1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 #include <uapi/linux/pidfd.h>
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/signal.h>
55 #include <asm/param.h>
56 #include <linux/uaccess.h>
57 #include <asm/unistd.h>
58 #include <asm/siginfo.h>
59 #include <asm/cacheflush.h>
60 #include <asm/syscall.h> /* for syscall_get_* */
63 * SLAB caches for signal bits.
66 static struct kmem_cache *sigqueue_cachep;
68 int print_fatal_signals __read_mostly;
70 static void __user *sig_handler(struct task_struct *t, int sig)
72 return t->sighand->action[sig - 1].sa.sa_handler;
75 static inline bool sig_handler_ignored(void __user *handler, int sig)
77 /* Is it explicitly or implicitly ignored? */
78 return handler == SIG_IGN ||
79 (handler == SIG_DFL && sig_kernel_ignore(sig));
82 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
86 handler = sig_handler(t, sig);
88 /* SIGKILL and SIGSTOP may not be sent to the global init */
89 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
92 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
93 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
96 /* Only allow kernel generated signals to this kthread */
97 if (unlikely((t->flags & PF_KTHREAD) &&
98 (handler == SIG_KTHREAD_KERNEL) && !force))
101 return sig_handler_ignored(handler, sig);
104 static bool sig_ignored(struct task_struct *t, int sig, bool force)
107 * Blocked signals are never ignored, since the
108 * signal handler may change by the time it is
111 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
115 * Tracers may want to know about even ignored signal unless it
116 * is SIGKILL which can't be reported anyway but can be ignored
117 * by SIGNAL_UNKILLABLE task.
119 if (t->ptrace && sig != SIGKILL)
122 return sig_task_ignored(t, sig, force);
126 * Re-calculate pending state from the set of locally pending
127 * signals, globally pending signals, and blocked signals.
129 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
134 switch (_NSIG_WORDS) {
136 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
137 ready |= signal->sig[i] &~ blocked->sig[i];
140 case 4: ready = signal->sig[3] &~ blocked->sig[3];
141 ready |= signal->sig[2] &~ blocked->sig[2];
142 ready |= signal->sig[1] &~ blocked->sig[1];
143 ready |= signal->sig[0] &~ blocked->sig[0];
146 case 2: ready = signal->sig[1] &~ blocked->sig[1];
147 ready |= signal->sig[0] &~ blocked->sig[0];
150 case 1: ready = signal->sig[0] &~ blocked->sig[0];
155 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
157 static bool recalc_sigpending_tsk(struct task_struct *t)
159 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
160 PENDING(&t->pending, &t->blocked) ||
161 PENDING(&t->signal->shared_pending, &t->blocked) ||
162 cgroup_task_frozen(t)) {
163 set_tsk_thread_flag(t, TIF_SIGPENDING);
168 * We must never clear the flag in another thread, or in current
169 * when it's possible the current syscall is returning -ERESTART*.
170 * So we don't clear it here, and only callers who know they should do.
175 void recalc_sigpending(void)
177 if (!recalc_sigpending_tsk(current) && !freezing(current))
178 clear_thread_flag(TIF_SIGPENDING);
181 EXPORT_SYMBOL(recalc_sigpending);
183 void calculate_sigpending(void)
185 /* Have any signals or users of TIF_SIGPENDING been delayed
188 spin_lock_irq(¤t->sighand->siglock);
189 set_tsk_thread_flag(current, TIF_SIGPENDING);
191 spin_unlock_irq(¤t->sighand->siglock);
194 /* Given the mask, find the first available signal that should be serviced. */
196 #define SYNCHRONOUS_MASK \
197 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
198 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
200 int next_signal(struct sigpending *pending, sigset_t *mask)
202 unsigned long i, *s, *m, x;
205 s = pending->signal.sig;
209 * Handle the first word specially: it contains the
210 * synchronous signals that need to be dequeued first.
214 if (x & SYNCHRONOUS_MASK)
215 x &= SYNCHRONOUS_MASK;
220 switch (_NSIG_WORDS) {
222 for (i = 1; i < _NSIG_WORDS; ++i) {
226 sig = ffz(~x) + i*_NSIG_BPW + 1;
235 sig = ffz(~x) + _NSIG_BPW + 1;
246 static inline void print_dropped_signal(int sig)
248 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
250 if (!print_fatal_signals)
253 if (!__ratelimit(&ratelimit_state))
256 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
257 current->comm, current->pid, sig);
261 * task_set_jobctl_pending - set jobctl pending bits
263 * @mask: pending bits to set
265 * Clear @mask from @task->jobctl. @mask must be subset of
266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
267 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
268 * cleared. If @task is already being killed or exiting, this function
272 * Must be called with @task->sighand->siglock held.
275 * %true if @mask is set, %false if made noop because @task was dying.
277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
279 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
280 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
281 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
283 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
286 if (mask & JOBCTL_STOP_SIGMASK)
287 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
289 task->jobctl |= mask;
294 * task_clear_jobctl_trapping - clear jobctl trapping bit
297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
298 * Clear it and wake up the ptracer. Note that we don't need any further
299 * locking. @task->siglock guarantees that @task->parent points to the
303 * Must be called with @task->sighand->siglock held.
305 void task_clear_jobctl_trapping(struct task_struct *task)
307 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
308 task->jobctl &= ~JOBCTL_TRAPPING;
309 smp_mb(); /* advised by wake_up_bit() */
310 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
315 * task_clear_jobctl_pending - clear jobctl pending bits
317 * @mask: pending bits to clear
319 * Clear @mask from @task->jobctl. @mask must be subset of
320 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
321 * STOP bits are cleared together.
323 * If clearing of @mask leaves no stop or trap pending, this function calls
324 * task_clear_jobctl_trapping().
327 * Must be called with @task->sighand->siglock held.
329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
331 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
333 if (mask & JOBCTL_STOP_PENDING)
334 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
336 task->jobctl &= ~mask;
338 if (!(task->jobctl & JOBCTL_PENDING_MASK))
339 task_clear_jobctl_trapping(task);
343 * task_participate_group_stop - participate in a group stop
344 * @task: task participating in a group stop
346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
347 * Group stop states are cleared and the group stop count is consumed if
348 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
349 * stop, the appropriate `SIGNAL_*` flags are set.
352 * Must be called with @task->sighand->siglock held.
355 * %true if group stop completion should be notified to the parent, %false
358 static bool task_participate_group_stop(struct task_struct *task)
360 struct signal_struct *sig = task->signal;
361 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
363 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
365 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
370 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
371 sig->group_stop_count--;
374 * Tell the caller to notify completion iff we are entering into a
375 * fresh group stop. Read comment in do_signal_stop() for details.
377 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
378 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
384 void task_join_group_stop(struct task_struct *task)
386 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
387 struct signal_struct *sig = current->signal;
389 if (sig->group_stop_count) {
390 sig->group_stop_count++;
391 mask |= JOBCTL_STOP_CONSUME;
392 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
395 /* Have the new thread join an on-going signal group stop */
396 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
400 * allocate a new signal queue record
401 * - this may be called without locks if and only if t == current, otherwise an
402 * appropriate lock must be held to stop the target task from exiting
404 static struct sigqueue *
405 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
406 int override_rlimit, const unsigned int sigqueue_flags)
408 struct sigqueue *q = NULL;
409 struct ucounts *ucounts;
413 * Protect access to @t credentials. This can go away when all
414 * callers hold rcu read lock.
416 * NOTE! A pending signal will hold on to the user refcount,
417 * and we get/put the refcount only when the sigpending count
418 * changes from/to zero.
421 ucounts = task_ucounts(t);
422 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
427 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
428 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
430 print_dropped_signal(sig);
433 if (unlikely(q == NULL)) {
434 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
436 INIT_LIST_HEAD(&q->list);
437 q->flags = sigqueue_flags;
438 q->ucounts = ucounts;
443 static void __sigqueue_free(struct sigqueue *q)
445 if (q->flags & SIGQUEUE_PREALLOC)
448 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
451 kmem_cache_free(sigqueue_cachep, q);
454 void flush_sigqueue(struct sigpending *queue)
458 sigemptyset(&queue->signal);
459 while (!list_empty(&queue->list)) {
460 q = list_entry(queue->list.next, struct sigqueue , list);
461 list_del_init(&q->list);
467 * Flush all pending signals for this kthread.
469 void flush_signals(struct task_struct *t)
473 spin_lock_irqsave(&t->sighand->siglock, flags);
474 clear_tsk_thread_flag(t, TIF_SIGPENDING);
475 flush_sigqueue(&t->pending);
476 flush_sigqueue(&t->signal->shared_pending);
477 spin_unlock_irqrestore(&t->sighand->siglock, flags);
479 EXPORT_SYMBOL(flush_signals);
481 #ifdef CONFIG_POSIX_TIMERS
482 static void __flush_itimer_signals(struct sigpending *pending)
484 sigset_t signal, retain;
485 struct sigqueue *q, *n;
487 signal = pending->signal;
488 sigemptyset(&retain);
490 list_for_each_entry_safe(q, n, &pending->list, list) {
491 int sig = q->info.si_signo;
493 if (likely(q->info.si_code != SI_TIMER)) {
494 sigaddset(&retain, sig);
496 sigdelset(&signal, sig);
497 list_del_init(&q->list);
502 sigorsets(&pending->signal, &signal, &retain);
505 void flush_itimer_signals(void)
507 struct task_struct *tsk = current;
510 spin_lock_irqsave(&tsk->sighand->siglock, flags);
511 __flush_itimer_signals(&tsk->pending);
512 __flush_itimer_signals(&tsk->signal->shared_pending);
513 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
517 void ignore_signals(struct task_struct *t)
521 for (i = 0; i < _NSIG; ++i)
522 t->sighand->action[i].sa.sa_handler = SIG_IGN;
528 * Flush all handlers for a task.
532 flush_signal_handlers(struct task_struct *t, int force_default)
535 struct k_sigaction *ka = &t->sighand->action[0];
536 for (i = _NSIG ; i != 0 ; i--) {
537 if (force_default || ka->sa.sa_handler != SIG_IGN)
538 ka->sa.sa_handler = SIG_DFL;
540 #ifdef __ARCH_HAS_SA_RESTORER
541 ka->sa.sa_restorer = NULL;
543 sigemptyset(&ka->sa.sa_mask);
548 bool unhandled_signal(struct task_struct *tsk, int sig)
550 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
551 if (is_global_init(tsk))
554 if (handler != SIG_IGN && handler != SIG_DFL)
557 /* If dying, we handle all new signals by ignoring them */
558 if (fatal_signal_pending(tsk))
561 /* if ptraced, let the tracer determine */
565 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
568 struct sigqueue *q, *first = NULL;
571 * Collect the siginfo appropriate to this signal. Check if
572 * there is another siginfo for the same signal.
574 list_for_each_entry(q, &list->list, list) {
575 if (q->info.si_signo == sig) {
582 sigdelset(&list->signal, sig);
586 list_del_init(&first->list);
587 copy_siginfo(info, &first->info);
590 (first->flags & SIGQUEUE_PREALLOC) &&
591 (info->si_code == SI_TIMER) &&
592 (info->si_sys_private);
594 __sigqueue_free(first);
597 * Ok, it wasn't in the queue. This must be
598 * a fast-pathed signal or we must have been
599 * out of queue space. So zero out the info.
602 info->si_signo = sig;
604 info->si_code = SI_USER;
610 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
611 kernel_siginfo_t *info, bool *resched_timer)
613 int sig = next_signal(pending, mask);
616 collect_signal(sig, pending, info, resched_timer);
621 * Dequeue a signal and return the element to the caller, which is
622 * expected to free it.
624 * All callers have to hold the siglock.
626 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
627 kernel_siginfo_t *info, enum pid_type *type)
629 bool resched_timer = false;
632 /* We only dequeue private signals from ourselves, we don't let
633 * signalfd steal them
636 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
638 *type = PIDTYPE_TGID;
639 signr = __dequeue_signal(&tsk->signal->shared_pending,
640 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
645 * itimers are process shared and we restart periodic
646 * itimers in the signal delivery path to prevent DoS
647 * attacks in the high resolution timer case. This is
648 * compliant with the old way of self-restarting
649 * itimers, as the SIGALRM is a legacy signal and only
650 * queued once. Changing the restart behaviour to
651 * restart the timer in the signal dequeue path is
652 * reducing the timer noise on heavy loaded !highres
655 if (unlikely(signr == SIGALRM)) {
656 struct hrtimer *tmr = &tsk->signal->real_timer;
658 if (!hrtimer_is_queued(tmr) &&
659 tsk->signal->it_real_incr != 0) {
660 hrtimer_forward(tmr, tmr->base->get_time(),
661 tsk->signal->it_real_incr);
662 hrtimer_restart(tmr);
672 if (unlikely(sig_kernel_stop(signr))) {
674 * Set a marker that we have dequeued a stop signal. Our
675 * caller might release the siglock and then the pending
676 * stop signal it is about to process is no longer in the
677 * pending bitmasks, but must still be cleared by a SIGCONT
678 * (and overruled by a SIGKILL). So those cases clear this
679 * shared flag after we've set it. Note that this flag may
680 * remain set after the signal we return is ignored or
681 * handled. That doesn't matter because its only purpose
682 * is to alert stop-signal processing code when another
683 * processor has come along and cleared the flag.
685 current->jobctl |= JOBCTL_STOP_DEQUEUED;
687 #ifdef CONFIG_POSIX_TIMERS
690 * Release the siglock to ensure proper locking order
691 * of timer locks outside of siglocks. Note, we leave
692 * irqs disabled here, since the posix-timers code is
693 * about to disable them again anyway.
695 spin_unlock(&tsk->sighand->siglock);
696 posixtimer_rearm(info);
697 spin_lock(&tsk->sighand->siglock);
699 /* Don't expose the si_sys_private value to userspace */
700 info->si_sys_private = 0;
705 EXPORT_SYMBOL_GPL(dequeue_signal);
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
709 struct task_struct *tsk = current;
710 struct sigpending *pending = &tsk->pending;
711 struct sigqueue *q, *sync = NULL;
714 * Might a synchronous signal be in the queue?
716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
720 * Return the first synchronous signal in the queue.
722 list_for_each_entry(q, &pending->list, list) {
723 /* Synchronous signals have a positive si_code */
724 if ((q->info.si_code > SI_USER) &&
725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
733 * Check if there is another siginfo for the same signal.
735 list_for_each_entry_continue(q, &pending->list, list) {
736 if (q->info.si_signo == sync->info.si_signo)
740 sigdelset(&pending->signal, sync->info.si_signo);
743 list_del_init(&sync->list);
744 copy_siginfo(info, &sync->info);
745 __sigqueue_free(sync);
746 return info->si_signo;
750 * Tell a process that it has a new active signal..
752 * NOTE! we rely on the previous spin_lock to
753 * lock interrupts for us! We can only be called with
754 * "siglock" held, and the local interrupt must
755 * have been disabled when that got acquired!
757 * No need to set need_resched since signal event passing
758 * goes through ->blocked
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
762 lockdep_assert_held(&t->sighand->siglock);
764 set_tsk_thread_flag(t, TIF_SIGPENDING);
767 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
768 * case. We don't check t->state here because there is a race with it
769 * executing another processor and just now entering stopped state.
770 * By using wake_up_state, we ensure the process will wake up and
771 * handle its death signal.
773 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
778 * Remove signals in mask from the pending set and queue.
779 * Returns 1 if any signals were found.
781 * All callers must be holding the siglock.
783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
785 struct sigqueue *q, *n;
788 sigandsets(&m, mask, &s->signal);
789 if (sigisemptyset(&m))
792 sigandnsets(&s->signal, &s->signal, mask);
793 list_for_each_entry_safe(q, n, &s->list, list) {
794 if (sigismember(mask, q->info.si_signo)) {
795 list_del_init(&q->list);
801 static inline int is_si_special(const struct kernel_siginfo *info)
803 return info <= SEND_SIG_PRIV;
806 static inline bool si_fromuser(const struct kernel_siginfo *info)
808 return info == SEND_SIG_NOINFO ||
809 (!is_si_special(info) && SI_FROMUSER(info));
813 * called with RCU read lock from check_kill_permission()
815 static bool kill_ok_by_cred(struct task_struct *t)
817 const struct cred *cred = current_cred();
818 const struct cred *tcred = __task_cred(t);
820 return uid_eq(cred->euid, tcred->suid) ||
821 uid_eq(cred->euid, tcred->uid) ||
822 uid_eq(cred->uid, tcred->suid) ||
823 uid_eq(cred->uid, tcred->uid) ||
824 ns_capable(tcred->user_ns, CAP_KILL);
828 * Bad permissions for sending the signal
829 * - the caller must hold the RCU read lock
831 static int check_kill_permission(int sig, struct kernel_siginfo *info,
832 struct task_struct *t)
837 if (!valid_signal(sig))
840 if (!si_fromuser(info))
843 error = audit_signal_info(sig, t); /* Let audit system see the signal */
847 if (!same_thread_group(current, t) &&
848 !kill_ok_by_cred(t)) {
851 sid = task_session(t);
853 * We don't return the error if sid == NULL. The
854 * task was unhashed, the caller must notice this.
856 if (!sid || sid == task_session(current))
864 return security_task_kill(t, info, sig, NULL);
868 * ptrace_trap_notify - schedule trap to notify ptracer
869 * @t: tracee wanting to notify tracer
871 * This function schedules sticky ptrace trap which is cleared on the next
872 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
875 * If @t is running, STOP trap will be taken. If trapped for STOP and
876 * ptracer is listening for events, tracee is woken up so that it can
877 * re-trap for the new event. If trapped otherwise, STOP trap will be
878 * eventually taken without returning to userland after the existing traps
879 * are finished by PTRACE_CONT.
882 * Must be called with @task->sighand->siglock held.
884 static void ptrace_trap_notify(struct task_struct *t)
886 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
887 lockdep_assert_held(&t->sighand->siglock);
889 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
890 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
894 * Handle magic process-wide effects of stop/continue signals. Unlike
895 * the signal actions, these happen immediately at signal-generation
896 * time regardless of blocking, ignoring, or handling. This does the
897 * actual continuing for SIGCONT, but not the actual stopping for stop
898 * signals. The process stop is done as a signal action for SIG_DFL.
900 * Returns true if the signal should be actually delivered, otherwise
901 * it should be dropped.
903 static bool prepare_signal(int sig, struct task_struct *p, bool force)
905 struct signal_struct *signal = p->signal;
906 struct task_struct *t;
909 if (signal->flags & SIGNAL_GROUP_EXIT) {
910 if (signal->core_state)
911 return sig == SIGKILL;
913 * The process is in the middle of dying, drop the signal.
916 } else if (sig_kernel_stop(sig)) {
918 * This is a stop signal. Remove SIGCONT from all queues.
920 siginitset(&flush, sigmask(SIGCONT));
921 flush_sigqueue_mask(&flush, &signal->shared_pending);
922 for_each_thread(p, t)
923 flush_sigqueue_mask(&flush, &t->pending);
924 } else if (sig == SIGCONT) {
927 * Remove all stop signals from all queues, wake all threads.
929 siginitset(&flush, SIG_KERNEL_STOP_MASK);
930 flush_sigqueue_mask(&flush, &signal->shared_pending);
931 for_each_thread(p, t) {
932 flush_sigqueue_mask(&flush, &t->pending);
933 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
934 if (likely(!(t->ptrace & PT_SEIZED))) {
935 t->jobctl &= ~JOBCTL_STOPPED;
936 wake_up_state(t, __TASK_STOPPED);
938 ptrace_trap_notify(t);
942 * Notify the parent with CLD_CONTINUED if we were stopped.
944 * If we were in the middle of a group stop, we pretend it
945 * was already finished, and then continued. Since SIGCHLD
946 * doesn't queue we report only CLD_STOPPED, as if the next
947 * CLD_CONTINUED was dropped.
950 if (signal->flags & SIGNAL_STOP_STOPPED)
951 why |= SIGNAL_CLD_CONTINUED;
952 else if (signal->group_stop_count)
953 why |= SIGNAL_CLD_STOPPED;
957 * The first thread which returns from do_signal_stop()
958 * will take ->siglock, notice SIGNAL_CLD_MASK, and
959 * notify its parent. See get_signal().
961 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
962 signal->group_stop_count = 0;
963 signal->group_exit_code = 0;
967 return !sig_ignored(p, sig, force);
971 * Test if P wants to take SIG. After we've checked all threads with this,
972 * it's equivalent to finding no threads not blocking SIG. Any threads not
973 * blocking SIG were ruled out because they are not running and already
974 * have pending signals. Such threads will dequeue from the shared queue
975 * as soon as they're available, so putting the signal on the shared queue
976 * will be equivalent to sending it to one such thread.
978 static inline bool wants_signal(int sig, struct task_struct *p)
980 if (sigismember(&p->blocked, sig))
983 if (p->flags & PF_EXITING)
989 if (task_is_stopped_or_traced(p))
992 return task_curr(p) || !task_sigpending(p);
995 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
997 struct signal_struct *signal = p->signal;
998 struct task_struct *t;
1001 * Now find a thread we can wake up to take the signal off the queue.
1003 * Try the suggested task first (may or may not be the main thread).
1005 if (wants_signal(sig, p))
1007 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1009 * There is just one thread and it does not need to be woken.
1010 * It will dequeue unblocked signals before it runs again.
1015 * Otherwise try to find a suitable thread.
1017 t = signal->curr_target;
1018 while (!wants_signal(sig, t)) {
1020 if (t == signal->curr_target)
1022 * No thread needs to be woken.
1023 * Any eligible threads will see
1024 * the signal in the queue soon.
1028 signal->curr_target = t;
1032 * Found a killable thread. If the signal will be fatal,
1033 * then start taking the whole group down immediately.
1035 if (sig_fatal(p, sig) &&
1036 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1037 !sigismember(&t->real_blocked, sig) &&
1038 (sig == SIGKILL || !p->ptrace)) {
1040 * This signal will be fatal to the whole group.
1042 if (!sig_kernel_coredump(sig)) {
1044 * Start a group exit and wake everybody up.
1045 * This way we don't have other threads
1046 * running and doing things after a slower
1047 * thread has the fatal signal pending.
1049 signal->flags = SIGNAL_GROUP_EXIT;
1050 signal->group_exit_code = sig;
1051 signal->group_stop_count = 0;
1052 __for_each_thread(signal, t) {
1053 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054 sigaddset(&t->pending.signal, SIGKILL);
1055 signal_wake_up(t, 1);
1062 * The signal is already in the shared-pending queue.
1063 * Tell the chosen thread to wake up and dequeue it.
1065 signal_wake_up(t, sig == SIGKILL);
1069 static inline bool legacy_queue(struct sigpending *signals, int sig)
1071 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1074 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1075 struct task_struct *t, enum pid_type type, bool force)
1077 struct sigpending *pending;
1079 int override_rlimit;
1080 int ret = 0, result;
1082 lockdep_assert_held(&t->sighand->siglock);
1084 result = TRACE_SIGNAL_IGNORED;
1085 if (!prepare_signal(sig, t, force))
1088 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1090 * Short-circuit ignored signals and support queuing
1091 * exactly one non-rt signal, so that we can get more
1092 * detailed information about the cause of the signal.
1094 result = TRACE_SIGNAL_ALREADY_PENDING;
1095 if (legacy_queue(pending, sig))
1098 result = TRACE_SIGNAL_DELIVERED;
1100 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1102 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1106 * Real-time signals must be queued if sent by sigqueue, or
1107 * some other real-time mechanism. It is implementation
1108 * defined whether kill() does so. We attempt to do so, on
1109 * the principle of least surprise, but since kill is not
1110 * allowed to fail with EAGAIN when low on memory we just
1111 * make sure at least one signal gets delivered and don't
1112 * pass on the info struct.
1115 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1117 override_rlimit = 0;
1119 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1122 list_add_tail(&q->list, &pending->list);
1123 switch ((unsigned long) info) {
1124 case (unsigned long) SEND_SIG_NOINFO:
1125 clear_siginfo(&q->info);
1126 q->info.si_signo = sig;
1127 q->info.si_errno = 0;
1128 q->info.si_code = SI_USER;
1129 q->info.si_pid = task_tgid_nr_ns(current,
1130 task_active_pid_ns(t));
1133 from_kuid_munged(task_cred_xxx(t, user_ns),
1137 case (unsigned long) SEND_SIG_PRIV:
1138 clear_siginfo(&q->info);
1139 q->info.si_signo = sig;
1140 q->info.si_errno = 0;
1141 q->info.si_code = SI_KERNEL;
1146 copy_siginfo(&q->info, info);
1149 } else if (!is_si_special(info) &&
1150 sig >= SIGRTMIN && info->si_code != SI_USER) {
1152 * Queue overflow, abort. We may abort if the
1153 * signal was rt and sent by user using something
1154 * other than kill().
1156 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1161 * This is a silent loss of information. We still
1162 * send the signal, but the *info bits are lost.
1164 result = TRACE_SIGNAL_LOSE_INFO;
1168 signalfd_notify(t, sig);
1169 sigaddset(&pending->signal, sig);
1171 /* Let multiprocess signals appear after on-going forks */
1172 if (type > PIDTYPE_TGID) {
1173 struct multiprocess_signals *delayed;
1174 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175 sigset_t *signal = &delayed->signal;
1176 /* Can't queue both a stop and a continue signal */
1178 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179 else if (sig_kernel_stop(sig))
1180 sigdelset(signal, SIGCONT);
1181 sigaddset(signal, sig);
1185 complete_signal(sig, t, type);
1187 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1194 switch (siginfo_layout(info->si_signo, info->si_code)) {
1203 case SIL_FAULT_TRAPNO:
1204 case SIL_FAULT_MCEERR:
1205 case SIL_FAULT_BNDERR:
1206 case SIL_FAULT_PKUERR:
1207 case SIL_FAULT_PERF_EVENT:
1215 int send_signal_locked(int sig, struct kernel_siginfo *info,
1216 struct task_struct *t, enum pid_type type)
1218 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1221 if (info == SEND_SIG_NOINFO) {
1222 /* Force if sent from an ancestor pid namespace */
1223 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224 } else if (info == SEND_SIG_PRIV) {
1225 /* Don't ignore kernel generated signals */
1227 } else if (has_si_pid_and_uid(info)) {
1228 /* SIGKILL and SIGSTOP is special or has ids */
1229 struct user_namespace *t_user_ns;
1232 t_user_ns = task_cred_xxx(t, user_ns);
1233 if (current_user_ns() != t_user_ns) {
1234 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235 info->si_uid = from_kuid_munged(t_user_ns, uid);
1239 /* A kernel generated signal? */
1240 force = (info->si_code == SI_KERNEL);
1242 /* From an ancestor pid namespace? */
1243 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1248 return __send_signal_locked(sig, info, t, type, force);
1251 static void print_fatal_signal(int signr)
1253 struct pt_regs *regs = task_pt_regs(current);
1254 struct file *exe_file;
1256 exe_file = get_task_exe_file(current);
1258 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1259 exe_file, current->comm, signr);
1262 pr_info("%s: potentially unexpected fatal signal %d.\n",
1263 current->comm, signr);
1266 #if defined(__i386__) && !defined(__arch_um__)
1267 pr_info("code at %08lx: ", regs->ip);
1270 for (i = 0; i < 16; i++) {
1273 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1275 pr_cont("%02x ", insn);
1285 static int __init setup_print_fatal_signals(char *str)
1287 get_option (&str, &print_fatal_signals);
1292 __setup("print-fatal-signals=", setup_print_fatal_signals);
1294 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1297 unsigned long flags;
1300 if (lock_task_sighand(p, &flags)) {
1301 ret = send_signal_locked(sig, info, p, type);
1302 unlock_task_sighand(p, &flags);
1309 HANDLER_CURRENT, /* If reachable use the current handler */
1310 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1311 HANDLER_EXIT, /* Only visible as the process exit code */
1315 * Force a signal that the process can't ignore: if necessary
1316 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1318 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1319 * since we do not want to have a signal handler that was blocked
1320 * be invoked when user space had explicitly blocked it.
1322 * We don't want to have recursive SIGSEGV's etc, for example,
1323 * that is why we also clear SIGNAL_UNKILLABLE.
1326 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1327 enum sig_handler handler)
1329 unsigned long int flags;
1330 int ret, blocked, ignored;
1331 struct k_sigaction *action;
1332 int sig = info->si_signo;
1334 spin_lock_irqsave(&t->sighand->siglock, flags);
1335 action = &t->sighand->action[sig-1];
1336 ignored = action->sa.sa_handler == SIG_IGN;
1337 blocked = sigismember(&t->blocked, sig);
1338 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1339 action->sa.sa_handler = SIG_DFL;
1340 if (handler == HANDLER_EXIT)
1341 action->sa.sa_flags |= SA_IMMUTABLE;
1343 sigdelset(&t->blocked, sig);
1346 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1347 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1349 if (action->sa.sa_handler == SIG_DFL &&
1350 (!t->ptrace || (handler == HANDLER_EXIT)))
1351 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1352 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1353 /* This can happen if the signal was already pending and blocked */
1354 if (!task_sigpending(t))
1355 signal_wake_up(t, 0);
1356 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1361 int force_sig_info(struct kernel_siginfo *info)
1363 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1367 * Nuke all other threads in the group.
1369 int zap_other_threads(struct task_struct *p)
1371 struct task_struct *t;
1374 p->signal->group_stop_count = 0;
1376 for_other_threads(p, t) {
1377 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1380 /* Don't bother with already dead threads */
1383 sigaddset(&t->pending.signal, SIGKILL);
1384 signal_wake_up(t, 1);
1390 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1391 unsigned long *flags)
1393 struct sighand_struct *sighand;
1397 sighand = rcu_dereference(tsk->sighand);
1398 if (unlikely(sighand == NULL))
1402 * This sighand can be already freed and even reused, but
1403 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1404 * initializes ->siglock: this slab can't go away, it has
1405 * the same object type, ->siglock can't be reinitialized.
1407 * We need to ensure that tsk->sighand is still the same
1408 * after we take the lock, we can race with de_thread() or
1409 * __exit_signal(). In the latter case the next iteration
1410 * must see ->sighand == NULL.
1412 spin_lock_irqsave(&sighand->siglock, *flags);
1413 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1415 spin_unlock_irqrestore(&sighand->siglock, *flags);
1422 #ifdef CONFIG_LOCKDEP
1423 void lockdep_assert_task_sighand_held(struct task_struct *task)
1425 struct sighand_struct *sighand;
1428 sighand = rcu_dereference(task->sighand);
1430 lockdep_assert_held(&sighand->siglock);
1438 * send signal info to all the members of a thread group or to the
1439 * individual thread if type == PIDTYPE_PID.
1441 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1442 struct task_struct *p, enum pid_type type)
1447 ret = check_kill_permission(sig, info, p);
1451 ret = do_send_sig_info(sig, info, p, type);
1457 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1458 * control characters do (^C, ^Z etc)
1459 * - the caller must hold at least a readlock on tasklist_lock
1461 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1463 struct task_struct *p = NULL;
1466 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1467 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1469 * If group_send_sig_info() succeeds at least once ret
1470 * becomes 0 and after that the code below has no effect.
1471 * Otherwise we return the last err or -ESRCH if this
1472 * process group is empty.
1476 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1481 static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1482 struct pid *pid, enum pid_type type)
1485 struct task_struct *p;
1489 p = pid_task(pid, PIDTYPE_PID);
1491 error = group_send_sig_info(sig, info, p, type);
1493 if (likely(!p || error != -ESRCH))
1496 * The task was unhashed in between, try again. If it
1497 * is dead, pid_task() will return NULL, if we race with
1498 * de_thread() it will find the new leader.
1503 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1505 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1508 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1512 error = kill_pid_info(sig, info, find_vpid(pid));
1517 static inline bool kill_as_cred_perm(const struct cred *cred,
1518 struct task_struct *target)
1520 const struct cred *pcred = __task_cred(target);
1522 return uid_eq(cred->euid, pcred->suid) ||
1523 uid_eq(cred->euid, pcred->uid) ||
1524 uid_eq(cred->uid, pcred->suid) ||
1525 uid_eq(cred->uid, pcred->uid);
1529 * The usb asyncio usage of siginfo is wrong. The glibc support
1530 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1531 * AKA after the generic fields:
1532 * kernel_pid_t si_pid;
1533 * kernel_uid32_t si_uid;
1534 * sigval_t si_value;
1536 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1537 * after the generic fields is:
1538 * void __user *si_addr;
1540 * This is a practical problem when there is a 64bit big endian kernel
1541 * and a 32bit userspace. As the 32bit address will encoded in the low
1542 * 32bits of the pointer. Those low 32bits will be stored at higher
1543 * address than appear in a 32 bit pointer. So userspace will not
1544 * see the address it was expecting for it's completions.
1546 * There is nothing in the encoding that can allow
1547 * copy_siginfo_to_user32 to detect this confusion of formats, so
1548 * handle this by requiring the caller of kill_pid_usb_asyncio to
1549 * notice when this situration takes place and to store the 32bit
1550 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1553 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1554 struct pid *pid, const struct cred *cred)
1556 struct kernel_siginfo info;
1557 struct task_struct *p;
1558 unsigned long flags;
1561 if (!valid_signal(sig))
1564 clear_siginfo(&info);
1565 info.si_signo = sig;
1566 info.si_errno = errno;
1567 info.si_code = SI_ASYNCIO;
1568 *((sigval_t *)&info.si_pid) = addr;
1571 p = pid_task(pid, PIDTYPE_PID);
1576 if (!kill_as_cred_perm(cred, p)) {
1580 ret = security_task_kill(p, &info, sig, cred);
1585 if (lock_task_sighand(p, &flags)) {
1586 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1587 unlock_task_sighand(p, &flags);
1595 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1598 * kill_something_info() interprets pid in interesting ways just like kill(2).
1600 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1601 * is probably wrong. Should make it like BSD or SYSV.
1604 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1609 return kill_proc_info(sig, info, pid);
1611 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1615 read_lock(&tasklist_lock);
1617 ret = __kill_pgrp_info(sig, info,
1618 pid ? find_vpid(-pid) : task_pgrp(current));
1620 int retval = 0, count = 0;
1621 struct task_struct * p;
1623 for_each_process(p) {
1624 if (task_pid_vnr(p) > 1 &&
1625 !same_thread_group(p, current)) {
1626 int err = group_send_sig_info(sig, info, p,
1633 ret = count ? retval : -ESRCH;
1635 read_unlock(&tasklist_lock);
1641 * These are for backward compatibility with the rest of the kernel source.
1644 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1647 * Make sure legacy kernel users don't send in bad values
1648 * (normal paths check this in check_kill_permission).
1650 if (!valid_signal(sig))
1653 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1655 EXPORT_SYMBOL(send_sig_info);
1657 #define __si_special(priv) \
1658 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1661 send_sig(int sig, struct task_struct *p, int priv)
1663 return send_sig_info(sig, __si_special(priv), p);
1665 EXPORT_SYMBOL(send_sig);
1667 void force_sig(int sig)
1669 struct kernel_siginfo info;
1671 clear_siginfo(&info);
1672 info.si_signo = sig;
1674 info.si_code = SI_KERNEL;
1677 force_sig_info(&info);
1679 EXPORT_SYMBOL(force_sig);
1681 void force_fatal_sig(int sig)
1683 struct kernel_siginfo info;
1685 clear_siginfo(&info);
1686 info.si_signo = sig;
1688 info.si_code = SI_KERNEL;
1691 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1694 void force_exit_sig(int sig)
1696 struct kernel_siginfo info;
1698 clear_siginfo(&info);
1699 info.si_signo = sig;
1701 info.si_code = SI_KERNEL;
1704 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1708 * When things go south during signal handling, we
1709 * will force a SIGSEGV. And if the signal that caused
1710 * the problem was already a SIGSEGV, we'll want to
1711 * make sure we don't even try to deliver the signal..
1713 void force_sigsegv(int sig)
1716 force_fatal_sig(SIGSEGV);
1721 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1722 struct task_struct *t)
1724 struct kernel_siginfo info;
1726 clear_siginfo(&info);
1727 info.si_signo = sig;
1729 info.si_code = code;
1730 info.si_addr = addr;
1731 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1734 int force_sig_fault(int sig, int code, void __user *addr)
1736 return force_sig_fault_to_task(sig, code, addr, current);
1739 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1741 struct kernel_siginfo info;
1743 clear_siginfo(&info);
1744 info.si_signo = sig;
1746 info.si_code = code;
1747 info.si_addr = addr;
1748 return send_sig_info(info.si_signo, &info, t);
1751 int force_sig_mceerr(int code, void __user *addr, short lsb)
1753 struct kernel_siginfo info;
1755 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1756 clear_siginfo(&info);
1757 info.si_signo = SIGBUS;
1759 info.si_code = code;
1760 info.si_addr = addr;
1761 info.si_addr_lsb = lsb;
1762 return force_sig_info(&info);
1765 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1767 struct kernel_siginfo info;
1769 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1770 clear_siginfo(&info);
1771 info.si_signo = SIGBUS;
1773 info.si_code = code;
1774 info.si_addr = addr;
1775 info.si_addr_lsb = lsb;
1776 return send_sig_info(info.si_signo, &info, t);
1778 EXPORT_SYMBOL(send_sig_mceerr);
1780 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1782 struct kernel_siginfo info;
1784 clear_siginfo(&info);
1785 info.si_signo = SIGSEGV;
1787 info.si_code = SEGV_BNDERR;
1788 info.si_addr = addr;
1789 info.si_lower = lower;
1790 info.si_upper = upper;
1791 return force_sig_info(&info);
1795 int force_sig_pkuerr(void __user *addr, u32 pkey)
1797 struct kernel_siginfo info;
1799 clear_siginfo(&info);
1800 info.si_signo = SIGSEGV;
1802 info.si_code = SEGV_PKUERR;
1803 info.si_addr = addr;
1804 info.si_pkey = pkey;
1805 return force_sig_info(&info);
1809 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1811 struct kernel_siginfo info;
1813 clear_siginfo(&info);
1814 info.si_signo = SIGTRAP;
1816 info.si_code = TRAP_PERF;
1817 info.si_addr = addr;
1818 info.si_perf_data = sig_data;
1819 info.si_perf_type = type;
1822 * Signals generated by perf events should not terminate the whole
1823 * process if SIGTRAP is blocked, however, delivering the signal
1824 * asynchronously is better than not delivering at all. But tell user
1825 * space if the signal was asynchronous, so it can clearly be
1826 * distinguished from normal synchronous ones.
1828 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1829 TRAP_PERF_FLAG_ASYNC :
1832 return send_sig_info(info.si_signo, &info, current);
1836 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1837 * @syscall: syscall number to send to userland
1838 * @reason: filter-supplied reason code to send to userland (via si_errno)
1839 * @force_coredump: true to trigger a coredump
1841 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1843 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1845 struct kernel_siginfo info;
1847 clear_siginfo(&info);
1848 info.si_signo = SIGSYS;
1849 info.si_code = SYS_SECCOMP;
1850 info.si_call_addr = (void __user *)KSTK_EIP(current);
1851 info.si_errno = reason;
1852 info.si_arch = syscall_get_arch(current);
1853 info.si_syscall = syscall;
1854 return force_sig_info_to_task(&info, current,
1855 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1858 /* For the crazy architectures that include trap information in
1859 * the errno field, instead of an actual errno value.
1861 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1863 struct kernel_siginfo info;
1865 clear_siginfo(&info);
1866 info.si_signo = SIGTRAP;
1867 info.si_errno = errno;
1868 info.si_code = TRAP_HWBKPT;
1869 info.si_addr = addr;
1870 return force_sig_info(&info);
1873 /* For the rare architectures that include trap information using
1876 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1878 struct kernel_siginfo info;
1880 clear_siginfo(&info);
1881 info.si_signo = sig;
1883 info.si_code = code;
1884 info.si_addr = addr;
1885 info.si_trapno = trapno;
1886 return force_sig_info(&info);
1889 /* For the rare architectures that include trap information using
1892 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1893 struct task_struct *t)
1895 struct kernel_siginfo info;
1897 clear_siginfo(&info);
1898 info.si_signo = sig;
1900 info.si_code = code;
1901 info.si_addr = addr;
1902 info.si_trapno = trapno;
1903 return send_sig_info(info.si_signo, &info, t);
1906 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1909 read_lock(&tasklist_lock);
1910 ret = __kill_pgrp_info(sig, info, pgrp);
1911 read_unlock(&tasklist_lock);
1915 int kill_pgrp(struct pid *pid, int sig, int priv)
1917 return kill_pgrp_info(sig, __si_special(priv), pid);
1919 EXPORT_SYMBOL(kill_pgrp);
1921 int kill_pid(struct pid *pid, int sig, int priv)
1923 return kill_pid_info(sig, __si_special(priv), pid);
1925 EXPORT_SYMBOL(kill_pid);
1928 * These functions support sending signals using preallocated sigqueue
1929 * structures. This is needed "because realtime applications cannot
1930 * afford to lose notifications of asynchronous events, like timer
1931 * expirations or I/O completions". In the case of POSIX Timers
1932 * we allocate the sigqueue structure from the timer_create. If this
1933 * allocation fails we are able to report the failure to the application
1934 * with an EAGAIN error.
1936 struct sigqueue *sigqueue_alloc(void)
1938 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1941 void sigqueue_free(struct sigqueue *q)
1943 unsigned long flags;
1944 spinlock_t *lock = ¤t->sighand->siglock;
1946 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1948 * We must hold ->siglock while testing q->list
1949 * to serialize with collect_signal() or with
1950 * __exit_signal()->flush_sigqueue().
1952 spin_lock_irqsave(lock, flags);
1953 q->flags &= ~SIGQUEUE_PREALLOC;
1955 * If it is queued it will be freed when dequeued,
1956 * like the "regular" sigqueue.
1958 if (!list_empty(&q->list))
1960 spin_unlock_irqrestore(lock, flags);
1966 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1968 int sig = q->info.si_signo;
1969 struct sigpending *pending;
1970 struct task_struct *t;
1971 unsigned long flags;
1974 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1980 * This function is used by POSIX timers to deliver a timer signal.
1981 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1982 * set), the signal must be delivered to the specific thread (queues
1985 * Where type is not PIDTYPE_PID, signals must be delivered to the
1986 * process. In this case, prefer to deliver to current if it is in
1987 * the same thread group as the target process, which avoids
1988 * unnecessarily waking up a potentially idle task.
1990 t = pid_task(pid, type);
1993 if (type != PIDTYPE_PID && same_thread_group(t, current))
1995 if (!likely(lock_task_sighand(t, &flags)))
1998 ret = 1; /* the signal is ignored */
1999 result = TRACE_SIGNAL_IGNORED;
2000 if (!prepare_signal(sig, t, false))
2004 if (unlikely(!list_empty(&q->list))) {
2006 * If an SI_TIMER entry is already queue just increment
2007 * the overrun count.
2009 BUG_ON(q->info.si_code != SI_TIMER);
2010 q->info.si_overrun++;
2011 result = TRACE_SIGNAL_ALREADY_PENDING;
2014 q->info.si_overrun = 0;
2016 signalfd_notify(t, sig);
2017 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2018 list_add_tail(&q->list, &pending->list);
2019 sigaddset(&pending->signal, sig);
2020 complete_signal(sig, t, type);
2021 result = TRACE_SIGNAL_DELIVERED;
2023 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2024 unlock_task_sighand(t, &flags);
2030 void do_notify_pidfd(struct task_struct *task)
2032 struct pid *pid = task_pid(task);
2034 WARN_ON(task->exit_state == 0);
2036 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2037 poll_to_key(EPOLLIN | EPOLLRDNORM));
2041 * Let a parent know about the death of a child.
2042 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2044 * Returns true if our parent ignored us and so we've switched to
2047 bool do_notify_parent(struct task_struct *tsk, int sig)
2049 struct kernel_siginfo info;
2050 unsigned long flags;
2051 struct sighand_struct *psig;
2052 bool autoreap = false;
2055 WARN_ON_ONCE(sig == -1);
2057 /* do_notify_parent_cldstop should have been called instead. */
2058 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2060 WARN_ON_ONCE(!tsk->ptrace &&
2061 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2063 * tsk is a group leader and has no threads, wake up the
2064 * non-PIDFD_THREAD waiters.
2066 if (thread_group_empty(tsk))
2067 do_notify_pidfd(tsk);
2069 if (sig != SIGCHLD) {
2071 * This is only possible if parent == real_parent.
2072 * Check if it has changed security domain.
2074 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2078 clear_siginfo(&info);
2079 info.si_signo = sig;
2082 * We are under tasklist_lock here so our parent is tied to
2083 * us and cannot change.
2085 * task_active_pid_ns will always return the same pid namespace
2086 * until a task passes through release_task.
2088 * write_lock() currently calls preempt_disable() which is the
2089 * same as rcu_read_lock(), but according to Oleg, this is not
2090 * correct to rely on this
2093 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2094 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2098 task_cputime(tsk, &utime, &stime);
2099 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2100 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2102 info.si_status = tsk->exit_code & 0x7f;
2103 if (tsk->exit_code & 0x80)
2104 info.si_code = CLD_DUMPED;
2105 else if (tsk->exit_code & 0x7f)
2106 info.si_code = CLD_KILLED;
2108 info.si_code = CLD_EXITED;
2109 info.si_status = tsk->exit_code >> 8;
2112 psig = tsk->parent->sighand;
2113 spin_lock_irqsave(&psig->siglock, flags);
2114 if (!tsk->ptrace && sig == SIGCHLD &&
2115 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2116 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2118 * We are exiting and our parent doesn't care. POSIX.1
2119 * defines special semantics for setting SIGCHLD to SIG_IGN
2120 * or setting the SA_NOCLDWAIT flag: we should be reaped
2121 * automatically and not left for our parent's wait4 call.
2122 * Rather than having the parent do it as a magic kind of
2123 * signal handler, we just set this to tell do_exit that we
2124 * can be cleaned up without becoming a zombie. Note that
2125 * we still call __wake_up_parent in this case, because a
2126 * blocked sys_wait4 might now return -ECHILD.
2128 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2129 * is implementation-defined: we do (if you don't want
2130 * it, just use SIG_IGN instead).
2133 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2137 * Send with __send_signal as si_pid and si_uid are in the
2138 * parent's namespaces.
2140 if (valid_signal(sig) && sig)
2141 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2142 __wake_up_parent(tsk, tsk->parent);
2143 spin_unlock_irqrestore(&psig->siglock, flags);
2149 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2150 * @tsk: task reporting the state change
2151 * @for_ptracer: the notification is for ptracer
2152 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2154 * Notify @tsk's parent that the stopped/continued state has changed. If
2155 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2156 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2159 * Must be called with tasklist_lock at least read locked.
2161 static void do_notify_parent_cldstop(struct task_struct *tsk,
2162 bool for_ptracer, int why)
2164 struct kernel_siginfo info;
2165 unsigned long flags;
2166 struct task_struct *parent;
2167 struct sighand_struct *sighand;
2171 parent = tsk->parent;
2173 tsk = tsk->group_leader;
2174 parent = tsk->real_parent;
2177 clear_siginfo(&info);
2178 info.si_signo = SIGCHLD;
2181 * see comment in do_notify_parent() about the following 4 lines
2184 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2185 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2188 task_cputime(tsk, &utime, &stime);
2189 info.si_utime = nsec_to_clock_t(utime);
2190 info.si_stime = nsec_to_clock_t(stime);
2195 info.si_status = SIGCONT;
2198 info.si_status = tsk->signal->group_exit_code & 0x7f;
2201 info.si_status = tsk->exit_code & 0x7f;
2207 sighand = parent->sighand;
2208 spin_lock_irqsave(&sighand->siglock, flags);
2209 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2210 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2211 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2213 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2215 __wake_up_parent(tsk, parent);
2216 spin_unlock_irqrestore(&sighand->siglock, flags);
2220 * This must be called with current->sighand->siglock held.
2222 * This should be the path for all ptrace stops.
2223 * We always set current->last_siginfo while stopped here.
2224 * That makes it a way to test a stopped process for
2225 * being ptrace-stopped vs being job-control-stopped.
2227 * Returns the signal the ptracer requested the code resume
2228 * with. If the code did not stop because the tracer is gone,
2229 * the stop signal remains unchanged unless clear_code.
2231 static int ptrace_stop(int exit_code, int why, unsigned long message,
2232 kernel_siginfo_t *info)
2233 __releases(¤t->sighand->siglock)
2234 __acquires(¤t->sighand->siglock)
2236 bool gstop_done = false;
2238 if (arch_ptrace_stop_needed()) {
2240 * The arch code has something special to do before a
2241 * ptrace stop. This is allowed to block, e.g. for faults
2242 * on user stack pages. We can't keep the siglock while
2243 * calling arch_ptrace_stop, so we must release it now.
2244 * To preserve proper semantics, we must do this before
2245 * any signal bookkeeping like checking group_stop_count.
2247 spin_unlock_irq(¤t->sighand->siglock);
2249 spin_lock_irq(¤t->sighand->siglock);
2253 * After this point ptrace_signal_wake_up or signal_wake_up
2254 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2255 * signal comes in. Handle previous ptrace_unlinks and fatal
2256 * signals here to prevent ptrace_stop sleeping in schedule.
2258 if (!current->ptrace || __fatal_signal_pending(current))
2261 set_special_state(TASK_TRACED);
2262 current->jobctl |= JOBCTL_TRACED;
2265 * We're committing to trapping. TRACED should be visible before
2266 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2267 * Also, transition to TRACED and updates to ->jobctl should be
2268 * atomic with respect to siglock and should be done after the arch
2269 * hook as siglock is released and regrabbed across it.
2274 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2276 * set_current_state() smp_wmb();
2278 * wait_task_stopped()
2279 * task_stopped_code()
2280 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2284 current->ptrace_message = message;
2285 current->last_siginfo = info;
2286 current->exit_code = exit_code;
2289 * If @why is CLD_STOPPED, we're trapping to participate in a group
2290 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2291 * across siglock relocks since INTERRUPT was scheduled, PENDING
2292 * could be clear now. We act as if SIGCONT is received after
2293 * TASK_TRACED is entered - ignore it.
2295 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2296 gstop_done = task_participate_group_stop(current);
2298 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2299 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2300 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2301 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2303 /* entering a trap, clear TRAPPING */
2304 task_clear_jobctl_trapping(current);
2306 spin_unlock_irq(¤t->sighand->siglock);
2307 read_lock(&tasklist_lock);
2309 * Notify parents of the stop.
2311 * While ptraced, there are two parents - the ptracer and
2312 * the real_parent of the group_leader. The ptracer should
2313 * know about every stop while the real parent is only
2314 * interested in the completion of group stop. The states
2315 * for the two don't interact with each other. Notify
2316 * separately unless they're gonna be duplicates.
2318 if (current->ptrace)
2319 do_notify_parent_cldstop(current, true, why);
2320 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2321 do_notify_parent_cldstop(current, false, why);
2324 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2325 * One a PREEMPTION kernel this can result in preemption requirement
2326 * which will be fulfilled after read_unlock() and the ptracer will be
2328 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2329 * this task wait in schedule(). If this task gets preempted then it
2330 * remains enqueued on the runqueue. The ptracer will observe this and
2331 * then sleep for a delay of one HZ tick. In the meantime this task
2332 * gets scheduled, enters schedule() and will wait for the ptracer.
2334 * This preemption point is not bad from a correctness point of
2335 * view but extends the runtime by one HZ tick time due to the
2336 * ptracer's sleep. The preempt-disable section ensures that there
2337 * will be no preemption between unlock and schedule() and so
2338 * improving the performance since the ptracer will observe that
2339 * the tracee is scheduled out once it gets on the CPU.
2341 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2342 * Therefore the task can be preempted after do_notify_parent_cldstop()
2343 * before unlocking tasklist_lock so there is no benefit in doing this.
2345 * In fact disabling preemption is harmful on PREEMPT_RT because
2346 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2347 * with preemption disabled due to the 'sleeping' spinlock
2348 * substitution of RT.
2350 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2352 read_unlock(&tasklist_lock);
2353 cgroup_enter_frozen();
2354 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2355 preempt_enable_no_resched();
2357 cgroup_leave_frozen(true);
2360 * We are back. Now reacquire the siglock before touching
2361 * last_siginfo, so that we are sure to have synchronized with
2362 * any signal-sending on another CPU that wants to examine it.
2364 spin_lock_irq(¤t->sighand->siglock);
2365 exit_code = current->exit_code;
2366 current->last_siginfo = NULL;
2367 current->ptrace_message = 0;
2368 current->exit_code = 0;
2370 /* LISTENING can be set only during STOP traps, clear it */
2371 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2374 * Queued signals ignored us while we were stopped for tracing.
2375 * So check for any that we should take before resuming user mode.
2376 * This sets TIF_SIGPENDING, but never clears it.
2378 recalc_sigpending_tsk(current);
2382 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2384 kernel_siginfo_t info;
2386 clear_siginfo(&info);
2387 info.si_signo = signr;
2388 info.si_code = exit_code;
2389 info.si_pid = task_pid_vnr(current);
2390 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2392 /* Let the debugger run. */
2393 return ptrace_stop(exit_code, why, message, &info);
2396 int ptrace_notify(int exit_code, unsigned long message)
2400 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2401 if (unlikely(task_work_pending(current)))
2404 spin_lock_irq(¤t->sighand->siglock);
2405 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2406 spin_unlock_irq(¤t->sighand->siglock);
2411 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2412 * @signr: signr causing group stop if initiating
2414 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2415 * and participate in it. If already set, participate in the existing
2416 * group stop. If participated in a group stop (and thus slept), %true is
2417 * returned with siglock released.
2419 * If ptraced, this function doesn't handle stop itself. Instead,
2420 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2421 * untouched. The caller must ensure that INTERRUPT trap handling takes
2422 * places afterwards.
2425 * Must be called with @current->sighand->siglock held, which is released
2429 * %false if group stop is already cancelled or ptrace trap is scheduled.
2430 * %true if participated in group stop.
2432 static bool do_signal_stop(int signr)
2433 __releases(¤t->sighand->siglock)
2435 struct signal_struct *sig = current->signal;
2437 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2438 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2439 struct task_struct *t;
2441 /* signr will be recorded in task->jobctl for retries */
2442 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2444 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2445 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2446 unlikely(sig->group_exec_task))
2449 * There is no group stop already in progress. We must
2452 * While ptraced, a task may be resumed while group stop is
2453 * still in effect and then receive a stop signal and
2454 * initiate another group stop. This deviates from the
2455 * usual behavior as two consecutive stop signals can't
2456 * cause two group stops when !ptraced. That is why we
2457 * also check !task_is_stopped(t) below.
2459 * The condition can be distinguished by testing whether
2460 * SIGNAL_STOP_STOPPED is already set. Don't generate
2461 * group_exit_code in such case.
2463 * This is not necessary for SIGNAL_STOP_CONTINUED because
2464 * an intervening stop signal is required to cause two
2465 * continued events regardless of ptrace.
2467 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2468 sig->group_exit_code = signr;
2470 sig->group_stop_count = 0;
2471 if (task_set_jobctl_pending(current, signr | gstop))
2472 sig->group_stop_count++;
2474 for_other_threads(current, t) {
2476 * Setting state to TASK_STOPPED for a group
2477 * stop is always done with the siglock held,
2478 * so this check has no races.
2480 if (!task_is_stopped(t) &&
2481 task_set_jobctl_pending(t, signr | gstop)) {
2482 sig->group_stop_count++;
2483 if (likely(!(t->ptrace & PT_SEIZED)))
2484 signal_wake_up(t, 0);
2486 ptrace_trap_notify(t);
2491 if (likely(!current->ptrace)) {
2495 * If there are no other threads in the group, or if there
2496 * is a group stop in progress and we are the last to stop,
2497 * report to the parent.
2499 if (task_participate_group_stop(current))
2500 notify = CLD_STOPPED;
2502 current->jobctl |= JOBCTL_STOPPED;
2503 set_special_state(TASK_STOPPED);
2504 spin_unlock_irq(¤t->sighand->siglock);
2507 * Notify the parent of the group stop completion. Because
2508 * we're not holding either the siglock or tasklist_lock
2509 * here, ptracer may attach inbetween; however, this is for
2510 * group stop and should always be delivered to the real
2511 * parent of the group leader. The new ptracer will get
2512 * its notification when this task transitions into
2516 read_lock(&tasklist_lock);
2517 do_notify_parent_cldstop(current, false, notify);
2518 read_unlock(&tasklist_lock);
2521 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2522 cgroup_enter_frozen();
2527 * While ptraced, group stop is handled by STOP trap.
2528 * Schedule it and let the caller deal with it.
2530 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2536 * do_jobctl_trap - take care of ptrace jobctl traps
2538 * When PT_SEIZED, it's used for both group stop and explicit
2539 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2540 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2541 * the stop signal; otherwise, %SIGTRAP.
2543 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2544 * number as exit_code and no siginfo.
2547 * Must be called with @current->sighand->siglock held, which may be
2548 * released and re-acquired before returning with intervening sleep.
2550 static void do_jobctl_trap(void)
2552 struct signal_struct *signal = current->signal;
2553 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2555 if (current->ptrace & PT_SEIZED) {
2556 if (!signal->group_stop_count &&
2557 !(signal->flags & SIGNAL_STOP_STOPPED))
2559 WARN_ON_ONCE(!signr);
2560 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2563 WARN_ON_ONCE(!signr);
2564 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2569 * do_freezer_trap - handle the freezer jobctl trap
2571 * Puts the task into frozen state, if only the task is not about to quit.
2572 * In this case it drops JOBCTL_TRAP_FREEZE.
2575 * Must be called with @current->sighand->siglock held,
2576 * which is always released before returning.
2578 static void do_freezer_trap(void)
2579 __releases(¤t->sighand->siglock)
2582 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2583 * let's make another loop to give it a chance to be handled.
2584 * In any case, we'll return back.
2586 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2587 JOBCTL_TRAP_FREEZE) {
2588 spin_unlock_irq(¤t->sighand->siglock);
2593 * Now we're sure that there is no pending fatal signal and no
2594 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2595 * immediately (if there is a non-fatal signal pending), and
2596 * put the task into sleep.
2598 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2599 clear_thread_flag(TIF_SIGPENDING);
2600 spin_unlock_irq(¤t->sighand->siglock);
2601 cgroup_enter_frozen();
2605 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2608 * We do not check sig_kernel_stop(signr) but set this marker
2609 * unconditionally because we do not know whether debugger will
2610 * change signr. This flag has no meaning unless we are going
2611 * to stop after return from ptrace_stop(). In this case it will
2612 * be checked in do_signal_stop(), we should only stop if it was
2613 * not cleared by SIGCONT while we were sleeping. See also the
2614 * comment in dequeue_signal().
2616 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2617 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2619 /* We're back. Did the debugger cancel the sig? */
2624 * Update the siginfo structure if the signal has
2625 * changed. If the debugger wanted something
2626 * specific in the siginfo structure then it should
2627 * have updated *info via PTRACE_SETSIGINFO.
2629 if (signr != info->si_signo) {
2630 clear_siginfo(info);
2631 info->si_signo = signr;
2633 info->si_code = SI_USER;
2635 info->si_pid = task_pid_vnr(current->parent);
2636 info->si_uid = from_kuid_munged(current_user_ns(),
2637 task_uid(current->parent));
2641 /* If the (new) signal is now blocked, requeue it. */
2642 if (sigismember(¤t->blocked, signr) ||
2643 fatal_signal_pending(current)) {
2644 send_signal_locked(signr, info, current, type);
2651 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2653 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2655 case SIL_FAULT_TRAPNO:
2656 case SIL_FAULT_MCEERR:
2657 case SIL_FAULT_BNDERR:
2658 case SIL_FAULT_PKUERR:
2659 case SIL_FAULT_PERF_EVENT:
2660 ksig->info.si_addr = arch_untagged_si_addr(
2661 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2673 bool get_signal(struct ksignal *ksig)
2675 struct sighand_struct *sighand = current->sighand;
2676 struct signal_struct *signal = current->signal;
2679 clear_notify_signal();
2680 if (unlikely(task_work_pending(current)))
2683 if (!task_sigpending(current))
2686 if (unlikely(uprobe_deny_signal()))
2690 * Do this once, we can't return to user-mode if freezing() == T.
2691 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2692 * thus do not need another check after return.
2697 spin_lock_irq(&sighand->siglock);
2700 * Every stopped thread goes here after wakeup. Check to see if
2701 * we should notify the parent, prepare_signal(SIGCONT) encodes
2702 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2704 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2707 if (signal->flags & SIGNAL_CLD_CONTINUED)
2708 why = CLD_CONTINUED;
2712 signal->flags &= ~SIGNAL_CLD_MASK;
2714 spin_unlock_irq(&sighand->siglock);
2717 * Notify the parent that we're continuing. This event is
2718 * always per-process and doesn't make whole lot of sense
2719 * for ptracers, who shouldn't consume the state via
2720 * wait(2) either, but, for backward compatibility, notify
2721 * the ptracer of the group leader too unless it's gonna be
2724 read_lock(&tasklist_lock);
2725 do_notify_parent_cldstop(current, false, why);
2727 if (ptrace_reparented(current->group_leader))
2728 do_notify_parent_cldstop(current->group_leader,
2730 read_unlock(&tasklist_lock);
2736 struct k_sigaction *ka;
2739 /* Has this task already been marked for death? */
2740 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2741 signal->group_exec_task) {
2743 sigdelset(¤t->pending.signal, SIGKILL);
2744 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2745 &sighand->action[SIGKILL-1]);
2746 recalc_sigpending();
2748 * implies do_group_exit() or return to PF_USER_WORKER,
2749 * no need to initialize ksig->info/etc.
2754 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2758 if (unlikely(current->jobctl &
2759 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2760 if (current->jobctl & JOBCTL_TRAP_MASK) {
2762 spin_unlock_irq(&sighand->siglock);
2763 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2770 * If the task is leaving the frozen state, let's update
2771 * cgroup counters and reset the frozen bit.
2773 if (unlikely(cgroup_task_frozen(current))) {
2774 spin_unlock_irq(&sighand->siglock);
2775 cgroup_leave_frozen(false);
2780 * Signals generated by the execution of an instruction
2781 * need to be delivered before any other pending signals
2782 * so that the instruction pointer in the signal stack
2783 * frame points to the faulting instruction.
2786 signr = dequeue_synchronous_signal(&ksig->info);
2788 signr = dequeue_signal(current, ¤t->blocked,
2789 &ksig->info, &type);
2792 break; /* will return 0 */
2794 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2795 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2796 signr = ptrace_signal(signr, &ksig->info, type);
2801 ka = &sighand->action[signr-1];
2803 /* Trace actually delivered signals. */
2804 trace_signal_deliver(signr, &ksig->info, ka);
2806 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2808 if (ka->sa.sa_handler != SIG_DFL) {
2809 /* Run the handler. */
2812 if (ka->sa.sa_flags & SA_ONESHOT)
2813 ka->sa.sa_handler = SIG_DFL;
2815 break; /* will return non-zero "signr" value */
2819 * Now we are doing the default action for this signal.
2821 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2825 * Global init gets no signals it doesn't want.
2826 * Container-init gets no signals it doesn't want from same
2829 * Note that if global/container-init sees a sig_kernel_only()
2830 * signal here, the signal must have been generated internally
2831 * or must have come from an ancestor namespace. In either
2832 * case, the signal cannot be dropped.
2834 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2835 !sig_kernel_only(signr))
2838 if (sig_kernel_stop(signr)) {
2840 * The default action is to stop all threads in
2841 * the thread group. The job control signals
2842 * do nothing in an orphaned pgrp, but SIGSTOP
2843 * always works. Note that siglock needs to be
2844 * dropped during the call to is_orphaned_pgrp()
2845 * because of lock ordering with tasklist_lock.
2846 * This allows an intervening SIGCONT to be posted.
2847 * We need to check for that and bail out if necessary.
2849 if (signr != SIGSTOP) {
2850 spin_unlock_irq(&sighand->siglock);
2852 /* signals can be posted during this window */
2854 if (is_current_pgrp_orphaned())
2857 spin_lock_irq(&sighand->siglock);
2860 if (likely(do_signal_stop(signr))) {
2861 /* It released the siglock. */
2866 * We didn't actually stop, due to a race
2867 * with SIGCONT or something like that.
2873 spin_unlock_irq(&sighand->siglock);
2874 if (unlikely(cgroup_task_frozen(current)))
2875 cgroup_leave_frozen(true);
2878 * Anything else is fatal, maybe with a core dump.
2880 current->flags |= PF_SIGNALED;
2882 if (sig_kernel_coredump(signr)) {
2883 if (print_fatal_signals)
2884 print_fatal_signal(signr);
2885 proc_coredump_connector(current);
2887 * If it was able to dump core, this kills all
2888 * other threads in the group and synchronizes with
2889 * their demise. If we lost the race with another
2890 * thread getting here, it set group_exit_code
2891 * first and our do_group_exit call below will use
2892 * that value and ignore the one we pass it.
2894 do_coredump(&ksig->info);
2898 * PF_USER_WORKER threads will catch and exit on fatal signals
2899 * themselves. They have cleanup that must be performed, so we
2900 * cannot call do_exit() on their behalf. Note that ksig won't
2901 * be properly initialized, PF_USER_WORKER's shouldn't use it.
2903 if (current->flags & PF_USER_WORKER)
2907 * Death signals, no core dump.
2909 do_group_exit(signr);
2912 spin_unlock_irq(&sighand->siglock);
2916 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2917 hide_si_addr_tag_bits(ksig);
2923 * signal_delivered - called after signal delivery to update blocked signals
2924 * @ksig: kernel signal struct
2925 * @stepping: nonzero if debugger single-step or block-step in use
2927 * This function should be called when a signal has successfully been
2928 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2929 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2930 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2932 static void signal_delivered(struct ksignal *ksig, int stepping)
2936 /* A signal was successfully delivered, and the
2937 saved sigmask was stored on the signal frame,
2938 and will be restored by sigreturn. So we can
2939 simply clear the restore sigmask flag. */
2940 clear_restore_sigmask();
2942 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2943 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2944 sigaddset(&blocked, ksig->sig);
2945 set_current_blocked(&blocked);
2946 if (current->sas_ss_flags & SS_AUTODISARM)
2947 sas_ss_reset(current);
2949 ptrace_notify(SIGTRAP, 0);
2952 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2955 force_sigsegv(ksig->sig);
2957 signal_delivered(ksig, stepping);
2961 * It could be that complete_signal() picked us to notify about the
2962 * group-wide signal. Other threads should be notified now to take
2963 * the shared signals in @which since we will not.
2965 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2968 struct task_struct *t;
2970 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2971 if (sigisemptyset(&retarget))
2974 for_other_threads(tsk, t) {
2975 if (t->flags & PF_EXITING)
2978 if (!has_pending_signals(&retarget, &t->blocked))
2980 /* Remove the signals this thread can handle. */
2981 sigandsets(&retarget, &retarget, &t->blocked);
2983 if (!task_sigpending(t))
2984 signal_wake_up(t, 0);
2986 if (sigisemptyset(&retarget))
2991 void exit_signals(struct task_struct *tsk)
2997 * @tsk is about to have PF_EXITING set - lock out users which
2998 * expect stable threadgroup.
3000 cgroup_threadgroup_change_begin(tsk);
3002 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3003 sched_mm_cid_exit_signals(tsk);
3004 tsk->flags |= PF_EXITING;
3005 cgroup_threadgroup_change_end(tsk);
3009 spin_lock_irq(&tsk->sighand->siglock);
3011 * From now this task is not visible for group-wide signals,
3012 * see wants_signal(), do_signal_stop().
3014 sched_mm_cid_exit_signals(tsk);
3015 tsk->flags |= PF_EXITING;
3017 cgroup_threadgroup_change_end(tsk);
3019 if (!task_sigpending(tsk))
3022 unblocked = tsk->blocked;
3023 signotset(&unblocked);
3024 retarget_shared_pending(tsk, &unblocked);
3026 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3027 task_participate_group_stop(tsk))
3028 group_stop = CLD_STOPPED;
3030 spin_unlock_irq(&tsk->sighand->siglock);
3033 * If group stop has completed, deliver the notification. This
3034 * should always go to the real parent of the group leader.
3036 if (unlikely(group_stop)) {
3037 read_lock(&tasklist_lock);
3038 do_notify_parent_cldstop(tsk, false, group_stop);
3039 read_unlock(&tasklist_lock);
3044 * System call entry points.
3048 * sys_restart_syscall - restart a system call
3050 SYSCALL_DEFINE0(restart_syscall)
3052 struct restart_block *restart = ¤t->restart_block;
3053 return restart->fn(restart);
3056 long do_no_restart_syscall(struct restart_block *param)
3061 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3063 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3064 sigset_t newblocked;
3065 /* A set of now blocked but previously unblocked signals. */
3066 sigandnsets(&newblocked, newset, ¤t->blocked);
3067 retarget_shared_pending(tsk, &newblocked);
3069 tsk->blocked = *newset;
3070 recalc_sigpending();
3074 * set_current_blocked - change current->blocked mask
3077 * It is wrong to change ->blocked directly, this helper should be used
3078 * to ensure the process can't miss a shared signal we are going to block.
3080 void set_current_blocked(sigset_t *newset)
3082 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3083 __set_current_blocked(newset);
3086 void __set_current_blocked(const sigset_t *newset)
3088 struct task_struct *tsk = current;
3091 * In case the signal mask hasn't changed, there is nothing we need
3092 * to do. The current->blocked shouldn't be modified by other task.
3094 if (sigequalsets(&tsk->blocked, newset))
3097 spin_lock_irq(&tsk->sighand->siglock);
3098 __set_task_blocked(tsk, newset);
3099 spin_unlock_irq(&tsk->sighand->siglock);
3103 * This is also useful for kernel threads that want to temporarily
3104 * (or permanently) block certain signals.
3106 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3107 * interface happily blocks "unblockable" signals like SIGKILL
3110 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3112 struct task_struct *tsk = current;
3115 /* Lockless, only current can change ->blocked, never from irq */
3117 *oldset = tsk->blocked;
3121 sigorsets(&newset, &tsk->blocked, set);
3124 sigandnsets(&newset, &tsk->blocked, set);
3133 __set_current_blocked(&newset);
3136 EXPORT_SYMBOL(sigprocmask);
3139 * The api helps set app-provided sigmasks.
3141 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3142 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3144 * Note that it does set_restore_sigmask() in advance, so it must be always
3145 * paired with restore_saved_sigmask_unless() before return from syscall.
3147 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3153 if (sigsetsize != sizeof(sigset_t))
3155 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3158 set_restore_sigmask();
3159 current->saved_sigmask = current->blocked;
3160 set_current_blocked(&kmask);
3165 #ifdef CONFIG_COMPAT
3166 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3173 if (sigsetsize != sizeof(compat_sigset_t))
3175 if (get_compat_sigset(&kmask, umask))
3178 set_restore_sigmask();
3179 current->saved_sigmask = current->blocked;
3180 set_current_blocked(&kmask);
3187 * sys_rt_sigprocmask - change the list of currently blocked signals
3188 * @how: whether to add, remove, or set signals
3189 * @nset: stores pending signals
3190 * @oset: previous value of signal mask if non-null
3191 * @sigsetsize: size of sigset_t type
3193 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3194 sigset_t __user *, oset, size_t, sigsetsize)
3196 sigset_t old_set, new_set;
3199 /* XXX: Don't preclude handling different sized sigset_t's. */
3200 if (sigsetsize != sizeof(sigset_t))
3203 old_set = current->blocked;
3206 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3208 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3210 error = sigprocmask(how, &new_set, NULL);
3216 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3223 #ifdef CONFIG_COMPAT
3224 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3225 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3227 sigset_t old_set = current->blocked;
3229 /* XXX: Don't preclude handling different sized sigset_t's. */
3230 if (sigsetsize != sizeof(sigset_t))
3236 if (get_compat_sigset(&new_set, nset))
3238 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3240 error = sigprocmask(how, &new_set, NULL);
3244 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3248 static void do_sigpending(sigset_t *set)
3250 spin_lock_irq(¤t->sighand->siglock);
3251 sigorsets(set, ¤t->pending.signal,
3252 ¤t->signal->shared_pending.signal);
3253 spin_unlock_irq(¤t->sighand->siglock);
3255 /* Outside the lock because only this thread touches it. */
3256 sigandsets(set, ¤t->blocked, set);
3260 * sys_rt_sigpending - examine a pending signal that has been raised
3262 * @uset: stores pending signals
3263 * @sigsetsize: size of sigset_t type or larger
3265 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3269 if (sigsetsize > sizeof(*uset))
3272 do_sigpending(&set);
3274 if (copy_to_user(uset, &set, sigsetsize))
3280 #ifdef CONFIG_COMPAT
3281 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3282 compat_size_t, sigsetsize)
3286 if (sigsetsize > sizeof(*uset))
3289 do_sigpending(&set);
3291 return put_compat_sigset(uset, &set, sigsetsize);
3295 static const struct {
3296 unsigned char limit, layout;
3298 [SIGILL] = { NSIGILL, SIL_FAULT },
3299 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3300 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3301 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3302 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3304 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3306 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3307 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3308 [SIGSYS] = { NSIGSYS, SIL_SYS },
3311 static bool known_siginfo_layout(unsigned sig, int si_code)
3313 if (si_code == SI_KERNEL)
3315 else if ((si_code > SI_USER)) {
3316 if (sig_specific_sicodes(sig)) {
3317 if (si_code <= sig_sicodes[sig].limit)
3320 else if (si_code <= NSIGPOLL)
3323 else if (si_code >= SI_DETHREAD)
3325 else if (si_code == SI_ASYNCNL)
3330 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3332 enum siginfo_layout layout = SIL_KILL;
3333 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3334 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3335 (si_code <= sig_sicodes[sig].limit)) {
3336 layout = sig_sicodes[sig].layout;
3337 /* Handle the exceptions */
3338 if ((sig == SIGBUS) &&
3339 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3340 layout = SIL_FAULT_MCEERR;
3341 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3342 layout = SIL_FAULT_BNDERR;
3344 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3345 layout = SIL_FAULT_PKUERR;
3347 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3348 layout = SIL_FAULT_PERF_EVENT;
3349 else if (IS_ENABLED(CONFIG_SPARC) &&
3350 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3351 layout = SIL_FAULT_TRAPNO;
3352 else if (IS_ENABLED(CONFIG_ALPHA) &&
3354 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3355 layout = SIL_FAULT_TRAPNO;
3357 else if (si_code <= NSIGPOLL)
3360 if (si_code == SI_TIMER)
3362 else if (si_code == SI_SIGIO)
3364 else if (si_code < 0)
3370 static inline char __user *si_expansion(const siginfo_t __user *info)
3372 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3375 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3377 char __user *expansion = si_expansion(to);
3378 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3380 if (clear_user(expansion, SI_EXPANSION_SIZE))
3385 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3386 const siginfo_t __user *from)
3388 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3389 char __user *expansion = si_expansion(from);
3390 char buf[SI_EXPANSION_SIZE];
3393 * An unknown si_code might need more than
3394 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3395 * extra bytes are 0. This guarantees copy_siginfo_to_user
3396 * will return this data to userspace exactly.
3398 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3400 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3408 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3409 const siginfo_t __user *from)
3411 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3413 to->si_signo = signo;
3414 return post_copy_siginfo_from_user(to, from);
3417 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3419 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3421 return post_copy_siginfo_from_user(to, from);
3424 #ifdef CONFIG_COMPAT
3426 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3427 * @to: compat siginfo destination
3428 * @from: kernel siginfo source
3430 * Note: This function does not work properly for the SIGCHLD on x32, but
3431 * fortunately it doesn't have to. The only valid callers for this function are
3432 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3433 * The latter does not care because SIGCHLD will never cause a coredump.
3435 void copy_siginfo_to_external32(struct compat_siginfo *to,
3436 const struct kernel_siginfo *from)
3438 memset(to, 0, sizeof(*to));
3440 to->si_signo = from->si_signo;
3441 to->si_errno = from->si_errno;
3442 to->si_code = from->si_code;
3443 switch(siginfo_layout(from->si_signo, from->si_code)) {
3445 to->si_pid = from->si_pid;
3446 to->si_uid = from->si_uid;
3449 to->si_tid = from->si_tid;
3450 to->si_overrun = from->si_overrun;
3451 to->si_int = from->si_int;
3454 to->si_band = from->si_band;
3455 to->si_fd = from->si_fd;
3458 to->si_addr = ptr_to_compat(from->si_addr);
3460 case SIL_FAULT_TRAPNO:
3461 to->si_addr = ptr_to_compat(from->si_addr);
3462 to->si_trapno = from->si_trapno;
3464 case SIL_FAULT_MCEERR:
3465 to->si_addr = ptr_to_compat(from->si_addr);
3466 to->si_addr_lsb = from->si_addr_lsb;
3468 case SIL_FAULT_BNDERR:
3469 to->si_addr = ptr_to_compat(from->si_addr);
3470 to->si_lower = ptr_to_compat(from->si_lower);
3471 to->si_upper = ptr_to_compat(from->si_upper);
3473 case SIL_FAULT_PKUERR:
3474 to->si_addr = ptr_to_compat(from->si_addr);
3475 to->si_pkey = from->si_pkey;
3477 case SIL_FAULT_PERF_EVENT:
3478 to->si_addr = ptr_to_compat(from->si_addr);
3479 to->si_perf_data = from->si_perf_data;
3480 to->si_perf_type = from->si_perf_type;
3481 to->si_perf_flags = from->si_perf_flags;
3484 to->si_pid = from->si_pid;
3485 to->si_uid = from->si_uid;
3486 to->si_status = from->si_status;
3487 to->si_utime = from->si_utime;
3488 to->si_stime = from->si_stime;
3491 to->si_pid = from->si_pid;
3492 to->si_uid = from->si_uid;
3493 to->si_int = from->si_int;
3496 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3497 to->si_syscall = from->si_syscall;
3498 to->si_arch = from->si_arch;
3503 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3504 const struct kernel_siginfo *from)
3506 struct compat_siginfo new;
3508 copy_siginfo_to_external32(&new, from);
3509 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3514 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3515 const struct compat_siginfo *from)
3518 to->si_signo = from->si_signo;
3519 to->si_errno = from->si_errno;
3520 to->si_code = from->si_code;
3521 switch(siginfo_layout(from->si_signo, from->si_code)) {
3523 to->si_pid = from->si_pid;
3524 to->si_uid = from->si_uid;
3527 to->si_tid = from->si_tid;
3528 to->si_overrun = from->si_overrun;
3529 to->si_int = from->si_int;
3532 to->si_band = from->si_band;
3533 to->si_fd = from->si_fd;
3536 to->si_addr = compat_ptr(from->si_addr);
3538 case SIL_FAULT_TRAPNO:
3539 to->si_addr = compat_ptr(from->si_addr);
3540 to->si_trapno = from->si_trapno;
3542 case SIL_FAULT_MCEERR:
3543 to->si_addr = compat_ptr(from->si_addr);
3544 to->si_addr_lsb = from->si_addr_lsb;
3546 case SIL_FAULT_BNDERR:
3547 to->si_addr = compat_ptr(from->si_addr);
3548 to->si_lower = compat_ptr(from->si_lower);
3549 to->si_upper = compat_ptr(from->si_upper);
3551 case SIL_FAULT_PKUERR:
3552 to->si_addr = compat_ptr(from->si_addr);
3553 to->si_pkey = from->si_pkey;
3555 case SIL_FAULT_PERF_EVENT:
3556 to->si_addr = compat_ptr(from->si_addr);
3557 to->si_perf_data = from->si_perf_data;
3558 to->si_perf_type = from->si_perf_type;
3559 to->si_perf_flags = from->si_perf_flags;
3562 to->si_pid = from->si_pid;
3563 to->si_uid = from->si_uid;
3564 to->si_status = from->si_status;
3565 #ifdef CONFIG_X86_X32_ABI
3566 if (in_x32_syscall()) {
3567 to->si_utime = from->_sifields._sigchld_x32._utime;
3568 to->si_stime = from->_sifields._sigchld_x32._stime;
3572 to->si_utime = from->si_utime;
3573 to->si_stime = from->si_stime;
3577 to->si_pid = from->si_pid;
3578 to->si_uid = from->si_uid;
3579 to->si_int = from->si_int;
3582 to->si_call_addr = compat_ptr(from->si_call_addr);
3583 to->si_syscall = from->si_syscall;
3584 to->si_arch = from->si_arch;
3590 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3591 const struct compat_siginfo __user *ufrom)
3593 struct compat_siginfo from;
3595 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3598 from.si_signo = signo;
3599 return post_copy_siginfo_from_user32(to, &from);
3602 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3603 const struct compat_siginfo __user *ufrom)
3605 struct compat_siginfo from;
3607 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3610 return post_copy_siginfo_from_user32(to, &from);
3612 #endif /* CONFIG_COMPAT */
3615 * do_sigtimedwait - wait for queued signals specified in @which
3616 * @which: queued signals to wait for
3617 * @info: if non-null, the signal's siginfo is returned here
3618 * @ts: upper bound on process time suspension
3620 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3621 const struct timespec64 *ts)
3623 ktime_t *to = NULL, timeout = KTIME_MAX;
3624 struct task_struct *tsk = current;
3625 sigset_t mask = *which;
3630 if (!timespec64_valid(ts))
3632 timeout = timespec64_to_ktime(*ts);
3637 * Invert the set of allowed signals to get those we want to block.
3639 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3642 spin_lock_irq(&tsk->sighand->siglock);
3643 sig = dequeue_signal(tsk, &mask, info, &type);
3644 if (!sig && timeout) {
3646 * None ready, temporarily unblock those we're interested
3647 * while we are sleeping in so that we'll be awakened when
3648 * they arrive. Unblocking is always fine, we can avoid
3649 * set_current_blocked().
3651 tsk->real_blocked = tsk->blocked;
3652 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3653 recalc_sigpending();
3654 spin_unlock_irq(&tsk->sighand->siglock);
3656 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3657 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3659 spin_lock_irq(&tsk->sighand->siglock);
3660 __set_task_blocked(tsk, &tsk->real_blocked);
3661 sigemptyset(&tsk->real_blocked);
3662 sig = dequeue_signal(tsk, &mask, info, &type);
3664 spin_unlock_irq(&tsk->sighand->siglock);
3668 return ret ? -EINTR : -EAGAIN;
3672 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3674 * @uthese: queued signals to wait for
3675 * @uinfo: if non-null, the signal's siginfo is returned here
3676 * @uts: upper bound on process time suspension
3677 * @sigsetsize: size of sigset_t type
3679 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3680 siginfo_t __user *, uinfo,
3681 const struct __kernel_timespec __user *, uts,
3685 struct timespec64 ts;
3686 kernel_siginfo_t info;
3689 /* XXX: Don't preclude handling different sized sigset_t's. */
3690 if (sigsetsize != sizeof(sigset_t))
3693 if (copy_from_user(&these, uthese, sizeof(these)))
3697 if (get_timespec64(&ts, uts))
3701 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3703 if (ret > 0 && uinfo) {
3704 if (copy_siginfo_to_user(uinfo, &info))
3711 #ifdef CONFIG_COMPAT_32BIT_TIME
3712 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3713 siginfo_t __user *, uinfo,
3714 const struct old_timespec32 __user *, uts,
3718 struct timespec64 ts;
3719 kernel_siginfo_t info;
3722 if (sigsetsize != sizeof(sigset_t))
3725 if (copy_from_user(&these, uthese, sizeof(these)))
3729 if (get_old_timespec32(&ts, uts))
3733 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3735 if (ret > 0 && uinfo) {
3736 if (copy_siginfo_to_user(uinfo, &info))
3744 #ifdef CONFIG_COMPAT
3745 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3746 struct compat_siginfo __user *, uinfo,
3747 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3750 struct timespec64 t;
3751 kernel_siginfo_t info;
3754 if (sigsetsize != sizeof(sigset_t))
3757 if (get_compat_sigset(&s, uthese))
3761 if (get_timespec64(&t, uts))
3765 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3767 if (ret > 0 && uinfo) {
3768 if (copy_siginfo_to_user32(uinfo, &info))
3775 #ifdef CONFIG_COMPAT_32BIT_TIME
3776 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3777 struct compat_siginfo __user *, uinfo,
3778 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3781 struct timespec64 t;
3782 kernel_siginfo_t info;
3785 if (sigsetsize != sizeof(sigset_t))
3788 if (get_compat_sigset(&s, uthese))
3792 if (get_old_timespec32(&t, uts))
3796 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3798 if (ret > 0 && uinfo) {
3799 if (copy_siginfo_to_user32(uinfo, &info))
3808 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3811 clear_siginfo(info);
3812 info->si_signo = sig;
3814 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3815 info->si_pid = task_tgid_vnr(current);
3816 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3820 * sys_kill - send a signal to a process
3821 * @pid: the PID of the process
3822 * @sig: signal to be sent
3824 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3826 struct kernel_siginfo info;
3828 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3830 return kill_something_info(sig, &info, pid);
3834 * Verify that the signaler and signalee either are in the same pid namespace
3835 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3838 static bool access_pidfd_pidns(struct pid *pid)
3840 struct pid_namespace *active = task_active_pid_ns(current);
3841 struct pid_namespace *p = ns_of_pid(pid);
3854 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3855 siginfo_t __user *info)
3857 #ifdef CONFIG_COMPAT
3859 * Avoid hooking up compat syscalls and instead handle necessary
3860 * conversions here. Note, this is a stop-gap measure and should not be
3861 * considered a generic solution.
3863 if (in_compat_syscall())
3864 return copy_siginfo_from_user32(
3865 kinfo, (struct compat_siginfo __user *)info);
3867 return copy_siginfo_from_user(kinfo, info);
3870 static struct pid *pidfd_to_pid(const struct file *file)
3874 pid = pidfd_pid(file);
3878 return tgid_pidfd_to_pid(file);
3881 #define PIDFD_SEND_SIGNAL_FLAGS \
3882 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3883 PIDFD_SIGNAL_PROCESS_GROUP)
3886 * sys_pidfd_send_signal - Signal a process through a pidfd
3887 * @pidfd: file descriptor of the process
3888 * @sig: signal to send
3889 * @info: signal info
3890 * @flags: future flags
3892 * Send the signal to the thread group or to the individual thread depending
3894 * In the future extension to @flags may be used to override the default scope
3897 * Return: 0 on success, negative errno on failure
3899 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3900 siginfo_t __user *, info, unsigned int, flags)
3905 kernel_siginfo_t kinfo;
3908 /* Enforce flags be set to 0 until we add an extension. */
3909 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
3912 /* Ensure that only a single signal scope determining flag is set. */
3913 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
3920 /* Is this a pidfd? */
3921 pid = pidfd_to_pid(f.file);
3928 if (!access_pidfd_pidns(pid))
3933 /* Infer scope from the type of pidfd. */
3934 if (f.file->f_flags & PIDFD_THREAD)
3937 type = PIDTYPE_TGID;
3939 case PIDFD_SIGNAL_THREAD:
3942 case PIDFD_SIGNAL_THREAD_GROUP:
3943 type = PIDTYPE_TGID;
3945 case PIDFD_SIGNAL_PROCESS_GROUP:
3946 type = PIDTYPE_PGID;
3951 ret = copy_siginfo_from_user_any(&kinfo, info);
3956 if (unlikely(sig != kinfo.si_signo))
3959 /* Only allow sending arbitrary signals to yourself. */
3961 if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
3962 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3965 prepare_kill_siginfo(sig, &kinfo, type);
3968 if (type == PIDTYPE_PGID)
3969 ret = kill_pgrp_info(sig, &kinfo, pid);
3971 ret = kill_pid_info_type(sig, &kinfo, pid, type);
3978 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3980 struct task_struct *p;
3984 p = find_task_by_vpid(pid);
3985 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3986 error = check_kill_permission(sig, info, p);
3988 * The null signal is a permissions and process existence
3989 * probe. No signal is actually delivered.
3991 if (!error && sig) {
3992 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3994 * If lock_task_sighand() failed we pretend the task
3995 * dies after receiving the signal. The window is tiny,
3996 * and the signal is private anyway.
3998 if (unlikely(error == -ESRCH))
4007 static int do_tkill(pid_t tgid, pid_t pid, int sig)
4009 struct kernel_siginfo info;
4011 prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4013 return do_send_specific(tgid, pid, sig, &info);
4017 * sys_tgkill - send signal to one specific thread
4018 * @tgid: the thread group ID of the thread
4019 * @pid: the PID of the thread
4020 * @sig: signal to be sent
4022 * This syscall also checks the @tgid and returns -ESRCH even if the PID
4023 * exists but it's not belonging to the target process anymore. This
4024 * method solves the problem of threads exiting and PIDs getting reused.
4026 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4028 /* This is only valid for single tasks */
4029 if (pid <= 0 || tgid <= 0)
4032 return do_tkill(tgid, pid, sig);
4036 * sys_tkill - send signal to one specific task
4037 * @pid: the PID of the task
4038 * @sig: signal to be sent
4040 * Send a signal to only one task, even if it's a CLONE_THREAD task.
4042 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4044 /* This is only valid for single tasks */
4048 return do_tkill(0, pid, sig);
4051 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4053 /* Not even root can pretend to send signals from the kernel.
4054 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4056 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4057 (task_pid_vnr(current) != pid))
4060 /* POSIX.1b doesn't mention process groups. */
4061 return kill_proc_info(sig, info, pid);
4065 * sys_rt_sigqueueinfo - send signal information to a signal
4066 * @pid: the PID of the thread
4067 * @sig: signal to be sent
4068 * @uinfo: signal info to be sent
4070 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4071 siginfo_t __user *, uinfo)
4073 kernel_siginfo_t info;
4074 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4077 return do_rt_sigqueueinfo(pid, sig, &info);
4080 #ifdef CONFIG_COMPAT
4081 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4084 struct compat_siginfo __user *, uinfo)
4086 kernel_siginfo_t info;
4087 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4090 return do_rt_sigqueueinfo(pid, sig, &info);
4094 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4096 /* This is only valid for single tasks */
4097 if (pid <= 0 || tgid <= 0)
4100 /* Not even root can pretend to send signals from the kernel.
4101 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4103 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4104 (task_pid_vnr(current) != pid))
4107 return do_send_specific(tgid, pid, sig, info);
4110 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4111 siginfo_t __user *, uinfo)
4113 kernel_siginfo_t info;
4114 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4117 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4120 #ifdef CONFIG_COMPAT
4121 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4125 struct compat_siginfo __user *, uinfo)
4127 kernel_siginfo_t info;
4128 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4131 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4136 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4138 void kernel_sigaction(int sig, __sighandler_t action)
4140 spin_lock_irq(¤t->sighand->siglock);
4141 current->sighand->action[sig - 1].sa.sa_handler = action;
4142 if (action == SIG_IGN) {
4146 sigaddset(&mask, sig);
4148 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4149 flush_sigqueue_mask(&mask, ¤t->pending);
4150 recalc_sigpending();
4152 spin_unlock_irq(¤t->sighand->siglock);
4154 EXPORT_SYMBOL(kernel_sigaction);
4156 void __weak sigaction_compat_abi(struct k_sigaction *act,
4157 struct k_sigaction *oact)
4161 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4163 struct task_struct *p = current, *t;
4164 struct k_sigaction *k;
4167 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4170 k = &p->sighand->action[sig-1];
4172 spin_lock_irq(&p->sighand->siglock);
4173 if (k->sa.sa_flags & SA_IMMUTABLE) {
4174 spin_unlock_irq(&p->sighand->siglock);
4181 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4182 * e.g. by having an architecture use the bit in their uapi.
4184 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4187 * Clear unknown flag bits in order to allow userspace to detect missing
4188 * support for flag bits and to allow the kernel to use non-uapi bits
4192 act->sa.sa_flags &= UAPI_SA_FLAGS;
4194 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4196 sigaction_compat_abi(act, oact);
4199 sigdelsetmask(&act->sa.sa_mask,
4200 sigmask(SIGKILL) | sigmask(SIGSTOP));
4204 * "Setting a signal action to SIG_IGN for a signal that is
4205 * pending shall cause the pending signal to be discarded,
4206 * whether or not it is blocked."
4208 * "Setting a signal action to SIG_DFL for a signal that is
4209 * pending and whose default action is to ignore the signal
4210 * (for example, SIGCHLD), shall cause the pending signal to
4211 * be discarded, whether or not it is blocked"
4213 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4215 sigaddset(&mask, sig);
4216 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4217 for_each_thread(p, t)
4218 flush_sigqueue_mask(&mask, &t->pending);
4222 spin_unlock_irq(&p->sighand->siglock);
4226 #ifdef CONFIG_DYNAMIC_SIGFRAME
4227 static inline void sigaltstack_lock(void)
4228 __acquires(¤t->sighand->siglock)
4230 spin_lock_irq(¤t->sighand->siglock);
4233 static inline void sigaltstack_unlock(void)
4234 __releases(¤t->sighand->siglock)
4236 spin_unlock_irq(¤t->sighand->siglock);
4239 static inline void sigaltstack_lock(void) { }
4240 static inline void sigaltstack_unlock(void) { }
4244 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4247 struct task_struct *t = current;
4251 memset(oss, 0, sizeof(stack_t));
4252 oss->ss_sp = (void __user *) t->sas_ss_sp;
4253 oss->ss_size = t->sas_ss_size;
4254 oss->ss_flags = sas_ss_flags(sp) |
4255 (current->sas_ss_flags & SS_FLAG_BITS);
4259 void __user *ss_sp = ss->ss_sp;
4260 size_t ss_size = ss->ss_size;
4261 unsigned ss_flags = ss->ss_flags;
4264 if (unlikely(on_sig_stack(sp)))
4267 ss_mode = ss_flags & ~SS_FLAG_BITS;
4268 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4273 * Return before taking any locks if no actual
4274 * sigaltstack changes were requested.
4276 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4277 t->sas_ss_size == ss_size &&
4278 t->sas_ss_flags == ss_flags)
4282 if (ss_mode == SS_DISABLE) {
4286 if (unlikely(ss_size < min_ss_size))
4288 if (!sigaltstack_size_valid(ss_size))
4292 t->sas_ss_sp = (unsigned long) ss_sp;
4293 t->sas_ss_size = ss_size;
4294 t->sas_ss_flags = ss_flags;
4296 sigaltstack_unlock();
4301 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4305 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4307 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4308 current_user_stack_pointer(),
4310 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4315 int restore_altstack(const stack_t __user *uss)
4318 if (copy_from_user(&new, uss, sizeof(stack_t)))
4320 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4322 /* squash all but EFAULT for now */
4326 int __save_altstack(stack_t __user *uss, unsigned long sp)
4328 struct task_struct *t = current;
4329 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4330 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4331 __put_user(t->sas_ss_size, &uss->ss_size);
4335 #ifdef CONFIG_COMPAT
4336 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4337 compat_stack_t __user *uoss_ptr)
4343 compat_stack_t uss32;
4344 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4346 uss.ss_sp = compat_ptr(uss32.ss_sp);
4347 uss.ss_flags = uss32.ss_flags;
4348 uss.ss_size = uss32.ss_size;
4350 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4351 compat_user_stack_pointer(),
4352 COMPAT_MINSIGSTKSZ);
4353 if (ret >= 0 && uoss_ptr) {
4355 memset(&old, 0, sizeof(old));
4356 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4357 old.ss_flags = uoss.ss_flags;
4358 old.ss_size = uoss.ss_size;
4359 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4365 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4366 const compat_stack_t __user *, uss_ptr,
4367 compat_stack_t __user *, uoss_ptr)
4369 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4372 int compat_restore_altstack(const compat_stack_t __user *uss)
4374 int err = do_compat_sigaltstack(uss, NULL);
4375 /* squash all but -EFAULT for now */
4376 return err == -EFAULT ? err : 0;
4379 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4382 struct task_struct *t = current;
4383 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4385 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4386 __put_user(t->sas_ss_size, &uss->ss_size);
4391 #ifdef __ARCH_WANT_SYS_SIGPENDING
4394 * sys_sigpending - examine pending signals
4395 * @uset: where mask of pending signal is returned
4397 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4401 if (sizeof(old_sigset_t) > sizeof(*uset))
4404 do_sigpending(&set);
4406 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4412 #ifdef CONFIG_COMPAT
4413 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4417 do_sigpending(&set);
4419 return put_user(set.sig[0], set32);
4425 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4427 * sys_sigprocmask - examine and change blocked signals
4428 * @how: whether to add, remove, or set signals
4429 * @nset: signals to add or remove (if non-null)
4430 * @oset: previous value of signal mask if non-null
4432 * Some platforms have their own version with special arguments;
4433 * others support only sys_rt_sigprocmask.
4436 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4437 old_sigset_t __user *, oset)
4439 old_sigset_t old_set, new_set;
4440 sigset_t new_blocked;
4442 old_set = current->blocked.sig[0];
4445 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4448 new_blocked = current->blocked;
4452 sigaddsetmask(&new_blocked, new_set);
4455 sigdelsetmask(&new_blocked, new_set);
4458 new_blocked.sig[0] = new_set;
4464 set_current_blocked(&new_blocked);
4468 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4474 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4476 #ifndef CONFIG_ODD_RT_SIGACTION
4478 * sys_rt_sigaction - alter an action taken by a process
4479 * @sig: signal to be sent
4480 * @act: new sigaction
4481 * @oact: used to save the previous sigaction
4482 * @sigsetsize: size of sigset_t type
4484 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4485 const struct sigaction __user *, act,
4486 struct sigaction __user *, oact,
4489 struct k_sigaction new_sa, old_sa;
4492 /* XXX: Don't preclude handling different sized sigset_t's. */
4493 if (sigsetsize != sizeof(sigset_t))
4496 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4499 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4503 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4508 #ifdef CONFIG_COMPAT
4509 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4510 const struct compat_sigaction __user *, act,
4511 struct compat_sigaction __user *, oact,
4512 compat_size_t, sigsetsize)
4514 struct k_sigaction new_ka, old_ka;
4515 #ifdef __ARCH_HAS_SA_RESTORER
4516 compat_uptr_t restorer;
4520 /* XXX: Don't preclude handling different sized sigset_t's. */
4521 if (sigsetsize != sizeof(compat_sigset_t))
4525 compat_uptr_t handler;
4526 ret = get_user(handler, &act->sa_handler);
4527 new_ka.sa.sa_handler = compat_ptr(handler);
4528 #ifdef __ARCH_HAS_SA_RESTORER
4529 ret |= get_user(restorer, &act->sa_restorer);
4530 new_ka.sa.sa_restorer = compat_ptr(restorer);
4532 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4533 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4538 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4540 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4542 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4543 sizeof(oact->sa_mask));
4544 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4545 #ifdef __ARCH_HAS_SA_RESTORER
4546 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4547 &oact->sa_restorer);
4553 #endif /* !CONFIG_ODD_RT_SIGACTION */
4555 #ifdef CONFIG_OLD_SIGACTION
4556 SYSCALL_DEFINE3(sigaction, int, sig,
4557 const struct old_sigaction __user *, act,
4558 struct old_sigaction __user *, oact)
4560 struct k_sigaction new_ka, old_ka;
4565 if (!access_ok(act, sizeof(*act)) ||
4566 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4567 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4568 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4569 __get_user(mask, &act->sa_mask))
4571 #ifdef __ARCH_HAS_KA_RESTORER
4572 new_ka.ka_restorer = NULL;
4574 siginitset(&new_ka.sa.sa_mask, mask);
4577 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4580 if (!access_ok(oact, sizeof(*oact)) ||
4581 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4582 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4583 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4584 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4591 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4592 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4593 const struct compat_old_sigaction __user *, act,
4594 struct compat_old_sigaction __user *, oact)
4596 struct k_sigaction new_ka, old_ka;
4598 compat_old_sigset_t mask;
4599 compat_uptr_t handler, restorer;
4602 if (!access_ok(act, sizeof(*act)) ||
4603 __get_user(handler, &act->sa_handler) ||
4604 __get_user(restorer, &act->sa_restorer) ||
4605 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4606 __get_user(mask, &act->sa_mask))
4609 #ifdef __ARCH_HAS_KA_RESTORER
4610 new_ka.ka_restorer = NULL;
4612 new_ka.sa.sa_handler = compat_ptr(handler);
4613 new_ka.sa.sa_restorer = compat_ptr(restorer);
4614 siginitset(&new_ka.sa.sa_mask, mask);
4617 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4620 if (!access_ok(oact, sizeof(*oact)) ||
4621 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4622 &oact->sa_handler) ||
4623 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4624 &oact->sa_restorer) ||
4625 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4626 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4633 #ifdef CONFIG_SGETMASK_SYSCALL
4636 * For backwards compatibility. Functionality superseded by sigprocmask.
4638 SYSCALL_DEFINE0(sgetmask)
4641 return current->blocked.sig[0];
4644 SYSCALL_DEFINE1(ssetmask, int, newmask)
4646 int old = current->blocked.sig[0];
4649 siginitset(&newset, newmask);
4650 set_current_blocked(&newset);
4654 #endif /* CONFIG_SGETMASK_SYSCALL */
4656 #ifdef __ARCH_WANT_SYS_SIGNAL
4658 * For backwards compatibility. Functionality superseded by sigaction.
4660 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4662 struct k_sigaction new_sa, old_sa;
4665 new_sa.sa.sa_handler = handler;
4666 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4667 sigemptyset(&new_sa.sa.sa_mask);
4669 ret = do_sigaction(sig, &new_sa, &old_sa);
4671 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4673 #endif /* __ARCH_WANT_SYS_SIGNAL */
4675 #ifdef __ARCH_WANT_SYS_PAUSE
4677 SYSCALL_DEFINE0(pause)
4679 while (!signal_pending(current)) {
4680 __set_current_state(TASK_INTERRUPTIBLE);
4683 return -ERESTARTNOHAND;
4688 static int sigsuspend(sigset_t *set)
4690 current->saved_sigmask = current->blocked;
4691 set_current_blocked(set);
4693 while (!signal_pending(current)) {
4694 __set_current_state(TASK_INTERRUPTIBLE);
4697 set_restore_sigmask();
4698 return -ERESTARTNOHAND;
4702 * sys_rt_sigsuspend - replace the signal mask for a value with the
4703 * @unewset value until a signal is received
4704 * @unewset: new signal mask value
4705 * @sigsetsize: size of sigset_t type
4707 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4711 /* XXX: Don't preclude handling different sized sigset_t's. */
4712 if (sigsetsize != sizeof(sigset_t))
4715 if (copy_from_user(&newset, unewset, sizeof(newset)))
4717 return sigsuspend(&newset);
4720 #ifdef CONFIG_COMPAT
4721 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4725 /* XXX: Don't preclude handling different sized sigset_t's. */
4726 if (sigsetsize != sizeof(sigset_t))
4729 if (get_compat_sigset(&newset, unewset))
4731 return sigsuspend(&newset);
4735 #ifdef CONFIG_OLD_SIGSUSPEND
4736 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4739 siginitset(&blocked, mask);
4740 return sigsuspend(&blocked);
4743 #ifdef CONFIG_OLD_SIGSUSPEND3
4744 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4747 siginitset(&blocked, mask);
4748 return sigsuspend(&blocked);
4752 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4757 static inline void siginfo_buildtime_checks(void)
4759 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4761 /* Verify the offsets in the two siginfos match */
4762 #define CHECK_OFFSET(field) \
4763 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4766 CHECK_OFFSET(si_pid);
4767 CHECK_OFFSET(si_uid);
4770 CHECK_OFFSET(si_tid);
4771 CHECK_OFFSET(si_overrun);
4772 CHECK_OFFSET(si_value);
4775 CHECK_OFFSET(si_pid);
4776 CHECK_OFFSET(si_uid);
4777 CHECK_OFFSET(si_value);
4780 CHECK_OFFSET(si_pid);
4781 CHECK_OFFSET(si_uid);
4782 CHECK_OFFSET(si_status);
4783 CHECK_OFFSET(si_utime);
4784 CHECK_OFFSET(si_stime);
4787 CHECK_OFFSET(si_addr);
4788 CHECK_OFFSET(si_trapno);
4789 CHECK_OFFSET(si_addr_lsb);
4790 CHECK_OFFSET(si_lower);
4791 CHECK_OFFSET(si_upper);
4792 CHECK_OFFSET(si_pkey);
4793 CHECK_OFFSET(si_perf_data);
4794 CHECK_OFFSET(si_perf_type);
4795 CHECK_OFFSET(si_perf_flags);
4798 CHECK_OFFSET(si_band);
4799 CHECK_OFFSET(si_fd);
4802 CHECK_OFFSET(si_call_addr);
4803 CHECK_OFFSET(si_syscall);
4804 CHECK_OFFSET(si_arch);
4808 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4809 offsetof(struct siginfo, si_addr));
4810 if (sizeof(int) == sizeof(void __user *)) {
4811 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4812 sizeof(void __user *));
4814 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4815 sizeof_field(struct siginfo, si_uid)) !=
4816 sizeof(void __user *));
4817 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4818 offsetof(struct siginfo, si_uid));
4820 #ifdef CONFIG_COMPAT
4821 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4822 offsetof(struct compat_siginfo, si_addr));
4823 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4824 sizeof(compat_uptr_t));
4825 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4826 sizeof_field(struct siginfo, si_pid));
4830 #if defined(CONFIG_SYSCTL)
4831 static struct ctl_table signal_debug_table[] = {
4832 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4834 .procname = "exception-trace",
4835 .data = &show_unhandled_signals,
4836 .maxlen = sizeof(int),
4838 .proc_handler = proc_dointvec
4843 static int __init init_signal_sysctls(void)
4845 register_sysctl_init("debug", signal_debug_table);
4848 early_initcall(init_signal_sysctls);
4849 #endif /* CONFIG_SYSCTL */
4851 void __init signals_init(void)
4853 siginfo_buildtime_checks();
4855 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4858 #ifdef CONFIG_KGDB_KDB
4859 #include <linux/kdb.h>
4861 * kdb_send_sig - Allows kdb to send signals without exposing
4862 * signal internals. This function checks if the required locks are
4863 * available before calling the main signal code, to avoid kdb
4866 void kdb_send_sig(struct task_struct *t, int sig)
4868 static struct task_struct *kdb_prev_t;
4870 if (!spin_trylock(&t->sighand->siglock)) {
4871 kdb_printf("Can't do kill command now.\n"
4872 "The sigmask lock is held somewhere else in "
4873 "kernel, try again later\n");
4876 new_t = kdb_prev_t != t;
4878 if (!task_is_running(t) && new_t) {
4879 spin_unlock(&t->sighand->siglock);
4880 kdb_printf("Process is not RUNNING, sending a signal from "
4881 "kdb risks deadlock\n"
4882 "on the run queue locks. "
4883 "The signal has _not_ been sent.\n"
4884 "Reissue the kill command if you want to risk "
4888 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4889 spin_unlock(&t->sighand->siglock);
4891 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4894 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4896 #endif /* CONFIG_KGDB_KDB */