1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9 * Numa awareness, Christoph Lameter, SGI, June 2005
12 #include <linux/vmalloc.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
44 struct vfree_deferred {
45 struct llist_head list;
46 struct work_struct wq;
48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
50 static void __vunmap(const void *, int);
52 static void free_work(struct work_struct *w)
54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 struct llist_node *t, *llnode;
57 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 __vunmap((void *)llnode, 1);
61 /*** Page table manipulation functions ***/
63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
67 pte = pte_offset_kernel(pmd, addr);
69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 } while (pte++, addr += PAGE_SIZE, addr != end);
74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
79 pmd = pmd_offset(pud, addr);
81 next = pmd_addr_end(addr, end);
82 if (pmd_clear_huge(pmd))
84 if (pmd_none_or_clear_bad(pmd))
86 vunmap_pte_range(pmd, addr, next);
87 } while (pmd++, addr = next, addr != end);
90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
95 pud = pud_offset(p4d, addr);
97 next = pud_addr_end(addr, end);
98 if (pud_clear_huge(pud))
100 if (pud_none_or_clear_bad(pud))
102 vunmap_pmd_range(pud, addr, next);
103 } while (pud++, addr = next, addr != end);
106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
111 p4d = p4d_offset(pgd, addr);
113 next = p4d_addr_end(addr, end);
114 if (p4d_clear_huge(p4d))
116 if (p4d_none_or_clear_bad(p4d))
118 vunmap_pud_range(p4d, addr, next);
119 } while (p4d++, addr = next, addr != end);
122 static void vunmap_page_range(unsigned long addr, unsigned long end)
128 pgd = pgd_offset_k(addr);
130 next = pgd_addr_end(addr, end);
131 if (pgd_none_or_clear_bad(pgd))
133 vunmap_p4d_range(pgd, addr, next);
134 } while (pgd++, addr = next, addr != end);
137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
138 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
147 pte = pte_alloc_kernel(pmd, addr);
151 struct page *page = pages[*nr];
153 if (WARN_ON(!pte_none(*pte)))
157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
159 } while (pte++, addr += PAGE_SIZE, addr != end);
163 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
169 pmd = pmd_alloc(&init_mm, pud, addr);
173 next = pmd_addr_end(addr, end);
174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
176 } while (pmd++, addr = next, addr != end);
180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
181 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
186 pud = pud_alloc(&init_mm, p4d, addr);
190 next = pud_addr_end(addr, end);
191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
193 } while (pud++, addr = next, addr != end);
197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
203 p4d = p4d_alloc(&init_mm, pgd, addr);
207 next = p4d_addr_end(addr, end);
208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
210 } while (p4d++, addr = next, addr != end);
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
220 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 pgprot_t prot, struct page **pages)
225 unsigned long addr = start;
230 pgd = pgd_offset_k(addr);
232 next = pgd_addr_end(addr, end);
233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
236 } while (pgd++, addr = next, addr != end);
241 static int vmap_page_range(unsigned long start, unsigned long end,
242 pgprot_t prot, struct page **pages)
246 ret = vmap_page_range_noflush(start, end, prot, pages);
247 flush_cache_vmap(start, end);
251 int is_vmalloc_or_module_addr(const void *x)
254 * ARM, x86-64 and sparc64 put modules in a special place,
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr = (unsigned long)x;
260 if (addr >= MODULES_VADDR && addr < MODULES_END)
263 return is_vmalloc_addr(x);
267 * Walk a vmap address to the struct page it maps.
269 struct page *vmalloc_to_page(const void *vmalloc_addr)
271 unsigned long addr = (unsigned long) vmalloc_addr;
272 struct page *page = NULL;
273 pgd_t *pgd = pgd_offset_k(addr);
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
287 p4d = p4d_offset(pgd, addr);
290 pud = pud_offset(p4d, addr);
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
300 WARN_ON_ONCE(pud_bad(*pud));
301 if (pud_none(*pud) || pud_bad(*pud))
303 pmd = pmd_offset(pud, addr);
304 WARN_ON_ONCE(pmd_bad(*pmd));
305 if (pmd_none(*pmd) || pmd_bad(*pmd))
308 ptep = pte_offset_map(pmd, addr);
310 if (pte_present(pte))
311 page = pte_page(pte);
315 EXPORT_SYMBOL(vmalloc_to_page);
318 * Map a vmalloc()-space virtual address to the physical page frame number.
320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
322 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
324 EXPORT_SYMBOL(vmalloc_to_pfn);
327 /*** Global kva allocator ***/
329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
333 static DEFINE_SPINLOCK(vmap_area_lock);
334 static DEFINE_SPINLOCK(free_vmap_area_lock);
335 /* Export for kexec only */
336 LIST_HEAD(vmap_area_list);
337 static LLIST_HEAD(vmap_purge_list);
338 static struct rb_root vmap_area_root = RB_ROOT;
339 static bool vmap_initialized __read_mostly;
342 * This kmem_cache is used for vmap_area objects. Instead of
343 * allocating from slab we reuse an object from this cache to
344 * make things faster. Especially in "no edge" splitting of
347 static struct kmem_cache *vmap_area_cachep;
350 * This linked list is used in pair with free_vmap_area_root.
351 * It gives O(1) access to prev/next to perform fast coalescing.
353 static LIST_HEAD(free_vmap_area_list);
356 * This augment red-black tree represents the free vmap space.
357 * All vmap_area objects in this tree are sorted by va->va_start
358 * address. It is used for allocation and merging when a vmap
359 * object is released.
361 * Each vmap_area node contains a maximum available free block
362 * of its sub-tree, right or left. Therefore it is possible to
363 * find a lowest match of free area.
365 static struct rb_root free_vmap_area_root = RB_ROOT;
368 * Preload a CPU with one object for "no edge" split case. The
369 * aim is to get rid of allocations from the atomic context, thus
370 * to use more permissive allocation masks.
372 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
374 static __always_inline unsigned long
375 va_size(struct vmap_area *va)
377 return (va->va_end - va->va_start);
380 static __always_inline unsigned long
381 get_subtree_max_size(struct rb_node *node)
383 struct vmap_area *va;
385 va = rb_entry_safe(node, struct vmap_area, rb_node);
386 return va ? va->subtree_max_size : 0;
390 * Gets called when remove the node and rotate.
392 static __always_inline unsigned long
393 compute_subtree_max_size(struct vmap_area *va)
395 return max3(va_size(va),
396 get_subtree_max_size(va->rb_node.rb_left),
397 get_subtree_max_size(va->rb_node.rb_right));
400 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
401 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
403 static void purge_vmap_area_lazy(void);
404 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
405 static unsigned long lazy_max_pages(void);
407 static atomic_long_t nr_vmalloc_pages;
409 unsigned long vmalloc_nr_pages(void)
411 return atomic_long_read(&nr_vmalloc_pages);
414 static struct vmap_area *__find_vmap_area(unsigned long addr)
416 struct rb_node *n = vmap_area_root.rb_node;
419 struct vmap_area *va;
421 va = rb_entry(n, struct vmap_area, rb_node);
422 if (addr < va->va_start)
424 else if (addr >= va->va_end)
434 * This function returns back addresses of parent node
435 * and its left or right link for further processing.
437 static __always_inline struct rb_node **
438 find_va_links(struct vmap_area *va,
439 struct rb_root *root, struct rb_node *from,
440 struct rb_node **parent)
442 struct vmap_area *tmp_va;
443 struct rb_node **link;
446 link = &root->rb_node;
447 if (unlikely(!*link)) {
456 * Go to the bottom of the tree. When we hit the last point
457 * we end up with parent rb_node and correct direction, i name
458 * it link, where the new va->rb_node will be attached to.
461 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
464 * During the traversal we also do some sanity check.
465 * Trigger the BUG() if there are sides(left/right)
468 if (va->va_start < tmp_va->va_end &&
469 va->va_end <= tmp_va->va_start)
470 link = &(*link)->rb_left;
471 else if (va->va_end > tmp_va->va_start &&
472 va->va_start >= tmp_va->va_end)
473 link = &(*link)->rb_right;
478 *parent = &tmp_va->rb_node;
482 static __always_inline struct list_head *
483 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
485 struct list_head *list;
487 if (unlikely(!parent))
489 * The red-black tree where we try to find VA neighbors
490 * before merging or inserting is empty, i.e. it means
491 * there is no free vmap space. Normally it does not
492 * happen but we handle this case anyway.
496 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
497 return (&parent->rb_right == link ? list->next : list);
500 static __always_inline void
501 link_va(struct vmap_area *va, struct rb_root *root,
502 struct rb_node *parent, struct rb_node **link, struct list_head *head)
505 * VA is still not in the list, but we can
506 * identify its future previous list_head node.
508 if (likely(parent)) {
509 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
510 if (&parent->rb_right != link)
514 /* Insert to the rb-tree */
515 rb_link_node(&va->rb_node, parent, link);
516 if (root == &free_vmap_area_root) {
518 * Some explanation here. Just perform simple insertion
519 * to the tree. We do not set va->subtree_max_size to
520 * its current size before calling rb_insert_augmented().
521 * It is because of we populate the tree from the bottom
522 * to parent levels when the node _is_ in the tree.
524 * Therefore we set subtree_max_size to zero after insertion,
525 * to let __augment_tree_propagate_from() puts everything to
526 * the correct order later on.
528 rb_insert_augmented(&va->rb_node,
529 root, &free_vmap_area_rb_augment_cb);
530 va->subtree_max_size = 0;
532 rb_insert_color(&va->rb_node, root);
535 /* Address-sort this list */
536 list_add(&va->list, head);
539 static __always_inline void
540 unlink_va(struct vmap_area *va, struct rb_root *root)
542 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
545 if (root == &free_vmap_area_root)
546 rb_erase_augmented(&va->rb_node,
547 root, &free_vmap_area_rb_augment_cb);
549 rb_erase(&va->rb_node, root);
552 RB_CLEAR_NODE(&va->rb_node);
555 #if DEBUG_AUGMENT_PROPAGATE_CHECK
557 augment_tree_propagate_check(struct rb_node *n)
559 struct vmap_area *va;
560 struct rb_node *node;
567 va = rb_entry(n, struct vmap_area, rb_node);
568 size = va->subtree_max_size;
572 va = rb_entry(node, struct vmap_area, rb_node);
574 if (get_subtree_max_size(node->rb_left) == size) {
575 node = node->rb_left;
577 if (va_size(va) == size) {
582 node = node->rb_right;
587 va = rb_entry(n, struct vmap_area, rb_node);
588 pr_emerg("tree is corrupted: %lu, %lu\n",
589 va_size(va), va->subtree_max_size);
592 augment_tree_propagate_check(n->rb_left);
593 augment_tree_propagate_check(n->rb_right);
598 * This function populates subtree_max_size from bottom to upper
599 * levels starting from VA point. The propagation must be done
600 * when VA size is modified by changing its va_start/va_end. Or
601 * in case of newly inserting of VA to the tree.
603 * It means that __augment_tree_propagate_from() must be called:
604 * - After VA has been inserted to the tree(free path);
605 * - After VA has been shrunk(allocation path);
606 * - After VA has been increased(merging path).
608 * Please note that, it does not mean that upper parent nodes
609 * and their subtree_max_size are recalculated all the time up
618 * For example if we modify the node 4, shrinking it to 2, then
619 * no any modification is required. If we shrink the node 2 to 1
620 * its subtree_max_size is updated only, and set to 1. If we shrink
621 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
624 static __always_inline void
625 augment_tree_propagate_from(struct vmap_area *va)
627 struct rb_node *node = &va->rb_node;
628 unsigned long new_va_sub_max_size;
631 va = rb_entry(node, struct vmap_area, rb_node);
632 new_va_sub_max_size = compute_subtree_max_size(va);
635 * If the newly calculated maximum available size of the
636 * subtree is equal to the current one, then it means that
637 * the tree is propagated correctly. So we have to stop at
638 * this point to save cycles.
640 if (va->subtree_max_size == new_va_sub_max_size)
643 va->subtree_max_size = new_va_sub_max_size;
644 node = rb_parent(&va->rb_node);
647 #if DEBUG_AUGMENT_PROPAGATE_CHECK
648 augment_tree_propagate_check(free_vmap_area_root.rb_node);
653 insert_vmap_area(struct vmap_area *va,
654 struct rb_root *root, struct list_head *head)
656 struct rb_node **link;
657 struct rb_node *parent;
659 link = find_va_links(va, root, NULL, &parent);
660 link_va(va, root, parent, link, head);
664 insert_vmap_area_augment(struct vmap_area *va,
665 struct rb_node *from, struct rb_root *root,
666 struct list_head *head)
668 struct rb_node **link;
669 struct rb_node *parent;
672 link = find_va_links(va, NULL, from, &parent);
674 link = find_va_links(va, root, NULL, &parent);
676 link_va(va, root, parent, link, head);
677 augment_tree_propagate_from(va);
681 * Merge de-allocated chunk of VA memory with previous
682 * and next free blocks. If coalesce is not done a new
683 * free area is inserted. If VA has been merged, it is
686 static __always_inline struct vmap_area *
687 merge_or_add_vmap_area(struct vmap_area *va,
688 struct rb_root *root, struct list_head *head)
690 struct vmap_area *sibling;
691 struct list_head *next;
692 struct rb_node **link;
693 struct rb_node *parent;
697 * Find a place in the tree where VA potentially will be
698 * inserted, unless it is merged with its sibling/siblings.
700 link = find_va_links(va, root, NULL, &parent);
703 * Get next node of VA to check if merging can be done.
705 next = get_va_next_sibling(parent, link);
706 if (unlikely(next == NULL))
712 * |<------VA------>|<-----Next----->|
717 sibling = list_entry(next, struct vmap_area, list);
718 if (sibling->va_start == va->va_end) {
719 sibling->va_start = va->va_start;
721 /* Check and update the tree if needed. */
722 augment_tree_propagate_from(sibling);
724 /* Free vmap_area object. */
725 kmem_cache_free(vmap_area_cachep, va);
727 /* Point to the new merged area. */
736 * |<-----Prev----->|<------VA------>|
740 if (next->prev != head) {
741 sibling = list_entry(next->prev, struct vmap_area, list);
742 if (sibling->va_end == va->va_start) {
743 sibling->va_end = va->va_end;
745 /* Check and update the tree if needed. */
746 augment_tree_propagate_from(sibling);
751 /* Free vmap_area object. */
752 kmem_cache_free(vmap_area_cachep, va);
754 /* Point to the new merged area. */
762 link_va(va, root, parent, link, head);
763 augment_tree_propagate_from(va);
769 static __always_inline bool
770 is_within_this_va(struct vmap_area *va, unsigned long size,
771 unsigned long align, unsigned long vstart)
773 unsigned long nva_start_addr;
775 if (va->va_start > vstart)
776 nva_start_addr = ALIGN(va->va_start, align);
778 nva_start_addr = ALIGN(vstart, align);
780 /* Can be overflowed due to big size or alignment. */
781 if (nva_start_addr + size < nva_start_addr ||
782 nva_start_addr < vstart)
785 return (nva_start_addr + size <= va->va_end);
789 * Find the first free block(lowest start address) in the tree,
790 * that will accomplish the request corresponding to passing
793 static __always_inline struct vmap_area *
794 find_vmap_lowest_match(unsigned long size,
795 unsigned long align, unsigned long vstart)
797 struct vmap_area *va;
798 struct rb_node *node;
799 unsigned long length;
801 /* Start from the root. */
802 node = free_vmap_area_root.rb_node;
804 /* Adjust the search size for alignment overhead. */
805 length = size + align - 1;
808 va = rb_entry(node, struct vmap_area, rb_node);
810 if (get_subtree_max_size(node->rb_left) >= length &&
811 vstart < va->va_start) {
812 node = node->rb_left;
814 if (is_within_this_va(va, size, align, vstart))
818 * Does not make sense to go deeper towards the right
819 * sub-tree if it does not have a free block that is
820 * equal or bigger to the requested search length.
822 if (get_subtree_max_size(node->rb_right) >= length) {
823 node = node->rb_right;
828 * OK. We roll back and find the first right sub-tree,
829 * that will satisfy the search criteria. It can happen
830 * only once due to "vstart" restriction.
832 while ((node = rb_parent(node))) {
833 va = rb_entry(node, struct vmap_area, rb_node);
834 if (is_within_this_va(va, size, align, vstart))
837 if (get_subtree_max_size(node->rb_right) >= length &&
838 vstart <= va->va_start) {
839 node = node->rb_right;
849 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
850 #include <linux/random.h>
852 static struct vmap_area *
853 find_vmap_lowest_linear_match(unsigned long size,
854 unsigned long align, unsigned long vstart)
856 struct vmap_area *va;
858 list_for_each_entry(va, &free_vmap_area_list, list) {
859 if (!is_within_this_va(va, size, align, vstart))
869 find_vmap_lowest_match_check(unsigned long size)
871 struct vmap_area *va_1, *va_2;
872 unsigned long vstart;
875 get_random_bytes(&rnd, sizeof(rnd));
876 vstart = VMALLOC_START + rnd;
878 va_1 = find_vmap_lowest_match(size, 1, vstart);
879 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
882 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
889 FL_FIT_TYPE = 1, /* full fit */
890 LE_FIT_TYPE = 2, /* left edge fit */
891 RE_FIT_TYPE = 3, /* right edge fit */
892 NE_FIT_TYPE = 4 /* no edge fit */
895 static __always_inline enum fit_type
896 classify_va_fit_type(struct vmap_area *va,
897 unsigned long nva_start_addr, unsigned long size)
901 /* Check if it is within VA. */
902 if (nva_start_addr < va->va_start ||
903 nva_start_addr + size > va->va_end)
907 if (va->va_start == nva_start_addr) {
908 if (va->va_end == nva_start_addr + size)
912 } else if (va->va_end == nva_start_addr + size) {
921 static __always_inline int
922 adjust_va_to_fit_type(struct vmap_area *va,
923 unsigned long nva_start_addr, unsigned long size,
926 struct vmap_area *lva = NULL;
928 if (type == FL_FIT_TYPE) {
930 * No need to split VA, it fully fits.
936 unlink_va(va, &free_vmap_area_root);
937 kmem_cache_free(vmap_area_cachep, va);
938 } else if (type == LE_FIT_TYPE) {
940 * Split left edge of fit VA.
946 va->va_start += size;
947 } else if (type == RE_FIT_TYPE) {
949 * Split right edge of fit VA.
955 va->va_end = nva_start_addr;
956 } else if (type == NE_FIT_TYPE) {
958 * Split no edge of fit VA.
964 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
965 if (unlikely(!lva)) {
967 * For percpu allocator we do not do any pre-allocation
968 * and leave it as it is. The reason is it most likely
969 * never ends up with NE_FIT_TYPE splitting. In case of
970 * percpu allocations offsets and sizes are aligned to
971 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
972 * are its main fitting cases.
974 * There are a few exceptions though, as an example it is
975 * a first allocation (early boot up) when we have "one"
976 * big free space that has to be split.
978 * Also we can hit this path in case of regular "vmap"
979 * allocations, if "this" current CPU was not preloaded.
980 * See the comment in alloc_vmap_area() why. If so, then
981 * GFP_NOWAIT is used instead to get an extra object for
982 * split purpose. That is rare and most time does not
985 * What happens if an allocation gets failed. Basically,
986 * an "overflow" path is triggered to purge lazily freed
987 * areas to free some memory, then, the "retry" path is
988 * triggered to repeat one more time. See more details
989 * in alloc_vmap_area() function.
991 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
997 * Build the remainder.
999 lva->va_start = va->va_start;
1000 lva->va_end = nva_start_addr;
1003 * Shrink this VA to remaining size.
1005 va->va_start = nva_start_addr + size;
1010 if (type != FL_FIT_TYPE) {
1011 augment_tree_propagate_from(va);
1013 if (lva) /* type == NE_FIT_TYPE */
1014 insert_vmap_area_augment(lva, &va->rb_node,
1015 &free_vmap_area_root, &free_vmap_area_list);
1022 * Returns a start address of the newly allocated area, if success.
1023 * Otherwise a vend is returned that indicates failure.
1025 static __always_inline unsigned long
1026 __alloc_vmap_area(unsigned long size, unsigned long align,
1027 unsigned long vstart, unsigned long vend)
1029 unsigned long nva_start_addr;
1030 struct vmap_area *va;
1034 va = find_vmap_lowest_match(size, align, vstart);
1038 if (va->va_start > vstart)
1039 nva_start_addr = ALIGN(va->va_start, align);
1041 nva_start_addr = ALIGN(vstart, align);
1043 /* Check the "vend" restriction. */
1044 if (nva_start_addr + size > vend)
1047 /* Classify what we have found. */
1048 type = classify_va_fit_type(va, nva_start_addr, size);
1049 if (WARN_ON_ONCE(type == NOTHING_FIT))
1052 /* Update the free vmap_area. */
1053 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1057 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1058 find_vmap_lowest_match_check(size);
1061 return nva_start_addr;
1065 * Free a region of KVA allocated by alloc_vmap_area
1067 static void free_vmap_area(struct vmap_area *va)
1070 * Remove from the busy tree/list.
1072 spin_lock(&vmap_area_lock);
1073 unlink_va(va, &vmap_area_root);
1074 spin_unlock(&vmap_area_lock);
1077 * Insert/Merge it back to the free tree/list.
1079 spin_lock(&free_vmap_area_lock);
1080 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1081 spin_unlock(&free_vmap_area_lock);
1085 * Allocate a region of KVA of the specified size and alignment, within the
1088 static struct vmap_area *alloc_vmap_area(unsigned long size,
1089 unsigned long align,
1090 unsigned long vstart, unsigned long vend,
1091 int node, gfp_t gfp_mask)
1093 struct vmap_area *va, *pva;
1099 BUG_ON(offset_in_page(size));
1100 BUG_ON(!is_power_of_2(align));
1102 if (unlikely(!vmap_initialized))
1103 return ERR_PTR(-EBUSY);
1106 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1108 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1110 return ERR_PTR(-ENOMEM);
1113 * Only scan the relevant parts containing pointers to other objects
1114 * to avoid false negatives.
1116 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1120 * Preload this CPU with one extra vmap_area object. It is used
1121 * when fit type of free area is NE_FIT_TYPE. Please note, it
1122 * does not guarantee that an allocation occurs on a CPU that
1123 * is preloaded, instead we minimize the case when it is not.
1124 * It can happen because of cpu migration, because there is a
1125 * race until the below spinlock is taken.
1127 * The preload is done in non-atomic context, thus it allows us
1128 * to use more permissive allocation masks to be more stable under
1129 * low memory condition and high memory pressure. In rare case,
1130 * if not preloaded, GFP_NOWAIT is used.
1132 * Set "pva" to NULL here, because of "retry" path.
1136 if (!this_cpu_read(ne_fit_preload_node))
1138 * Even if it fails we do not really care about that.
1139 * Just proceed as it is. If needed "overflow" path
1140 * will refill the cache we allocate from.
1142 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1144 spin_lock(&free_vmap_area_lock);
1146 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1147 kmem_cache_free(vmap_area_cachep, pva);
1150 * If an allocation fails, the "vend" address is
1151 * returned. Therefore trigger the overflow path.
1153 addr = __alloc_vmap_area(size, align, vstart, vend);
1154 spin_unlock(&free_vmap_area_lock);
1156 if (unlikely(addr == vend))
1159 va->va_start = addr;
1160 va->va_end = addr + size;
1164 spin_lock(&vmap_area_lock);
1165 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1166 spin_unlock(&vmap_area_lock);
1168 BUG_ON(!IS_ALIGNED(va->va_start, align));
1169 BUG_ON(va->va_start < vstart);
1170 BUG_ON(va->va_end > vend);
1172 ret = kasan_populate_vmalloc(addr, size);
1175 return ERR_PTR(ret);
1182 purge_vmap_area_lazy();
1187 if (gfpflags_allow_blocking(gfp_mask)) {
1188 unsigned long freed = 0;
1189 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1196 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1197 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1200 kmem_cache_free(vmap_area_cachep, va);
1201 return ERR_PTR(-EBUSY);
1204 int register_vmap_purge_notifier(struct notifier_block *nb)
1206 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1208 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1210 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1212 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1214 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1217 * Clear the pagetable entries of a given vmap_area
1219 static void unmap_vmap_area(struct vmap_area *va)
1221 vunmap_page_range(va->va_start, va->va_end);
1225 * lazy_max_pages is the maximum amount of virtual address space we gather up
1226 * before attempting to purge with a TLB flush.
1228 * There is a tradeoff here: a larger number will cover more kernel page tables
1229 * and take slightly longer to purge, but it will linearly reduce the number of
1230 * global TLB flushes that must be performed. It would seem natural to scale
1231 * this number up linearly with the number of CPUs (because vmapping activity
1232 * could also scale linearly with the number of CPUs), however it is likely
1233 * that in practice, workloads might be constrained in other ways that mean
1234 * vmap activity will not scale linearly with CPUs. Also, I want to be
1235 * conservative and not introduce a big latency on huge systems, so go with
1236 * a less aggressive log scale. It will still be an improvement over the old
1237 * code, and it will be simple to change the scale factor if we find that it
1238 * becomes a problem on bigger systems.
1240 static unsigned long lazy_max_pages(void)
1244 log = fls(num_online_cpus());
1246 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1249 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1252 * Serialize vmap purging. There is no actual criticial section protected
1253 * by this look, but we want to avoid concurrent calls for performance
1254 * reasons and to make the pcpu_get_vm_areas more deterministic.
1256 static DEFINE_MUTEX(vmap_purge_lock);
1258 /* for per-CPU blocks */
1259 static void purge_fragmented_blocks_allcpus(void);
1262 * called before a call to iounmap() if the caller wants vm_area_struct's
1263 * immediately freed.
1265 void set_iounmap_nonlazy(void)
1267 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1271 * Purges all lazily-freed vmap areas.
1273 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1275 unsigned long resched_threshold;
1276 struct llist_node *valist;
1277 struct vmap_area *va;
1278 struct vmap_area *n_va;
1280 lockdep_assert_held(&vmap_purge_lock);
1282 valist = llist_del_all(&vmap_purge_list);
1283 if (unlikely(valist == NULL))
1287 * First make sure the mappings are removed from all page-tables
1288 * before they are freed.
1293 * TODO: to calculate a flush range without looping.
1294 * The list can be up to lazy_max_pages() elements.
1296 llist_for_each_entry(va, valist, purge_list) {
1297 if (va->va_start < start)
1298 start = va->va_start;
1299 if (va->va_end > end)
1303 flush_tlb_kernel_range(start, end);
1304 resched_threshold = lazy_max_pages() << 1;
1306 spin_lock(&free_vmap_area_lock);
1307 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1308 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1309 unsigned long orig_start = va->va_start;
1310 unsigned long orig_end = va->va_end;
1313 * Finally insert or merge lazily-freed area. It is
1314 * detached and there is no need to "unlink" it from
1317 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1318 &free_vmap_area_list);
1320 if (is_vmalloc_or_module_addr((void *)orig_start))
1321 kasan_release_vmalloc(orig_start, orig_end,
1322 va->va_start, va->va_end);
1324 atomic_long_sub(nr, &vmap_lazy_nr);
1326 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1327 cond_resched_lock(&free_vmap_area_lock);
1329 spin_unlock(&free_vmap_area_lock);
1334 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1335 * is already purging.
1337 static void try_purge_vmap_area_lazy(void)
1339 if (mutex_trylock(&vmap_purge_lock)) {
1340 __purge_vmap_area_lazy(ULONG_MAX, 0);
1341 mutex_unlock(&vmap_purge_lock);
1346 * Kick off a purge of the outstanding lazy areas.
1348 static void purge_vmap_area_lazy(void)
1350 mutex_lock(&vmap_purge_lock);
1351 purge_fragmented_blocks_allcpus();
1352 __purge_vmap_area_lazy(ULONG_MAX, 0);
1353 mutex_unlock(&vmap_purge_lock);
1357 * Free a vmap area, caller ensuring that the area has been unmapped
1358 * and flush_cache_vunmap had been called for the correct range
1361 static void free_vmap_area_noflush(struct vmap_area *va)
1363 unsigned long nr_lazy;
1365 spin_lock(&vmap_area_lock);
1366 unlink_va(va, &vmap_area_root);
1367 spin_unlock(&vmap_area_lock);
1369 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1370 PAGE_SHIFT, &vmap_lazy_nr);
1372 /* After this point, we may free va at any time */
1373 llist_add(&va->purge_list, &vmap_purge_list);
1375 if (unlikely(nr_lazy > lazy_max_pages()))
1376 try_purge_vmap_area_lazy();
1380 * Free and unmap a vmap area
1382 static void free_unmap_vmap_area(struct vmap_area *va)
1384 flush_cache_vunmap(va->va_start, va->va_end);
1385 unmap_vmap_area(va);
1386 if (debug_pagealloc_enabled_static())
1387 flush_tlb_kernel_range(va->va_start, va->va_end);
1389 free_vmap_area_noflush(va);
1392 static struct vmap_area *find_vmap_area(unsigned long addr)
1394 struct vmap_area *va;
1396 spin_lock(&vmap_area_lock);
1397 va = __find_vmap_area(addr);
1398 spin_unlock(&vmap_area_lock);
1403 /*** Per cpu kva allocator ***/
1406 * vmap space is limited especially on 32 bit architectures. Ensure there is
1407 * room for at least 16 percpu vmap blocks per CPU.
1410 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1411 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1412 * instead (we just need a rough idea)
1414 #if BITS_PER_LONG == 32
1415 #define VMALLOC_SPACE (128UL*1024*1024)
1417 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1420 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1421 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1422 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1423 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1424 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1425 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1426 #define VMAP_BBMAP_BITS \
1427 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1428 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1429 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1431 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1433 struct vmap_block_queue {
1435 struct list_head free;
1440 struct vmap_area *va;
1441 unsigned long free, dirty;
1442 unsigned long dirty_min, dirty_max; /*< dirty range */
1443 struct list_head free_list;
1444 struct rcu_head rcu_head;
1445 struct list_head purge;
1448 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1449 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1452 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1453 * in the free path. Could get rid of this if we change the API to return a
1454 * "cookie" from alloc, to be passed to free. But no big deal yet.
1456 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1457 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1460 * We should probably have a fallback mechanism to allocate virtual memory
1461 * out of partially filled vmap blocks. However vmap block sizing should be
1462 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1466 static unsigned long addr_to_vb_idx(unsigned long addr)
1468 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1469 addr /= VMAP_BLOCK_SIZE;
1473 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1477 addr = va_start + (pages_off << PAGE_SHIFT);
1478 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1479 return (void *)addr;
1483 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1484 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1485 * @order: how many 2^order pages should be occupied in newly allocated block
1486 * @gfp_mask: flags for the page level allocator
1488 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1490 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1492 struct vmap_block_queue *vbq;
1493 struct vmap_block *vb;
1494 struct vmap_area *va;
1495 unsigned long vb_idx;
1499 node = numa_node_id();
1501 vb = kmalloc_node(sizeof(struct vmap_block),
1502 gfp_mask & GFP_RECLAIM_MASK, node);
1504 return ERR_PTR(-ENOMEM);
1506 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1507 VMALLOC_START, VMALLOC_END,
1511 return ERR_CAST(va);
1514 err = radix_tree_preload(gfp_mask);
1515 if (unlikely(err)) {
1518 return ERR_PTR(err);
1521 vaddr = vmap_block_vaddr(va->va_start, 0);
1522 spin_lock_init(&vb->lock);
1524 /* At least something should be left free */
1525 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1526 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1528 vb->dirty_min = VMAP_BBMAP_BITS;
1530 INIT_LIST_HEAD(&vb->free_list);
1532 vb_idx = addr_to_vb_idx(va->va_start);
1533 spin_lock(&vmap_block_tree_lock);
1534 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1535 spin_unlock(&vmap_block_tree_lock);
1537 radix_tree_preload_end();
1539 vbq = &get_cpu_var(vmap_block_queue);
1540 spin_lock(&vbq->lock);
1541 list_add_tail_rcu(&vb->free_list, &vbq->free);
1542 spin_unlock(&vbq->lock);
1543 put_cpu_var(vmap_block_queue);
1548 static void free_vmap_block(struct vmap_block *vb)
1550 struct vmap_block *tmp;
1551 unsigned long vb_idx;
1553 vb_idx = addr_to_vb_idx(vb->va->va_start);
1554 spin_lock(&vmap_block_tree_lock);
1555 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1556 spin_unlock(&vmap_block_tree_lock);
1559 free_vmap_area_noflush(vb->va);
1560 kfree_rcu(vb, rcu_head);
1563 static void purge_fragmented_blocks(int cpu)
1566 struct vmap_block *vb;
1567 struct vmap_block *n_vb;
1568 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1571 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1573 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1576 spin_lock(&vb->lock);
1577 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1578 vb->free = 0; /* prevent further allocs after releasing lock */
1579 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1581 vb->dirty_max = VMAP_BBMAP_BITS;
1582 spin_lock(&vbq->lock);
1583 list_del_rcu(&vb->free_list);
1584 spin_unlock(&vbq->lock);
1585 spin_unlock(&vb->lock);
1586 list_add_tail(&vb->purge, &purge);
1588 spin_unlock(&vb->lock);
1592 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1593 list_del(&vb->purge);
1594 free_vmap_block(vb);
1598 static void purge_fragmented_blocks_allcpus(void)
1602 for_each_possible_cpu(cpu)
1603 purge_fragmented_blocks(cpu);
1606 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1608 struct vmap_block_queue *vbq;
1609 struct vmap_block *vb;
1613 BUG_ON(offset_in_page(size));
1614 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1615 if (WARN_ON(size == 0)) {
1617 * Allocating 0 bytes isn't what caller wants since
1618 * get_order(0) returns funny result. Just warn and terminate
1623 order = get_order(size);
1626 vbq = &get_cpu_var(vmap_block_queue);
1627 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1628 unsigned long pages_off;
1630 spin_lock(&vb->lock);
1631 if (vb->free < (1UL << order)) {
1632 spin_unlock(&vb->lock);
1636 pages_off = VMAP_BBMAP_BITS - vb->free;
1637 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1638 vb->free -= 1UL << order;
1639 if (vb->free == 0) {
1640 spin_lock(&vbq->lock);
1641 list_del_rcu(&vb->free_list);
1642 spin_unlock(&vbq->lock);
1645 spin_unlock(&vb->lock);
1649 put_cpu_var(vmap_block_queue);
1652 /* Allocate new block if nothing was found */
1654 vaddr = new_vmap_block(order, gfp_mask);
1659 static void vb_free(const void *addr, unsigned long size)
1661 unsigned long offset;
1662 unsigned long vb_idx;
1664 struct vmap_block *vb;
1666 BUG_ON(offset_in_page(size));
1667 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1669 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1671 order = get_order(size);
1673 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1674 offset >>= PAGE_SHIFT;
1676 vb_idx = addr_to_vb_idx((unsigned long)addr);
1678 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1682 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1684 if (debug_pagealloc_enabled_static())
1685 flush_tlb_kernel_range((unsigned long)addr,
1686 (unsigned long)addr + size);
1688 spin_lock(&vb->lock);
1690 /* Expand dirty range */
1691 vb->dirty_min = min(vb->dirty_min, offset);
1692 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1694 vb->dirty += 1UL << order;
1695 if (vb->dirty == VMAP_BBMAP_BITS) {
1697 spin_unlock(&vb->lock);
1698 free_vmap_block(vb);
1700 spin_unlock(&vb->lock);
1703 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1707 if (unlikely(!vmap_initialized))
1712 for_each_possible_cpu(cpu) {
1713 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1714 struct vmap_block *vb;
1717 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1718 spin_lock(&vb->lock);
1720 unsigned long va_start = vb->va->va_start;
1723 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1724 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1726 start = min(s, start);
1731 spin_unlock(&vb->lock);
1736 mutex_lock(&vmap_purge_lock);
1737 purge_fragmented_blocks_allcpus();
1738 if (!__purge_vmap_area_lazy(start, end) && flush)
1739 flush_tlb_kernel_range(start, end);
1740 mutex_unlock(&vmap_purge_lock);
1744 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1746 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1747 * to amortize TLB flushing overheads. What this means is that any page you
1748 * have now, may, in a former life, have been mapped into kernel virtual
1749 * address by the vmap layer and so there might be some CPUs with TLB entries
1750 * still referencing that page (additional to the regular 1:1 kernel mapping).
1752 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1753 * be sure that none of the pages we have control over will have any aliases
1754 * from the vmap layer.
1756 void vm_unmap_aliases(void)
1758 unsigned long start = ULONG_MAX, end = 0;
1761 _vm_unmap_aliases(start, end, flush);
1763 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1766 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1767 * @mem: the pointer returned by vm_map_ram
1768 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1770 void vm_unmap_ram(const void *mem, unsigned int count)
1772 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1773 unsigned long addr = (unsigned long)mem;
1774 struct vmap_area *va;
1778 BUG_ON(addr < VMALLOC_START);
1779 BUG_ON(addr > VMALLOC_END);
1780 BUG_ON(!PAGE_ALIGNED(addr));
1782 kasan_poison_vmalloc(mem, size);
1784 if (likely(count <= VMAP_MAX_ALLOC)) {
1785 debug_check_no_locks_freed(mem, size);
1790 va = find_vmap_area(addr);
1792 debug_check_no_locks_freed((void *)va->va_start,
1793 (va->va_end - va->va_start));
1794 free_unmap_vmap_area(va);
1796 EXPORT_SYMBOL(vm_unmap_ram);
1799 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1800 * @pages: an array of pointers to the pages to be mapped
1801 * @count: number of pages
1802 * @node: prefer to allocate data structures on this node
1803 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1805 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1806 * faster than vmap so it's good. But if you mix long-life and short-life
1807 * objects with vm_map_ram(), it could consume lots of address space through
1808 * fragmentation (especially on a 32bit machine). You could see failures in
1809 * the end. Please use this function for short-lived objects.
1811 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1813 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1815 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1819 if (likely(count <= VMAP_MAX_ALLOC)) {
1820 mem = vb_alloc(size, GFP_KERNEL);
1823 addr = (unsigned long)mem;
1825 struct vmap_area *va;
1826 va = alloc_vmap_area(size, PAGE_SIZE,
1827 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1831 addr = va->va_start;
1835 kasan_unpoison_vmalloc(mem, size);
1837 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1838 vm_unmap_ram(mem, count);
1843 EXPORT_SYMBOL(vm_map_ram);
1845 static struct vm_struct *vmlist __initdata;
1848 * vm_area_add_early - add vmap area early during boot
1849 * @vm: vm_struct to add
1851 * This function is used to add fixed kernel vm area to vmlist before
1852 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1853 * should contain proper values and the other fields should be zero.
1855 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1857 void __init vm_area_add_early(struct vm_struct *vm)
1859 struct vm_struct *tmp, **p;
1861 BUG_ON(vmap_initialized);
1862 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1863 if (tmp->addr >= vm->addr) {
1864 BUG_ON(tmp->addr < vm->addr + vm->size);
1867 BUG_ON(tmp->addr + tmp->size > vm->addr);
1874 * vm_area_register_early - register vmap area early during boot
1875 * @vm: vm_struct to register
1876 * @align: requested alignment
1878 * This function is used to register kernel vm area before
1879 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1880 * proper values on entry and other fields should be zero. On return,
1881 * vm->addr contains the allocated address.
1883 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1885 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1887 static size_t vm_init_off __initdata;
1890 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1891 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1893 vm->addr = (void *)addr;
1895 vm_area_add_early(vm);
1898 static void vmap_init_free_space(void)
1900 unsigned long vmap_start = 1;
1901 const unsigned long vmap_end = ULONG_MAX;
1902 struct vmap_area *busy, *free;
1906 * -|-----|.....|-----|-----|-----|.....|-
1908 * |<--------------------------------->|
1910 list_for_each_entry(busy, &vmap_area_list, list) {
1911 if (busy->va_start - vmap_start > 0) {
1912 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1913 if (!WARN_ON_ONCE(!free)) {
1914 free->va_start = vmap_start;
1915 free->va_end = busy->va_start;
1917 insert_vmap_area_augment(free, NULL,
1918 &free_vmap_area_root,
1919 &free_vmap_area_list);
1923 vmap_start = busy->va_end;
1926 if (vmap_end - vmap_start > 0) {
1927 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1928 if (!WARN_ON_ONCE(!free)) {
1929 free->va_start = vmap_start;
1930 free->va_end = vmap_end;
1932 insert_vmap_area_augment(free, NULL,
1933 &free_vmap_area_root,
1934 &free_vmap_area_list);
1939 void __init vmalloc_init(void)
1941 struct vmap_area *va;
1942 struct vm_struct *tmp;
1946 * Create the cache for vmap_area objects.
1948 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1950 for_each_possible_cpu(i) {
1951 struct vmap_block_queue *vbq;
1952 struct vfree_deferred *p;
1954 vbq = &per_cpu(vmap_block_queue, i);
1955 spin_lock_init(&vbq->lock);
1956 INIT_LIST_HEAD(&vbq->free);
1957 p = &per_cpu(vfree_deferred, i);
1958 init_llist_head(&p->list);
1959 INIT_WORK(&p->wq, free_work);
1962 /* Import existing vmlist entries. */
1963 for (tmp = vmlist; tmp; tmp = tmp->next) {
1964 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1965 if (WARN_ON_ONCE(!va))
1968 va->va_start = (unsigned long)tmp->addr;
1969 va->va_end = va->va_start + tmp->size;
1971 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1975 * Now we can initialize a free vmap space.
1977 vmap_init_free_space();
1978 vmap_initialized = true;
1982 * map_kernel_range_noflush - map kernel VM area with the specified pages
1983 * @addr: start of the VM area to map
1984 * @size: size of the VM area to map
1985 * @prot: page protection flags to use
1986 * @pages: pages to map
1988 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1989 * specify should have been allocated using get_vm_area() and its
1993 * This function does NOT do any cache flushing. The caller is
1994 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1995 * before calling this function.
1998 * The number of pages mapped on success, -errno on failure.
2000 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
2001 pgprot_t prot, struct page **pages)
2003 return vmap_page_range_noflush(addr, addr + size, prot, pages);
2007 * unmap_kernel_range_noflush - unmap kernel VM area
2008 * @addr: start of the VM area to unmap
2009 * @size: size of the VM area to unmap
2011 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
2012 * specify should have been allocated using get_vm_area() and its
2016 * This function does NOT do any cache flushing. The caller is
2017 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
2018 * before calling this function and flush_tlb_kernel_range() after.
2020 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
2022 vunmap_page_range(addr, addr + size);
2024 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
2027 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2028 * @addr: start of the VM area to unmap
2029 * @size: size of the VM area to unmap
2031 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2032 * the unmapping and tlb after.
2034 void unmap_kernel_range(unsigned long addr, unsigned long size)
2036 unsigned long end = addr + size;
2038 flush_cache_vunmap(addr, end);
2039 vunmap_page_range(addr, end);
2040 flush_tlb_kernel_range(addr, end);
2042 EXPORT_SYMBOL_GPL(unmap_kernel_range);
2044 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2046 unsigned long addr = (unsigned long)area->addr;
2047 unsigned long end = addr + get_vm_area_size(area);
2050 err = vmap_page_range(addr, end, prot, pages);
2052 return err > 0 ? 0 : err;
2054 EXPORT_SYMBOL_GPL(map_vm_area);
2056 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2057 struct vmap_area *va, unsigned long flags, const void *caller)
2060 vm->addr = (void *)va->va_start;
2061 vm->size = va->va_end - va->va_start;
2062 vm->caller = caller;
2066 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2067 unsigned long flags, const void *caller)
2069 spin_lock(&vmap_area_lock);
2070 setup_vmalloc_vm_locked(vm, va, flags, caller);
2071 spin_unlock(&vmap_area_lock);
2074 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2077 * Before removing VM_UNINITIALIZED,
2078 * we should make sure that vm has proper values.
2079 * Pair with smp_rmb() in show_numa_info().
2082 vm->flags &= ~VM_UNINITIALIZED;
2085 static struct vm_struct *__get_vm_area_node(unsigned long size,
2086 unsigned long align, unsigned long flags, unsigned long start,
2087 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2089 struct vmap_area *va;
2090 struct vm_struct *area;
2091 unsigned long requested_size = size;
2093 BUG_ON(in_interrupt());
2094 size = PAGE_ALIGN(size);
2095 if (unlikely(!size))
2098 if (flags & VM_IOREMAP)
2099 align = 1ul << clamp_t(int, get_count_order_long(size),
2100 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2102 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2103 if (unlikely(!area))
2106 if (!(flags & VM_NO_GUARD))
2109 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2115 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2117 setup_vmalloc_vm(area, va, flags, caller);
2122 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2123 unsigned long start, unsigned long end)
2125 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2126 GFP_KERNEL, __builtin_return_address(0));
2128 EXPORT_SYMBOL_GPL(__get_vm_area);
2130 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2131 unsigned long start, unsigned long end,
2134 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2135 GFP_KERNEL, caller);
2139 * get_vm_area - reserve a contiguous kernel virtual area
2140 * @size: size of the area
2141 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2143 * Search an area of @size in the kernel virtual mapping area,
2144 * and reserved it for out purposes. Returns the area descriptor
2145 * on success or %NULL on failure.
2147 * Return: the area descriptor on success or %NULL on failure.
2149 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2151 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2152 NUMA_NO_NODE, GFP_KERNEL,
2153 __builtin_return_address(0));
2156 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2159 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2160 NUMA_NO_NODE, GFP_KERNEL, caller);
2164 * find_vm_area - find a continuous kernel virtual area
2165 * @addr: base address
2167 * Search for the kernel VM area starting at @addr, and return it.
2168 * It is up to the caller to do all required locking to keep the returned
2171 * Return: pointer to the found area or %NULL on faulure
2173 struct vm_struct *find_vm_area(const void *addr)
2175 struct vmap_area *va;
2177 va = find_vmap_area((unsigned long)addr);
2185 * remove_vm_area - find and remove a continuous kernel virtual area
2186 * @addr: base address
2188 * Search for the kernel VM area starting at @addr, and remove it.
2189 * This function returns the found VM area, but using it is NOT safe
2190 * on SMP machines, except for its size or flags.
2192 * Return: pointer to the found area or %NULL on faulure
2194 struct vm_struct *remove_vm_area(const void *addr)
2196 struct vmap_area *va;
2200 spin_lock(&vmap_area_lock);
2201 va = __find_vmap_area((unsigned long)addr);
2203 struct vm_struct *vm = va->vm;
2206 spin_unlock(&vmap_area_lock);
2208 kasan_free_shadow(vm);
2209 free_unmap_vmap_area(va);
2214 spin_unlock(&vmap_area_lock);
2218 static inline void set_area_direct_map(const struct vm_struct *area,
2219 int (*set_direct_map)(struct page *page))
2223 for (i = 0; i < area->nr_pages; i++)
2224 if (page_address(area->pages[i]))
2225 set_direct_map(area->pages[i]);
2228 /* Handle removing and resetting vm mappings related to the vm_struct. */
2229 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2231 unsigned long start = ULONG_MAX, end = 0;
2232 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2236 remove_vm_area(area->addr);
2238 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2243 * If not deallocating pages, just do the flush of the VM area and
2246 if (!deallocate_pages) {
2252 * If execution gets here, flush the vm mapping and reset the direct
2253 * map. Find the start and end range of the direct mappings to make sure
2254 * the vm_unmap_aliases() flush includes the direct map.
2256 for (i = 0; i < area->nr_pages; i++) {
2257 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2259 start = min(addr, start);
2260 end = max(addr + PAGE_SIZE, end);
2266 * Set direct map to something invalid so that it won't be cached if
2267 * there are any accesses after the TLB flush, then flush the TLB and
2268 * reset the direct map permissions to the default.
2270 set_area_direct_map(area, set_direct_map_invalid_noflush);
2271 _vm_unmap_aliases(start, end, flush_dmap);
2272 set_area_direct_map(area, set_direct_map_default_noflush);
2275 static void __vunmap(const void *addr, int deallocate_pages)
2277 struct vm_struct *area;
2282 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2286 area = find_vm_area(addr);
2287 if (unlikely(!area)) {
2288 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2293 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2294 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2296 kasan_poison_vmalloc(area->addr, area->size);
2298 vm_remove_mappings(area, deallocate_pages);
2300 if (deallocate_pages) {
2303 for (i = 0; i < area->nr_pages; i++) {
2304 struct page *page = area->pages[i];
2307 __free_pages(page, 0);
2309 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2311 kvfree(area->pages);
2318 static inline void __vfree_deferred(const void *addr)
2321 * Use raw_cpu_ptr() because this can be called from preemptible
2322 * context. Preemption is absolutely fine here, because the llist_add()
2323 * implementation is lockless, so it works even if we are adding to
2324 * nother cpu's list. schedule_work() should be fine with this too.
2326 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2328 if (llist_add((struct llist_node *)addr, &p->list))
2329 schedule_work(&p->wq);
2333 * vfree_atomic - release memory allocated by vmalloc()
2334 * @addr: memory base address
2336 * This one is just like vfree() but can be called in any atomic context
2339 void vfree_atomic(const void *addr)
2343 kmemleak_free(addr);
2347 __vfree_deferred(addr);
2350 static void __vfree(const void *addr)
2352 if (unlikely(in_interrupt()))
2353 __vfree_deferred(addr);
2359 * vfree - release memory allocated by vmalloc()
2360 * @addr: memory base address
2362 * Free the virtually continuous memory area starting at @addr, as
2363 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2364 * NULL, no operation is performed.
2366 * Must not be called in NMI context (strictly speaking, only if we don't
2367 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2368 * conventions for vfree() arch-depenedent would be a really bad idea)
2370 * May sleep if called *not* from interrupt context.
2372 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2374 void vfree(const void *addr)
2378 kmemleak_free(addr);
2380 might_sleep_if(!in_interrupt());
2387 EXPORT_SYMBOL(vfree);
2390 * vunmap - release virtual mapping obtained by vmap()
2391 * @addr: memory base address
2393 * Free the virtually contiguous memory area starting at @addr,
2394 * which was created from the page array passed to vmap().
2396 * Must not be called in interrupt context.
2398 void vunmap(const void *addr)
2400 BUG_ON(in_interrupt());
2405 EXPORT_SYMBOL(vunmap);
2408 * vmap - map an array of pages into virtually contiguous space
2409 * @pages: array of page pointers
2410 * @count: number of pages to map
2411 * @flags: vm_area->flags
2412 * @prot: page protection for the mapping
2414 * Maps @count pages from @pages into contiguous kernel virtual
2417 * Return: the address of the area or %NULL on failure
2419 void *vmap(struct page **pages, unsigned int count,
2420 unsigned long flags, pgprot_t prot)
2422 struct vm_struct *area;
2423 unsigned long size; /* In bytes */
2427 if (count > totalram_pages())
2430 size = (unsigned long)count << PAGE_SHIFT;
2431 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2435 if (map_vm_area(area, prot, pages)) {
2442 EXPORT_SYMBOL(vmap);
2444 static void *__vmalloc_node(unsigned long size, unsigned long align,
2445 gfp_t gfp_mask, pgprot_t prot,
2446 int node, const void *caller);
2447 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2448 pgprot_t prot, int node)
2450 struct page **pages;
2451 unsigned int nr_pages, array_size, i;
2452 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2453 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2454 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2458 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2459 array_size = (nr_pages * sizeof(struct page *));
2461 /* Please note that the recursion is strictly bounded. */
2462 if (array_size > PAGE_SIZE) {
2463 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2464 PAGE_KERNEL, node, area->caller);
2466 pages = kmalloc_node(array_size, nested_gfp, node);
2470 remove_vm_area(area->addr);
2475 area->pages = pages;
2476 area->nr_pages = nr_pages;
2478 for (i = 0; i < area->nr_pages; i++) {
2481 if (node == NUMA_NO_NODE)
2482 page = alloc_page(alloc_mask|highmem_mask);
2484 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2486 if (unlikely(!page)) {
2487 /* Successfully allocated i pages, free them in __vunmap() */
2489 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2492 area->pages[i] = page;
2493 if (gfpflags_allow_blocking(gfp_mask))
2496 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2498 if (map_vm_area(area, prot, pages))
2503 warn_alloc(gfp_mask, NULL,
2504 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2505 (area->nr_pages*PAGE_SIZE), area->size);
2506 __vfree(area->addr);
2511 * __vmalloc_node_range - allocate virtually contiguous memory
2512 * @size: allocation size
2513 * @align: desired alignment
2514 * @start: vm area range start
2515 * @end: vm area range end
2516 * @gfp_mask: flags for the page level allocator
2517 * @prot: protection mask for the allocated pages
2518 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2519 * @node: node to use for allocation or NUMA_NO_NODE
2520 * @caller: caller's return address
2522 * Allocate enough pages to cover @size from the page level
2523 * allocator with @gfp_mask flags. Map them into contiguous
2524 * kernel virtual space, using a pagetable protection of @prot.
2526 * Return: the address of the area or %NULL on failure
2528 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2529 unsigned long start, unsigned long end, gfp_t gfp_mask,
2530 pgprot_t prot, unsigned long vm_flags, int node,
2533 struct vm_struct *area;
2535 unsigned long real_size = size;
2537 size = PAGE_ALIGN(size);
2538 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2541 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2542 vm_flags, start, end, node, gfp_mask, caller);
2546 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2551 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2552 * flag. It means that vm_struct is not fully initialized.
2553 * Now, it is fully initialized, so remove this flag here.
2555 clear_vm_uninitialized_flag(area);
2557 kmemleak_vmalloc(area, size, gfp_mask);
2562 warn_alloc(gfp_mask, NULL,
2563 "vmalloc: allocation failure: %lu bytes", real_size);
2568 * This is only for performance analysis of vmalloc and stress purpose.
2569 * It is required by vmalloc test module, therefore do not use it other
2572 #ifdef CONFIG_TEST_VMALLOC_MODULE
2573 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2577 * __vmalloc_node - allocate virtually contiguous memory
2578 * @size: allocation size
2579 * @align: desired alignment
2580 * @gfp_mask: flags for the page level allocator
2581 * @prot: protection mask for the allocated pages
2582 * @node: node to use for allocation or NUMA_NO_NODE
2583 * @caller: caller's return address
2585 * Allocate enough pages to cover @size from the page level
2586 * allocator with @gfp_mask flags. Map them into contiguous
2587 * kernel virtual space, using a pagetable protection of @prot.
2589 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2590 * and __GFP_NOFAIL are not supported
2592 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2595 * Return: pointer to the allocated memory or %NULL on error
2597 static void *__vmalloc_node(unsigned long size, unsigned long align,
2598 gfp_t gfp_mask, pgprot_t prot,
2599 int node, const void *caller)
2601 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2602 gfp_mask, prot, 0, node, caller);
2605 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2607 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2608 __builtin_return_address(0));
2610 EXPORT_SYMBOL(__vmalloc);
2612 static inline void *__vmalloc_node_flags(unsigned long size,
2613 int node, gfp_t flags)
2615 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2616 node, __builtin_return_address(0));
2620 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2623 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2627 * vmalloc - allocate virtually contiguous memory
2628 * @size: allocation size
2630 * Allocate enough pages to cover @size from the page level
2631 * allocator and map them into contiguous kernel virtual space.
2633 * For tight control over page level allocator and protection flags
2634 * use __vmalloc() instead.
2636 * Return: pointer to the allocated memory or %NULL on error
2638 void *vmalloc(unsigned long size)
2640 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2643 EXPORT_SYMBOL(vmalloc);
2646 * vzalloc - allocate virtually contiguous memory with zero fill
2647 * @size: allocation size
2649 * Allocate enough pages to cover @size from the page level
2650 * allocator and map them into contiguous kernel virtual space.
2651 * The memory allocated is set to zero.
2653 * For tight control over page level allocator and protection flags
2654 * use __vmalloc() instead.
2656 * Return: pointer to the allocated memory or %NULL on error
2658 void *vzalloc(unsigned long size)
2660 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2661 GFP_KERNEL | __GFP_ZERO);
2663 EXPORT_SYMBOL(vzalloc);
2666 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2667 * @size: allocation size
2669 * The resulting memory area is zeroed so it can be mapped to userspace
2670 * without leaking data.
2672 * Return: pointer to the allocated memory or %NULL on error
2674 void *vmalloc_user(unsigned long size)
2676 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2677 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2678 VM_USERMAP, NUMA_NO_NODE,
2679 __builtin_return_address(0));
2681 EXPORT_SYMBOL(vmalloc_user);
2684 * vmalloc_node - allocate memory on a specific node
2685 * @size: allocation size
2688 * Allocate enough pages to cover @size from the page level
2689 * allocator and map them into contiguous kernel virtual space.
2691 * For tight control over page level allocator and protection flags
2692 * use __vmalloc() instead.
2694 * Return: pointer to the allocated memory or %NULL on error
2696 void *vmalloc_node(unsigned long size, int node)
2698 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2699 node, __builtin_return_address(0));
2701 EXPORT_SYMBOL(vmalloc_node);
2704 * vzalloc_node - allocate memory on a specific node with zero fill
2705 * @size: allocation size
2708 * Allocate enough pages to cover @size from the page level
2709 * allocator and map them into contiguous kernel virtual space.
2710 * The memory allocated is set to zero.
2712 * For tight control over page level allocator and protection flags
2713 * use __vmalloc_node() instead.
2715 * Return: pointer to the allocated memory or %NULL on error
2717 void *vzalloc_node(unsigned long size, int node)
2719 return __vmalloc_node_flags(size, node,
2720 GFP_KERNEL | __GFP_ZERO);
2722 EXPORT_SYMBOL(vzalloc_node);
2725 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2726 * @size: allocation size
2728 * @flags: flags for the page level allocator
2730 * The resulting memory area is zeroed so it can be mapped to userspace
2731 * without leaking data.
2733 * Return: pointer to the allocated memory or %NULL on error
2735 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2737 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2738 flags | __GFP_ZERO, PAGE_KERNEL,
2740 __builtin_return_address(0));
2742 EXPORT_SYMBOL(vmalloc_user_node_flags);
2745 * vmalloc_exec - allocate virtually contiguous, executable memory
2746 * @size: allocation size
2748 * Kernel-internal function to allocate enough pages to cover @size
2749 * the page level allocator and map them into contiguous and
2750 * executable kernel virtual space.
2752 * For tight control over page level allocator and protection flags
2753 * use __vmalloc() instead.
2755 * Return: pointer to the allocated memory or %NULL on error
2757 void *vmalloc_exec(unsigned long size)
2759 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2760 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2761 NUMA_NO_NODE, __builtin_return_address(0));
2764 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2765 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2766 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2767 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2770 * 64b systems should always have either DMA or DMA32 zones. For others
2771 * GFP_DMA32 should do the right thing and use the normal zone.
2773 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2777 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2778 * @size: allocation size
2780 * Allocate enough 32bit PA addressable pages to cover @size from the
2781 * page level allocator and map them into contiguous kernel virtual space.
2783 * Return: pointer to the allocated memory or %NULL on error
2785 void *vmalloc_32(unsigned long size)
2787 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2788 NUMA_NO_NODE, __builtin_return_address(0));
2790 EXPORT_SYMBOL(vmalloc_32);
2793 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2794 * @size: allocation size
2796 * The resulting memory area is 32bit addressable and zeroed so it can be
2797 * mapped to userspace without leaking data.
2799 * Return: pointer to the allocated memory or %NULL on error
2801 void *vmalloc_32_user(unsigned long size)
2803 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2804 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2805 VM_USERMAP, NUMA_NO_NODE,
2806 __builtin_return_address(0));
2808 EXPORT_SYMBOL(vmalloc_32_user);
2811 * small helper routine , copy contents to buf from addr.
2812 * If the page is not present, fill zero.
2815 static int aligned_vread(char *buf, char *addr, unsigned long count)
2821 unsigned long offset, length;
2823 offset = offset_in_page(addr);
2824 length = PAGE_SIZE - offset;
2827 p = vmalloc_to_page(addr);
2829 * To do safe access to this _mapped_ area, we need
2830 * lock. But adding lock here means that we need to add
2831 * overhead of vmalloc()/vfree() calles for this _debug_
2832 * interface, rarely used. Instead of that, we'll use
2833 * kmap() and get small overhead in this access function.
2837 * we can expect USER0 is not used (see vread/vwrite's
2838 * function description)
2840 void *map = kmap_atomic(p);
2841 memcpy(buf, map + offset, length);
2844 memset(buf, 0, length);
2854 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2860 unsigned long offset, length;
2862 offset = offset_in_page(addr);
2863 length = PAGE_SIZE - offset;
2866 p = vmalloc_to_page(addr);
2868 * To do safe access to this _mapped_ area, we need
2869 * lock. But adding lock here means that we need to add
2870 * overhead of vmalloc()/vfree() calles for this _debug_
2871 * interface, rarely used. Instead of that, we'll use
2872 * kmap() and get small overhead in this access function.
2876 * we can expect USER0 is not used (see vread/vwrite's
2877 * function description)
2879 void *map = kmap_atomic(p);
2880 memcpy(map + offset, buf, length);
2892 * vread() - read vmalloc area in a safe way.
2893 * @buf: buffer for reading data
2894 * @addr: vm address.
2895 * @count: number of bytes to be read.
2897 * This function checks that addr is a valid vmalloc'ed area, and
2898 * copy data from that area to a given buffer. If the given memory range
2899 * of [addr...addr+count) includes some valid address, data is copied to
2900 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2901 * IOREMAP area is treated as memory hole and no copy is done.
2903 * If [addr...addr+count) doesn't includes any intersects with alive
2904 * vm_struct area, returns 0. @buf should be kernel's buffer.
2906 * Note: In usual ops, vread() is never necessary because the caller
2907 * should know vmalloc() area is valid and can use memcpy().
2908 * This is for routines which have to access vmalloc area without
2909 * any information, as /dev/kmem.
2911 * Return: number of bytes for which addr and buf should be increased
2912 * (same number as @count) or %0 if [addr...addr+count) doesn't
2913 * include any intersection with valid vmalloc area
2915 long vread(char *buf, char *addr, unsigned long count)
2917 struct vmap_area *va;
2918 struct vm_struct *vm;
2919 char *vaddr, *buf_start = buf;
2920 unsigned long buflen = count;
2923 /* Don't allow overflow */
2924 if ((unsigned long) addr + count < count)
2925 count = -(unsigned long) addr;
2927 spin_lock(&vmap_area_lock);
2928 list_for_each_entry(va, &vmap_area_list, list) {
2936 vaddr = (char *) vm->addr;
2937 if (addr >= vaddr + get_vm_area_size(vm))
2939 while (addr < vaddr) {
2947 n = vaddr + get_vm_area_size(vm) - addr;
2950 if (!(vm->flags & VM_IOREMAP))
2951 aligned_vread(buf, addr, n);
2952 else /* IOREMAP area is treated as memory hole */
2959 spin_unlock(&vmap_area_lock);
2961 if (buf == buf_start)
2963 /* zero-fill memory holes */
2964 if (buf != buf_start + buflen)
2965 memset(buf, 0, buflen - (buf - buf_start));
2971 * vwrite() - write vmalloc area in a safe way.
2972 * @buf: buffer for source data
2973 * @addr: vm address.
2974 * @count: number of bytes to be read.
2976 * This function checks that addr is a valid vmalloc'ed area, and
2977 * copy data from a buffer to the given addr. If specified range of
2978 * [addr...addr+count) includes some valid address, data is copied from
2979 * proper area of @buf. If there are memory holes, no copy to hole.
2980 * IOREMAP area is treated as memory hole and no copy is done.
2982 * If [addr...addr+count) doesn't includes any intersects with alive
2983 * vm_struct area, returns 0. @buf should be kernel's buffer.
2985 * Note: In usual ops, vwrite() is never necessary because the caller
2986 * should know vmalloc() area is valid and can use memcpy().
2987 * This is for routines which have to access vmalloc area without
2988 * any information, as /dev/kmem.
2990 * Return: number of bytes for which addr and buf should be
2991 * increased (same number as @count) or %0 if [addr...addr+count)
2992 * doesn't include any intersection with valid vmalloc area
2994 long vwrite(char *buf, char *addr, unsigned long count)
2996 struct vmap_area *va;
2997 struct vm_struct *vm;
2999 unsigned long n, buflen;
3002 /* Don't allow overflow */
3003 if ((unsigned long) addr + count < count)
3004 count = -(unsigned long) addr;
3007 spin_lock(&vmap_area_lock);
3008 list_for_each_entry(va, &vmap_area_list, list) {
3016 vaddr = (char *) vm->addr;
3017 if (addr >= vaddr + get_vm_area_size(vm))
3019 while (addr < vaddr) {
3026 n = vaddr + get_vm_area_size(vm) - addr;
3029 if (!(vm->flags & VM_IOREMAP)) {
3030 aligned_vwrite(buf, addr, n);
3038 spin_unlock(&vmap_area_lock);
3045 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3046 * @vma: vma to cover
3047 * @uaddr: target user address to start at
3048 * @kaddr: virtual address of vmalloc kernel memory
3049 * @size: size of map area
3051 * Returns: 0 for success, -Exxx on failure
3053 * This function checks that @kaddr is a valid vmalloc'ed area,
3054 * and that it is big enough to cover the range starting at
3055 * @uaddr in @vma. Will return failure if that criteria isn't
3058 * Similar to remap_pfn_range() (see mm/memory.c)
3060 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3061 void *kaddr, unsigned long size)
3063 struct vm_struct *area;
3065 size = PAGE_ALIGN(size);
3067 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3070 area = find_vm_area(kaddr);
3074 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3077 if (kaddr + size > area->addr + get_vm_area_size(area))
3081 struct page *page = vmalloc_to_page(kaddr);
3084 ret = vm_insert_page(vma, uaddr, page);
3093 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3097 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3100 * remap_vmalloc_range - map vmalloc pages to userspace
3101 * @vma: vma to cover (map full range of vma)
3102 * @addr: vmalloc memory
3103 * @pgoff: number of pages into addr before first page to map
3105 * Returns: 0 for success, -Exxx on failure
3107 * This function checks that addr is a valid vmalloc'ed area, and
3108 * that it is big enough to cover the vma. Will return failure if
3109 * that criteria isn't met.
3111 * Similar to remap_pfn_range() (see mm/memory.c)
3113 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3114 unsigned long pgoff)
3116 return remap_vmalloc_range_partial(vma, vma->vm_start,
3117 addr + (pgoff << PAGE_SHIFT),
3118 vma->vm_end - vma->vm_start);
3120 EXPORT_SYMBOL(remap_vmalloc_range);
3123 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3126 * The purpose of this function is to make sure the vmalloc area
3127 * mappings are identical in all page-tables in the system.
3129 void __weak vmalloc_sync_all(void)
3134 static int f(pte_t *pte, unsigned long addr, void *data)
3146 * alloc_vm_area - allocate a range of kernel address space
3147 * @size: size of the area
3148 * @ptes: returns the PTEs for the address space
3150 * Returns: NULL on failure, vm_struct on success
3152 * This function reserves a range of kernel address space, and
3153 * allocates pagetables to map that range. No actual mappings
3156 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3157 * allocated for the VM area are returned.
3159 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3161 struct vm_struct *area;
3163 area = get_vm_area_caller(size, VM_IOREMAP,
3164 __builtin_return_address(0));
3169 * This ensures that page tables are constructed for this region
3170 * of kernel virtual address space and mapped into init_mm.
3172 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3173 size, f, ptes ? &ptes : NULL)) {
3180 EXPORT_SYMBOL_GPL(alloc_vm_area);
3182 void free_vm_area(struct vm_struct *area)
3184 struct vm_struct *ret;
3185 ret = remove_vm_area(area->addr);
3186 BUG_ON(ret != area);
3189 EXPORT_SYMBOL_GPL(free_vm_area);
3192 static struct vmap_area *node_to_va(struct rb_node *n)
3194 return rb_entry_safe(n, struct vmap_area, rb_node);
3198 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3199 * @addr: target address
3201 * Returns: vmap_area if it is found. If there is no such area
3202 * the first highest(reverse order) vmap_area is returned
3203 * i.e. va->va_start < addr && va->va_end < addr or NULL
3204 * if there are no any areas before @addr.
3206 static struct vmap_area *
3207 pvm_find_va_enclose_addr(unsigned long addr)
3209 struct vmap_area *va, *tmp;
3212 n = free_vmap_area_root.rb_node;
3216 tmp = rb_entry(n, struct vmap_area, rb_node);
3217 if (tmp->va_start <= addr) {
3219 if (tmp->va_end >= addr)
3232 * pvm_determine_end_from_reverse - find the highest aligned address
3233 * of free block below VMALLOC_END
3235 * in - the VA we start the search(reverse order);
3236 * out - the VA with the highest aligned end address.
3238 * Returns: determined end address within vmap_area
3240 static unsigned long
3241 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3243 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3247 list_for_each_entry_from_reverse((*va),
3248 &free_vmap_area_list, list) {
3249 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3250 if ((*va)->va_start < addr)
3259 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3260 * @offsets: array containing offset of each area
3261 * @sizes: array containing size of each area
3262 * @nr_vms: the number of areas to allocate
3263 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3265 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3266 * vm_structs on success, %NULL on failure
3268 * Percpu allocator wants to use congruent vm areas so that it can
3269 * maintain the offsets among percpu areas. This function allocates
3270 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3271 * be scattered pretty far, distance between two areas easily going up
3272 * to gigabytes. To avoid interacting with regular vmallocs, these
3273 * areas are allocated from top.
3275 * Despite its complicated look, this allocator is rather simple. It
3276 * does everything top-down and scans free blocks from the end looking
3277 * for matching base. While scanning, if any of the areas do not fit the
3278 * base address is pulled down to fit the area. Scanning is repeated till
3279 * all the areas fit and then all necessary data structures are inserted
3280 * and the result is returned.
3282 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3283 const size_t *sizes, int nr_vms,
3286 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3287 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3288 struct vmap_area **vas, *va;
3289 struct vm_struct **vms;
3290 int area, area2, last_area, term_area;
3291 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3292 bool purged = false;
3295 /* verify parameters and allocate data structures */
3296 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3297 for (last_area = 0, area = 0; area < nr_vms; area++) {
3298 start = offsets[area];
3299 end = start + sizes[area];
3301 /* is everything aligned properly? */
3302 BUG_ON(!IS_ALIGNED(offsets[area], align));
3303 BUG_ON(!IS_ALIGNED(sizes[area], align));
3305 /* detect the area with the highest address */
3306 if (start > offsets[last_area])
3309 for (area2 = area + 1; area2 < nr_vms; area2++) {
3310 unsigned long start2 = offsets[area2];
3311 unsigned long end2 = start2 + sizes[area2];
3313 BUG_ON(start2 < end && start < end2);
3316 last_end = offsets[last_area] + sizes[last_area];
3318 if (vmalloc_end - vmalloc_start < last_end) {
3323 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3324 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3328 for (area = 0; area < nr_vms; area++) {
3329 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3330 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3331 if (!vas[area] || !vms[area])
3335 spin_lock(&free_vmap_area_lock);
3337 /* start scanning - we scan from the top, begin with the last area */
3338 area = term_area = last_area;
3339 start = offsets[area];
3340 end = start + sizes[area];
3342 va = pvm_find_va_enclose_addr(vmalloc_end);
3343 base = pvm_determine_end_from_reverse(&va, align) - end;
3347 * base might have underflowed, add last_end before
3350 if (base + last_end < vmalloc_start + last_end)
3354 * Fitting base has not been found.
3360 * If required width exeeds current VA block, move
3361 * base downwards and then recheck.
3363 if (base + end > va->va_end) {
3364 base = pvm_determine_end_from_reverse(&va, align) - end;
3370 * If this VA does not fit, move base downwards and recheck.
3372 if (base + start < va->va_start) {
3373 va = node_to_va(rb_prev(&va->rb_node));
3374 base = pvm_determine_end_from_reverse(&va, align) - end;
3380 * This area fits, move on to the previous one. If
3381 * the previous one is the terminal one, we're done.
3383 area = (area + nr_vms - 1) % nr_vms;
3384 if (area == term_area)
3387 start = offsets[area];
3388 end = start + sizes[area];
3389 va = pvm_find_va_enclose_addr(base + end);
3392 /* we've found a fitting base, insert all va's */
3393 for (area = 0; area < nr_vms; area++) {
3396 start = base + offsets[area];
3399 va = pvm_find_va_enclose_addr(start);
3400 if (WARN_ON_ONCE(va == NULL))
3401 /* It is a BUG(), but trigger recovery instead. */
3404 type = classify_va_fit_type(va, start, size);
3405 if (WARN_ON_ONCE(type == NOTHING_FIT))
3406 /* It is a BUG(), but trigger recovery instead. */
3409 ret = adjust_va_to_fit_type(va, start, size, type);
3413 /* Allocated area. */
3415 va->va_start = start;
3416 va->va_end = start + size;
3419 spin_unlock(&free_vmap_area_lock);
3421 /* populate the kasan shadow space */
3422 for (area = 0; area < nr_vms; area++) {
3423 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3424 goto err_free_shadow;
3426 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3430 /* insert all vm's */
3431 spin_lock(&vmap_area_lock);
3432 for (area = 0; area < nr_vms; area++) {
3433 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3435 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3438 spin_unlock(&vmap_area_lock);
3445 * Remove previously allocated areas. There is no
3446 * need in removing these areas from the busy tree,
3447 * because they are inserted only on the final step
3448 * and when pcpu_get_vm_areas() is success.
3451 orig_start = vas[area]->va_start;
3452 orig_end = vas[area]->va_end;
3453 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3454 &free_vmap_area_list);
3455 kasan_release_vmalloc(orig_start, orig_end,
3456 va->va_start, va->va_end);
3461 spin_unlock(&free_vmap_area_lock);
3463 purge_vmap_area_lazy();
3466 /* Before "retry", check if we recover. */
3467 for (area = 0; area < nr_vms; area++) {
3471 vas[area] = kmem_cache_zalloc(
3472 vmap_area_cachep, GFP_KERNEL);
3481 for (area = 0; area < nr_vms; area++) {
3483 kmem_cache_free(vmap_area_cachep, vas[area]);
3493 spin_lock(&free_vmap_area_lock);
3495 * We release all the vmalloc shadows, even the ones for regions that
3496 * hadn't been successfully added. This relies on kasan_release_vmalloc
3497 * being able to tolerate this case.
3499 for (area = 0; area < nr_vms; area++) {
3500 orig_start = vas[area]->va_start;
3501 orig_end = vas[area]->va_end;
3502 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3503 &free_vmap_area_list);
3504 kasan_release_vmalloc(orig_start, orig_end,
3505 va->va_start, va->va_end);
3509 spin_unlock(&free_vmap_area_lock);
3516 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3517 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3518 * @nr_vms: the number of allocated areas
3520 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3522 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3526 for (i = 0; i < nr_vms; i++)
3527 free_vm_area(vms[i]);
3530 #endif /* CONFIG_SMP */
3532 #ifdef CONFIG_PROC_FS
3533 static void *s_start(struct seq_file *m, loff_t *pos)
3534 __acquires(&vmap_purge_lock)
3535 __acquires(&vmap_area_lock)
3537 mutex_lock(&vmap_purge_lock);
3538 spin_lock(&vmap_area_lock);
3540 return seq_list_start(&vmap_area_list, *pos);
3543 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3545 return seq_list_next(p, &vmap_area_list, pos);
3548 static void s_stop(struct seq_file *m, void *p)
3549 __releases(&vmap_purge_lock)
3550 __releases(&vmap_area_lock)
3552 mutex_unlock(&vmap_purge_lock);
3553 spin_unlock(&vmap_area_lock);
3556 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3558 if (IS_ENABLED(CONFIG_NUMA)) {
3559 unsigned int nr, *counters = m->private;
3564 if (v->flags & VM_UNINITIALIZED)
3566 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3569 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3571 for (nr = 0; nr < v->nr_pages; nr++)
3572 counters[page_to_nid(v->pages[nr])]++;
3574 for_each_node_state(nr, N_HIGH_MEMORY)
3576 seq_printf(m, " N%u=%u", nr, counters[nr]);
3580 static void show_purge_info(struct seq_file *m)
3582 struct llist_node *head;
3583 struct vmap_area *va;
3585 head = READ_ONCE(vmap_purge_list.first);
3589 llist_for_each_entry(va, head, purge_list) {
3590 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3591 (void *)va->va_start, (void *)va->va_end,
3592 va->va_end - va->va_start);
3596 static int s_show(struct seq_file *m, void *p)
3598 struct vmap_area *va;
3599 struct vm_struct *v;
3601 va = list_entry(p, struct vmap_area, list);
3604 * s_show can encounter race with remove_vm_area, !vm on behalf
3605 * of vmap area is being tear down or vm_map_ram allocation.
3608 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3609 (void *)va->va_start, (void *)va->va_end,
3610 va->va_end - va->va_start);
3617 seq_printf(m, "0x%pK-0x%pK %7ld",
3618 v->addr, v->addr + v->size, v->size);
3621 seq_printf(m, " %pS", v->caller);
3624 seq_printf(m, " pages=%d", v->nr_pages);
3627 seq_printf(m, " phys=%pa", &v->phys_addr);
3629 if (v->flags & VM_IOREMAP)
3630 seq_puts(m, " ioremap");
3632 if (v->flags & VM_ALLOC)
3633 seq_puts(m, " vmalloc");
3635 if (v->flags & VM_MAP)
3636 seq_puts(m, " vmap");
3638 if (v->flags & VM_USERMAP)
3639 seq_puts(m, " user");
3641 if (v->flags & VM_DMA_COHERENT)
3642 seq_puts(m, " dma-coherent");
3644 if (is_vmalloc_addr(v->pages))
3645 seq_puts(m, " vpages");
3647 show_numa_info(m, v);
3651 * As a final step, dump "unpurged" areas. Note,
3652 * that entire "/proc/vmallocinfo" output will not
3653 * be address sorted, because the purge list is not
3656 if (list_is_last(&va->list, &vmap_area_list))
3662 static const struct seq_operations vmalloc_op = {
3669 static int __init proc_vmalloc_init(void)
3671 if (IS_ENABLED(CONFIG_NUMA))
3672 proc_create_seq_private("vmallocinfo", 0400, NULL,
3674 nr_node_ids * sizeof(unsigned int), NULL);
3676 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3679 module_init(proc_vmalloc_init);