2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affilates.
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
48 #define CREATE_TRACE_POINTS
51 #include <asm/debugreg.h>
58 #include <asm/pvclock.h>
59 #include <asm/div64.h>
61 #define MAX_IO_MSRS 256
62 #define CR0_RESERVED_BITS \
63 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
64 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
65 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
66 #define CR4_RESERVED_BITS \
67 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
68 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
69 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
71 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75 #define KVM_MAX_MCE_BANKS 32
76 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
79 * - enable syscall per default because its emulated by KVM
80 * - enable LME and LMA per default on 64 bit KVM
83 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
85 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
88 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
89 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
92 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
93 struct kvm_cpuid_entry2 __user *entries);
95 struct kvm_x86_ops *kvm_x86_ops;
96 EXPORT_SYMBOL_GPL(kvm_x86_ops);
99 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
101 #define KVM_NR_SHARED_MSRS 16
103 struct kvm_shared_msrs_global {
105 u32 msrs[KVM_NR_SHARED_MSRS];
108 struct kvm_shared_msrs {
109 struct user_return_notifier urn;
111 struct kvm_shared_msr_values {
114 } values[KVM_NR_SHARED_MSRS];
117 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
118 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
120 struct kvm_stats_debugfs_item debugfs_entries[] = {
121 { "pf_fixed", VCPU_STAT(pf_fixed) },
122 { "pf_guest", VCPU_STAT(pf_guest) },
123 { "tlb_flush", VCPU_STAT(tlb_flush) },
124 { "invlpg", VCPU_STAT(invlpg) },
125 { "exits", VCPU_STAT(exits) },
126 { "io_exits", VCPU_STAT(io_exits) },
127 { "mmio_exits", VCPU_STAT(mmio_exits) },
128 { "signal_exits", VCPU_STAT(signal_exits) },
129 { "irq_window", VCPU_STAT(irq_window_exits) },
130 { "nmi_window", VCPU_STAT(nmi_window_exits) },
131 { "halt_exits", VCPU_STAT(halt_exits) },
132 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
133 { "hypercalls", VCPU_STAT(hypercalls) },
134 { "request_irq", VCPU_STAT(request_irq_exits) },
135 { "irq_exits", VCPU_STAT(irq_exits) },
136 { "host_state_reload", VCPU_STAT(host_state_reload) },
137 { "efer_reload", VCPU_STAT(efer_reload) },
138 { "fpu_reload", VCPU_STAT(fpu_reload) },
139 { "insn_emulation", VCPU_STAT(insn_emulation) },
140 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
141 { "irq_injections", VCPU_STAT(irq_injections) },
142 { "nmi_injections", VCPU_STAT(nmi_injections) },
143 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
144 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
145 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
146 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
147 { "mmu_flooded", VM_STAT(mmu_flooded) },
148 { "mmu_recycled", VM_STAT(mmu_recycled) },
149 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
150 { "mmu_unsync", VM_STAT(mmu_unsync) },
151 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
152 { "largepages", VM_STAT(lpages) },
156 u64 __read_mostly host_xcr0;
158 static inline u32 bit(int bitno)
160 return 1 << (bitno & 31);
163 static void kvm_on_user_return(struct user_return_notifier *urn)
166 struct kvm_shared_msrs *locals
167 = container_of(urn, struct kvm_shared_msrs, urn);
168 struct kvm_shared_msr_values *values;
170 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
171 values = &locals->values[slot];
172 if (values->host != values->curr) {
173 wrmsrl(shared_msrs_global.msrs[slot], values->host);
174 values->curr = values->host;
177 locals->registered = false;
178 user_return_notifier_unregister(urn);
181 static void shared_msr_update(unsigned slot, u32 msr)
183 struct kvm_shared_msrs *smsr;
186 smsr = &__get_cpu_var(shared_msrs);
187 /* only read, and nobody should modify it at this time,
188 * so don't need lock */
189 if (slot >= shared_msrs_global.nr) {
190 printk(KERN_ERR "kvm: invalid MSR slot!");
193 rdmsrl_safe(msr, &value);
194 smsr->values[slot].host = value;
195 smsr->values[slot].curr = value;
198 void kvm_define_shared_msr(unsigned slot, u32 msr)
200 if (slot >= shared_msrs_global.nr)
201 shared_msrs_global.nr = slot + 1;
202 shared_msrs_global.msrs[slot] = msr;
203 /* we need ensured the shared_msr_global have been updated */
206 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
208 static void kvm_shared_msr_cpu_online(void)
212 for (i = 0; i < shared_msrs_global.nr; ++i)
213 shared_msr_update(i, shared_msrs_global.msrs[i]);
216 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
218 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
220 if (((value ^ smsr->values[slot].curr) & mask) == 0)
222 smsr->values[slot].curr = value;
223 wrmsrl(shared_msrs_global.msrs[slot], value);
224 if (!smsr->registered) {
225 smsr->urn.on_user_return = kvm_on_user_return;
226 user_return_notifier_register(&smsr->urn);
227 smsr->registered = true;
230 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
232 static void drop_user_return_notifiers(void *ignore)
234 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
236 if (smsr->registered)
237 kvm_on_user_return(&smsr->urn);
240 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
242 if (irqchip_in_kernel(vcpu->kvm))
243 return vcpu->arch.apic_base;
245 return vcpu->arch.apic_base;
247 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
249 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
251 /* TODO: reserve bits check */
252 if (irqchip_in_kernel(vcpu->kvm))
253 kvm_lapic_set_base(vcpu, data);
255 vcpu->arch.apic_base = data;
257 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
259 #define EXCPT_BENIGN 0
260 #define EXCPT_CONTRIBUTORY 1
263 static int exception_class(int vector)
273 return EXCPT_CONTRIBUTORY;
280 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
281 unsigned nr, bool has_error, u32 error_code,
287 if (!vcpu->arch.exception.pending) {
289 vcpu->arch.exception.pending = true;
290 vcpu->arch.exception.has_error_code = has_error;
291 vcpu->arch.exception.nr = nr;
292 vcpu->arch.exception.error_code = error_code;
293 vcpu->arch.exception.reinject = reinject;
297 /* to check exception */
298 prev_nr = vcpu->arch.exception.nr;
299 if (prev_nr == DF_VECTOR) {
300 /* triple fault -> shutdown */
301 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
304 class1 = exception_class(prev_nr);
305 class2 = exception_class(nr);
306 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
307 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
308 /* generate double fault per SDM Table 5-5 */
309 vcpu->arch.exception.pending = true;
310 vcpu->arch.exception.has_error_code = true;
311 vcpu->arch.exception.nr = DF_VECTOR;
312 vcpu->arch.exception.error_code = 0;
314 /* replace previous exception with a new one in a hope
315 that instruction re-execution will regenerate lost
320 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
322 kvm_multiple_exception(vcpu, nr, false, 0, false);
324 EXPORT_SYMBOL_GPL(kvm_queue_exception);
326 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
328 kvm_multiple_exception(vcpu, nr, false, 0, true);
330 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
332 void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
334 unsigned error_code = vcpu->arch.fault.error_code;
336 ++vcpu->stat.pf_guest;
337 vcpu->arch.cr2 = vcpu->arch.fault.address;
338 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
341 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
343 vcpu->arch.nmi_pending = 1;
345 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
347 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
349 kvm_multiple_exception(vcpu, nr, true, error_code, false);
351 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
353 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
355 kvm_multiple_exception(vcpu, nr, true, error_code, true);
357 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
360 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
361 * a #GP and return false.
363 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
365 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
367 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
370 EXPORT_SYMBOL_GPL(kvm_require_cpl);
373 * Load the pae pdptrs. Return true is they are all valid.
375 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
377 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
378 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
381 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
383 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
384 offset * sizeof(u64), sizeof(pdpte));
389 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
390 if (is_present_gpte(pdpte[i]) &&
391 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
398 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
399 __set_bit(VCPU_EXREG_PDPTR,
400 (unsigned long *)&vcpu->arch.regs_avail);
401 __set_bit(VCPU_EXREG_PDPTR,
402 (unsigned long *)&vcpu->arch.regs_dirty);
407 EXPORT_SYMBOL_GPL(load_pdptrs);
409 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
411 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
415 if (is_long_mode(vcpu) || !is_pae(vcpu))
418 if (!test_bit(VCPU_EXREG_PDPTR,
419 (unsigned long *)&vcpu->arch.regs_avail))
422 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
425 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
431 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
433 unsigned long old_cr0 = kvm_read_cr0(vcpu);
434 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
435 X86_CR0_CD | X86_CR0_NW;
440 if (cr0 & 0xffffffff00000000UL)
444 cr0 &= ~CR0_RESERVED_BITS;
446 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
449 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
452 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
454 if ((vcpu->arch.efer & EFER_LME)) {
459 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
464 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
468 kvm_x86_ops->set_cr0(vcpu, cr0);
470 if ((cr0 ^ old_cr0) & update_bits)
471 kvm_mmu_reset_context(vcpu);
474 EXPORT_SYMBOL_GPL(kvm_set_cr0);
476 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
478 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
480 EXPORT_SYMBOL_GPL(kvm_lmsw);
482 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
486 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
487 if (index != XCR_XFEATURE_ENABLED_MASK)
490 if (kvm_x86_ops->get_cpl(vcpu) != 0)
492 if (!(xcr0 & XSTATE_FP))
494 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
496 if (xcr0 & ~host_xcr0)
498 vcpu->arch.xcr0 = xcr0;
499 vcpu->guest_xcr0_loaded = 0;
503 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
505 if (__kvm_set_xcr(vcpu, index, xcr)) {
506 kvm_inject_gp(vcpu, 0);
511 EXPORT_SYMBOL_GPL(kvm_set_xcr);
513 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
515 struct kvm_cpuid_entry2 *best;
517 best = kvm_find_cpuid_entry(vcpu, 1, 0);
518 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
521 static void update_cpuid(struct kvm_vcpu *vcpu)
523 struct kvm_cpuid_entry2 *best;
525 best = kvm_find_cpuid_entry(vcpu, 1, 0);
529 /* Update OSXSAVE bit */
530 if (cpu_has_xsave && best->function == 0x1) {
531 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
532 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
533 best->ecx |= bit(X86_FEATURE_OSXSAVE);
537 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
539 unsigned long old_cr4 = kvm_read_cr4(vcpu);
540 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
542 if (cr4 & CR4_RESERVED_BITS)
545 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
548 if (is_long_mode(vcpu)) {
549 if (!(cr4 & X86_CR4_PAE))
551 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
552 && ((cr4 ^ old_cr4) & pdptr_bits)
553 && !load_pdptrs(vcpu, vcpu->arch.cr3))
556 if (cr4 & X86_CR4_VMXE)
559 kvm_x86_ops->set_cr4(vcpu, cr4);
561 if ((cr4 ^ old_cr4) & pdptr_bits)
562 kvm_mmu_reset_context(vcpu);
564 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
569 EXPORT_SYMBOL_GPL(kvm_set_cr4);
571 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
573 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
574 kvm_mmu_sync_roots(vcpu);
575 kvm_mmu_flush_tlb(vcpu);
579 if (is_long_mode(vcpu)) {
580 if (cr3 & CR3_L_MODE_RESERVED_BITS)
584 if (cr3 & CR3_PAE_RESERVED_BITS)
586 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
590 * We don't check reserved bits in nonpae mode, because
591 * this isn't enforced, and VMware depends on this.
596 * Does the new cr3 value map to physical memory? (Note, we
597 * catch an invalid cr3 even in real-mode, because it would
598 * cause trouble later on when we turn on paging anyway.)
600 * A real CPU would silently accept an invalid cr3 and would
601 * attempt to use it - with largely undefined (and often hard
602 * to debug) behavior on the guest side.
604 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
606 vcpu->arch.cr3 = cr3;
607 vcpu->arch.mmu.new_cr3(vcpu);
610 EXPORT_SYMBOL_GPL(kvm_set_cr3);
612 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
614 if (cr8 & CR8_RESERVED_BITS)
616 if (irqchip_in_kernel(vcpu->kvm))
617 kvm_lapic_set_tpr(vcpu, cr8);
619 vcpu->arch.cr8 = cr8;
623 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
625 if (__kvm_set_cr8(vcpu, cr8))
626 kvm_inject_gp(vcpu, 0);
628 EXPORT_SYMBOL_GPL(kvm_set_cr8);
630 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
632 if (irqchip_in_kernel(vcpu->kvm))
633 return kvm_lapic_get_cr8(vcpu);
635 return vcpu->arch.cr8;
637 EXPORT_SYMBOL_GPL(kvm_get_cr8);
639 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
643 vcpu->arch.db[dr] = val;
644 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
645 vcpu->arch.eff_db[dr] = val;
648 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
652 if (val & 0xffffffff00000000ULL)
654 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
657 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
661 if (val & 0xffffffff00000000ULL)
663 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
664 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
665 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
666 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
674 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
678 res = __kvm_set_dr(vcpu, dr, val);
680 kvm_queue_exception(vcpu, UD_VECTOR);
682 kvm_inject_gp(vcpu, 0);
686 EXPORT_SYMBOL_GPL(kvm_set_dr);
688 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
692 *val = vcpu->arch.db[dr];
695 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
699 *val = vcpu->arch.dr6;
702 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
706 *val = vcpu->arch.dr7;
713 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
715 if (_kvm_get_dr(vcpu, dr, val)) {
716 kvm_queue_exception(vcpu, UD_VECTOR);
721 EXPORT_SYMBOL_GPL(kvm_get_dr);
724 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
725 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
727 * This list is modified at module load time to reflect the
728 * capabilities of the host cpu. This capabilities test skips MSRs that are
729 * kvm-specific. Those are put in the beginning of the list.
732 #define KVM_SAVE_MSRS_BEGIN 7
733 static u32 msrs_to_save[] = {
734 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
735 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
736 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
737 HV_X64_MSR_APIC_ASSIST_PAGE,
738 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
741 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
743 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
746 static unsigned num_msrs_to_save;
748 static u32 emulated_msrs[] = {
749 MSR_IA32_MISC_ENABLE,
754 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
756 u64 old_efer = vcpu->arch.efer;
758 if (efer & efer_reserved_bits)
762 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
765 if (efer & EFER_FFXSR) {
766 struct kvm_cpuid_entry2 *feat;
768 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
769 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
773 if (efer & EFER_SVME) {
774 struct kvm_cpuid_entry2 *feat;
776 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
777 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
782 efer |= vcpu->arch.efer & EFER_LMA;
784 kvm_x86_ops->set_efer(vcpu, efer);
786 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
787 kvm_mmu_reset_context(vcpu);
789 /* Update reserved bits */
790 if ((efer ^ old_efer) & EFER_NX)
791 kvm_mmu_reset_context(vcpu);
796 void kvm_enable_efer_bits(u64 mask)
798 efer_reserved_bits &= ~mask;
800 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
804 * Writes msr value into into the appropriate "register".
805 * Returns 0 on success, non-0 otherwise.
806 * Assumes vcpu_load() was already called.
808 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
810 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
814 * Adapt set_msr() to msr_io()'s calling convention
816 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
818 return kvm_set_msr(vcpu, index, *data);
821 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
825 struct pvclock_wall_clock wc;
826 struct timespec boot;
831 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
836 ++version; /* first time write, random junk */
840 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
843 * The guest calculates current wall clock time by adding
844 * system time (updated by kvm_write_guest_time below) to the
845 * wall clock specified here. guest system time equals host
846 * system time for us, thus we must fill in host boot time here.
850 wc.sec = boot.tv_sec;
851 wc.nsec = boot.tv_nsec;
852 wc.version = version;
854 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
857 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
860 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
862 uint32_t quotient, remainder;
864 /* Don't try to replace with do_div(), this one calculates
865 * "(dividend << 32) / divisor" */
867 : "=a" (quotient), "=d" (remainder)
868 : "0" (0), "1" (dividend), "r" (divisor) );
872 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
874 uint64_t nsecs = 1000000000LL;
879 tps64 = tsc_khz * 1000LL;
880 while (tps64 > nsecs*2) {
885 tps32 = (uint32_t)tps64;
886 while (tps32 <= (uint32_t)nsecs) {
891 hv_clock->tsc_shift = shift;
892 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
894 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
895 __func__, tsc_khz, hv_clock->tsc_shift,
896 hv_clock->tsc_to_system_mul);
899 static inline u64 get_kernel_ns(void)
903 WARN_ON(preemptible());
905 monotonic_to_bootbased(&ts);
906 return timespec_to_ns(&ts);
909 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
911 static inline int kvm_tsc_changes_freq(void)
914 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
915 cpufreq_quick_get(cpu) != 0;
920 static inline u64 nsec_to_cycles(u64 nsec)
924 WARN_ON(preemptible());
925 if (kvm_tsc_changes_freq())
926 printk_once(KERN_WARNING
927 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
928 ret = nsec * __get_cpu_var(cpu_tsc_khz);
929 do_div(ret, USEC_PER_SEC);
933 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
935 struct kvm *kvm = vcpu->kvm;
936 u64 offset, ns, elapsed;
940 spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
941 offset = data - native_read_tsc();
942 ns = get_kernel_ns();
943 elapsed = ns - kvm->arch.last_tsc_nsec;
944 sdiff = data - kvm->arch.last_tsc_write;
949 * Special case: close write to TSC within 5 seconds of
950 * another CPU is interpreted as an attempt to synchronize
951 * The 5 seconds is to accomodate host load / swapping as
952 * well as any reset of TSC during the boot process.
954 * In that case, for a reliable TSC, we can match TSC offsets,
955 * or make a best guest using elapsed value.
957 if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
958 elapsed < 5ULL * NSEC_PER_SEC) {
959 if (!check_tsc_unstable()) {
960 offset = kvm->arch.last_tsc_offset;
961 pr_debug("kvm: matched tsc offset for %llu\n", data);
963 u64 delta = nsec_to_cycles(elapsed);
965 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
967 ns = kvm->arch.last_tsc_nsec;
969 kvm->arch.last_tsc_nsec = ns;
970 kvm->arch.last_tsc_write = data;
971 kvm->arch.last_tsc_offset = offset;
972 kvm_x86_ops->write_tsc_offset(vcpu, offset);
973 spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
975 /* Reset of TSC must disable overshoot protection below */
976 vcpu->arch.hv_clock.tsc_timestamp = 0;
978 EXPORT_SYMBOL_GPL(kvm_write_tsc);
980 static int kvm_write_guest_time(struct kvm_vcpu *v)
983 struct kvm_vcpu_arch *vcpu = &v->arch;
985 unsigned long this_tsc_khz;
986 s64 kernel_ns, max_kernel_ns;
989 if ((!vcpu->time_page))
992 /* Keep irq disabled to prevent changes to the clock */
993 local_irq_save(flags);
994 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
995 kernel_ns = get_kernel_ns();
996 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
997 local_irq_restore(flags);
999 if (unlikely(this_tsc_khz == 0)) {
1000 kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1005 * Time as measured by the TSC may go backwards when resetting the base
1006 * tsc_timestamp. The reason for this is that the TSC resolution is
1007 * higher than the resolution of the other clock scales. Thus, many
1008 * possible measurments of the TSC correspond to one measurement of any
1009 * other clock, and so a spread of values is possible. This is not a
1010 * problem for the computation of the nanosecond clock; with TSC rates
1011 * around 1GHZ, there can only be a few cycles which correspond to one
1012 * nanosecond value, and any path through this code will inevitably
1013 * take longer than that. However, with the kernel_ns value itself,
1014 * the precision may be much lower, down to HZ granularity. If the
1015 * first sampling of TSC against kernel_ns ends in the low part of the
1016 * range, and the second in the high end of the range, we can get:
1018 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1020 * As the sampling errors potentially range in the thousands of cycles,
1021 * it is possible such a time value has already been observed by the
1022 * guest. To protect against this, we must compute the system time as
1023 * observed by the guest and ensure the new system time is greater.
1026 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1027 max_kernel_ns = vcpu->last_guest_tsc -
1028 vcpu->hv_clock.tsc_timestamp;
1029 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1030 vcpu->hv_clock.tsc_to_system_mul,
1031 vcpu->hv_clock.tsc_shift);
1032 max_kernel_ns += vcpu->last_kernel_ns;
1035 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1036 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
1037 vcpu->hw_tsc_khz = this_tsc_khz;
1040 if (max_kernel_ns > kernel_ns)
1041 kernel_ns = max_kernel_ns;
1043 /* With all the info we got, fill in the values */
1044 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1045 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1046 vcpu->last_kernel_ns = kernel_ns;
1047 vcpu->hv_clock.flags = 0;
1050 * The interface expects us to write an even number signaling that the
1051 * update is finished. Since the guest won't see the intermediate
1052 * state, we just increase by 2 at the end.
1054 vcpu->hv_clock.version += 2;
1056 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1058 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1059 sizeof(vcpu->hv_clock));
1061 kunmap_atomic(shared_kaddr, KM_USER0);
1063 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1067 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
1069 struct kvm_vcpu_arch *vcpu = &v->arch;
1071 if (!vcpu->time_page)
1073 kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1077 static bool msr_mtrr_valid(unsigned msr)
1080 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1081 case MSR_MTRRfix64K_00000:
1082 case MSR_MTRRfix16K_80000:
1083 case MSR_MTRRfix16K_A0000:
1084 case MSR_MTRRfix4K_C0000:
1085 case MSR_MTRRfix4K_C8000:
1086 case MSR_MTRRfix4K_D0000:
1087 case MSR_MTRRfix4K_D8000:
1088 case MSR_MTRRfix4K_E0000:
1089 case MSR_MTRRfix4K_E8000:
1090 case MSR_MTRRfix4K_F0000:
1091 case MSR_MTRRfix4K_F8000:
1092 case MSR_MTRRdefType:
1093 case MSR_IA32_CR_PAT:
1101 static bool valid_pat_type(unsigned t)
1103 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1106 static bool valid_mtrr_type(unsigned t)
1108 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1111 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1115 if (!msr_mtrr_valid(msr))
1118 if (msr == MSR_IA32_CR_PAT) {
1119 for (i = 0; i < 8; i++)
1120 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1123 } else if (msr == MSR_MTRRdefType) {
1126 return valid_mtrr_type(data & 0xff);
1127 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1128 for (i = 0; i < 8 ; i++)
1129 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1134 /* variable MTRRs */
1135 return valid_mtrr_type(data & 0xff);
1138 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1140 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1142 if (!mtrr_valid(vcpu, msr, data))
1145 if (msr == MSR_MTRRdefType) {
1146 vcpu->arch.mtrr_state.def_type = data;
1147 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1148 } else if (msr == MSR_MTRRfix64K_00000)
1150 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1151 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1152 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1153 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1154 else if (msr == MSR_IA32_CR_PAT)
1155 vcpu->arch.pat = data;
1156 else { /* Variable MTRRs */
1157 int idx, is_mtrr_mask;
1160 idx = (msr - 0x200) / 2;
1161 is_mtrr_mask = msr - 0x200 - 2 * idx;
1164 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1167 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1171 kvm_mmu_reset_context(vcpu);
1175 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1177 u64 mcg_cap = vcpu->arch.mcg_cap;
1178 unsigned bank_num = mcg_cap & 0xff;
1181 case MSR_IA32_MCG_STATUS:
1182 vcpu->arch.mcg_status = data;
1184 case MSR_IA32_MCG_CTL:
1185 if (!(mcg_cap & MCG_CTL_P))
1187 if (data != 0 && data != ~(u64)0)
1189 vcpu->arch.mcg_ctl = data;
1192 if (msr >= MSR_IA32_MC0_CTL &&
1193 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1194 u32 offset = msr - MSR_IA32_MC0_CTL;
1195 /* only 0 or all 1s can be written to IA32_MCi_CTL
1196 * some Linux kernels though clear bit 10 in bank 4 to
1197 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1198 * this to avoid an uncatched #GP in the guest
1200 if ((offset & 0x3) == 0 &&
1201 data != 0 && (data | (1 << 10)) != ~(u64)0)
1203 vcpu->arch.mce_banks[offset] = data;
1211 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1213 struct kvm *kvm = vcpu->kvm;
1214 int lm = is_long_mode(vcpu);
1215 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1216 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1217 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1218 : kvm->arch.xen_hvm_config.blob_size_32;
1219 u32 page_num = data & ~PAGE_MASK;
1220 u64 page_addr = data & PAGE_MASK;
1225 if (page_num >= blob_size)
1228 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1232 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1234 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1243 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1245 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1248 static bool kvm_hv_msr_partition_wide(u32 msr)
1252 case HV_X64_MSR_GUEST_OS_ID:
1253 case HV_X64_MSR_HYPERCALL:
1261 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1263 struct kvm *kvm = vcpu->kvm;
1266 case HV_X64_MSR_GUEST_OS_ID:
1267 kvm->arch.hv_guest_os_id = data;
1268 /* setting guest os id to zero disables hypercall page */
1269 if (!kvm->arch.hv_guest_os_id)
1270 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1272 case HV_X64_MSR_HYPERCALL: {
1277 /* if guest os id is not set hypercall should remain disabled */
1278 if (!kvm->arch.hv_guest_os_id)
1280 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1281 kvm->arch.hv_hypercall = data;
1284 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1285 addr = gfn_to_hva(kvm, gfn);
1286 if (kvm_is_error_hva(addr))
1288 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1289 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1290 if (copy_to_user((void __user *)addr, instructions, 4))
1292 kvm->arch.hv_hypercall = data;
1296 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1297 "data 0x%llx\n", msr, data);
1303 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1306 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1309 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1310 vcpu->arch.hv_vapic = data;
1313 addr = gfn_to_hva(vcpu->kvm, data >>
1314 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1315 if (kvm_is_error_hva(addr))
1317 if (clear_user((void __user *)addr, PAGE_SIZE))
1319 vcpu->arch.hv_vapic = data;
1322 case HV_X64_MSR_EOI:
1323 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1324 case HV_X64_MSR_ICR:
1325 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1326 case HV_X64_MSR_TPR:
1327 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1329 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1330 "data 0x%llx\n", msr, data);
1337 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1341 return set_efer(vcpu, data);
1343 data &= ~(u64)0x40; /* ignore flush filter disable */
1344 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1346 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1351 case MSR_FAM10H_MMIO_CONF_BASE:
1353 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1358 case MSR_AMD64_NB_CFG:
1360 case MSR_IA32_DEBUGCTLMSR:
1362 /* We support the non-activated case already */
1364 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1365 /* Values other than LBR and BTF are vendor-specific,
1366 thus reserved and should throw a #GP */
1369 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1372 case MSR_IA32_UCODE_REV:
1373 case MSR_IA32_UCODE_WRITE:
1374 case MSR_VM_HSAVE_PA:
1375 case MSR_AMD64_PATCH_LOADER:
1377 case 0x200 ... 0x2ff:
1378 return set_msr_mtrr(vcpu, msr, data);
1379 case MSR_IA32_APICBASE:
1380 kvm_set_apic_base(vcpu, data);
1382 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1383 return kvm_x2apic_msr_write(vcpu, msr, data);
1384 case MSR_IA32_MISC_ENABLE:
1385 vcpu->arch.ia32_misc_enable_msr = data;
1387 case MSR_KVM_WALL_CLOCK_NEW:
1388 case MSR_KVM_WALL_CLOCK:
1389 vcpu->kvm->arch.wall_clock = data;
1390 kvm_write_wall_clock(vcpu->kvm, data);
1392 case MSR_KVM_SYSTEM_TIME_NEW:
1393 case MSR_KVM_SYSTEM_TIME: {
1394 if (vcpu->arch.time_page) {
1395 kvm_release_page_dirty(vcpu->arch.time_page);
1396 vcpu->arch.time_page = NULL;
1399 vcpu->arch.time = data;
1401 /* we verify if the enable bit is set... */
1405 /* ...but clean it before doing the actual write */
1406 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1408 vcpu->arch.time_page =
1409 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1411 if (is_error_page(vcpu->arch.time_page)) {
1412 kvm_release_page_clean(vcpu->arch.time_page);
1413 vcpu->arch.time_page = NULL;
1416 kvm_request_guest_time_update(vcpu);
1419 case MSR_IA32_MCG_CTL:
1420 case MSR_IA32_MCG_STATUS:
1421 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1422 return set_msr_mce(vcpu, msr, data);
1424 /* Performance counters are not protected by a CPUID bit,
1425 * so we should check all of them in the generic path for the sake of
1426 * cross vendor migration.
1427 * Writing a zero into the event select MSRs disables them,
1428 * which we perfectly emulate ;-). Any other value should be at least
1429 * reported, some guests depend on them.
1431 case MSR_P6_EVNTSEL0:
1432 case MSR_P6_EVNTSEL1:
1433 case MSR_K7_EVNTSEL0:
1434 case MSR_K7_EVNTSEL1:
1435 case MSR_K7_EVNTSEL2:
1436 case MSR_K7_EVNTSEL3:
1438 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1439 "0x%x data 0x%llx\n", msr, data);
1441 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1442 * so we ignore writes to make it happy.
1444 case MSR_P6_PERFCTR0:
1445 case MSR_P6_PERFCTR1:
1446 case MSR_K7_PERFCTR0:
1447 case MSR_K7_PERFCTR1:
1448 case MSR_K7_PERFCTR2:
1449 case MSR_K7_PERFCTR3:
1450 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1451 "0x%x data 0x%llx\n", msr, data);
1453 case MSR_K7_CLK_CTL:
1455 * Ignore all writes to this no longer documented MSR.
1456 * Writes are only relevant for old K7 processors,
1457 * all pre-dating SVM, but a recommended workaround from
1458 * AMD for these chips. It is possible to speicify the
1459 * affected processor models on the command line, hence
1460 * the need to ignore the workaround.
1463 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1464 if (kvm_hv_msr_partition_wide(msr)) {
1466 mutex_lock(&vcpu->kvm->lock);
1467 r = set_msr_hyperv_pw(vcpu, msr, data);
1468 mutex_unlock(&vcpu->kvm->lock);
1471 return set_msr_hyperv(vcpu, msr, data);
1474 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1475 return xen_hvm_config(vcpu, data);
1477 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1481 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1488 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1492 * Reads an msr value (of 'msr_index') into 'pdata'.
1493 * Returns 0 on success, non-0 otherwise.
1494 * Assumes vcpu_load() was already called.
1496 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1498 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1501 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1503 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1505 if (!msr_mtrr_valid(msr))
1508 if (msr == MSR_MTRRdefType)
1509 *pdata = vcpu->arch.mtrr_state.def_type +
1510 (vcpu->arch.mtrr_state.enabled << 10);
1511 else if (msr == MSR_MTRRfix64K_00000)
1513 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1514 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1515 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1516 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1517 else if (msr == MSR_IA32_CR_PAT)
1518 *pdata = vcpu->arch.pat;
1519 else { /* Variable MTRRs */
1520 int idx, is_mtrr_mask;
1523 idx = (msr - 0x200) / 2;
1524 is_mtrr_mask = msr - 0x200 - 2 * idx;
1527 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1530 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1537 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1540 u64 mcg_cap = vcpu->arch.mcg_cap;
1541 unsigned bank_num = mcg_cap & 0xff;
1544 case MSR_IA32_P5_MC_ADDR:
1545 case MSR_IA32_P5_MC_TYPE:
1548 case MSR_IA32_MCG_CAP:
1549 data = vcpu->arch.mcg_cap;
1551 case MSR_IA32_MCG_CTL:
1552 if (!(mcg_cap & MCG_CTL_P))
1554 data = vcpu->arch.mcg_ctl;
1556 case MSR_IA32_MCG_STATUS:
1557 data = vcpu->arch.mcg_status;
1560 if (msr >= MSR_IA32_MC0_CTL &&
1561 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1562 u32 offset = msr - MSR_IA32_MC0_CTL;
1563 data = vcpu->arch.mce_banks[offset];
1572 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1575 struct kvm *kvm = vcpu->kvm;
1578 case HV_X64_MSR_GUEST_OS_ID:
1579 data = kvm->arch.hv_guest_os_id;
1581 case HV_X64_MSR_HYPERCALL:
1582 data = kvm->arch.hv_hypercall;
1585 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1593 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1598 case HV_X64_MSR_VP_INDEX: {
1601 kvm_for_each_vcpu(r, v, vcpu->kvm)
1606 case HV_X64_MSR_EOI:
1607 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1608 case HV_X64_MSR_ICR:
1609 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1610 case HV_X64_MSR_TPR:
1611 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1613 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1620 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1625 case MSR_IA32_PLATFORM_ID:
1626 case MSR_IA32_UCODE_REV:
1627 case MSR_IA32_EBL_CR_POWERON:
1628 case MSR_IA32_DEBUGCTLMSR:
1629 case MSR_IA32_LASTBRANCHFROMIP:
1630 case MSR_IA32_LASTBRANCHTOIP:
1631 case MSR_IA32_LASTINTFROMIP:
1632 case MSR_IA32_LASTINTTOIP:
1635 case MSR_VM_HSAVE_PA:
1636 case MSR_P6_PERFCTR0:
1637 case MSR_P6_PERFCTR1:
1638 case MSR_P6_EVNTSEL0:
1639 case MSR_P6_EVNTSEL1:
1640 case MSR_K7_EVNTSEL0:
1641 case MSR_K7_PERFCTR0:
1642 case MSR_K8_INT_PENDING_MSG:
1643 case MSR_AMD64_NB_CFG:
1644 case MSR_FAM10H_MMIO_CONF_BASE:
1648 data = 0x500 | KVM_NR_VAR_MTRR;
1650 case 0x200 ... 0x2ff:
1651 return get_msr_mtrr(vcpu, msr, pdata);
1652 case 0xcd: /* fsb frequency */
1656 * MSR_EBC_FREQUENCY_ID
1657 * Conservative value valid for even the basic CPU models.
1658 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1659 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1660 * and 266MHz for model 3, or 4. Set Core Clock
1661 * Frequency to System Bus Frequency Ratio to 1 (bits
1662 * 31:24) even though these are only valid for CPU
1663 * models > 2, however guests may end up dividing or
1664 * multiplying by zero otherwise.
1666 case MSR_EBC_FREQUENCY_ID:
1669 case MSR_IA32_APICBASE:
1670 data = kvm_get_apic_base(vcpu);
1672 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1673 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1675 case MSR_IA32_MISC_ENABLE:
1676 data = vcpu->arch.ia32_misc_enable_msr;
1678 case MSR_IA32_PERF_STATUS:
1679 /* TSC increment by tick */
1681 /* CPU multiplier */
1682 data |= (((uint64_t)4ULL) << 40);
1685 data = vcpu->arch.efer;
1687 case MSR_KVM_WALL_CLOCK:
1688 case MSR_KVM_WALL_CLOCK_NEW:
1689 data = vcpu->kvm->arch.wall_clock;
1691 case MSR_KVM_SYSTEM_TIME:
1692 case MSR_KVM_SYSTEM_TIME_NEW:
1693 data = vcpu->arch.time;
1695 case MSR_IA32_P5_MC_ADDR:
1696 case MSR_IA32_P5_MC_TYPE:
1697 case MSR_IA32_MCG_CAP:
1698 case MSR_IA32_MCG_CTL:
1699 case MSR_IA32_MCG_STATUS:
1700 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1701 return get_msr_mce(vcpu, msr, pdata);
1702 case MSR_K7_CLK_CTL:
1704 * Provide expected ramp-up count for K7. All other
1705 * are set to zero, indicating minimum divisors for
1708 * This prevents guest kernels on AMD host with CPU
1709 * type 6, model 8 and higher from exploding due to
1710 * the rdmsr failing.
1714 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1715 if (kvm_hv_msr_partition_wide(msr)) {
1717 mutex_lock(&vcpu->kvm->lock);
1718 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1719 mutex_unlock(&vcpu->kvm->lock);
1722 return get_msr_hyperv(vcpu, msr, pdata);
1726 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1729 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1737 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1740 * Read or write a bunch of msrs. All parameters are kernel addresses.
1742 * @return number of msrs set successfully.
1744 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1745 struct kvm_msr_entry *entries,
1746 int (*do_msr)(struct kvm_vcpu *vcpu,
1747 unsigned index, u64 *data))
1751 idx = srcu_read_lock(&vcpu->kvm->srcu);
1752 for (i = 0; i < msrs->nmsrs; ++i)
1753 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1755 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1761 * Read or write a bunch of msrs. Parameters are user addresses.
1763 * @return number of msrs set successfully.
1765 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1766 int (*do_msr)(struct kvm_vcpu *vcpu,
1767 unsigned index, u64 *data),
1770 struct kvm_msrs msrs;
1771 struct kvm_msr_entry *entries;
1776 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1780 if (msrs.nmsrs >= MAX_IO_MSRS)
1784 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1785 entries = kmalloc(size, GFP_KERNEL);
1790 if (copy_from_user(entries, user_msrs->entries, size))
1793 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1798 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1809 int kvm_dev_ioctl_check_extension(long ext)
1814 case KVM_CAP_IRQCHIP:
1816 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1817 case KVM_CAP_SET_TSS_ADDR:
1818 case KVM_CAP_EXT_CPUID:
1819 case KVM_CAP_CLOCKSOURCE:
1821 case KVM_CAP_NOP_IO_DELAY:
1822 case KVM_CAP_MP_STATE:
1823 case KVM_CAP_SYNC_MMU:
1824 case KVM_CAP_REINJECT_CONTROL:
1825 case KVM_CAP_IRQ_INJECT_STATUS:
1826 case KVM_CAP_ASSIGN_DEV_IRQ:
1828 case KVM_CAP_IOEVENTFD:
1830 case KVM_CAP_PIT_STATE2:
1831 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1832 case KVM_CAP_XEN_HVM:
1833 case KVM_CAP_ADJUST_CLOCK:
1834 case KVM_CAP_VCPU_EVENTS:
1835 case KVM_CAP_HYPERV:
1836 case KVM_CAP_HYPERV_VAPIC:
1837 case KVM_CAP_HYPERV_SPIN:
1838 case KVM_CAP_PCI_SEGMENT:
1839 case KVM_CAP_DEBUGREGS:
1840 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1844 case KVM_CAP_COALESCED_MMIO:
1845 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1848 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1850 case KVM_CAP_NR_VCPUS:
1853 case KVM_CAP_NR_MEMSLOTS:
1854 r = KVM_MEMORY_SLOTS;
1856 case KVM_CAP_PV_MMU: /* obsolete */
1863 r = KVM_MAX_MCE_BANKS;
1876 long kvm_arch_dev_ioctl(struct file *filp,
1877 unsigned int ioctl, unsigned long arg)
1879 void __user *argp = (void __user *)arg;
1883 case KVM_GET_MSR_INDEX_LIST: {
1884 struct kvm_msr_list __user *user_msr_list = argp;
1885 struct kvm_msr_list msr_list;
1889 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1892 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1893 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1896 if (n < msr_list.nmsrs)
1899 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1900 num_msrs_to_save * sizeof(u32)))
1902 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1904 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1909 case KVM_GET_SUPPORTED_CPUID: {
1910 struct kvm_cpuid2 __user *cpuid_arg = argp;
1911 struct kvm_cpuid2 cpuid;
1914 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1916 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1917 cpuid_arg->entries);
1922 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1927 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1930 mce_cap = KVM_MCE_CAP_SUPPORTED;
1932 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1944 static void wbinvd_ipi(void *garbage)
1949 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
1951 return vcpu->kvm->arch.iommu_domain &&
1952 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
1955 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1957 /* Address WBINVD may be executed by guest */
1958 if (need_emulate_wbinvd(vcpu)) {
1959 if (kvm_x86_ops->has_wbinvd_exit())
1960 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
1961 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
1962 smp_call_function_single(vcpu->cpu,
1963 wbinvd_ipi, NULL, 1);
1966 kvm_x86_ops->vcpu_load(vcpu, cpu);
1967 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
1968 /* Make sure TSC doesn't go backwards */
1969 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
1970 native_read_tsc() - vcpu->arch.last_host_tsc;
1972 mark_tsc_unstable("KVM discovered backwards TSC");
1973 if (check_tsc_unstable())
1974 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
1975 kvm_migrate_timers(vcpu);
1980 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1982 kvm_x86_ops->vcpu_put(vcpu);
1983 kvm_put_guest_fpu(vcpu);
1984 vcpu->arch.last_host_tsc = native_read_tsc();
1987 static int is_efer_nx(void)
1989 unsigned long long efer = 0;
1991 rdmsrl_safe(MSR_EFER, &efer);
1992 return efer & EFER_NX;
1995 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1998 struct kvm_cpuid_entry2 *e, *entry;
2001 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2002 e = &vcpu->arch.cpuid_entries[i];
2003 if (e->function == 0x80000001) {
2008 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2009 entry->edx &= ~(1 << 20);
2010 printk(KERN_INFO "kvm: guest NX capability removed\n");
2014 /* when an old userspace process fills a new kernel module */
2015 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2016 struct kvm_cpuid *cpuid,
2017 struct kvm_cpuid_entry __user *entries)
2020 struct kvm_cpuid_entry *cpuid_entries;
2023 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2026 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2030 if (copy_from_user(cpuid_entries, entries,
2031 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2033 for (i = 0; i < cpuid->nent; i++) {
2034 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2035 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2036 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2037 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2038 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2039 vcpu->arch.cpuid_entries[i].index = 0;
2040 vcpu->arch.cpuid_entries[i].flags = 0;
2041 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2042 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2043 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2045 vcpu->arch.cpuid_nent = cpuid->nent;
2046 cpuid_fix_nx_cap(vcpu);
2048 kvm_apic_set_version(vcpu);
2049 kvm_x86_ops->cpuid_update(vcpu);
2053 vfree(cpuid_entries);
2058 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2059 struct kvm_cpuid2 *cpuid,
2060 struct kvm_cpuid_entry2 __user *entries)
2065 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2068 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2069 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2071 vcpu->arch.cpuid_nent = cpuid->nent;
2072 kvm_apic_set_version(vcpu);
2073 kvm_x86_ops->cpuid_update(vcpu);
2081 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2082 struct kvm_cpuid2 *cpuid,
2083 struct kvm_cpuid_entry2 __user *entries)
2088 if (cpuid->nent < vcpu->arch.cpuid_nent)
2091 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2092 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2097 cpuid->nent = vcpu->arch.cpuid_nent;
2101 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2104 entry->function = function;
2105 entry->index = index;
2106 cpuid_count(entry->function, entry->index,
2107 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2111 #define F(x) bit(X86_FEATURE_##x)
2113 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2114 u32 index, int *nent, int maxnent)
2116 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2117 #ifdef CONFIG_X86_64
2118 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2120 unsigned f_lm = F(LM);
2122 unsigned f_gbpages = 0;
2125 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2128 const u32 kvm_supported_word0_x86_features =
2129 F(FPU) | F(VME) | F(DE) | F(PSE) |
2130 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2131 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2132 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2133 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2134 0 /* Reserved, DS, ACPI */ | F(MMX) |
2135 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2136 0 /* HTT, TM, Reserved, PBE */;
2137 /* cpuid 0x80000001.edx */
2138 const u32 kvm_supported_word1_x86_features =
2139 F(FPU) | F(VME) | F(DE) | F(PSE) |
2140 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2141 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2142 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2143 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2144 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2145 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2146 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2148 const u32 kvm_supported_word4_x86_features =
2149 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2150 0 /* DS-CPL, VMX, SMX, EST */ |
2151 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2152 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2153 0 /* Reserved, DCA */ | F(XMM4_1) |
2154 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2155 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
2156 /* cpuid 0x80000001.ecx */
2157 const u32 kvm_supported_word6_x86_features =
2158 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
2159 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2160 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
2161 0 /* SKINIT */ | 0 /* WDT */;
2163 /* all calls to cpuid_count() should be made on the same cpu */
2165 do_cpuid_1_ent(entry, function, index);
2170 entry->eax = min(entry->eax, (u32)0xd);
2173 entry->edx &= kvm_supported_word0_x86_features;
2174 entry->ecx &= kvm_supported_word4_x86_features;
2175 /* we support x2apic emulation even if host does not support
2176 * it since we emulate x2apic in software */
2177 entry->ecx |= F(X2APIC);
2179 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2180 * may return different values. This forces us to get_cpu() before
2181 * issuing the first command, and also to emulate this annoying behavior
2182 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2184 int t, times = entry->eax & 0xff;
2186 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2187 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2188 for (t = 1; t < times && *nent < maxnent; ++t) {
2189 do_cpuid_1_ent(&entry[t], function, 0);
2190 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2195 /* function 4 and 0xb have additional index. */
2199 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2200 /* read more entries until cache_type is zero */
2201 for (i = 1; *nent < maxnent; ++i) {
2202 cache_type = entry[i - 1].eax & 0x1f;
2205 do_cpuid_1_ent(&entry[i], function, i);
2207 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2215 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2216 /* read more entries until level_type is zero */
2217 for (i = 1; *nent < maxnent; ++i) {
2218 level_type = entry[i - 1].ecx & 0xff00;
2221 do_cpuid_1_ent(&entry[i], function, i);
2223 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2231 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2232 for (i = 1; *nent < maxnent; ++i) {
2233 if (entry[i - 1].eax == 0 && i != 2)
2235 do_cpuid_1_ent(&entry[i], function, i);
2237 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2242 case KVM_CPUID_SIGNATURE: {
2243 char signature[12] = "KVMKVMKVM\0\0";
2244 u32 *sigptr = (u32 *)signature;
2246 entry->ebx = sigptr[0];
2247 entry->ecx = sigptr[1];
2248 entry->edx = sigptr[2];
2251 case KVM_CPUID_FEATURES:
2252 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2253 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2254 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2255 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2261 entry->eax = min(entry->eax, 0x8000001a);
2264 entry->edx &= kvm_supported_word1_x86_features;
2265 entry->ecx &= kvm_supported_word6_x86_features;
2269 kvm_x86_ops->set_supported_cpuid(function, entry);
2276 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2277 struct kvm_cpuid_entry2 __user *entries)
2279 struct kvm_cpuid_entry2 *cpuid_entries;
2280 int limit, nent = 0, r = -E2BIG;
2283 if (cpuid->nent < 1)
2285 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2286 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2288 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2292 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2293 limit = cpuid_entries[0].eax;
2294 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2295 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2296 &nent, cpuid->nent);
2298 if (nent >= cpuid->nent)
2301 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2302 limit = cpuid_entries[nent - 1].eax;
2303 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2304 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2305 &nent, cpuid->nent);
2310 if (nent >= cpuid->nent)
2313 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2317 if (nent >= cpuid->nent)
2320 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2324 if (nent >= cpuid->nent)
2328 if (copy_to_user(entries, cpuid_entries,
2329 nent * sizeof(struct kvm_cpuid_entry2)))
2335 vfree(cpuid_entries);
2340 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2341 struct kvm_lapic_state *s)
2343 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2348 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2349 struct kvm_lapic_state *s)
2351 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2352 kvm_apic_post_state_restore(vcpu);
2353 update_cr8_intercept(vcpu);
2358 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2359 struct kvm_interrupt *irq)
2361 if (irq->irq < 0 || irq->irq >= 256)
2363 if (irqchip_in_kernel(vcpu->kvm))
2366 kvm_queue_interrupt(vcpu, irq->irq, false);
2371 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2373 kvm_inject_nmi(vcpu);
2378 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2379 struct kvm_tpr_access_ctl *tac)
2383 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2387 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2391 unsigned bank_num = mcg_cap & 0xff, bank;
2394 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2396 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2399 vcpu->arch.mcg_cap = mcg_cap;
2400 /* Init IA32_MCG_CTL to all 1s */
2401 if (mcg_cap & MCG_CTL_P)
2402 vcpu->arch.mcg_ctl = ~(u64)0;
2403 /* Init IA32_MCi_CTL to all 1s */
2404 for (bank = 0; bank < bank_num; bank++)
2405 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2410 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2411 struct kvm_x86_mce *mce)
2413 u64 mcg_cap = vcpu->arch.mcg_cap;
2414 unsigned bank_num = mcg_cap & 0xff;
2415 u64 *banks = vcpu->arch.mce_banks;
2417 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2420 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2421 * reporting is disabled
2423 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2424 vcpu->arch.mcg_ctl != ~(u64)0)
2426 banks += 4 * mce->bank;
2428 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2429 * reporting is disabled for the bank
2431 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2433 if (mce->status & MCI_STATUS_UC) {
2434 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2435 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2436 printk(KERN_DEBUG "kvm: set_mce: "
2437 "injects mce exception while "
2438 "previous one is in progress!\n");
2439 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2442 if (banks[1] & MCI_STATUS_VAL)
2443 mce->status |= MCI_STATUS_OVER;
2444 banks[2] = mce->addr;
2445 banks[3] = mce->misc;
2446 vcpu->arch.mcg_status = mce->mcg_status;
2447 banks[1] = mce->status;
2448 kvm_queue_exception(vcpu, MC_VECTOR);
2449 } else if (!(banks[1] & MCI_STATUS_VAL)
2450 || !(banks[1] & MCI_STATUS_UC)) {
2451 if (banks[1] & MCI_STATUS_VAL)
2452 mce->status |= MCI_STATUS_OVER;
2453 banks[2] = mce->addr;
2454 banks[3] = mce->misc;
2455 banks[1] = mce->status;
2457 banks[1] |= MCI_STATUS_OVER;
2461 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2462 struct kvm_vcpu_events *events)
2464 events->exception.injected =
2465 vcpu->arch.exception.pending &&
2466 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2467 events->exception.nr = vcpu->arch.exception.nr;
2468 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2469 events->exception.error_code = vcpu->arch.exception.error_code;
2471 events->interrupt.injected =
2472 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2473 events->interrupt.nr = vcpu->arch.interrupt.nr;
2474 events->interrupt.soft = 0;
2475 events->interrupt.shadow =
2476 kvm_x86_ops->get_interrupt_shadow(vcpu,
2477 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2479 events->nmi.injected = vcpu->arch.nmi_injected;
2480 events->nmi.pending = vcpu->arch.nmi_pending;
2481 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2483 events->sipi_vector = vcpu->arch.sipi_vector;
2485 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2486 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2487 | KVM_VCPUEVENT_VALID_SHADOW);
2490 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2491 struct kvm_vcpu_events *events)
2493 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2494 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2495 | KVM_VCPUEVENT_VALID_SHADOW))
2498 vcpu->arch.exception.pending = events->exception.injected;
2499 vcpu->arch.exception.nr = events->exception.nr;
2500 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2501 vcpu->arch.exception.error_code = events->exception.error_code;
2503 vcpu->arch.interrupt.pending = events->interrupt.injected;
2504 vcpu->arch.interrupt.nr = events->interrupt.nr;
2505 vcpu->arch.interrupt.soft = events->interrupt.soft;
2506 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2507 kvm_pic_clear_isr_ack(vcpu->kvm);
2508 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2509 kvm_x86_ops->set_interrupt_shadow(vcpu,
2510 events->interrupt.shadow);
2512 vcpu->arch.nmi_injected = events->nmi.injected;
2513 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2514 vcpu->arch.nmi_pending = events->nmi.pending;
2515 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2517 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2518 vcpu->arch.sipi_vector = events->sipi_vector;
2523 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2524 struct kvm_debugregs *dbgregs)
2526 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2527 dbgregs->dr6 = vcpu->arch.dr6;
2528 dbgregs->dr7 = vcpu->arch.dr7;
2532 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2533 struct kvm_debugregs *dbgregs)
2538 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2539 vcpu->arch.dr6 = dbgregs->dr6;
2540 vcpu->arch.dr7 = dbgregs->dr7;
2545 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2546 struct kvm_xsave *guest_xsave)
2549 memcpy(guest_xsave->region,
2550 &vcpu->arch.guest_fpu.state->xsave,
2553 memcpy(guest_xsave->region,
2554 &vcpu->arch.guest_fpu.state->fxsave,
2555 sizeof(struct i387_fxsave_struct));
2556 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2561 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2562 struct kvm_xsave *guest_xsave)
2565 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2568 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2569 guest_xsave->region, xstate_size);
2571 if (xstate_bv & ~XSTATE_FPSSE)
2573 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2574 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2579 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2580 struct kvm_xcrs *guest_xcrs)
2582 if (!cpu_has_xsave) {
2583 guest_xcrs->nr_xcrs = 0;
2587 guest_xcrs->nr_xcrs = 1;
2588 guest_xcrs->flags = 0;
2589 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2590 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2593 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2594 struct kvm_xcrs *guest_xcrs)
2601 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2604 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2605 /* Only support XCR0 currently */
2606 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2607 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2608 guest_xcrs->xcrs[0].value);
2616 long kvm_arch_vcpu_ioctl(struct file *filp,
2617 unsigned int ioctl, unsigned long arg)
2619 struct kvm_vcpu *vcpu = filp->private_data;
2620 void __user *argp = (void __user *)arg;
2623 struct kvm_lapic_state *lapic;
2624 struct kvm_xsave *xsave;
2625 struct kvm_xcrs *xcrs;
2631 case KVM_GET_LAPIC: {
2633 if (!vcpu->arch.apic)
2635 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2640 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2644 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2649 case KVM_SET_LAPIC: {
2651 if (!vcpu->arch.apic)
2653 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2658 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2660 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2666 case KVM_INTERRUPT: {
2667 struct kvm_interrupt irq;
2670 if (copy_from_user(&irq, argp, sizeof irq))
2672 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2679 r = kvm_vcpu_ioctl_nmi(vcpu);
2685 case KVM_SET_CPUID: {
2686 struct kvm_cpuid __user *cpuid_arg = argp;
2687 struct kvm_cpuid cpuid;
2690 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2692 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2697 case KVM_SET_CPUID2: {
2698 struct kvm_cpuid2 __user *cpuid_arg = argp;
2699 struct kvm_cpuid2 cpuid;
2702 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2704 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2705 cpuid_arg->entries);
2710 case KVM_GET_CPUID2: {
2711 struct kvm_cpuid2 __user *cpuid_arg = argp;
2712 struct kvm_cpuid2 cpuid;
2715 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2717 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2718 cpuid_arg->entries);
2722 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2728 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2731 r = msr_io(vcpu, argp, do_set_msr, 0);
2733 case KVM_TPR_ACCESS_REPORTING: {
2734 struct kvm_tpr_access_ctl tac;
2737 if (copy_from_user(&tac, argp, sizeof tac))
2739 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2743 if (copy_to_user(argp, &tac, sizeof tac))
2748 case KVM_SET_VAPIC_ADDR: {
2749 struct kvm_vapic_addr va;
2752 if (!irqchip_in_kernel(vcpu->kvm))
2755 if (copy_from_user(&va, argp, sizeof va))
2758 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2761 case KVM_X86_SETUP_MCE: {
2765 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2767 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2770 case KVM_X86_SET_MCE: {
2771 struct kvm_x86_mce mce;
2774 if (copy_from_user(&mce, argp, sizeof mce))
2776 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2779 case KVM_GET_VCPU_EVENTS: {
2780 struct kvm_vcpu_events events;
2782 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2785 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2790 case KVM_SET_VCPU_EVENTS: {
2791 struct kvm_vcpu_events events;
2794 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2797 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2800 case KVM_GET_DEBUGREGS: {
2801 struct kvm_debugregs dbgregs;
2803 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2806 if (copy_to_user(argp, &dbgregs,
2807 sizeof(struct kvm_debugregs)))
2812 case KVM_SET_DEBUGREGS: {
2813 struct kvm_debugregs dbgregs;
2816 if (copy_from_user(&dbgregs, argp,
2817 sizeof(struct kvm_debugregs)))
2820 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2823 case KVM_GET_XSAVE: {
2824 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2829 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2832 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2837 case KVM_SET_XSAVE: {
2838 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2844 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2847 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2850 case KVM_GET_XCRS: {
2851 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2856 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2859 if (copy_to_user(argp, u.xcrs,
2860 sizeof(struct kvm_xcrs)))
2865 case KVM_SET_XCRS: {
2866 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2872 if (copy_from_user(u.xcrs, argp,
2873 sizeof(struct kvm_xcrs)))
2876 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2887 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2891 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2893 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2897 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2900 kvm->arch.ept_identity_map_addr = ident_addr;
2904 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2905 u32 kvm_nr_mmu_pages)
2907 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2910 mutex_lock(&kvm->slots_lock);
2911 spin_lock(&kvm->mmu_lock);
2913 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2914 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2916 spin_unlock(&kvm->mmu_lock);
2917 mutex_unlock(&kvm->slots_lock);
2921 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2923 return kvm->arch.n_max_mmu_pages;
2926 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2931 switch (chip->chip_id) {
2932 case KVM_IRQCHIP_PIC_MASTER:
2933 memcpy(&chip->chip.pic,
2934 &pic_irqchip(kvm)->pics[0],
2935 sizeof(struct kvm_pic_state));
2937 case KVM_IRQCHIP_PIC_SLAVE:
2938 memcpy(&chip->chip.pic,
2939 &pic_irqchip(kvm)->pics[1],
2940 sizeof(struct kvm_pic_state));
2942 case KVM_IRQCHIP_IOAPIC:
2943 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2952 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2957 switch (chip->chip_id) {
2958 case KVM_IRQCHIP_PIC_MASTER:
2959 raw_spin_lock(&pic_irqchip(kvm)->lock);
2960 memcpy(&pic_irqchip(kvm)->pics[0],
2962 sizeof(struct kvm_pic_state));
2963 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2965 case KVM_IRQCHIP_PIC_SLAVE:
2966 raw_spin_lock(&pic_irqchip(kvm)->lock);
2967 memcpy(&pic_irqchip(kvm)->pics[1],
2969 sizeof(struct kvm_pic_state));
2970 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2972 case KVM_IRQCHIP_IOAPIC:
2973 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2979 kvm_pic_update_irq(pic_irqchip(kvm));
2983 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2987 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2988 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2989 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2993 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2997 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2998 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2999 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3000 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3004 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3008 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3009 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3010 sizeof(ps->channels));
3011 ps->flags = kvm->arch.vpit->pit_state.flags;
3012 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3016 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3018 int r = 0, start = 0;
3019 u32 prev_legacy, cur_legacy;
3020 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3021 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3022 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3023 if (!prev_legacy && cur_legacy)
3025 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3026 sizeof(kvm->arch.vpit->pit_state.channels));
3027 kvm->arch.vpit->pit_state.flags = ps->flags;
3028 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3029 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3033 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3034 struct kvm_reinject_control *control)
3036 if (!kvm->arch.vpit)
3038 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3039 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3040 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3045 * Get (and clear) the dirty memory log for a memory slot.
3047 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3048 struct kvm_dirty_log *log)
3051 struct kvm_memory_slot *memslot;
3053 unsigned long is_dirty = 0;
3055 mutex_lock(&kvm->slots_lock);
3058 if (log->slot >= KVM_MEMORY_SLOTS)
3061 memslot = &kvm->memslots->memslots[log->slot];
3063 if (!memslot->dirty_bitmap)
3066 n = kvm_dirty_bitmap_bytes(memslot);
3068 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3069 is_dirty = memslot->dirty_bitmap[i];
3071 /* If nothing is dirty, don't bother messing with page tables. */
3073 struct kvm_memslots *slots, *old_slots;
3074 unsigned long *dirty_bitmap;
3076 spin_lock(&kvm->mmu_lock);
3077 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3078 spin_unlock(&kvm->mmu_lock);
3081 dirty_bitmap = vmalloc(n);
3084 memset(dirty_bitmap, 0, n);
3087 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3089 vfree(dirty_bitmap);
3092 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3093 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3095 old_slots = kvm->memslots;
3096 rcu_assign_pointer(kvm->memslots, slots);
3097 synchronize_srcu_expedited(&kvm->srcu);
3098 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3102 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
3103 vfree(dirty_bitmap);
3106 vfree(dirty_bitmap);
3109 if (clear_user(log->dirty_bitmap, n))
3115 mutex_unlock(&kvm->slots_lock);
3119 long kvm_arch_vm_ioctl(struct file *filp,
3120 unsigned int ioctl, unsigned long arg)
3122 struct kvm *kvm = filp->private_data;
3123 void __user *argp = (void __user *)arg;
3126 * This union makes it completely explicit to gcc-3.x
3127 * that these two variables' stack usage should be
3128 * combined, not added together.
3131 struct kvm_pit_state ps;
3132 struct kvm_pit_state2 ps2;
3133 struct kvm_pit_config pit_config;
3137 case KVM_SET_TSS_ADDR:
3138 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3142 case KVM_SET_IDENTITY_MAP_ADDR: {
3146 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3148 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3153 case KVM_SET_NR_MMU_PAGES:
3154 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3158 case KVM_GET_NR_MMU_PAGES:
3159 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3161 case KVM_CREATE_IRQCHIP: {
3162 struct kvm_pic *vpic;
3164 mutex_lock(&kvm->lock);
3167 goto create_irqchip_unlock;
3169 vpic = kvm_create_pic(kvm);
3171 r = kvm_ioapic_init(kvm);
3173 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3176 goto create_irqchip_unlock;
3179 goto create_irqchip_unlock;
3181 kvm->arch.vpic = vpic;
3183 r = kvm_setup_default_irq_routing(kvm);
3185 mutex_lock(&kvm->irq_lock);
3186 kvm_ioapic_destroy(kvm);
3187 kvm_destroy_pic(kvm);
3188 mutex_unlock(&kvm->irq_lock);
3190 create_irqchip_unlock:
3191 mutex_unlock(&kvm->lock);
3194 case KVM_CREATE_PIT:
3195 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3197 case KVM_CREATE_PIT2:
3199 if (copy_from_user(&u.pit_config, argp,
3200 sizeof(struct kvm_pit_config)))
3203 mutex_lock(&kvm->slots_lock);
3206 goto create_pit_unlock;
3208 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3212 mutex_unlock(&kvm->slots_lock);
3214 case KVM_IRQ_LINE_STATUS:
3215 case KVM_IRQ_LINE: {
3216 struct kvm_irq_level irq_event;
3219 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3222 if (irqchip_in_kernel(kvm)) {
3224 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3225 irq_event.irq, irq_event.level);
3226 if (ioctl == KVM_IRQ_LINE_STATUS) {
3228 irq_event.status = status;
3229 if (copy_to_user(argp, &irq_event,
3237 case KVM_GET_IRQCHIP: {
3238 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3239 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3245 if (copy_from_user(chip, argp, sizeof *chip))
3246 goto get_irqchip_out;
3248 if (!irqchip_in_kernel(kvm))
3249 goto get_irqchip_out;
3250 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3252 goto get_irqchip_out;
3254 if (copy_to_user(argp, chip, sizeof *chip))
3255 goto get_irqchip_out;
3263 case KVM_SET_IRQCHIP: {
3264 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3265 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3271 if (copy_from_user(chip, argp, sizeof *chip))
3272 goto set_irqchip_out;
3274 if (!irqchip_in_kernel(kvm))
3275 goto set_irqchip_out;
3276 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3278 goto set_irqchip_out;
3288 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3291 if (!kvm->arch.vpit)
3293 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3297 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3304 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3307 if (!kvm->arch.vpit)
3309 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3315 case KVM_GET_PIT2: {
3317 if (!kvm->arch.vpit)
3319 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3323 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3328 case KVM_SET_PIT2: {
3330 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3333 if (!kvm->arch.vpit)
3335 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3341 case KVM_REINJECT_CONTROL: {
3342 struct kvm_reinject_control control;
3344 if (copy_from_user(&control, argp, sizeof(control)))
3346 r = kvm_vm_ioctl_reinject(kvm, &control);
3352 case KVM_XEN_HVM_CONFIG: {
3354 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3355 sizeof(struct kvm_xen_hvm_config)))
3358 if (kvm->arch.xen_hvm_config.flags)
3363 case KVM_SET_CLOCK: {
3364 struct kvm_clock_data user_ns;
3369 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3377 now_ns = get_kernel_ns();
3378 delta = user_ns.clock - now_ns;
3379 kvm->arch.kvmclock_offset = delta;
3382 case KVM_GET_CLOCK: {
3383 struct kvm_clock_data user_ns;
3386 now_ns = get_kernel_ns();
3387 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3391 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3404 static void kvm_init_msr_list(void)
3409 /* skip the first msrs in the list. KVM-specific */
3410 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3411 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3414 msrs_to_save[j] = msrs_to_save[i];
3417 num_msrs_to_save = j;
3420 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3423 if (vcpu->arch.apic &&
3424 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3427 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3430 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3432 if (vcpu->arch.apic &&
3433 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3436 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3439 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3440 struct kvm_segment *var, int seg)
3442 kvm_x86_ops->set_segment(vcpu, var, seg);
3445 void kvm_get_segment(struct kvm_vcpu *vcpu,
3446 struct kvm_segment *var, int seg)
3448 kvm_x86_ops->get_segment(vcpu, var, seg);
3451 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3453 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3454 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3457 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3459 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3460 access |= PFERR_FETCH_MASK;
3461 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3464 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3466 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3467 access |= PFERR_WRITE_MASK;
3468 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3471 /* uses this to access any guest's mapped memory without checking CPL */
3472 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3474 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3477 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3478 struct kvm_vcpu *vcpu, u32 access,
3482 int r = X86EMUL_CONTINUE;
3485 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3486 unsigned offset = addr & (PAGE_SIZE-1);
3487 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3490 if (gpa == UNMAPPED_GVA) {
3491 r = X86EMUL_PROPAGATE_FAULT;
3494 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3496 r = X86EMUL_IO_NEEDED;
3508 /* used for instruction fetching */
3509 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3510 struct kvm_vcpu *vcpu, u32 *error)
3512 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3513 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3514 access | PFERR_FETCH_MASK, error);
3517 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3518 struct kvm_vcpu *vcpu, u32 *error)
3520 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3521 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3525 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3526 struct kvm_vcpu *vcpu, u32 *error)
3528 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3531 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3533 struct kvm_vcpu *vcpu,
3537 int r = X86EMUL_CONTINUE;
3540 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3541 PFERR_WRITE_MASK, error);
3542 unsigned offset = addr & (PAGE_SIZE-1);
3543 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3546 if (gpa == UNMAPPED_GVA) {
3547 r = X86EMUL_PROPAGATE_FAULT;
3550 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3552 r = X86EMUL_IO_NEEDED;
3564 static int emulator_read_emulated(unsigned long addr,
3567 unsigned int *error_code,
3568 struct kvm_vcpu *vcpu)
3572 if (vcpu->mmio_read_completed) {
3573 memcpy(val, vcpu->mmio_data, bytes);
3574 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3575 vcpu->mmio_phys_addr, *(u64 *)val);
3576 vcpu->mmio_read_completed = 0;
3577 return X86EMUL_CONTINUE;
3580 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3582 if (gpa == UNMAPPED_GVA)
3583 return X86EMUL_PROPAGATE_FAULT;
3585 /* For APIC access vmexit */
3586 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3589 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3590 == X86EMUL_CONTINUE)
3591 return X86EMUL_CONTINUE;
3595 * Is this MMIO handled locally?
3597 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3598 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3599 return X86EMUL_CONTINUE;
3602 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3604 vcpu->mmio_needed = 1;
3605 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3606 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3607 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3608 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3610 return X86EMUL_IO_NEEDED;
3613 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3614 const void *val, int bytes)
3618 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3621 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3625 static int emulator_write_emulated_onepage(unsigned long addr,
3628 unsigned int *error_code,
3629 struct kvm_vcpu *vcpu)
3633 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3635 if (gpa == UNMAPPED_GVA)
3636 return X86EMUL_PROPAGATE_FAULT;
3638 /* For APIC access vmexit */
3639 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3642 if (emulator_write_phys(vcpu, gpa, val, bytes))
3643 return X86EMUL_CONTINUE;
3646 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3648 * Is this MMIO handled locally?
3650 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3651 return X86EMUL_CONTINUE;
3653 vcpu->mmio_needed = 1;
3654 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3655 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3656 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3657 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3658 memcpy(vcpu->run->mmio.data, val, bytes);
3660 return X86EMUL_CONTINUE;
3663 int emulator_write_emulated(unsigned long addr,
3666 unsigned int *error_code,
3667 struct kvm_vcpu *vcpu)
3669 /* Crossing a page boundary? */
3670 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3673 now = -addr & ~PAGE_MASK;
3674 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3676 if (rc != X86EMUL_CONTINUE)
3682 return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3686 #define CMPXCHG_TYPE(t, ptr, old, new) \
3687 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3689 #ifdef CONFIG_X86_64
3690 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3692 # define CMPXCHG64(ptr, old, new) \
3693 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3696 static int emulator_cmpxchg_emulated(unsigned long addr,
3700 unsigned int *error_code,
3701 struct kvm_vcpu *vcpu)
3708 /* guests cmpxchg8b have to be emulated atomically */
3709 if (bytes > 8 || (bytes & (bytes - 1)))
3712 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3714 if (gpa == UNMAPPED_GVA ||
3715 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3718 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3721 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3722 if (is_error_page(page)) {
3723 kvm_release_page_clean(page);
3727 kaddr = kmap_atomic(page, KM_USER0);
3728 kaddr += offset_in_page(gpa);
3731 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3734 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3737 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3740 exchanged = CMPXCHG64(kaddr, old, new);
3745 kunmap_atomic(kaddr, KM_USER0);
3746 kvm_release_page_dirty(page);
3749 return X86EMUL_CMPXCHG_FAILED;
3751 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3753 return X86EMUL_CONTINUE;
3756 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3758 return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3761 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3763 /* TODO: String I/O for in kernel device */
3766 if (vcpu->arch.pio.in)
3767 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3768 vcpu->arch.pio.size, pd);
3770 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3771 vcpu->arch.pio.port, vcpu->arch.pio.size,
3777 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3778 unsigned int count, struct kvm_vcpu *vcpu)
3780 if (vcpu->arch.pio.count)
3783 trace_kvm_pio(0, port, size, 1);
3785 vcpu->arch.pio.port = port;
3786 vcpu->arch.pio.in = 1;
3787 vcpu->arch.pio.count = count;
3788 vcpu->arch.pio.size = size;
3790 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3792 memcpy(val, vcpu->arch.pio_data, size * count);
3793 vcpu->arch.pio.count = 0;
3797 vcpu->run->exit_reason = KVM_EXIT_IO;
3798 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3799 vcpu->run->io.size = size;
3800 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3801 vcpu->run->io.count = count;
3802 vcpu->run->io.port = port;
3807 static int emulator_pio_out_emulated(int size, unsigned short port,
3808 const void *val, unsigned int count,
3809 struct kvm_vcpu *vcpu)
3811 trace_kvm_pio(1, port, size, 1);
3813 vcpu->arch.pio.port = port;
3814 vcpu->arch.pio.in = 0;
3815 vcpu->arch.pio.count = count;
3816 vcpu->arch.pio.size = size;
3818 memcpy(vcpu->arch.pio_data, val, size * count);
3820 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3821 vcpu->arch.pio.count = 0;
3825 vcpu->run->exit_reason = KVM_EXIT_IO;
3826 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3827 vcpu->run->io.size = size;
3828 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3829 vcpu->run->io.count = count;
3830 vcpu->run->io.port = port;
3835 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3837 return kvm_x86_ops->get_segment_base(vcpu, seg);
3840 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3842 kvm_mmu_invlpg(vcpu, address);
3843 return X86EMUL_CONTINUE;
3846 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3848 if (!need_emulate_wbinvd(vcpu))
3849 return X86EMUL_CONTINUE;
3851 if (kvm_x86_ops->has_wbinvd_exit()) {
3852 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3853 wbinvd_ipi, NULL, 1);
3854 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3857 return X86EMUL_CONTINUE;
3859 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3861 int emulate_clts(struct kvm_vcpu *vcpu)
3863 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3864 kvm_x86_ops->fpu_activate(vcpu);
3865 return X86EMUL_CONTINUE;
3868 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3870 return _kvm_get_dr(vcpu, dr, dest);
3873 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
3876 return __kvm_set_dr(vcpu, dr, value);
3879 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3881 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3884 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3886 unsigned long value;
3890 value = kvm_read_cr0(vcpu);
3893 value = vcpu->arch.cr2;
3896 value = vcpu->arch.cr3;
3899 value = kvm_read_cr4(vcpu);
3902 value = kvm_get_cr8(vcpu);
3905 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3912 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3918 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3921 vcpu->arch.cr2 = val;
3924 res = kvm_set_cr3(vcpu, val);
3927 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3930 res = __kvm_set_cr8(vcpu, val & 0xfUL);
3933 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3940 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3942 return kvm_x86_ops->get_cpl(vcpu);
3945 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3947 kvm_x86_ops->get_gdt(vcpu, dt);
3950 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3952 kvm_x86_ops->get_idt(vcpu, dt);
3955 static unsigned long emulator_get_cached_segment_base(int seg,
3956 struct kvm_vcpu *vcpu)
3958 return get_segment_base(vcpu, seg);
3961 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3962 struct kvm_vcpu *vcpu)
3964 struct kvm_segment var;
3966 kvm_get_segment(vcpu, &var, seg);
3973 set_desc_limit(desc, var.limit);
3974 set_desc_base(desc, (unsigned long)var.base);
3975 desc->type = var.type;
3977 desc->dpl = var.dpl;
3978 desc->p = var.present;
3979 desc->avl = var.avl;
3987 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3988 struct kvm_vcpu *vcpu)
3990 struct kvm_segment var;
3992 /* needed to preserve selector */
3993 kvm_get_segment(vcpu, &var, seg);
3995 var.base = get_desc_base(desc);
3996 var.limit = get_desc_limit(desc);
3998 var.limit = (var.limit << 12) | 0xfff;
3999 var.type = desc->type;
4000 var.present = desc->p;
4001 var.dpl = desc->dpl;
4006 var.avl = desc->avl;
4007 var.present = desc->p;
4008 var.unusable = !var.present;
4011 kvm_set_segment(vcpu, &var, seg);
4015 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4017 struct kvm_segment kvm_seg;
4019 kvm_get_segment(vcpu, &kvm_seg, seg);
4020 return kvm_seg.selector;
4023 static void emulator_set_segment_selector(u16 sel, int seg,
4024 struct kvm_vcpu *vcpu)
4026 struct kvm_segment kvm_seg;
4028 kvm_get_segment(vcpu, &kvm_seg, seg);
4029 kvm_seg.selector = sel;
4030 kvm_set_segment(vcpu, &kvm_seg, seg);
4033 static struct x86_emulate_ops emulate_ops = {
4034 .read_std = kvm_read_guest_virt_system,
4035 .write_std = kvm_write_guest_virt_system,
4036 .fetch = kvm_fetch_guest_virt,
4037 .read_emulated = emulator_read_emulated,
4038 .write_emulated = emulator_write_emulated,
4039 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4040 .pio_in_emulated = emulator_pio_in_emulated,
4041 .pio_out_emulated = emulator_pio_out_emulated,
4042 .get_cached_descriptor = emulator_get_cached_descriptor,
4043 .set_cached_descriptor = emulator_set_cached_descriptor,
4044 .get_segment_selector = emulator_get_segment_selector,
4045 .set_segment_selector = emulator_set_segment_selector,
4046 .get_cached_segment_base = emulator_get_cached_segment_base,
4047 .get_gdt = emulator_get_gdt,
4048 .get_idt = emulator_get_idt,
4049 .get_cr = emulator_get_cr,
4050 .set_cr = emulator_set_cr,
4051 .cpl = emulator_get_cpl,
4052 .get_dr = emulator_get_dr,
4053 .set_dr = emulator_set_dr,
4054 .set_msr = kvm_set_msr,
4055 .get_msr = kvm_get_msr,
4058 static void cache_all_regs(struct kvm_vcpu *vcpu)
4060 kvm_register_read(vcpu, VCPU_REGS_RAX);
4061 kvm_register_read(vcpu, VCPU_REGS_RSP);
4062 kvm_register_read(vcpu, VCPU_REGS_RIP);
4063 vcpu->arch.regs_dirty = ~0;
4066 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4068 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4070 * an sti; sti; sequence only disable interrupts for the first
4071 * instruction. So, if the last instruction, be it emulated or
4072 * not, left the system with the INT_STI flag enabled, it
4073 * means that the last instruction is an sti. We should not
4074 * leave the flag on in this case. The same goes for mov ss
4076 if (!(int_shadow & mask))
4077 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4080 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4082 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4083 if (ctxt->exception == PF_VECTOR)
4084 kvm_inject_page_fault(vcpu);
4085 else if (ctxt->error_code_valid)
4086 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
4088 kvm_queue_exception(vcpu, ctxt->exception);
4091 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4093 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4096 cache_all_regs(vcpu);
4098 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4100 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4101 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4102 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4103 vcpu->arch.emulate_ctxt.mode =
4104 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4105 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4106 ? X86EMUL_MODE_VM86 : cs_l
4107 ? X86EMUL_MODE_PROT64 : cs_db
4108 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4109 memset(c, 0, sizeof(struct decode_cache));
4110 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4113 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4115 ++vcpu->stat.insn_emulation_fail;
4116 trace_kvm_emulate_insn_failed(vcpu);
4117 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4118 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4119 vcpu->run->internal.ndata = 0;
4120 kvm_queue_exception(vcpu, UD_VECTOR);
4121 return EMULATE_FAIL;
4124 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4132 * if emulation was due to access to shadowed page table
4133 * and it failed try to unshadow page and re-entetr the
4134 * guest to let CPU execute the instruction.
4136 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4139 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4141 if (gpa == UNMAPPED_GVA)
4142 return true; /* let cpu generate fault */
4144 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4150 int emulate_instruction(struct kvm_vcpu *vcpu,
4156 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4158 kvm_clear_exception_queue(vcpu);
4159 vcpu->arch.mmio_fault_cr2 = cr2;
4161 * TODO: fix emulate.c to use guest_read/write_register
4162 * instead of direct ->regs accesses, can save hundred cycles
4163 * on Intel for instructions that don't read/change RSP, for
4166 cache_all_regs(vcpu);
4168 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4169 init_emulate_ctxt(vcpu);
4170 vcpu->arch.emulate_ctxt.interruptibility = 0;
4171 vcpu->arch.emulate_ctxt.exception = -1;
4172 vcpu->arch.emulate_ctxt.perm_ok = false;
4174 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4175 trace_kvm_emulate_insn_start(vcpu);
4177 /* Only allow emulation of specific instructions on #UD
4178 * (namely VMMCALL, sysenter, sysexit, syscall)*/
4179 if (emulation_type & EMULTYPE_TRAP_UD) {
4181 return EMULATE_FAIL;
4183 case 0x01: /* VMMCALL */
4184 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4185 return EMULATE_FAIL;
4187 case 0x34: /* sysenter */
4188 case 0x35: /* sysexit */
4189 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4190 return EMULATE_FAIL;
4192 case 0x05: /* syscall */
4193 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4194 return EMULATE_FAIL;
4197 return EMULATE_FAIL;
4200 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4201 return EMULATE_FAIL;
4204 ++vcpu->stat.insn_emulation;
4206 if (reexecute_instruction(vcpu, cr2))
4207 return EMULATE_DONE;
4208 if (emulation_type & EMULTYPE_SKIP)
4209 return EMULATE_FAIL;
4210 return handle_emulation_failure(vcpu);
4214 if (emulation_type & EMULTYPE_SKIP) {
4215 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4216 return EMULATE_DONE;
4219 /* this is needed for vmware backdor interface to work since it
4220 changes registers values during IO operation */
4221 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4224 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4226 if (r == EMULATION_FAILED) {
4227 if (reexecute_instruction(vcpu, cr2))
4228 return EMULATE_DONE;
4230 return handle_emulation_failure(vcpu);
4233 if (vcpu->arch.emulate_ctxt.exception >= 0) {
4234 inject_emulated_exception(vcpu);
4236 } else if (vcpu->arch.pio.count) {
4237 if (!vcpu->arch.pio.in)
4238 vcpu->arch.pio.count = 0;
4239 r = EMULATE_DO_MMIO;
4240 } else if (vcpu->mmio_needed) {
4241 if (vcpu->mmio_is_write)
4242 vcpu->mmio_needed = 0;
4243 r = EMULATE_DO_MMIO;
4244 } else if (r == EMULATION_RESTART)
4249 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4250 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4251 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4252 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4256 EXPORT_SYMBOL_GPL(emulate_instruction);
4258 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4260 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4261 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4262 /* do not return to emulator after return from userspace */
4263 vcpu->arch.pio.count = 0;
4266 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4268 static void tsc_bad(void *info)
4270 __get_cpu_var(cpu_tsc_khz) = 0;
4273 static void tsc_khz_changed(void *data)
4275 struct cpufreq_freqs *freq = data;
4276 unsigned long khz = 0;
4280 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4281 khz = cpufreq_quick_get(raw_smp_processor_id());
4284 __get_cpu_var(cpu_tsc_khz) = khz;
4287 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4290 struct cpufreq_freqs *freq = data;
4292 struct kvm_vcpu *vcpu;
4293 int i, send_ipi = 0;
4296 * We allow guests to temporarily run on slowing clocks,
4297 * provided we notify them after, or to run on accelerating
4298 * clocks, provided we notify them before. Thus time never
4301 * However, we have a problem. We can't atomically update
4302 * the frequency of a given CPU from this function; it is
4303 * merely a notifier, which can be called from any CPU.
4304 * Changing the TSC frequency at arbitrary points in time
4305 * requires a recomputation of local variables related to
4306 * the TSC for each VCPU. We must flag these local variables
4307 * to be updated and be sure the update takes place with the
4308 * new frequency before any guests proceed.
4310 * Unfortunately, the combination of hotplug CPU and frequency
4311 * change creates an intractable locking scenario; the order
4312 * of when these callouts happen is undefined with respect to
4313 * CPU hotplug, and they can race with each other. As such,
4314 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4315 * undefined; you can actually have a CPU frequency change take
4316 * place in between the computation of X and the setting of the
4317 * variable. To protect against this problem, all updates of
4318 * the per_cpu tsc_khz variable are done in an interrupt
4319 * protected IPI, and all callers wishing to update the value
4320 * must wait for a synchronous IPI to complete (which is trivial
4321 * if the caller is on the CPU already). This establishes the
4322 * necessary total order on variable updates.
4324 * Note that because a guest time update may take place
4325 * anytime after the setting of the VCPU's request bit, the
4326 * correct TSC value must be set before the request. However,
4327 * to ensure the update actually makes it to any guest which
4328 * starts running in hardware virtualization between the set
4329 * and the acquisition of the spinlock, we must also ping the
4330 * CPU after setting the request bit.
4334 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4336 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4339 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4341 spin_lock(&kvm_lock);
4342 list_for_each_entry(kvm, &vm_list, vm_list) {
4343 kvm_for_each_vcpu(i, vcpu, kvm) {
4344 if (vcpu->cpu != freq->cpu)
4346 if (!kvm_request_guest_time_update(vcpu))
4348 if (vcpu->cpu != smp_processor_id())
4352 spin_unlock(&kvm_lock);
4354 if (freq->old < freq->new && send_ipi) {
4356 * We upscale the frequency. Must make the guest
4357 * doesn't see old kvmclock values while running with
4358 * the new frequency, otherwise we risk the guest sees
4359 * time go backwards.
4361 * In case we update the frequency for another cpu
4362 * (which might be in guest context) send an interrupt
4363 * to kick the cpu out of guest context. Next time
4364 * guest context is entered kvmclock will be updated,
4365 * so the guest will not see stale values.
4367 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4372 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4373 .notifier_call = kvmclock_cpufreq_notifier
4376 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4377 unsigned long action, void *hcpu)
4379 unsigned int cpu = (unsigned long)hcpu;
4383 case CPU_DOWN_FAILED:
4384 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4386 case CPU_DOWN_PREPARE:
4387 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4393 static struct notifier_block kvmclock_cpu_notifier_block = {
4394 .notifier_call = kvmclock_cpu_notifier,
4395 .priority = -INT_MAX
4398 static void kvm_timer_init(void)
4402 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4403 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4404 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4405 CPUFREQ_TRANSITION_NOTIFIER);
4407 for_each_online_cpu(cpu)
4408 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4411 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4413 static int kvm_is_in_guest(void)
4415 return percpu_read(current_vcpu) != NULL;
4418 static int kvm_is_user_mode(void)
4422 if (percpu_read(current_vcpu))
4423 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4425 return user_mode != 0;
4428 static unsigned long kvm_get_guest_ip(void)
4430 unsigned long ip = 0;
4432 if (percpu_read(current_vcpu))
4433 ip = kvm_rip_read(percpu_read(current_vcpu));
4438 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4439 .is_in_guest = kvm_is_in_guest,
4440 .is_user_mode = kvm_is_user_mode,
4441 .get_guest_ip = kvm_get_guest_ip,
4444 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4446 percpu_write(current_vcpu, vcpu);
4448 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4450 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4452 percpu_write(current_vcpu, NULL);
4454 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4456 int kvm_arch_init(void *opaque)
4459 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4462 printk(KERN_ERR "kvm: already loaded the other module\n");
4467 if (!ops->cpu_has_kvm_support()) {
4468 printk(KERN_ERR "kvm: no hardware support\n");
4472 if (ops->disabled_by_bios()) {
4473 printk(KERN_ERR "kvm: disabled by bios\n");
4478 r = kvm_mmu_module_init();
4482 kvm_init_msr_list();
4485 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4486 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4487 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4488 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4492 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4495 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4503 void kvm_arch_exit(void)
4505 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4507 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4508 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4509 CPUFREQ_TRANSITION_NOTIFIER);
4510 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4512 kvm_mmu_module_exit();
4515 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4517 ++vcpu->stat.halt_exits;
4518 if (irqchip_in_kernel(vcpu->kvm)) {
4519 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4522 vcpu->run->exit_reason = KVM_EXIT_HLT;
4526 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4528 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4531 if (is_long_mode(vcpu))
4534 return a0 | ((gpa_t)a1 << 32);
4537 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4539 u64 param, ingpa, outgpa, ret;
4540 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4541 bool fast, longmode;
4545 * hypercall generates UD from non zero cpl and real mode
4548 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4549 kvm_queue_exception(vcpu, UD_VECTOR);
4553 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4554 longmode = is_long_mode(vcpu) && cs_l == 1;
4557 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4558 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4559 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4560 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4561 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4562 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4564 #ifdef CONFIG_X86_64
4566 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4567 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4568 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4572 code = param & 0xffff;
4573 fast = (param >> 16) & 0x1;
4574 rep_cnt = (param >> 32) & 0xfff;
4575 rep_idx = (param >> 48) & 0xfff;
4577 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4580 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4581 kvm_vcpu_on_spin(vcpu);
4584 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4588 ret = res | (((u64)rep_done & 0xfff) << 32);
4590 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4592 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4593 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4599 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4601 unsigned long nr, a0, a1, a2, a3, ret;
4604 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4605 return kvm_hv_hypercall(vcpu);
4607 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4608 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4609 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4610 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4611 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4613 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4615 if (!is_long_mode(vcpu)) {
4623 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4629 case KVM_HC_VAPIC_POLL_IRQ:
4633 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4640 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4641 ++vcpu->stat.hypercalls;
4644 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4646 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4648 char instruction[3];
4649 unsigned long rip = kvm_rip_read(vcpu);
4652 * Blow out the MMU to ensure that no other VCPU has an active mapping
4653 * to ensure that the updated hypercall appears atomically across all
4656 kvm_mmu_zap_all(vcpu->kvm);
4658 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4660 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4663 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4665 struct desc_ptr dt = { limit, base };
4667 kvm_x86_ops->set_gdt(vcpu, &dt);
4670 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4672 struct desc_ptr dt = { limit, base };
4674 kvm_x86_ops->set_idt(vcpu, &dt);
4677 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4679 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4680 int j, nent = vcpu->arch.cpuid_nent;
4682 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4683 /* when no next entry is found, the current entry[i] is reselected */
4684 for (j = i + 1; ; j = (j + 1) % nent) {
4685 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4686 if (ej->function == e->function) {
4687 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4691 return 0; /* silence gcc, even though control never reaches here */
4694 /* find an entry with matching function, matching index (if needed), and that
4695 * should be read next (if it's stateful) */
4696 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4697 u32 function, u32 index)
4699 if (e->function != function)
4701 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4703 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4704 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4709 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4710 u32 function, u32 index)
4713 struct kvm_cpuid_entry2 *best = NULL;
4715 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4716 struct kvm_cpuid_entry2 *e;
4718 e = &vcpu->arch.cpuid_entries[i];
4719 if (is_matching_cpuid_entry(e, function, index)) {
4720 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4721 move_to_next_stateful_cpuid_entry(vcpu, i);
4726 * Both basic or both extended?
4728 if (((e->function ^ function) & 0x80000000) == 0)
4729 if (!best || e->function > best->function)
4734 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4736 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4738 struct kvm_cpuid_entry2 *best;
4740 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4741 if (!best || best->eax < 0x80000008)
4743 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4745 return best->eax & 0xff;
4750 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4752 u32 function, index;
4753 struct kvm_cpuid_entry2 *best;
4755 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4756 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4757 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4758 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4759 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4760 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4761 best = kvm_find_cpuid_entry(vcpu, function, index);
4763 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4764 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4765 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4766 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4768 kvm_x86_ops->skip_emulated_instruction(vcpu);
4769 trace_kvm_cpuid(function,
4770 kvm_register_read(vcpu, VCPU_REGS_RAX),
4771 kvm_register_read(vcpu, VCPU_REGS_RBX),
4772 kvm_register_read(vcpu, VCPU_REGS_RCX),
4773 kvm_register_read(vcpu, VCPU_REGS_RDX));
4775 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4778 * Check if userspace requested an interrupt window, and that the
4779 * interrupt window is open.
4781 * No need to exit to userspace if we already have an interrupt queued.
4783 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4785 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4786 vcpu->run->request_interrupt_window &&
4787 kvm_arch_interrupt_allowed(vcpu));
4790 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4792 struct kvm_run *kvm_run = vcpu->run;
4794 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4795 kvm_run->cr8 = kvm_get_cr8(vcpu);
4796 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4797 if (irqchip_in_kernel(vcpu->kvm))
4798 kvm_run->ready_for_interrupt_injection = 1;
4800 kvm_run->ready_for_interrupt_injection =
4801 kvm_arch_interrupt_allowed(vcpu) &&
4802 !kvm_cpu_has_interrupt(vcpu) &&
4803 !kvm_event_needs_reinjection(vcpu);
4806 static void vapic_enter(struct kvm_vcpu *vcpu)
4808 struct kvm_lapic *apic = vcpu->arch.apic;
4811 if (!apic || !apic->vapic_addr)
4814 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4816 vcpu->arch.apic->vapic_page = page;
4819 static void vapic_exit(struct kvm_vcpu *vcpu)
4821 struct kvm_lapic *apic = vcpu->arch.apic;
4824 if (!apic || !apic->vapic_addr)
4827 idx = srcu_read_lock(&vcpu->kvm->srcu);
4828 kvm_release_page_dirty(apic->vapic_page);
4829 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4830 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4833 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4837 if (!kvm_x86_ops->update_cr8_intercept)
4840 if (!vcpu->arch.apic)
4843 if (!vcpu->arch.apic->vapic_addr)
4844 max_irr = kvm_lapic_find_highest_irr(vcpu);
4851 tpr = kvm_lapic_get_cr8(vcpu);
4853 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4856 static void inject_pending_event(struct kvm_vcpu *vcpu)
4858 /* try to reinject previous events if any */
4859 if (vcpu->arch.exception.pending) {
4860 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4861 vcpu->arch.exception.has_error_code,
4862 vcpu->arch.exception.error_code);
4863 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4864 vcpu->arch.exception.has_error_code,
4865 vcpu->arch.exception.error_code,
4866 vcpu->arch.exception.reinject);
4870 if (vcpu->arch.nmi_injected) {
4871 kvm_x86_ops->set_nmi(vcpu);
4875 if (vcpu->arch.interrupt.pending) {
4876 kvm_x86_ops->set_irq(vcpu);
4880 /* try to inject new event if pending */
4881 if (vcpu->arch.nmi_pending) {
4882 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4883 vcpu->arch.nmi_pending = false;
4884 vcpu->arch.nmi_injected = true;
4885 kvm_x86_ops->set_nmi(vcpu);
4887 } else if (kvm_cpu_has_interrupt(vcpu)) {
4888 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4889 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4891 kvm_x86_ops->set_irq(vcpu);
4896 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
4898 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
4899 !vcpu->guest_xcr0_loaded) {
4900 /* kvm_set_xcr() also depends on this */
4901 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
4902 vcpu->guest_xcr0_loaded = 1;
4906 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
4908 if (vcpu->guest_xcr0_loaded) {
4909 if (vcpu->arch.xcr0 != host_xcr0)
4910 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
4911 vcpu->guest_xcr0_loaded = 0;
4915 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4918 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4919 vcpu->run->request_interrupt_window;
4921 if (vcpu->requests) {
4922 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
4923 kvm_mmu_unload(vcpu);
4924 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
4925 __kvm_migrate_timers(vcpu);
4926 if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu)) {
4927 r = kvm_write_guest_time(vcpu);
4931 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
4932 kvm_mmu_sync_roots(vcpu);
4933 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
4934 kvm_x86_ops->tlb_flush(vcpu);
4935 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
4936 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4940 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
4941 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4945 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
4946 vcpu->fpu_active = 0;
4947 kvm_x86_ops->fpu_deactivate(vcpu);
4951 r = kvm_mmu_reload(vcpu);
4957 kvm_x86_ops->prepare_guest_switch(vcpu);
4958 if (vcpu->fpu_active)
4959 kvm_load_guest_fpu(vcpu);
4960 kvm_load_guest_xcr0(vcpu);
4962 atomic_set(&vcpu->guest_mode, 1);
4965 local_irq_disable();
4967 if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
4968 || need_resched() || signal_pending(current)) {
4969 atomic_set(&vcpu->guest_mode, 0);
4977 inject_pending_event(vcpu);
4979 /* enable NMI/IRQ window open exits if needed */
4980 if (vcpu->arch.nmi_pending)
4981 kvm_x86_ops->enable_nmi_window(vcpu);
4982 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4983 kvm_x86_ops->enable_irq_window(vcpu);
4985 if (kvm_lapic_enabled(vcpu)) {
4986 update_cr8_intercept(vcpu);
4987 kvm_lapic_sync_to_vapic(vcpu);
4990 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4994 if (unlikely(vcpu->arch.switch_db_regs)) {
4996 set_debugreg(vcpu->arch.eff_db[0], 0);
4997 set_debugreg(vcpu->arch.eff_db[1], 1);
4998 set_debugreg(vcpu->arch.eff_db[2], 2);
4999 set_debugreg(vcpu->arch.eff_db[3], 3);
5002 trace_kvm_entry(vcpu->vcpu_id);
5003 kvm_x86_ops->run(vcpu);
5006 * If the guest has used debug registers, at least dr7
5007 * will be disabled while returning to the host.
5008 * If we don't have active breakpoints in the host, we don't
5009 * care about the messed up debug address registers. But if
5010 * we have some of them active, restore the old state.
5012 if (hw_breakpoint_active())
5013 hw_breakpoint_restore();
5015 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5017 atomic_set(&vcpu->guest_mode, 0);
5024 * We must have an instruction between local_irq_enable() and
5025 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5026 * the interrupt shadow. The stat.exits increment will do nicely.
5027 * But we need to prevent reordering, hence this barrier():
5035 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5038 * Profile KVM exit RIPs:
5040 if (unlikely(prof_on == KVM_PROFILING)) {
5041 unsigned long rip = kvm_rip_read(vcpu);
5042 profile_hit(KVM_PROFILING, (void *)rip);
5046 kvm_lapic_sync_from_vapic(vcpu);
5048 r = kvm_x86_ops->handle_exit(vcpu);
5054 static int __vcpu_run(struct kvm_vcpu *vcpu)
5057 struct kvm *kvm = vcpu->kvm;
5059 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5060 pr_debug("vcpu %d received sipi with vector # %x\n",
5061 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5062 kvm_lapic_reset(vcpu);
5063 r = kvm_arch_vcpu_reset(vcpu);
5066 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5069 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5074 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
5075 r = vcpu_enter_guest(vcpu);
5077 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5078 kvm_vcpu_block(vcpu);
5079 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5080 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5082 switch(vcpu->arch.mp_state) {
5083 case KVM_MP_STATE_HALTED:
5084 vcpu->arch.mp_state =
5085 KVM_MP_STATE_RUNNABLE;
5086 case KVM_MP_STATE_RUNNABLE:
5088 case KVM_MP_STATE_SIPI_RECEIVED:
5099 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5100 if (kvm_cpu_has_pending_timer(vcpu))
5101 kvm_inject_pending_timer_irqs(vcpu);
5103 if (dm_request_for_irq_injection(vcpu)) {
5105 vcpu->run->exit_reason = KVM_EXIT_INTR;
5106 ++vcpu->stat.request_irq_exits;
5108 if (signal_pending(current)) {
5110 vcpu->run->exit_reason = KVM_EXIT_INTR;
5111 ++vcpu->stat.signal_exits;
5113 if (need_resched()) {
5114 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5116 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5120 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5127 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5132 if (vcpu->sigset_active)
5133 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5135 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5136 kvm_vcpu_block(vcpu);
5137 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5142 /* re-sync apic's tpr */
5143 if (!irqchip_in_kernel(vcpu->kvm))
5144 kvm_set_cr8(vcpu, kvm_run->cr8);
5146 if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5147 if (vcpu->mmio_needed) {
5148 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5149 vcpu->mmio_read_completed = 1;
5150 vcpu->mmio_needed = 0;
5152 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5153 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5154 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5155 if (r != EMULATE_DONE) {
5160 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5161 kvm_register_write(vcpu, VCPU_REGS_RAX,
5162 kvm_run->hypercall.ret);
5164 r = __vcpu_run(vcpu);
5167 post_kvm_run_save(vcpu);
5168 if (vcpu->sigset_active)
5169 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5174 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5176 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5177 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5178 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5179 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5180 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5181 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5182 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5183 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5184 #ifdef CONFIG_X86_64
5185 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5186 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5187 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5188 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5189 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5190 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5191 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5192 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5195 regs->rip = kvm_rip_read(vcpu);
5196 regs->rflags = kvm_get_rflags(vcpu);
5201 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5203 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5204 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5205 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5206 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5207 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5208 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5209 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5210 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5211 #ifdef CONFIG_X86_64
5212 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5213 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5214 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5215 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5216 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5217 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5218 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5219 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5222 kvm_rip_write(vcpu, regs->rip);
5223 kvm_set_rflags(vcpu, regs->rflags);
5225 vcpu->arch.exception.pending = false;
5230 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5232 struct kvm_segment cs;
5234 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5238 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5240 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5241 struct kvm_sregs *sregs)
5245 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5246 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5247 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5248 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5249 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5250 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5252 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5253 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5255 kvm_x86_ops->get_idt(vcpu, &dt);
5256 sregs->idt.limit = dt.size;
5257 sregs->idt.base = dt.address;
5258 kvm_x86_ops->get_gdt(vcpu, &dt);
5259 sregs->gdt.limit = dt.size;
5260 sregs->gdt.base = dt.address;
5262 sregs->cr0 = kvm_read_cr0(vcpu);
5263 sregs->cr2 = vcpu->arch.cr2;
5264 sregs->cr3 = vcpu->arch.cr3;
5265 sregs->cr4 = kvm_read_cr4(vcpu);
5266 sregs->cr8 = kvm_get_cr8(vcpu);
5267 sregs->efer = vcpu->arch.efer;
5268 sregs->apic_base = kvm_get_apic_base(vcpu);
5270 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5272 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5273 set_bit(vcpu->arch.interrupt.nr,
5274 (unsigned long *)sregs->interrupt_bitmap);
5279 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5280 struct kvm_mp_state *mp_state)
5282 mp_state->mp_state = vcpu->arch.mp_state;
5286 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5287 struct kvm_mp_state *mp_state)
5289 vcpu->arch.mp_state = mp_state->mp_state;
5293 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5294 bool has_error_code, u32 error_code)
5296 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5299 init_emulate_ctxt(vcpu);
5301 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5302 tss_selector, reason, has_error_code,
5306 return EMULATE_FAIL;
5308 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5309 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5310 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5311 return EMULATE_DONE;
5313 EXPORT_SYMBOL_GPL(kvm_task_switch);
5315 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5316 struct kvm_sregs *sregs)
5318 int mmu_reset_needed = 0;
5319 int pending_vec, max_bits;
5322 dt.size = sregs->idt.limit;
5323 dt.address = sregs->idt.base;
5324 kvm_x86_ops->set_idt(vcpu, &dt);
5325 dt.size = sregs->gdt.limit;
5326 dt.address = sregs->gdt.base;
5327 kvm_x86_ops->set_gdt(vcpu, &dt);
5329 vcpu->arch.cr2 = sregs->cr2;
5330 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5331 vcpu->arch.cr3 = sregs->cr3;
5333 kvm_set_cr8(vcpu, sregs->cr8);
5335 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5336 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5337 kvm_set_apic_base(vcpu, sregs->apic_base);
5339 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5340 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5341 vcpu->arch.cr0 = sregs->cr0;
5343 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5344 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5345 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5346 load_pdptrs(vcpu, vcpu->arch.cr3);
5347 mmu_reset_needed = 1;
5350 if (mmu_reset_needed)
5351 kvm_mmu_reset_context(vcpu);
5353 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5354 pending_vec = find_first_bit(
5355 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5356 if (pending_vec < max_bits) {
5357 kvm_queue_interrupt(vcpu, pending_vec, false);
5358 pr_debug("Set back pending irq %d\n", pending_vec);
5359 if (irqchip_in_kernel(vcpu->kvm))
5360 kvm_pic_clear_isr_ack(vcpu->kvm);
5363 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5364 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5365 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5366 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5367 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5368 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5370 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5371 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5373 update_cr8_intercept(vcpu);
5375 /* Older userspace won't unhalt the vcpu on reset. */
5376 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5377 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5379 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5384 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5385 struct kvm_guest_debug *dbg)
5387 unsigned long rflags;
5390 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5392 if (vcpu->arch.exception.pending)
5394 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5395 kvm_queue_exception(vcpu, DB_VECTOR);
5397 kvm_queue_exception(vcpu, BP_VECTOR);
5401 * Read rflags as long as potentially injected trace flags are still
5404 rflags = kvm_get_rflags(vcpu);
5406 vcpu->guest_debug = dbg->control;
5407 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5408 vcpu->guest_debug = 0;
5410 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5411 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5412 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5413 vcpu->arch.switch_db_regs =
5414 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5416 for (i = 0; i < KVM_NR_DB_REGS; i++)
5417 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5418 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5421 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5422 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5423 get_segment_base(vcpu, VCPU_SREG_CS);
5426 * Trigger an rflags update that will inject or remove the trace
5429 kvm_set_rflags(vcpu, rflags);
5431 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5441 * Translate a guest virtual address to a guest physical address.
5443 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5444 struct kvm_translation *tr)
5446 unsigned long vaddr = tr->linear_address;
5450 idx = srcu_read_lock(&vcpu->kvm->srcu);
5451 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5452 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5453 tr->physical_address = gpa;
5454 tr->valid = gpa != UNMAPPED_GVA;
5461 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5463 struct i387_fxsave_struct *fxsave =
5464 &vcpu->arch.guest_fpu.state->fxsave;
5466 memcpy(fpu->fpr, fxsave->st_space, 128);
5467 fpu->fcw = fxsave->cwd;
5468 fpu->fsw = fxsave->swd;
5469 fpu->ftwx = fxsave->twd;
5470 fpu->last_opcode = fxsave->fop;
5471 fpu->last_ip = fxsave->rip;
5472 fpu->last_dp = fxsave->rdp;
5473 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5478 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5480 struct i387_fxsave_struct *fxsave =
5481 &vcpu->arch.guest_fpu.state->fxsave;
5483 memcpy(fxsave->st_space, fpu->fpr, 128);
5484 fxsave->cwd = fpu->fcw;
5485 fxsave->swd = fpu->fsw;
5486 fxsave->twd = fpu->ftwx;
5487 fxsave->fop = fpu->last_opcode;
5488 fxsave->rip = fpu->last_ip;
5489 fxsave->rdp = fpu->last_dp;
5490 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5495 int fx_init(struct kvm_vcpu *vcpu)
5499 err = fpu_alloc(&vcpu->arch.guest_fpu);
5503 fpu_finit(&vcpu->arch.guest_fpu);
5506 * Ensure guest xcr0 is valid for loading
5508 vcpu->arch.xcr0 = XSTATE_FP;
5510 vcpu->arch.cr0 |= X86_CR0_ET;
5514 EXPORT_SYMBOL_GPL(fx_init);
5516 static void fx_free(struct kvm_vcpu *vcpu)
5518 fpu_free(&vcpu->arch.guest_fpu);
5521 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5523 if (vcpu->guest_fpu_loaded)
5527 * Restore all possible states in the guest,
5528 * and assume host would use all available bits.
5529 * Guest xcr0 would be loaded later.
5531 kvm_put_guest_xcr0(vcpu);
5532 vcpu->guest_fpu_loaded = 1;
5533 unlazy_fpu(current);
5534 fpu_restore_checking(&vcpu->arch.guest_fpu);
5538 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5540 kvm_put_guest_xcr0(vcpu);
5542 if (!vcpu->guest_fpu_loaded)
5545 vcpu->guest_fpu_loaded = 0;
5546 fpu_save_init(&vcpu->arch.guest_fpu);
5547 ++vcpu->stat.fpu_reload;
5548 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5552 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5554 if (vcpu->arch.time_page) {
5555 kvm_release_page_dirty(vcpu->arch.time_page);
5556 vcpu->arch.time_page = NULL;
5559 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5561 kvm_x86_ops->vcpu_free(vcpu);
5564 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5567 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5568 printk_once(KERN_WARNING
5569 "kvm: SMP vm created on host with unstable TSC; "
5570 "guest TSC will not be reliable\n");
5571 return kvm_x86_ops->vcpu_create(kvm, id);
5574 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5578 vcpu->arch.mtrr_state.have_fixed = 1;
5580 r = kvm_arch_vcpu_reset(vcpu);
5582 r = kvm_mmu_setup(vcpu);
5589 kvm_x86_ops->vcpu_free(vcpu);
5593 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5596 kvm_mmu_unload(vcpu);
5600 kvm_x86_ops->vcpu_free(vcpu);
5603 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5605 vcpu->arch.nmi_pending = false;
5606 vcpu->arch.nmi_injected = false;
5608 vcpu->arch.switch_db_regs = 0;
5609 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5610 vcpu->arch.dr6 = DR6_FIXED_1;
5611 vcpu->arch.dr7 = DR7_FIXED_1;
5613 return kvm_x86_ops->vcpu_reset(vcpu);
5616 int kvm_arch_hardware_enable(void *garbage)
5619 struct kvm_vcpu *vcpu;
5622 kvm_shared_msr_cpu_online();
5623 list_for_each_entry(kvm, &vm_list, vm_list)
5624 kvm_for_each_vcpu(i, vcpu, kvm)
5625 if (vcpu->cpu == smp_processor_id())
5626 kvm_request_guest_time_update(vcpu);
5627 return kvm_x86_ops->hardware_enable(garbage);
5630 void kvm_arch_hardware_disable(void *garbage)
5632 kvm_x86_ops->hardware_disable(garbage);
5633 drop_user_return_notifiers(garbage);
5636 int kvm_arch_hardware_setup(void)
5638 return kvm_x86_ops->hardware_setup();
5641 void kvm_arch_hardware_unsetup(void)
5643 kvm_x86_ops->hardware_unsetup();
5646 void kvm_arch_check_processor_compat(void *rtn)
5648 kvm_x86_ops->check_processor_compatibility(rtn);
5651 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5657 BUG_ON(vcpu->kvm == NULL);
5660 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5661 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5662 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5663 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5665 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5667 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5672 vcpu->arch.pio_data = page_address(page);
5674 r = kvm_mmu_create(vcpu);
5676 goto fail_free_pio_data;
5678 if (irqchip_in_kernel(kvm)) {
5679 r = kvm_create_lapic(vcpu);
5681 goto fail_mmu_destroy;
5684 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5686 if (!vcpu->arch.mce_banks) {
5688 goto fail_free_lapic;
5690 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5692 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5693 goto fail_free_mce_banks;
5696 fail_free_mce_banks:
5697 kfree(vcpu->arch.mce_banks);
5699 kvm_free_lapic(vcpu);
5701 kvm_mmu_destroy(vcpu);
5703 free_page((unsigned long)vcpu->arch.pio_data);
5708 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5712 kfree(vcpu->arch.mce_banks);
5713 kvm_free_lapic(vcpu);
5714 idx = srcu_read_lock(&vcpu->kvm->srcu);
5715 kvm_mmu_destroy(vcpu);
5716 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5717 free_page((unsigned long)vcpu->arch.pio_data);
5720 struct kvm *kvm_arch_create_vm(void)
5722 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5725 return ERR_PTR(-ENOMEM);
5727 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5728 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5730 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5731 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5733 spin_lock_init(&kvm->arch.tsc_write_lock);
5738 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5741 kvm_mmu_unload(vcpu);
5745 static void kvm_free_vcpus(struct kvm *kvm)
5748 struct kvm_vcpu *vcpu;
5751 * Unpin any mmu pages first.
5753 kvm_for_each_vcpu(i, vcpu, kvm)
5754 kvm_unload_vcpu_mmu(vcpu);
5755 kvm_for_each_vcpu(i, vcpu, kvm)
5756 kvm_arch_vcpu_free(vcpu);
5758 mutex_lock(&kvm->lock);
5759 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5760 kvm->vcpus[i] = NULL;
5762 atomic_set(&kvm->online_vcpus, 0);
5763 mutex_unlock(&kvm->lock);
5766 void kvm_arch_sync_events(struct kvm *kvm)
5768 kvm_free_all_assigned_devices(kvm);
5772 void kvm_arch_destroy_vm(struct kvm *kvm)
5774 kvm_iommu_unmap_guest(kvm);
5775 kfree(kvm->arch.vpic);
5776 kfree(kvm->arch.vioapic);
5777 kvm_free_vcpus(kvm);
5778 kvm_free_physmem(kvm);
5779 if (kvm->arch.apic_access_page)
5780 put_page(kvm->arch.apic_access_page);
5781 if (kvm->arch.ept_identity_pagetable)
5782 put_page(kvm->arch.ept_identity_pagetable);
5783 cleanup_srcu_struct(&kvm->srcu);
5787 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5788 struct kvm_memory_slot *memslot,
5789 struct kvm_memory_slot old,
5790 struct kvm_userspace_memory_region *mem,
5793 int npages = memslot->npages;
5794 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
5796 /* Prevent internal slot pages from being moved by fork()/COW. */
5797 if (memslot->id >= KVM_MEMORY_SLOTS)
5798 map_flags = MAP_SHARED | MAP_ANONYMOUS;
5800 /*To keep backward compatibility with older userspace,
5801 *x86 needs to hanlde !user_alloc case.
5804 if (npages && !old.rmap) {
5805 unsigned long userspace_addr;
5807 down_write(¤t->mm->mmap_sem);
5808 userspace_addr = do_mmap(NULL, 0,
5810 PROT_READ | PROT_WRITE,
5813 up_write(¤t->mm->mmap_sem);
5815 if (IS_ERR((void *)userspace_addr))
5816 return PTR_ERR((void *)userspace_addr);
5818 memslot->userspace_addr = userspace_addr;
5826 void kvm_arch_commit_memory_region(struct kvm *kvm,
5827 struct kvm_userspace_memory_region *mem,
5828 struct kvm_memory_slot old,
5832 int npages = mem->memory_size >> PAGE_SHIFT;
5834 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5837 down_write(¤t->mm->mmap_sem);
5838 ret = do_munmap(current->mm, old.userspace_addr,
5839 old.npages * PAGE_SIZE);
5840 up_write(¤t->mm->mmap_sem);
5843 "kvm_vm_ioctl_set_memory_region: "
5844 "failed to munmap memory\n");
5847 spin_lock(&kvm->mmu_lock);
5848 if (!kvm->arch.n_requested_mmu_pages) {
5849 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5850 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5853 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5854 spin_unlock(&kvm->mmu_lock);
5857 void kvm_arch_flush_shadow(struct kvm *kvm)
5859 kvm_mmu_zap_all(kvm);
5860 kvm_reload_remote_mmus(kvm);
5863 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5865 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5866 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5867 || vcpu->arch.nmi_pending ||
5868 (kvm_arch_interrupt_allowed(vcpu) &&
5869 kvm_cpu_has_interrupt(vcpu));
5872 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5875 int cpu = vcpu->cpu;
5877 if (waitqueue_active(&vcpu->wq)) {
5878 wake_up_interruptible(&vcpu->wq);
5879 ++vcpu->stat.halt_wakeup;
5883 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5884 if (atomic_xchg(&vcpu->guest_mode, 0))
5885 smp_send_reschedule(cpu);
5889 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5891 return kvm_x86_ops->interrupt_allowed(vcpu);
5894 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5896 unsigned long current_rip = kvm_rip_read(vcpu) +
5897 get_segment_base(vcpu, VCPU_SREG_CS);
5899 return current_rip == linear_rip;
5901 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5903 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5905 unsigned long rflags;
5907 rflags = kvm_x86_ops->get_rflags(vcpu);
5908 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5909 rflags &= ~X86_EFLAGS_TF;
5912 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5914 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5916 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5917 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5918 rflags |= X86_EFLAGS_TF;
5919 kvm_x86_ops->set_rflags(vcpu, rflags);
5921 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5923 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5924 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5925 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5926 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5927 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5928 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5929 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5930 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5931 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5932 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5933 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5934 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);