4 * Write file data over NFS.
9 #include <linux/types.h>
10 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
24 #include <asm/uaccess.h>
26 #include "delegation.h"
33 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
35 #define MIN_POOL_WRITE (32)
36 #define MIN_POOL_COMMIT (4)
39 * Local function declarations
41 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
42 struct inode *inode, int ioflags);
43 static void nfs_redirty_request(struct nfs_page *req);
44 static const struct rpc_call_ops nfs_write_partial_ops;
45 static const struct rpc_call_ops nfs_write_full_ops;
46 static const struct rpc_call_ops nfs_commit_ops;
48 static struct kmem_cache *nfs_wdata_cachep;
49 static mempool_t *nfs_wdata_mempool;
50 static mempool_t *nfs_commit_mempool;
52 struct nfs_write_data *nfs_commitdata_alloc(void)
54 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
57 memset(p, 0, sizeof(*p));
58 INIT_LIST_HEAD(&p->pages);
62 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
64 void nfs_commit_free(struct nfs_write_data *p)
66 if (p && (p->pagevec != &p->page_array[0]))
68 mempool_free(p, nfs_commit_mempool);
70 EXPORT_SYMBOL_GPL(nfs_commit_free);
72 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
74 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
77 memset(p, 0, sizeof(*p));
78 INIT_LIST_HEAD(&p->pages);
79 p->npages = pagecount;
80 if (pagecount <= ARRAY_SIZE(p->page_array))
81 p->pagevec = p->page_array;
83 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
85 mempool_free(p, nfs_wdata_mempool);
93 void nfs_writedata_free(struct nfs_write_data *p)
95 if (p && (p->pagevec != &p->page_array[0]))
97 mempool_free(p, nfs_wdata_mempool);
100 void nfs_writedata_release(struct nfs_write_data *wdata)
102 put_lseg(wdata->lseg);
103 put_nfs_open_context(wdata->args.context);
104 nfs_writedata_free(wdata);
107 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
111 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
114 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
116 struct nfs_page *req = NULL;
118 if (PagePrivate(page)) {
119 req = (struct nfs_page *)page_private(page);
121 kref_get(&req->wb_kref);
126 static struct nfs_page *nfs_page_find_request(struct page *page)
128 struct inode *inode = page->mapping->host;
129 struct nfs_page *req = NULL;
131 spin_lock(&inode->i_lock);
132 req = nfs_page_find_request_locked(page);
133 spin_unlock(&inode->i_lock);
137 /* Adjust the file length if we're writing beyond the end */
138 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
140 struct inode *inode = page->mapping->host;
144 spin_lock(&inode->i_lock);
145 i_size = i_size_read(inode);
146 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
147 if (i_size > 0 && page->index < end_index)
149 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
152 i_size_write(inode, end);
153 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
155 spin_unlock(&inode->i_lock);
158 /* A writeback failed: mark the page as bad, and invalidate the page cache */
159 static void nfs_set_pageerror(struct page *page)
162 nfs_zap_mapping(page->mapping->host, page->mapping);
165 /* We can set the PG_uptodate flag if we see that a write request
166 * covers the full page.
168 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
170 if (PageUptodate(page))
174 if (count != nfs_page_length(page))
176 SetPageUptodate(page);
179 static int wb_priority(struct writeback_control *wbc)
181 if (wbc->for_reclaim)
182 return FLUSH_HIGHPRI | FLUSH_STABLE;
183 if (wbc->for_kupdate || wbc->for_background)
184 return FLUSH_LOWPRI | FLUSH_COND_STABLE;
185 return FLUSH_COND_STABLE;
189 * NFS congestion control
192 int nfs_congestion_kb;
194 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
195 #define NFS_CONGESTION_OFF_THRESH \
196 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
198 static int nfs_set_page_writeback(struct page *page)
200 int ret = test_set_page_writeback(page);
203 struct inode *inode = page->mapping->host;
204 struct nfs_server *nfss = NFS_SERVER(inode);
206 page_cache_get(page);
207 if (atomic_long_inc_return(&nfss->writeback) >
208 NFS_CONGESTION_ON_THRESH) {
209 set_bdi_congested(&nfss->backing_dev_info,
216 static void nfs_end_page_writeback(struct page *page)
218 struct inode *inode = page->mapping->host;
219 struct nfs_server *nfss = NFS_SERVER(inode);
221 end_page_writeback(page);
222 page_cache_release(page);
223 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
224 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
227 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
229 struct inode *inode = page->mapping->host;
230 struct nfs_page *req;
233 spin_lock(&inode->i_lock);
235 req = nfs_page_find_request_locked(page);
238 if (nfs_set_page_tag_locked(req))
240 /* Note: If we hold the page lock, as is the case in nfs_writepage,
241 * then the call to nfs_set_page_tag_locked() will always
242 * succeed provided that someone hasn't already marked the
243 * request as dirty (in which case we don't care).
245 spin_unlock(&inode->i_lock);
247 ret = nfs_wait_on_request(req);
250 nfs_release_request(req);
253 spin_lock(&inode->i_lock);
255 spin_unlock(&inode->i_lock);
260 * Find an associated nfs write request, and prepare to flush it out
261 * May return an error if the user signalled nfs_wait_on_request().
263 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
264 struct page *page, bool nonblock)
266 struct nfs_page *req;
269 req = nfs_find_and_lock_request(page, nonblock);
276 ret = nfs_set_page_writeback(page);
278 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
280 if (!nfs_pageio_add_request(pgio, req)) {
281 nfs_redirty_request(req);
282 ret = pgio->pg_error;
288 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
290 struct inode *inode = page->mapping->host;
293 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
294 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
296 nfs_pageio_cond_complete(pgio, page->index);
297 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
298 if (ret == -EAGAIN) {
299 redirty_page_for_writepage(wbc, page);
306 * Write an mmapped page to the server.
308 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
310 struct nfs_pageio_descriptor pgio;
313 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
314 err = nfs_do_writepage(page, wbc, &pgio);
315 nfs_pageio_complete(&pgio);
318 if (pgio.pg_error < 0)
319 return pgio.pg_error;
323 int nfs_writepage(struct page *page, struct writeback_control *wbc)
327 ret = nfs_writepage_locked(page, wbc);
332 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
336 ret = nfs_do_writepage(page, wbc, data);
341 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
343 struct inode *inode = mapping->host;
344 unsigned long *bitlock = &NFS_I(inode)->flags;
345 struct nfs_pageio_descriptor pgio;
348 /* Stop dirtying of new pages while we sync */
349 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
350 nfs_wait_bit_killable, TASK_KILLABLE);
354 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
356 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
357 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
358 nfs_pageio_complete(&pgio);
360 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
361 smp_mb__after_clear_bit();
362 wake_up_bit(bitlock, NFS_INO_FLUSHING);
375 * Insert a write request into an inode
377 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
379 struct nfs_inode *nfsi = NFS_I(inode);
382 error = radix_tree_preload(GFP_NOFS);
386 /* Lock the request! */
387 nfs_lock_request_dontget(req);
389 spin_lock(&inode->i_lock);
390 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
392 if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
394 set_bit(PG_MAPPED, &req->wb_flags);
395 SetPagePrivate(req->wb_page);
396 set_page_private(req->wb_page, (unsigned long)req);
398 kref_get(&req->wb_kref);
399 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
400 NFS_PAGE_TAG_LOCKED);
401 spin_unlock(&inode->i_lock);
402 radix_tree_preload_end();
408 * Remove a write request from an inode
410 static void nfs_inode_remove_request(struct nfs_page *req)
412 struct inode *inode = req->wb_context->dentry->d_inode;
413 struct nfs_inode *nfsi = NFS_I(inode);
415 BUG_ON (!NFS_WBACK_BUSY(req));
417 spin_lock(&inode->i_lock);
418 set_page_private(req->wb_page, 0);
419 ClearPagePrivate(req->wb_page);
420 clear_bit(PG_MAPPED, &req->wb_flags);
421 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
423 spin_unlock(&inode->i_lock);
424 nfs_release_request(req);
428 nfs_mark_request_dirty(struct nfs_page *req)
430 __set_page_dirty_nobuffers(req->wb_page);
433 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
435 * Add a request to the inode's commit list.
438 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
440 struct inode *inode = req->wb_context->dentry->d_inode;
441 struct nfs_inode *nfsi = NFS_I(inode);
443 spin_lock(&inode->i_lock);
444 set_bit(PG_CLEAN, &(req)->wb_flags);
445 radix_tree_tag_set(&nfsi->nfs_page_tree,
447 NFS_PAGE_TAG_COMMIT);
449 spin_unlock(&inode->i_lock);
450 pnfs_mark_request_commit(req, lseg);
451 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
452 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
453 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
457 nfs_clear_request_commit(struct nfs_page *req)
459 struct page *page = req->wb_page;
461 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
462 dec_zone_page_state(page, NR_UNSTABLE_NFS);
463 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
470 int nfs_write_need_commit(struct nfs_write_data *data)
472 if (data->verf.committed == NFS_DATA_SYNC)
473 return data->lseg == NULL;
475 return data->verf.committed != NFS_FILE_SYNC;
479 int nfs_reschedule_unstable_write(struct nfs_page *req,
480 struct nfs_write_data *data)
482 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
483 nfs_mark_request_commit(req, data->lseg);
486 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
487 nfs_mark_request_dirty(req);
494 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
499 nfs_clear_request_commit(struct nfs_page *req)
505 int nfs_write_need_commit(struct nfs_write_data *data)
511 int nfs_reschedule_unstable_write(struct nfs_page *req,
512 struct nfs_write_data *data)
518 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
520 nfs_need_commit(struct nfs_inode *nfsi)
522 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
526 * nfs_scan_commit - Scan an inode for commit requests
527 * @inode: NFS inode to scan
528 * @dst: destination list
529 * @idx_start: lower bound of page->index to scan.
530 * @npages: idx_start + npages sets the upper bound to scan.
532 * Moves requests from the inode's 'commit' request list.
533 * The requests are *not* checked to ensure that they form a contiguous set.
536 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
538 struct nfs_inode *nfsi = NFS_I(inode);
541 if (!nfs_need_commit(nfsi))
544 spin_lock(&inode->i_lock);
545 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
547 nfsi->ncommit -= ret;
548 spin_unlock(&inode->i_lock);
550 if (nfs_need_commit(NFS_I(inode)))
551 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
556 static inline int nfs_need_commit(struct nfs_inode *nfsi)
561 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
568 * Search for an existing write request, and attempt to update
569 * it to reflect a new dirty region on a given page.
571 * If the attempt fails, then the existing request is flushed out
574 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
579 struct nfs_page *req;
584 if (!PagePrivate(page))
587 end = offset + bytes;
588 spin_lock(&inode->i_lock);
591 req = nfs_page_find_request_locked(page);
595 rqend = req->wb_offset + req->wb_bytes;
597 * Tell the caller to flush out the request if
598 * the offsets are non-contiguous.
599 * Note: nfs_flush_incompatible() will already
600 * have flushed out requests having wrong owners.
603 || end < req->wb_offset)
606 if (nfs_set_page_tag_locked(req))
609 /* The request is locked, so wait and then retry */
610 spin_unlock(&inode->i_lock);
611 error = nfs_wait_on_request(req);
612 nfs_release_request(req);
615 spin_lock(&inode->i_lock);
618 if (nfs_clear_request_commit(req) &&
619 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
620 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
621 NFS_I(inode)->ncommit--;
622 pnfs_clear_request_commit(req);
625 /* Okay, the request matches. Update the region */
626 if (offset < req->wb_offset) {
627 req->wb_offset = offset;
628 req->wb_pgbase = offset;
631 req->wb_bytes = end - req->wb_offset;
633 req->wb_bytes = rqend - req->wb_offset;
635 spin_unlock(&inode->i_lock);
638 spin_unlock(&inode->i_lock);
639 nfs_release_request(req);
640 error = nfs_wb_page(inode, page);
642 return ERR_PTR(error);
646 * Try to update an existing write request, or create one if there is none.
648 * Note: Should always be called with the Page Lock held to prevent races
649 * if we have to add a new request. Also assumes that the caller has
650 * already called nfs_flush_incompatible() if necessary.
652 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
653 struct page *page, unsigned int offset, unsigned int bytes)
655 struct inode *inode = page->mapping->host;
656 struct nfs_page *req;
659 req = nfs_try_to_update_request(inode, page, offset, bytes);
662 req = nfs_create_request(ctx, inode, page, offset, bytes);
665 error = nfs_inode_add_request(inode, req);
667 nfs_release_request(req);
668 req = ERR_PTR(error);
674 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
675 unsigned int offset, unsigned int count)
677 struct nfs_page *req;
679 req = nfs_setup_write_request(ctx, page, offset, count);
682 /* Update file length */
683 nfs_grow_file(page, offset, count);
684 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
685 nfs_mark_request_dirty(req);
686 nfs_clear_page_tag_locked(req);
690 int nfs_flush_incompatible(struct file *file, struct page *page)
692 struct nfs_open_context *ctx = nfs_file_open_context(file);
693 struct nfs_page *req;
694 int do_flush, status;
696 * Look for a request corresponding to this page. If there
697 * is one, and it belongs to another file, we flush it out
698 * before we try to copy anything into the page. Do this
699 * due to the lack of an ACCESS-type call in NFSv2.
700 * Also do the same if we find a request from an existing
704 req = nfs_page_find_request(page);
707 do_flush = req->wb_page != page || req->wb_context != ctx ||
708 req->wb_lock_context->lockowner != current->files ||
709 req->wb_lock_context->pid != current->tgid;
710 nfs_release_request(req);
713 status = nfs_wb_page(page->mapping->host, page);
714 } while (status == 0);
719 * If the page cache is marked as unsafe or invalid, then we can't rely on
720 * the PageUptodate() flag. In this case, we will need to turn off
721 * write optimisations that depend on the page contents being correct.
723 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
725 return PageUptodate(page) &&
726 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
730 * Update and possibly write a cached page of an NFS file.
732 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
733 * things with a page scheduled for an RPC call (e.g. invalidate it).
735 int nfs_updatepage(struct file *file, struct page *page,
736 unsigned int offset, unsigned int count)
738 struct nfs_open_context *ctx = nfs_file_open_context(file);
739 struct inode *inode = page->mapping->host;
742 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
744 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
745 file->f_path.dentry->d_parent->d_name.name,
746 file->f_path.dentry->d_name.name, count,
747 (long long)(page_offset(page) + offset));
749 /* If we're not using byte range locks, and we know the page
750 * is up to date, it may be more efficient to extend the write
751 * to cover the entire page in order to avoid fragmentation
754 if (nfs_write_pageuptodate(page, inode) &&
755 inode->i_flock == NULL &&
756 !(file->f_flags & O_DSYNC)) {
757 count = max(count + offset, nfs_page_length(page));
761 status = nfs_writepage_setup(ctx, page, offset, count);
763 nfs_set_pageerror(page);
765 __set_page_dirty_nobuffers(page);
767 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
768 status, (long long)i_size_read(inode));
772 static void nfs_writepage_release(struct nfs_page *req,
773 struct nfs_write_data *data)
775 struct page *page = req->wb_page;
777 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
778 nfs_inode_remove_request(req);
779 nfs_clear_page_tag_locked(req);
780 nfs_end_page_writeback(page);
783 static int flush_task_priority(int how)
785 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
787 return RPC_PRIORITY_HIGH;
789 return RPC_PRIORITY_LOW;
791 return RPC_PRIORITY_NORMAL;
794 int nfs_initiate_write(struct nfs_write_data *data,
795 struct rpc_clnt *clnt,
796 const struct rpc_call_ops *call_ops,
799 struct inode *inode = data->inode;
800 int priority = flush_task_priority(how);
801 struct rpc_task *task;
802 struct rpc_message msg = {
803 .rpc_argp = &data->args,
804 .rpc_resp = &data->res,
805 .rpc_cred = data->cred,
807 struct rpc_task_setup task_setup_data = {
811 .callback_ops = call_ops,
812 .callback_data = data,
813 .workqueue = nfsiod_workqueue,
814 .flags = RPC_TASK_ASYNC,
815 .priority = priority,
819 /* Set up the initial task struct. */
820 NFS_PROTO(inode)->write_setup(data, &msg);
822 dprintk("NFS: %5u initiated write call "
823 "(req %s/%lld, %u bytes @ offset %llu)\n",
826 (long long)NFS_FILEID(inode),
828 (unsigned long long)data->args.offset);
830 task = rpc_run_task(&task_setup_data);
835 if (how & FLUSH_SYNC) {
836 ret = rpc_wait_for_completion_task(task);
838 ret = task->tk_status;
844 EXPORT_SYMBOL_GPL(nfs_initiate_write);
847 * Set up the argument/result storage required for the RPC call.
849 static void nfs_write_rpcsetup(struct nfs_page *req,
850 struct nfs_write_data *data,
851 unsigned int count, unsigned int offset,
854 struct inode *inode = req->wb_context->dentry->d_inode;
856 /* Set up the RPC argument and reply structs
857 * NB: take care not to mess about with data->commit et al. */
860 data->inode = inode = req->wb_context->dentry->d_inode;
861 data->cred = req->wb_context->cred;
863 data->args.fh = NFS_FH(inode);
864 data->args.offset = req_offset(req) + offset;
865 /* pnfs_set_layoutcommit needs this */
866 data->mds_offset = data->args.offset;
867 data->args.pgbase = req->wb_pgbase + offset;
868 data->args.pages = data->pagevec;
869 data->args.count = count;
870 data->args.context = get_nfs_open_context(req->wb_context);
871 data->args.lock_context = req->wb_lock_context;
872 data->args.stable = NFS_UNSTABLE;
873 switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
876 case FLUSH_COND_STABLE:
877 if (nfs_need_commit(NFS_I(inode)))
880 data->args.stable = NFS_FILE_SYNC;
883 data->res.fattr = &data->fattr;
884 data->res.count = count;
885 data->res.verf = &data->verf;
886 nfs_fattr_init(&data->fattr);
889 static int nfs_do_write(struct nfs_write_data *data,
890 const struct rpc_call_ops *call_ops,
893 struct inode *inode = data->args.context->dentry->d_inode;
895 return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
898 static int nfs_do_multiple_writes(struct list_head *head,
899 const struct rpc_call_ops *call_ops,
902 struct nfs_write_data *data;
905 while (!list_empty(head)) {
908 data = list_entry(head->next, struct nfs_write_data, list);
909 list_del_init(&data->list);
911 ret2 = nfs_do_write(data, call_ops, how);
918 /* If a nfs_flush_* function fails, it should remove reqs from @head and
919 * call this on each, which will prepare them to be retried on next
920 * writeback using standard nfs.
922 static void nfs_redirty_request(struct nfs_page *req)
924 struct page *page = req->wb_page;
926 nfs_mark_request_dirty(req);
927 nfs_clear_page_tag_locked(req);
928 nfs_end_page_writeback(page);
932 * Generate multiple small requests to write out a single
933 * contiguous dirty area on one page.
935 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, struct list_head *res)
937 struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
938 struct page *page = req->wb_page;
939 struct nfs_write_data *data;
940 size_t wsize = desc->pg_bsize, nbytes;
945 nfs_list_remove_request(req);
947 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
948 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
949 desc->pg_count > wsize))
950 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
954 nbytes = desc->pg_count;
956 size_t len = min(nbytes, wsize);
958 data = nfs_writedata_alloc(1);
961 data->pagevec[0] = page;
962 nfs_write_rpcsetup(req, data, len, offset, desc->pg_ioflags);
963 list_add(&data->list, res);
967 } while (nbytes != 0);
968 atomic_set(&req->wb_complete, requests);
969 desc->pg_rpc_callops = &nfs_write_partial_ops;
973 while (!list_empty(res)) {
974 data = list_entry(res->next, struct nfs_write_data, list);
975 list_del(&data->list);
976 nfs_writedata_free(data);
978 nfs_redirty_request(req);
983 * Create an RPC task for the given write request and kick it.
984 * The page must have been locked by the caller.
986 * It may happen that the page we're passed is not marked dirty.
987 * This is the case if nfs_updatepage detects a conflicting request
988 * that has been written but not committed.
990 static int nfs_flush_one(struct nfs_pageio_descriptor *desc, struct list_head *res)
992 struct nfs_page *req;
994 struct nfs_write_data *data;
995 struct list_head *head = &desc->pg_list;
998 data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
1001 while (!list_empty(head)) {
1002 req = nfs_list_entry(head->next);
1003 nfs_list_remove_request(req);
1004 nfs_redirty_request(req);
1009 pages = data->pagevec;
1010 while (!list_empty(head)) {
1011 req = nfs_list_entry(head->next);
1012 nfs_list_remove_request(req);
1013 nfs_list_add_request(req, &data->pages);
1014 ClearPageError(req->wb_page);
1015 *pages++ = req->wb_page;
1017 req = nfs_list_entry(data->pages.next);
1019 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1020 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
1021 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1023 /* Set up the argument struct */
1024 nfs_write_rpcsetup(req, data, desc->pg_count, 0, desc->pg_ioflags);
1025 list_add(&data->list, res);
1026 desc->pg_rpc_callops = &nfs_write_full_ops;
1031 int nfs_generic_flush(struct nfs_pageio_descriptor *desc, struct list_head *head)
1033 if (desc->pg_bsize < PAGE_CACHE_SIZE)
1034 return nfs_flush_multi(desc, head);
1035 return nfs_flush_one(desc, head);
1038 static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
1043 ret = nfs_generic_flush(desc, &head);
1045 ret = nfs_do_multiple_writes(&head, desc->pg_rpc_callops,
1050 static const struct nfs_pageio_ops nfs_pageio_write_ops = {
1051 .pg_test = nfs_generic_pg_test,
1052 .pg_doio = nfs_generic_pg_writepages,
1055 static void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio,
1056 struct inode *inode, int ioflags)
1058 nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops,
1059 NFS_SERVER(inode)->wsize, ioflags);
1062 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1064 pgio->pg_ops = &nfs_pageio_write_ops;
1065 pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1067 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1069 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1070 struct inode *inode, int ioflags)
1072 if (!pnfs_pageio_init_write(pgio, inode, ioflags))
1073 nfs_pageio_init_write_mds(pgio, inode, ioflags);
1077 * Handle a write reply that flushed part of a page.
1079 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1081 struct nfs_write_data *data = calldata;
1083 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1085 data->req->wb_context->dentry->d_inode->i_sb->s_id,
1087 NFS_FILEID(data->req->wb_context->dentry->d_inode),
1088 data->req->wb_bytes, (long long)req_offset(data->req));
1090 nfs_writeback_done(task, data);
1093 static void nfs_writeback_release_partial(void *calldata)
1095 struct nfs_write_data *data = calldata;
1096 struct nfs_page *req = data->req;
1097 struct page *page = req->wb_page;
1098 int status = data->task.tk_status;
1101 nfs_set_pageerror(page);
1102 nfs_context_set_write_error(req->wb_context, status);
1103 dprintk(", error = %d\n", status);
1107 if (nfs_write_need_commit(data)) {
1108 struct inode *inode = page->mapping->host;
1110 spin_lock(&inode->i_lock);
1111 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1112 /* Do nothing we need to resend the writes */
1113 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1114 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1115 dprintk(" defer commit\n");
1116 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1117 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1118 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1119 dprintk(" server reboot detected\n");
1121 spin_unlock(&inode->i_lock);
1126 if (atomic_dec_and_test(&req->wb_complete))
1127 nfs_writepage_release(req, data);
1128 nfs_writedata_release(calldata);
1131 #if defined(CONFIG_NFS_V4_1)
1132 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1134 struct nfs_write_data *data = calldata;
1136 if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1137 &data->args.seq_args,
1138 &data->res.seq_res, 1, task))
1140 rpc_call_start(task);
1142 #endif /* CONFIG_NFS_V4_1 */
1144 static const struct rpc_call_ops nfs_write_partial_ops = {
1145 #if defined(CONFIG_NFS_V4_1)
1146 .rpc_call_prepare = nfs_write_prepare,
1147 #endif /* CONFIG_NFS_V4_1 */
1148 .rpc_call_done = nfs_writeback_done_partial,
1149 .rpc_release = nfs_writeback_release_partial,
1153 * Handle a write reply that flushes a whole page.
1155 * FIXME: There is an inherent race with invalidate_inode_pages and
1156 * writebacks since the page->count is kept > 1 for as long
1157 * as the page has a write request pending.
1159 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1161 struct nfs_write_data *data = calldata;
1163 nfs_writeback_done(task, data);
1166 static void nfs_writeback_release_full(void *calldata)
1168 struct nfs_write_data *data = calldata;
1169 int ret, status = data->task.tk_status;
1170 struct nfs_pageio_descriptor pgio;
1172 if (data->pnfs_error) {
1173 nfs_pageio_init_write_mds(&pgio, data->inode, FLUSH_STABLE);
1174 pgio.pg_recoalesce = 1;
1177 /* Update attributes as result of writeback. */
1178 while (!list_empty(&data->pages)) {
1179 struct nfs_page *req = nfs_list_entry(data->pages.next);
1180 struct page *page = req->wb_page;
1182 nfs_list_remove_request(req);
1184 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1186 req->wb_context->dentry->d_inode->i_sb->s_id,
1187 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1189 (long long)req_offset(req));
1191 if (data->pnfs_error) {
1192 dprintk(", pnfs error = %d\n", data->pnfs_error);
1197 nfs_set_pageerror(page);
1198 nfs_context_set_write_error(req->wb_context, status);
1199 dprintk(", error = %d\n", status);
1200 goto remove_request;
1203 if (nfs_write_need_commit(data)) {
1204 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1205 nfs_mark_request_commit(req, data->lseg);
1206 dprintk(" marked for commit\n");
1211 nfs_inode_remove_request(req);
1213 nfs_clear_page_tag_locked(req);
1214 nfs_end_page_writeback(page);
1215 if (data->pnfs_error) {
1217 nfs_pageio_cond_complete(&pgio, page->index);
1218 ret = nfs_page_async_flush(&pgio, page, 0);
1220 nfs_set_pageerror(page);
1221 dprintk("rewrite to MDS error = %d\n", ret);
1226 if (data->pnfs_error)
1227 nfs_pageio_complete(&pgio);
1228 nfs_writedata_release(calldata);
1231 static const struct rpc_call_ops nfs_write_full_ops = {
1232 #if defined(CONFIG_NFS_V4_1)
1233 .rpc_call_prepare = nfs_write_prepare,
1234 #endif /* CONFIG_NFS_V4_1 */
1235 .rpc_call_done = nfs_writeback_done_full,
1236 .rpc_release = nfs_writeback_release_full,
1241 * This function is called when the WRITE call is complete.
1243 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1245 struct nfs_writeargs *argp = &data->args;
1246 struct nfs_writeres *resp = &data->res;
1247 struct nfs_server *server = NFS_SERVER(data->inode);
1250 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1251 task->tk_pid, task->tk_status);
1254 * ->write_done will attempt to use post-op attributes to detect
1255 * conflicting writes by other clients. A strict interpretation
1256 * of close-to-open would allow us to continue caching even if
1257 * another writer had changed the file, but some applications
1258 * depend on tighter cache coherency when writing.
1260 status = NFS_PROTO(data->inode)->write_done(task, data);
1263 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1265 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1266 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1267 /* We tried a write call, but the server did not
1268 * commit data to stable storage even though we
1270 * Note: There is a known bug in Tru64 < 5.0 in which
1271 * the server reports NFS_DATA_SYNC, but performs
1272 * NFS_FILE_SYNC. We therefore implement this checking
1273 * as a dprintk() in order to avoid filling syslog.
1275 static unsigned long complain;
1277 /* Note this will print the MDS for a DS write */
1278 if (time_before(complain, jiffies)) {
1279 dprintk("NFS: faulty NFS server %s:"
1280 " (committed = %d) != (stable = %d)\n",
1281 server->nfs_client->cl_hostname,
1282 resp->verf->committed, argp->stable);
1283 complain = jiffies + 300 * HZ;
1287 /* Is this a short write? */
1288 if (task->tk_status >= 0 && resp->count < argp->count) {
1289 static unsigned long complain;
1291 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1293 /* Has the server at least made some progress? */
1294 if (resp->count != 0) {
1295 /* Was this an NFSv2 write or an NFSv3 stable write? */
1296 if (resp->verf->committed != NFS_UNSTABLE) {
1297 /* Resend from where the server left off */
1298 data->mds_offset += resp->count;
1299 argp->offset += resp->count;
1300 argp->pgbase += resp->count;
1301 argp->count -= resp->count;
1303 /* Resend as a stable write in order to avoid
1304 * headaches in the case of a server crash.
1306 argp->stable = NFS_FILE_SYNC;
1308 nfs_restart_rpc(task, server->nfs_client);
1311 if (time_before(complain, jiffies)) {
1313 "NFS: Server wrote zero bytes, expected %u.\n",
1315 complain = jiffies + 300 * HZ;
1317 /* Can't do anything about it except throw an error. */
1318 task->tk_status = -EIO;
1324 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1325 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1329 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1333 ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1335 nfs_wait_bit_killable,
1337 return (ret < 0) ? ret : 1;
1340 void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1342 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1343 smp_mb__after_clear_bit();
1344 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1346 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
1348 void nfs_commitdata_release(void *data)
1350 struct nfs_write_data *wdata = data;
1352 put_lseg(wdata->lseg);
1353 put_nfs_open_context(wdata->args.context);
1354 nfs_commit_free(wdata);
1356 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1358 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
1359 const struct rpc_call_ops *call_ops,
1362 struct rpc_task *task;
1363 int priority = flush_task_priority(how);
1364 struct rpc_message msg = {
1365 .rpc_argp = &data->args,
1366 .rpc_resp = &data->res,
1367 .rpc_cred = data->cred,
1369 struct rpc_task_setup task_setup_data = {
1370 .task = &data->task,
1372 .rpc_message = &msg,
1373 .callback_ops = call_ops,
1374 .callback_data = data,
1375 .workqueue = nfsiod_workqueue,
1376 .flags = RPC_TASK_ASYNC,
1377 .priority = priority,
1379 /* Set up the initial task struct. */
1380 NFS_PROTO(data->inode)->commit_setup(data, &msg);
1382 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1384 task = rpc_run_task(&task_setup_data);
1386 return PTR_ERR(task);
1387 if (how & FLUSH_SYNC)
1388 rpc_wait_for_completion_task(task);
1392 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1395 * Set up the argument/result storage required for the RPC call.
1397 void nfs_init_commit(struct nfs_write_data *data,
1398 struct list_head *head,
1399 struct pnfs_layout_segment *lseg)
1401 struct nfs_page *first = nfs_list_entry(head->next);
1402 struct inode *inode = first->wb_context->dentry->d_inode;
1404 /* Set up the RPC argument and reply structs
1405 * NB: take care not to mess about with data->commit et al. */
1407 list_splice_init(head, &data->pages);
1409 data->inode = inode;
1410 data->cred = first->wb_context->cred;
1411 data->lseg = lseg; /* reference transferred */
1412 data->mds_ops = &nfs_commit_ops;
1414 data->args.fh = NFS_FH(data->inode);
1415 /* Note: we always request a commit of the entire inode */
1416 data->args.offset = 0;
1417 data->args.count = 0;
1418 data->args.context = get_nfs_open_context(first->wb_context);
1419 data->res.count = 0;
1420 data->res.fattr = &data->fattr;
1421 data->res.verf = &data->verf;
1422 nfs_fattr_init(&data->fattr);
1424 EXPORT_SYMBOL_GPL(nfs_init_commit);
1426 void nfs_retry_commit(struct list_head *page_list,
1427 struct pnfs_layout_segment *lseg)
1429 struct nfs_page *req;
1431 while (!list_empty(page_list)) {
1432 req = nfs_list_entry(page_list->next);
1433 nfs_list_remove_request(req);
1434 nfs_mark_request_commit(req, lseg);
1435 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1436 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1438 nfs_clear_page_tag_locked(req);
1441 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1444 * Commit dirty pages
1447 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1449 struct nfs_write_data *data;
1451 data = nfs_commitdata_alloc();
1456 /* Set up the argument struct */
1457 nfs_init_commit(data, head, NULL);
1458 return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
1460 nfs_retry_commit(head, NULL);
1461 nfs_commit_clear_lock(NFS_I(inode));
1466 * COMMIT call returned
1468 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1470 struct nfs_write_data *data = calldata;
1472 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1473 task->tk_pid, task->tk_status);
1475 /* Call the NFS version-specific code */
1476 NFS_PROTO(data->inode)->commit_done(task, data);
1479 void nfs_commit_release_pages(struct nfs_write_data *data)
1481 struct nfs_page *req;
1482 int status = data->task.tk_status;
1484 while (!list_empty(&data->pages)) {
1485 req = nfs_list_entry(data->pages.next);
1486 nfs_list_remove_request(req);
1487 nfs_clear_request_commit(req);
1489 dprintk("NFS: commit (%s/%lld %d@%lld)",
1490 req->wb_context->dentry->d_sb->s_id,
1491 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1493 (long long)req_offset(req));
1495 nfs_context_set_write_error(req->wb_context, status);
1496 nfs_inode_remove_request(req);
1497 dprintk(", error = %d\n", status);
1501 /* Okay, COMMIT succeeded, apparently. Check the verifier
1502 * returned by the server against all stored verfs. */
1503 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1504 /* We have a match */
1505 nfs_inode_remove_request(req);
1509 /* We have a mismatch. Write the page again */
1510 dprintk(" mismatch\n");
1511 nfs_mark_request_dirty(req);
1513 nfs_clear_page_tag_locked(req);
1516 EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
1518 static void nfs_commit_release(void *calldata)
1520 struct nfs_write_data *data = calldata;
1522 nfs_commit_release_pages(data);
1523 nfs_commit_clear_lock(NFS_I(data->inode));
1524 nfs_commitdata_release(calldata);
1527 static const struct rpc_call_ops nfs_commit_ops = {
1528 #if defined(CONFIG_NFS_V4_1)
1529 .rpc_call_prepare = nfs_write_prepare,
1530 #endif /* CONFIG_NFS_V4_1 */
1531 .rpc_call_done = nfs_commit_done,
1532 .rpc_release = nfs_commit_release,
1535 int nfs_commit_inode(struct inode *inode, int how)
1538 int may_wait = how & FLUSH_SYNC;
1541 res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1543 goto out_mark_dirty;
1544 res = nfs_scan_commit(inode, &head, 0, 0);
1548 error = pnfs_commit_list(inode, &head, how);
1549 if (error == PNFS_NOT_ATTEMPTED)
1550 error = nfs_commit_list(inode, &head, how);
1554 goto out_mark_dirty;
1555 error = wait_on_bit(&NFS_I(inode)->flags,
1557 nfs_wait_bit_killable,
1562 nfs_commit_clear_lock(NFS_I(inode));
1564 /* Note: If we exit without ensuring that the commit is complete,
1565 * we must mark the inode as dirty. Otherwise, future calls to
1566 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1567 * that the data is on the disk.
1570 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1574 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1576 struct nfs_inode *nfsi = NFS_I(inode);
1577 int flags = FLUSH_SYNC;
1580 /* no commits means nothing needs to be done */
1584 if (wbc->sync_mode == WB_SYNC_NONE) {
1585 /* Don't commit yet if this is a non-blocking flush and there
1586 * are a lot of outstanding writes for this mapping.
1588 if (nfsi->ncommit <= (nfsi->npages >> 1))
1589 goto out_mark_dirty;
1591 /* don't wait for the COMMIT response */
1595 ret = nfs_commit_inode(inode, flags);
1597 if (wbc->sync_mode == WB_SYNC_NONE) {
1598 if (ret < wbc->nr_to_write)
1599 wbc->nr_to_write -= ret;
1601 wbc->nr_to_write = 0;
1606 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1610 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1616 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1620 ret = nfs_commit_unstable_pages(inode, wbc);
1621 if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
1625 if (wbc->sync_mode == WB_SYNC_NONE)
1628 status = pnfs_layoutcommit_inode(inode, sync);
1636 * flush the inode to disk.
1638 int nfs_wb_all(struct inode *inode)
1640 struct writeback_control wbc = {
1641 .sync_mode = WB_SYNC_ALL,
1642 .nr_to_write = LONG_MAX,
1644 .range_end = LLONG_MAX,
1647 return sync_inode(inode, &wbc);
1650 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1652 struct nfs_page *req;
1655 BUG_ON(!PageLocked(page));
1657 wait_on_page_writeback(page);
1658 req = nfs_page_find_request(page);
1661 if (nfs_lock_request_dontget(req)) {
1662 nfs_inode_remove_request(req);
1664 * In case nfs_inode_remove_request has marked the
1665 * page as being dirty
1667 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1668 nfs_unlock_request(req);
1671 ret = nfs_wait_on_request(req);
1672 nfs_release_request(req);
1680 * Write back all requests on one page - we do this before reading it.
1682 int nfs_wb_page(struct inode *inode, struct page *page)
1684 loff_t range_start = page_offset(page);
1685 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1686 struct writeback_control wbc = {
1687 .sync_mode = WB_SYNC_ALL,
1689 .range_start = range_start,
1690 .range_end = range_end,
1695 wait_on_page_writeback(page);
1696 if (clear_page_dirty_for_io(page)) {
1697 ret = nfs_writepage_locked(page, &wbc);
1702 if (!PagePrivate(page))
1704 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1713 #ifdef CONFIG_MIGRATION
1714 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1718 * If PagePrivate is set, then the page is currently associated with
1719 * an in-progress read or write request. Don't try to migrate it.
1721 * FIXME: we could do this in principle, but we'll need a way to ensure
1722 * that we can safely release the inode reference while holding
1725 if (PagePrivate(page))
1728 nfs_fscache_release_page(page, GFP_KERNEL);
1730 return migrate_page(mapping, newpage, page);
1734 int __init nfs_init_writepagecache(void)
1736 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1737 sizeof(struct nfs_write_data),
1738 0, SLAB_HWCACHE_ALIGN,
1740 if (nfs_wdata_cachep == NULL)
1743 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1745 if (nfs_wdata_mempool == NULL)
1748 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1750 if (nfs_commit_mempool == NULL)
1754 * NFS congestion size, scale with available memory.
1766 * This allows larger machines to have larger/more transfers.
1767 * Limit the default to 256M
1769 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1770 if (nfs_congestion_kb > 256*1024)
1771 nfs_congestion_kb = 256*1024;
1776 void nfs_destroy_writepagecache(void)
1778 mempool_destroy(nfs_commit_mempool);
1779 mempool_destroy(nfs_wdata_mempool);
1780 kmem_cache_destroy(nfs_wdata_cachep);