4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/kernel.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/uaccess.h>
20 #include <asm/irq_regs.h>
22 #include <asm/stacktrace.h>
25 armpmu_map_cache_event(const unsigned (*cache_map)
26 [PERF_COUNT_HW_CACHE_MAX]
27 [PERF_COUNT_HW_CACHE_OP_MAX]
28 [PERF_COUNT_HW_CACHE_RESULT_MAX],
31 unsigned int cache_type, cache_op, cache_result, ret;
33 cache_type = (config >> 0) & 0xff;
34 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
37 cache_op = (config >> 8) & 0xff;
38 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
41 cache_result = (config >> 16) & 0xff;
42 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
45 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
47 if (ret == CACHE_OP_UNSUPPORTED)
54 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
56 int mapping = (*event_map)[config];
57 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
61 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
63 return (int)(config & raw_event_mask);
67 armpmu_map_event(struct perf_event *event,
68 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
69 const unsigned (*cache_map)
70 [PERF_COUNT_HW_CACHE_MAX]
71 [PERF_COUNT_HW_CACHE_OP_MAX]
72 [PERF_COUNT_HW_CACHE_RESULT_MAX],
75 u64 config = event->attr.config;
77 switch (event->attr.type) {
78 case PERF_TYPE_HARDWARE:
79 return armpmu_map_hw_event(event_map, config);
80 case PERF_TYPE_HW_CACHE:
81 return armpmu_map_cache_event(cache_map, config);
83 return armpmu_map_raw_event(raw_event_mask, config);
89 int armpmu_event_set_period(struct perf_event *event)
91 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
92 struct hw_perf_event *hwc = &event->hw;
93 s64 left = local64_read(&hwc->period_left);
94 s64 period = hwc->sample_period;
97 /* The period may have been changed by PERF_EVENT_IOC_PERIOD */
98 if (unlikely(period != hwc->last_period))
99 left = period - (hwc->last_period - left);
101 if (unlikely(left <= -period)) {
103 local64_set(&hwc->period_left, left);
104 hwc->last_period = period;
108 if (unlikely(left <= 0)) {
110 local64_set(&hwc->period_left, left);
111 hwc->last_period = period;
115 if (left > (s64)armpmu->max_period)
116 left = armpmu->max_period;
118 local64_set(&hwc->prev_count, (u64)-left);
120 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
122 perf_event_update_userpage(event);
127 u64 armpmu_event_update(struct perf_event *event)
129 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
130 struct hw_perf_event *hwc = &event->hw;
131 u64 delta, prev_raw_count, new_raw_count;
134 prev_raw_count = local64_read(&hwc->prev_count);
135 new_raw_count = armpmu->read_counter(event);
137 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
138 new_raw_count) != prev_raw_count)
141 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
143 local64_add(delta, &event->count);
144 local64_sub(delta, &hwc->period_left);
146 return new_raw_count;
150 armpmu_read(struct perf_event *event)
152 struct hw_perf_event *hwc = &event->hw;
154 /* Don't read disabled counters! */
158 armpmu_event_update(event);
162 armpmu_stop(struct perf_event *event, int flags)
164 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
165 struct hw_perf_event *hwc = &event->hw;
168 * ARM pmu always has to update the counter, so ignore
169 * PERF_EF_UPDATE, see comments in armpmu_start().
171 if (!(hwc->state & PERF_HES_STOPPED)) {
172 armpmu->disable(event);
173 armpmu_event_update(event);
174 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
178 static void armpmu_start(struct perf_event *event, int flags)
180 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
181 struct hw_perf_event *hwc = &event->hw;
184 * ARM pmu always has to reprogram the period, so ignore
185 * PERF_EF_RELOAD, see the comment below.
187 if (flags & PERF_EF_RELOAD)
188 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
192 * Set the period again. Some counters can't be stopped, so when we
193 * were stopped we simply disabled the IRQ source and the counter
194 * may have been left counting. If we don't do this step then we may
195 * get an interrupt too soon or *way* too late if the overflow has
196 * happened since disabling.
198 armpmu_event_set_period(event);
199 armpmu->enable(event);
203 armpmu_del(struct perf_event *event, int flags)
205 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
206 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
207 struct hw_perf_event *hwc = &event->hw;
212 armpmu_stop(event, PERF_EF_UPDATE);
213 hw_events->events[idx] = NULL;
214 clear_bit(idx, hw_events->used_mask);
216 perf_event_update_userpage(event);
220 armpmu_add(struct perf_event *event, int flags)
222 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
223 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
224 struct hw_perf_event *hwc = &event->hw;
228 perf_pmu_disable(event->pmu);
230 /* If we don't have a space for the counter then finish early. */
231 idx = armpmu->get_event_idx(hw_events, event);
238 * If there is an event in the counter we are going to use then make
239 * sure it is disabled.
242 armpmu->disable(event);
243 hw_events->events[idx] = event;
245 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
246 if (flags & PERF_EF_START)
247 armpmu_start(event, PERF_EF_RELOAD);
249 /* Propagate our changes to the userspace mapping. */
250 perf_event_update_userpage(event);
253 perf_pmu_enable(event->pmu);
258 validate_event(struct pmu_hw_events *hw_events,
259 struct perf_event *event)
261 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
262 struct pmu *leader_pmu = event->group_leader->pmu;
264 if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
267 return armpmu->get_event_idx(hw_events, event) >= 0;
271 validate_group(struct perf_event *event)
273 struct perf_event *sibling, *leader = event->group_leader;
274 struct pmu_hw_events fake_pmu;
275 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
278 * Initialise the fake PMU. We only need to populate the
279 * used_mask for the purposes of validation.
281 memset(fake_used_mask, 0, sizeof(fake_used_mask));
282 fake_pmu.used_mask = fake_used_mask;
284 if (!validate_event(&fake_pmu, leader))
287 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
288 if (!validate_event(&fake_pmu, sibling))
292 if (!validate_event(&fake_pmu, event))
298 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
300 struct arm_pmu *armpmu = (struct arm_pmu *) dev;
301 struct platform_device *plat_device = armpmu->plat_device;
302 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
304 if (plat && plat->handle_irq)
305 return plat->handle_irq(irq, dev, armpmu->handle_irq);
307 return armpmu->handle_irq(irq, dev);
311 armpmu_release_hardware(struct arm_pmu *armpmu)
313 armpmu->free_irq(armpmu);
314 pm_runtime_put_sync(&armpmu->plat_device->dev);
318 armpmu_reserve_hardware(struct arm_pmu *armpmu)
321 struct platform_device *pmu_device = armpmu->plat_device;
326 pm_runtime_get_sync(&pmu_device->dev);
327 err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
329 armpmu_release_hardware(armpmu);
337 hw_perf_event_destroy(struct perf_event *event)
339 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
340 atomic_t *active_events = &armpmu->active_events;
341 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
343 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
344 armpmu_release_hardware(armpmu);
345 mutex_unlock(pmu_reserve_mutex);
350 event_requires_mode_exclusion(struct perf_event_attr *attr)
352 return attr->exclude_idle || attr->exclude_user ||
353 attr->exclude_kernel || attr->exclude_hv;
357 __hw_perf_event_init(struct perf_event *event)
359 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
360 struct hw_perf_event *hwc = &event->hw;
363 mapping = armpmu->map_event(event);
366 pr_debug("event %x:%llx not supported\n", event->attr.type,
372 * We don't assign an index until we actually place the event onto
373 * hardware. Use -1 to signify that we haven't decided where to put it
374 * yet. For SMP systems, each core has it's own PMU so we can't do any
375 * clever allocation or constraints checking at this point.
378 hwc->config_base = 0;
383 * Check whether we need to exclude the counter from certain modes.
385 if ((!armpmu->set_event_filter ||
386 armpmu->set_event_filter(hwc, &event->attr)) &&
387 event_requires_mode_exclusion(&event->attr)) {
388 pr_debug("ARM performance counters do not support "
394 * Store the event encoding into the config_base field.
396 hwc->config_base |= (unsigned long)mapping;
398 if (!hwc->sample_period) {
400 * For non-sampling runs, limit the sample_period to half
401 * of the counter width. That way, the new counter value
402 * is far less likely to overtake the previous one unless
403 * you have some serious IRQ latency issues.
405 hwc->sample_period = armpmu->max_period >> 1;
406 hwc->last_period = hwc->sample_period;
407 local64_set(&hwc->period_left, hwc->sample_period);
411 if (event->group_leader != event) {
412 err = validate_group(event);
420 static int armpmu_event_init(struct perf_event *event)
422 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
424 atomic_t *active_events = &armpmu->active_events;
426 /* does not support taken branch sampling */
427 if (has_branch_stack(event))
430 if (armpmu->map_event(event) == -ENOENT)
433 event->destroy = hw_perf_event_destroy;
435 if (!atomic_inc_not_zero(active_events)) {
436 mutex_lock(&armpmu->reserve_mutex);
437 if (atomic_read(active_events) == 0)
438 err = armpmu_reserve_hardware(armpmu);
441 atomic_inc(active_events);
442 mutex_unlock(&armpmu->reserve_mutex);
448 err = __hw_perf_event_init(event);
450 hw_perf_event_destroy(event);
455 static void armpmu_enable(struct pmu *pmu)
457 struct arm_pmu *armpmu = to_arm_pmu(pmu);
458 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
459 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
462 armpmu->start(armpmu);
465 static void armpmu_disable(struct pmu *pmu)
467 struct arm_pmu *armpmu = to_arm_pmu(pmu);
468 armpmu->stop(armpmu);
471 #ifdef CONFIG_PM_RUNTIME
472 static int armpmu_runtime_resume(struct device *dev)
474 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
476 if (plat && plat->runtime_resume)
477 return plat->runtime_resume(dev);
482 static int armpmu_runtime_suspend(struct device *dev)
484 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
486 if (plat && plat->runtime_suspend)
487 return plat->runtime_suspend(dev);
493 const struct dev_pm_ops armpmu_dev_pm_ops = {
494 SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
497 static void __init armpmu_init(struct arm_pmu *armpmu)
499 atomic_set(&armpmu->active_events, 0);
500 mutex_init(&armpmu->reserve_mutex);
502 armpmu->pmu = (struct pmu) {
503 .pmu_enable = armpmu_enable,
504 .pmu_disable = armpmu_disable,
505 .event_init = armpmu_event_init,
508 .start = armpmu_start,
514 int armpmu_register(struct arm_pmu *armpmu, int type)
517 pm_runtime_enable(&armpmu->plat_device->dev);
518 pr_info("enabled with %s PMU driver, %d counters available\n",
519 armpmu->name, armpmu->num_events);
520 return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
524 * Callchain handling code.
528 * The registers we're interested in are at the end of the variable
529 * length saved register structure. The fp points at the end of this
530 * structure so the address of this struct is:
531 * (struct frame_tail *)(xxx->fp)-1
533 * This code has been adapted from the ARM OProfile support.
536 struct frame_tail __user *fp;
539 } __attribute__((packed));
542 * Get the return address for a single stackframe and return a pointer to the
545 static struct frame_tail __user *
546 user_backtrace(struct frame_tail __user *tail,
547 struct perf_callchain_entry *entry)
549 struct frame_tail buftail;
551 /* Also check accessibility of one struct frame_tail beyond */
552 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
554 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
557 perf_callchain_store(entry, buftail.lr);
560 * Frame pointers should strictly progress back up the stack
561 * (towards higher addresses).
563 if (tail + 1 >= buftail.fp)
566 return buftail.fp - 1;
570 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
572 struct frame_tail __user *tail;
574 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
575 /* We don't support guest os callchain now */
579 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
581 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
582 tail && !((unsigned long)tail & 0x3))
583 tail = user_backtrace(tail, entry);
587 * Gets called by walk_stackframe() for every stackframe. This will be called
588 * whist unwinding the stackframe and is like a subroutine return so we use
592 callchain_trace(struct stackframe *fr,
595 struct perf_callchain_entry *entry = data;
596 perf_callchain_store(entry, fr->pc);
601 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
603 struct stackframe fr;
605 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
606 /* We don't support guest os callchain now */
610 fr.fp = regs->ARM_fp;
611 fr.sp = regs->ARM_sp;
612 fr.lr = regs->ARM_lr;
613 fr.pc = regs->ARM_pc;
614 walk_stackframe(&fr, callchain_trace, entry);
617 unsigned long perf_instruction_pointer(struct pt_regs *regs)
619 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
620 return perf_guest_cbs->get_guest_ip();
622 return instruction_pointer(regs);
625 unsigned long perf_misc_flags(struct pt_regs *regs)
629 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
630 if (perf_guest_cbs->is_user_mode())
631 misc |= PERF_RECORD_MISC_GUEST_USER;
633 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
636 misc |= PERF_RECORD_MISC_USER;
638 misc |= PERF_RECORD_MISC_KERNEL;