1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
34 #include "accessors.h"
35 #include "extent-tree.h"
36 #include "file-item.h"
41 /* simple helper to fault in pages and copy. This should go away
42 * and be replaced with calls into generic code.
44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
45 struct page **prepared_pages,
49 size_t total_copied = 0;
51 int offset = offset_in_page(pos);
53 while (write_bytes > 0) {
54 size_t count = min_t(size_t,
55 PAGE_SIZE - offset, write_bytes);
56 struct page *page = prepared_pages[pg];
58 * Copy data from userspace to the current page
60 copied = copy_page_from_iter_atomic(page, offset, count, i);
62 /* Flush processor's dcache for this page */
63 flush_dcache_page(page);
66 * if we get a partial write, we can end up with
67 * partially up to date pages. These add
68 * a lot of complexity, so make sure they don't
69 * happen by forcing this copy to be retried.
71 * The rest of the btrfs_file_write code will fall
72 * back to page at a time copies after we return 0.
74 if (unlikely(copied < count)) {
75 if (!PageUptodate(page)) {
76 iov_iter_revert(i, copied);
83 write_bytes -= copied;
84 total_copied += copied;
86 if (offset == PAGE_SIZE) {
95 * unlocks pages after btrfs_file_write is done with them
97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
98 struct page **pages, size_t num_pages,
102 u64 block_start = round_down(pos, fs_info->sectorsize);
103 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
105 ASSERT(block_len <= U32_MAX);
106 for (i = 0; i < num_pages; i++) {
107 /* page checked is some magic around finding pages that
108 * have been modified without going through btrfs_set_page_dirty
109 * clear it here. There should be no need to mark the pages
110 * accessed as prepare_pages should have marked them accessed
111 * in prepare_pages via find_or_create_page()
113 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
115 unlock_page(pages[i]);
121 * After btrfs_copy_from_user(), update the following things for delalloc:
122 * - Mark newly dirtied pages as DELALLOC in the io tree.
123 * Used to advise which range is to be written back.
124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
125 * - Update inode size for past EOF write
127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
128 size_t num_pages, loff_t pos, size_t write_bytes,
129 struct extent_state **cached, bool noreserve)
131 struct btrfs_fs_info *fs_info = inode->root->fs_info;
136 u64 end_of_last_block;
137 u64 end_pos = pos + write_bytes;
138 loff_t isize = i_size_read(&inode->vfs_inode);
139 unsigned int extra_bits = 0;
141 if (write_bytes == 0)
145 extra_bits |= EXTENT_NORESERVE;
147 start_pos = round_down(pos, fs_info->sectorsize);
148 num_bytes = round_up(write_bytes + pos - start_pos,
149 fs_info->sectorsize);
150 ASSERT(num_bytes <= U32_MAX);
152 end_of_last_block = start_pos + num_bytes - 1;
155 * The pages may have already been dirty, clear out old accounting so
156 * we can set things up properly
158 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
159 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
162 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
167 for (i = 0; i < num_pages; i++) {
168 struct page *p = pages[i];
170 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
171 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
172 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
176 * we've only changed i_size in ram, and we haven't updated
177 * the disk i_size. There is no need to log the inode
181 i_size_write(&inode->vfs_inode, end_pos);
186 * this is very complex, but the basic idea is to drop all extents
187 * in the range start - end. hint_block is filled in with a block number
188 * that would be a good hint to the block allocator for this file.
190 * If an extent intersects the range but is not entirely inside the range
191 * it is either truncated or split. Anything entirely inside the range
192 * is deleted from the tree.
194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
195 * to deal with that. We set the field 'bytes_found' of the arguments structure
196 * with the number of allocated bytes found in the target range, so that the
197 * caller can update the inode's number of bytes in an atomic way when
198 * replacing extents in a range to avoid races with stat(2).
200 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
201 struct btrfs_root *root, struct btrfs_inode *inode,
202 struct btrfs_drop_extents_args *args)
204 struct btrfs_fs_info *fs_info = root->fs_info;
205 struct extent_buffer *leaf;
206 struct btrfs_file_extent_item *fi;
207 struct btrfs_ref ref = { 0 };
208 struct btrfs_key key;
209 struct btrfs_key new_key;
210 u64 ino = btrfs_ino(inode);
211 u64 search_start = args->start;
214 u64 extent_offset = 0;
216 u64 last_end = args->start;
222 int modify_tree = -1;
225 struct btrfs_path *path = args->path;
227 args->bytes_found = 0;
228 args->extent_inserted = false;
230 /* Must always have a path if ->replace_extent is true */
231 ASSERT(!(args->replace_extent && !args->path));
234 path = btrfs_alloc_path();
241 if (args->drop_cache)
242 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
244 if (args->start >= inode->disk_i_size && !args->replace_extent)
247 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
250 ret = btrfs_lookup_file_extent(trans, root, path, ino,
251 search_start, modify_tree);
254 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
255 leaf = path->nodes[0];
256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
257 if (key.objectid == ino &&
258 key.type == BTRFS_EXTENT_DATA_KEY)
263 leaf = path->nodes[0];
264 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
266 ret = btrfs_next_leaf(root, path);
273 leaf = path->nodes[0];
277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
279 if (key.objectid > ino)
281 if (WARN_ON_ONCE(key.objectid < ino) ||
282 key.type < BTRFS_EXTENT_DATA_KEY) {
287 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
290 fi = btrfs_item_ptr(leaf, path->slots[0],
291 struct btrfs_file_extent_item);
292 extent_type = btrfs_file_extent_type(leaf, fi);
294 if (extent_type == BTRFS_FILE_EXTENT_REG ||
295 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
297 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
298 extent_offset = btrfs_file_extent_offset(leaf, fi);
299 extent_end = key.offset +
300 btrfs_file_extent_num_bytes(leaf, fi);
301 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
302 extent_end = key.offset +
303 btrfs_file_extent_ram_bytes(leaf, fi);
310 * Don't skip extent items representing 0 byte lengths. They
311 * used to be created (bug) if while punching holes we hit
312 * -ENOSPC condition. So if we find one here, just ensure we
313 * delete it, otherwise we would insert a new file extent item
314 * with the same key (offset) as that 0 bytes length file
315 * extent item in the call to setup_items_for_insert() later
318 if (extent_end == key.offset && extent_end >= search_start) {
319 last_end = extent_end;
320 goto delete_extent_item;
323 if (extent_end <= search_start) {
329 search_start = max(key.offset, args->start);
330 if (recow || !modify_tree) {
332 btrfs_release_path(path);
337 * | - range to drop - |
338 * | -------- extent -------- |
340 if (args->start > key.offset && args->end < extent_end) {
342 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
347 memcpy(&new_key, &key, sizeof(new_key));
348 new_key.offset = args->start;
349 ret = btrfs_duplicate_item(trans, root, path,
351 if (ret == -EAGAIN) {
352 btrfs_release_path(path);
358 leaf = path->nodes[0];
359 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
360 struct btrfs_file_extent_item);
361 btrfs_set_file_extent_num_bytes(leaf, fi,
362 args->start - key.offset);
364 fi = btrfs_item_ptr(leaf, path->slots[0],
365 struct btrfs_file_extent_item);
367 extent_offset += args->start - key.offset;
368 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
369 btrfs_set_file_extent_num_bytes(leaf, fi,
370 extent_end - args->start);
371 btrfs_mark_buffer_dirty(leaf);
373 if (update_refs && disk_bytenr > 0) {
374 btrfs_init_generic_ref(&ref,
375 BTRFS_ADD_DELAYED_REF,
376 disk_bytenr, num_bytes, 0);
377 btrfs_init_data_ref(&ref,
378 root->root_key.objectid,
380 args->start - extent_offset,
382 ret = btrfs_inc_extent_ref(trans, &ref);
384 btrfs_abort_transaction(trans, ret);
388 key.offset = args->start;
391 * From here on out we will have actually dropped something, so
392 * last_end can be updated.
394 last_end = extent_end;
397 * | ---- range to drop ----- |
398 * | -------- extent -------- |
400 if (args->start <= key.offset && args->end < extent_end) {
401 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
406 memcpy(&new_key, &key, sizeof(new_key));
407 new_key.offset = args->end;
408 btrfs_set_item_key_safe(fs_info, path, &new_key);
410 extent_offset += args->end - key.offset;
411 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
412 btrfs_set_file_extent_num_bytes(leaf, fi,
413 extent_end - args->end);
414 btrfs_mark_buffer_dirty(leaf);
415 if (update_refs && disk_bytenr > 0)
416 args->bytes_found += args->end - key.offset;
420 search_start = extent_end;
422 * | ---- range to drop ----- |
423 * | -------- extent -------- |
425 if (args->start > key.offset && args->end >= extent_end) {
427 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
432 btrfs_set_file_extent_num_bytes(leaf, fi,
433 args->start - key.offset);
434 btrfs_mark_buffer_dirty(leaf);
435 if (update_refs && disk_bytenr > 0)
436 args->bytes_found += extent_end - args->start;
437 if (args->end == extent_end)
445 * | ---- range to drop ----- |
446 * | ------ extent ------ |
448 if (args->start <= key.offset && args->end >= extent_end) {
451 del_slot = path->slots[0];
454 BUG_ON(del_slot + del_nr != path->slots[0]);
459 extent_type == BTRFS_FILE_EXTENT_INLINE) {
460 args->bytes_found += extent_end - key.offset;
461 extent_end = ALIGN(extent_end,
462 fs_info->sectorsize);
463 } else if (update_refs && disk_bytenr > 0) {
464 btrfs_init_generic_ref(&ref,
465 BTRFS_DROP_DELAYED_REF,
466 disk_bytenr, num_bytes, 0);
467 btrfs_init_data_ref(&ref,
468 root->root_key.objectid,
470 key.offset - extent_offset, 0,
472 ret = btrfs_free_extent(trans, &ref);
474 btrfs_abort_transaction(trans, ret);
477 args->bytes_found += extent_end - key.offset;
480 if (args->end == extent_end)
483 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
488 ret = btrfs_del_items(trans, root, path, del_slot,
491 btrfs_abort_transaction(trans, ret);
498 btrfs_release_path(path);
505 if (!ret && del_nr > 0) {
507 * Set path->slots[0] to first slot, so that after the delete
508 * if items are move off from our leaf to its immediate left or
509 * right neighbor leafs, we end up with a correct and adjusted
510 * path->slots[0] for our insertion (if args->replace_extent).
512 path->slots[0] = del_slot;
513 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
515 btrfs_abort_transaction(trans, ret);
518 leaf = path->nodes[0];
520 * If btrfs_del_items() was called, it might have deleted a leaf, in
521 * which case it unlocked our path, so check path->locks[0] matches a
524 if (!ret && args->replace_extent &&
525 path->locks[0] == BTRFS_WRITE_LOCK &&
526 btrfs_leaf_free_space(leaf) >=
527 sizeof(struct btrfs_item) + args->extent_item_size) {
530 key.type = BTRFS_EXTENT_DATA_KEY;
531 key.offset = args->start;
532 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
533 struct btrfs_key slot_key;
535 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
536 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
539 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
540 args->extent_inserted = true;
544 btrfs_free_path(path);
545 else if (!args->extent_inserted)
546 btrfs_release_path(path);
548 args->drop_end = found ? min(args->end, last_end) : args->end;
553 static int extent_mergeable(struct extent_buffer *leaf, int slot,
554 u64 objectid, u64 bytenr, u64 orig_offset,
555 u64 *start, u64 *end)
557 struct btrfs_file_extent_item *fi;
558 struct btrfs_key key;
561 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
564 btrfs_item_key_to_cpu(leaf, &key, slot);
565 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
568 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
569 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
570 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
571 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
572 btrfs_file_extent_compression(leaf, fi) ||
573 btrfs_file_extent_encryption(leaf, fi) ||
574 btrfs_file_extent_other_encoding(leaf, fi))
577 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
578 if ((*start && *start != key.offset) || (*end && *end != extent_end))
587 * Mark extent in the range start - end as written.
589 * This changes extent type from 'pre-allocated' to 'regular'. If only
590 * part of extent is marked as written, the extent will be split into
593 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
594 struct btrfs_inode *inode, u64 start, u64 end)
596 struct btrfs_fs_info *fs_info = trans->fs_info;
597 struct btrfs_root *root = inode->root;
598 struct extent_buffer *leaf;
599 struct btrfs_path *path;
600 struct btrfs_file_extent_item *fi;
601 struct btrfs_ref ref = { 0 };
602 struct btrfs_key key;
603 struct btrfs_key new_key;
615 u64 ino = btrfs_ino(inode);
617 path = btrfs_alloc_path();
624 key.type = BTRFS_EXTENT_DATA_KEY;
627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
630 if (ret > 0 && path->slots[0] > 0)
633 leaf = path->nodes[0];
634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
635 if (key.objectid != ino ||
636 key.type != BTRFS_EXTENT_DATA_KEY) {
638 btrfs_abort_transaction(trans, ret);
641 fi = btrfs_item_ptr(leaf, path->slots[0],
642 struct btrfs_file_extent_item);
643 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
645 btrfs_abort_transaction(trans, ret);
648 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
649 if (key.offset > start || extent_end < end) {
651 btrfs_abort_transaction(trans, ret);
655 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
656 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
657 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
658 memcpy(&new_key, &key, sizeof(new_key));
660 if (start == key.offset && end < extent_end) {
663 if (extent_mergeable(leaf, path->slots[0] - 1,
664 ino, bytenr, orig_offset,
665 &other_start, &other_end)) {
666 new_key.offset = end;
667 btrfs_set_item_key_safe(fs_info, path, &new_key);
668 fi = btrfs_item_ptr(leaf, path->slots[0],
669 struct btrfs_file_extent_item);
670 btrfs_set_file_extent_generation(leaf, fi,
672 btrfs_set_file_extent_num_bytes(leaf, fi,
674 btrfs_set_file_extent_offset(leaf, fi,
676 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
677 struct btrfs_file_extent_item);
678 btrfs_set_file_extent_generation(leaf, fi,
680 btrfs_set_file_extent_num_bytes(leaf, fi,
682 btrfs_mark_buffer_dirty(leaf);
687 if (start > key.offset && end == extent_end) {
690 if (extent_mergeable(leaf, path->slots[0] + 1,
691 ino, bytenr, orig_offset,
692 &other_start, &other_end)) {
693 fi = btrfs_item_ptr(leaf, path->slots[0],
694 struct btrfs_file_extent_item);
695 btrfs_set_file_extent_num_bytes(leaf, fi,
697 btrfs_set_file_extent_generation(leaf, fi,
700 new_key.offset = start;
701 btrfs_set_item_key_safe(fs_info, path, &new_key);
703 fi = btrfs_item_ptr(leaf, path->slots[0],
704 struct btrfs_file_extent_item);
705 btrfs_set_file_extent_generation(leaf, fi,
707 btrfs_set_file_extent_num_bytes(leaf, fi,
709 btrfs_set_file_extent_offset(leaf, fi,
710 start - orig_offset);
711 btrfs_mark_buffer_dirty(leaf);
716 while (start > key.offset || end < extent_end) {
717 if (key.offset == start)
720 new_key.offset = split;
721 ret = btrfs_duplicate_item(trans, root, path, &new_key);
722 if (ret == -EAGAIN) {
723 btrfs_release_path(path);
727 btrfs_abort_transaction(trans, ret);
731 leaf = path->nodes[0];
732 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
733 struct btrfs_file_extent_item);
734 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
735 btrfs_set_file_extent_num_bytes(leaf, fi,
738 fi = btrfs_item_ptr(leaf, path->slots[0],
739 struct btrfs_file_extent_item);
741 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
743 btrfs_set_file_extent_num_bytes(leaf, fi,
745 btrfs_mark_buffer_dirty(leaf);
747 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
749 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
750 orig_offset, 0, false);
751 ret = btrfs_inc_extent_ref(trans, &ref);
753 btrfs_abort_transaction(trans, ret);
757 if (split == start) {
760 if (start != key.offset) {
762 btrfs_abort_transaction(trans, ret);
773 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
775 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
777 if (extent_mergeable(leaf, path->slots[0] + 1,
778 ino, bytenr, orig_offset,
779 &other_start, &other_end)) {
781 btrfs_release_path(path);
784 extent_end = other_end;
785 del_slot = path->slots[0] + 1;
787 ret = btrfs_free_extent(trans, &ref);
789 btrfs_abort_transaction(trans, ret);
795 if (extent_mergeable(leaf, path->slots[0] - 1,
796 ino, bytenr, orig_offset,
797 &other_start, &other_end)) {
799 btrfs_release_path(path);
802 key.offset = other_start;
803 del_slot = path->slots[0];
805 ret = btrfs_free_extent(trans, &ref);
807 btrfs_abort_transaction(trans, ret);
812 fi = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_file_extent_item);
814 btrfs_set_file_extent_type(leaf, fi,
815 BTRFS_FILE_EXTENT_REG);
816 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
817 btrfs_mark_buffer_dirty(leaf);
819 fi = btrfs_item_ptr(leaf, del_slot - 1,
820 struct btrfs_file_extent_item);
821 btrfs_set_file_extent_type(leaf, fi,
822 BTRFS_FILE_EXTENT_REG);
823 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
824 btrfs_set_file_extent_num_bytes(leaf, fi,
825 extent_end - key.offset);
826 btrfs_mark_buffer_dirty(leaf);
828 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
830 btrfs_abort_transaction(trans, ret);
835 btrfs_free_path(path);
840 * on error we return an unlocked page and the error value
841 * on success we return a locked page and 0
843 static int prepare_uptodate_page(struct inode *inode,
844 struct page *page, u64 pos,
847 struct folio *folio = page_folio(page);
850 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
851 !PageUptodate(page)) {
852 ret = btrfs_read_folio(NULL, folio);
856 if (!PageUptodate(page)) {
862 * Since btrfs_read_folio() will unlock the folio before it
863 * returns, there is a window where btrfs_release_folio() can be
864 * called to release the page. Here we check both inode
865 * mapping and PagePrivate() to make sure the page was not
868 * The private flag check is essential for subpage as we need
869 * to store extra bitmap using page->private.
871 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
879 static unsigned int get_prepare_fgp_flags(bool nowait)
881 unsigned int fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
884 fgp_flags |= FGP_NOWAIT;
889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
893 gfp = btrfs_alloc_write_mask(inode->i_mapping);
895 gfp &= ~__GFP_DIRECT_RECLAIM;
903 * this just gets pages into the page cache and locks them down.
905 static noinline int prepare_pages(struct inode *inode, struct page **pages,
906 size_t num_pages, loff_t pos,
907 size_t write_bytes, bool force_uptodate,
911 unsigned long index = pos >> PAGE_SHIFT;
912 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
913 unsigned int fgp_flags = get_prepare_fgp_flags(nowait);
917 for (i = 0; i < num_pages; i++) {
919 pages[i] = pagecache_get_page(inode->i_mapping, index + i,
920 fgp_flags, mask | __GFP_WRITE);
930 err = set_page_extent_mapped(pages[i]);
937 err = prepare_uptodate_page(inode, pages[i], pos,
939 if (!err && i == num_pages - 1)
940 err = prepare_uptodate_page(inode, pages[i],
941 pos + write_bytes, false);
944 if (!nowait && err == -EAGAIN) {
951 wait_on_page_writeback(pages[i]);
957 unlock_page(pages[faili]);
958 put_page(pages[faili]);
966 * This function locks the extent and properly waits for data=ordered extents
967 * to finish before allowing the pages to be modified if need.
970 * 1 - the extent is locked
971 * 0 - the extent is not locked, and everything is OK
972 * -EAGAIN - need re-prepare the pages
973 * the other < 0 number - Something wrong happens
976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
977 size_t num_pages, loff_t pos,
979 u64 *lockstart, u64 *lockend, bool nowait,
980 struct extent_state **cached_state)
982 struct btrfs_fs_info *fs_info = inode->root->fs_info;
988 start_pos = round_down(pos, fs_info->sectorsize);
989 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
991 if (start_pos < inode->vfs_inode.i_size) {
992 struct btrfs_ordered_extent *ordered;
995 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
997 for (i = 0; i < num_pages; i++) {
998 unlock_page(pages[i]);
1006 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1009 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1010 last_pos - start_pos + 1);
1012 ordered->file_offset + ordered->num_bytes > start_pos &&
1013 ordered->file_offset <= last_pos) {
1014 unlock_extent(&inode->io_tree, start_pos, last_pos,
1016 for (i = 0; i < num_pages; i++) {
1017 unlock_page(pages[i]);
1020 btrfs_start_ordered_extent(ordered, 1);
1021 btrfs_put_ordered_extent(ordered);
1025 btrfs_put_ordered_extent(ordered);
1027 *lockstart = start_pos;
1028 *lockend = last_pos;
1033 * We should be called after prepare_pages() which should have locked
1034 * all pages in the range.
1036 for (i = 0; i < num_pages; i++)
1037 WARN_ON(!PageLocked(pages[i]));
1043 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1045 * @pos: File offset.
1046 * @write_bytes: The length to write, will be updated to the nocow writeable
1049 * This function will flush ordered extents in the range to ensure proper
1053 * > 0 If we can nocow, and updates @write_bytes.
1054 * 0 If we can't do a nocow write.
1055 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1056 * root is in progress.
1057 * < 0 If an error happened.
1059 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1062 size_t *write_bytes, bool nowait)
1064 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1065 struct btrfs_root *root = inode->root;
1066 struct extent_state *cached_state = NULL;
1067 u64 lockstart, lockend;
1071 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1074 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1077 lockstart = round_down(pos, fs_info->sectorsize);
1078 lockend = round_up(pos + *write_bytes,
1079 fs_info->sectorsize) - 1;
1080 num_bytes = lockend - lockstart + 1;
1083 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1085 btrfs_drew_write_unlock(&root->snapshot_lock);
1089 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1092 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1093 NULL, NULL, NULL, nowait, false);
1095 btrfs_drew_write_unlock(&root->snapshot_lock);
1097 *write_bytes = min_t(size_t, *write_bytes ,
1098 num_bytes - pos + lockstart);
1099 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1106 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1109 static void update_time_for_write(struct inode *inode)
1111 struct timespec64 now;
1113 if (IS_NOCMTIME(inode))
1116 now = current_time(inode);
1117 if (!timespec64_equal(&inode->i_mtime, &now))
1118 inode->i_mtime = now;
1120 if (!timespec64_equal(&inode->i_ctime, &now))
1121 inode->i_ctime = now;
1123 if (IS_I_VERSION(inode))
1124 inode_inc_iversion(inode);
1127 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1130 struct file *file = iocb->ki_filp;
1131 struct inode *inode = file_inode(file);
1132 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1133 loff_t pos = iocb->ki_pos;
1139 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1140 * prealloc flags, as without those flags we always have to COW. We will
1141 * later check if we can really COW into the target range (using
1142 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1144 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1145 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1148 current->backing_dev_info = inode_to_bdi(inode);
1149 ret = file_remove_privs(file);
1154 * We reserve space for updating the inode when we reserve space for the
1155 * extent we are going to write, so we will enospc out there. We don't
1156 * need to start yet another transaction to update the inode as we will
1157 * update the inode when we finish writing whatever data we write.
1159 update_time_for_write(inode);
1161 start_pos = round_down(pos, fs_info->sectorsize);
1162 oldsize = i_size_read(inode);
1163 if (start_pos > oldsize) {
1164 /* Expand hole size to cover write data, preventing empty gap */
1165 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1167 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1169 current->backing_dev_info = NULL;
1177 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1180 struct file *file = iocb->ki_filp;
1182 struct inode *inode = file_inode(file);
1183 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1184 struct page **pages = NULL;
1185 struct extent_changeset *data_reserved = NULL;
1186 u64 release_bytes = 0;
1189 size_t num_written = 0;
1192 bool only_release_metadata = false;
1193 bool force_page_uptodate = false;
1194 loff_t old_isize = i_size_read(inode);
1195 unsigned int ilock_flags = 0;
1196 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1197 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1200 ilock_flags |= BTRFS_ILOCK_TRY;
1202 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1206 ret = generic_write_checks(iocb, i);
1210 ret = btrfs_write_check(iocb, i, ret);
1215 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1216 PAGE_SIZE / (sizeof(struct page *)));
1217 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1218 nrptrs = max(nrptrs, 8);
1219 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1225 while (iov_iter_count(i) > 0) {
1226 struct extent_state *cached_state = NULL;
1227 size_t offset = offset_in_page(pos);
1228 size_t sector_offset;
1229 size_t write_bytes = min(iov_iter_count(i),
1230 nrptrs * (size_t)PAGE_SIZE -
1233 size_t reserve_bytes;
1236 size_t dirty_sectors;
1241 * Fault pages before locking them in prepare_pages
1242 * to avoid recursive lock
1244 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1249 only_release_metadata = false;
1250 sector_offset = pos & (fs_info->sectorsize - 1);
1252 extent_changeset_release(data_reserved);
1253 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1254 &data_reserved, pos,
1255 write_bytes, nowait);
1259 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1265 * If we don't have to COW at the offset, reserve
1266 * metadata only. write_bytes may get smaller than
1269 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1270 &write_bytes, nowait);
1277 only_release_metadata = true;
1280 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1281 WARN_ON(num_pages > nrptrs);
1282 reserve_bytes = round_up(write_bytes + sector_offset,
1283 fs_info->sectorsize);
1284 WARN_ON(reserve_bytes == 0);
1285 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1287 reserve_bytes, nowait);
1289 if (!only_release_metadata)
1290 btrfs_free_reserved_data_space(BTRFS_I(inode),
1294 btrfs_check_nocow_unlock(BTRFS_I(inode));
1296 if (nowait && ret == -ENOSPC)
1301 release_bytes = reserve_bytes;
1303 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1305 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1310 * This is going to setup the pages array with the number of
1311 * pages we want, so we don't really need to worry about the
1312 * contents of pages from loop to loop
1314 ret = prepare_pages(inode, pages, num_pages,
1315 pos, write_bytes, force_page_uptodate, false);
1317 btrfs_delalloc_release_extents(BTRFS_I(inode),
1322 extents_locked = lock_and_cleanup_extent_if_need(
1323 BTRFS_I(inode), pages,
1324 num_pages, pos, write_bytes, &lockstart,
1325 &lockend, nowait, &cached_state);
1326 if (extents_locked < 0) {
1327 if (!nowait && extents_locked == -EAGAIN)
1330 btrfs_delalloc_release_extents(BTRFS_I(inode),
1332 ret = extents_locked;
1336 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1338 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1339 dirty_sectors = round_up(copied + sector_offset,
1340 fs_info->sectorsize);
1341 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1344 * if we have trouble faulting in the pages, fall
1345 * back to one page at a time
1347 if (copied < write_bytes)
1351 force_page_uptodate = true;
1355 force_page_uptodate = false;
1356 dirty_pages = DIV_ROUND_UP(copied + offset,
1360 if (num_sectors > dirty_sectors) {
1361 /* release everything except the sectors we dirtied */
1362 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1363 if (only_release_metadata) {
1364 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1365 release_bytes, true);
1369 __pos = round_down(pos,
1370 fs_info->sectorsize) +
1371 (dirty_pages << PAGE_SHIFT);
1372 btrfs_delalloc_release_space(BTRFS_I(inode),
1373 data_reserved, __pos,
1374 release_bytes, true);
1378 release_bytes = round_up(copied + sector_offset,
1379 fs_info->sectorsize);
1381 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1382 dirty_pages, pos, copied,
1383 &cached_state, only_release_metadata);
1386 * If we have not locked the extent range, because the range's
1387 * start offset is >= i_size, we might still have a non-NULL
1388 * cached extent state, acquired while marking the extent range
1389 * as delalloc through btrfs_dirty_pages(). Therefore free any
1390 * possible cached extent state to avoid a memory leak.
1393 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1394 lockend, &cached_state);
1396 free_extent_state(cached_state);
1398 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1400 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1405 if (only_release_metadata)
1406 btrfs_check_nocow_unlock(BTRFS_I(inode));
1408 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1413 num_written += copied;
1418 if (release_bytes) {
1419 if (only_release_metadata) {
1420 btrfs_check_nocow_unlock(BTRFS_I(inode));
1421 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1422 release_bytes, true);
1424 btrfs_delalloc_release_space(BTRFS_I(inode),
1426 round_down(pos, fs_info->sectorsize),
1427 release_bytes, true);
1431 extent_changeset_free(data_reserved);
1432 if (num_written > 0) {
1433 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1434 iocb->ki_pos += num_written;
1437 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1438 return num_written ? num_written : ret;
1441 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1442 const struct iov_iter *iter, loff_t offset)
1444 const u32 blocksize_mask = fs_info->sectorsize - 1;
1446 if (offset & blocksize_mask)
1449 if (iov_iter_alignment(iter) & blocksize_mask)
1455 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1457 struct file *file = iocb->ki_filp;
1458 struct inode *inode = file_inode(file);
1459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1461 ssize_t written = 0;
1462 ssize_t written_buffered;
1463 size_t prev_left = 0;
1466 unsigned int ilock_flags = 0;
1467 struct iomap_dio *dio;
1469 if (iocb->ki_flags & IOCB_NOWAIT)
1470 ilock_flags |= BTRFS_ILOCK_TRY;
1472 /* If the write DIO is within EOF, use a shared lock */
1473 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1474 ilock_flags |= BTRFS_ILOCK_SHARED;
1477 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1481 err = generic_write_checks(iocb, from);
1483 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1487 err = btrfs_write_check(iocb, from, err);
1489 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1495 * Re-check since file size may have changed just before taking the
1496 * lock or pos may have changed because of O_APPEND in generic_write_check()
1498 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1499 pos + iov_iter_count(from) > i_size_read(inode)) {
1500 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1501 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1505 if (check_direct_IO(fs_info, from, pos)) {
1506 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1511 * The iov_iter can be mapped to the same file range we are writing to.
1512 * If that's the case, then we will deadlock in the iomap code, because
1513 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1514 * an ordered extent, and after that it will fault in the pages that the
1515 * iov_iter refers to. During the fault in we end up in the readahead
1516 * pages code (starting at btrfs_readahead()), which will lock the range,
1517 * find that ordered extent and then wait for it to complete (at
1518 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1519 * obviously the ordered extent can never complete as we didn't submit
1520 * yet the respective bio(s). This always happens when the buffer is
1521 * memory mapped to the same file range, since the iomap DIO code always
1522 * invalidates pages in the target file range (after starting and waiting
1523 * for any writeback).
1525 * So here we disable page faults in the iov_iter and then retry if we
1526 * got -EFAULT, faulting in the pages before the retry.
1528 from->nofault = true;
1529 dio = btrfs_dio_write(iocb, from, written);
1530 from->nofault = false;
1533 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1534 * iocb, and that needs to lock the inode. So unlock it before calling
1535 * iomap_dio_complete() to avoid a deadlock.
1537 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1539 if (IS_ERR_OR_NULL(dio))
1540 err = PTR_ERR_OR_ZERO(dio);
1542 err = iomap_dio_complete(dio);
1544 /* No increment (+=) because iomap returns a cumulative value. */
1548 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1549 const size_t left = iov_iter_count(from);
1551 * We have more data left to write. Try to fault in as many as
1552 * possible of the remainder pages and retry. We do this without
1553 * releasing and locking again the inode, to prevent races with
1556 * Also, in case the iov refers to pages in the file range of the
1557 * file we want to write to (due to a mmap), we could enter an
1558 * infinite loop if we retry after faulting the pages in, since
1559 * iomap will invalidate any pages in the range early on, before
1560 * it tries to fault in the pages of the iov. So we keep track of
1561 * how much was left of iov in the previous EFAULT and fallback
1562 * to buffered IO in case we haven't made any progress.
1564 if (left == prev_left) {
1567 fault_in_iov_iter_readable(from, left);
1574 * If 'err' is -ENOTBLK or we have not written all data, then it means
1575 * we must fallback to buffered IO.
1577 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1582 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1583 * it must retry the operation in a context where blocking is acceptable,
1584 * because even if we end up not blocking during the buffered IO attempt
1585 * below, we will block when flushing and waiting for the IO.
1587 if (iocb->ki_flags & IOCB_NOWAIT) {
1593 written_buffered = btrfs_buffered_write(iocb, from);
1594 if (written_buffered < 0) {
1595 err = written_buffered;
1599 * Ensure all data is persisted. We want the next direct IO read to be
1600 * able to read what was just written.
1602 endbyte = pos + written_buffered - 1;
1603 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1606 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1609 written += written_buffered;
1610 iocb->ki_pos = pos + written_buffered;
1611 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1612 endbyte >> PAGE_SHIFT);
1614 return err < 0 ? err : written;
1617 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1618 const struct btrfs_ioctl_encoded_io_args *encoded)
1620 struct file *file = iocb->ki_filp;
1621 struct inode *inode = file_inode(file);
1625 btrfs_inode_lock(BTRFS_I(inode), 0);
1626 count = encoded->len;
1627 ret = generic_write_checks_count(iocb, &count);
1628 if (ret == 0 && count != encoded->len) {
1630 * The write got truncated by generic_write_checks_count(). We
1631 * can't do a partial encoded write.
1635 if (ret || encoded->len == 0)
1638 ret = btrfs_write_check(iocb, from, encoded->len);
1642 ret = btrfs_do_encoded_write(iocb, from, encoded);
1644 btrfs_inode_unlock(BTRFS_I(inode), 0);
1648 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1649 const struct btrfs_ioctl_encoded_io_args *encoded)
1651 struct file *file = iocb->ki_filp;
1652 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1653 ssize_t num_written, num_sync;
1654 const bool sync = iocb_is_dsync(iocb);
1657 * If the fs flips readonly due to some impossible error, although we
1658 * have opened a file as writable, we have to stop this write operation
1659 * to ensure consistency.
1661 if (BTRFS_FS_ERROR(inode->root->fs_info))
1664 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1668 atomic_inc(&inode->sync_writers);
1671 num_written = btrfs_encoded_write(iocb, from, encoded);
1672 num_sync = encoded->len;
1673 } else if (iocb->ki_flags & IOCB_DIRECT) {
1674 num_written = btrfs_direct_write(iocb, from);
1675 num_sync = num_written;
1677 num_written = btrfs_buffered_write(iocb, from);
1678 num_sync = num_written;
1681 btrfs_set_inode_last_sub_trans(inode);
1684 num_sync = generic_write_sync(iocb, num_sync);
1686 num_written = num_sync;
1690 atomic_dec(&inode->sync_writers);
1692 current->backing_dev_info = NULL;
1696 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1698 return btrfs_do_write_iter(iocb, from, NULL);
1701 int btrfs_release_file(struct inode *inode, struct file *filp)
1703 struct btrfs_file_private *private = filp->private_data;
1706 kfree(private->filldir_buf);
1707 free_extent_state(private->llseek_cached_state);
1709 filp->private_data = NULL;
1713 * Set by setattr when we are about to truncate a file from a non-zero
1714 * size to a zero size. This tries to flush down new bytes that may
1715 * have been written if the application were using truncate to replace
1718 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1719 &BTRFS_I(inode)->runtime_flags))
1720 filemap_flush(inode->i_mapping);
1724 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1727 struct blk_plug plug;
1730 * This is only called in fsync, which would do synchronous writes, so
1731 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1732 * multiple disks using raid profile, a large IO can be split to
1733 * several segments of stripe length (currently 64K).
1735 blk_start_plug(&plug);
1736 atomic_inc(&BTRFS_I(inode)->sync_writers);
1737 ret = btrfs_fdatawrite_range(inode, start, end);
1738 atomic_dec(&BTRFS_I(inode)->sync_writers);
1739 blk_finish_plug(&plug);
1744 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1746 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1747 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1749 if (btrfs_inode_in_log(inode, fs_info->generation) &&
1750 list_empty(&ctx->ordered_extents))
1754 * If we are doing a fast fsync we can not bail out if the inode's
1755 * last_trans is <= then the last committed transaction, because we only
1756 * update the last_trans of the inode during ordered extent completion,
1757 * and for a fast fsync we don't wait for that, we only wait for the
1758 * writeback to complete.
1760 if (inode->last_trans <= fs_info->last_trans_committed &&
1761 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1762 list_empty(&ctx->ordered_extents)))
1769 * fsync call for both files and directories. This logs the inode into
1770 * the tree log instead of forcing full commits whenever possible.
1772 * It needs to call filemap_fdatawait so that all ordered extent updates are
1773 * in the metadata btree are up to date for copying to the log.
1775 * It drops the inode mutex before doing the tree log commit. This is an
1776 * important optimization for directories because holding the mutex prevents
1777 * new operations on the dir while we write to disk.
1779 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1781 struct dentry *dentry = file_dentry(file);
1782 struct inode *inode = d_inode(dentry);
1783 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1784 struct btrfs_root *root = BTRFS_I(inode)->root;
1785 struct btrfs_trans_handle *trans;
1786 struct btrfs_log_ctx ctx;
1791 trace_btrfs_sync_file(file, datasync);
1793 btrfs_init_log_ctx(&ctx, inode);
1796 * Always set the range to a full range, otherwise we can get into
1797 * several problems, from missing file extent items to represent holes
1798 * when not using the NO_HOLES feature, to log tree corruption due to
1799 * races between hole detection during logging and completion of ordered
1800 * extents outside the range, to missing checksums due to ordered extents
1801 * for which we flushed only a subset of their pages.
1805 len = (u64)LLONG_MAX + 1;
1808 * We write the dirty pages in the range and wait until they complete
1809 * out of the ->i_mutex. If so, we can flush the dirty pages by
1810 * multi-task, and make the performance up. See
1811 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1813 ret = start_ordered_ops(inode, start, end);
1817 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1819 atomic_inc(&root->log_batch);
1822 * Before we acquired the inode's lock and the mmap lock, someone may
1823 * have dirtied more pages in the target range. We need to make sure
1824 * that writeback for any such pages does not start while we are logging
1825 * the inode, because if it does, any of the following might happen when
1826 * we are not doing a full inode sync:
1828 * 1) We log an extent after its writeback finishes but before its
1829 * checksums are added to the csum tree, leading to -EIO errors
1830 * when attempting to read the extent after a log replay.
1832 * 2) We can end up logging an extent before its writeback finishes.
1833 * Therefore after the log replay we will have a file extent item
1834 * pointing to an unwritten extent (and no data checksums as well).
1836 * So trigger writeback for any eventual new dirty pages and then we
1837 * wait for all ordered extents to complete below.
1839 ret = start_ordered_ops(inode, start, end);
1841 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1846 * Always check for the full sync flag while holding the inode's lock,
1847 * to avoid races with other tasks. The flag must be either set all the
1848 * time during logging or always off all the time while logging.
1849 * We check the flag here after starting delalloc above, because when
1850 * running delalloc the full sync flag may be set if we need to drop
1851 * extra extent map ranges due to temporary memory allocation failures.
1853 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1854 &BTRFS_I(inode)->runtime_flags);
1857 * We have to do this here to avoid the priority inversion of waiting on
1858 * IO of a lower priority task while holding a transaction open.
1860 * For a full fsync we wait for the ordered extents to complete while
1861 * for a fast fsync we wait just for writeback to complete, and then
1862 * attach the ordered extents to the transaction so that a transaction
1863 * commit waits for their completion, to avoid data loss if we fsync,
1864 * the current transaction commits before the ordered extents complete
1865 * and a power failure happens right after that.
1867 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1868 * logical address recorded in the ordered extent may change. We need
1869 * to wait for the IO to stabilize the logical address.
1871 if (full_sync || btrfs_is_zoned(fs_info)) {
1872 ret = btrfs_wait_ordered_range(inode, start, len);
1875 * Get our ordered extents as soon as possible to avoid doing
1876 * checksum lookups in the csum tree, and use instead the
1877 * checksums attached to the ordered extents.
1879 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1880 &ctx.ordered_extents);
1881 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1885 goto out_release_extents;
1887 atomic_inc(&root->log_batch);
1890 if (skip_inode_logging(&ctx)) {
1892 * We've had everything committed since the last time we were
1893 * modified so clear this flag in case it was set for whatever
1894 * reason, it's no longer relevant.
1896 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1897 &BTRFS_I(inode)->runtime_flags);
1899 * An ordered extent might have started before and completed
1900 * already with io errors, in which case the inode was not
1901 * updated and we end up here. So check the inode's mapping
1902 * for any errors that might have happened since we last
1903 * checked called fsync.
1905 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1906 goto out_release_extents;
1910 * We use start here because we will need to wait on the IO to complete
1911 * in btrfs_sync_log, which could require joining a transaction (for
1912 * example checking cross references in the nocow path). If we use join
1913 * here we could get into a situation where we're waiting on IO to
1914 * happen that is blocked on a transaction trying to commit. With start
1915 * we inc the extwriter counter, so we wait for all extwriters to exit
1916 * before we start blocking joiners. This comment is to keep somebody
1917 * from thinking they are super smart and changing this to
1918 * btrfs_join_transaction *cough*Josef*cough*.
1920 trans = btrfs_start_transaction(root, 0);
1921 if (IS_ERR(trans)) {
1922 ret = PTR_ERR(trans);
1923 goto out_release_extents;
1925 trans->in_fsync = true;
1927 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1928 btrfs_release_log_ctx_extents(&ctx);
1930 /* Fallthrough and commit/free transaction. */
1931 ret = BTRFS_LOG_FORCE_COMMIT;
1934 /* we've logged all the items and now have a consistent
1935 * version of the file in the log. It is possible that
1936 * someone will come in and modify the file, but that's
1937 * fine because the log is consistent on disk, and we
1938 * have references to all of the file's extents
1940 * It is possible that someone will come in and log the
1941 * file again, but that will end up using the synchronization
1942 * inside btrfs_sync_log to keep things safe.
1944 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1946 if (ret == BTRFS_NO_LOG_SYNC) {
1947 ret = btrfs_end_transaction(trans);
1951 /* We successfully logged the inode, attempt to sync the log. */
1953 ret = btrfs_sync_log(trans, root, &ctx);
1955 ret = btrfs_end_transaction(trans);
1961 * At this point we need to commit the transaction because we had
1962 * btrfs_need_log_full_commit() or some other error.
1964 * If we didn't do a full sync we have to stop the trans handle, wait on
1965 * the ordered extents, start it again and commit the transaction. If
1966 * we attempt to wait on the ordered extents here we could deadlock with
1967 * something like fallocate() that is holding the extent lock trying to
1968 * start a transaction while some other thread is trying to commit the
1969 * transaction while we (fsync) are currently holding the transaction
1973 ret = btrfs_end_transaction(trans);
1976 ret = btrfs_wait_ordered_range(inode, start, len);
1981 * This is safe to use here because we're only interested in
1982 * making sure the transaction that had the ordered extents is
1983 * committed. We aren't waiting on anything past this point,
1984 * we're purely getting the transaction and committing it.
1986 trans = btrfs_attach_transaction_barrier(root);
1987 if (IS_ERR(trans)) {
1988 ret = PTR_ERR(trans);
1991 * We committed the transaction and there's no currently
1992 * running transaction, this means everything we care
1993 * about made it to disk and we are done.
2001 ret = btrfs_commit_transaction(trans);
2003 ASSERT(list_empty(&ctx.list));
2004 ASSERT(list_empty(&ctx.conflict_inodes));
2005 err = file_check_and_advance_wb_err(file);
2008 return ret > 0 ? -EIO : ret;
2010 out_release_extents:
2011 btrfs_release_log_ctx_extents(&ctx);
2012 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2016 static const struct vm_operations_struct btrfs_file_vm_ops = {
2017 .fault = filemap_fault,
2018 .map_pages = filemap_map_pages,
2019 .page_mkwrite = btrfs_page_mkwrite,
2022 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2024 struct address_space *mapping = filp->f_mapping;
2026 if (!mapping->a_ops->read_folio)
2029 file_accessed(filp);
2030 vma->vm_ops = &btrfs_file_vm_ops;
2035 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2036 int slot, u64 start, u64 end)
2038 struct btrfs_file_extent_item *fi;
2039 struct btrfs_key key;
2041 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2044 btrfs_item_key_to_cpu(leaf, &key, slot);
2045 if (key.objectid != btrfs_ino(inode) ||
2046 key.type != BTRFS_EXTENT_DATA_KEY)
2049 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2051 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2054 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2057 if (key.offset == end)
2059 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2064 static int fill_holes(struct btrfs_trans_handle *trans,
2065 struct btrfs_inode *inode,
2066 struct btrfs_path *path, u64 offset, u64 end)
2068 struct btrfs_fs_info *fs_info = trans->fs_info;
2069 struct btrfs_root *root = inode->root;
2070 struct extent_buffer *leaf;
2071 struct btrfs_file_extent_item *fi;
2072 struct extent_map *hole_em;
2073 struct btrfs_key key;
2076 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2079 key.objectid = btrfs_ino(inode);
2080 key.type = BTRFS_EXTENT_DATA_KEY;
2081 key.offset = offset;
2083 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2086 * We should have dropped this offset, so if we find it then
2087 * something has gone horribly wrong.
2094 leaf = path->nodes[0];
2095 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2099 fi = btrfs_item_ptr(leaf, path->slots[0],
2100 struct btrfs_file_extent_item);
2101 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2103 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2104 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2105 btrfs_set_file_extent_offset(leaf, fi, 0);
2106 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2107 btrfs_mark_buffer_dirty(leaf);
2111 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2114 key.offset = offset;
2115 btrfs_set_item_key_safe(fs_info, path, &key);
2116 fi = btrfs_item_ptr(leaf, path->slots[0],
2117 struct btrfs_file_extent_item);
2118 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2120 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2121 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2122 btrfs_set_file_extent_offset(leaf, fi, 0);
2123 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2124 btrfs_mark_buffer_dirty(leaf);
2127 btrfs_release_path(path);
2129 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2135 btrfs_release_path(path);
2137 hole_em = alloc_extent_map();
2139 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2140 btrfs_set_inode_full_sync(inode);
2142 hole_em->start = offset;
2143 hole_em->len = end - offset;
2144 hole_em->ram_bytes = hole_em->len;
2145 hole_em->orig_start = offset;
2147 hole_em->block_start = EXTENT_MAP_HOLE;
2148 hole_em->block_len = 0;
2149 hole_em->orig_block_len = 0;
2150 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2151 hole_em->generation = trans->transid;
2153 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2154 free_extent_map(hole_em);
2156 btrfs_set_inode_full_sync(inode);
2163 * Find a hole extent on given inode and change start/len to the end of hole
2164 * extent.(hole/vacuum extent whose em->start <= start &&
2165 * em->start + em->len > start)
2166 * When a hole extent is found, return 1 and modify start/len.
2168 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2170 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2171 struct extent_map *em;
2174 em = btrfs_get_extent(inode, NULL, 0,
2175 round_down(*start, fs_info->sectorsize),
2176 round_up(*len, fs_info->sectorsize));
2180 /* Hole or vacuum extent(only exists in no-hole mode) */
2181 if (em->block_start == EXTENT_MAP_HOLE) {
2183 *len = em->start + em->len > *start + *len ?
2184 0 : *start + *len - em->start - em->len;
2185 *start = em->start + em->len;
2187 free_extent_map(em);
2191 static void btrfs_punch_hole_lock_range(struct inode *inode,
2192 const u64 lockstart,
2194 struct extent_state **cached_state)
2197 * For subpage case, if the range is not at page boundary, we could
2198 * have pages at the leading/tailing part of the range.
2199 * This could lead to dead loop since filemap_range_has_page()
2200 * will always return true.
2201 * So here we need to do extra page alignment for
2202 * filemap_range_has_page().
2204 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2205 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2208 truncate_pagecache_range(inode, lockstart, lockend);
2210 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2213 * We can't have ordered extents in the range, nor dirty/writeback
2214 * pages, because we have locked the inode's VFS lock in exclusive
2215 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2216 * we have flushed all delalloc in the range and we have waited
2217 * for any ordered extents in the range to complete.
2218 * We can race with anyone reading pages from this range, so after
2219 * locking the range check if we have pages in the range, and if
2220 * we do, unlock the range and retry.
2222 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2226 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2230 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2233 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2234 struct btrfs_inode *inode,
2235 struct btrfs_path *path,
2236 struct btrfs_replace_extent_info *extent_info,
2237 const u64 replace_len,
2238 const u64 bytes_to_drop)
2240 struct btrfs_fs_info *fs_info = trans->fs_info;
2241 struct btrfs_root *root = inode->root;
2242 struct btrfs_file_extent_item *extent;
2243 struct extent_buffer *leaf;
2244 struct btrfs_key key;
2246 struct btrfs_ref ref = { 0 };
2249 if (replace_len == 0)
2252 if (extent_info->disk_offset == 0 &&
2253 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2254 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2258 key.objectid = btrfs_ino(inode);
2259 key.type = BTRFS_EXTENT_DATA_KEY;
2260 key.offset = extent_info->file_offset;
2261 ret = btrfs_insert_empty_item(trans, root, path, &key,
2262 sizeof(struct btrfs_file_extent_item));
2265 leaf = path->nodes[0];
2266 slot = path->slots[0];
2267 write_extent_buffer(leaf, extent_info->extent_buf,
2268 btrfs_item_ptr_offset(leaf, slot),
2269 sizeof(struct btrfs_file_extent_item));
2270 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2271 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2272 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2273 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2274 if (extent_info->is_new_extent)
2275 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2276 btrfs_mark_buffer_dirty(leaf);
2277 btrfs_release_path(path);
2279 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2284 /* If it's a hole, nothing more needs to be done. */
2285 if (extent_info->disk_offset == 0) {
2286 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2290 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2292 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2293 key.objectid = extent_info->disk_offset;
2294 key.type = BTRFS_EXTENT_ITEM_KEY;
2295 key.offset = extent_info->disk_len;
2296 ret = btrfs_alloc_reserved_file_extent(trans, root,
2298 extent_info->file_offset,
2299 extent_info->qgroup_reserved,
2304 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2305 extent_info->disk_offset,
2306 extent_info->disk_len, 0);
2307 ref_offset = extent_info->file_offset - extent_info->data_offset;
2308 btrfs_init_data_ref(&ref, root->root_key.objectid,
2309 btrfs_ino(inode), ref_offset, 0, false);
2310 ret = btrfs_inc_extent_ref(trans, &ref);
2313 extent_info->insertions++;
2319 * The respective range must have been previously locked, as well as the inode.
2320 * The end offset is inclusive (last byte of the range).
2321 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2322 * the file range with an extent.
2323 * When not punching a hole, we don't want to end up in a state where we dropped
2324 * extents without inserting a new one, so we must abort the transaction to avoid
2327 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2328 struct btrfs_path *path, const u64 start,
2330 struct btrfs_replace_extent_info *extent_info,
2331 struct btrfs_trans_handle **trans_out)
2333 struct btrfs_drop_extents_args drop_args = { 0 };
2334 struct btrfs_root *root = inode->root;
2335 struct btrfs_fs_info *fs_info = root->fs_info;
2336 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2337 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2338 struct btrfs_trans_handle *trans = NULL;
2339 struct btrfs_block_rsv *rsv;
2340 unsigned int rsv_count;
2342 u64 len = end - start;
2348 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2353 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2354 rsv->failfast = true;
2357 * 1 - update the inode
2358 * 1 - removing the extents in the range
2359 * 1 - adding the hole extent if no_holes isn't set or if we are
2360 * replacing the range with a new extent
2362 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2367 trans = btrfs_start_transaction(root, rsv_count);
2368 if (IS_ERR(trans)) {
2369 ret = PTR_ERR(trans);
2374 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2378 trans->block_rsv = rsv;
2381 drop_args.path = path;
2382 drop_args.end = end + 1;
2383 drop_args.drop_cache = true;
2384 while (cur_offset < end) {
2385 drop_args.start = cur_offset;
2386 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2387 /* If we are punching a hole decrement the inode's byte count */
2389 btrfs_update_inode_bytes(inode, 0,
2390 drop_args.bytes_found);
2391 if (ret != -ENOSPC) {
2393 * The only time we don't want to abort is if we are
2394 * attempting to clone a partial inline extent, in which
2395 * case we'll get EOPNOTSUPP. However if we aren't
2396 * clone we need to abort no matter what, because if we
2397 * got EOPNOTSUPP via prealloc then we messed up and
2401 (ret != -EOPNOTSUPP ||
2402 (extent_info && extent_info->is_new_extent)))
2403 btrfs_abort_transaction(trans, ret);
2407 trans->block_rsv = &fs_info->trans_block_rsv;
2409 if (!extent_info && cur_offset < drop_args.drop_end &&
2410 cur_offset < ino_size) {
2411 ret = fill_holes(trans, inode, path, cur_offset,
2412 drop_args.drop_end);
2415 * If we failed then we didn't insert our hole
2416 * entries for the area we dropped, so now the
2417 * fs is corrupted, so we must abort the
2420 btrfs_abort_transaction(trans, ret);
2423 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2425 * We are past the i_size here, but since we didn't
2426 * insert holes we need to clear the mapped area so we
2427 * know to not set disk_i_size in this area until a new
2428 * file extent is inserted here.
2430 ret = btrfs_inode_clear_file_extent_range(inode,
2432 drop_args.drop_end - cur_offset);
2435 * We couldn't clear our area, so we could
2436 * presumably adjust up and corrupt the fs, so
2439 btrfs_abort_transaction(trans, ret);
2445 drop_args.drop_end > extent_info->file_offset) {
2446 u64 replace_len = drop_args.drop_end -
2447 extent_info->file_offset;
2449 ret = btrfs_insert_replace_extent(trans, inode, path,
2450 extent_info, replace_len,
2451 drop_args.bytes_found);
2453 btrfs_abort_transaction(trans, ret);
2456 extent_info->data_len -= replace_len;
2457 extent_info->data_offset += replace_len;
2458 extent_info->file_offset += replace_len;
2462 * We are releasing our handle on the transaction, balance the
2463 * dirty pages of the btree inode and flush delayed items, and
2464 * then get a new transaction handle, which may now point to a
2465 * new transaction in case someone else may have committed the
2466 * transaction we used to replace/drop file extent items. So
2467 * bump the inode's iversion and update mtime and ctime except
2468 * if we are called from a dedupe context. This is because a
2469 * power failure/crash may happen after the transaction is
2470 * committed and before we finish replacing/dropping all the
2471 * file extent items we need.
2473 inode_inc_iversion(&inode->vfs_inode);
2475 if (!extent_info || extent_info->update_times) {
2476 inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode);
2477 inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime;
2480 ret = btrfs_update_inode(trans, root, inode);
2484 btrfs_end_transaction(trans);
2485 btrfs_btree_balance_dirty(fs_info);
2487 trans = btrfs_start_transaction(root, rsv_count);
2488 if (IS_ERR(trans)) {
2489 ret = PTR_ERR(trans);
2494 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2495 rsv, min_size, false);
2498 trans->block_rsv = rsv;
2500 cur_offset = drop_args.drop_end;
2501 len = end - cur_offset;
2502 if (!extent_info && len) {
2503 ret = find_first_non_hole(inode, &cur_offset, &len);
2504 if (unlikely(ret < 0))
2514 * If we were cloning, force the next fsync to be a full one since we
2515 * we replaced (or just dropped in the case of cloning holes when
2516 * NO_HOLES is enabled) file extent items and did not setup new extent
2517 * maps for the replacement extents (or holes).
2519 if (extent_info && !extent_info->is_new_extent)
2520 btrfs_set_inode_full_sync(inode);
2525 trans->block_rsv = &fs_info->trans_block_rsv;
2527 * If we are using the NO_HOLES feature we might have had already an
2528 * hole that overlaps a part of the region [lockstart, lockend] and
2529 * ends at (or beyond) lockend. Since we have no file extent items to
2530 * represent holes, drop_end can be less than lockend and so we must
2531 * make sure we have an extent map representing the existing hole (the
2532 * call to __btrfs_drop_extents() might have dropped the existing extent
2533 * map representing the existing hole), otherwise the fast fsync path
2534 * will not record the existence of the hole region
2535 * [existing_hole_start, lockend].
2537 if (drop_args.drop_end <= end)
2538 drop_args.drop_end = end + 1;
2540 * Don't insert file hole extent item if it's for a range beyond eof
2541 * (because it's useless) or if it represents a 0 bytes range (when
2542 * cur_offset == drop_end).
2544 if (!extent_info && cur_offset < ino_size &&
2545 cur_offset < drop_args.drop_end) {
2546 ret = fill_holes(trans, inode, path, cur_offset,
2547 drop_args.drop_end);
2549 /* Same comment as above. */
2550 btrfs_abort_transaction(trans, ret);
2553 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2554 /* See the comment in the loop above for the reasoning here. */
2555 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2556 drop_args.drop_end - cur_offset);
2558 btrfs_abort_transaction(trans, ret);
2564 ret = btrfs_insert_replace_extent(trans, inode, path,
2565 extent_info, extent_info->data_len,
2566 drop_args.bytes_found);
2568 btrfs_abort_transaction(trans, ret);
2577 trans->block_rsv = &fs_info->trans_block_rsv;
2579 btrfs_end_transaction(trans);
2583 btrfs_free_block_rsv(fs_info, rsv);
2588 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2590 struct inode *inode = file_inode(file);
2591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2592 struct btrfs_root *root = BTRFS_I(inode)->root;
2593 struct extent_state *cached_state = NULL;
2594 struct btrfs_path *path;
2595 struct btrfs_trans_handle *trans = NULL;
2600 u64 orig_start = offset;
2604 bool truncated_block = false;
2605 bool updated_inode = false;
2607 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2609 ret = btrfs_wait_ordered_range(inode, offset, len);
2611 goto out_only_mutex;
2613 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2614 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2616 goto out_only_mutex;
2618 /* Already in a large hole */
2620 goto out_only_mutex;
2623 ret = file_modified(file);
2625 goto out_only_mutex;
2627 lockstart = round_up(offset, fs_info->sectorsize);
2628 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2629 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2630 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2632 * We needn't truncate any block which is beyond the end of the file
2633 * because we are sure there is no data there.
2636 * Only do this if we are in the same block and we aren't doing the
2639 if (same_block && len < fs_info->sectorsize) {
2640 if (offset < ino_size) {
2641 truncated_block = true;
2642 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2647 goto out_only_mutex;
2650 /* zero back part of the first block */
2651 if (offset < ino_size) {
2652 truncated_block = true;
2653 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2655 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2660 /* Check the aligned pages after the first unaligned page,
2661 * if offset != orig_start, which means the first unaligned page
2662 * including several following pages are already in holes,
2663 * the extra check can be skipped */
2664 if (offset == orig_start) {
2665 /* after truncate page, check hole again */
2666 len = offset + len - lockstart;
2668 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2670 goto out_only_mutex;
2673 goto out_only_mutex;
2678 /* Check the tail unaligned part is in a hole */
2679 tail_start = lockend + 1;
2680 tail_len = offset + len - tail_start;
2682 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2683 if (unlikely(ret < 0))
2684 goto out_only_mutex;
2686 /* zero the front end of the last page */
2687 if (tail_start + tail_len < ino_size) {
2688 truncated_block = true;
2689 ret = btrfs_truncate_block(BTRFS_I(inode),
2690 tail_start + tail_len,
2693 goto out_only_mutex;
2698 if (lockend < lockstart) {
2700 goto out_only_mutex;
2703 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2705 path = btrfs_alloc_path();
2711 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2712 lockend, NULL, &trans);
2713 btrfs_free_path(path);
2717 ASSERT(trans != NULL);
2718 inode_inc_iversion(inode);
2719 inode->i_mtime = current_time(inode);
2720 inode->i_ctime = inode->i_mtime;
2721 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2722 updated_inode = true;
2723 btrfs_end_transaction(trans);
2724 btrfs_btree_balance_dirty(fs_info);
2726 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2729 if (!updated_inode && truncated_block && !ret) {
2731 * If we only end up zeroing part of a page, we still need to
2732 * update the inode item, so that all the time fields are
2733 * updated as well as the necessary btrfs inode in memory fields
2734 * for detecting, at fsync time, if the inode isn't yet in the
2735 * log tree or it's there but not up to date.
2737 struct timespec64 now = current_time(inode);
2739 inode_inc_iversion(inode);
2740 inode->i_mtime = now;
2741 inode->i_ctime = now;
2742 trans = btrfs_start_transaction(root, 1);
2743 if (IS_ERR(trans)) {
2744 ret = PTR_ERR(trans);
2748 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2749 ret2 = btrfs_end_transaction(trans);
2754 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2758 /* Helper structure to record which range is already reserved */
2759 struct falloc_range {
2760 struct list_head list;
2766 * Helper function to add falloc range
2768 * Caller should have locked the larger range of extent containing
2771 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2773 struct falloc_range *range = NULL;
2775 if (!list_empty(head)) {
2777 * As fallocate iterates by bytenr order, we only need to check
2780 range = list_last_entry(head, struct falloc_range, list);
2781 if (range->start + range->len == start) {
2787 range = kmalloc(sizeof(*range), GFP_KERNEL);
2790 range->start = start;
2792 list_add_tail(&range->list, head);
2796 static int btrfs_fallocate_update_isize(struct inode *inode,
2800 struct btrfs_trans_handle *trans;
2801 struct btrfs_root *root = BTRFS_I(inode)->root;
2805 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2808 trans = btrfs_start_transaction(root, 1);
2810 return PTR_ERR(trans);
2812 inode->i_ctime = current_time(inode);
2813 i_size_write(inode, end);
2814 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2815 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2816 ret2 = btrfs_end_transaction(trans);
2818 return ret ? ret : ret2;
2822 RANGE_BOUNDARY_WRITTEN_EXTENT,
2823 RANGE_BOUNDARY_PREALLOC_EXTENT,
2824 RANGE_BOUNDARY_HOLE,
2827 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2830 const u64 sectorsize = inode->root->fs_info->sectorsize;
2831 struct extent_map *em;
2834 offset = round_down(offset, sectorsize);
2835 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2839 if (em->block_start == EXTENT_MAP_HOLE)
2840 ret = RANGE_BOUNDARY_HOLE;
2841 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2842 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2844 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2846 free_extent_map(em);
2850 static int btrfs_zero_range(struct inode *inode,
2855 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2856 struct extent_map *em;
2857 struct extent_changeset *data_reserved = NULL;
2860 const u64 sectorsize = fs_info->sectorsize;
2861 u64 alloc_start = round_down(offset, sectorsize);
2862 u64 alloc_end = round_up(offset + len, sectorsize);
2863 u64 bytes_to_reserve = 0;
2864 bool space_reserved = false;
2866 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2867 alloc_end - alloc_start);
2874 * Avoid hole punching and extent allocation for some cases. More cases
2875 * could be considered, but these are unlikely common and we keep things
2876 * as simple as possible for now. Also, intentionally, if the target
2877 * range contains one or more prealloc extents together with regular
2878 * extents and holes, we drop all the existing extents and allocate a
2879 * new prealloc extent, so that we get a larger contiguous disk extent.
2881 if (em->start <= alloc_start &&
2882 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2883 const u64 em_end = em->start + em->len;
2885 if (em_end >= offset + len) {
2887 * The whole range is already a prealloc extent,
2888 * do nothing except updating the inode's i_size if
2891 free_extent_map(em);
2892 ret = btrfs_fallocate_update_isize(inode, offset + len,
2897 * Part of the range is already a prealloc extent, so operate
2898 * only on the remaining part of the range.
2900 alloc_start = em_end;
2901 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2902 len = offset + len - alloc_start;
2903 offset = alloc_start;
2904 alloc_hint = em->block_start + em->len;
2906 free_extent_map(em);
2908 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2909 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2910 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2917 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2918 free_extent_map(em);
2919 ret = btrfs_fallocate_update_isize(inode, offset + len,
2923 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2924 free_extent_map(em);
2925 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2928 ret = btrfs_fallocate_update_isize(inode,
2933 free_extent_map(em);
2934 alloc_start = round_down(offset, sectorsize);
2935 alloc_end = alloc_start + sectorsize;
2939 alloc_start = round_up(offset, sectorsize);
2940 alloc_end = round_down(offset + len, sectorsize);
2943 * For unaligned ranges, check the pages at the boundaries, they might
2944 * map to an extent, in which case we need to partially zero them, or
2945 * they might map to a hole, in which case we need our allocation range
2948 if (!IS_ALIGNED(offset, sectorsize)) {
2949 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2953 if (ret == RANGE_BOUNDARY_HOLE) {
2954 alloc_start = round_down(offset, sectorsize);
2956 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2957 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2965 if (!IS_ALIGNED(offset + len, sectorsize)) {
2966 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2970 if (ret == RANGE_BOUNDARY_HOLE) {
2971 alloc_end = round_up(offset + len, sectorsize);
2973 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2974 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2984 if (alloc_start < alloc_end) {
2985 struct extent_state *cached_state = NULL;
2986 const u64 lockstart = alloc_start;
2987 const u64 lockend = alloc_end - 1;
2989 bytes_to_reserve = alloc_end - alloc_start;
2990 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2994 space_reserved = true;
2995 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2997 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2998 alloc_start, bytes_to_reserve);
3000 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3001 lockend, &cached_state);
3004 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3005 alloc_end - alloc_start,
3007 offset + len, &alloc_hint);
3008 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3010 /* btrfs_prealloc_file_range releases reserved space on error */
3012 space_reserved = false;
3016 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3018 if (ret && space_reserved)
3019 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3020 alloc_start, bytes_to_reserve);
3021 extent_changeset_free(data_reserved);
3026 static long btrfs_fallocate(struct file *file, int mode,
3027 loff_t offset, loff_t len)
3029 struct inode *inode = file_inode(file);
3030 struct extent_state *cached_state = NULL;
3031 struct extent_changeset *data_reserved = NULL;
3032 struct falloc_range *range;
3033 struct falloc_range *tmp;
3034 struct list_head reserve_list;
3042 u64 data_space_needed = 0;
3043 u64 data_space_reserved = 0;
3044 u64 qgroup_reserved = 0;
3045 struct extent_map *em;
3046 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3049 /* Do not allow fallocate in ZONED mode */
3050 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3053 alloc_start = round_down(offset, blocksize);
3054 alloc_end = round_up(offset + len, blocksize);
3055 cur_offset = alloc_start;
3057 /* Make sure we aren't being give some crap mode */
3058 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3059 FALLOC_FL_ZERO_RANGE))
3062 if (mode & FALLOC_FL_PUNCH_HOLE)
3063 return btrfs_punch_hole(file, offset, len);
3065 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3067 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3068 ret = inode_newsize_ok(inode, offset + len);
3073 ret = file_modified(file);
3078 * TODO: Move these two operations after we have checked
3079 * accurate reserved space, or fallocate can still fail but
3080 * with page truncated or size expanded.
3082 * But that's a minor problem and won't do much harm BTW.
3084 if (alloc_start > inode->i_size) {
3085 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3089 } else if (offset + len > inode->i_size) {
3091 * If we are fallocating from the end of the file onward we
3092 * need to zero out the end of the block if i_size lands in the
3093 * middle of a block.
3095 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3101 * We have locked the inode at the VFS level (in exclusive mode) and we
3102 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3103 * locking the file range, flush all dealloc in the range and wait for
3104 * all ordered extents in the range to complete. After this we can lock
3105 * the file range and, due to the previous locking we did, we know there
3106 * can't be more delalloc or ordered extents in the range.
3108 ret = btrfs_wait_ordered_range(inode, alloc_start,
3109 alloc_end - alloc_start);
3113 if (mode & FALLOC_FL_ZERO_RANGE) {
3114 ret = btrfs_zero_range(inode, offset, len, mode);
3115 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3119 locked_end = alloc_end - 1;
3120 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3123 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3125 /* First, check if we exceed the qgroup limit */
3126 INIT_LIST_HEAD(&reserve_list);
3127 while (cur_offset < alloc_end) {
3128 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3129 alloc_end - cur_offset);
3134 last_byte = min(extent_map_end(em), alloc_end);
3135 actual_end = min_t(u64, extent_map_end(em), offset + len);
3136 last_byte = ALIGN(last_byte, blocksize);
3137 if (em->block_start == EXTENT_MAP_HOLE ||
3138 (cur_offset >= inode->i_size &&
3139 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3140 const u64 range_len = last_byte - cur_offset;
3142 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3144 free_extent_map(em);
3147 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3148 &data_reserved, cur_offset, range_len);
3150 free_extent_map(em);
3153 qgroup_reserved += range_len;
3154 data_space_needed += range_len;
3156 free_extent_map(em);
3157 cur_offset = last_byte;
3160 if (!ret && data_space_needed > 0) {
3162 * We are safe to reserve space here as we can't have delalloc
3163 * in the range, see above.
3165 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3168 data_space_reserved = data_space_needed;
3172 * If ret is still 0, means we're OK to fallocate.
3173 * Or just cleanup the list and exit.
3175 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3177 ret = btrfs_prealloc_file_range(inode, mode,
3179 range->len, i_blocksize(inode),
3180 offset + len, &alloc_hint);
3182 * btrfs_prealloc_file_range() releases space even
3183 * if it returns an error.
3185 data_space_reserved -= range->len;
3186 qgroup_reserved -= range->len;
3187 } else if (data_space_reserved > 0) {
3188 btrfs_free_reserved_data_space(BTRFS_I(inode),
3189 data_reserved, range->start,
3191 data_space_reserved -= range->len;
3192 qgroup_reserved -= range->len;
3193 } else if (qgroup_reserved > 0) {
3194 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3195 range->start, range->len);
3196 qgroup_reserved -= range->len;
3198 list_del(&range->list);
3205 * We didn't need to allocate any more space, but we still extended the
3206 * size of the file so we need to update i_size and the inode item.
3208 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3210 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3213 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3214 extent_changeset_free(data_reserved);
3219 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3220 * that has unflushed and/or flushing delalloc. There might be other adjacent
3221 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3222 * looping while it gets adjacent subranges, and merging them together.
3224 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3225 struct extent_state **cached_state,
3226 bool *search_io_tree,
3227 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3229 u64 len = end + 1 - start;
3230 u64 delalloc_len = 0;
3231 struct btrfs_ordered_extent *oe;
3236 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3237 * means we have delalloc (dirty pages) for which writeback has not
3240 if (*search_io_tree) {
3241 spin_lock(&inode->lock);
3242 if (inode->delalloc_bytes > 0) {
3243 spin_unlock(&inode->lock);
3244 *delalloc_start_ret = start;
3245 delalloc_len = count_range_bits(&inode->io_tree,
3246 delalloc_start_ret, end,
3247 len, EXTENT_DELALLOC, 1,
3250 spin_unlock(&inode->lock);
3254 if (delalloc_len > 0) {
3256 * If delalloc was found then *delalloc_start_ret has a sector size
3257 * aligned value (rounded down).
3259 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3261 if (*delalloc_start_ret == start) {
3262 /* Delalloc for the whole range, nothing more to do. */
3263 if (*delalloc_end_ret == end)
3265 /* Else trim our search range for ordered extents. */
3266 start = *delalloc_end_ret + 1;
3267 len = end + 1 - start;
3270 /* No delalloc, future calls don't need to search again. */
3271 *search_io_tree = false;
3275 * Now also check if there's any ordered extent in the range.
3276 * We do this because:
3278 * 1) When delalloc is flushed, the file range is locked, we clear the
3279 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3280 * an ordered extent for the write. So we might just have been called
3281 * after delalloc is flushed and before the ordered extent completes
3282 * and inserts the new file extent item in the subvolume's btree;
3284 * 2) We may have an ordered extent created by flushing delalloc for a
3285 * subrange that starts before the subrange we found marked with
3286 * EXTENT_DELALLOC in the io tree.
3288 * We could also use the extent map tree to find such delalloc that is
3289 * being flushed, but using the ordered extents tree is more efficient
3290 * because it's usually much smaller as ordered extents are removed from
3291 * the tree once they complete. With the extent maps, we mau have them
3292 * in the extent map tree for a very long time, and they were either
3293 * created by previous writes or loaded by read operations.
3295 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3297 return (delalloc_len > 0);
3299 /* The ordered extent may span beyond our search range. */
3300 oe_start = max(oe->file_offset, start);
3301 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3303 btrfs_put_ordered_extent(oe);
3305 /* Don't have unflushed delalloc, return the ordered extent range. */
3306 if (delalloc_len == 0) {
3307 *delalloc_start_ret = oe_start;
3308 *delalloc_end_ret = oe_end;
3313 * We have both unflushed delalloc (io_tree) and an ordered extent.
3314 * If the ranges are adjacent returned a combined range, otherwise
3315 * return the leftmost range.
3317 if (oe_start < *delalloc_start_ret) {
3318 if (oe_end < *delalloc_start_ret)
3319 *delalloc_end_ret = oe_end;
3320 *delalloc_start_ret = oe_start;
3321 } else if (*delalloc_end_ret + 1 == oe_start) {
3322 *delalloc_end_ret = oe_end;
3329 * Check if there's delalloc in a given range.
3331 * @inode: The inode.
3332 * @start: The start offset of the range. It does not need to be
3333 * sector size aligned.
3334 * @end: The end offset (inclusive value) of the search range.
3335 * It does not need to be sector size aligned.
3336 * @cached_state: Extent state record used for speeding up delalloc
3337 * searches in the inode's io_tree. Can be NULL.
3338 * @delalloc_start_ret: Output argument, set to the start offset of the
3339 * subrange found with delalloc (may not be sector size
3341 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3342 * of the subrange found with delalloc.
3344 * Returns true if a subrange with delalloc is found within the given range, and
3345 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3346 * end offsets of the subrange.
3348 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3349 struct extent_state **cached_state,
3350 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3352 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3353 u64 prev_delalloc_end = 0;
3354 bool search_io_tree = true;
3357 while (cur_offset <= end) {
3362 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3363 cached_state, &search_io_tree,
3369 if (prev_delalloc_end == 0) {
3370 /* First subrange found. */
3371 *delalloc_start_ret = max(delalloc_start, start);
3372 *delalloc_end_ret = delalloc_end;
3374 } else if (delalloc_start == prev_delalloc_end + 1) {
3375 /* Subrange adjacent to the previous one, merge them. */
3376 *delalloc_end_ret = delalloc_end;
3378 /* Subrange not adjacent to the previous one, exit. */
3382 prev_delalloc_end = delalloc_end;
3383 cur_offset = delalloc_end + 1;
3391 * Check if there's a hole or delalloc range in a range representing a hole (or
3392 * prealloc extent) found in the inode's subvolume btree.
3394 * @inode: The inode.
3395 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3396 * @start: Start offset of the hole region. It does not need to be sector
3398 * @end: End offset (inclusive value) of the hole region. It does not
3399 * need to be sector size aligned.
3400 * @start_ret: Return parameter, used to set the start of the subrange in the
3401 * hole that matches the search criteria (seek mode), if such
3402 * subrange is found (return value of the function is true).
3403 * The value returned here may not be sector size aligned.
3405 * Returns true if a subrange matching the given seek mode is found, and if one
3406 * is found, it updates @start_ret with the start of the subrange.
3408 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3409 struct extent_state **cached_state,
3410 u64 start, u64 end, u64 *start_ret)
3416 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3417 &delalloc_start, &delalloc_end);
3418 if (delalloc && whence == SEEK_DATA) {
3419 *start_ret = delalloc_start;
3423 if (delalloc && whence == SEEK_HOLE) {
3425 * We found delalloc but it starts after out start offset. So we
3426 * have a hole between our start offset and the delalloc start.
3428 if (start < delalloc_start) {
3433 * Delalloc range starts at our start offset.
3434 * If the delalloc range's length is smaller than our range,
3435 * then it means we have a hole that starts where the delalloc
3438 if (delalloc_end < end) {
3439 *start_ret = delalloc_end + 1;
3443 /* There's delalloc for the whole range. */
3447 if (!delalloc && whence == SEEK_HOLE) {
3453 * No delalloc in the range and we are seeking for data. The caller has
3454 * to iterate to the next extent item in the subvolume btree.
3459 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3461 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3462 struct btrfs_file_private *private = file->private_data;
3463 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3464 struct extent_state *cached_state = NULL;
3465 struct extent_state **delalloc_cached_state;
3466 const loff_t i_size = i_size_read(&inode->vfs_inode);
3467 const u64 ino = btrfs_ino(inode);
3468 struct btrfs_root *root = inode->root;
3469 struct btrfs_path *path;
3470 struct btrfs_key key;
3471 u64 last_extent_end;
3478 if (i_size == 0 || offset >= i_size)
3482 * Quick path. If the inode has no prealloc extents and its number of
3483 * bytes used matches its i_size, then it can not have holes.
3485 if (whence == SEEK_HOLE &&
3486 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3487 inode_get_bytes(&inode->vfs_inode) == i_size)
3491 private = kzalloc(sizeof(*private), GFP_KERNEL);
3493 * No worries if memory allocation failed.
3494 * The private structure is used only for speeding up multiple
3495 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3496 * so everything will still be correct.
3498 file->private_data = private;
3502 delalloc_cached_state = &private->llseek_cached_state;
3504 delalloc_cached_state = NULL;
3507 * offset can be negative, in this case we start finding DATA/HOLE from
3508 * the very start of the file.
3510 start = max_t(loff_t, 0, offset);
3512 lockstart = round_down(start, fs_info->sectorsize);
3513 lockend = round_up(i_size, fs_info->sectorsize);
3514 if (lockend <= lockstart)
3515 lockend = lockstart + fs_info->sectorsize;
3518 path = btrfs_alloc_path();
3521 path->reada = READA_FORWARD;
3524 key.type = BTRFS_EXTENT_DATA_KEY;
3527 last_extent_end = lockstart;
3529 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3531 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3534 } else if (ret > 0 && path->slots[0] > 0) {
3535 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3536 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3540 while (start < i_size) {
3541 struct extent_buffer *leaf = path->nodes[0];
3542 struct btrfs_file_extent_item *extent;
3546 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3547 ret = btrfs_next_leaf(root, path);
3553 leaf = path->nodes[0];
3556 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3557 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3560 extent_end = btrfs_file_extent_end(path);
3563 * In the first iteration we may have a slot that points to an
3564 * extent that ends before our start offset, so skip it.
3566 if (extent_end <= start) {
3571 /* We have an implicit hole, NO_HOLES feature is likely set. */
3572 if (last_extent_end < key.offset) {
3573 u64 search_start = last_extent_end;
3577 * First iteration, @start matches @offset and it's
3580 if (start == offset)
3581 search_start = offset;
3583 found = find_desired_extent_in_hole(inode, whence,
3584 delalloc_cached_state,
3589 start = found_start;
3593 * Didn't find data or a hole (due to delalloc) in the
3594 * implicit hole range, so need to analyze the extent.
3598 extent = btrfs_item_ptr(leaf, path->slots[0],
3599 struct btrfs_file_extent_item);
3600 type = btrfs_file_extent_type(leaf, extent);
3603 * Can't access the extent's disk_bytenr field if this is an
3604 * inline extent, since at that offset, it's where the extent
3607 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3608 (type == BTRFS_FILE_EXTENT_REG &&
3609 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3611 * Explicit hole or prealloc extent, search for delalloc.
3612 * A prealloc extent is treated like a hole.
3614 u64 search_start = key.offset;
3618 * First iteration, @start matches @offset and it's
3621 if (start == offset)
3622 search_start = offset;
3624 found = find_desired_extent_in_hole(inode, whence,
3625 delalloc_cached_state,
3630 start = found_start;
3634 * Didn't find data or a hole (due to delalloc) in the
3635 * implicit hole range, so need to analyze the next
3640 * Found a regular or inline extent.
3641 * If we are seeking for data, adjust the start offset
3642 * and stop, we're done.
3644 if (whence == SEEK_DATA) {
3645 start = max_t(u64, key.offset, offset);
3650 * Else, we are seeking for a hole, check the next file
3656 last_extent_end = extent_end;
3658 if (fatal_signal_pending(current)) {
3665 /* We have an implicit hole from the last extent found up to i_size. */
3666 if (!found && start < i_size) {
3667 found = find_desired_extent_in_hole(inode, whence,
3668 delalloc_cached_state, start,
3669 i_size - 1, &start);
3675 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3676 btrfs_free_path(path);
3681 if (whence == SEEK_DATA && start >= i_size)
3684 return min_t(loff_t, start, i_size);
3687 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3689 struct inode *inode = file->f_mapping->host;
3693 return generic_file_llseek(file, offset, whence);
3696 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3697 offset = find_desired_extent(file, offset, whence);
3698 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3705 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3708 static int btrfs_file_open(struct inode *inode, struct file *filp)
3712 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC;
3714 ret = fsverity_file_open(inode, filp);
3717 return generic_file_open(inode, filp);
3720 static int check_direct_read(struct btrfs_fs_info *fs_info,
3721 const struct iov_iter *iter, loff_t offset)
3726 ret = check_direct_IO(fs_info, iter, offset);
3730 if (!iter_is_iovec(iter))
3733 for (seg = 0; seg < iter->nr_segs; seg++)
3734 for (i = seg + 1; i < iter->nr_segs; i++)
3735 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3740 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3742 struct inode *inode = file_inode(iocb->ki_filp);
3743 size_t prev_left = 0;
3747 if (fsverity_active(inode))
3750 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3753 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3756 * This is similar to what we do for direct IO writes, see the comment
3757 * at btrfs_direct_write(), but we also disable page faults in addition
3758 * to disabling them only at the iov_iter level. This is because when
3759 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3760 * which can still trigger page fault ins despite having set ->nofault
3761 * to true of our 'to' iov_iter.
3763 * The difference to direct IO writes is that we deadlock when trying
3764 * to lock the extent range in the inode's tree during he page reads
3765 * triggered by the fault in (while for writes it is due to waiting for
3766 * our own ordered extent). This is because for direct IO reads,
3767 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3768 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3770 pagefault_disable();
3772 ret = btrfs_dio_read(iocb, to, read);
3773 to->nofault = false;
3776 /* No increment (+=) because iomap returns a cumulative value. */
3780 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3781 const size_t left = iov_iter_count(to);
3783 if (left == prev_left) {
3785 * We didn't make any progress since the last attempt,
3786 * fallback to a buffered read for the remainder of the
3787 * range. This is just to avoid any possibility of looping
3793 * We made some progress since the last retry or this is
3794 * the first time we are retrying. Fault in as many pages
3795 * as possible and retry.
3797 fault_in_iov_iter_writeable(to, left);
3802 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3803 return ret < 0 ? ret : read;
3806 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3810 if (iocb->ki_flags & IOCB_DIRECT) {
3811 ret = btrfs_direct_read(iocb, to);
3812 if (ret < 0 || !iov_iter_count(to) ||
3813 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3817 return filemap_read(iocb, to, ret);
3820 const struct file_operations btrfs_file_operations = {
3821 .llseek = btrfs_file_llseek,
3822 .read_iter = btrfs_file_read_iter,
3823 .splice_read = generic_file_splice_read,
3824 .write_iter = btrfs_file_write_iter,
3825 .splice_write = iter_file_splice_write,
3826 .mmap = btrfs_file_mmap,
3827 .open = btrfs_file_open,
3828 .release = btrfs_release_file,
3829 .get_unmapped_area = thp_get_unmapped_area,
3830 .fsync = btrfs_sync_file,
3831 .fallocate = btrfs_fallocate,
3832 .unlocked_ioctl = btrfs_ioctl,
3833 #ifdef CONFIG_COMPAT
3834 .compat_ioctl = btrfs_compat_ioctl,
3836 .remap_file_range = btrfs_remap_file_range,
3839 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3844 * So with compression we will find and lock a dirty page and clear the
3845 * first one as dirty, setup an async extent, and immediately return
3846 * with the entire range locked but with nobody actually marked with
3847 * writeback. So we can't just filemap_write_and_wait_range() and
3848 * expect it to work since it will just kick off a thread to do the
3849 * actual work. So we need to call filemap_fdatawrite_range _again_
3850 * since it will wait on the page lock, which won't be unlocked until
3851 * after the pages have been marked as writeback and so we're good to go
3852 * from there. We have to do this otherwise we'll miss the ordered
3853 * extents and that results in badness. Please Josef, do not think you
3854 * know better and pull this out at some point in the future, it is
3855 * right and you are wrong.
3857 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3858 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3859 &BTRFS_I(inode)->runtime_flags))
3860 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);