clock_pairing.nsec = ts.tv_nsec;
9867         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9868         clock_pairing.flags = 0;
9869         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9870
9871         ret = 0;
9872         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9873                             sizeof(struct kvm_clock_pairing)))
9874                 ret = -KVM_EFAULT;
9875
9876         return ret;
9877 }
9878 #endif
9879
9880 /*
9881  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9882  *
9883  * @apicid - apicid of vcpu to be kicked.
9884  */
9885 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9886 {
9887         /*
9888          * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9889          * common code, e.g. for tracing. Defer initialization to the compiler.
9890          */
9891         struct kvm_lapic_irq lapic_irq = {
9892                 .delivery_mode = APIC_DM_REMRD,
9893                 .dest_mode = APIC_DEST_PHYSICAL,
9894                 .shorthand = APIC_DEST_NOSHORT,
9895                 .dest_id = apicid,
9896         };
9897
9898         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9899 }
9900
9901 bool kvm_apicv_activated(struct kvm *kvm)
9902 {
9903         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9904 }
9905 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9906
9907 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9908 {
9909         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9910         ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9911
9912         return (vm_reasons | vcpu_reasons) == 0;
9913 }
9914 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9915
9916 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9917                                        enum kvm_apicv_inhibit reason, bool set)
9918 {
9919         if (set)
9920                 __set_bit(reason, inhibits);
9921         else
9922                 __clear_bit(reason, inhibits);
9923
9924         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9925 }
9926
9927 static void kvm_apicv_init(struct kvm *kvm)
9928 {
9929         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9930
9931         init_rwsem(&kvm->arch.apicv_update_lock);
9932
9933         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9934
9935         if (!enable_apicv)
9936                 set_or_clear_apicv_inhibit(inhibits,
9937                                            APICV_INHIBIT_REASON_DISABLE, true);
9938 }
9939
9940 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9941 {
9942         struct kvm_vcpu *target = NULL;
9943         struct kvm_apic_map *map;
9944
9945         vcpu->stat.directed_yield_attempted++;
9946
9947         if (single_task_running())
9948                 goto no_yield;
9949
9950         rcu_read_lock();
9951         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9952
9953         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9954                 target = map->phys_map[dest_id]->vcpu;
9955
9956         rcu_read_unlock();
9957
9958         if (!target || !READ_ONCE(target->ready))
9959                 goto no_yield;
9960
9961         /* Ignore requests to yield to self */
9962         if (vcpu == target)
9963                 goto no_yield;
9964
9965         if (kvm_vcpu_yield_to(target) <= 0)
9966                 goto no_yield;
9967
9968         vcpu->stat.directed_yield_successful++;
9969
9970 no_yield:
9971         return;
9972 }
9973
9974 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9975 {
9976         u64 ret = vcpu->run->hypercall.ret;
9977
9978         if (!is_64_bit_mode(vcpu))
9979                 ret = (u32)ret;
9980         kvm_rax_write(vcpu, ret);
9981         ++vcpu->stat.hypercalls;
9982         return kvm_skip_emulated_instruction(vcpu);
9983 }
9984
9985 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9986 {
9987         unsigned long nr, a0, a1, a2, a3, ret;
9988         int op_64_bit;
9989
9990         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9991                 return kvm_xen_hypercall(vcpu);
9992
9993         if (kvm_hv_hypercall_enabled(vcpu))
9994                 return kvm_hv_hypercall(vcpu);
9995
9996         nr = kvm_rax_read(vcpu);
9997         a0 = kvm_rbx_read(vcpu);
9998         a1 = kvm_rcx_read(vcpu);
9999         a2 = kvm_rdx_read(vcpu);
10000         a3 = kvm_rsi_read(vcpu);
10001
10002         trace_kvm_hypercall(nr, a0, a1, a2, a3);
10003
10004         op_64_bit = is_64_bit_hypercall(vcpu);
10005         if (!op_64_bit) {
10006                 nr &= 0xFFFFFFFF;
10007                 a0 &= 0xFFFFFFFF;
10008                 a1 &= 0xFFFFFFFF;
10009                 a2 &= 0xFFFFFFFF;
10010                 a3 &= 0xFFFFFFFF;
10011         }
10012
10013         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
10014                 ret = -KVM_EPERM;
10015                 goto out;
10016         }
10017
10018         ret = -KVM_ENOSYS;
10019
10020         switch (nr) {
10021         case KVM_HC_VAPIC_POLL_IRQ:
10022                 ret = 0;
10023                 break;
10024         case KVM_HC_KICK_CPU:
10025                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10026                         break;
10027
10028                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10029                 kvm_sched_yield(vcpu, a1);
10030                 ret = 0;
10031                 break;
10032 #ifdef CONFIG_X86_64
10033         case KVM_HC_CLOCK_PAIRING:
10034                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10035                 break;
10036 #endif
10037         case KVM_HC_SEND_IPI:
10038                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10039                         break;
10040
10041                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10042                 break;
10043         case KVM_HC_SCHED_YIELD:
10044                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10045                         break;
10046
10047                 kvm_sched_yield(vcpu, a0);
10048                 ret = 0;
10049                 break;
10050         case KVM_HC_MAP_GPA_RANGE: {
10051                 u64 gpa = a0, npages = a1, attrs = a2;
10052
10053                 ret = -KVM_ENOSYS;
10054                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10055                         break;
10056
10057                 if (!PAGE_ALIGNED(gpa) || !npages ||
10058                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10059                         ret = -KVM_EINVAL;
10060                         break;
10061                 }
10062
10063                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10064                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10065                 vcpu->run->hypercall.args[0]  = gpa;
10066                 vcpu->run->hypercall.args[1]  = npages;
10067                 vcpu->run->hypercall.args[2]  = attrs;
10068                 vcpu->run->hypercall.flags    = 0;
10069                 if (op_64_bit)
10070                         vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10071
10072                 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10073                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10074                 return 0;
10075         }
10076         default:
10077                 ret = -KVM_ENOSYS;
10078                 break;
10079         }
10080 out:
10081         if (!op_64_bit)
10082                 ret = (u32)ret;
10083         kvm_rax_write(vcpu, ret);
10084
10085         ++vcpu->stat.hypercalls;
10086         return kvm_skip_emulated_instruction(vcpu);
10087 }
10088 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10089
10090 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10091 {
10092         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10093         char instruction[3];
10094         unsigned long rip = kvm_rip_read(vcpu);
10095
10096         /*
10097          * If the quirk is disabled, synthesize a #UD and let the guest pick up
10098          * the pieces.
10099          */
10100         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10101                 ctxt->exception.error_code_valid = false;
10102                 ctxt->exception.vector = UD_VECTOR;
10103                 ctxt->have_exception = true;
10104                 return X86EMUL_PROPAGATE_FAULT;
10105         }
10106
10107         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10108
10109         return emulator_write_emulated(ctxt, rip, instruction, 3,
10110                 &ctxt->exception);
10111 }
10112
10113 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10114 {
10115         return vcpu->run->request_interrupt_window &&
10116                 likely(!pic_in_kernel(vcpu->kvm));
10117 }
10118
10119 /* Called within kvm->srcu read side.  */
10120 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10121 {
10122         struct kvm_run *kvm_run = vcpu->run;
10123
10124         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10125         kvm_run->cr8 = kvm_get_cr8(vcpu);
10126         kvm_run->apic_base = kvm_get_apic_base(vcpu);
10127
10128         kvm_run->ready_for_interrupt_injection =
10129                 pic_in_kernel(vcpu->kvm) ||
10130                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10131
10132         if (is_smm(vcpu))
10133                 kvm_run->flags |= KVM_RUN_X86_SMM;
10134 }
10135
10136 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10137 {
10138         int max_irr, tpr;
10139
10140         if (!kvm_x86_ops.update_cr8_intercept)
10141                 return;
10142
10143         if (!lapic_in_kernel(vcpu))
10144                 return;
10145
10146         if (vcpu->arch.apic->apicv_active)
10147                 return;
10148
10149         if (!vcpu->arch.apic->vapic_addr)
10150                 max_irr = kvm_lapic_find_highest_irr(vcpu);
10151         else
10152                 max_irr = -1;
10153
10154         if (max_irr != -1)
10155                 max_irr >>= 4;
10156
10157         tpr = kvm_lapic_get_cr8(vcpu);
10158
10159         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10160 }
10161
10162
10163 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10164 {
10165         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10166                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10167                 return 1;
10168         }
10169
10170         return kvm_x86_ops.nested_ops->check_events(vcpu);
10171 }
10172
10173 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10174 {
10175         /*
10176          * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10177          * exceptions don't report error codes.  The presence of an error code
10178          * is carried with the exception and only stripped when the exception
10179          * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10180          * report an error code despite the CPU being in Real Mode.
10181          */
10182         vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10183
10184         trace_kvm_inj_exception(vcpu->arch.exception.vector,
10185                                 vcpu->arch.exception.has_error_code,
10186                                 vcpu->arch.exception.error_code,
10187                                 vcpu->arch.exception.injected);
10188
10189         static_call(kvm_x86_inject_exception)(vcpu);
10190 }
10191
10192 /*
10193  * Check for any event (interrupt or exception) that is ready to be injected,
10194  * and if there is at least one event, inject the event with the highest
10195  * priority.  This handles both "pending" events, i.e. events that have never
10196  * been injected into the guest, and "injected" events, i.e. events that were
10197  * injected as part of a previous VM-Enter, but weren't successfully delivered
10198  * and need to be re-injected.
10199  *
10200  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10201  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10202  * be able to inject exceptions in the "middle" of an instruction, and so must
10203  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10204  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10205  * boundaries is necessary and correct.
10206  *
10207  * For simplicity, KVM uses a single path to inject all events (except events
10208  * that are injected directly from L1 to L2) and doesn't explicitly track
10209  * instruction boundaries for asynchronous events.  However, because VM-Exits
10210  * that can occur during instruction execution typically result in KVM skipping
10211  * the instruction or injecting an exception, e.g. instruction and exception
10212  * intercepts, and because pending exceptions have higher priority than pending
10213  * interrupts, KVM still honors instruction boundaries in most scenarios.
10214  *
10215  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10216  * the instruction or inject an exception, then KVM can incorrecty inject a new
10217  * asynchrounous event if the event became pending after the CPU fetched the
10218  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10219  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10220  * injected on the restarted instruction instead of being deferred until the
10221  * instruction completes.
10222  *
10223  * In practice, this virtualization hole is unlikely to be observed by the
10224  * guest, and even less likely to cause functional problems.  To detect the
10225  * hole, the guest would have to trigger an event on a side effect of an early
10226  * phase of instruction execution, e.g. on the instruction fetch from memory.
10227  * And for it to be a functional problem, the guest would need to depend on the
10228  * ordering between that side effect, the instruction completing, _and_ the
10229  * delivery of the asynchronous event.
10230  */
10231 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10232                                        bool *req_immediate_exit)
10233 {
10234         bool can_inject;
10235         int r;
10236
10237         /*
10238          * Process nested events first, as nested VM-Exit supercedes event
10239          * re-injection.  If there's an event queued for re-injection, it will
10240          * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10241          */
10242         if (is_guest_mode(vcpu))
10243                 r = kvm_check_nested_events(vcpu);
10244         else
10245                 r = 0;
10246
10247         /*
10248          * Re-inject exceptions and events *especially* if immediate entry+exit
10249          * to/from L2 is needed, as any event that has already been injected
10250          * into L2 needs to complete its lifecycle before injecting a new event.
10251          *
10252          * Don't re-inject an NMI or interrupt if there is a pending exception.
10253          * This collision arises if an exception occurred while vectoring the
10254          * injected event, KVM intercepted said exception, and KVM ultimately
10255          * determined the fault belongs to the guest and queues the exception
10256          * for injection back into the guest.
10257          *
10258          * "Injected" interrupts can also collide with pending exceptions if
10259          * userspace ignores the "ready for injection" flag and blindly queues
10260          * an interrupt.  In that case, prioritizing the exception is correct,
10261          * as the exception "occurred" before the exit to userspace.  Trap-like
10262          * exceptions, e.g. most #DBs, have higher priority than interrupts.
10263          * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10264          * priority, they're only generated (pended) during instruction
10265          * execution, and interrupts are recognized at instruction boundaries.
10266          * Thus a pending fault-like exception means the fault occurred on the
10267          * *previous* instruction and must be serviced prior to recognizing any
10268          * new events in order to fully complete the previous instruction.
10269          */
10270         if (vcpu->arch.exception.injected)
10271                 kvm_inject_exception(vcpu);
10272         else if (kvm_is_exception_pending(vcpu))
10273                 ; /* see above */
10274         else if (vcpu->arch.nmi_injected)
10275                 static_call(kvm_x86_inject_nmi)(vcpu);
10276         else if (vcpu->arch.interrupt.injected)
10277                 static_call(kvm_x86_inject_irq)(vcpu, true);
10278
10279         /*
10280          * Exceptions that morph to VM-Exits are handled above, and pending
10281          * exceptions on top of injected exceptions that do not VM-Exit should
10282          * either morph to #DF or, sadly, override the injected exception.
10283          */
10284         WARN_ON_ONCE(vcpu->arch.exception.injected &&
10285                      vcpu->arch.exception.pending);
10286
10287         /*
10288          * Bail if immediate entry+exit to/from the guest is needed to complete
10289          * nested VM-Enter or event re-injection so that a different pending
10290          * event can be serviced (or if KVM needs to exit to userspace).
10291          *
10292          * Otherwise, continue processing events even if VM-Exit occurred.  The
10293          * VM-Exit will have cleared exceptions that were meant for L2, but
10294          * there may now be events that can be injected into L1.
10295          */
10296         if (r < 0)
10297                 goto out;
10298
10299         /*
10300          * A pending exception VM-Exit should either result in nested VM-Exit
10301          * or force an immediate re-entry and exit to/from L2, and exception
10302          * VM-Exits cannot be injected (flag should _never_ be set).
10303          */
10304         WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10305                      vcpu->arch.exception_vmexit.pending);
10306
10307         /*
10308          * New events, other than exceptions, cannot be injected if KVM needs
10309          * to re-inject a previous event.  See above comments on re-injecting
10310          * for why pending exceptions get priority.
10311          */
10312         can_inject = !kvm_event_needs_reinjection(vcpu);
10313
10314         if (vcpu->arch.exception.pending) {
10315                 /*
10316                  * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10317                  * value pushed on the stack.  Trap-like exception and all #DBs
10318                  * leave RF as-is (KVM follows Intel's behavior in this regard;
10319                  * AMD states that code breakpoint #DBs excplitly clear RF=0).
10320                  *
10321                  * Note, most versions of Intel's SDM and AMD's APM incorrectly
10322                  * describe the behavior of General Detect #DBs, which are
10323                  * fault-like.  They do _not_ set RF, a la code breakpoints.
10324                  */
10325                 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10326                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10327                                              X86_EFLAGS_RF);
10328
10329                 if (vcpu->arch.exception.vector == DB_VECTOR) {
10330                         kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10331                         if (vcpu->arch.dr7 & DR7_GD) {
10332                                 vcpu->arch.dr7 &= ~DR7_GD;
10333                                 kvm_update_dr7(vcpu);
10334                         }
10335                 }
10336
10337                 kvm_inject_exception(vcpu);
10338
10339                 vcpu->arch.exception.pending = false;
10340                 vcpu->arch.exception.injected = true;
10341
10342                 can_inject = false;
10343         }
10344
10345         /* Don't inject interrupts if the user asked to avoid doing so */
10346         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10347                 return 0;
10348
10349         /*
10350          * Finally, inject interrupt events.  If an event cannot be injected
10351          * due to architectural conditions (e.g. IF=0) a window-open exit
10352          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10353          * and can architecturally be injected, but we cannot do it right now:
10354          * an interrupt could have arrived just now and we have to inject it
10355          * as a vmexit, or there could already an event in the queue, which is
10356          * indicated by can_inject.  In that case we request an immediate exit
10357          * in order to make progress and get back here for another iteration.
10358          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10359          */
10360 #ifdef CONFIG_KVM_SMM
10361         if (vcpu->arch.smi_pending) {
10362                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10363                 if (r < 0)
10364                         goto out;
10365                 if (r) {
10366                         vcpu->arch.smi_pending = false;
10367                         ++vcpu->arch.smi_count;
10368                         enter_smm(vcpu);
10369                         can_inject = false;
10370                 } else
10371                         static_call(kvm_x86_enable_smi_window)(vcpu);
10372         }
10373 #endif
10374
10375         if (vcpu->arch.nmi_pending) {
10376                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10377                 if (r < 0)
10378                         goto out;
10379                 if (r) {
10380                         --vcpu->arch.nmi_pending;
10381                         vcpu->arch.nmi_injected = true;
10382                         static_call(kvm_x86_inject_nmi)(vcpu);
10383                         can_inject = false;
10384                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10385                 }
10386                 if (vcpu->arch.nmi_pending)
10387                         static_call(kvm_x86_enable_nmi_window)(vcpu);
10388         }
10389
10390         if (kvm_cpu_has_injectable_intr(vcpu)) {
10391                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10392                 if (r < 0)
10393                         goto out;
10394                 if (r) {
10395                         int irq = kvm_cpu_get_interrupt(vcpu);
10396
10397                         if (!WARN_ON_ONCE(irq == -1)) {
10398                                 kvm_queue_interrupt(vcpu, irq, false);
10399                                 static_call(kvm_x86_inject_irq)(vcpu, false);
10400                                 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10401                         }
10402                 }
10403                 if (kvm_cpu_has_injectable_intr(vcpu))
10404                         static_call(kvm_x86_enable_irq_window)(vcpu);
10405         }
10406
10407         if (is_guest_mode(vcpu) &&
10408             kvm_x86_ops.nested_ops->has_events &&
10409             kvm_x86_ops.nested_ops->has_events(vcpu))
10410                 *req_immediate_exit = true;
10411
10412         /*
10413          * KVM must never queue a new exception while injecting an event; KVM
10414          * is done emulating and should only propagate the to-be-injected event
10415          * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10416          * infinite loop as KVM will bail from VM-Enter to inject the pending
10417          * exception and start the cycle all over.
10418          *
10419          * Exempt triple faults as they have special handling and won't put the
10420          * vCPU into an infinite loop.  Triple fault can be queued when running
10421          * VMX without unrestricted guest, as that requires KVM to emulate Real
10422          * Mode events (see kvm_inject_realmode_interrupt()).
10423          */
10424         WARN_ON_ONCE(vcpu->arch.exception.pending ||
10425                      vcpu->arch.exception_vmexit.pending);
10426         return 0;
10427
10428 out:
10429         if (r == -EBUSY) {
10430                 *req_immediate_exit = true;
10431                 r = 0;
10432         }
10433         return r;
10434 }
10435
10436 static void process_nmi(struct kvm_vcpu *vcpu)
10437 {
10438         unsigned int limit;
10439
10440         /*
10441          * x86 is limited to one NMI pending, but because KVM can't react to
10442          * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10443          * scheduled out, KVM needs to play nice with two queued NMIs showing
10444          * up at the same time.  To handle this scenario, allow two NMIs to be
10445          * (temporarily) pending so long as NMIs are not blocked and KVM is not
10446          * waiting for a previous NMI injection to complete (which effectively
10447          * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10448          * will request an NMI window to handle the second NMI.
10449          */
10450         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10451                 limit = 1;
10452         else
10453                 limit = 2;
10454
10455         /*
10456          * Adjust the limit to account for pending virtual NMIs, which aren't
10457          * tracked in vcpu->arch.nmi_pending.
10458          */
10459         if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10460                 limit--;
10461
10462         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10463         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10464
10465         if (vcpu->arch.nmi_pending &&
10466             (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10467                 vcpu->arch.nmi_pending--;
10468
10469         if (vcpu->arch.nmi_pending)
10470                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10471 }
10472
10473 /* Return total number of NMIs pending injection to the VM */
10474 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10475 {
10476         return vcpu->arch.nmi_pending +
10477                static_call(kvm_x86_is_vnmi_pending)(vcpu);
10478 }
10479
10480 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10481                                        unsigned long *vcpu_bitmap)
10482 {
10483         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10484 }
10485
10486 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10487 {
10488         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10489 }
10490
10491 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10492 {
10493         struct kvm_lapic *apic = vcpu->arch.apic;
10494         bool activate;
10495
10496         if (!lapic_in_kernel(vcpu))
10497                 return;
10498
10499         down_read(&vcpu->kvm->arch.apicv_update_lock);
10500         preempt_disable();
10501
10502         /* Do not activate APICV when APIC is disabled */
10503         activate = kvm_vcpu_apicv_activated(vcpu) &&
10504                    (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10505
10506         if (apic->apicv_active == activate)
10507                 goto out;
10508
10509         apic->apicv_active = activate;
10510         kvm_apic_update_apicv(vcpu);
10511         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10512
10513         /*
10514          * When APICv gets disabled, we may still have injected interrupts
10515          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10516          * still active when the interrupt got accepted. Make sure
10517          * kvm_check_and_inject_events() is called to check for that.
10518          */
10519         if (!apic->apicv_active)
10520                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10521
10522 out:
10523         preempt_enable();
10524         up_read(&vcpu->kvm->arch.apicv_update_lock);
10525 }
10526 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10527
10528 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10529 {
10530         if (!lapic_in_kernel(vcpu))
10531                 return;
10532
10533         /*
10534          * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10535          * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10536          * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10537          * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10538          * this case so that KVM can the AVIC doorbell to inject interrupts to
10539          * running vCPUs, but KVM must not create SPTEs for the APIC base as
10540          * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10541          * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10542          * access page is sticky.
10543          */
10544         if (apic_x2apic_mode(vcpu->arch.apic) &&
10545             kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10546                 kvm_inhibit_apic_access_page(vcpu);
10547
10548         __kvm_vcpu_update_apicv(vcpu);
10549 }
10550
10551 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10552                                       enum kvm_apicv_inhibit reason, bool set)
10553 {
10554         unsigned long old, new;
10555
10556         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10557
10558         if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10559                 return;
10560
10561         old = new = kvm->arch.apicv_inhibit_reasons;
10562
10563         set_or_clear_apicv_inhibit(&new, reason, set);
10564
10565         if (!!old != !!new) {
10566                 /*
10567                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10568                  * false positives in the sanity check WARN in svm_vcpu_run().
10569                  * This task will wait for all vCPUs to ack the kick IRQ before
10570                  * updating apicv_inhibit_reasons, and all other vCPUs will
10571                  * block on acquiring apicv_update_lock so that vCPUs can't
10572                  * redo svm_vcpu_run() without seeing the new inhibit state.
10573                  *
10574                  * Note, holding apicv_update_lock and taking it in the read
10575                  * side (handling the request) also prevents other vCPUs from
10576                  * servicing the request with a stale apicv_inhibit_reasons.
10577                  */
10578                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10579                 kvm->arch.apicv_inhibit_reasons = new;
10580                 if (new) {
10581                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10582                         int idx = srcu_read_lock(&kvm->srcu);
10583
10584                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
10585                         srcu_read_unlock(&kvm->srcu, idx);
10586                 }
10587         } else {
10588                 kvm->arch.apicv_inhibit_reasons = new;
10589         }
10590 }
10591
10592 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10593                                     enum kvm_apicv_inhibit reason, bool set)
10594 {
10595         if (!enable_apicv)
10596                 return;
10597
10598         down_write(&kvm->arch.apicv_update_lock);
10599         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10600         up_write(&kvm->arch.apicv_update_lock);
10601 }
10602 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10603
10604 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10605 {
10606         if (!kvm_apic_present(vcpu))
10607                 return;
10608
10609         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10610
10611         if (irqchip_split(vcpu->kvm))
10612                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10613         else {
10614                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10615                 if (ioapic_in_kernel(vcpu->kvm))
10616                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10617         }
10618
10619         if (is_guest_mode(vcpu))
10620                 vcpu->arch.load_eoi_exitmap_pending = true;
10621         else
10622                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10623 }
10624
10625 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10626 {
10627         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10628                 return;
10629
10630 #ifdef CONFIG_KVM_HYPERV
10631         if (to_hv_vcpu(vcpu)) {
10632                 u64 eoi_exit_bitmap[4];
10633
10634                 bitmap_or((ulong *)eoi_exit_bitmap,
10635                           vcpu->arch.ioapic_handled_vectors,
10636                           to_hv_synic(vcpu)->vec_bitmap, 256);
10637                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10638                 return;
10639         }
10640 #endif
10641         static_call_cond(kvm_x86_load_eoi_exitmap)(
10642                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10643 }
10644
10645 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10646 {
10647         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10648 }
10649
10650 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10651 {
10652         if (!lapic_in_kernel(vcpu))
10653                 return;
10654
10655         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10656 }
10657
10658 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10659 {
10660         smp_send_reschedule(vcpu->cpu);
10661 }
10662 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10663
10664 /*
10665  * Called within kvm->srcu read side.
10666  * Returns 1 to let vcpu_run() continue the guest execution loop without
10667  * exiting to the userspace.  Otherwise, the value will be returned to the
10668  * userspace.
10669  */
10670 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10671 {
10672         int r;
10673         bool req_int_win =
10674                 dm_request_for_irq_injection(vcpu) &&
10675                 kvm_cpu_accept_dm_intr(vcpu);
10676         fastpath_t exit_fastpath;
10677
10678         bool req_immediate_exit = false;
10679
10680         if (kvm_request_pending(vcpu)) {
10681                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10682                         r = -EIO;
10683                         goto out;
10684                 }
10685
10686                 if (kvm_dirty_ring_check_request(vcpu)) {
10687                         r = 0;
10688                         goto out;
10689                 }
10690
10691                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10692                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10693                                 r = 0;
10694                                 goto out;
10695                         }
10696                 }
10697                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10698                         kvm_mmu_free_obsolete_roots(vcpu);
10699                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10700                         __kvm_migrate_timers(vcpu);
10701                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10702                         kvm_update_masterclock(vcpu->kvm);
10703                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10704                         kvm_gen_kvmclock_update(vcpu);
10705                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10706                         r = kvm_guest_time_update(vcpu);
10707                         if (unlikely(r))
10708                                 goto out;
10709                 }
10710                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10711                         kvm_mmu_sync_roots(vcpu);
10712                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10713                         kvm_mmu_load_pgd(vcpu);
10714
10715                 /*
10716                  * Note, the order matters here, as flushing "all" TLB entries
10717                  * also flushes the "current" TLB entries, i.e. servicing the
10718                  * flush "all" will clear any request to flush "current".
10719                  */
10720                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10721                         kvm_vcpu_flush_tlb_all(vcpu);
10722
10723                 kvm_service_local_tlb_flush_requests(vcpu);
10724
10725                 /*
10726                  * Fall back to a "full" guest flush if Hyper-V's precise
10727                  * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10728                  * the flushes are considered "remote" and not "local" because
10729                  * the requests can be initiated from other vCPUs.
10730                  */
10731 #ifdef CONFIG_KVM_HYPERV
10732                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10733                     kvm_hv_vcpu_flush_tlb(vcpu))
10734                         kvm_vcpu_flush_tlb_guest(vcpu);
10735 #endif
10736
10737                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10738                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10739                         r = 0;
10740                         goto out;
10741                 }
10742                 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10743                         if (is_guest_mode(vcpu))
10744                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10745
10746                         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10747                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10748                                 vcpu->mmio_needed = 0;
10749                                 r = 0;
10750                                 goto out;
10751                         }
10752                 }
10753                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10754                         /* Page is swapped out. Do synthetic halt */
10755                         vcpu->arch.apf.halted = true;
10756                         r = 1;
10757                         goto out;
10758                 }
10759                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10760                         record_steal_time(vcpu);
10761                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10762                         kvm_pmu_handle_event(vcpu);
10763                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10764                         kvm_pmu_deliver_pmi(vcpu);
10765 #ifdef CONFIG_KVM_SMM
10766                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10767                         process_smi(vcpu);
10768 #endif
10769                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10770                         process_nmi(vcpu);
10771                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10772                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10773                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10774                                      vcpu->arch.ioapic_handled_vectors)) {
10775                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10776                                 vcpu->run->eoi.vector =
10777                                                 vcpu->arch.pending_ioapic_eoi;
10778                                 r = 0;
10779                                 goto out;
10780                         }
10781                 }
10782                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10783                         vcpu_scan_ioapic(vcpu);
10784                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10785                         vcpu_load_eoi_exitmap(vcpu);
10786                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10787                         kvm_vcpu_reload_apic_access_page(vcpu);
10788 #ifdef CONFIG_KVM_HYPERV
10789                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10790                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10791                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10792                         vcpu->run->system_event.ndata = 0;
10793                         r = 0;
10794                         goto out;
10795                 }
10796                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10797                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10798                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10799                         vcpu->run->system_event.ndata = 0;
10800                         r = 0;
10801                         goto out;
10802                 }
10803                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10804                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10805
10806                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10807                         vcpu->run->hyperv = hv_vcpu->exit;
10808                         r = 0;
10809                         goto out;
10810                 }
10811
10812                 /*
10813                  * KVM_REQ_HV_STIMER has to be processed after
10814                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10815                  * depend on the guest clock being up-to-date
10816                  */
10817                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10818                         kvm_hv_process_stimers(vcpu);
10819 #endif
10820                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10821                         kvm_vcpu_update_apicv(vcpu);
10822                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10823                         kvm_check_async_pf_completion(vcpu);
10824                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10825                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10826
10827                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10828                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10829         }
10830
10831         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10832             kvm_xen_has_interrupt(vcpu)) {
10833                 ++vcpu->stat.req_event;
10834                 r = kvm_apic_accept_events(vcpu);
10835                 if (r < 0) {
10836                         r = 0;
10837                         goto out;
10838                 }
10839                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10840                         r = 1;
10841                         goto out;
10842                 }
10843
10844                 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10845                 if (r < 0) {
10846                         r = 0;
10847                         goto out;
10848                 }
10849                 if (req_int_win)
10850                         static_call(kvm_x86_enable_irq_window)(vcpu);
10851
10852                 if (kvm_lapic_enabled(vcpu)) {
10853                         update_cr8_intercept(vcpu);
10854                         kvm_lapic_sync_to_vapic(vcpu);
10855                 }
10856         }
10857
10858         r = kvm_mmu_reload(vcpu);
10859         if (unlikely(r)) {
10860                 goto cancel_injection;
10861         }
10862
10863         preempt_disable();
10864
10865         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10866
10867         /*
10868          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10869          * IPI are then delayed after guest entry, which ensures that they
10870          * result in virtual interrupt delivery.
10871          */
10872         local_irq_disable();
10873
10874         /* Store vcpu->apicv_active before vcpu->mode.  */
10875         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10876
10877         kvm_vcpu_srcu_read_unlock(vcpu);
10878
10879         /*
10880          * 1) We should set ->mode before checking ->requests.  Please see
10881          * the comment in kvm_vcpu_exiting_guest_mode().
10882          *
10883          * 2) For APICv, we should set ->mode before checking PID.ON. This
10884          * pairs with the memory barrier implicit in pi_test_and_set_on
10885          * (see vmx_deliver_posted_interrupt).
10886          *
10887          * 3) This also orders the write to mode from any reads to the page
10888          * tables done while the VCPU is running.  Please see the comment
10889          * in kvm_flush_remote_tlbs.
10890          */
10891         smp_mb__after_srcu_read_unlock();
10892
10893         /*
10894          * Process pending posted interrupts to handle the case where the
10895          * notification IRQ arrived in the host, or was never sent (because the
10896          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10897          * status, KVM doesn't update assigned devices when APICv is inhibited,
10898          * i.e. they can post interrupts even if APICv is temporarily disabled.
10899          */
10900         if (kvm_lapic_enabled(vcpu))
10901                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10902
10903         if (kvm_vcpu_exit_request(vcpu)) {
10904                 vcpu->mode = OUTSIDE_GUEST_MODE;
10905                 smp_wmb();
10906                 local_irq_enable();
10907                 preempt_enable();
10908                 kvm_vcpu_srcu_read_lock(vcpu);
10909                 r = 1;
10910                 goto cancel_injection;
10911         }
10912
10913         if (req_immediate_exit) {
10914                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10915                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10916         }
10917
10918         fpregs_assert_state_consistent();
10919         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10920                 switch_fpu_return();
10921
10922         if (vcpu->arch.guest_fpu.xfd_err)
10923                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10924
10925         if (unlikely(vcpu->arch.switch_db_regs)) {
10926                 set_debugreg(0, 7);
10927                 set_debugreg(vcpu->arch.eff_db[0], 0);
10928                 set_debugreg(vcpu->arch.eff_db[1], 1);
10929                 set_debugreg(vcpu->arch.eff_db[2], 2);
10930                 set_debugreg(vcpu->arch.eff_db[3], 3);
10931         } else if (unlikely(hw_breakpoint_active())) {
10932                 set_debugreg(0, 7);
10933         }
10934
10935         guest_timing_enter_irqoff();
10936
10937         for (;;) {
10938                 /*
10939                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10940                  * update must kick and wait for all vCPUs before toggling the
10941                  * per-VM state, and responsing vCPUs must wait for the update
10942                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10943                  */
10944                 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10945                              (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10946
10947                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10948                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10949                         break;
10950
10951                 if (kvm_lapic_enabled(vcpu))
10952                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10953
10954                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10955                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10956                         break;
10957                 }
10958
10959                 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10960                 ++vcpu->stat.exits;
10961         }
10962
10963         /*
10964          * Do this here before restoring debug registers on the host.  And
10965          * since we do this before handling the vmexit, a DR access vmexit
10966          * can (a) read the correct value of the debug registers, (b) set
10967          * KVM_DEBUGREG_WONT_EXIT again.
10968          */
10969         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10970                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10971                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10972                 kvm_update_dr0123(vcpu);
10973                 kvm_update_dr7(vcpu);
10974         }
10975
10976         /*
10977          * If the guest has used debug registers, at least dr7
10978          * will be disabled while returning to the host.
10979          * If we don't have active breakpoints in the host, we don't
10980          * care about the messed up debug address registers. But if
10981          * we have some of them active, restore the old state.
10982          */
10983         if (hw_breakpoint_active())
10984                 hw_breakpoint_restore();
10985
10986         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10987         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10988
10989         vcpu->mode = OUTSIDE_GUEST_MODE;
10990         smp_wmb();
10991
10992         /*
10993          * Sync xfd before calling handle_exit_irqoff() which may
10994          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10995          * in #NM irqoff handler).
10996          */
10997         if (vcpu->arch.xfd_no_write_intercept)
10998                 fpu_sync_guest_vmexit_xfd_state();
10999
11000         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
11001
11002         if (vcpu->arch.guest_fpu.xfd_err)
11003                 wrmsrl(MSR_IA32_XFD_ERR, 0);
11004
11005         /*
11006          * Consume any pending interrupts, including the possible source of
11007          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11008          * An instruction is required after local_irq_enable() to fully unblock
11009          * interrupts on processors that implement an interrupt shadow, the
11010          * stat.exits increment will do nicely.
11011          */
11012         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11013         local_irq_enable();
11014         ++vcpu->stat.exits;
11015         local_irq_disable();
11016         kvm_after_interrupt(vcpu);
11017
11018         /*
11019          * Wait until after servicing IRQs to account guest time so that any
11020          * ticks that occurred while running the guest are properly accounted
11021          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11022          * of accounting via context tracking, but the loss of accuracy is
11023          * acceptable for all known use cases.
11024          */
11025         guest_timing_exit_irqoff();
11026
11027         local_irq_enable();
11028         preempt_enable();
11029
11030         kvm_vcpu_srcu_read_lock(vcpu);
11031
11032         /*
11033          * Profile KVM exit RIPs:
11034          */
11035         if (unlikely(prof_on == KVM_PROFILING)) {
11036                 unsigned long rip = kvm_rip_read(vcpu);
11037                 profile_hit(KVM_PROFILING, (void *)rip);
11038         }
11039
11040         if (unlikely(vcpu->arch.tsc_always_catchup))
11041                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11042
11043         if (vcpu->arch.apic_attention)
11044                 kvm_lapic_sync_from_vapic(vcpu);
11045
11046         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
11047         return r;
11048
11049 cancel_injection:
11050         if (req_immediate_exit)
11051                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11052         static_call(kvm_x86_cancel_injection)(vcpu);
11053         if (unlikely(vcpu->arch.apic_attention))
11054                 kvm_lapic_sync_from_vapic(vcpu);
11055 out:
11056         return r;
11057 }
11058
11059 /* Called within kvm->srcu read side.  */
11060 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11061 {
11062         bool hv_timer;
11063
11064         if (!kvm_arch_vcpu_runnable(vcpu)) {
11065                 /*
11066                  * Switch to the software timer before halt-polling/blocking as
11067                  * the guest's timer may be a break event for the vCPU, and the
11068                  * hypervisor timer runs only when the CPU is in guest mode.
11069                  * Switch before halt-polling so that KVM recognizes an expired
11070                  * timer before blocking.
11071                  */
11072                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11073                 if (hv_timer)
11074                         kvm_lapic_switch_to_sw_timer(vcpu);
11075
11076                 kvm_vcpu_srcu_read_unlock(vcpu);
11077                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11078                         kvm_vcpu_halt(vcpu);
11079                 else
11080                         kvm_vcpu_block(vcpu);
11081                 kvm_vcpu_srcu_read_lock(vcpu);
11082
11083                 if (hv_timer)
11084                         kvm_lapic_switch_to_hv_timer(vcpu);
11085
11086                 /*
11087                  * If the vCPU is not runnable, a signal or another host event
11088                  * of some kind is pending; service it without changing the
11089                  * vCPU's activity state.
11090                  */
11091                 if (!kvm_arch_vcpu_runnable(vcpu))
11092                         return 1;
11093         }
11094
11095         /*
11096          * Evaluate nested events before exiting the halted state.  This allows
11097          * the halt state to be recorded properly in the VMCS12's activity
11098          * state field (AMD does not have a similar field and a VM-Exit always
11099          * causes a spurious wakeup from HLT).
11100          */
11101         if (is_guest_mode(vcpu)) {
11102                 if (kvm_check_nested_events(vcpu) < 0)
11103                         return 0;
11104         }
11105
11106         if (kvm_apic_accept_events(vcpu) < 0)
11107                 return 0;
11108         switch(vcpu->arch.mp_state) {
11109         case KVM_MP_STATE_HALTED:
11110         case KVM_MP_STATE_AP_RESET_HOLD:
11111                 vcpu->arch.pv.pv_unhalted = false;
11112                 vcpu->arch.mp_state =
11113                         KVM_MP_STATE_RUNNABLE;
11114                 fallthrough;
11115         case KVM_MP_STATE_RUNNABLE:
11116                 vcpu->arch.apf.halted = false;
11117                 break;
11118         case KVM_MP_STATE_INIT_RECEIVED:
11119                 break;
11120         default:
11121                 WARN_ON_ONCE(1);
11122                 break;
11123         }
11124         return 1;
11125 }
11126
11127 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11128 {
11129         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11130                 !vcpu->arch.apf.halted);
11131 }
11132
11133 /* Called within kvm->srcu read side.  */
11134 static int vcpu_run(struct kvm_vcpu *vcpu)
11135 {
11136         int r;
11137
11138         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11139         vcpu->arch.l1tf_flush_l1d = true;
11140
11141         for (;;) {
11142                 /*
11143                  * If another guest vCPU requests a PV TLB flush in the middle
11144                  * of instruction emulation, the rest of the emulation could
11145                  * use a stale page translation. Assume that any code after
11146                  * this point can start executing an instruction.
11147                  */
11148                 vcpu->arch.at_instruction_boundary = false;
11149                 if (kvm_vcpu_running(vcpu)) {
11150                         r = vcpu_enter_guest(vcpu);
11151                 } else {
11152                         r = vcpu_block(vcpu);
11153                 }
11154
11155                 if (r <= 0)
11156                         break;
11157
11158                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11159                 if (kvm_xen_has_pending_events(vcpu))
11160                         kvm_xen_inject_pending_events(vcpu);
11161
11162                 if (kvm_cpu_has_pending_timer(vcpu))
11163                         kvm_inject_pending_timer_irqs(vcpu);
11164
11165                 if (dm_request_for_irq_injection(vcpu) &&
11166                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11167                         r = 0;
11168                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11169                         ++vcpu->stat.request_irq_exits;
11170                         break;
11171                 }
11172
11173                 if (__xfer_to_guest_mode_work_pending()) {
11174                         kvm_vcpu_srcu_read_unlock(vcpu);
11175                         r = xfer_to_guest_mode_handle_work(vcpu);
11176                         kvm_vcpu_srcu_read_lock(vcpu);
11177                         if (r)
11178                                 return r;
11179                 }
11180         }
11181
11182         return r;
11183 }
11184
11185 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11186 {
11187         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11188 }
11189
11190 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11191 {
11192         BUG_ON(!vcpu->arch.pio.count);
11193
11194         return complete_emulated_io(vcpu);
11195 }
11196
11197 /*
11198  * Implements the following, as a state machine:
11199  *
11200  * read:
11201  *   for each fragment
11202  *     for each mmio piece in the fragment
11203  *       write gpa, len
11204  *       exit
11205  *       copy data
11206  *   execute insn
11207  *
11208  * write:
11209  *   for each fragment
11210  *     for each mmio piece in the fragment
11211  *       write gpa, len
11212  *       copy data
11213  *       exit
11214  */
11215 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11216 {
11217         struct kvm_run *run = vcpu->run;
11218         struct kvm_mmio_fragment *frag;
11219         unsigned len;
11220
11221         BUG_ON(!vcpu->mmio_needed);
11222
11223         /* Complete previous fragment */
11224         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11225         len = min(8u, frag->len);
11226         if (!vcpu->mmio_is_write)
11227                 memcpy(frag->data, run->mmio.data, len);
11228
11229         if (frag->len <= 8) {
11230                 /* Switch to the next fragment. */
11231                 frag++;
11232                 vcpu->mmio_cur_fragment++;
11233         } else {
11234                 /* Go forward to the next mmio piece. */
11235                 frag->data += len;
11236                 frag->gpa += len;
11237                 frag->len -= len;
11238         }
11239
11240         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11241                 vcpu->mmio_needed = 0;
11242
11243                 /* FIXME: return into emulator if single-stepping.  */
11244                 if (vcpu->mmio_is_write)
11245                         return 1;
11246                 vcpu->mmio_read_completed = 1;
11247                 return complete_emulated_io(vcpu);
11248         }
11249
11250         run->exit_reason = KVM_EXIT_MMIO;
11251         run->mmio.phys_addr = frag->gpa;
11252         if (vcpu->mmio_is_write)
11253                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11254         run->mmio.len = min(8u, frag->len);
11255         run->mmio.is_write = vcpu->mmio_is_write;
11256         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11257         return 0;
11258 }
11259
11260 /* Swap (qemu) user FPU context for the guest FPU context. */
11261 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11262 {
11263         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11264         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11265         trace_kvm_fpu(1);
11266 }
11267
11268 /* When vcpu_run ends, restore user space FPU context. */
11269 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11270 {
11271         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11272         ++vcpu->stat.fpu_reload;
11273         trace_kvm_fpu(0);
11274 }
11275
11276 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11277 {
11278         struct kvm_queued_exception *ex = &vcpu->arch.exception;
11279         struct kvm_run *kvm_run = vcpu->run;
11280         int r;
11281
11282         vcpu_load(vcpu);
11283         kvm_sigset_activate(vcpu);
11284         kvm_run->flags = 0;
11285         kvm_load_guest_fpu(vcpu);
11286
11287         kvm_vcpu_srcu_read_lock(vcpu);
11288         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11289                 if (kvm_run->immediate_exit) {
11290                         r = -EINTR;
11291                         goto out;
11292                 }
11293
11294                 /*
11295                  * Don't bother switching APIC timer emulation from the
11296                  * hypervisor timer to the software timer, the only way for the
11297                  * APIC timer to be active is if userspace stuffed vCPU state,
11298                  * i.e. put the vCPU into a nonsensical state.  Only an INIT
11299                  * will transition the vCPU out of UNINITIALIZED (without more
11300                  * state stuffing from userspace), which will reset the local
11301                  * APIC and thus cancel the timer or drop the IRQ (if the timer
11302                  * already expired).
11303                  */
11304                 kvm_vcpu_srcu_read_unlock(vcpu);
11305                 kvm_vcpu_block(vcpu);
11306                 kvm_vcpu_srcu_read_lock(vcpu);
11307
11308                 if (kvm_apic_accept_events(vcpu) < 0) {
11309                         r = 0;
11310                         goto out;
11311                 }
11312                 r = -EAGAIN;
11313                 if (signal_pending(current)) {
11314                         r = -EINTR;
11315                         kvm_run->exit_reason = KVM_EXIT_INTR;
11316                         ++vcpu->stat.signal_exits;
11317                 }
11318                 goto out;
11319         }
11320
11321         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11322             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11323                 r = -EINVAL;
11324                 goto out;
11325         }
11326
11327         if (kvm_run->kvm_dirty_regs) {
11328                 r = sync_regs(vcpu);
11329                 if (r != 0)
11330                         goto out;
11331         }
11332
11333         /* re-sync apic's tpr */
11334         if (!lapic_in_kernel(vcpu)) {
11335                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11336                         r = -EINVAL;
11337                         goto out;
11338                 }
11339         }
11340
11341         /*
11342          * If userspace set a pending exception and L2 is active, convert it to
11343          * a pending VM-Exit if L1 wants to intercept the exception.
11344          */
11345         if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11346             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11347                                                         ex->error_code)) {
11348                 kvm_queue_exception_vmexit(vcpu, ex->vector,
11349                                            ex->has_error_code, ex->error_code,
11350                                            ex->has_payload, ex->payload);
11351                 ex->injected = false;
11352                 ex->pending = false;
11353         }
11354         vcpu->arch.exception_from_userspace = false;
11355
11356         if (unlikely(vcpu->arch.complete_userspace_io)) {
11357                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11358                 vcpu->arch.complete_userspace_io = NULL;
11359                 r = cui(vcpu);
11360                 if (r <= 0)
11361                         goto out;
11362         } else {
11363                 WARN_ON_ONCE(vcpu->arch.pio.count);
11364                 WARN_ON_ONCE(vcpu->mmio_needed);
11365         }
11366
11367         if (kvm_run->immediate_exit) {
11368                 r = -EINTR;
11369                 goto out;
11370         }
11371
11372         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11373         if (r <= 0)
11374                 goto out;
11375
11376         r = vcpu_run(vcpu);
11377
11378 out:
11379         kvm_put_guest_fpu(vcpu);
11380         if (kvm_run->kvm_valid_regs)
11381                 store_regs(vcpu);
11382         post_kvm_run_save(vcpu);
11383         kvm_vcpu_srcu_read_unlock(vcpu);
11384
11385         kvm_sigset_deactivate(vcpu);
11386         vcpu_put(vcpu);
11387         return r;
11388 }
11389
11390 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11391 {
11392         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11393                 /*
11394                  * We are here if userspace calls get_regs() in the middle of
11395                  * instruction emulation. Registers state needs to be copied
11396                  * back from emulation context to vcpu. Userspace shouldn't do
11397                  * that usually, but some bad designed PV devices (vmware
11398                  * backdoor interface) need this to work
11399                  */
11400                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11401                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11402         }
11403         regs->rax = kvm_rax_read(vcpu);
11404         regs->rbx = kvm_rbx_read(vcpu);
11405         regs->rcx = kvm_rcx_read(vcpu);
11406         regs->rdx = kvm_rdx_read(vcpu);
11407         regs->rsi = kvm_rsi_read(vcpu);
11408         regs->rdi = kvm_rdi_read(vcpu);
11409         regs->rsp = kvm_rsp_read(vcpu);
11410         regs->rbp = kvm_rbp_read(vcpu);
11411 #ifdef CONFIG_X86_64
11412         regs->r8 = kvm_r8_read(vcpu);
11413         regs->r9 = kvm_r9_read(vcpu);
11414         regs->r10 = kvm_r10_read(vcpu);
11415         regs->r11 = kvm_r11_read(vcpu);
11416         regs->r12 = kvm_r12_read(vcpu);
11417         regs->r13 = kvm_r13_read(vcpu);
11418         regs->r14 = kvm_r14_read(vcpu);
11419         regs->r15 = kvm_r15_read(vcpu);
11420 #endif
11421
11422         regs->rip = kvm_rip_read(vcpu);
11423         regs->rflags = kvm_get_rflags(vcpu);
11424 }
11425
11426 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11427 {
11428         vcpu_load(vcpu);
11429         __get_regs(vcpu, regs);
11430         vcpu_put(vcpu);
11431         return 0;
11432 }
11433
11434 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11435 {
11436         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11437         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11438
11439         kvm_rax_write(vcpu, regs->rax);
11440         kvm_rbx_write(vcpu, regs->rbx);
11441         kvm_rcx_write(vcpu, regs->rcx);
11442         kvm_rdx_write(vcpu, regs->rdx);
11443         kvm_rsi_write(vcpu, regs->rsi);
11444         kvm_rdi_write(vcpu, regs->rdi);
11445         kvm_rsp_write(vcpu, regs->rsp);
11446         kvm_rbp_write(vcpu, regs->rbp);
11447 #ifdef CONFIG_X86_64
11448         kvm_r8_write(vcpu, regs->r8);
11449         kvm_r9_write(vcpu, regs->r9);
11450         kvm_r10_write(vcpu, regs->r10);
11451         kvm_r11_write(vcpu, regs->r11);
11452         kvm_r12_write(vcpu, regs->r12);
11453         kvm_r13_write(vcpu, regs->r13);
11454         kvm_r14_write(vcpu, regs->r14);
11455         kvm_r15_write(vcpu, regs->r15);
11456 #endif
11457
11458         kvm_rip_write(vcpu, regs->rip);
11459         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11460
11461         vcpu->arch.exception.pending = false;
11462         vcpu->arch.exception_vmexit.pending = false;
11463
11464         kvm_make_request(KVM_REQ_EVENT, vcpu);
11465 }
11466
11467 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11468 {
11469         vcpu_load(vcpu);
11470         __set_regs(vcpu, regs);
11471         vcpu_put(vcpu);
11472         return 0;
11473 }
11474
11475 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11476 {
11477         struct desc_ptr dt;
11478
11479         if (vcpu->arch.guest_state_protected)
11480                 goto skip_protected_regs;
11481
11482         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11483         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11484         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11485         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11486         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11487         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11488
11489         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11490         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11491
11492         static_call(kvm_x86_get_idt)(vcpu, &dt);
11493         sregs->idt.limit = dt.size;
11494         sregs->idt.base = dt.address;
11495         static_call(kvm_x86_get_gdt)(vcpu, &dt);
11496         sregs->gdt.limit = dt.size;
11497         sregs->gdt.base = dt.address;
11498
11499         sregs->cr2 = vcpu->arch.cr2;
11500         sregs->cr3 = kvm_read_cr3(vcpu);
11501
11502 skip_protected_regs:
11503         sregs->cr0 = kvm_read_cr0(vcpu);
11504         sregs->cr4 = kvm_read_cr4(vcpu);
11505         sregs->cr8 = kvm_get_cr8(vcpu);
11506         sregs->efer = vcpu->arch.efer;
11507         sregs->apic_base = kvm_get_apic_base(vcpu);
11508 }
11509
11510 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11511 {
11512         __get_sregs_common(vcpu, sregs);
11513
11514         if (vcpu->arch.guest_state_protected)
11515                 return;
11516
11517         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11518                 set_bit(vcpu->arch.interrupt.nr,
11519                         (unsigned long *)sregs->interrupt_bitmap);
11520 }
11521
11522 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11523 {
11524         int i;
11525
11526         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11527
11528         if (vcpu->arch.guest_state_protected)
11529                 return;
11530
11531         if (is_pae_paging(vcpu)) {
11532                 for (i = 0 ; i < 4 ; i++)
11533                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11534                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11535         }
11536 }
11537
11538 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11539                                   struct kvm_sregs *sregs)
11540 {
11541         vcpu_load(vcpu);
11542         __get_sregs(vcpu, sregs);
11543         vcpu_put(vcpu);
11544         return 0;
11545 }
11546
11547 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11548                                     struct kvm_mp_state *mp_state)
11549 {
11550         int r;
11551
11552         vcpu_load(vcpu);
11553         if (kvm_mpx_supported())
11554                 kvm_load_guest_fpu(vcpu);
11555
11556         r = kvm_apic_accept_events(vcpu);
11557         if (r < 0)
11558                 goto out;
11559         r = 0;
11560
11561         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11562              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11563             vcpu->arch.pv.pv_unhalted)
11564                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11565         else
11566                 mp_state->mp_state = vcpu->arch.mp_state;
11567
11568 out:
11569         if (kvm_mpx_supported())
11570                 kvm_put_guest_fpu(vcpu);
11571         vcpu_put(vcpu);
11572         return r;
11573 }
11574
11575 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11576                                     struct kvm_mp_state *mp_state)
11577 {
11578         int ret = -EINVAL;
11579
11580         vcpu_load(vcpu);
11581
11582         switch (mp_state->mp_state) {
11583         case KVM_MP_STATE_UNINITIALIZED:
11584         case KVM_MP_STATE_HALTED:
11585         case KVM_MP_STATE_AP_RESET_HOLD:
11586         case KVM_MP_STATE_INIT_RECEIVED:
11587         case KVM_MP_STATE_SIPI_RECEIVED:
11588                 if (!lapic_in_kernel(vcpu))
11589                         goto out;
11590                 break;
11591
11592         case KVM_MP_STATE_RUNNABLE:
11593                 break;
11594
11595         default:
11596                 goto out;
11597         }
11598
11599         /*
11600          * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11601          * forcing the guest into INIT/SIPI if those events are supposed to be
11602          * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11603          * if an SMI is pending as well.
11604          */
11605         if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11606             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11607              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11608                 goto out;
11609
11610         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11611                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11612                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11613         } else
11614                 vcpu->arch.mp_state = mp_state->mp_state;
11615         kvm_make_request(KVM_REQ_EVENT, vcpu);
11616
11617         ret = 0;
11618 out:
11619         vcpu_put(vcpu);
11620         return ret;
11621 }
11622
11623 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11624                     int reason, bool has_error_code, u32 error_code)
11625 {
11626         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11627         int ret;
11628
11629         init_emulate_ctxt(vcpu);
11630
11631         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11632                                    has_error_code, error_code);
11633         if (ret) {
11634                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11635                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11636                 vcpu->run->internal.ndata = 0;
11637                 return 0;
11638         }
11639
11640         kvm_rip_write(vcpu, ctxt->eip);
11641         kvm_set_rflags(vcpu, ctxt->eflags);
11642         return 1;
11643 }
11644 EXPORT_SYMBOL_GPL(kvm_task_switch);
11645
11646 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11647 {
11648         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11649                 /*
11650                  * When EFER.LME and CR0.PG are set, the processor is in
11651                  * 64-bit mode (though maybe in a 32-bit code segment).
11652                  * CR4.PAE and EFER.LMA must be set.
11653                  */
11654                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11655                         return false;
11656                 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11657                         return false;
11658         } else {
11659                 /*
11660                  * Not in 64-bit mode: EFER.LMA is clear and the code
11661                  * segment cannot be 64-bit.
11662                  */
11663                 if (sregs->efer & EFER_LMA || sregs->cs.l)
11664                         return false;
11665         }
11666
11667         return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11668                kvm_is_valid_cr0(vcpu, sregs->cr0);
11669 }
11670
11671 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11672                 int *mmu_reset_needed, bool update_pdptrs)
11673 {
11674         struct msr_data apic_base_msr;
11675         int idx;
11676         struct desc_ptr dt;
11677
11678         if (!kvm_is_valid_sregs(vcpu, sregs))
11679                 return -EINVAL;
11680
11681         apic_base_msr.data = sregs->apic_base;
11682         apic_base_msr.host_initiated = true;
11683         if (kvm_set_apic_base(vcpu, &apic_base_msr))
11684                 return -EINVAL;
11685
11686         if (vcpu->arch.guest_state_protected)
11687                 return 0;
11688
11689         dt.size = sregs->idt.limit;
11690         dt.address = sregs->idt.base;
11691         static_call(kvm_x86_set_idt)(vcpu, &dt);
11692         dt.size = sregs->gdt.limit;
11693         dt.address = sregs->gdt.base;
11694         static_call(kvm_x86_set_gdt)(vcpu, &dt);
11695
11696         vcpu->arch.cr2 = sregs->cr2;
11697         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11698         vcpu->arch.cr3 = sregs->cr3;
11699         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11700         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11701
11702         kvm_set_cr8(vcpu, sregs->cr8);
11703
11704         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11705         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11706
11707         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11708         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11709
11710         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11711         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11712
11713         if (update_pdptrs) {
11714                 idx = srcu_read_lock(&vcpu->kvm->srcu);
11715                 if (is_pae_paging(vcpu)) {
11716                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11717                         *mmu_reset_needed = 1;
11718                 }
11719                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11720         }
11721
11722         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11723         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11724         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11725         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11726         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11727         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11728
11729         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11730         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11731
11732         update_cr8_intercept(vcpu);
11733
11734         /* Older userspace won't unhalt the vcpu on reset. */
11735         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11736             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11737             !is_protmode(vcpu))
11738                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11739
11740         return 0;
11741 }
11742
11743 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11744 {
11745         int pending_vec, max_bits;
11746         int mmu_reset_needed = 0;
11747         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11748
11749         if (ret)
11750                 return ret;
11751
11752         if (mmu_reset_needed) {
11753                 kvm_mmu_reset_context(vcpu);
11754                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11755         }
11756
11757         max_bits = KVM_NR_INTERRUPTS;
11758         pending_vec = find_first_bit(
11759                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11760
11761         if (pending_vec < max_bits) {
11762                 kvm_queue_interrupt(vcpu, pending_vec, false);
11763                 pr_debug("Set back pending irq %d\n", pending_vec);
11764                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11765         }
11766         return 0;
11767 }
11768
11769 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11770 {
11771         int mmu_reset_needed = 0;
11772         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11773         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11774                 !(sregs2->efer & EFER_LMA);
11775         int i, ret;
11776
11777         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11778                 return -EINVAL;
11779
11780         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11781                 return -EINVAL;
11782
11783         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11784                                  &mmu_reset_needed, !valid_pdptrs);
11785         if (ret)
11786                 return ret;
11787
11788         if (valid_pdptrs) {
11789                 for (i = 0; i < 4 ; i++)
11790                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11791
11792                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11793                 mmu_reset_needed = 1;
11794                 vcpu->arch.pdptrs_from_userspace = true;
11795         }
11796         if (mmu_reset_needed) {
11797                 kvm_mmu_reset_context(vcpu);
11798                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11799         }
11800         return 0;
11801 }
11802
11803 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11804                                   struct kvm_sregs *sregs)
11805 {
11806         int ret;
11807
11808         vcpu_load(vcpu);
11809         ret = __set_sregs(vcpu, sregs);
11810         vcpu_put(vcpu);
11811         return ret;
11812 }
11813
11814 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11815 {
11816         bool set = false;
11817         struct kvm_vcpu *vcpu;
11818         unsigned long i;
11819
11820         if (!enable_apicv)
11821                 return;
11822
11823         down_write(&kvm->arch.apicv_update_lock);
11824
11825         kvm_for_each_vcpu(i, vcpu, kvm) {
11826                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11827                         set = true;
11828                         break;
11829                 }
11830         }
11831         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11832         up_write(&kvm->arch.apicv_update_lock);
11833 }
11834
11835 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11836                                         struct kvm_guest_debug *dbg)
11837 {
11838         unsigned long rflags;
11839         int i, r;
11840
11841         if (vcpu->arch.guest_state_protected)
11842                 return -EINVAL;
11843
11844         vcpu_load(vcpu);
11845
11846         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11847                 r = -EBUSY;
11848                 if (kvm_is_exception_pending(vcpu))
11849                         goto out;
11850                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11851                         kvm_queue_exception(vcpu, DB_VECTOR);
11852                 else
11853                         kvm_queue_exception(vcpu, BP_VECTOR);
11854         }
11855
11856         /*
11857          * Read rflags as long as potentially injected trace flags are still
11858          * filtered out.
11859          */
11860         rflags = kvm_get_rflags(vcpu);
11861
11862         vcpu->guest_debug = dbg->control;
11863         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11864                 vcpu->guest_debug = 0;
11865
11866         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11867                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11868                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11869                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11870         } else {
11871                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11872                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11873         }
11874         kvm_update_dr7(vcpu);
11875
11876         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11877                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11878
11879         /*
11880          * Trigger an rflags update that will inject or remove the trace
11881          * flags.
11882          */
11883         kvm_set_rflags(vcpu, rflags);
11884
11885         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11886
11887         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11888
11889         r = 0;
11890
11891 out:
11892         vcpu_put(vcpu);
11893         return r;
11894 }
11895
11896 /*
11897  * Translate a guest virtual address to a guest physical address.
11898  */
11899 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11900                                     struct kvm_translation *tr)
11901 {
11902         unsigned long vaddr = tr->linear_address;
11903         gpa_t gpa;
11904         int idx;
11905
11906         vcpu_load(vcpu);
11907
11908         idx = srcu_read_lock(&vcpu->kvm->srcu);
11909         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11910         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11911         tr->physical_address = gpa;
11912         tr->valid = gpa != INVALID_GPA;
11913         tr->writeable = 1;
11914         tr->usermode = 0;
11915
11916         vcpu_put(vcpu);
11917         return 0;
11918 }
11919
11920 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11921 {
11922         struct fxregs_state *fxsave;
11923
11924         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11925                 return 0;
11926
11927         vcpu_load(vcpu);
11928
11929         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11930         memcpy(fpu->fpr, fxsave->st_space, 128);
11931         fpu->fcw = fxsave->cwd;
11932         fpu->fsw = fxsave->swd;
11933         fpu->ftwx = fxsave->twd;
11934         fpu->last_opcode = fxsave->fop;
11935         fpu->last_ip = fxsave->rip;
11936         fpu->last_dp = fxsave->rdp;
11937         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11938
11939         vcpu_put(vcpu);
11940         return 0;
11941 }
11942
11943 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11944 {
11945         struct fxregs_state *fxsave;
11946
11947         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11948                 return 0;
11949
11950         vcpu_load(vcpu);
11951
11952         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11953
11954         memcpy(fxsave->st_space, fpu->fpr, 128);
11955         fxsave->cwd = fpu->fcw;
11956         fxsave->swd = fpu->fsw;
11957         fxsave->twd = fpu->ftwx;
11958         fxsave->fop = fpu->last_opcode;
11959         fxsave->rip = fpu->last_ip;
11960         fxsave->rdp = fpu->last_dp;
11961         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11962
11963         vcpu_put(vcpu);
11964         return 0;
11965 }
11966
11967 static void store_regs(struct kvm_vcpu *vcpu)
11968 {
11969         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11970
11971         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11972                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11973
11974         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11975                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11976
11977         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11978                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11979                                 vcpu, &vcpu->run->s.regs.events);
11980 }
11981
11982 static int sync_regs(struct kvm_vcpu *vcpu)
11983 {
11984         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11985                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11986                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11987         }
11988
11989         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11990                 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11991
11992                 if (__set_sregs(vcpu, &sregs))
11993                         return -EINVAL;
11994
11995                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11996         }
11997
11998         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11999                 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12000
12001                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12002                         return -EINVAL;
12003
12004                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12005         }
12006
12007         return 0;
12008 }
12009
12010 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12011 {
12012         if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12013                 pr_warn_once("SMP vm created on host with unstable TSC; "
12014                              "guest TSC will not be reliable\n");
12015
12016         if (!kvm->arch.max_vcpu_ids)
12017                 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12018
12019         if (id >= kvm->arch.max_vcpu_ids)
12020                 return -EINVAL;
12021
12022         return static_call(kvm_x86_vcpu_precreate)(kvm);
12023 }
12024
12025 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12026 {
12027         struct page *page;
12028         int r;
12029
12030         vcpu->arch.last_vmentry_cpu = -1;
12031         vcpu->arch.regs_avail = ~0;
12032         vcpu->arch.regs_dirty = ~0;
12033
12034         kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
12035
12036         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12037                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12038         else
12039                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12040
12041         r = kvm_mmu_create(vcpu);
12042         if (r < 0)
12043                 return r;
12044
12045         if (irqchip_in_kernel(vcpu->kvm)) {
12046                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
12047                 if (r < 0)
12048                         goto fail_mmu_destroy;
12049
12050                 /*
12051                  * Defer evaluating inhibits until the vCPU is first run, as
12052                  * this vCPU will not get notified of any changes until this
12053                  * vCPU is visible to other vCPUs (marked online and added to
12054                  * the set of vCPUs).  Opportunistically mark APICv active as
12055                  * VMX in particularly is highly unlikely to have inhibits.
12056                  * Ignore the current per-VM APICv state so that vCPU creation
12057                  * is guaranteed to run with a deterministic value, the request
12058                  * will ensure the vCPU gets the correct state before VM-Entry.
12059                  */
12060                 if (enable_apicv) {
12061                         vcpu->arch.apic->apicv_active = true;
12062                         kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
12063                 }
12064         } else
12065                 static_branch_inc(&kvm_has_noapic_vcpu);
12066
12067         r = -ENOMEM;
12068
12069         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12070         if (!page)
12071                 goto fail_free_lapic;
12072         vcpu->arch.pio_data = page_address(page);
12073
12074         vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12075                                        GFP_KERNEL_ACCOUNT);
12076         vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12077                                             GFP_KERNEL_ACCOUNT);
12078         if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12079                 goto fail_free_mce_banks;
12080         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12081
12082         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12083                                 GFP_KERNEL_ACCOUNT))
12084                 goto fail_free_mce_banks;
12085
12086         if (!alloc_emulate_ctxt(vcpu))
12087                 goto free_wbinvd_dirty_mask;
12088
12089         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12090                 pr_err("failed to allocate vcpu's fpu\n");
12091                 goto free_emulate_ctxt;
12092         }
12093
12094         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12095         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12096
12097         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12098
12099         kvm_async_pf_hash_reset(vcpu);
12100
12101         vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12102         kvm_pmu_init(vcpu);
12103
12104         vcpu->arch.pending_external_vector = -1;
12105         vcpu->arch.preempted_in_kernel = false;
12106
12107 #if IS_ENABLED(CONFIG_HYPERV)
12108         vcpu->arch.hv_root_tdp = INVALID_PAGE;
12109 #endif
12110
12111         r = static_call(kvm_x86_vcpu_create)(vcpu);
12112         if (r)
12113                 goto free_guest_fpu;
12114
12115         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12116         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12117         kvm_xen_init_vcpu(vcpu);
12118         kvm_vcpu_mtrr_init(vcpu);
12119         vcpu_load(vcpu);
12120         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12121         kvm_vcpu_reset(vcpu, false);
12122         kvm_init_mmu(vcpu);
12123         vcpu_put(vcpu);
12124         return 0;
12125
12126 free_guest_fpu:
12127         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12128 free_emulate_ctxt:
12129         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12130 free_wbinvd_dirty_mask:
12131         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12132 fail_free_mce_banks:
12133         kfree(vcpu->arch.mce_banks);
12134         kfree(vcpu->arch.mci_ctl2_banks);
12135         free_page((unsigned long)vcpu->arch.pio_data);
12136 fail_free_lapic:
12137         kvm_free_lapic(vcpu);
12138 fail_mmu_destroy:
12139         kvm_mmu_destroy(vcpu);
12140         return r;
12141 }
12142
12143 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12144 {
12145         struct kvm *kvm = vcpu->kvm;
12146
12147         if (mutex_lock_killable(&vcpu->mutex))
12148                 return;
12149         vcpu_load(vcpu);
12150         kvm_synchronize_tsc(vcpu, NULL);
12151         vcpu_put(vcpu);
12152
12153         /* poll control enabled by default */
12154         vcpu->arch.msr_kvm_poll_control = 1;
12155
12156         mutex_unlock(&vcpu->mutex);
12157
12158         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12159                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12160                                                 KVMCLOCK_SYNC_PERIOD);
12161 }
12162
12163 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12164 {
12165         int idx;
12166
12167         kvmclock_reset(vcpu);
12168
12169         static_call(kvm_x86_vcpu_free)(vcpu);
12170
12171         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12172         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12173         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12174
12175         kvm_xen_destroy_vcpu(vcpu);
12176         kvm_hv_vcpu_uninit(vcpu);
12177         kvm_pmu_destroy(vcpu);
12178         kfree(vcpu->arch.mce_banks);
12179         kfree(vcpu->arch.mci_ctl2_banks);
12180         kvm_free_lapic(vcpu);
12181         idx = srcu_read_lock(&vcpu->kvm->srcu);
12182         kvm_mmu_destroy(vcpu);
12183         srcu_read_unlock(&vcpu->kvm->srcu, idx);
12184         free_page((unsigned long)vcpu->arch.pio_data);
12185         kvfree(vcpu->arch.cpuid_entries);
12186         if (!lapic_in_kernel(vcpu))
12187                 static_branch_dec(&kvm_has_noapic_vcpu);
12188 }
12189
12190 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12191 {
12192         struct kvm_cpuid_entry2 *cpuid_0x1;
12193         unsigned long old_cr0 = kvm_read_cr0(vcpu);
12194         unsigned long new_cr0;
12195
12196         /*
12197          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12198          * to handle side effects.  RESET emulation hits those flows and relies
12199          * on emulated/virtualized registers, including those that are loaded
12200          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12201          * to detect improper or missing initialization.
12202          */
12203         WARN_ON_ONCE(!init_event &&
12204                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12205
12206         /*
12207          * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12208          * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12209          * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12210          * bits), i.e. virtualization is disabled.
12211          */
12212         if (is_guest_mode(vcpu))
12213                 kvm_leave_nested(vcpu);
12214
12215         kvm_lapic_reset(vcpu, init_event);
12216
12217         WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12218         vcpu->arch.hflags = 0;
12219
12220         vcpu->arch.smi_pending = 0;
12221         vcpu->arch.smi_count = 0;
12222         atomic_set(&vcpu->arch.nmi_queued, 0);
12223         vcpu->arch.nmi_pending = 0;
12224         vcpu->arch.nmi_injected = false;
12225         kvm_clear_interrupt_queue(vcpu);
12226         kvm_clear_exception_queue(vcpu);
12227
12228         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12229         kvm_update_dr0123(vcpu);
12230         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12231         vcpu->arch.dr7 = DR7_FIXED_1;
12232         kvm_update_dr7(vcpu);
12233
12234         vcpu->arch.cr2 = 0;
12235
12236         kvm_make_request(KVM_REQ_EVENT, vcpu);
12237         vcpu->arch.apf.msr_en_val = 0;
12238         vcpu->arch.apf.msr_int_val = 0;
12239         vcpu->arch.st.msr_val = 0;
12240
12241         kvmclock_reset(vcpu);
12242
12243         kvm_clear_async_pf_completion_queue(vcpu);
12244         kvm_async_pf_hash_reset(vcpu);
12245         vcpu->arch.apf.halted = false;
12246
12247         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12248                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12249
12250                 /*
12251                  * All paths that lead to INIT are required to load the guest's
12252                  * FPU state (because most paths are buried in KVM_RUN).
12253                  */
12254                 if (init_event)
12255                         kvm_put_guest_fpu(vcpu);
12256
12257                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12258                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12259
12260                 if (init_event)
12261                         kvm_load_guest_fpu(vcpu);
12262         }
12263
12264         if (!init_event) {
12265                 vcpu->arch.smbase = 0x30000;
12266
12267                 vcpu->arch.msr_misc_features_enables = 0;
12268                 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12269                                                   MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12270
12271                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12272                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12273         }
12274
12275         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12276         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12277         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12278
12279         /*
12280          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12281          * if no CPUID match is found.  Note, it's impossible to get a match at
12282          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12283          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12284          * on RESET.  But, go through the motions in case that's ever remedied.
12285          */
12286         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12287         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12288
12289         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12290
12291         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12292         kvm_rip_write(vcpu, 0xfff0);
12293
12294         vcpu->arch.cr3 = 0;
12295         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12296
12297         /*
12298          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12299          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12300          * (or qualify) that with a footnote stating that CD/NW are preserved.
12301          */
12302         new_cr0 = X86_CR0_ET;
12303         if (init_event)
12304                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12305         else
12306                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12307
12308         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12309         static_call(kvm_x86_set_cr4)(vcpu, 0);
12310         static_call(kvm_x86_set_efer)(vcpu, 0);
12311         static_call(kvm_x86_update_exception_bitmap)(vcpu);
12312
12313         /*
12314          * On the standard CR0/CR4/EFER modification paths, there are several
12315          * complex conditions determining whether the MMU has to be reset and/or
12316          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12317          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12318          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12319          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12320          */
12321         if (old_cr0 & X86_CR0_PG) {
12322                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12323                 kvm_mmu_reset_context(vcpu);
12324         }
12325
12326         /*
12327          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12328          * APM states the TLBs are untouched by INIT, but it also states that
12329          * the TLBs are flushed on "External initialization of the processor."
12330          * Flush the guest TLB regardless of vendor, there is no meaningful
12331          * benefit in relying on the guest to flush the TLB immediately after
12332          * INIT.  A spurious TLB flush is benign and likely negligible from a
12333          * performance perspective.
12334          */
12335         if (init_event)
12336                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12337 }
12338 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12339
12340 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12341 {
12342         struct kvm_segment cs;
12343
12344         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12345         cs.selector = vector << 8;
12346         cs.base = vector << 12;
12347         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12348         kvm_rip_write(vcpu, 0);
12349 }
12350 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12351
12352 int kvm_arch_hardware_enable(void)
12353 {
12354         struct kvm *kvm;
12355         struct kvm_vcpu *vcpu;
12356         unsigned long i;
12357         int ret;
12358         u64 local_tsc;
12359         u64 max_tsc = 0;
12360         bool stable, backwards_tsc = false;
12361
12362         kvm_user_return_msr_cpu_online();
12363
12364         ret = kvm_x86_check_processor_compatibility();
12365         if (ret)
12366                 return ret;
12367
12368         ret = static_call(kvm_x86_hardware_enable)();
12369         if (ret != 0)
12370                 return ret;
12371
12372         local_tsc = rdtsc();
12373         stable = !kvm_check_tsc_unstable();
12374         list_for_each_entry(kvm, &vm_list, vm_list) {
12375                 kvm_for_each_vcpu(i, vcpu, kvm) {
12376                         if (!stable && vcpu->cpu == smp_processor_id())
12377                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12378                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12379                                 backwards_tsc = true;
12380                                 if (vcpu->arch.last_host_tsc > max_tsc)
12381                                         max_tsc = vcpu->arch.last_host_tsc;
12382                         }
12383                 }
12384         }
12385
12386         /*
12387          * Sometimes, even reliable TSCs go backwards.  This happens on
12388          * platforms that reset TSC during suspend or hibernate actions, but
12389          * maintain synchronization.  We must compensate.  Fortunately, we can
12390          * detect that condition here, which happens early in CPU bringup,
12391          * before any KVM threads can be running.  Unfortunately, we can't
12392          * bring the TSCs fully up to date with real time, as we aren't yet far
12393          * enough into CPU bringup that we know how much real time has actually
12394          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12395          * variables that haven't been updated yet.
12396          *
12397          * So we simply find the maximum observed TSC above, then record the
12398          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12399          * the adjustment will be applied.  Note that we accumulate
12400          * adjustments, in case multiple suspend cycles happen before some VCPU
12401          * gets a chance to run again.  In the event that no KVM threads get a
12402          * chance to run, we will miss the entire elapsed period, as we'll have
12403          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12404          * loose cycle time.  This isn't too big a deal, since the loss will be
12405          * uniform across all VCPUs (not to mention the scenario is extremely
12406          * unlikely). It is possible that a second hibernate recovery happens
12407          * much faster than a first, causing the observed TSC here to be
12408          * smaller; this would require additional padding adjustment, which is
12409          * why we set last_host_tsc to the local tsc observed here.
12410          *
12411          * N.B. - this code below runs only on platforms with reliable TSC,
12412          * as that is the only way backwards_tsc is set above.  Also note
12413          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12414          * have the same delta_cyc adjustment applied if backwards_tsc
12415          * is detected.  Note further, this adjustment is only done once,
12416          * as we reset last_host_tsc on all VCPUs to stop this from being
12417          * called multiple times (one for each physical CPU bringup).
12418          *
12419          * Platforms with unreliable TSCs don't have to deal with this, they
12420          * will be compensated by the logic in vcpu_load, which sets the TSC to
12421          * catchup mode.  This will catchup all VCPUs to real time, but cannot
12422          * guarantee that they stay in perfect synchronization.
12423          */
12424         if (backwards_tsc) {
12425                 u64 delta_cyc = max_tsc - local_tsc;
12426                 list_for_each_entry(kvm, &vm_list, vm_list) {
12427                         kvm->arch.backwards_tsc_observed = true;
12428                         kvm_for_each_vcpu(i, vcpu, kvm) {
12429                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12430                                 vcpu->arch.last_host_tsc = local_tsc;
12431                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12432                         }
12433
12434                         /*
12435                          * We have to disable TSC offset matching.. if you were
12436                          * booting a VM while issuing an S4 host suspend....
12437                          * you may have some problem.  Solving this issue is
12438                          * left as an exercise to the reader.
12439                          */
12440                         kvm->arch.last_tsc_nsec = 0;
12441                         kvm->arch.last_tsc_write = 0;
12442                 }
12443
12444         }
12445         return 0;
12446 }
12447
12448 void kvm_arch_hardware_disable(void)
12449 {
12450         static_call(kvm_x86_hardware_disable)();
12451         drop_user_return_notifiers();
12452 }
12453
12454 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12455 {
12456         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12457 }
12458
12459 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12460 {
12461         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12462 }
12463
12464 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12465 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12466
12467 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12468 {
12469         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12470
12471         vcpu->arch.l1tf_flush_l1d = true;
12472         if (pmu->version && unlikely(pmu->event_count)) {
12473                 pmu->need_cleanup = true;
12474                 kvm_make_request(KVM_REQ_PMU, vcpu);
12475         }
12476         static_call(kvm_x86_sched_in)(vcpu, cpu);
12477 }
12478
12479 void kvm_arch_free_vm(struct kvm *kvm)
12480 {
12481 #if IS_ENABLED(CONFIG_HYPERV)
12482         kfree(kvm->arch.hv_pa_pg);
12483 #endif
12484         __kvm_arch_free_vm(kvm);
12485 }
12486
12487
12488 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12489 {
12490         int ret;
12491         unsigned long flags;
12492
12493         if (!kvm_is_vm_type_supported(type))
12494                 return -EINVAL;
12495
12496         kvm->arch.vm_type = type;
12497
12498         ret = kvm_page_track_init(kvm);
12499         if (ret)
12500                 goto out;
12501
12502         kvm_mmu_init_vm(kvm);
12503
12504         ret = static_call(kvm_x86_vm_init)(kvm);
12505         if (ret)
12506                 goto out_uninit_mmu;
12507
12508         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12509         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12510
12511         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12512         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12513         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12514         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12515                 &kvm->arch.irq_sources_bitmap);
12516
12517         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12518         mutex_init(&kvm->arch.apic_map_lock);
12519         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12520         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12521
12522         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12523         pvclock_update_vm_gtod_copy(kvm);
12524         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12525
12526         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12527         kvm->arch.guest_can_read_msr_platform_info = true;
12528         kvm->arch.enable_pmu = enable_pmu;
12529
12530 #if IS_ENABLED(CONFIG_HYPERV)
12531         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12532         kvm->arch.hv_root_tdp = INVALID_PAGE;
12533 #endif
12534
12535         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12536         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12537
12538         kvm_apicv_init(kvm);
12539         kvm_hv_init_vm(kvm);
12540         kvm_xen_init_vm(kvm);
12541
12542         return 0;
12543
12544 out_uninit_mmu:
12545         kvm_mmu_uninit_vm(kvm);
12546         kvm_page_track_cleanup(kvm);
12547 out:
12548         return ret;
12549 }
12550
12551 int kvm_arch_post_init_vm(struct kvm *kvm)
12552 {
12553         return kvm_mmu_post_init_vm(kvm);
12554 }
12555
12556 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12557 {
12558         vcpu_load(vcpu);
12559         kvm_mmu_unload(vcpu);
12560         vcpu_put(vcpu);
12561 }
12562
12563 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12564 {
12565         unsigned long i;
12566         struct kvm_vcpu *vcpu;
12567
12568         kvm_for_each_vcpu(i, vcpu, kvm) {
12569                 kvm_clear_async_pf_completion_queue(vcpu);
12570                 kvm_unload_vcpu_mmu(vcpu);
12571         }
12572 }
12573
12574 void kvm_arch_sync_events(struct kvm *kvm)
12575 {
12576         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12577         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12578         kvm_free_pit(kvm);
12579 }
12580
12581 /**
12582  * __x86_set_memory_region: Setup KVM internal memory slot
12583  *
12584  * @kvm: the kvm pointer to the VM.
12585  * @id: the slot ID to setup.
12586  * @gpa: the GPA to install the slot (unused when @size == 0).
12587  * @size: the size of the slot. Set to zero to uninstall a slot.
12588  *
12589  * This function helps to setup a KVM internal memory slot.  Specify
12590  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12591  * slot.  The return code can be one of the following:
12592  *
12593  *   HVA:           on success (uninstall will return a bogus HVA)
12594  *   -errno:        on error
12595  *
12596  * The caller should always use IS_ERR() to check the return value
12597  * before use.  Note, the KVM internal memory slots are guaranteed to
12598  * remain valid and unchanged until the VM is destroyed, i.e., the
12599  * GPA->HVA translation will not change.  However, the HVA is a user
12600  * address, i.e. its accessibility is not guaranteed, and must be
12601  * accessed via __copy_{to,from}_user().
12602  */
12603 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12604                                       u32 size)
12605 {
12606         int i, r;
12607         unsigned long hva, old_npages;
12608         struct kvm_memslots *slots = kvm_memslots(kvm);
12609         struct kvm_memory_slot *slot;
12610
12611         /* Called with kvm->slots_lock held.  */
12612         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12613                 return ERR_PTR_USR(-EINVAL);
12614
12615         slot = id_to_memslot(slots, id);
12616         if (size) {
12617                 if (slot && slot->npages)
12618                         return ERR_PTR_USR(-EEXIST);
12619
12620                 /*
12621                  * MAP_SHARED to prevent internal slot pages from being moved
12622                  * by fork()/COW.
12623                  */
12624                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12625                               MAP_SHARED | MAP_ANONYMOUS, 0);
12626                 if (IS_ERR_VALUE(hva))
12627                         return (void __user *)hva;
12628         } else {
12629                 if (!slot || !slot->npages)
12630                         return NULL;
12631
12632                 old_npages = slot->npages;
12633                 hva = slot->userspace_addr;
12634         }
12635
12636         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12637                 struct kvm_userspace_memory_region2 m;
12638
12639                 m.slot = id | (i << 16);
12640                 m.flags = 0;
12641                 m.guest_phys_addr = gpa;
12642                 m.userspace_addr = hva;
12643                 m.memory_size = size;
12644                 r = __kvm_set_memory_region(kvm, &m);
12645                 if (r < 0)
12646                         return ERR_PTR_USR(r);
12647         }
12648
12649         if (!size)
12650                 vm_munmap(hva, old_npages * PAGE_SIZE);
12651
12652         return (void __user *)hva;
12653 }
12654 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12655
12656 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12657 {
12658         kvm_mmu_pre_destroy_vm(kvm);
12659 }
12660
12661 void kvm_arch_destroy_vm(struct kvm *kvm)
12662 {
12663         if (current->mm == kvm->mm) {
12664                 /*
12665                  * Free memory regions allocated on behalf of userspace,
12666                  * unless the memory map has changed due to process exit
12667                  * or fd copying.
12668                  */
12669                 mutex_lock(&kvm->slots_lock);
12670                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12671                                         0, 0);
12672                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12673                                         0, 0);
12674                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12675                 mutex_unlock(&kvm->slots_lock);
12676         }
12677         kvm_unload_vcpu_mmus(kvm);
12678         static_call_cond(kvm_x86_vm_destroy)(kvm);
12679         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12680         kvm_pic_destroy(kvm);
12681         kvm_ioapic_destroy(kvm);
12682         kvm_destroy_vcpus(kvm);
12683         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12684         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12685         kvm_mmu_uninit_vm(kvm);
12686         kvm_page_track_cleanup(kvm);
12687         kvm_xen_destroy_vm(kvm);
12688         kvm_hv_destroy_vm(kvm);
12689 }
12690
12691 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12692 {
12693         int i;
12694
12695         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12696                 kvfree(slot->arch.rmap[i]);
12697                 slot->arch.rmap[i] = NULL;
12698         }
12699 }
12700
12701 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12702 {
12703         int i;
12704
12705         memslot_rmap_free(slot);
12706
12707         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12708                 kvfree(slot->arch.lpage_info[i - 1]);
12709                 slot->arch.lpage_info[i - 1] = NULL;
12710         }
12711
12712         kvm_page_track_free_memslot(slot);
12713 }
12714
12715 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12716 {
12717         const int sz = sizeof(*slot->arch.rmap[0]);
12718         int i;
12719
12720         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12721                 int level = i + 1;
12722                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12723
12724                 if (slot->arch.rmap[i])
12725                         continue;
12726
12727                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12728                 if (!slot->arch.rmap[i]) {
12729                         memslot_rmap_free(slot);
12730                         return -ENOMEM;
12731                 }
12732         }
12733
12734         return 0;
12735 }
12736
12737 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12738                                       struct kvm_memory_slot *slot)
12739 {
12740         unsigned long npages = slot->npages;
12741         int i, r;
12742
12743         /*
12744          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12745          * old arrays will be freed by __kvm_set_memory_region() if installing
12746          * the new memslot is successful.
12747          */
12748         memset(&slot->arch, 0, sizeof(slot->arch));
12749
12750         if (kvm_memslots_have_rmaps(kvm)) {
12751                 r = memslot_rmap_alloc(slot, npages);
12752                 if (r)
12753                         return r;
12754         }
12755
12756         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12757                 struct kvm_lpage_info *linfo;
12758                 unsigned long ugfn;
12759                 int lpages;
12760                 int level = i + 1;
12761
12762                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12763
12764                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12765                 if (!linfo)
12766                         goto out_free;
12767
12768                 slot->arch.lpage_info[i - 1] = linfo;
12769
12770                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12771                         linfo[0].disallow_lpage = 1;
12772                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12773                         linfo[lpages - 1].disallow_lpage = 1;
12774                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12775                 /*
12776                  * If the gfn and userspace address are not aligned wrt each
12777                  * other, disable large page support for this slot.
12778                  */
12779                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12780                         unsigned long j;
12781
12782                         for (j = 0; j < lpages; ++j)
12783                                 linfo[j].disallow_lpage = 1;
12784                 }
12785         }
12786
12787 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12788         kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12789 #endif
12790
12791         if (kvm_page_track_create_memslot(kvm, slot, npages))
12792                 goto out_free;
12793
12794         return 0;
12795
12796 out_free:
12797         memslot_rmap_free(slot);
12798
12799         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12800                 kvfree(slot->arch.lpage_info[i - 1]);
12801                 slot->arch.lpage_info[i - 1] = NULL;
12802         }
12803         return -ENOMEM;
12804 }
12805
12806 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12807 {
12808         struct kvm_vcpu *vcpu;
12809         unsigned long i;
12810
12811         /*
12812          * memslots->generation has been incremented.
12813          * mmio generation may have reached its maximum value.
12814          */
12815         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12816
12817         /* Force re-initialization of steal_time cache */
12818         kvm_for_each_vcpu(i, vcpu, kvm)
12819                 kvm_vcpu_kick(vcpu);
12820 }
12821
12822 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12823                                    const struct kvm_memory_slot *old,
12824                                    struct kvm_memory_slot *new,
12825                                    enum kvm_mr_change change)
12826 {
12827         /*
12828          * KVM doesn't support moving memslots when there are external page
12829          * trackers attached to the VM, i.e. if KVMGT is in use.
12830          */
12831         if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12832                 return -EINVAL;
12833
12834         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12835                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12836                         return -EINVAL;
12837
12838                 return kvm_alloc_memslot_metadata(kvm, new);
12839         }
12840
12841         if (change == KVM_MR_FLAGS_ONLY)
12842                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12843         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12844                 return -EIO;
12845
12846         return 0;
12847 }
12848
12849
12850 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12851 {
12852         int nr_slots;
12853
12854         if (!kvm_x86_ops.cpu_dirty_log_size)
12855                 return;
12856
12857         nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12858         if ((enable && nr_slots == 1) || !nr_slots)
12859                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12860 }
12861
12862 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12863                                      struct kvm_memory_slot *old,
12864                                      const struct kvm_memory_slot *new,
12865                                      enum kvm_mr_change change)
12866 {
12867         u32 old_flags = old ? old->flags : 0;
12868         u32 new_flags = new ? new->flags : 0;
12869         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12870
12871         /*
12872          * Update CPU dirty logging if dirty logging is being toggled.  This
12873          * applies to all operations.
12874          */
12875         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12876                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12877
12878         /*
12879          * Nothing more to do for RO slots (which can't be dirtied and can't be
12880          * made writable) or CREATE/MOVE/DELETE of a slot.
12881          *
12882          * For a memslot with dirty logging disabled:
12883          * CREATE:      No dirty mappings will already exist.
12884          * MOVE/DELETE: The old mappings will already have been cleaned up by
12885          *              kvm_arch_flush_shadow_memslot()
12886          *
12887          * For a memslot with dirty logging enabled:
12888          * CREATE:      No shadow pages exist, thus nothing to write-protect
12889          *              and no dirty bits to clear.
12890          * MOVE/DELETE: The old mappings will already have been cleaned up by
12891          *              kvm_arch_flush_shadow_memslot().
12892          */
12893         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12894                 return;
12895
12896         /*
12897          * READONLY and non-flags changes were filtered out above, and the only
12898          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12899          * logging isn't being toggled on or off.
12900          */
12901         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12902                 return;
12903
12904         if (!log_dirty_pages) {
12905                 /*
12906                  * Dirty logging tracks sptes in 4k granularity, meaning that
12907                  * large sptes have to be split.  If live migration succeeds,
12908                  * the guest in the source machine will be destroyed and large
12909                  * sptes will be created in the destination.  However, if the
12910                  * guest continues to run in the source machine (for example if
12911                  * live migration fails), small sptes will remain around and
12912                  * cause bad performance.
12913                  *
12914                  * Scan sptes if dirty logging has been stopped, dropping those
12915                  * which can be collapsed into a single large-page spte.  Later
12916                  * page faults will create the large-page sptes.
12917                  */
12918                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12919         } else {
12920                 /*
12921                  * Initially-all-set does not require write protecting any page,
12922                  * because they're all assumed to be dirty.
12923                  */
12924                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12925                         return;
12926
12927                 if (READ_ONCE(eager_page_split))
12928                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12929
12930                 if (kvm_x86_ops.cpu_dirty_log_size) {
12931                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12932                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12933                 } else {
12934                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12935                 }
12936
12937                 /*
12938                  * Unconditionally flush the TLBs after enabling dirty logging.
12939                  * A flush is almost always going to be necessary (see below),
12940                  * and unconditionally flushing allows the helpers to omit
12941                  * the subtly complex checks when removing write access.
12942                  *
12943                  * Do the flush outside of mmu_lock to reduce the amount of
12944                  * time mmu_lock is held.  Flushing after dropping mmu_lock is
12945                  * safe as KVM only needs to guarantee the slot is fully
12946                  * write-protected before returning to userspace, i.e. before
12947                  * userspace can consume the dirty status.
12948                  *
12949                  * Flushing outside of mmu_lock requires KVM to be careful when
12950                  * making decisions based on writable status of an SPTE, e.g. a
12951                  * !writable SPTE doesn't guarantee a CPU can't perform writes.
12952                  *
12953                  * Specifically, KVM also write-protects guest page tables to
12954                  * monitor changes when using shadow paging, and must guarantee
12955                  * no CPUs can write to those page before mmu_lock is dropped.
12956                  * Because CPUs may have stale TLB entries at this point, a
12957                  * !writable SPTE doesn't guarantee CPUs can't perform writes.
12958                  *
12959                  * KVM also allows making SPTES writable outside of mmu_lock,
12960                  * e.g. to allow dirty logging without taking mmu_lock.
12961                  *
12962                  * To handle these scenarios, KVM uses a separate software-only
12963                  * bit (MMU-writable) to track if a SPTE is !writable due to
12964                  * a guest page table being write-protected (KVM clears the
12965                  * MMU-writable flag when write-protecting for shadow paging).
12966                  *
12967                  * The use of MMU-writable is also the primary motivation for
12968                  * the unconditional flush.  Because KVM must guarantee that a
12969                  * CPU doesn't contain stale, writable TLB entries for a
12970                  * !MMU-writable SPTE, KVM must flush if it encounters any
12971                  * MMU-writable SPTE regardless of whether the actual hardware
12972                  * writable bit was set.  I.e. KVM is almost guaranteed to need
12973                  * to flush, while unconditionally flushing allows the "remove
12974                  * write access" helpers to ignore MMU-writable entirely.
12975                  *
12976                  * See is_writable_pte() for more details (the case involving
12977                  * access-tracked SPTEs is particularly relevant).
12978                  */
12979                 kvm_flush_remote_tlbs_memslot(kvm, new);
12980         }
12981 }
12982
12983 void kvm_arch_commit_memory_region(struct kvm *kvm,
12984                                 struct kvm_memory_slot *old,
12985                                 const struct kvm_memory_slot *new,
12986                                 enum kvm_mr_change change)
12987 {
12988         if (change == KVM_MR_DELETE)
12989                 kvm_page_track_delete_slot(kvm, old);
12990
12991         if (!kvm->arch.n_requested_mmu_pages &&
12992             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12993                 unsigned long nr_mmu_pages;
12994
12995                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12996                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12997                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12998         }
12999
13000         kvm_mmu_slot_apply_flags(kvm, old, new, change);
13001
13002         /* Free the arrays associated with the old memslot. */
13003         if (change == KVM_MR_MOVE)
13004                 kvm_arch_free_memslot(kvm, old);
13005 }
13006
13007 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
13008 {
13009         return (is_guest_mode(vcpu) &&
13010                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
13011 }
13012
13013 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13014 {
13015         if (!list_empty_careful(&vcpu->async_pf.done))
13016                 return true;
13017
13018         if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13019             kvm_apic_init_sipi_allowed(vcpu))
13020                 return true;
13021
13022         if (vcpu->arch.pv.pv_unhalted)
13023                 return true;
13024
13025         if (kvm_is_exception_pending(vcpu))
13026                 return true;
13027
13028         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13029             (vcpu->arch.nmi_pending &&
13030              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
13031                 return true;
13032
13033 #ifdef CONFIG_KVM_SMM
13034         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13035             (vcpu->arch.smi_pending &&
13036              static_call(kvm_x86_smi_allowed)(vcpu, false)))
13037                 return true;
13038 #endif
13039
13040         if (kvm_test_request(KVM_REQ_PMI, vcpu))
13041                 return true;
13042
13043         if (kvm_arch_interrupt_allowed(vcpu) &&
13044             (kvm_cpu_has_interrupt(vcpu) ||
13045             kvm_guest_apic_has_interrupt(vcpu)))
13046                 return true;
13047
13048         if (kvm_hv_has_stimer_pending(vcpu))
13049                 return true;
13050
13051         if (is_guest_mode(vcpu) &&
13052             kvm_x86_ops.nested_ops->has_events &&
13053             kvm_x86_ops.nested_ops->has_events(vcpu))
13054                 return true;
13055
13056         if (kvm_xen_has_pending_events(vcpu))
13057                 return true;
13058
13059         return false;
13060 }
13061
13062 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13063 {
13064         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13065 }
13066
13067 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13068 {
13069         if (kvm_vcpu_apicv_active(vcpu) &&
13070             static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
13071                 return true;
13072
13073         return false;
13074 }
13075
13076 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13077 {
13078         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13079                 return true;
13080
13081         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13082 #ifdef CONFIG_KVM_SMM
13083                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
13084 #endif
13085                  kvm_test_request(KVM_REQ_EVENT, vcpu))
13086                 return true;
13087
13088         return kvm_arch_dy_has_pending_interrupt(vcpu);
13089 }
13090
13091 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13092 {
13093         if (vcpu->arch.guest_state_protected)
13094                 return true;
13095
13096         if (vcpu != kvm_get_running_vcpu())
13097                 return vcpu->arch.preempted_in_kernel;
13098
13099         return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13100 }
13101
13102 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13103 {
13104         return kvm_rip_read(vcpu);
13105 }
13106
13107 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13108 {
13109         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13110 }
13111
13112 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13113 {
13114         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13115 }
13116
13117 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13118 {
13119         /* Can't read the RIP when guest state is protected, just return 0 */
13120         if (vcpu->arch.guest_state_protected)
13121                 return 0;
13122
13123         if (is_64_bit_mode(vcpu))
13124                 return kvm_rip_read(vcpu);
13125         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13126                      kvm_rip_read(vcpu));
13127 }
13128 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13129
13130 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13131 {
13132         return kvm_get_linear_rip(vcpu) == linear_rip;
13133 }
13134 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13135
13136 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13137 {
13138         unsigned long rflags;
13139
13140         rflags = static_call(kvm_x86_get_rflags)(vcpu);
13141         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13142                 rflags &= ~X86_EFLAGS_TF;
13143         return rflags;
13144 }
13145 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13146
13147 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13148 {
13149         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13150             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13151                 rflags |= X86_EFLAGS_TF;
13152         static_call(kvm_x86_set_rflags)(vcpu, rflags);
13153 }
13154
13155 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13156 {
13157         __kvm_set_rflags(vcpu, rflags);
13158         kvm_make_request(KVM_REQ_EVENT, vcpu);
13159 }
13160 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13161
13162 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13163 {
13164         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13165
13166         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13167 }
13168
13169 static inline u32 kvm_async_pf_next_probe(u32 key)
13170 {
13171         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13172 }
13173
13174 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13175 {
13176         u32 key = kvm_async_pf_hash_fn(gfn);
13177
13178         while (vcpu->arch.apf.gfns[key] != ~0)
13179                 key = kvm_async_pf_next_probe(key);
13180
13181         vcpu->arch.apf.gfns[key] = gfn;
13182 }
13183
13184 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13185 {
13186         int i;
13187         u32 key = kvm_async_pf_hash_fn(gfn);
13188
13189         for (i = 0; i < ASYNC_PF_PER_VCPU &&
13190                      (vcpu->arch.apf.gfns[key] != gfn &&
13191                       vcpu->arch.apf.gfns[key] != ~0); i++)
13192                 key = kvm_async_pf_next_probe(key);
13193
13194         return key;
13195 }
13196
13197 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13198 {
13199         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13200 }
13201
13202 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13203 {
13204         u32 i, j, k;
13205
13206         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13207
13208         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13209                 return;
13210
13211         while (true) {
13212                 vcpu->arch.apf.gfns[i] = ~0;
13213                 do {
13214                         j = kvm_async_pf_next_probe(j);
13215                         if (vcpu->arch.apf.gfns[j] == ~0)
13216                                 return;
13217                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13218                         /*
13219                          * k lies cyclically in ]i,j]
13220                          * |    i.k.j |
13221                          * |....j i.k.| or  |.k..j i...|
13222                          */
13223                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13224                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13225                 i = j;
13226         }
13227 }
13228
13229 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13230 {
13231         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13232
13233         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13234                                       sizeof(reason));
13235 }
13236
13237 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13238 {
13239         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13240
13241         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13242                                              &token, offset, sizeof(token));
13243 }
13244
13245 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13246 {
13247         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13248         u32 val;
13249
13250         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13251                                          &val, offset, sizeof(val)))
13252                 return false;
13253
13254         return !val;
13255 }
13256
13257 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13258 {
13259
13260         if (!kvm_pv_async_pf_enabled(vcpu))
13261                 return false;
13262
13263         if (vcpu->arch.apf.send_user_only &&
13264             static_call(kvm_x86_get_cpl)(vcpu) == 0)
13265                 return false;
13266
13267         if (is_guest_mode(vcpu)) {
13268                 /*
13269                  * L1 needs to opt into the special #PF vmexits that are
13270                  * used to deliver async page faults.
13271                  */
13272                 return vcpu->arch.apf.delivery_as_pf_vmexit;
13273         } else {
13274                 /*
13275                  * Play it safe in case the guest temporarily disables paging.
13276                  * The real mode IDT in particular is unlikely to have a #PF
13277                  * exception setup.
13278                  */
13279                 return is_paging(vcpu);
13280         }
13281 }
13282
13283 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13284 {
13285         if (unlikely(!lapic_in_kernel(vcpu) ||
13286                      kvm_event_needs_reinjection(vcpu) ||
13287                      kvm_is_exception_pending(vcpu)))
13288                 return false;
13289
13290         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13291                 return false;
13292
13293         /*
13294          * If interrupts are off we cannot even use an artificial
13295          * halt state.
13296          */
13297         return kvm_arch_interrupt_allowed(vcpu);
13298 }
13299
13300 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13301                                      struct kvm_async_pf *work)
13302 {
13303         struct x86_exception fault;
13304
13305         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13306         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13307
13308         if (kvm_can_deliver_async_pf(vcpu) &&
13309             !apf_put_user_notpresent(vcpu)) {
13310                 fault.vector = PF_VECTOR;
13311                 fault.error_code_valid = true;
13312                 fault.error_code = 0;
13313                 fault.nested_page_fault = false;
13314                 fault.address = work->arch.token;
13315                 fault.async_page_fault = true;
13316                 kvm_inject_page_fault(vcpu, &fault);
13317                 return true;
13318         } else {
13319                 /*
13320                  * It is not possible to deliver a paravirtualized asynchronous
13321                  * page fault, but putting the guest in an artificial halt state
13322                  * can be beneficial nevertheless: if an interrupt arrives, we
13323                  * can deliver it timely and perhaps the guest will schedule
13324                  * another process.  When the instruction that triggered a page
13325                  * fault is retried, hopefully the page will be ready in the host.
13326                  */
13327                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13328                 return false;
13329         }
13330 }
13331
13332 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13333                                  struct kvm_async_pf *work)
13334 {
13335         struct kvm_lapic_irq irq = {
13336                 .delivery_mode = APIC_DM_FIXED,
13337                 .vector = vcpu->arch.apf.vec
13338         };
13339
13340         if (work->wakeup_all)
13341                 work->arch.token = ~0; /* broadcast wakeup */
13342         else
13343                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13344         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13345
13346         if ((work->wakeup_all || work->notpresent_injected) &&
13347             kvm_pv_async_pf_enabled(vcpu) &&
13348             !apf_put_user_ready(vcpu, work->arch.token)) {
13349                 vcpu->arch.apf.pageready_pending = true;
13350                 kvm_apic_set_irq(vcpu, &irq, NULL);
13351         }
13352
13353         vcpu->arch.apf.halted = false;
13354         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13355 }
13356
13357 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13358 {
13359         kvm_make_request(KVM_REQ_APF_READY, vcpu);
13360         if (!vcpu->arch.apf.pageready_pending)
13361                 kvm_vcpu_kick(vcpu);
13362 }
13363
13364 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13365 {
13366         if (!kvm_pv_async_pf_enabled(vcpu))
13367                 return true;
13368         else
13369                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13370 }
13371
13372 void kvm_arch_start_assignment(struct kvm *kvm)
13373 {
13374         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13375                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13376 }
13377 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13378
13379 void kvm_arch_end_assignment(struct kvm *kvm)
13380 {
13381         atomic_dec(&kvm->arch.assigned_device_count);
13382 }
13383 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13384
13385 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13386 {
13387         return raw_atomic_read(&kvm->arch.assigned_device_count);
13388 }
13389 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13390
13391 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13392 {
13393         /*
13394          * Non-coherent DMA assignment and de-assignment will affect
13395          * whether KVM honors guest MTRRs and cause changes in memtypes
13396          * in TDP.
13397          * So, pass %true unconditionally to indicate non-coherent DMA was,
13398          * or will be involved, and that zapping SPTEs might be necessary.
13399          */
13400         if (__kvm_mmu_honors_guest_mtrrs(true))
13401                 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13402 }
13403
13404 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13405 {
13406         if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13407                 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13408 }
13409 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13410
13411 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13412 {
13413         if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13414                 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13415 }
13416 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13417
13418 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13419 {
13420         return atomic_read(&kvm->arch.noncoherent_dma_count);
13421 }
13422 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13423
13424 bool kvm_arch_has_irq_bypass(void)
13425 {
13426         return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13427 }
13428
13429 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13430                                       struct irq_bypass_producer *prod)
13431 {
13432         struct kvm_kernel_irqfd *irqfd =
13433                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13434         int ret;
13435
13436         irqfd->producer = prod;
13437         kvm_arch_start_assignment(irqfd->kvm);
13438         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13439                                          prod->irq, irqfd->gsi, 1);
13440
13441         if (ret)
13442                 kvm_arch_end_assignment(irqfd->kvm);
13443
13444         return ret;
13445 }
13446
13447 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13448                                       struct irq_bypass_producer *prod)
13449 {
13450         int ret;
13451         struct kvm_kernel_irqfd *irqfd =
13452                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13453
13454         WARN_ON(irqfd->producer != prod);
13455         irqfd->producer = NULL;
13456
13457         /*
13458          * When producer of consumer is unregistered, we change back to
13459          * remapped mode, so we can re-use the current implementation
13460          * when the irq is masked/disabled or the consumer side (KVM
13461          * int this case doesn't want to receive the interrupts.
13462         */
13463         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13464         if (ret)
13465                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13466                        " fails: %d\n", irqfd->consumer.token, ret);
13467
13468         kvm_arch_end_assignment(irqfd->kvm);
13469 }
13470
13471 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13472                                    uint32_t guest_irq, bool set)
13473 {
13474         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13475 }
13476
13477 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13478                                   struct kvm_kernel_irq_routing_entry *new)
13479 {
13480         if (new->type != KVM_IRQ_ROUTING_MSI)
13481                 return true;
13482
13483         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13484 }
13485
13486 bool kvm_vector_hashing_enabled(void)
13487 {
13488         return vector_hashing;
13489 }
13490
13491 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13492 {
13493         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13494 }
13495 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13496
13497
13498 int kvm_spec_ctrl_test_value(u64 value)
13499 {
13500         /*
13501          * test that setting IA32_SPEC_CTRL to given value
13502          * is allowed by the host processor
13503          */
13504
13505         u64 saved_value;
13506         unsigned long flags;
13507         int ret = 0;
13508
13509         local_irq_save(flags);
13510
13511         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13512                 ret = 1;
13513         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13514                 ret = 1;
13515         else
13516                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13517
13518         local_irq_restore(flags);
13519
13520         return ret;
13521 }
13522 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13523
13524 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13525 {
13526         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13527         struct x86_exception fault;
13528         u64 access = error_code &
13529                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13530
13531         if (!(error_code & PFERR_PRESENT_MASK) ||
13532             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13533                 /*
13534                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13535                  * tables probably do not match the TLB.  Just proceed
13536                  * with the error code that the processor gave.
13537                  */
13538                 fault.vector = PF_VECTOR;
13539                 fault.error_code_valid = true;
13540                 fault.error_code = error_code;
13541                 fault.nested_page_fault = false;
13542                 fault.address = gva;
13543                 fault.async_page_fault = false;
13544         }
13545         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13546 }
13547 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13548
13549 /*
13550  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13551  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13552  * indicates whether exit to userspace is needed.
13553  */
13554 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13555                               struct x86_exception *e)
13556 {
13557         if (r == X86EMUL_PROPAGATE_FAULT) {
13558                 if (KVM_BUG_ON(!e, vcpu->kvm))
13559                         return -EIO;
13560
13561                 kvm_inject_emulated_page_fault(vcpu, e);
13562                 return 1;
13563         }
13564
13565         /*
13566          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13567          * while handling a VMX instruction KVM could've handled the request
13568          * correctly by exiting to userspace and performing I/O but there
13569          * doesn't seem to be a real use-case behind such requests, just return
13570          * KVM_EXIT_INTERNAL_ERROR for now.
13571          */
13572         kvm_prepare_emulation_failure_exit(vcpu);
13573
13574         return 0;
13575 }
13576 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13577
13578 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13579 {
13580         bool pcid_enabled;
13581         struct x86_exception e;
13582         struct {
13583                 u64 pcid;
13584                 u64 gla;
13585         } operand;
13586         int r;
13587
13588         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13589         if (r != X86EMUL_CONTINUE)
13590                 return kvm_handle_memory_failure(vcpu, r, &e);
13591
13592         if (operand.pcid >> 12 != 0) {
13593                 kvm_inject_gp(vcpu, 0);
13594                 return 1;
13595         }
13596
13597         pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13598
13599         switch (type) {
13600         case INVPCID_TYPE_INDIV_ADDR:
13601                 /*
13602                  * LAM doesn't apply to addresses that are inputs to TLB
13603                  * invalidation.
13604                  */
13605                 if ((!pcid_enabled && (operand.pcid != 0)) ||
13606                     is_noncanonical_address(operand.gla, vcpu)) {
13607                         kvm_inject_gp(vcpu, 0);
13608                         return 1;
13609                 }
13610                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13611                 return kvm_skip_emulated_instruction(vcpu);
13612
13613         case INVPCID_TYPE_SINGLE_CTXT:
13614                 if (!pcid_enabled && (operand.pcid != 0)) {
13615                         kvm_inject_gp(vcpu, 0);
13616                         return 1;
13617                 }
13618
13619                 kvm_invalidate_pcid(vcpu, operand.pcid);
13620                 return kvm_skip_emulated_instruction(vcpu);
13621
13622         case INVPCID_TYPE_ALL_NON_GLOBAL:
13623                 /*
13624                  * Currently, KVM doesn't mark global entries in the shadow
13625                  * page tables, so a non-global flush just degenerates to a
13626                  * global flush. If needed, we could optimize this later by
13627                  * keeping track of global entries in shadow page tables.
13628                  */
13629
13630                 fallthrough;
13631         case INVPCID_TYPE_ALL_INCL_GLOBAL:
13632                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13633                 return kvm_skip_emulated_instruction(vcpu);
13634
13635         default:
13636                 kvm_inject_gp(vcpu, 0);
13637                 return 1;
13638         }
13639 }
13640 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13641
13642 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13643 {
13644         struct kvm_run *run = vcpu->run;
13645         struct kvm_mmio_fragment *frag;
13646         unsigned int len;
13647
13648         BUG_ON(!vcpu->mmio_needed);
13649
13650         /* Complete previous fragment */
13651         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13652         len = min(8u, frag->len);
13653         if (!vcpu->mmio_is_write)
13654                 memcpy(frag->data, run->mmio.data, len);
13655
13656         if (frag->len <= 8) {
13657                 /* Switch to the next fragment. */
13658                 frag++;
13659                 vcpu->mmio_cur_fragment++;
13660         } else {
13661                 /* Go forward to the next mmio piece. */
13662                 frag->data += len;
13663                 frag->gpa += len;
13664                 frag->len -= len;
13665         }
13666
13667         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13668                 vcpu->mmio_needed = 0;
13669
13670                 // VMG change, at this point, we're always done
13671                 // RIP has already been advanced
13672                 return 1;
13673         }
13674
13675         // More MMIO is needed
13676         run->mmio.phys_addr = frag->gpa;
13677         run->mmio.len = min(8u, frag->len);
13678         run->mmio.is_write = vcpu->mmio_is_write;
13679         if (run->mmio.is_write)
13680                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13681         run->exit_reason = KVM_EXIT_MMIO;
13682
13683         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13684
13685         return 0;
13686 }
13687
13688 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13689                           void *data)
13690 {
13691         int handled;
13692         struct kvm_mmio_fragment *frag;
13693
13694         if (!data)
13695                 return -EINVAL;
13696
13697         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13698         if (handled == bytes)
13699                 return 1;
13700
13701         bytes -= handled;
13702         gpa += handled;
13703         data += handled;
13704
13705         /*TODO: Check if need to increment number of frags */
13706         frag = vcpu->mmio_fragments;
13707         vcpu->mmio_nr_fragments = 1;
13708         frag->len = bytes;
13709         frag->gpa = gpa;
13710         frag->data = data;
13711
13712         vcpu->mmio_needed = 1;
13713         vcpu->mmio_cur_fragment = 0;
13714
13715         vcpu->run->mmio.phys_addr = gpa;
13716         vcpu->run->mmio.len = min(8u, frag->len);
13717         vcpu->run->mmio.is_write = 1;
13718         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13719         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13720
13721         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13722
13723         return 0;
13724 }
13725 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13726
13727 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13728                          void *data)
13729 {
13730         int handled;
13731         struct kvm_mmio_fragment *frag;
13732
13733         if (!data)
13734                 return -EINVAL;
13735
13736         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13737         if (handled == bytes)
13738                 return 1;
13739
13740         bytes -= handled;
13741         gpa += handled;
13742         data += handled;
13743
13744         /*TODO: Check if need to increment number of frags */
13745         frag = vcpu->mmio_fragments;
13746         vcpu->mmio_nr_fragments = 1;
13747         frag->len = bytes;
13748         frag->gpa = gpa;
13749         frag->data = data;
13750
13751         vcpu->mmio_needed = 1;
13752         vcpu->mmio_cur_fragment = 0;
13753
13754         vcpu->run->mmio.phys_addr = gpa;
13755         vcpu->run->mmio.len = min(8u, frag->len);
13756         vcpu->run->mmio.is_write = 0;
13757         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13758
13759         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13760
13761         return 0;
13762 }
13763 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13764
13765 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13766 {
13767         vcpu->arch.sev_pio_count -= count;
13768         vcpu->arch.sev_pio_data += count * size;
13769 }
13770
13771 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13772                            unsigned int port);
13773
13774 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13775 {
13776         int size = vcpu->arch.pio.size;
13777         int port = vcpu->arch.pio.port;
13778
13779         vcpu->arch.pio.count = 0;
13780         if (vcpu->arch.sev_pio_count)
13781                 return kvm_sev_es_outs(vcpu, size, port);
13782         return 1;
13783 }
13784
13785 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13786                            unsigned int port)
13787 {
13788         for (;;) {
13789                 unsigned int count =
13790                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13791                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13792
13793                 /* memcpy done already by emulator_pio_out.  */
13794                 advance_sev_es_emulated_pio(vcpu, count, size);
13795                 if (!ret)
13796                         break;
13797
13798                 /* Emulation done by the kernel.  */
13799                 if (!vcpu->arch.sev_pio_count)
13800                         return 1;
13801         }
13802
13803         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13804         return 0;
13805 }
13806
13807 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13808                           unsigned int port);
13809
13810 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13811 {
13812         unsigned count = vcpu->arch.pio.count;
13813         int size = vcpu->arch.pio.size;
13814         int port = vcpu->arch.pio.port;
13815
13816         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13817         advance_sev_es_emulated_pio(vcpu, count, size);
13818         if (vcpu->arch.sev_pio_count)
13819                 return kvm_sev_es_ins(vcpu, size, port);
13820         return 1;
13821 }
13822
13823 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13824                           unsigned int port)
13825 {
13826         for (;;) {
13827                 unsigned int count =
13828                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13829                 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13830                         break;
13831
13832                 /* Emulation done by the kernel.  */
13833                 advance_sev_es_emulated_pio(vcpu, count, size);
13834                 if (!vcpu->arch.sev_pio_count)
13835                         return 1;
13836         }
13837
13838         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13839         return 0;
13840 }
13841
13842 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13843                          unsigned int port, void *data,  unsigned int count,
13844                          int in)
13845 {
13846         vcpu->arch.sev_pio_data = data;
13847         vcpu->arch.sev_pio_count = count;
13848         return in ? kvm_sev_es_ins(vcpu, size, port)
13849                   : kvm_sev_es_outs(vcpu, size, port);
13850 }
13851 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13852
13853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13858 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13859 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13860 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13861 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13862 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13863 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13864 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13865 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13866 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13867 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13868 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13869 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13870 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13872 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13873 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13882
13883 static int __init kvm_x86_init(void)
13884 {
13885         kvm_mmu_x86_module_init();
13886         mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13887         return 0;
13888 }
13889 module_init(kvm_x86_init);
13890
13891 static void __exit kvm_x86_exit(void)
13892 {
13893         /*
13894          * If module_init() is implemented, module_exit() must also be
13895          * implemented to allow module unload.
13896          */
13897 }
13898 module_exit(kvm_x86_exit);
This page took 0.873544 seconds and 4 git commands to generate.