]> Git Repo - linux.git/blob - arch/x86/kvm/mmu/mmu.c
dt-bindings: Fix command line length limit calling dt-mk-schema
[linux.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <[email protected]>
15  *   Avi Kivity   <[email protected]>
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "x86.h"
21 #include "kvm_cache_regs.h"
22 #include "kvm_emulate.h"
23 #include "cpuid.h"
24
25 #include <linux/kvm_host.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/moduleparam.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/sched/signal.h>
38 #include <linux/uaccess.h>
39 #include <linux/hash.h>
40 #include <linux/kern_levels.h>
41 #include <linux/kthread.h>
42
43 #include <asm/page.h>
44 #include <asm/memtype.h>
45 #include <asm/cmpxchg.h>
46 #include <asm/e820/api.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
51
52 extern bool itlb_multihit_kvm_mitigation;
53
54 static int __read_mostly nx_huge_pages = -1;
55 #ifdef CONFIG_PREEMPT_RT
56 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
57 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
58 #else
59 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
60 #endif
61
62 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
63 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
64
65 static struct kernel_param_ops nx_huge_pages_ops = {
66         .set = set_nx_huge_pages,
67         .get = param_get_bool,
68 };
69
70 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
71         .set = set_nx_huge_pages_recovery_ratio,
72         .get = param_get_uint,
73 };
74
75 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
76 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
77 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
78                 &nx_huge_pages_recovery_ratio, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
80
81 /*
82  * When setting this variable to true it enables Two-Dimensional-Paging
83  * where the hardware walks 2 page tables:
84  * 1. the guest-virtual to guest-physical
85  * 2. while doing 1. it walks guest-physical to host-physical
86  * If the hardware supports that we don't need to do shadow paging.
87  */
88 bool tdp_enabled = false;
89
90 static int max_page_level __read_mostly;
91
92 enum {
93         AUDIT_PRE_PAGE_FAULT,
94         AUDIT_POST_PAGE_FAULT,
95         AUDIT_PRE_PTE_WRITE,
96         AUDIT_POST_PTE_WRITE,
97         AUDIT_PRE_SYNC,
98         AUDIT_POST_SYNC
99 };
100
101 #undef MMU_DEBUG
102
103 #ifdef MMU_DEBUG
104 static bool dbg = 0;
105 module_param(dbg, bool, 0644);
106
107 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
108 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
109 #define MMU_WARN_ON(x) WARN_ON(x)
110 #else
111 #define pgprintk(x...) do { } while (0)
112 #define rmap_printk(x...) do { } while (0)
113 #define MMU_WARN_ON(x) do { } while (0)
114 #endif
115
116 #define PTE_PREFETCH_NUM                8
117
118 #define PT_FIRST_AVAIL_BITS_SHIFT 10
119 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
120
121 /*
122  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
123  * Access Tracking SPTEs.
124  */
125 #define SPTE_SPECIAL_MASK (3ULL << 52)
126 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
127 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
128 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
129 #define SPTE_MMIO_MASK (3ULL << 52)
130
131 #define PT64_LEVEL_BITS 9
132
133 #define PT64_LEVEL_SHIFT(level) \
134                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
135
136 #define PT64_INDEX(address, level)\
137         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
138
139
140 #define PT32_LEVEL_BITS 10
141
142 #define PT32_LEVEL_SHIFT(level) \
143                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
144
145 #define PT32_LVL_OFFSET_MASK(level) \
146         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
147                                                 * PT32_LEVEL_BITS))) - 1))
148
149 #define PT32_INDEX(address, level)\
150         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
151
152
153 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
154 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
155 #else
156 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
157 #endif
158 #define PT64_LVL_ADDR_MASK(level) \
159         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
160                                                 * PT64_LEVEL_BITS))) - 1))
161 #define PT64_LVL_OFFSET_MASK(level) \
162         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
163                                                 * PT64_LEVEL_BITS))) - 1))
164
165 #define PT32_BASE_ADDR_MASK PAGE_MASK
166 #define PT32_DIR_BASE_ADDR_MASK \
167         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
168 #define PT32_LVL_ADDR_MASK(level) \
169         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
170                                             * PT32_LEVEL_BITS))) - 1))
171
172 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
173                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
174
175 #define ACC_EXEC_MASK    1
176 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
177 #define ACC_USER_MASK    PT_USER_MASK
178 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
179
180 /* The mask for the R/X bits in EPT PTEs */
181 #define PT64_EPT_READABLE_MASK                  0x1ull
182 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
183
184 #include <trace/events/kvm.h>
185
186 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
187 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
188
189 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
190
191 /* make pte_list_desc fit well in cache line */
192 #define PTE_LIST_EXT 3
193
194 /*
195  * Return values of handle_mmio_page_fault and mmu.page_fault:
196  * RET_PF_RETRY: let CPU fault again on the address.
197  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
198  *
199  * For handle_mmio_page_fault only:
200  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
201  */
202 enum {
203         RET_PF_RETRY = 0,
204         RET_PF_EMULATE = 1,
205         RET_PF_INVALID = 2,
206 };
207
208 struct pte_list_desc {
209         u64 *sptes[PTE_LIST_EXT];
210         struct pte_list_desc *more;
211 };
212
213 struct kvm_shadow_walk_iterator {
214         u64 addr;
215         hpa_t shadow_addr;
216         u64 *sptep;
217         int level;
218         unsigned index;
219 };
220
221 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
222         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
223                                          (_root), (_addr));                \
224              shadow_walk_okay(&(_walker));                                 \
225              shadow_walk_next(&(_walker)))
226
227 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
228         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
229              shadow_walk_okay(&(_walker));                      \
230              shadow_walk_next(&(_walker)))
231
232 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
233         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
234              shadow_walk_okay(&(_walker)) &&                            \
235                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
236              __shadow_walk_next(&(_walker), spte))
237
238 static struct kmem_cache *pte_list_desc_cache;
239 static struct kmem_cache *mmu_page_header_cache;
240 static struct percpu_counter kvm_total_used_mmu_pages;
241
242 static u64 __read_mostly shadow_nx_mask;
243 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
244 static u64 __read_mostly shadow_user_mask;
245 static u64 __read_mostly shadow_accessed_mask;
246 static u64 __read_mostly shadow_dirty_mask;
247 static u64 __read_mostly shadow_mmio_mask;
248 static u64 __read_mostly shadow_mmio_value;
249 static u64 __read_mostly shadow_mmio_access_mask;
250 static u64 __read_mostly shadow_present_mask;
251 static u64 __read_mostly shadow_me_mask;
252
253 /*
254  * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
255  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
256  * pages.
257  */
258 static u64 __read_mostly shadow_acc_track_mask;
259
260 /*
261  * The mask/shift to use for saving the original R/X bits when marking the PTE
262  * as not-present for access tracking purposes. We do not save the W bit as the
263  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
264  * restored only when a write is attempted to the page.
265  */
266 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
267                                                     PT64_EPT_EXECUTABLE_MASK;
268 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
269
270 /*
271  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
272  * to guard against L1TF attacks.
273  */
274 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
275
276 /*
277  * The number of high-order 1 bits to use in the mask above.
278  */
279 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
280
281 /*
282  * In some cases, we need to preserve the GFN of a non-present or reserved
283  * SPTE when we usurp the upper five bits of the physical address space to
284  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
285  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
286  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
287  * high and low parts.  This mask covers the lower bits of the GFN.
288  */
289 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
290
291 /*
292  * The number of non-reserved physical address bits irrespective of features
293  * that repurpose legal bits, e.g. MKTME.
294  */
295 static u8 __read_mostly shadow_phys_bits;
296
297 static void mmu_spte_set(u64 *sptep, u64 spte);
298 static bool is_executable_pte(u64 spte);
299 static union kvm_mmu_page_role
300 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
301
302 #define CREATE_TRACE_POINTS
303 #include "mmutrace.h"
304
305
306 static inline bool kvm_available_flush_tlb_with_range(void)
307 {
308         return kvm_x86_ops.tlb_remote_flush_with_range;
309 }
310
311 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
312                 struct kvm_tlb_range *range)
313 {
314         int ret = -ENOTSUPP;
315
316         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
317                 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
318
319         if (ret)
320                 kvm_flush_remote_tlbs(kvm);
321 }
322
323 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
324                 u64 start_gfn, u64 pages)
325 {
326         struct kvm_tlb_range range;
327
328         range.start_gfn = start_gfn;
329         range.pages = pages;
330
331         kvm_flush_remote_tlbs_with_range(kvm, &range);
332 }
333
334 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
335 {
336         BUG_ON((u64)(unsigned)access_mask != access_mask);
337         BUG_ON((mmio_mask & mmio_value) != mmio_value);
338         shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
339         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
340         shadow_mmio_access_mask = access_mask;
341 }
342 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
343
344 static bool is_mmio_spte(u64 spte)
345 {
346         return (spte & shadow_mmio_mask) == shadow_mmio_value;
347 }
348
349 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
350 {
351         return sp->role.ad_disabled;
352 }
353
354 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
355 {
356         /*
357          * When using the EPT page-modification log, the GPAs in the log
358          * would come from L2 rather than L1.  Therefore, we need to rely
359          * on write protection to record dirty pages.  This also bypasses
360          * PML, since writes now result in a vmexit.
361          */
362         return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
363 }
364
365 static inline bool spte_ad_enabled(u64 spte)
366 {
367         MMU_WARN_ON(is_mmio_spte(spte));
368         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
369 }
370
371 static inline bool spte_ad_need_write_protect(u64 spte)
372 {
373         MMU_WARN_ON(is_mmio_spte(spte));
374         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
375 }
376
377 static bool is_nx_huge_page_enabled(void)
378 {
379         return READ_ONCE(nx_huge_pages);
380 }
381
382 static inline u64 spte_shadow_accessed_mask(u64 spte)
383 {
384         MMU_WARN_ON(is_mmio_spte(spte));
385         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
386 }
387
388 static inline u64 spte_shadow_dirty_mask(u64 spte)
389 {
390         MMU_WARN_ON(is_mmio_spte(spte));
391         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
392 }
393
394 static inline bool is_access_track_spte(u64 spte)
395 {
396         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
397 }
398
399 /*
400  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
401  * the memslots generation and is derived as follows:
402  *
403  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
404  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
405  *
406  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
407  * the MMIO generation number, as doing so would require stealing a bit from
408  * the "real" generation number and thus effectively halve the maximum number
409  * of MMIO generations that can be handled before encountering a wrap (which
410  * requires a full MMU zap).  The flag is instead explicitly queried when
411  * checking for MMIO spte cache hits.
412  */
413 #define MMIO_SPTE_GEN_MASK              GENMASK_ULL(17, 0)
414
415 #define MMIO_SPTE_GEN_LOW_START         3
416 #define MMIO_SPTE_GEN_LOW_END           11
417 #define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
418                                                     MMIO_SPTE_GEN_LOW_START)
419
420 #define MMIO_SPTE_GEN_HIGH_START        PT64_SECOND_AVAIL_BITS_SHIFT
421 #define MMIO_SPTE_GEN_HIGH_END          62
422 #define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
423                                                     MMIO_SPTE_GEN_HIGH_START)
424
425 static u64 generation_mmio_spte_mask(u64 gen)
426 {
427         u64 mask;
428
429         WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
430         BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
431
432         mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
433         mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
434         return mask;
435 }
436
437 static u64 get_mmio_spte_generation(u64 spte)
438 {
439         u64 gen;
440
441         gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
442         gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
443         return gen;
444 }
445
446 static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
447 {
448
449         u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
450         u64 mask = generation_mmio_spte_mask(gen);
451         u64 gpa = gfn << PAGE_SHIFT;
452
453         access &= shadow_mmio_access_mask;
454         mask |= shadow_mmio_value | access;
455         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
456         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
457                 << shadow_nonpresent_or_rsvd_mask_len;
458
459         return mask;
460 }
461
462 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
463                            unsigned int access)
464 {
465         u64 mask = make_mmio_spte(vcpu, gfn, access);
466         unsigned int gen = get_mmio_spte_generation(mask);
467
468         access = mask & ACC_ALL;
469
470         trace_mark_mmio_spte(sptep, gfn, access, gen);
471         mmu_spte_set(sptep, mask);
472 }
473
474 static gfn_t get_mmio_spte_gfn(u64 spte)
475 {
476         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
477
478         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
479                & shadow_nonpresent_or_rsvd_mask;
480
481         return gpa >> PAGE_SHIFT;
482 }
483
484 static unsigned get_mmio_spte_access(u64 spte)
485 {
486         return spte & shadow_mmio_access_mask;
487 }
488
489 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
490                           kvm_pfn_t pfn, unsigned int access)
491 {
492         if (unlikely(is_noslot_pfn(pfn))) {
493                 mark_mmio_spte(vcpu, sptep, gfn, access);
494                 return true;
495         }
496
497         return false;
498 }
499
500 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
501 {
502         u64 kvm_gen, spte_gen, gen;
503
504         gen = kvm_vcpu_memslots(vcpu)->generation;
505         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
506                 return false;
507
508         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
509         spte_gen = get_mmio_spte_generation(spte);
510
511         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
512         return likely(kvm_gen == spte_gen);
513 }
514
515 /*
516  * Sets the shadow PTE masks used by the MMU.
517  *
518  * Assumptions:
519  *  - Setting either @accessed_mask or @dirty_mask requires setting both
520  *  - At least one of @accessed_mask or @acc_track_mask must be set
521  */
522 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
523                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
524                 u64 acc_track_mask, u64 me_mask)
525 {
526         BUG_ON(!dirty_mask != !accessed_mask);
527         BUG_ON(!accessed_mask && !acc_track_mask);
528         BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
529
530         shadow_user_mask = user_mask;
531         shadow_accessed_mask = accessed_mask;
532         shadow_dirty_mask = dirty_mask;
533         shadow_nx_mask = nx_mask;
534         shadow_x_mask = x_mask;
535         shadow_present_mask = p_mask;
536         shadow_acc_track_mask = acc_track_mask;
537         shadow_me_mask = me_mask;
538 }
539 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
540
541 static u8 kvm_get_shadow_phys_bits(void)
542 {
543         /*
544          * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
545          * in CPU detection code, but the processor treats those reduced bits as
546          * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
547          * the physical address bits reported by CPUID.
548          */
549         if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
550                 return cpuid_eax(0x80000008) & 0xff;
551
552         /*
553          * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
554          * custom CPUID.  Proceed with whatever the kernel found since these features
555          * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
556          */
557         return boot_cpu_data.x86_phys_bits;
558 }
559
560 static void kvm_mmu_reset_all_pte_masks(void)
561 {
562         u8 low_phys_bits;
563
564         shadow_user_mask = 0;
565         shadow_accessed_mask = 0;
566         shadow_dirty_mask = 0;
567         shadow_nx_mask = 0;
568         shadow_x_mask = 0;
569         shadow_mmio_mask = 0;
570         shadow_present_mask = 0;
571         shadow_acc_track_mask = 0;
572
573         shadow_phys_bits = kvm_get_shadow_phys_bits();
574
575         /*
576          * If the CPU has 46 or less physical address bits, then set an
577          * appropriate mask to guard against L1TF attacks. Otherwise, it is
578          * assumed that the CPU is not vulnerable to L1TF.
579          *
580          * Some Intel CPUs address the L1 cache using more PA bits than are
581          * reported by CPUID. Use the PA width of the L1 cache when possible
582          * to achieve more effective mitigation, e.g. if system RAM overlaps
583          * the most significant bits of legal physical address space.
584          */
585         shadow_nonpresent_or_rsvd_mask = 0;
586         low_phys_bits = boot_cpu_data.x86_cache_bits;
587         if (boot_cpu_data.x86_cache_bits <
588             52 - shadow_nonpresent_or_rsvd_mask_len) {
589                 shadow_nonpresent_or_rsvd_mask =
590                         rsvd_bits(boot_cpu_data.x86_cache_bits -
591                                   shadow_nonpresent_or_rsvd_mask_len,
592                                   boot_cpu_data.x86_cache_bits - 1);
593                 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
594         } else
595                 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
596
597         shadow_nonpresent_or_rsvd_lower_gfn_mask =
598                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
599 }
600
601 static int is_cpuid_PSE36(void)
602 {
603         return 1;
604 }
605
606 static int is_nx(struct kvm_vcpu *vcpu)
607 {
608         return vcpu->arch.efer & EFER_NX;
609 }
610
611 static int is_shadow_present_pte(u64 pte)
612 {
613         return (pte != 0) && !is_mmio_spte(pte);
614 }
615
616 static int is_large_pte(u64 pte)
617 {
618         return pte & PT_PAGE_SIZE_MASK;
619 }
620
621 static int is_last_spte(u64 pte, int level)
622 {
623         if (level == PT_PAGE_TABLE_LEVEL)
624                 return 1;
625         if (is_large_pte(pte))
626                 return 1;
627         return 0;
628 }
629
630 static bool is_executable_pte(u64 spte)
631 {
632         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
633 }
634
635 static kvm_pfn_t spte_to_pfn(u64 pte)
636 {
637         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
638 }
639
640 static gfn_t pse36_gfn_delta(u32 gpte)
641 {
642         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
643
644         return (gpte & PT32_DIR_PSE36_MASK) << shift;
645 }
646
647 #ifdef CONFIG_X86_64
648 static void __set_spte(u64 *sptep, u64 spte)
649 {
650         WRITE_ONCE(*sptep, spte);
651 }
652
653 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
654 {
655         WRITE_ONCE(*sptep, spte);
656 }
657
658 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
659 {
660         return xchg(sptep, spte);
661 }
662
663 static u64 __get_spte_lockless(u64 *sptep)
664 {
665         return READ_ONCE(*sptep);
666 }
667 #else
668 union split_spte {
669         struct {
670                 u32 spte_low;
671                 u32 spte_high;
672         };
673         u64 spte;
674 };
675
676 static void count_spte_clear(u64 *sptep, u64 spte)
677 {
678         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
679
680         if (is_shadow_present_pte(spte))
681                 return;
682
683         /* Ensure the spte is completely set before we increase the count */
684         smp_wmb();
685         sp->clear_spte_count++;
686 }
687
688 static void __set_spte(u64 *sptep, u64 spte)
689 {
690         union split_spte *ssptep, sspte;
691
692         ssptep = (union split_spte *)sptep;
693         sspte = (union split_spte)spte;
694
695         ssptep->spte_high = sspte.spte_high;
696
697         /*
698          * If we map the spte from nonpresent to present, We should store
699          * the high bits firstly, then set present bit, so cpu can not
700          * fetch this spte while we are setting the spte.
701          */
702         smp_wmb();
703
704         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
705 }
706
707 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
708 {
709         union split_spte *ssptep, sspte;
710
711         ssptep = (union split_spte *)sptep;
712         sspte = (union split_spte)spte;
713
714         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
715
716         /*
717          * If we map the spte from present to nonpresent, we should clear
718          * present bit firstly to avoid vcpu fetch the old high bits.
719          */
720         smp_wmb();
721
722         ssptep->spte_high = sspte.spte_high;
723         count_spte_clear(sptep, spte);
724 }
725
726 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
727 {
728         union split_spte *ssptep, sspte, orig;
729
730         ssptep = (union split_spte *)sptep;
731         sspte = (union split_spte)spte;
732
733         /* xchg acts as a barrier before the setting of the high bits */
734         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
735         orig.spte_high = ssptep->spte_high;
736         ssptep->spte_high = sspte.spte_high;
737         count_spte_clear(sptep, spte);
738
739         return orig.spte;
740 }
741
742 /*
743  * The idea using the light way get the spte on x86_32 guest is from
744  * gup_get_pte (mm/gup.c).
745  *
746  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
747  * coalesces them and we are running out of the MMU lock.  Therefore
748  * we need to protect against in-progress updates of the spte.
749  *
750  * Reading the spte while an update is in progress may get the old value
751  * for the high part of the spte.  The race is fine for a present->non-present
752  * change (because the high part of the spte is ignored for non-present spte),
753  * but for a present->present change we must reread the spte.
754  *
755  * All such changes are done in two steps (present->non-present and
756  * non-present->present), hence it is enough to count the number of
757  * present->non-present updates: if it changed while reading the spte,
758  * we might have hit the race.  This is done using clear_spte_count.
759  */
760 static u64 __get_spte_lockless(u64 *sptep)
761 {
762         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
763         union split_spte spte, *orig = (union split_spte *)sptep;
764         int count;
765
766 retry:
767         count = sp->clear_spte_count;
768         smp_rmb();
769
770         spte.spte_low = orig->spte_low;
771         smp_rmb();
772
773         spte.spte_high = orig->spte_high;
774         smp_rmb();
775
776         if (unlikely(spte.spte_low != orig->spte_low ||
777               count != sp->clear_spte_count))
778                 goto retry;
779
780         return spte.spte;
781 }
782 #endif
783
784 static bool spte_can_locklessly_be_made_writable(u64 spte)
785 {
786         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
787                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
788 }
789
790 static bool spte_has_volatile_bits(u64 spte)
791 {
792         if (!is_shadow_present_pte(spte))
793                 return false;
794
795         /*
796          * Always atomically update spte if it can be updated
797          * out of mmu-lock, it can ensure dirty bit is not lost,
798          * also, it can help us to get a stable is_writable_pte()
799          * to ensure tlb flush is not missed.
800          */
801         if (spte_can_locklessly_be_made_writable(spte) ||
802             is_access_track_spte(spte))
803                 return true;
804
805         if (spte_ad_enabled(spte)) {
806                 if ((spte & shadow_accessed_mask) == 0 ||
807                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
808                         return true;
809         }
810
811         return false;
812 }
813
814 static bool is_accessed_spte(u64 spte)
815 {
816         u64 accessed_mask = spte_shadow_accessed_mask(spte);
817
818         return accessed_mask ? spte & accessed_mask
819                              : !is_access_track_spte(spte);
820 }
821
822 static bool is_dirty_spte(u64 spte)
823 {
824         u64 dirty_mask = spte_shadow_dirty_mask(spte);
825
826         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
827 }
828
829 /* Rules for using mmu_spte_set:
830  * Set the sptep from nonpresent to present.
831  * Note: the sptep being assigned *must* be either not present
832  * or in a state where the hardware will not attempt to update
833  * the spte.
834  */
835 static void mmu_spte_set(u64 *sptep, u64 new_spte)
836 {
837         WARN_ON(is_shadow_present_pte(*sptep));
838         __set_spte(sptep, new_spte);
839 }
840
841 /*
842  * Update the SPTE (excluding the PFN), but do not track changes in its
843  * accessed/dirty status.
844  */
845 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
846 {
847         u64 old_spte = *sptep;
848
849         WARN_ON(!is_shadow_present_pte(new_spte));
850
851         if (!is_shadow_present_pte(old_spte)) {
852                 mmu_spte_set(sptep, new_spte);
853                 return old_spte;
854         }
855
856         if (!spte_has_volatile_bits(old_spte))
857                 __update_clear_spte_fast(sptep, new_spte);
858         else
859                 old_spte = __update_clear_spte_slow(sptep, new_spte);
860
861         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
862
863         return old_spte;
864 }
865
866 /* Rules for using mmu_spte_update:
867  * Update the state bits, it means the mapped pfn is not changed.
868  *
869  * Whenever we overwrite a writable spte with a read-only one we
870  * should flush remote TLBs. Otherwise rmap_write_protect
871  * will find a read-only spte, even though the writable spte
872  * might be cached on a CPU's TLB, the return value indicates this
873  * case.
874  *
875  * Returns true if the TLB needs to be flushed
876  */
877 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
878 {
879         bool flush = false;
880         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
881
882         if (!is_shadow_present_pte(old_spte))
883                 return false;
884
885         /*
886          * For the spte updated out of mmu-lock is safe, since
887          * we always atomically update it, see the comments in
888          * spte_has_volatile_bits().
889          */
890         if (spte_can_locklessly_be_made_writable(old_spte) &&
891               !is_writable_pte(new_spte))
892                 flush = true;
893
894         /*
895          * Flush TLB when accessed/dirty states are changed in the page tables,
896          * to guarantee consistency between TLB and page tables.
897          */
898
899         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
900                 flush = true;
901                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
902         }
903
904         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
905                 flush = true;
906                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
907         }
908
909         return flush;
910 }
911
912 /*
913  * Rules for using mmu_spte_clear_track_bits:
914  * It sets the sptep from present to nonpresent, and track the
915  * state bits, it is used to clear the last level sptep.
916  * Returns non-zero if the PTE was previously valid.
917  */
918 static int mmu_spte_clear_track_bits(u64 *sptep)
919 {
920         kvm_pfn_t pfn;
921         u64 old_spte = *sptep;
922
923         if (!spte_has_volatile_bits(old_spte))
924                 __update_clear_spte_fast(sptep, 0ull);
925         else
926                 old_spte = __update_clear_spte_slow(sptep, 0ull);
927
928         if (!is_shadow_present_pte(old_spte))
929                 return 0;
930
931         pfn = spte_to_pfn(old_spte);
932
933         /*
934          * KVM does not hold the refcount of the page used by
935          * kvm mmu, before reclaiming the page, we should
936          * unmap it from mmu first.
937          */
938         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
939
940         if (is_accessed_spte(old_spte))
941                 kvm_set_pfn_accessed(pfn);
942
943         if (is_dirty_spte(old_spte))
944                 kvm_set_pfn_dirty(pfn);
945
946         return 1;
947 }
948
949 /*
950  * Rules for using mmu_spte_clear_no_track:
951  * Directly clear spte without caring the state bits of sptep,
952  * it is used to set the upper level spte.
953  */
954 static void mmu_spte_clear_no_track(u64 *sptep)
955 {
956         __update_clear_spte_fast(sptep, 0ull);
957 }
958
959 static u64 mmu_spte_get_lockless(u64 *sptep)
960 {
961         return __get_spte_lockless(sptep);
962 }
963
964 static u64 mark_spte_for_access_track(u64 spte)
965 {
966         if (spte_ad_enabled(spte))
967                 return spte & ~shadow_accessed_mask;
968
969         if (is_access_track_spte(spte))
970                 return spte;
971
972         /*
973          * Making an Access Tracking PTE will result in removal of write access
974          * from the PTE. So, verify that we will be able to restore the write
975          * access in the fast page fault path later on.
976          */
977         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
978                   !spte_can_locklessly_be_made_writable(spte),
979                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
980
981         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
982                           shadow_acc_track_saved_bits_shift),
983                   "kvm: Access Tracking saved bit locations are not zero\n");
984
985         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
986                 shadow_acc_track_saved_bits_shift;
987         spte &= ~shadow_acc_track_mask;
988
989         return spte;
990 }
991
992 /* Restore an acc-track PTE back to a regular PTE */
993 static u64 restore_acc_track_spte(u64 spte)
994 {
995         u64 new_spte = spte;
996         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
997                          & shadow_acc_track_saved_bits_mask;
998
999         WARN_ON_ONCE(spte_ad_enabled(spte));
1000         WARN_ON_ONCE(!is_access_track_spte(spte));
1001
1002         new_spte &= ~shadow_acc_track_mask;
1003         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1004                       shadow_acc_track_saved_bits_shift);
1005         new_spte |= saved_bits;
1006
1007         return new_spte;
1008 }
1009
1010 /* Returns the Accessed status of the PTE and resets it at the same time. */
1011 static bool mmu_spte_age(u64 *sptep)
1012 {
1013         u64 spte = mmu_spte_get_lockless(sptep);
1014
1015         if (!is_accessed_spte(spte))
1016                 return false;
1017
1018         if (spte_ad_enabled(spte)) {
1019                 clear_bit((ffs(shadow_accessed_mask) - 1),
1020                           (unsigned long *)sptep);
1021         } else {
1022                 /*
1023                  * Capture the dirty status of the page, so that it doesn't get
1024                  * lost when the SPTE is marked for access tracking.
1025                  */
1026                 if (is_writable_pte(spte))
1027                         kvm_set_pfn_dirty(spte_to_pfn(spte));
1028
1029                 spte = mark_spte_for_access_track(spte);
1030                 mmu_spte_update_no_track(sptep, spte);
1031         }
1032
1033         return true;
1034 }
1035
1036 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1037 {
1038         /*
1039          * Prevent page table teardown by making any free-er wait during
1040          * kvm_flush_remote_tlbs() IPI to all active vcpus.
1041          */
1042         local_irq_disable();
1043
1044         /*
1045          * Make sure a following spte read is not reordered ahead of the write
1046          * to vcpu->mode.
1047          */
1048         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1049 }
1050
1051 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1052 {
1053         /*
1054          * Make sure the write to vcpu->mode is not reordered in front of
1055          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1056          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1057          */
1058         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1059         local_irq_enable();
1060 }
1061
1062 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1063                                   struct kmem_cache *base_cache, int min)
1064 {
1065         void *obj;
1066
1067         if (cache->nobjs >= min)
1068                 return 0;
1069         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1070                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1071                 if (!obj)
1072                         return cache->nobjs >= min ? 0 : -ENOMEM;
1073                 cache->objects[cache->nobjs++] = obj;
1074         }
1075         return 0;
1076 }
1077
1078 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1079 {
1080         return cache->nobjs;
1081 }
1082
1083 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1084                                   struct kmem_cache *cache)
1085 {
1086         while (mc->nobjs)
1087                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1088 }
1089
1090 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1091                                        int min)
1092 {
1093         void *page;
1094
1095         if (cache->nobjs >= min)
1096                 return 0;
1097         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1098                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1099                 if (!page)
1100                         return cache->nobjs >= min ? 0 : -ENOMEM;
1101                 cache->objects[cache->nobjs++] = page;
1102         }
1103         return 0;
1104 }
1105
1106 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1107 {
1108         while (mc->nobjs)
1109                 free_page((unsigned long)mc->objects[--mc->nobjs]);
1110 }
1111
1112 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1113 {
1114         int r;
1115
1116         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1117                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1118         if (r)
1119                 goto out;
1120         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1121         if (r)
1122                 goto out;
1123         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1124                                    mmu_page_header_cache, 4);
1125 out:
1126         return r;
1127 }
1128
1129 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1130 {
1131         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1132                                 pte_list_desc_cache);
1133         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1134         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1135                                 mmu_page_header_cache);
1136 }
1137
1138 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1139 {
1140         void *p;
1141
1142         BUG_ON(!mc->nobjs);
1143         p = mc->objects[--mc->nobjs];
1144         return p;
1145 }
1146
1147 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1148 {
1149         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1150 }
1151
1152 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1153 {
1154         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1155 }
1156
1157 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1158 {
1159         if (!sp->role.direct)
1160                 return sp->gfns[index];
1161
1162         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1163 }
1164
1165 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1166 {
1167         if (!sp->role.direct) {
1168                 sp->gfns[index] = gfn;
1169                 return;
1170         }
1171
1172         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1173                 pr_err_ratelimited("gfn mismatch under direct page %llx "
1174                                    "(expected %llx, got %llx)\n",
1175                                    sp->gfn,
1176                                    kvm_mmu_page_get_gfn(sp, index), gfn);
1177 }
1178
1179 /*
1180  * Return the pointer to the large page information for a given gfn,
1181  * handling slots that are not large page aligned.
1182  */
1183 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1184                                               struct kvm_memory_slot *slot,
1185                                               int level)
1186 {
1187         unsigned long idx;
1188
1189         idx = gfn_to_index(gfn, slot->base_gfn, level);
1190         return &slot->arch.lpage_info[level - 2][idx];
1191 }
1192
1193 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1194                                             gfn_t gfn, int count)
1195 {
1196         struct kvm_lpage_info *linfo;
1197         int i;
1198
1199         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1200                 linfo = lpage_info_slot(gfn, slot, i);
1201                 linfo->disallow_lpage += count;
1202                 WARN_ON(linfo->disallow_lpage < 0);
1203         }
1204 }
1205
1206 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1207 {
1208         update_gfn_disallow_lpage_count(slot, gfn, 1);
1209 }
1210
1211 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1212 {
1213         update_gfn_disallow_lpage_count(slot, gfn, -1);
1214 }
1215
1216 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1217 {
1218         struct kvm_memslots *slots;
1219         struct kvm_memory_slot *slot;
1220         gfn_t gfn;
1221
1222         kvm->arch.indirect_shadow_pages++;
1223         gfn = sp->gfn;
1224         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1225         slot = __gfn_to_memslot(slots, gfn);
1226
1227         /* the non-leaf shadow pages are keeping readonly. */
1228         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1229                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1230                                                     KVM_PAGE_TRACK_WRITE);
1231
1232         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1233 }
1234
1235 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1236 {
1237         if (sp->lpage_disallowed)
1238                 return;
1239
1240         ++kvm->stat.nx_lpage_splits;
1241         list_add_tail(&sp->lpage_disallowed_link,
1242                       &kvm->arch.lpage_disallowed_mmu_pages);
1243         sp->lpage_disallowed = true;
1244 }
1245
1246 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1247 {
1248         struct kvm_memslots *slots;
1249         struct kvm_memory_slot *slot;
1250         gfn_t gfn;
1251
1252         kvm->arch.indirect_shadow_pages--;
1253         gfn = sp->gfn;
1254         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1255         slot = __gfn_to_memslot(slots, gfn);
1256         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1257                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1258                                                        KVM_PAGE_TRACK_WRITE);
1259
1260         kvm_mmu_gfn_allow_lpage(slot, gfn);
1261 }
1262
1263 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1264 {
1265         --kvm->stat.nx_lpage_splits;
1266         sp->lpage_disallowed = false;
1267         list_del(&sp->lpage_disallowed_link);
1268 }
1269
1270 static struct kvm_memory_slot *
1271 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1272                             bool no_dirty_log)
1273 {
1274         struct kvm_memory_slot *slot;
1275
1276         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1277         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1278                 return NULL;
1279         if (no_dirty_log && slot->dirty_bitmap)
1280                 return NULL;
1281
1282         return slot;
1283 }
1284
1285 /*
1286  * About rmap_head encoding:
1287  *
1288  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1289  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1290  * pte_list_desc containing more mappings.
1291  */
1292
1293 /*
1294  * Returns the number of pointers in the rmap chain, not counting the new one.
1295  */
1296 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1297                         struct kvm_rmap_head *rmap_head)
1298 {
1299         struct pte_list_desc *desc;
1300         int i, count = 0;
1301
1302         if (!rmap_head->val) {
1303                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1304                 rmap_head->val = (unsigned long)spte;
1305         } else if (!(rmap_head->val & 1)) {
1306                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1307                 desc = mmu_alloc_pte_list_desc(vcpu);
1308                 desc->sptes[0] = (u64 *)rmap_head->val;
1309                 desc->sptes[1] = spte;
1310                 rmap_head->val = (unsigned long)desc | 1;
1311                 ++count;
1312         } else {
1313                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1314                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1315                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1316                         desc = desc->more;
1317                         count += PTE_LIST_EXT;
1318                 }
1319                 if (desc->sptes[PTE_LIST_EXT-1]) {
1320                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1321                         desc = desc->more;
1322                 }
1323                 for (i = 0; desc->sptes[i]; ++i)
1324                         ++count;
1325                 desc->sptes[i] = spte;
1326         }
1327         return count;
1328 }
1329
1330 static void
1331 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1332                            struct pte_list_desc *desc, int i,
1333                            struct pte_list_desc *prev_desc)
1334 {
1335         int j;
1336
1337         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1338                 ;
1339         desc->sptes[i] = desc->sptes[j];
1340         desc->sptes[j] = NULL;
1341         if (j != 0)
1342                 return;
1343         if (!prev_desc && !desc->more)
1344                 rmap_head->val = 0;
1345         else
1346                 if (prev_desc)
1347                         prev_desc->more = desc->more;
1348                 else
1349                         rmap_head->val = (unsigned long)desc->more | 1;
1350         mmu_free_pte_list_desc(desc);
1351 }
1352
1353 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1354 {
1355         struct pte_list_desc *desc;
1356         struct pte_list_desc *prev_desc;
1357         int i;
1358
1359         if (!rmap_head->val) {
1360                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1361                 BUG();
1362         } else if (!(rmap_head->val & 1)) {
1363                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1364                 if ((u64 *)rmap_head->val != spte) {
1365                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1366                         BUG();
1367                 }
1368                 rmap_head->val = 0;
1369         } else {
1370                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1371                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1372                 prev_desc = NULL;
1373                 while (desc) {
1374                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1375                                 if (desc->sptes[i] == spte) {
1376                                         pte_list_desc_remove_entry(rmap_head,
1377                                                         desc, i, prev_desc);
1378                                         return;
1379                                 }
1380                         }
1381                         prev_desc = desc;
1382                         desc = desc->more;
1383                 }
1384                 pr_err("%s: %p many->many\n", __func__, spte);
1385                 BUG();
1386         }
1387 }
1388
1389 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1390 {
1391         mmu_spte_clear_track_bits(sptep);
1392         __pte_list_remove(sptep, rmap_head);
1393 }
1394
1395 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1396                                            struct kvm_memory_slot *slot)
1397 {
1398         unsigned long idx;
1399
1400         idx = gfn_to_index(gfn, slot->base_gfn, level);
1401         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1402 }
1403
1404 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1405                                          struct kvm_mmu_page *sp)
1406 {
1407         struct kvm_memslots *slots;
1408         struct kvm_memory_slot *slot;
1409
1410         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1411         slot = __gfn_to_memslot(slots, gfn);
1412         return __gfn_to_rmap(gfn, sp->role.level, slot);
1413 }
1414
1415 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1416 {
1417         struct kvm_mmu_memory_cache *cache;
1418
1419         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1420         return mmu_memory_cache_free_objects(cache);
1421 }
1422
1423 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1424 {
1425         struct kvm_mmu_page *sp;
1426         struct kvm_rmap_head *rmap_head;
1427
1428         sp = page_header(__pa(spte));
1429         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1430         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1431         return pte_list_add(vcpu, spte, rmap_head);
1432 }
1433
1434 static void rmap_remove(struct kvm *kvm, u64 *spte)
1435 {
1436         struct kvm_mmu_page *sp;
1437         gfn_t gfn;
1438         struct kvm_rmap_head *rmap_head;
1439
1440         sp = page_header(__pa(spte));
1441         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1442         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1443         __pte_list_remove(spte, rmap_head);
1444 }
1445
1446 /*
1447  * Used by the following functions to iterate through the sptes linked by a
1448  * rmap.  All fields are private and not assumed to be used outside.
1449  */
1450 struct rmap_iterator {
1451         /* private fields */
1452         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1453         int pos;                        /* index of the sptep */
1454 };
1455
1456 /*
1457  * Iteration must be started by this function.  This should also be used after
1458  * removing/dropping sptes from the rmap link because in such cases the
1459  * information in the iterator may not be valid.
1460  *
1461  * Returns sptep if found, NULL otherwise.
1462  */
1463 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1464                            struct rmap_iterator *iter)
1465 {
1466         u64 *sptep;
1467
1468         if (!rmap_head->val)
1469                 return NULL;
1470
1471         if (!(rmap_head->val & 1)) {
1472                 iter->desc = NULL;
1473                 sptep = (u64 *)rmap_head->val;
1474                 goto out;
1475         }
1476
1477         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1478         iter->pos = 0;
1479         sptep = iter->desc->sptes[iter->pos];
1480 out:
1481         BUG_ON(!is_shadow_present_pte(*sptep));
1482         return sptep;
1483 }
1484
1485 /*
1486  * Must be used with a valid iterator: e.g. after rmap_get_first().
1487  *
1488  * Returns sptep if found, NULL otherwise.
1489  */
1490 static u64 *rmap_get_next(struct rmap_iterator *iter)
1491 {
1492         u64 *sptep;
1493
1494         if (iter->desc) {
1495                 if (iter->pos < PTE_LIST_EXT - 1) {
1496                         ++iter->pos;
1497                         sptep = iter->desc->sptes[iter->pos];
1498                         if (sptep)
1499                                 goto out;
1500                 }
1501
1502                 iter->desc = iter->desc->more;
1503
1504                 if (iter->desc) {
1505                         iter->pos = 0;
1506                         /* desc->sptes[0] cannot be NULL */
1507                         sptep = iter->desc->sptes[iter->pos];
1508                         goto out;
1509                 }
1510         }
1511
1512         return NULL;
1513 out:
1514         BUG_ON(!is_shadow_present_pte(*sptep));
1515         return sptep;
1516 }
1517
1518 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1519         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1520              _spte_; _spte_ = rmap_get_next(_iter_))
1521
1522 static void drop_spte(struct kvm *kvm, u64 *sptep)
1523 {
1524         if (mmu_spte_clear_track_bits(sptep))
1525                 rmap_remove(kvm, sptep);
1526 }
1527
1528
1529 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1530 {
1531         if (is_large_pte(*sptep)) {
1532                 WARN_ON(page_header(__pa(sptep))->role.level ==
1533                         PT_PAGE_TABLE_LEVEL);
1534                 drop_spte(kvm, sptep);
1535                 --kvm->stat.lpages;
1536                 return true;
1537         }
1538
1539         return false;
1540 }
1541
1542 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1543 {
1544         if (__drop_large_spte(vcpu->kvm, sptep)) {
1545                 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1546
1547                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1548                         KVM_PAGES_PER_HPAGE(sp->role.level));
1549         }
1550 }
1551
1552 /*
1553  * Write-protect on the specified @sptep, @pt_protect indicates whether
1554  * spte write-protection is caused by protecting shadow page table.
1555  *
1556  * Note: write protection is difference between dirty logging and spte
1557  * protection:
1558  * - for dirty logging, the spte can be set to writable at anytime if
1559  *   its dirty bitmap is properly set.
1560  * - for spte protection, the spte can be writable only after unsync-ing
1561  *   shadow page.
1562  *
1563  * Return true if tlb need be flushed.
1564  */
1565 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1566 {
1567         u64 spte = *sptep;
1568
1569         if (!is_writable_pte(spte) &&
1570               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1571                 return false;
1572
1573         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1574
1575         if (pt_protect)
1576                 spte &= ~SPTE_MMU_WRITEABLE;
1577         spte = spte & ~PT_WRITABLE_MASK;
1578
1579         return mmu_spte_update(sptep, spte);
1580 }
1581
1582 static bool __rmap_write_protect(struct kvm *kvm,
1583                                  struct kvm_rmap_head *rmap_head,
1584                                  bool pt_protect)
1585 {
1586         u64 *sptep;
1587         struct rmap_iterator iter;
1588         bool flush = false;
1589
1590         for_each_rmap_spte(rmap_head, &iter, sptep)
1591                 flush |= spte_write_protect(sptep, pt_protect);
1592
1593         return flush;
1594 }
1595
1596 static bool spte_clear_dirty(u64 *sptep)
1597 {
1598         u64 spte = *sptep;
1599
1600         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1601
1602         MMU_WARN_ON(!spte_ad_enabled(spte));
1603         spte &= ~shadow_dirty_mask;
1604         return mmu_spte_update(sptep, spte);
1605 }
1606
1607 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1608 {
1609         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1610                                                (unsigned long *)sptep);
1611         if (was_writable && !spte_ad_enabled(*sptep))
1612                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1613
1614         return was_writable;
1615 }
1616
1617 /*
1618  * Gets the GFN ready for another round of dirty logging by clearing the
1619  *      - D bit on ad-enabled SPTEs, and
1620  *      - W bit on ad-disabled SPTEs.
1621  * Returns true iff any D or W bits were cleared.
1622  */
1623 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1624 {
1625         u64 *sptep;
1626         struct rmap_iterator iter;
1627         bool flush = false;
1628
1629         for_each_rmap_spte(rmap_head, &iter, sptep)
1630                 if (spte_ad_need_write_protect(*sptep))
1631                         flush |= spte_wrprot_for_clear_dirty(sptep);
1632                 else
1633                         flush |= spte_clear_dirty(sptep);
1634
1635         return flush;
1636 }
1637
1638 static bool spte_set_dirty(u64 *sptep)
1639 {
1640         u64 spte = *sptep;
1641
1642         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1643
1644         /*
1645          * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1646          * do not bother adding back write access to pages marked
1647          * SPTE_AD_WRPROT_ONLY_MASK.
1648          */
1649         spte |= shadow_dirty_mask;
1650
1651         return mmu_spte_update(sptep, spte);
1652 }
1653
1654 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1655 {
1656         u64 *sptep;
1657         struct rmap_iterator iter;
1658         bool flush = false;
1659
1660         for_each_rmap_spte(rmap_head, &iter, sptep)
1661                 if (spte_ad_enabled(*sptep))
1662                         flush |= spte_set_dirty(sptep);
1663
1664         return flush;
1665 }
1666
1667 /**
1668  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1669  * @kvm: kvm instance
1670  * @slot: slot to protect
1671  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1672  * @mask: indicates which pages we should protect
1673  *
1674  * Used when we do not need to care about huge page mappings: e.g. during dirty
1675  * logging we do not have any such mappings.
1676  */
1677 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1678                                      struct kvm_memory_slot *slot,
1679                                      gfn_t gfn_offset, unsigned long mask)
1680 {
1681         struct kvm_rmap_head *rmap_head;
1682
1683         while (mask) {
1684                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1685                                           PT_PAGE_TABLE_LEVEL, slot);
1686                 __rmap_write_protect(kvm, rmap_head, false);
1687
1688                 /* clear the first set bit */
1689                 mask &= mask - 1;
1690         }
1691 }
1692
1693 /**
1694  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1695  * protect the page if the D-bit isn't supported.
1696  * @kvm: kvm instance
1697  * @slot: slot to clear D-bit
1698  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1699  * @mask: indicates which pages we should clear D-bit
1700  *
1701  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1702  */
1703 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1704                                      struct kvm_memory_slot *slot,
1705                                      gfn_t gfn_offset, unsigned long mask)
1706 {
1707         struct kvm_rmap_head *rmap_head;
1708
1709         while (mask) {
1710                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1711                                           PT_PAGE_TABLE_LEVEL, slot);
1712                 __rmap_clear_dirty(kvm, rmap_head);
1713
1714                 /* clear the first set bit */
1715                 mask &= mask - 1;
1716         }
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1719
1720 /**
1721  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1722  * PT level pages.
1723  *
1724  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1725  * enable dirty logging for them.
1726  *
1727  * Used when we do not need to care about huge page mappings: e.g. during dirty
1728  * logging we do not have any such mappings.
1729  */
1730 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1731                                 struct kvm_memory_slot *slot,
1732                                 gfn_t gfn_offset, unsigned long mask)
1733 {
1734         if (kvm_x86_ops.enable_log_dirty_pt_masked)
1735                 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1736                                 mask);
1737         else
1738                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1739 }
1740
1741 /**
1742  * kvm_arch_write_log_dirty - emulate dirty page logging
1743  * @vcpu: Guest mode vcpu
1744  *
1745  * Emulate arch specific page modification logging for the
1746  * nested hypervisor
1747  */
1748 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1749 {
1750         if (kvm_x86_ops.write_log_dirty)
1751                 return kvm_x86_ops.write_log_dirty(vcpu);
1752
1753         return 0;
1754 }
1755
1756 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1757                                     struct kvm_memory_slot *slot, u64 gfn)
1758 {
1759         struct kvm_rmap_head *rmap_head;
1760         int i;
1761         bool write_protected = false;
1762
1763         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1764                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1765                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1766         }
1767
1768         return write_protected;
1769 }
1770
1771 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1772 {
1773         struct kvm_memory_slot *slot;
1774
1775         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1776         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1777 }
1778
1779 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1780 {
1781         u64 *sptep;
1782         struct rmap_iterator iter;
1783         bool flush = false;
1784
1785         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1786                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1787
1788                 pte_list_remove(rmap_head, sptep);
1789                 flush = true;
1790         }
1791
1792         return flush;
1793 }
1794
1795 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1796                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1797                            unsigned long data)
1798 {
1799         return kvm_zap_rmapp(kvm, rmap_head);
1800 }
1801
1802 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1803                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1804                              unsigned long data)
1805 {
1806         u64 *sptep;
1807         struct rmap_iterator iter;
1808         int need_flush = 0;
1809         u64 new_spte;
1810         pte_t *ptep = (pte_t *)data;
1811         kvm_pfn_t new_pfn;
1812
1813         WARN_ON(pte_huge(*ptep));
1814         new_pfn = pte_pfn(*ptep);
1815
1816 restart:
1817         for_each_rmap_spte(rmap_head, &iter, sptep) {
1818                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1819                             sptep, *sptep, gfn, level);
1820
1821                 need_flush = 1;
1822
1823                 if (pte_write(*ptep)) {
1824                         pte_list_remove(rmap_head, sptep);
1825                         goto restart;
1826                 } else {
1827                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1828                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1829
1830                         new_spte &= ~PT_WRITABLE_MASK;
1831                         new_spte &= ~SPTE_HOST_WRITEABLE;
1832
1833                         new_spte = mark_spte_for_access_track(new_spte);
1834
1835                         mmu_spte_clear_track_bits(sptep);
1836                         mmu_spte_set(sptep, new_spte);
1837                 }
1838         }
1839
1840         if (need_flush && kvm_available_flush_tlb_with_range()) {
1841                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1842                 return 0;
1843         }
1844
1845         return need_flush;
1846 }
1847
1848 struct slot_rmap_walk_iterator {
1849         /* input fields. */
1850         struct kvm_memory_slot *slot;
1851         gfn_t start_gfn;
1852         gfn_t end_gfn;
1853         int start_level;
1854         int end_level;
1855
1856         /* output fields. */
1857         gfn_t gfn;
1858         struct kvm_rmap_head *rmap;
1859         int level;
1860
1861         /* private field. */
1862         struct kvm_rmap_head *end_rmap;
1863 };
1864
1865 static void
1866 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1867 {
1868         iterator->level = level;
1869         iterator->gfn = iterator->start_gfn;
1870         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1871         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1872                                            iterator->slot);
1873 }
1874
1875 static void
1876 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1877                     struct kvm_memory_slot *slot, int start_level,
1878                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1879 {
1880         iterator->slot = slot;
1881         iterator->start_level = start_level;
1882         iterator->end_level = end_level;
1883         iterator->start_gfn = start_gfn;
1884         iterator->end_gfn = end_gfn;
1885
1886         rmap_walk_init_level(iterator, iterator->start_level);
1887 }
1888
1889 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1890 {
1891         return !!iterator->rmap;
1892 }
1893
1894 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1895 {
1896         if (++iterator->rmap <= iterator->end_rmap) {
1897                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1898                 return;
1899         }
1900
1901         if (++iterator->level > iterator->end_level) {
1902                 iterator->rmap = NULL;
1903                 return;
1904         }
1905
1906         rmap_walk_init_level(iterator, iterator->level);
1907 }
1908
1909 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1910            _start_gfn, _end_gfn, _iter_)                                \
1911         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1912                                  _end_level_, _start_gfn, _end_gfn);    \
1913              slot_rmap_walk_okay(_iter_);                               \
1914              slot_rmap_walk_next(_iter_))
1915
1916 static int kvm_handle_hva_range(struct kvm *kvm,
1917                                 unsigned long start,
1918                                 unsigned long end,
1919                                 unsigned long data,
1920                                 int (*handler)(struct kvm *kvm,
1921                                                struct kvm_rmap_head *rmap_head,
1922                                                struct kvm_memory_slot *slot,
1923                                                gfn_t gfn,
1924                                                int level,
1925                                                unsigned long data))
1926 {
1927         struct kvm_memslots *slots;
1928         struct kvm_memory_slot *memslot;
1929         struct slot_rmap_walk_iterator iterator;
1930         int ret = 0;
1931         int i;
1932
1933         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1934                 slots = __kvm_memslots(kvm, i);
1935                 kvm_for_each_memslot(memslot, slots) {
1936                         unsigned long hva_start, hva_end;
1937                         gfn_t gfn_start, gfn_end;
1938
1939                         hva_start = max(start, memslot->userspace_addr);
1940                         hva_end = min(end, memslot->userspace_addr +
1941                                       (memslot->npages << PAGE_SHIFT));
1942                         if (hva_start >= hva_end)
1943                                 continue;
1944                         /*
1945                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1946                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1947                          */
1948                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1949                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1950
1951                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1952                                                  PT_MAX_HUGEPAGE_LEVEL,
1953                                                  gfn_start, gfn_end - 1,
1954                                                  &iterator)
1955                                 ret |= handler(kvm, iterator.rmap, memslot,
1956                                                iterator.gfn, iterator.level, data);
1957                 }
1958         }
1959
1960         return ret;
1961 }
1962
1963 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1964                           unsigned long data,
1965                           int (*handler)(struct kvm *kvm,
1966                                          struct kvm_rmap_head *rmap_head,
1967                                          struct kvm_memory_slot *slot,
1968                                          gfn_t gfn, int level,
1969                                          unsigned long data))
1970 {
1971         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1972 }
1973
1974 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1975 {
1976         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1977 }
1978
1979 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1980 {
1981         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1982 }
1983
1984 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1985                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1986                          unsigned long data)
1987 {
1988         u64 *sptep;
1989         struct rmap_iterator uninitialized_var(iter);
1990         int young = 0;
1991
1992         for_each_rmap_spte(rmap_head, &iter, sptep)
1993                 young |= mmu_spte_age(sptep);
1994
1995         trace_kvm_age_page(gfn, level, slot, young);
1996         return young;
1997 }
1998
1999 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2000                               struct kvm_memory_slot *slot, gfn_t gfn,
2001                               int level, unsigned long data)
2002 {
2003         u64 *sptep;
2004         struct rmap_iterator iter;
2005
2006         for_each_rmap_spte(rmap_head, &iter, sptep)
2007                 if (is_accessed_spte(*sptep))
2008                         return 1;
2009         return 0;
2010 }
2011
2012 #define RMAP_RECYCLE_THRESHOLD 1000
2013
2014 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2015 {
2016         struct kvm_rmap_head *rmap_head;
2017         struct kvm_mmu_page *sp;
2018
2019         sp = page_header(__pa(spte));
2020
2021         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2022
2023         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2024         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2025                         KVM_PAGES_PER_HPAGE(sp->role.level));
2026 }
2027
2028 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2029 {
2030         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2031 }
2032
2033 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2034 {
2035         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2036 }
2037
2038 #ifdef MMU_DEBUG
2039 static int is_empty_shadow_page(u64 *spt)
2040 {
2041         u64 *pos;
2042         u64 *end;
2043
2044         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2045                 if (is_shadow_present_pte(*pos)) {
2046                         printk(KERN_ERR "%s: %p %llx\n", __func__,
2047                                pos, *pos);
2048                         return 0;
2049                 }
2050         return 1;
2051 }
2052 #endif
2053
2054 /*
2055  * This value is the sum of all of the kvm instances's
2056  * kvm->arch.n_used_mmu_pages values.  We need a global,
2057  * aggregate version in order to make the slab shrinker
2058  * faster
2059  */
2060 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2061 {
2062         kvm->arch.n_used_mmu_pages += nr;
2063         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2064 }
2065
2066 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2067 {
2068         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2069         hlist_del(&sp->hash_link);
2070         list_del(&sp->link);
2071         free_page((unsigned long)sp->spt);
2072         if (!sp->role.direct)
2073                 free_page((unsigned long)sp->gfns);
2074         kmem_cache_free(mmu_page_header_cache, sp);
2075 }
2076
2077 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2078 {
2079         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2080 }
2081
2082 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2083                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2084 {
2085         if (!parent_pte)
2086                 return;
2087
2088         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2089 }
2090
2091 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2092                                        u64 *parent_pte)
2093 {
2094         __pte_list_remove(parent_pte, &sp->parent_ptes);
2095 }
2096
2097 static void drop_parent_pte(struct kvm_mmu_page *sp,
2098                             u64 *parent_pte)
2099 {
2100         mmu_page_remove_parent_pte(sp, parent_pte);
2101         mmu_spte_clear_no_track(parent_pte);
2102 }
2103
2104 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2105 {
2106         struct kvm_mmu_page *sp;
2107
2108         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2109         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2110         if (!direct)
2111                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2112         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2113
2114         /*
2115          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2116          * depends on valid pages being added to the head of the list.  See
2117          * comments in kvm_zap_obsolete_pages().
2118          */
2119         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2120         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2121         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2122         return sp;
2123 }
2124
2125 static void mark_unsync(u64 *spte);
2126 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2127 {
2128         u64 *sptep;
2129         struct rmap_iterator iter;
2130
2131         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2132                 mark_unsync(sptep);
2133         }
2134 }
2135
2136 static void mark_unsync(u64 *spte)
2137 {
2138         struct kvm_mmu_page *sp;
2139         unsigned int index;
2140
2141         sp = page_header(__pa(spte));
2142         index = spte - sp->spt;
2143         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2144                 return;
2145         if (sp->unsync_children++)
2146                 return;
2147         kvm_mmu_mark_parents_unsync(sp);
2148 }
2149
2150 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2151                                struct kvm_mmu_page *sp)
2152 {
2153         return 0;
2154 }
2155
2156 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2157 {
2158 }
2159
2160 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2161                                  struct kvm_mmu_page *sp, u64 *spte,
2162                                  const void *pte)
2163 {
2164         WARN_ON(1);
2165 }
2166
2167 #define KVM_PAGE_ARRAY_NR 16
2168
2169 struct kvm_mmu_pages {
2170         struct mmu_page_and_offset {
2171                 struct kvm_mmu_page *sp;
2172                 unsigned int idx;
2173         } page[KVM_PAGE_ARRAY_NR];
2174         unsigned int nr;
2175 };
2176
2177 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2178                          int idx)
2179 {
2180         int i;
2181
2182         if (sp->unsync)
2183                 for (i=0; i < pvec->nr; i++)
2184                         if (pvec->page[i].sp == sp)
2185                                 return 0;
2186
2187         pvec->page[pvec->nr].sp = sp;
2188         pvec->page[pvec->nr].idx = idx;
2189         pvec->nr++;
2190         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2191 }
2192
2193 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2194 {
2195         --sp->unsync_children;
2196         WARN_ON((int)sp->unsync_children < 0);
2197         __clear_bit(idx, sp->unsync_child_bitmap);
2198 }
2199
2200 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2201                            struct kvm_mmu_pages *pvec)
2202 {
2203         int i, ret, nr_unsync_leaf = 0;
2204
2205         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2206                 struct kvm_mmu_page *child;
2207                 u64 ent = sp->spt[i];
2208
2209                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2210                         clear_unsync_child_bit(sp, i);
2211                         continue;
2212                 }
2213
2214                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2215
2216                 if (child->unsync_children) {
2217                         if (mmu_pages_add(pvec, child, i))
2218                                 return -ENOSPC;
2219
2220                         ret = __mmu_unsync_walk(child, pvec);
2221                         if (!ret) {
2222                                 clear_unsync_child_bit(sp, i);
2223                                 continue;
2224                         } else if (ret > 0) {
2225                                 nr_unsync_leaf += ret;
2226                         } else
2227                                 return ret;
2228                 } else if (child->unsync) {
2229                         nr_unsync_leaf++;
2230                         if (mmu_pages_add(pvec, child, i))
2231                                 return -ENOSPC;
2232                 } else
2233                         clear_unsync_child_bit(sp, i);
2234         }
2235
2236         return nr_unsync_leaf;
2237 }
2238
2239 #define INVALID_INDEX (-1)
2240
2241 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2242                            struct kvm_mmu_pages *pvec)
2243 {
2244         pvec->nr = 0;
2245         if (!sp->unsync_children)
2246                 return 0;
2247
2248         mmu_pages_add(pvec, sp, INVALID_INDEX);
2249         return __mmu_unsync_walk(sp, pvec);
2250 }
2251
2252 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2253 {
2254         WARN_ON(!sp->unsync);
2255         trace_kvm_mmu_sync_page(sp);
2256         sp->unsync = 0;
2257         --kvm->stat.mmu_unsync;
2258 }
2259
2260 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2261                                      struct list_head *invalid_list);
2262 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2263                                     struct list_head *invalid_list);
2264
2265
2266 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2267         hlist_for_each_entry(_sp,                                       \
2268           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2269                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
2270                 } else
2271
2272 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2273         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2274                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2275
2276 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2277 {
2278         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2279 }
2280
2281 /* @sp->gfn should be write-protected at the call site */
2282 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2283                             struct list_head *invalid_list)
2284 {
2285         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2286             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2287                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2288                 return false;
2289         }
2290
2291         return true;
2292 }
2293
2294 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2295                                         struct list_head *invalid_list,
2296                                         bool remote_flush)
2297 {
2298         if (!remote_flush && list_empty(invalid_list))
2299                 return false;
2300
2301         if (!list_empty(invalid_list))
2302                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2303         else
2304                 kvm_flush_remote_tlbs(kvm);
2305         return true;
2306 }
2307
2308 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2309                                  struct list_head *invalid_list,
2310                                  bool remote_flush, bool local_flush)
2311 {
2312         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2313                 return;
2314
2315         if (local_flush)
2316                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2317 }
2318
2319 #ifdef CONFIG_KVM_MMU_AUDIT
2320 #include "mmu_audit.c"
2321 #else
2322 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2323 static void mmu_audit_disable(void) { }
2324 #endif
2325
2326 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2327 {
2328         return sp->role.invalid ||
2329                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2330 }
2331
2332 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2333                          struct list_head *invalid_list)
2334 {
2335         kvm_unlink_unsync_page(vcpu->kvm, sp);
2336         return __kvm_sync_page(vcpu, sp, invalid_list);
2337 }
2338
2339 /* @gfn should be write-protected at the call site */
2340 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2341                            struct list_head *invalid_list)
2342 {
2343         struct kvm_mmu_page *s;
2344         bool ret = false;
2345
2346         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2347                 if (!s->unsync)
2348                         continue;
2349
2350                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2351                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2352         }
2353
2354         return ret;
2355 }
2356
2357 struct mmu_page_path {
2358         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2359         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2360 };
2361
2362 #define for_each_sp(pvec, sp, parents, i)                       \
2363                 for (i = mmu_pages_first(&pvec, &parents);      \
2364                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2365                         i = mmu_pages_next(&pvec, &parents, i))
2366
2367 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2368                           struct mmu_page_path *parents,
2369                           int i)
2370 {
2371         int n;
2372
2373         for (n = i+1; n < pvec->nr; n++) {
2374                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2375                 unsigned idx = pvec->page[n].idx;
2376                 int level = sp->role.level;
2377
2378                 parents->idx[level-1] = idx;
2379                 if (level == PT_PAGE_TABLE_LEVEL)
2380                         break;
2381
2382                 parents->parent[level-2] = sp;
2383         }
2384
2385         return n;
2386 }
2387
2388 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2389                            struct mmu_page_path *parents)
2390 {
2391         struct kvm_mmu_page *sp;
2392         int level;
2393
2394         if (pvec->nr == 0)
2395                 return 0;
2396
2397         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2398
2399         sp = pvec->page[0].sp;
2400         level = sp->role.level;
2401         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2402
2403         parents->parent[level-2] = sp;
2404
2405         /* Also set up a sentinel.  Further entries in pvec are all
2406          * children of sp, so this element is never overwritten.
2407          */
2408         parents->parent[level-1] = NULL;
2409         return mmu_pages_next(pvec, parents, 0);
2410 }
2411
2412 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2413 {
2414         struct kvm_mmu_page *sp;
2415         unsigned int level = 0;
2416
2417         do {
2418                 unsigned int idx = parents->idx[level];
2419                 sp = parents->parent[level];
2420                 if (!sp)
2421                         return;
2422
2423                 WARN_ON(idx == INVALID_INDEX);
2424                 clear_unsync_child_bit(sp, idx);
2425                 level++;
2426         } while (!sp->unsync_children);
2427 }
2428
2429 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2430                               struct kvm_mmu_page *parent)
2431 {
2432         int i;
2433         struct kvm_mmu_page *sp;
2434         struct mmu_page_path parents;
2435         struct kvm_mmu_pages pages;
2436         LIST_HEAD(invalid_list);
2437         bool flush = false;
2438
2439         while (mmu_unsync_walk(parent, &pages)) {
2440                 bool protected = false;
2441
2442                 for_each_sp(pages, sp, parents, i)
2443                         protected |= rmap_write_protect(vcpu, sp->gfn);
2444
2445                 if (protected) {
2446                         kvm_flush_remote_tlbs(vcpu->kvm);
2447                         flush = false;
2448                 }
2449
2450                 for_each_sp(pages, sp, parents, i) {
2451                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2452                         mmu_pages_clear_parents(&parents);
2453                 }
2454                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2455                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2456                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2457                         flush = false;
2458                 }
2459         }
2460
2461         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2462 }
2463
2464 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2465 {
2466         atomic_set(&sp->write_flooding_count,  0);
2467 }
2468
2469 static void clear_sp_write_flooding_count(u64 *spte)
2470 {
2471         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2472
2473         __clear_sp_write_flooding_count(sp);
2474 }
2475
2476 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2477                                              gfn_t gfn,
2478                                              gva_t gaddr,
2479                                              unsigned level,
2480                                              int direct,
2481                                              unsigned int access)
2482 {
2483         union kvm_mmu_page_role role;
2484         unsigned quadrant;
2485         struct kvm_mmu_page *sp;
2486         bool need_sync = false;
2487         bool flush = false;
2488         int collisions = 0;
2489         LIST_HEAD(invalid_list);
2490
2491         role = vcpu->arch.mmu->mmu_role.base;
2492         role.level = level;
2493         role.direct = direct;
2494         if (role.direct)
2495                 role.gpte_is_8_bytes = true;
2496         role.access = access;
2497         if (!vcpu->arch.mmu->direct_map
2498             && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2499                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2500                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2501                 role.quadrant = quadrant;
2502         }
2503         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2504                 if (sp->gfn != gfn) {
2505                         collisions++;
2506                         continue;
2507                 }
2508
2509                 if (!need_sync && sp->unsync)
2510                         need_sync = true;
2511
2512                 if (sp->role.word != role.word)
2513                         continue;
2514
2515                 if (sp->unsync) {
2516                         /* The page is good, but __kvm_sync_page might still end
2517                          * up zapping it.  If so, break in order to rebuild it.
2518                          */
2519                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2520                                 break;
2521
2522                         WARN_ON(!list_empty(&invalid_list));
2523                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2524                 }
2525
2526                 if (sp->unsync_children)
2527                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2528
2529                 __clear_sp_write_flooding_count(sp);
2530                 trace_kvm_mmu_get_page(sp, false);
2531                 goto out;
2532         }
2533
2534         ++vcpu->kvm->stat.mmu_cache_miss;
2535
2536         sp = kvm_mmu_alloc_page(vcpu, direct);
2537
2538         sp->gfn = gfn;
2539         sp->role = role;
2540         hlist_add_head(&sp->hash_link,
2541                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2542         if (!direct) {
2543                 /*
2544                  * we should do write protection before syncing pages
2545                  * otherwise the content of the synced shadow page may
2546                  * be inconsistent with guest page table.
2547                  */
2548                 account_shadowed(vcpu->kvm, sp);
2549                 if (level == PT_PAGE_TABLE_LEVEL &&
2550                       rmap_write_protect(vcpu, gfn))
2551                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2552
2553                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2554                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2555         }
2556         clear_page(sp->spt);
2557         trace_kvm_mmu_get_page(sp, true);
2558
2559         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2560 out:
2561         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2562                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2563         return sp;
2564 }
2565
2566 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2567                                         struct kvm_vcpu *vcpu, hpa_t root,
2568                                         u64 addr)
2569 {
2570         iterator->addr = addr;
2571         iterator->shadow_addr = root;
2572         iterator->level = vcpu->arch.mmu->shadow_root_level;
2573
2574         if (iterator->level == PT64_ROOT_4LEVEL &&
2575             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2576             !vcpu->arch.mmu->direct_map)
2577                 --iterator->level;
2578
2579         if (iterator->level == PT32E_ROOT_LEVEL) {
2580                 /*
2581                  * prev_root is currently only used for 64-bit hosts. So only
2582                  * the active root_hpa is valid here.
2583                  */
2584                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2585
2586                 iterator->shadow_addr
2587                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2588                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2589                 --iterator->level;
2590                 if (!iterator->shadow_addr)
2591                         iterator->level = 0;
2592         }
2593 }
2594
2595 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2596                              struct kvm_vcpu *vcpu, u64 addr)
2597 {
2598         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2599                                     addr);
2600 }
2601
2602 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2603 {
2604         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2605                 return false;
2606
2607         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2608         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2609         return true;
2610 }
2611
2612 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2613                                u64 spte)
2614 {
2615         if (is_last_spte(spte, iterator->level)) {
2616                 iterator->level = 0;
2617                 return;
2618         }
2619
2620         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2621         --iterator->level;
2622 }
2623
2624 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2625 {
2626         __shadow_walk_next(iterator, *iterator->sptep);
2627 }
2628
2629 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2630                              struct kvm_mmu_page *sp)
2631 {
2632         u64 spte;
2633
2634         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2635
2636         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2637                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2638
2639         if (sp_ad_disabled(sp))
2640                 spte |= SPTE_AD_DISABLED_MASK;
2641         else
2642                 spte |= shadow_accessed_mask;
2643
2644         mmu_spte_set(sptep, spte);
2645
2646         mmu_page_add_parent_pte(vcpu, sp, sptep);
2647
2648         if (sp->unsync_children || sp->unsync)
2649                 mark_unsync(sptep);
2650 }
2651
2652 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2653                                    unsigned direct_access)
2654 {
2655         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2656                 struct kvm_mmu_page *child;
2657
2658                 /*
2659                  * For the direct sp, if the guest pte's dirty bit
2660                  * changed form clean to dirty, it will corrupt the
2661                  * sp's access: allow writable in the read-only sp,
2662                  * so we should update the spte at this point to get
2663                  * a new sp with the correct access.
2664                  */
2665                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2666                 if (child->role.access == direct_access)
2667                         return;
2668
2669                 drop_parent_pte(child, sptep);
2670                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2671         }
2672 }
2673
2674 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2675                              u64 *spte)
2676 {
2677         u64 pte;
2678         struct kvm_mmu_page *child;
2679
2680         pte = *spte;
2681         if (is_shadow_present_pte(pte)) {
2682                 if (is_last_spte(pte, sp->role.level)) {
2683                         drop_spte(kvm, spte);
2684                         if (is_large_pte(pte))
2685                                 --kvm->stat.lpages;
2686                 } else {
2687                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2688                         drop_parent_pte(child, spte);
2689                 }
2690                 return true;
2691         }
2692
2693         if (is_mmio_spte(pte))
2694                 mmu_spte_clear_no_track(spte);
2695
2696         return false;
2697 }
2698
2699 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2700                                          struct kvm_mmu_page *sp)
2701 {
2702         unsigned i;
2703
2704         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2705                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2706 }
2707
2708 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2709 {
2710         u64 *sptep;
2711         struct rmap_iterator iter;
2712
2713         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2714                 drop_parent_pte(sp, sptep);
2715 }
2716
2717 static int mmu_zap_unsync_children(struct kvm *kvm,
2718                                    struct kvm_mmu_page *parent,
2719                                    struct list_head *invalid_list)
2720 {
2721         int i, zapped = 0;
2722         struct mmu_page_path parents;
2723         struct kvm_mmu_pages pages;
2724
2725         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2726                 return 0;
2727
2728         while (mmu_unsync_walk(parent, &pages)) {
2729                 struct kvm_mmu_page *sp;
2730
2731                 for_each_sp(pages, sp, parents, i) {
2732                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2733                         mmu_pages_clear_parents(&parents);
2734                         zapped++;
2735                 }
2736         }
2737
2738         return zapped;
2739 }
2740
2741 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2742                                        struct kvm_mmu_page *sp,
2743                                        struct list_head *invalid_list,
2744                                        int *nr_zapped)
2745 {
2746         bool list_unstable;
2747
2748         trace_kvm_mmu_prepare_zap_page(sp);
2749         ++kvm->stat.mmu_shadow_zapped;
2750         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2751         kvm_mmu_page_unlink_children(kvm, sp);
2752         kvm_mmu_unlink_parents(kvm, sp);
2753
2754         /* Zapping children means active_mmu_pages has become unstable. */
2755         list_unstable = *nr_zapped;
2756
2757         if (!sp->role.invalid && !sp->role.direct)
2758                 unaccount_shadowed(kvm, sp);
2759
2760         if (sp->unsync)
2761                 kvm_unlink_unsync_page(kvm, sp);
2762         if (!sp->root_count) {
2763                 /* Count self */
2764                 (*nr_zapped)++;
2765                 list_move(&sp->link, invalid_list);
2766                 kvm_mod_used_mmu_pages(kvm, -1);
2767         } else {
2768                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2769
2770                 /*
2771                  * Obsolete pages cannot be used on any vCPUs, see the comment
2772                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2773                  * treats invalid shadow pages as being obsolete.
2774                  */
2775                 if (!is_obsolete_sp(kvm, sp))
2776                         kvm_reload_remote_mmus(kvm);
2777         }
2778
2779         if (sp->lpage_disallowed)
2780                 unaccount_huge_nx_page(kvm, sp);
2781
2782         sp->role.invalid = 1;
2783         return list_unstable;
2784 }
2785
2786 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2787                                      struct list_head *invalid_list)
2788 {
2789         int nr_zapped;
2790
2791         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2792         return nr_zapped;
2793 }
2794
2795 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2796                                     struct list_head *invalid_list)
2797 {
2798         struct kvm_mmu_page *sp, *nsp;
2799
2800         if (list_empty(invalid_list))
2801                 return;
2802
2803         /*
2804          * We need to make sure everyone sees our modifications to
2805          * the page tables and see changes to vcpu->mode here. The barrier
2806          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2807          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2808          *
2809          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2810          * guest mode and/or lockless shadow page table walks.
2811          */
2812         kvm_flush_remote_tlbs(kvm);
2813
2814         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2815                 WARN_ON(!sp->role.invalid || sp->root_count);
2816                 kvm_mmu_free_page(sp);
2817         }
2818 }
2819
2820 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2821                                         struct list_head *invalid_list)
2822 {
2823         struct kvm_mmu_page *sp;
2824
2825         if (list_empty(&kvm->arch.active_mmu_pages))
2826                 return false;
2827
2828         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2829                              struct kvm_mmu_page, link);
2830         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2831 }
2832
2833 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2834 {
2835         LIST_HEAD(invalid_list);
2836
2837         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
2838                 return 0;
2839
2840         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
2841                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
2842                         break;
2843
2844                 ++vcpu->kvm->stat.mmu_recycled;
2845         }
2846         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2847
2848         if (!kvm_mmu_available_pages(vcpu->kvm))
2849                 return -ENOSPC;
2850         return 0;
2851 }
2852
2853 /*
2854  * Changing the number of mmu pages allocated to the vm
2855  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2856  */
2857 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2858 {
2859         LIST_HEAD(invalid_list);
2860
2861         spin_lock(&kvm->mmu_lock);
2862
2863         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2864                 /* Need to free some mmu pages to achieve the goal. */
2865                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2866                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2867                                 break;
2868
2869                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2870                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2871         }
2872
2873         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2874
2875         spin_unlock(&kvm->mmu_lock);
2876 }
2877
2878 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2879 {
2880         struct kvm_mmu_page *sp;
2881         LIST_HEAD(invalid_list);
2882         int r;
2883
2884         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2885         r = 0;
2886         spin_lock(&kvm->mmu_lock);
2887         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2888                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2889                          sp->role.word);
2890                 r = 1;
2891                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2892         }
2893         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2894         spin_unlock(&kvm->mmu_lock);
2895
2896         return r;
2897 }
2898 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2899
2900 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2901 {
2902         trace_kvm_mmu_unsync_page(sp);
2903         ++vcpu->kvm->stat.mmu_unsync;
2904         sp->unsync = 1;
2905
2906         kvm_mmu_mark_parents_unsync(sp);
2907 }
2908
2909 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2910                                    bool can_unsync)
2911 {
2912         struct kvm_mmu_page *sp;
2913
2914         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2915                 return true;
2916
2917         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2918                 if (!can_unsync)
2919                         return true;
2920
2921                 if (sp->unsync)
2922                         continue;
2923
2924                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2925                 kvm_unsync_page(vcpu, sp);
2926         }
2927
2928         /*
2929          * We need to ensure that the marking of unsync pages is visible
2930          * before the SPTE is updated to allow writes because
2931          * kvm_mmu_sync_roots() checks the unsync flags without holding
2932          * the MMU lock and so can race with this. If the SPTE was updated
2933          * before the page had been marked as unsync-ed, something like the
2934          * following could happen:
2935          *
2936          * CPU 1                    CPU 2
2937          * ---------------------------------------------------------------------
2938          * 1.2 Host updates SPTE
2939          *     to be writable
2940          *                      2.1 Guest writes a GPTE for GVA X.
2941          *                          (GPTE being in the guest page table shadowed
2942          *                           by the SP from CPU 1.)
2943          *                          This reads SPTE during the page table walk.
2944          *                          Since SPTE.W is read as 1, there is no
2945          *                          fault.
2946          *
2947          *                      2.2 Guest issues TLB flush.
2948          *                          That causes a VM Exit.
2949          *
2950          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2951          *                          Since it is false, so it just returns.
2952          *
2953          *                      2.4 Guest accesses GVA X.
2954          *                          Since the mapping in the SP was not updated,
2955          *                          so the old mapping for GVA X incorrectly
2956          *                          gets used.
2957          * 1.1 Host marks SP
2958          *     as unsync
2959          *     (sp->unsync = true)
2960          *
2961          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2962          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2963          * pairs with this write barrier.
2964          */
2965         smp_wmb();
2966
2967         return false;
2968 }
2969
2970 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2971 {
2972         if (pfn_valid(pfn))
2973                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2974                         /*
2975                          * Some reserved pages, such as those from NVDIMM
2976                          * DAX devices, are not for MMIO, and can be mapped
2977                          * with cached memory type for better performance.
2978                          * However, the above check misconceives those pages
2979                          * as MMIO, and results in KVM mapping them with UC
2980                          * memory type, which would hurt the performance.
2981                          * Therefore, we check the host memory type in addition
2982                          * and only treat UC/UC-/WC pages as MMIO.
2983                          */
2984                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2985
2986         return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2987                                      pfn_to_hpa(pfn + 1) - 1,
2988                                      E820_TYPE_RAM);
2989 }
2990
2991 /* Bits which may be returned by set_spte() */
2992 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2993 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2994
2995 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2996                     unsigned int pte_access, int level,
2997                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2998                     bool can_unsync, bool host_writable)
2999 {
3000         u64 spte = 0;
3001         int ret = 0;
3002         struct kvm_mmu_page *sp;
3003
3004         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3005                 return 0;
3006
3007         sp = page_header(__pa(sptep));
3008         if (sp_ad_disabled(sp))
3009                 spte |= SPTE_AD_DISABLED_MASK;
3010         else if (kvm_vcpu_ad_need_write_protect(vcpu))
3011                 spte |= SPTE_AD_WRPROT_ONLY_MASK;
3012
3013         /*
3014          * For the EPT case, shadow_present_mask is 0 if hardware
3015          * supports exec-only page table entries.  In that case,
3016          * ACC_USER_MASK and shadow_user_mask are used to represent
3017          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
3018          */
3019         spte |= shadow_present_mask;
3020         if (!speculative)
3021                 spte |= spte_shadow_accessed_mask(spte);
3022
3023         if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3024             is_nx_huge_page_enabled()) {
3025                 pte_access &= ~ACC_EXEC_MASK;
3026         }
3027
3028         if (pte_access & ACC_EXEC_MASK)
3029                 spte |= shadow_x_mask;
3030         else
3031                 spte |= shadow_nx_mask;
3032
3033         if (pte_access & ACC_USER_MASK)
3034                 spte |= shadow_user_mask;
3035
3036         if (level > PT_PAGE_TABLE_LEVEL)
3037                 spte |= PT_PAGE_SIZE_MASK;
3038         if (tdp_enabled)
3039                 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3040                         kvm_is_mmio_pfn(pfn));
3041
3042         if (host_writable)
3043                 spte |= SPTE_HOST_WRITEABLE;
3044         else
3045                 pte_access &= ~ACC_WRITE_MASK;
3046
3047         if (!kvm_is_mmio_pfn(pfn))
3048                 spte |= shadow_me_mask;
3049
3050         spte |= (u64)pfn << PAGE_SHIFT;
3051
3052         if (pte_access & ACC_WRITE_MASK) {
3053                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3054
3055                 /*
3056                  * Optimization: for pte sync, if spte was writable the hash
3057                  * lookup is unnecessary (and expensive). Write protection
3058                  * is responsibility of mmu_get_page / kvm_sync_page.
3059                  * Same reasoning can be applied to dirty page accounting.
3060                  */
3061                 if (!can_unsync && is_writable_pte(*sptep))
3062                         goto set_pte;
3063
3064                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3065                         pgprintk("%s: found shadow page for %llx, marking ro\n",
3066                                  __func__, gfn);
3067                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
3068                         pte_access &= ~ACC_WRITE_MASK;
3069                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3070                 }
3071         }
3072
3073         if (pte_access & ACC_WRITE_MASK) {
3074                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3075                 spte |= spte_shadow_dirty_mask(spte);
3076         }
3077
3078         if (speculative)
3079                 spte = mark_spte_for_access_track(spte);
3080
3081 set_pte:
3082         if (mmu_spte_update(sptep, spte))
3083                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3084         return ret;
3085 }
3086
3087 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3088                         unsigned int pte_access, int write_fault, int level,
3089                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3090                         bool host_writable)
3091 {
3092         int was_rmapped = 0;
3093         int rmap_count;
3094         int set_spte_ret;
3095         int ret = RET_PF_RETRY;
3096         bool flush = false;
3097
3098         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3099                  *sptep, write_fault, gfn);
3100
3101         if (is_shadow_present_pte(*sptep)) {
3102                 /*
3103                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3104                  * the parent of the now unreachable PTE.
3105                  */
3106                 if (level > PT_PAGE_TABLE_LEVEL &&
3107                     !is_large_pte(*sptep)) {
3108                         struct kvm_mmu_page *child;
3109                         u64 pte = *sptep;
3110
3111                         child = page_header(pte & PT64_BASE_ADDR_MASK);
3112                         drop_parent_pte(child, sptep);
3113                         flush = true;
3114                 } else if (pfn != spte_to_pfn(*sptep)) {
3115                         pgprintk("hfn old %llx new %llx\n",
3116                                  spte_to_pfn(*sptep), pfn);
3117                         drop_spte(vcpu->kvm, sptep);
3118                         flush = true;
3119                 } else
3120                         was_rmapped = 1;
3121         }
3122
3123         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3124                                 speculative, true, host_writable);
3125         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3126                 if (write_fault)
3127                         ret = RET_PF_EMULATE;
3128                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3129         }
3130
3131         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3132                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3133                                 KVM_PAGES_PER_HPAGE(level));
3134
3135         if (unlikely(is_mmio_spte(*sptep)))
3136                 ret = RET_PF_EMULATE;
3137
3138         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3139         trace_kvm_mmu_set_spte(level, gfn, sptep);
3140         if (!was_rmapped && is_large_pte(*sptep))
3141                 ++vcpu->kvm->stat.lpages;
3142
3143         if (is_shadow_present_pte(*sptep)) {
3144                 if (!was_rmapped) {
3145                         rmap_count = rmap_add(vcpu, sptep, gfn);
3146                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3147                                 rmap_recycle(vcpu, sptep, gfn);
3148                 }
3149         }
3150
3151         return ret;
3152 }
3153
3154 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3155                                      bool no_dirty_log)
3156 {
3157         struct kvm_memory_slot *slot;
3158
3159         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3160         if (!slot)
3161                 return KVM_PFN_ERR_FAULT;
3162
3163         return gfn_to_pfn_memslot_atomic(slot, gfn);
3164 }
3165
3166 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3167                                     struct kvm_mmu_page *sp,
3168                                     u64 *start, u64 *end)
3169 {
3170         struct page *pages[PTE_PREFETCH_NUM];
3171         struct kvm_memory_slot *slot;
3172         unsigned int access = sp->role.access;
3173         int i, ret;
3174         gfn_t gfn;
3175
3176         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3177         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3178         if (!slot)
3179                 return -1;
3180
3181         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3182         if (ret <= 0)
3183                 return -1;
3184
3185         for (i = 0; i < ret; i++, gfn++, start++) {
3186                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3187                              page_to_pfn(pages[i]), true, true);
3188                 put_page(pages[i]);
3189         }
3190
3191         return 0;
3192 }
3193
3194 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3195                                   struct kvm_mmu_page *sp, u64 *sptep)
3196 {
3197         u64 *spte, *start = NULL;
3198         int i;
3199
3200         WARN_ON(!sp->role.direct);
3201
3202         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3203         spte = sp->spt + i;
3204
3205         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3206                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3207                         if (!start)
3208                                 continue;
3209                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3210                                 break;
3211                         start = NULL;
3212                 } else if (!start)
3213                         start = spte;
3214         }
3215 }
3216
3217 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3218 {
3219         struct kvm_mmu_page *sp;
3220
3221         sp = page_header(__pa(sptep));
3222
3223         /*
3224          * Without accessed bits, there's no way to distinguish between
3225          * actually accessed translations and prefetched, so disable pte
3226          * prefetch if accessed bits aren't available.
3227          */
3228         if (sp_ad_disabled(sp))
3229                 return;
3230
3231         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3232                 return;
3233
3234         __direct_pte_prefetch(vcpu, sp, sptep);
3235 }
3236
3237 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3238                                   kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3239 {
3240         unsigned long hva;
3241         pte_t *pte;
3242         int level;
3243
3244         BUILD_BUG_ON(PT_PAGE_TABLE_LEVEL != (int)PG_LEVEL_4K ||
3245                      PT_DIRECTORY_LEVEL != (int)PG_LEVEL_2M ||
3246                      PT_PDPE_LEVEL != (int)PG_LEVEL_1G);
3247
3248         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3249                 return PT_PAGE_TABLE_LEVEL;
3250
3251         /*
3252          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3253          * is not solely for performance, it's also necessary to avoid the
3254          * "writable" check in __gfn_to_hva_many(), which will always fail on
3255          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3256          * page fault steps have already verified the guest isn't writing a
3257          * read-only memslot.
3258          */
3259         hva = __gfn_to_hva_memslot(slot, gfn);
3260
3261         pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3262         if (unlikely(!pte))
3263                 return PT_PAGE_TABLE_LEVEL;
3264
3265         return level;
3266 }
3267
3268 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3269                                    int max_level, kvm_pfn_t *pfnp)
3270 {
3271         struct kvm_memory_slot *slot;
3272         struct kvm_lpage_info *linfo;
3273         kvm_pfn_t pfn = *pfnp;
3274         kvm_pfn_t mask;
3275         int level;
3276
3277         if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
3278                 return PT_PAGE_TABLE_LEVEL;
3279
3280         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3281                 return PT_PAGE_TABLE_LEVEL;
3282
3283         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3284         if (!slot)
3285                 return PT_PAGE_TABLE_LEVEL;
3286
3287         max_level = min(max_level, max_page_level);
3288         for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
3289                 linfo = lpage_info_slot(gfn, slot, max_level);
3290                 if (!linfo->disallow_lpage)
3291                         break;
3292         }
3293
3294         if (max_level == PT_PAGE_TABLE_LEVEL)
3295                 return PT_PAGE_TABLE_LEVEL;
3296
3297         level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3298         if (level == PT_PAGE_TABLE_LEVEL)
3299                 return level;
3300
3301         level = min(level, max_level);
3302
3303         /*
3304          * mmu_notifier_retry() was successful and mmu_lock is held, so
3305          * the pmd can't be split from under us.
3306          */
3307         mask = KVM_PAGES_PER_HPAGE(level) - 1;
3308         VM_BUG_ON((gfn & mask) != (pfn & mask));
3309         *pfnp = pfn & ~mask;
3310
3311         return level;
3312 }
3313
3314 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3315                                        gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3316 {
3317         int level = *levelp;
3318         u64 spte = *it.sptep;
3319
3320         if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3321             is_nx_huge_page_enabled() &&
3322             is_shadow_present_pte(spte) &&
3323             !is_large_pte(spte)) {
3324                 /*
3325                  * A small SPTE exists for this pfn, but FNAME(fetch)
3326                  * and __direct_map would like to create a large PTE
3327                  * instead: just force them to go down another level,
3328                  * patching back for them into pfn the next 9 bits of
3329                  * the address.
3330                  */
3331                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3332                 *pfnp |= gfn & page_mask;
3333                 (*levelp)--;
3334         }
3335 }
3336
3337 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3338                         int map_writable, int max_level, kvm_pfn_t pfn,
3339                         bool prefault, bool account_disallowed_nx_lpage)
3340 {
3341         struct kvm_shadow_walk_iterator it;
3342         struct kvm_mmu_page *sp;
3343         int level, ret;
3344         gfn_t gfn = gpa >> PAGE_SHIFT;
3345         gfn_t base_gfn = gfn;
3346
3347         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3348                 return RET_PF_RETRY;
3349
3350         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3351
3352         trace_kvm_mmu_spte_requested(gpa, level, pfn);
3353         for_each_shadow_entry(vcpu, gpa, it) {
3354                 /*
3355                  * We cannot overwrite existing page tables with an NX
3356                  * large page, as the leaf could be executable.
3357                  */
3358                 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3359
3360                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3361                 if (it.level == level)
3362                         break;
3363
3364                 drop_large_spte(vcpu, it.sptep);
3365                 if (!is_shadow_present_pte(*it.sptep)) {
3366                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3367                                               it.level - 1, true, ACC_ALL);
3368
3369                         link_shadow_page(vcpu, it.sptep, sp);
3370                         if (account_disallowed_nx_lpage)
3371                                 account_huge_nx_page(vcpu->kvm, sp);
3372                 }
3373         }
3374
3375         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3376                            write, level, base_gfn, pfn, prefault,
3377                            map_writable);
3378         direct_pte_prefetch(vcpu, it.sptep);
3379         ++vcpu->stat.pf_fixed;
3380         return ret;
3381 }
3382
3383 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3384 {
3385         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3386 }
3387
3388 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3389 {
3390         /*
3391          * Do not cache the mmio info caused by writing the readonly gfn
3392          * into the spte otherwise read access on readonly gfn also can
3393          * caused mmio page fault and treat it as mmio access.
3394          */
3395         if (pfn == KVM_PFN_ERR_RO_FAULT)
3396                 return RET_PF_EMULATE;
3397
3398         if (pfn == KVM_PFN_ERR_HWPOISON) {
3399                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3400                 return RET_PF_RETRY;
3401         }
3402
3403         return -EFAULT;
3404 }
3405
3406 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3407                                 kvm_pfn_t pfn, unsigned int access,
3408                                 int *ret_val)
3409 {
3410         /* The pfn is invalid, report the error! */
3411         if (unlikely(is_error_pfn(pfn))) {
3412                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3413                 return true;
3414         }
3415
3416         if (unlikely(is_noslot_pfn(pfn)))
3417                 vcpu_cache_mmio_info(vcpu, gva, gfn,
3418                                      access & shadow_mmio_access_mask);
3419
3420         return false;
3421 }
3422
3423 static bool page_fault_can_be_fast(u32 error_code)
3424 {
3425         /*
3426          * Do not fix the mmio spte with invalid generation number which
3427          * need to be updated by slow page fault path.
3428          */
3429         if (unlikely(error_code & PFERR_RSVD_MASK))
3430                 return false;
3431
3432         /* See if the page fault is due to an NX violation */
3433         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3434                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3435                 return false;
3436
3437         /*
3438          * #PF can be fast if:
3439          * 1. The shadow page table entry is not present, which could mean that
3440          *    the fault is potentially caused by access tracking (if enabled).
3441          * 2. The shadow page table entry is present and the fault
3442          *    is caused by write-protect, that means we just need change the W
3443          *    bit of the spte which can be done out of mmu-lock.
3444          *
3445          * However, if access tracking is disabled we know that a non-present
3446          * page must be a genuine page fault where we have to create a new SPTE.
3447          * So, if access tracking is disabled, we return true only for write
3448          * accesses to a present page.
3449          */
3450
3451         return shadow_acc_track_mask != 0 ||
3452                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3453                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3454 }
3455
3456 /*
3457  * Returns true if the SPTE was fixed successfully. Otherwise,
3458  * someone else modified the SPTE from its original value.
3459  */
3460 static bool
3461 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3462                         u64 *sptep, u64 old_spte, u64 new_spte)
3463 {
3464         gfn_t gfn;
3465
3466         WARN_ON(!sp->role.direct);
3467
3468         /*
3469          * Theoretically we could also set dirty bit (and flush TLB) here in
3470          * order to eliminate unnecessary PML logging. See comments in
3471          * set_spte. But fast_page_fault is very unlikely to happen with PML
3472          * enabled, so we do not do this. This might result in the same GPA
3473          * to be logged in PML buffer again when the write really happens, and
3474          * eventually to be called by mark_page_dirty twice. But it's also no
3475          * harm. This also avoids the TLB flush needed after setting dirty bit
3476          * so non-PML cases won't be impacted.
3477          *
3478          * Compare with set_spte where instead shadow_dirty_mask is set.
3479          */
3480         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3481                 return false;
3482
3483         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3484                 /*
3485                  * The gfn of direct spte is stable since it is
3486                  * calculated by sp->gfn.
3487                  */
3488                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3489                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3490         }
3491
3492         return true;
3493 }
3494
3495 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3496 {
3497         if (fault_err_code & PFERR_FETCH_MASK)
3498                 return is_executable_pte(spte);
3499
3500         if (fault_err_code & PFERR_WRITE_MASK)
3501                 return is_writable_pte(spte);
3502
3503         /* Fault was on Read access */
3504         return spte & PT_PRESENT_MASK;
3505 }
3506
3507 /*
3508  * Return value:
3509  * - true: let the vcpu to access on the same address again.
3510  * - false: let the real page fault path to fix it.
3511  */
3512 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3513                             u32 error_code)
3514 {
3515         struct kvm_shadow_walk_iterator iterator;
3516         struct kvm_mmu_page *sp;
3517         bool fault_handled = false;
3518         u64 spte = 0ull;
3519         uint retry_count = 0;
3520
3521         if (!page_fault_can_be_fast(error_code))
3522                 return false;
3523
3524         walk_shadow_page_lockless_begin(vcpu);
3525
3526         do {
3527                 u64 new_spte;
3528
3529                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3530                         if (!is_shadow_present_pte(spte))
3531                                 break;
3532
3533                 sp = page_header(__pa(iterator.sptep));
3534                 if (!is_last_spte(spte, sp->role.level))
3535                         break;
3536
3537                 /*
3538                  * Check whether the memory access that caused the fault would
3539                  * still cause it if it were to be performed right now. If not,
3540                  * then this is a spurious fault caused by TLB lazily flushed,
3541                  * or some other CPU has already fixed the PTE after the
3542                  * current CPU took the fault.
3543                  *
3544                  * Need not check the access of upper level table entries since
3545                  * they are always ACC_ALL.
3546                  */
3547                 if (is_access_allowed(error_code, spte)) {
3548                         fault_handled = true;
3549                         break;
3550                 }
3551
3552                 new_spte = spte;
3553
3554                 if (is_access_track_spte(spte))
3555                         new_spte = restore_acc_track_spte(new_spte);
3556
3557                 /*
3558                  * Currently, to simplify the code, write-protection can
3559                  * be removed in the fast path only if the SPTE was
3560                  * write-protected for dirty-logging or access tracking.
3561                  */
3562                 if ((error_code & PFERR_WRITE_MASK) &&
3563                     spte_can_locklessly_be_made_writable(spte)) {
3564                         new_spte |= PT_WRITABLE_MASK;
3565
3566                         /*
3567                          * Do not fix write-permission on the large spte.  Since
3568                          * we only dirty the first page into the dirty-bitmap in
3569                          * fast_pf_fix_direct_spte(), other pages are missed
3570                          * if its slot has dirty logging enabled.
3571                          *
3572                          * Instead, we let the slow page fault path create a
3573                          * normal spte to fix the access.
3574                          *
3575                          * See the comments in kvm_arch_commit_memory_region().
3576                          */
3577                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3578                                 break;
3579                 }
3580
3581                 /* Verify that the fault can be handled in the fast path */
3582                 if (new_spte == spte ||
3583                     !is_access_allowed(error_code, new_spte))
3584                         break;
3585
3586                 /*
3587                  * Currently, fast page fault only works for direct mapping
3588                  * since the gfn is not stable for indirect shadow page. See
3589                  * Documentation/virt/kvm/locking.txt to get more detail.
3590                  */
3591                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3592                                                         iterator.sptep, spte,
3593                                                         new_spte);
3594                 if (fault_handled)
3595                         break;
3596
3597                 if (++retry_count > 4) {
3598                         printk_once(KERN_WARNING
3599                                 "kvm: Fast #PF retrying more than 4 times.\n");
3600                         break;
3601                 }
3602
3603         } while (true);
3604
3605         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3606                               spte, fault_handled);
3607         walk_shadow_page_lockless_end(vcpu);
3608
3609         return fault_handled;
3610 }
3611
3612 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3613                                struct list_head *invalid_list)
3614 {
3615         struct kvm_mmu_page *sp;
3616
3617         if (!VALID_PAGE(*root_hpa))
3618                 return;
3619
3620         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3621         --sp->root_count;
3622         if (!sp->root_count && sp->role.invalid)
3623                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3624
3625         *root_hpa = INVALID_PAGE;
3626 }
3627
3628 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3629 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3630                         ulong roots_to_free)
3631 {
3632         int i;
3633         LIST_HEAD(invalid_list);
3634         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3635
3636         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3637
3638         /* Before acquiring the MMU lock, see if we need to do any real work. */
3639         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3640                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3641                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3642                             VALID_PAGE(mmu->prev_roots[i].hpa))
3643                                 break;
3644
3645                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3646                         return;
3647         }
3648
3649         spin_lock(&vcpu->kvm->mmu_lock);
3650
3651         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3652                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3653                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3654                                            &invalid_list);
3655
3656         if (free_active_root) {
3657                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3658                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3659                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3660                                            &invalid_list);
3661                 } else {
3662                         for (i = 0; i < 4; ++i)
3663                                 if (mmu->pae_root[i] != 0)
3664                                         mmu_free_root_page(vcpu->kvm,
3665                                                            &mmu->pae_root[i],
3666                                                            &invalid_list);
3667                         mmu->root_hpa = INVALID_PAGE;
3668                 }
3669                 mmu->root_cr3 = 0;
3670         }
3671
3672         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3673         spin_unlock(&vcpu->kvm->mmu_lock);
3674 }
3675 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3676
3677 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3678 {
3679         int ret = 0;
3680
3681         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3682                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3683                 ret = 1;
3684         }
3685
3686         return ret;
3687 }
3688
3689 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3690 {
3691         struct kvm_mmu_page *sp;
3692         unsigned i;
3693
3694         if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3695                 spin_lock(&vcpu->kvm->mmu_lock);
3696                 if(make_mmu_pages_available(vcpu) < 0) {
3697                         spin_unlock(&vcpu->kvm->mmu_lock);
3698                         return -ENOSPC;
3699                 }
3700                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3701                                 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3702                 ++sp->root_count;
3703                 spin_unlock(&vcpu->kvm->mmu_lock);
3704                 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3705         } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3706                 for (i = 0; i < 4; ++i) {
3707                         hpa_t root = vcpu->arch.mmu->pae_root[i];
3708
3709                         MMU_WARN_ON(VALID_PAGE(root));
3710                         spin_lock(&vcpu->kvm->mmu_lock);
3711                         if (make_mmu_pages_available(vcpu) < 0) {
3712                                 spin_unlock(&vcpu->kvm->mmu_lock);
3713                                 return -ENOSPC;
3714                         }
3715                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3716                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3717                         root = __pa(sp->spt);
3718                         ++sp->root_count;
3719                         spin_unlock(&vcpu->kvm->mmu_lock);
3720                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3721                 }
3722                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3723         } else
3724                 BUG();
3725
3726         /* root_cr3 is ignored for direct MMUs. */
3727         vcpu->arch.mmu->root_cr3 = 0;
3728
3729         return 0;
3730 }
3731
3732 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3733 {
3734         struct kvm_mmu_page *sp;
3735         u64 pdptr, pm_mask;
3736         gfn_t root_gfn, root_cr3;
3737         int i;
3738
3739         root_cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3740         root_gfn = root_cr3 >> PAGE_SHIFT;
3741
3742         if (mmu_check_root(vcpu, root_gfn))
3743                 return 1;
3744
3745         /*
3746          * Do we shadow a long mode page table? If so we need to
3747          * write-protect the guests page table root.
3748          */
3749         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3750                 hpa_t root = vcpu->arch.mmu->root_hpa;
3751
3752                 MMU_WARN_ON(VALID_PAGE(root));
3753
3754                 spin_lock(&vcpu->kvm->mmu_lock);
3755                 if (make_mmu_pages_available(vcpu) < 0) {
3756                         spin_unlock(&vcpu->kvm->mmu_lock);
3757                         return -ENOSPC;
3758                 }
3759                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3760                                 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3761                 root = __pa(sp->spt);
3762                 ++sp->root_count;
3763                 spin_unlock(&vcpu->kvm->mmu_lock);
3764                 vcpu->arch.mmu->root_hpa = root;
3765                 goto set_root_cr3;
3766         }
3767
3768         /*
3769          * We shadow a 32 bit page table. This may be a legacy 2-level
3770          * or a PAE 3-level page table. In either case we need to be aware that
3771          * the shadow page table may be a PAE or a long mode page table.
3772          */
3773         pm_mask = PT_PRESENT_MASK;
3774         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3775                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3776
3777         for (i = 0; i < 4; ++i) {
3778                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3779
3780                 MMU_WARN_ON(VALID_PAGE(root));
3781                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3782                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3783                         if (!(pdptr & PT_PRESENT_MASK)) {
3784                                 vcpu->arch.mmu->pae_root[i] = 0;
3785                                 continue;
3786                         }
3787                         root_gfn = pdptr >> PAGE_SHIFT;
3788                         if (mmu_check_root(vcpu, root_gfn))
3789                                 return 1;
3790                 }
3791                 spin_lock(&vcpu->kvm->mmu_lock);
3792                 if (make_mmu_pages_available(vcpu) < 0) {
3793                         spin_unlock(&vcpu->kvm->mmu_lock);
3794                         return -ENOSPC;
3795                 }
3796                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3797                                       0, ACC_ALL);
3798                 root = __pa(sp->spt);
3799                 ++sp->root_count;
3800                 spin_unlock(&vcpu->kvm->mmu_lock);
3801
3802                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3803         }
3804         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3805
3806         /*
3807          * If we shadow a 32 bit page table with a long mode page
3808          * table we enter this path.
3809          */
3810         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3811                 if (vcpu->arch.mmu->lm_root == NULL) {
3812                         /*
3813                          * The additional page necessary for this is only
3814                          * allocated on demand.
3815                          */
3816
3817                         u64 *lm_root;
3818
3819                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3820                         if (lm_root == NULL)
3821                                 return 1;
3822
3823                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3824
3825                         vcpu->arch.mmu->lm_root = lm_root;
3826                 }
3827
3828                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3829         }
3830
3831 set_root_cr3:
3832         vcpu->arch.mmu->root_cr3 = root_cr3;
3833
3834         return 0;
3835 }
3836
3837 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3838 {
3839         if (vcpu->arch.mmu->direct_map)
3840                 return mmu_alloc_direct_roots(vcpu);
3841         else
3842                 return mmu_alloc_shadow_roots(vcpu);
3843 }
3844
3845 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3846 {
3847         int i;
3848         struct kvm_mmu_page *sp;
3849
3850         if (vcpu->arch.mmu->direct_map)
3851                 return;
3852
3853         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3854                 return;
3855
3856         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3857
3858         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3859                 hpa_t root = vcpu->arch.mmu->root_hpa;
3860                 sp = page_header(root);
3861
3862                 /*
3863                  * Even if another CPU was marking the SP as unsync-ed
3864                  * simultaneously, any guest page table changes are not
3865                  * guaranteed to be visible anyway until this VCPU issues a TLB
3866                  * flush strictly after those changes are made. We only need to
3867                  * ensure that the other CPU sets these flags before any actual
3868                  * changes to the page tables are made. The comments in
3869                  * mmu_need_write_protect() describe what could go wrong if this
3870                  * requirement isn't satisfied.
3871                  */
3872                 if (!smp_load_acquire(&sp->unsync) &&
3873                     !smp_load_acquire(&sp->unsync_children))
3874                         return;
3875
3876                 spin_lock(&vcpu->kvm->mmu_lock);
3877                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3878
3879                 mmu_sync_children(vcpu, sp);
3880
3881                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3882                 spin_unlock(&vcpu->kvm->mmu_lock);
3883                 return;
3884         }
3885
3886         spin_lock(&vcpu->kvm->mmu_lock);
3887         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3888
3889         for (i = 0; i < 4; ++i) {
3890                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3891
3892                 if (root && VALID_PAGE(root)) {
3893                         root &= PT64_BASE_ADDR_MASK;
3894                         sp = page_header(root);
3895                         mmu_sync_children(vcpu, sp);
3896                 }
3897         }
3898
3899         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3900         spin_unlock(&vcpu->kvm->mmu_lock);
3901 }
3902 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3903
3904 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3905                                   u32 access, struct x86_exception *exception)
3906 {
3907         if (exception)
3908                 exception->error_code = 0;
3909         return vaddr;
3910 }
3911
3912 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3913                                          u32 access,
3914                                          struct x86_exception *exception)
3915 {
3916         if (exception)
3917                 exception->error_code = 0;
3918         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3919 }
3920
3921 static bool
3922 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3923 {
3924         int bit7 = (pte >> 7) & 1;
3925
3926         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3927 }
3928
3929 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3930 {
3931         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3932 }
3933
3934 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3935 {
3936         /*
3937          * A nested guest cannot use the MMIO cache if it is using nested
3938          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3939          */
3940         if (mmu_is_nested(vcpu))
3941                 return false;
3942
3943         if (direct)
3944                 return vcpu_match_mmio_gpa(vcpu, addr);
3945
3946         return vcpu_match_mmio_gva(vcpu, addr);
3947 }
3948
3949 /* return true if reserved bit is detected on spte. */
3950 static bool
3951 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3952 {
3953         struct kvm_shadow_walk_iterator iterator;
3954         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3955         struct rsvd_bits_validate *rsvd_check;
3956         int root, leaf;
3957         bool reserved = false;
3958
3959         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3960
3961         walk_shadow_page_lockless_begin(vcpu);
3962
3963         for (shadow_walk_init(&iterator, vcpu, addr),
3964                  leaf = root = iterator.level;
3965              shadow_walk_okay(&iterator);
3966              __shadow_walk_next(&iterator, spte)) {
3967                 spte = mmu_spte_get_lockless(iterator.sptep);
3968
3969                 sptes[leaf - 1] = spte;
3970                 leaf--;
3971
3972                 if (!is_shadow_present_pte(spte))
3973                         break;
3974
3975                 /*
3976                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3977                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3978                  * adding a Jcc in the loop.
3979                  */
3980                 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3981                             __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3982         }
3983
3984         walk_shadow_page_lockless_end(vcpu);
3985
3986         if (reserved) {
3987                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3988                        __func__, addr);
3989                 while (root > leaf) {
3990                         pr_err("------ spte 0x%llx level %d.\n",
3991                                sptes[root - 1], root);
3992                         root--;
3993                 }
3994         }
3995
3996         *sptep = spte;
3997         return reserved;
3998 }
3999
4000 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4001 {
4002         u64 spte;
4003         bool reserved;
4004
4005         if (mmio_info_in_cache(vcpu, addr, direct))
4006                 return RET_PF_EMULATE;
4007
4008         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4009         if (WARN_ON(reserved))
4010                 return -EINVAL;
4011
4012         if (is_mmio_spte(spte)) {
4013                 gfn_t gfn = get_mmio_spte_gfn(spte);
4014                 unsigned int access = get_mmio_spte_access(spte);
4015
4016                 if (!check_mmio_spte(vcpu, spte))
4017                         return RET_PF_INVALID;
4018
4019                 if (direct)
4020                         addr = 0;
4021
4022                 trace_handle_mmio_page_fault(addr, gfn, access);
4023                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4024                 return RET_PF_EMULATE;
4025         }
4026
4027         /*
4028          * If the page table is zapped by other cpus, let CPU fault again on
4029          * the address.
4030          */
4031         return RET_PF_RETRY;
4032 }
4033
4034 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4035                                          u32 error_code, gfn_t gfn)
4036 {
4037         if (unlikely(error_code & PFERR_RSVD_MASK))
4038                 return false;
4039
4040         if (!(error_code & PFERR_PRESENT_MASK) ||
4041               !(error_code & PFERR_WRITE_MASK))
4042                 return false;
4043
4044         /*
4045          * guest is writing the page which is write tracked which can
4046          * not be fixed by page fault handler.
4047          */
4048         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4049                 return true;
4050
4051         return false;
4052 }
4053
4054 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4055 {
4056         struct kvm_shadow_walk_iterator iterator;
4057         u64 spte;
4058
4059         walk_shadow_page_lockless_begin(vcpu);
4060         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4061                 clear_sp_write_flooding_count(iterator.sptep);
4062                 if (!is_shadow_present_pte(spte))
4063                         break;
4064         }
4065         walk_shadow_page_lockless_end(vcpu);
4066 }
4067
4068 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4069                                    gfn_t gfn)
4070 {
4071         struct kvm_arch_async_pf arch;
4072
4073         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4074         arch.gfn = gfn;
4075         arch.direct_map = vcpu->arch.mmu->direct_map;
4076         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4077
4078         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4079                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4080 }
4081
4082 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4083                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4084                          bool *writable)
4085 {
4086         struct kvm_memory_slot *slot;
4087         bool async;
4088
4089         /*
4090          * Don't expose private memslots to L2.
4091          */
4092         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4093                 *pfn = KVM_PFN_NOSLOT;
4094                 return false;
4095         }
4096
4097         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4098         async = false;
4099         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4100         if (!async)
4101                 return false; /* *pfn has correct page already */
4102
4103         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4104                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4105                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4106                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4107                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4108                         return true;
4109                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4110                         return true;
4111         }
4112
4113         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4114         return false;
4115 }
4116
4117 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4118                              bool prefault, int max_level, bool is_tdp)
4119 {
4120         bool write = error_code & PFERR_WRITE_MASK;
4121         bool exec = error_code & PFERR_FETCH_MASK;
4122         bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4123         bool map_writable;
4124
4125         gfn_t gfn = gpa >> PAGE_SHIFT;
4126         unsigned long mmu_seq;
4127         kvm_pfn_t pfn;
4128         int r;
4129
4130         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4131                 return RET_PF_EMULATE;
4132
4133         r = mmu_topup_memory_caches(vcpu);
4134         if (r)
4135                 return r;
4136
4137         if (lpage_disallowed)
4138                 max_level = PT_PAGE_TABLE_LEVEL;
4139
4140         if (fast_page_fault(vcpu, gpa, error_code))
4141                 return RET_PF_RETRY;
4142
4143         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4144         smp_rmb();
4145
4146         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4147                 return RET_PF_RETRY;
4148
4149         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4150                 return r;
4151
4152         r = RET_PF_RETRY;
4153         spin_lock(&vcpu->kvm->mmu_lock);
4154         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4155                 goto out_unlock;
4156         if (make_mmu_pages_available(vcpu) < 0)
4157                 goto out_unlock;
4158         r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4159                          prefault, is_tdp && lpage_disallowed);
4160
4161 out_unlock:
4162         spin_unlock(&vcpu->kvm->mmu_lock);
4163         kvm_release_pfn_clean(pfn);
4164         return r;
4165 }
4166
4167 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4168                                 u32 error_code, bool prefault)
4169 {
4170         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4171
4172         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4173         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4174                                  PT_DIRECTORY_LEVEL, false);
4175 }
4176
4177 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4178                                 u64 fault_address, char *insn, int insn_len)
4179 {
4180         int r = 1;
4181
4182 #ifndef CONFIG_X86_64
4183         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4184         if (WARN_ON_ONCE(fault_address >> 32))
4185                 return -EFAULT;
4186 #endif
4187
4188         vcpu->arch.l1tf_flush_l1d = true;
4189         switch (vcpu->arch.apf.host_apf_reason) {
4190         default:
4191                 trace_kvm_page_fault(fault_address, error_code);
4192
4193                 if (kvm_event_needs_reinjection(vcpu))
4194                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4195                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4196                                 insn_len);
4197                 break;
4198         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4199                 vcpu->arch.apf.host_apf_reason = 0;
4200                 local_irq_disable();
4201                 kvm_async_pf_task_wait(fault_address, 0);
4202                 local_irq_enable();
4203                 break;
4204         case KVM_PV_REASON_PAGE_READY:
4205                 vcpu->arch.apf.host_apf_reason = 0;
4206                 local_irq_disable();
4207                 kvm_async_pf_task_wake(fault_address);
4208                 local_irq_enable();
4209                 break;
4210         }
4211         return r;
4212 }
4213 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4214
4215 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4216                        bool prefault)
4217 {
4218         int max_level;
4219
4220         for (max_level = PT_MAX_HUGEPAGE_LEVEL;
4221              max_level > PT_PAGE_TABLE_LEVEL;
4222              max_level--) {
4223                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4224                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4225
4226                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4227                         break;
4228         }
4229
4230         return direct_page_fault(vcpu, gpa, error_code, prefault,
4231                                  max_level, true);
4232 }
4233
4234 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4235                                    struct kvm_mmu *context)
4236 {
4237         context->page_fault = nonpaging_page_fault;
4238         context->gva_to_gpa = nonpaging_gva_to_gpa;
4239         context->sync_page = nonpaging_sync_page;
4240         context->invlpg = nonpaging_invlpg;
4241         context->update_pte = nonpaging_update_pte;
4242         context->root_level = 0;
4243         context->shadow_root_level = PT32E_ROOT_LEVEL;
4244         context->direct_map = true;
4245         context->nx = false;
4246 }
4247
4248 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t cr3,
4249                                   union kvm_mmu_page_role role)
4250 {
4251         return (role.direct || cr3 == root->cr3) &&
4252                VALID_PAGE(root->hpa) && page_header(root->hpa) &&
4253                role.word == page_header(root->hpa)->role.word;
4254 }
4255
4256 /*
4257  * Find out if a previously cached root matching the new CR3/role is available.
4258  * The current root is also inserted into the cache.
4259  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4260  * returned.
4261  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4262  * false is returned. This root should now be freed by the caller.
4263  */
4264 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4265                                   union kvm_mmu_page_role new_role)
4266 {
4267         uint i;
4268         struct kvm_mmu_root_info root;
4269         struct kvm_mmu *mmu = vcpu->arch.mmu;
4270
4271         root.cr3 = mmu->root_cr3;
4272         root.hpa = mmu->root_hpa;
4273
4274         if (is_root_usable(&root, new_cr3, new_role))
4275                 return true;
4276
4277         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4278                 swap(root, mmu->prev_roots[i]);
4279
4280                 if (is_root_usable(&root, new_cr3, new_role))
4281                         break;
4282         }
4283
4284         mmu->root_hpa = root.hpa;
4285         mmu->root_cr3 = root.cr3;
4286
4287         return i < KVM_MMU_NUM_PREV_ROOTS;
4288 }
4289
4290 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4291                             union kvm_mmu_page_role new_role,
4292                             bool skip_tlb_flush)
4293 {
4294         struct kvm_mmu *mmu = vcpu->arch.mmu;
4295
4296         /*
4297          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4298          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4299          * later if necessary.
4300          */
4301         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4302             mmu->root_level >= PT64_ROOT_4LEVEL) {
4303                 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4304                         return false;
4305
4306                 if (cached_root_available(vcpu, new_cr3, new_role)) {
4307                         /*
4308                          * It is possible that the cached previous root page is
4309                          * obsolete because of a change in the MMU generation
4310                          * number. However, changing the generation number is
4311                          * accompanied by KVM_REQ_MMU_RELOAD, which will free
4312                          * the root set here and allocate a new one.
4313                          */
4314                         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4315                         if (!skip_tlb_flush) {
4316                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4317                                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4318                         }
4319
4320                         /*
4321                          * The last MMIO access's GVA and GPA are cached in the
4322                          * VCPU. When switching to a new CR3, that GVA->GPA
4323                          * mapping may no longer be valid. So clear any cached
4324                          * MMIO info even when we don't need to sync the shadow
4325                          * page tables.
4326                          */
4327                         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4328
4329                         __clear_sp_write_flooding_count(
4330                                 page_header(mmu->root_hpa));
4331
4332                         return true;
4333                 }
4334         }
4335
4336         return false;
4337 }
4338
4339 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4340                               union kvm_mmu_page_role new_role,
4341                               bool skip_tlb_flush)
4342 {
4343         if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4344                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4345                                    KVM_MMU_ROOT_CURRENT);
4346 }
4347
4348 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4349 {
4350         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4351                           skip_tlb_flush);
4352 }
4353 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4354
4355 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4356 {
4357         return kvm_read_cr3(vcpu);
4358 }
4359
4360 static void inject_page_fault(struct kvm_vcpu *vcpu,
4361                               struct x86_exception *fault)
4362 {
4363         vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4364 }
4365
4366 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4367                            unsigned int access, int *nr_present)
4368 {
4369         if (unlikely(is_mmio_spte(*sptep))) {
4370                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4371                         mmu_spte_clear_no_track(sptep);
4372                         return true;
4373                 }
4374
4375                 (*nr_present)++;
4376                 mark_mmio_spte(vcpu, sptep, gfn, access);
4377                 return true;
4378         }
4379
4380         return false;
4381 }
4382
4383 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4384                                 unsigned level, unsigned gpte)
4385 {
4386         /*
4387          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4388          * If it is clear, there are no large pages at this level, so clear
4389          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4390          */
4391         gpte &= level - mmu->last_nonleaf_level;
4392
4393         /*
4394          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4395          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4396          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4397          */
4398         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4399
4400         return gpte & PT_PAGE_SIZE_MASK;
4401 }
4402
4403 #define PTTYPE_EPT 18 /* arbitrary */
4404 #define PTTYPE PTTYPE_EPT
4405 #include "paging_tmpl.h"
4406 #undef PTTYPE
4407
4408 #define PTTYPE 64
4409 #include "paging_tmpl.h"
4410 #undef PTTYPE
4411
4412 #define PTTYPE 32
4413 #include "paging_tmpl.h"
4414 #undef PTTYPE
4415
4416 static void
4417 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4418                         struct rsvd_bits_validate *rsvd_check,
4419                         int maxphyaddr, int level, bool nx, bool gbpages,
4420                         bool pse, bool amd)
4421 {
4422         u64 exb_bit_rsvd = 0;
4423         u64 gbpages_bit_rsvd = 0;
4424         u64 nonleaf_bit8_rsvd = 0;
4425
4426         rsvd_check->bad_mt_xwr = 0;
4427
4428         if (!nx)
4429                 exb_bit_rsvd = rsvd_bits(63, 63);
4430         if (!gbpages)
4431                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4432
4433         /*
4434          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4435          * leaf entries) on AMD CPUs only.
4436          */
4437         if (amd)
4438                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4439
4440         switch (level) {
4441         case PT32_ROOT_LEVEL:
4442                 /* no rsvd bits for 2 level 4K page table entries */
4443                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4444                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4445                 rsvd_check->rsvd_bits_mask[1][0] =
4446                         rsvd_check->rsvd_bits_mask[0][0];
4447
4448                 if (!pse) {
4449                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4450                         break;
4451                 }
4452
4453                 if (is_cpuid_PSE36())
4454                         /* 36bits PSE 4MB page */
4455                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4456                 else
4457                         /* 32 bits PSE 4MB page */
4458                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4459                 break;
4460         case PT32E_ROOT_LEVEL:
4461                 rsvd_check->rsvd_bits_mask[0][2] =
4462                         rsvd_bits(maxphyaddr, 63) |
4463                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4464                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4465                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4466                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4467                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4468                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4469                         rsvd_bits(maxphyaddr, 62) |
4470                         rsvd_bits(13, 20);              /* large page */
4471                 rsvd_check->rsvd_bits_mask[1][0] =
4472                         rsvd_check->rsvd_bits_mask[0][0];
4473                 break;
4474         case PT64_ROOT_5LEVEL:
4475                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4476                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4477                         rsvd_bits(maxphyaddr, 51);
4478                 rsvd_check->rsvd_bits_mask[1][4] =
4479                         rsvd_check->rsvd_bits_mask[0][4];
4480                 /* fall through */
4481         case PT64_ROOT_4LEVEL:
4482                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4483                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4484                         rsvd_bits(maxphyaddr, 51);
4485                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4486                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4487                         rsvd_bits(maxphyaddr, 51);
4488                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4489                         rsvd_bits(maxphyaddr, 51);
4490                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4491                         rsvd_bits(maxphyaddr, 51);
4492                 rsvd_check->rsvd_bits_mask[1][3] =
4493                         rsvd_check->rsvd_bits_mask[0][3];
4494                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4495                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4496                         rsvd_bits(13, 29);
4497                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4498                         rsvd_bits(maxphyaddr, 51) |
4499                         rsvd_bits(13, 20);              /* large page */
4500                 rsvd_check->rsvd_bits_mask[1][0] =
4501                         rsvd_check->rsvd_bits_mask[0][0];
4502                 break;
4503         }
4504 }
4505
4506 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4507                                   struct kvm_mmu *context)
4508 {
4509         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4510                                 cpuid_maxphyaddr(vcpu), context->root_level,
4511                                 context->nx,
4512                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4513                                 is_pse(vcpu),
4514                                 guest_cpuid_is_amd_or_hygon(vcpu));
4515 }
4516
4517 static void
4518 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4519                             int maxphyaddr, bool execonly)
4520 {
4521         u64 bad_mt_xwr;
4522
4523         rsvd_check->rsvd_bits_mask[0][4] =
4524                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4525         rsvd_check->rsvd_bits_mask[0][3] =
4526                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4527         rsvd_check->rsvd_bits_mask[0][2] =
4528                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4529         rsvd_check->rsvd_bits_mask[0][1] =
4530                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4531         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4532
4533         /* large page */
4534         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4535         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4536         rsvd_check->rsvd_bits_mask[1][2] =
4537                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4538         rsvd_check->rsvd_bits_mask[1][1] =
4539                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4540         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4541
4542         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4543         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4544         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4545         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4546         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4547         if (!execonly) {
4548                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4549                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4550         }
4551         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4552 }
4553
4554 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4555                 struct kvm_mmu *context, bool execonly)
4556 {
4557         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4558                                     cpuid_maxphyaddr(vcpu), execonly);
4559 }
4560
4561 /*
4562  * the page table on host is the shadow page table for the page
4563  * table in guest or amd nested guest, its mmu features completely
4564  * follow the features in guest.
4565  */
4566 void
4567 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4568 {
4569         bool uses_nx = context->nx ||
4570                 context->mmu_role.base.smep_andnot_wp;
4571         struct rsvd_bits_validate *shadow_zero_check;
4572         int i;
4573
4574         /*
4575          * Passing "true" to the last argument is okay; it adds a check
4576          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4577          */
4578         shadow_zero_check = &context->shadow_zero_check;
4579         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4580                                 shadow_phys_bits,
4581                                 context->shadow_root_level, uses_nx,
4582                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4583                                 is_pse(vcpu), true);
4584
4585         if (!shadow_me_mask)
4586                 return;
4587
4588         for (i = context->shadow_root_level; --i >= 0;) {
4589                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4590                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4591         }
4592
4593 }
4594 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4595
4596 static inline bool boot_cpu_is_amd(void)
4597 {
4598         WARN_ON_ONCE(!tdp_enabled);
4599         return shadow_x_mask == 0;
4600 }
4601
4602 /*
4603  * the direct page table on host, use as much mmu features as
4604  * possible, however, kvm currently does not do execution-protection.
4605  */
4606 static void
4607 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4608                                 struct kvm_mmu *context)
4609 {
4610         struct rsvd_bits_validate *shadow_zero_check;
4611         int i;
4612
4613         shadow_zero_check = &context->shadow_zero_check;
4614
4615         if (boot_cpu_is_amd())
4616                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4617                                         shadow_phys_bits,
4618                                         context->shadow_root_level, false,
4619                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4620                                         true, true);
4621         else
4622                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4623                                             shadow_phys_bits,
4624                                             false);
4625
4626         if (!shadow_me_mask)
4627                 return;
4628
4629         for (i = context->shadow_root_level; --i >= 0;) {
4630                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4631                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4632         }
4633 }
4634
4635 /*
4636  * as the comments in reset_shadow_zero_bits_mask() except it
4637  * is the shadow page table for intel nested guest.
4638  */
4639 static void
4640 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4641                                 struct kvm_mmu *context, bool execonly)
4642 {
4643         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4644                                     shadow_phys_bits, execonly);
4645 }
4646
4647 #define BYTE_MASK(access) \
4648         ((1 & (access) ? 2 : 0) | \
4649          (2 & (access) ? 4 : 0) | \
4650          (3 & (access) ? 8 : 0) | \
4651          (4 & (access) ? 16 : 0) | \
4652          (5 & (access) ? 32 : 0) | \
4653          (6 & (access) ? 64 : 0) | \
4654          (7 & (access) ? 128 : 0))
4655
4656
4657 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4658                                       struct kvm_mmu *mmu, bool ept)
4659 {
4660         unsigned byte;
4661
4662         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4663         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4664         const u8 u = BYTE_MASK(ACC_USER_MASK);
4665
4666         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4667         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4668         bool cr0_wp = is_write_protection(vcpu);
4669
4670         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4671                 unsigned pfec = byte << 1;
4672
4673                 /*
4674                  * Each "*f" variable has a 1 bit for each UWX value
4675                  * that causes a fault with the given PFEC.
4676                  */
4677
4678                 /* Faults from writes to non-writable pages */
4679                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4680                 /* Faults from user mode accesses to supervisor pages */
4681                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4682                 /* Faults from fetches of non-executable pages*/
4683                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4684                 /* Faults from kernel mode fetches of user pages */
4685                 u8 smepf = 0;
4686                 /* Faults from kernel mode accesses of user pages */
4687                 u8 smapf = 0;
4688
4689                 if (!ept) {
4690                         /* Faults from kernel mode accesses to user pages */
4691                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4692
4693                         /* Not really needed: !nx will cause pte.nx to fault */
4694                         if (!mmu->nx)
4695                                 ff = 0;
4696
4697                         /* Allow supervisor writes if !cr0.wp */
4698                         if (!cr0_wp)
4699                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4700
4701                         /* Disallow supervisor fetches of user code if cr4.smep */
4702                         if (cr4_smep)
4703                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4704
4705                         /*
4706                          * SMAP:kernel-mode data accesses from user-mode
4707                          * mappings should fault. A fault is considered
4708                          * as a SMAP violation if all of the following
4709                          * conditions are true:
4710                          *   - X86_CR4_SMAP is set in CR4
4711                          *   - A user page is accessed
4712                          *   - The access is not a fetch
4713                          *   - Page fault in kernel mode
4714                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4715                          *
4716                          * Here, we cover the first three conditions.
4717                          * The fourth is computed dynamically in permission_fault();
4718                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4719                          * *not* subject to SMAP restrictions.
4720                          */
4721                         if (cr4_smap)
4722                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4723                 }
4724
4725                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4726         }
4727 }
4728
4729 /*
4730 * PKU is an additional mechanism by which the paging controls access to
4731 * user-mode addresses based on the value in the PKRU register.  Protection
4732 * key violations are reported through a bit in the page fault error code.
4733 * Unlike other bits of the error code, the PK bit is not known at the
4734 * call site of e.g. gva_to_gpa; it must be computed directly in
4735 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4736 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4737 *
4738 * In particular the following conditions come from the error code, the
4739 * page tables and the machine state:
4740 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4741 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4742 * - PK is always zero if U=0 in the page tables
4743 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4744 *
4745 * The PKRU bitmask caches the result of these four conditions.  The error
4746 * code (minus the P bit) and the page table's U bit form an index into the
4747 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4748 * with the two bits of the PKRU register corresponding to the protection key.
4749 * For the first three conditions above the bits will be 00, thus masking
4750 * away both AD and WD.  For all reads or if the last condition holds, WD
4751 * only will be masked away.
4752 */
4753 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4754                                 bool ept)
4755 {
4756         unsigned bit;
4757         bool wp;
4758
4759         if (ept) {
4760                 mmu->pkru_mask = 0;
4761                 return;
4762         }
4763
4764         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4765         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4766                 mmu->pkru_mask = 0;
4767                 return;
4768         }
4769
4770         wp = is_write_protection(vcpu);
4771
4772         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4773                 unsigned pfec, pkey_bits;
4774                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4775
4776                 pfec = bit << 1;
4777                 ff = pfec & PFERR_FETCH_MASK;
4778                 uf = pfec & PFERR_USER_MASK;
4779                 wf = pfec & PFERR_WRITE_MASK;
4780
4781                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4782                 pte_user = pfec & PFERR_RSVD_MASK;
4783
4784                 /*
4785                  * Only need to check the access which is not an
4786                  * instruction fetch and is to a user page.
4787                  */
4788                 check_pkey = (!ff && pte_user);
4789                 /*
4790                  * write access is controlled by PKRU if it is a
4791                  * user access or CR0.WP = 1.
4792                  */
4793                 check_write = check_pkey && wf && (uf || wp);
4794
4795                 /* PKRU.AD stops both read and write access. */
4796                 pkey_bits = !!check_pkey;
4797                 /* PKRU.WD stops write access. */
4798                 pkey_bits |= (!!check_write) << 1;
4799
4800                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4801         }
4802 }
4803
4804 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4805 {
4806         unsigned root_level = mmu->root_level;
4807
4808         mmu->last_nonleaf_level = root_level;
4809         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4810                 mmu->last_nonleaf_level++;
4811 }
4812
4813 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4814                                          struct kvm_mmu *context,
4815                                          int level)
4816 {
4817         context->nx = is_nx(vcpu);
4818         context->root_level = level;
4819
4820         reset_rsvds_bits_mask(vcpu, context);
4821         update_permission_bitmask(vcpu, context, false);
4822         update_pkru_bitmask(vcpu, context, false);
4823         update_last_nonleaf_level(vcpu, context);
4824
4825         MMU_WARN_ON(!is_pae(vcpu));
4826         context->page_fault = paging64_page_fault;
4827         context->gva_to_gpa = paging64_gva_to_gpa;
4828         context->sync_page = paging64_sync_page;
4829         context->invlpg = paging64_invlpg;
4830         context->update_pte = paging64_update_pte;
4831         context->shadow_root_level = level;
4832         context->direct_map = false;
4833 }
4834
4835 static void paging64_init_context(struct kvm_vcpu *vcpu,
4836                                   struct kvm_mmu *context)
4837 {
4838         int root_level = is_la57_mode(vcpu) ?
4839                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4840
4841         paging64_init_context_common(vcpu, context, root_level);
4842 }
4843
4844 static void paging32_init_context(struct kvm_vcpu *vcpu,
4845                                   struct kvm_mmu *context)
4846 {
4847         context->nx = false;
4848         context->root_level = PT32_ROOT_LEVEL;
4849
4850         reset_rsvds_bits_mask(vcpu, context);
4851         update_permission_bitmask(vcpu, context, false);
4852         update_pkru_bitmask(vcpu, context, false);
4853         update_last_nonleaf_level(vcpu, context);
4854
4855         context->page_fault = paging32_page_fault;
4856         context->gva_to_gpa = paging32_gva_to_gpa;
4857         context->sync_page = paging32_sync_page;
4858         context->invlpg = paging32_invlpg;
4859         context->update_pte = paging32_update_pte;
4860         context->shadow_root_level = PT32E_ROOT_LEVEL;
4861         context->direct_map = false;
4862 }
4863
4864 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4865                                    struct kvm_mmu *context)
4866 {
4867         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4868 }
4869
4870 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4871 {
4872         union kvm_mmu_extended_role ext = {0};
4873
4874         ext.cr0_pg = !!is_paging(vcpu);
4875         ext.cr4_pae = !!is_pae(vcpu);
4876         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4877         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4878         ext.cr4_pse = !!is_pse(vcpu);
4879         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4880         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4881
4882         ext.valid = 1;
4883
4884         return ext;
4885 }
4886
4887 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4888                                                    bool base_only)
4889 {
4890         union kvm_mmu_role role = {0};
4891
4892         role.base.access = ACC_ALL;
4893         role.base.nxe = !!is_nx(vcpu);
4894         role.base.cr0_wp = is_write_protection(vcpu);
4895         role.base.smm = is_smm(vcpu);
4896         role.base.guest_mode = is_guest_mode(vcpu);
4897
4898         if (base_only)
4899                 return role;
4900
4901         role.ext = kvm_calc_mmu_role_ext(vcpu);
4902
4903         return role;
4904 }
4905
4906 static union kvm_mmu_role
4907 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4908 {
4909         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4910
4911         role.base.ad_disabled = (shadow_accessed_mask == 0);
4912         role.base.level = kvm_x86_ops.get_tdp_level(vcpu);
4913         role.base.direct = true;
4914         role.base.gpte_is_8_bytes = true;
4915
4916         return role;
4917 }
4918
4919 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4920 {
4921         struct kvm_mmu *context = vcpu->arch.mmu;
4922         union kvm_mmu_role new_role =
4923                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4924
4925         if (new_role.as_u64 == context->mmu_role.as_u64)
4926                 return;
4927
4928         context->mmu_role.as_u64 = new_role.as_u64;
4929         context->page_fault = kvm_tdp_page_fault;
4930         context->sync_page = nonpaging_sync_page;
4931         context->invlpg = nonpaging_invlpg;
4932         context->update_pte = nonpaging_update_pte;
4933         context->shadow_root_level = kvm_x86_ops.get_tdp_level(vcpu);
4934         context->direct_map = true;
4935         context->get_guest_pgd = get_cr3;
4936         context->get_pdptr = kvm_pdptr_read;
4937         context->inject_page_fault = kvm_inject_page_fault;
4938
4939         if (!is_paging(vcpu)) {
4940                 context->nx = false;
4941                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4942                 context->root_level = 0;
4943         } else if (is_long_mode(vcpu)) {
4944                 context->nx = is_nx(vcpu);
4945                 context->root_level = is_la57_mode(vcpu) ?
4946                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4947                 reset_rsvds_bits_mask(vcpu, context);
4948                 context->gva_to_gpa = paging64_gva_to_gpa;
4949         } else if (is_pae(vcpu)) {
4950                 context->nx = is_nx(vcpu);
4951                 context->root_level = PT32E_ROOT_LEVEL;
4952                 reset_rsvds_bits_mask(vcpu, context);
4953                 context->gva_to_gpa = paging64_gva_to_gpa;
4954         } else {
4955                 context->nx = false;
4956                 context->root_level = PT32_ROOT_LEVEL;
4957                 reset_rsvds_bits_mask(vcpu, context);
4958                 context->gva_to_gpa = paging32_gva_to_gpa;
4959         }
4960
4961         update_permission_bitmask(vcpu, context, false);
4962         update_pkru_bitmask(vcpu, context, false);
4963         update_last_nonleaf_level(vcpu, context);
4964         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4965 }
4966
4967 static union kvm_mmu_role
4968 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4969 {
4970         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4971
4972         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4973                 !is_write_protection(vcpu);
4974         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4975                 !is_write_protection(vcpu);
4976         role.base.direct = !is_paging(vcpu);
4977         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4978
4979         if (!is_long_mode(vcpu))
4980                 role.base.level = PT32E_ROOT_LEVEL;
4981         else if (is_la57_mode(vcpu))
4982                 role.base.level = PT64_ROOT_5LEVEL;
4983         else
4984                 role.base.level = PT64_ROOT_4LEVEL;
4985
4986         return role;
4987 }
4988
4989 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4990 {
4991         struct kvm_mmu *context = vcpu->arch.mmu;
4992         union kvm_mmu_role new_role =
4993                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4994
4995         if (new_role.as_u64 == context->mmu_role.as_u64)
4996                 return;
4997
4998         if (!is_paging(vcpu))
4999                 nonpaging_init_context(vcpu, context);
5000         else if (is_long_mode(vcpu))
5001                 paging64_init_context(vcpu, context);
5002         else if (is_pae(vcpu))
5003                 paging32E_init_context(vcpu, context);
5004         else
5005                 paging32_init_context(vcpu, context);
5006
5007         context->mmu_role.as_u64 = new_role.as_u64;
5008         reset_shadow_zero_bits_mask(vcpu, context);
5009 }
5010 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5011
5012 static union kvm_mmu_role
5013 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5014                                    bool execonly, u8 level)
5015 {
5016         union kvm_mmu_role role = {0};
5017
5018         /* SMM flag is inherited from root_mmu */
5019         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5020
5021         role.base.level = level;
5022         role.base.gpte_is_8_bytes = true;
5023         role.base.direct = false;
5024         role.base.ad_disabled = !accessed_dirty;
5025         role.base.guest_mode = true;
5026         role.base.access = ACC_ALL;
5027
5028         /*
5029          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5030          * SMAP variation to denote shadow EPT entries.
5031          */
5032         role.base.cr0_wp = true;
5033         role.base.smap_andnot_wp = true;
5034
5035         role.ext = kvm_calc_mmu_role_ext(vcpu);
5036         role.ext.execonly = execonly;
5037
5038         return role;
5039 }
5040
5041 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5042                              bool accessed_dirty, gpa_t new_eptp)
5043 {
5044         struct kvm_mmu *context = vcpu->arch.mmu;
5045         u8 level = vmx_eptp_page_walk_level(new_eptp);
5046         union kvm_mmu_role new_role =
5047                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5048                                                    execonly, level);
5049
5050         __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5051
5052         if (new_role.as_u64 == context->mmu_role.as_u64)
5053                 return;
5054
5055         context->shadow_root_level = level;
5056
5057         context->nx = true;
5058         context->ept_ad = accessed_dirty;
5059         context->page_fault = ept_page_fault;
5060         context->gva_to_gpa = ept_gva_to_gpa;
5061         context->sync_page = ept_sync_page;
5062         context->invlpg = ept_invlpg;
5063         context->update_pte = ept_update_pte;
5064         context->root_level = level;
5065         context->direct_map = false;
5066         context->mmu_role.as_u64 = new_role.as_u64;
5067
5068         update_permission_bitmask(vcpu, context, true);
5069         update_pkru_bitmask(vcpu, context, true);
5070         update_last_nonleaf_level(vcpu, context);
5071         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5072         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5073 }
5074 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5075
5076 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5077 {
5078         struct kvm_mmu *context = vcpu->arch.mmu;
5079
5080         kvm_init_shadow_mmu(vcpu);
5081         context->get_guest_pgd     = get_cr3;
5082         context->get_pdptr         = kvm_pdptr_read;
5083         context->inject_page_fault = kvm_inject_page_fault;
5084 }
5085
5086 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5087 {
5088         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5089         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5090
5091         if (new_role.as_u64 == g_context->mmu_role.as_u64)
5092                 return;
5093
5094         g_context->mmu_role.as_u64 = new_role.as_u64;
5095         g_context->get_guest_pgd     = get_cr3;
5096         g_context->get_pdptr         = kvm_pdptr_read;
5097         g_context->inject_page_fault = kvm_inject_page_fault;
5098
5099         /*
5100          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5101          * L1's nested page tables (e.g. EPT12). The nested translation
5102          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5103          * L2's page tables as the first level of translation and L1's
5104          * nested page tables as the second level of translation. Basically
5105          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5106          */
5107         if (!is_paging(vcpu)) {
5108                 g_context->nx = false;
5109                 g_context->root_level = 0;
5110                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5111         } else if (is_long_mode(vcpu)) {
5112                 g_context->nx = is_nx(vcpu);
5113                 g_context->root_level = is_la57_mode(vcpu) ?
5114                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5115                 reset_rsvds_bits_mask(vcpu, g_context);
5116                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5117         } else if (is_pae(vcpu)) {
5118                 g_context->nx = is_nx(vcpu);
5119                 g_context->root_level = PT32E_ROOT_LEVEL;
5120                 reset_rsvds_bits_mask(vcpu, g_context);
5121                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5122         } else {
5123                 g_context->nx = false;
5124                 g_context->root_level = PT32_ROOT_LEVEL;
5125                 reset_rsvds_bits_mask(vcpu, g_context);
5126                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5127         }
5128
5129         update_permission_bitmask(vcpu, g_context, false);
5130         update_pkru_bitmask(vcpu, g_context, false);
5131         update_last_nonleaf_level(vcpu, g_context);
5132 }
5133
5134 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5135 {
5136         if (reset_roots) {
5137                 uint i;
5138
5139                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5140
5141                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5142                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5143         }
5144
5145         if (mmu_is_nested(vcpu))
5146                 init_kvm_nested_mmu(vcpu);
5147         else if (tdp_enabled)
5148                 init_kvm_tdp_mmu(vcpu);
5149         else
5150                 init_kvm_softmmu(vcpu);
5151 }
5152 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5153
5154 static union kvm_mmu_page_role
5155 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5156 {
5157         union kvm_mmu_role role;
5158
5159         if (tdp_enabled)
5160                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5161         else
5162                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5163
5164         return role.base;
5165 }
5166
5167 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5168 {
5169         kvm_mmu_unload(vcpu);
5170         kvm_init_mmu(vcpu, true);
5171 }
5172 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5173
5174 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5175 {
5176         int r;
5177
5178         r = mmu_topup_memory_caches(vcpu);
5179         if (r)
5180                 goto out;
5181         r = mmu_alloc_roots(vcpu);
5182         kvm_mmu_sync_roots(vcpu);
5183         if (r)
5184                 goto out;
5185         kvm_mmu_load_pgd(vcpu);
5186         kvm_x86_ops.tlb_flush(vcpu, true);
5187 out:
5188         return r;
5189 }
5190 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5191
5192 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5193 {
5194         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5195         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5196         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5197         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5198 }
5199 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5200
5201 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5202                                   struct kvm_mmu_page *sp, u64 *spte,
5203                                   const void *new)
5204 {
5205         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5206                 ++vcpu->kvm->stat.mmu_pde_zapped;
5207                 return;
5208         }
5209
5210         ++vcpu->kvm->stat.mmu_pte_updated;
5211         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5212 }
5213
5214 static bool need_remote_flush(u64 old, u64 new)
5215 {
5216         if (!is_shadow_present_pte(old))
5217                 return false;
5218         if (!is_shadow_present_pte(new))
5219                 return true;
5220         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5221                 return true;
5222         old ^= shadow_nx_mask;
5223         new ^= shadow_nx_mask;
5224         return (old & ~new & PT64_PERM_MASK) != 0;
5225 }
5226
5227 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5228                                     int *bytes)
5229 {
5230         u64 gentry = 0;
5231         int r;
5232
5233         /*
5234          * Assume that the pte write on a page table of the same type
5235          * as the current vcpu paging mode since we update the sptes only
5236          * when they have the same mode.
5237          */
5238         if (is_pae(vcpu) && *bytes == 4) {
5239                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5240                 *gpa &= ~(gpa_t)7;
5241                 *bytes = 8;
5242         }
5243
5244         if (*bytes == 4 || *bytes == 8) {
5245                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5246                 if (r)
5247                         gentry = 0;
5248         }
5249
5250         return gentry;
5251 }
5252
5253 /*
5254  * If we're seeing too many writes to a page, it may no longer be a page table,
5255  * or we may be forking, in which case it is better to unmap the page.
5256  */
5257 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5258 {
5259         /*
5260          * Skip write-flooding detected for the sp whose level is 1, because
5261          * it can become unsync, then the guest page is not write-protected.
5262          */
5263         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5264                 return false;
5265
5266         atomic_inc(&sp->write_flooding_count);
5267         return atomic_read(&sp->write_flooding_count) >= 3;
5268 }
5269
5270 /*
5271  * Misaligned accesses are too much trouble to fix up; also, they usually
5272  * indicate a page is not used as a page table.
5273  */
5274 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5275                                     int bytes)
5276 {
5277         unsigned offset, pte_size, misaligned;
5278
5279         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5280                  gpa, bytes, sp->role.word);
5281
5282         offset = offset_in_page(gpa);
5283         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5284
5285         /*
5286          * Sometimes, the OS only writes the last one bytes to update status
5287          * bits, for example, in linux, andb instruction is used in clear_bit().
5288          */
5289         if (!(offset & (pte_size - 1)) && bytes == 1)
5290                 return false;
5291
5292         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5293         misaligned |= bytes < 4;
5294
5295         return misaligned;
5296 }
5297
5298 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5299 {
5300         unsigned page_offset, quadrant;
5301         u64 *spte;
5302         int level;
5303
5304         page_offset = offset_in_page(gpa);
5305         level = sp->role.level;
5306         *nspte = 1;
5307         if (!sp->role.gpte_is_8_bytes) {
5308                 page_offset <<= 1;      /* 32->64 */
5309                 /*
5310                  * A 32-bit pde maps 4MB while the shadow pdes map
5311                  * only 2MB.  So we need to double the offset again
5312                  * and zap two pdes instead of one.
5313                  */
5314                 if (level == PT32_ROOT_LEVEL) {
5315                         page_offset &= ~7; /* kill rounding error */
5316                         page_offset <<= 1;
5317                         *nspte = 2;
5318                 }
5319                 quadrant = page_offset >> PAGE_SHIFT;
5320                 page_offset &= ~PAGE_MASK;
5321                 if (quadrant != sp->role.quadrant)
5322                         return NULL;
5323         }
5324
5325         spte = &sp->spt[page_offset / sizeof(*spte)];
5326         return spte;
5327 }
5328
5329 /*
5330  * Ignore various flags when determining if a SPTE can be immediately
5331  * overwritten for the current MMU.
5332  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5333  *    match the current MMU role, as MMU's level tracks the root level.
5334  *  - access: updated based on the new guest PTE
5335  *  - quadrant: handled by get_written_sptes()
5336  *  - invalid: always false (loop only walks valid shadow pages)
5337  */
5338 static const union kvm_mmu_page_role role_ign = {
5339         .level = 0xf,
5340         .access = 0x7,
5341         .quadrant = 0x3,
5342         .invalid = 0x1,
5343 };
5344
5345 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5346                               const u8 *new, int bytes,
5347                               struct kvm_page_track_notifier_node *node)
5348 {
5349         gfn_t gfn = gpa >> PAGE_SHIFT;
5350         struct kvm_mmu_page *sp;
5351         LIST_HEAD(invalid_list);
5352         u64 entry, gentry, *spte;
5353         int npte;
5354         bool remote_flush, local_flush;
5355
5356         /*
5357          * If we don't have indirect shadow pages, it means no page is
5358          * write-protected, so we can exit simply.
5359          */
5360         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5361                 return;
5362
5363         remote_flush = local_flush = false;
5364
5365         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5366
5367         /*
5368          * No need to care whether allocation memory is successful
5369          * or not since pte prefetch is skiped if it does not have
5370          * enough objects in the cache.
5371          */
5372         mmu_topup_memory_caches(vcpu);
5373
5374         spin_lock(&vcpu->kvm->mmu_lock);
5375
5376         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5377
5378         ++vcpu->kvm->stat.mmu_pte_write;
5379         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5380
5381         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5382                 if (detect_write_misaligned(sp, gpa, bytes) ||
5383                       detect_write_flooding(sp)) {
5384                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5385                         ++vcpu->kvm->stat.mmu_flooded;
5386                         continue;
5387                 }
5388
5389                 spte = get_written_sptes(sp, gpa, &npte);
5390                 if (!spte)
5391                         continue;
5392
5393                 local_flush = true;
5394                 while (npte--) {
5395                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5396
5397                         entry = *spte;
5398                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5399                         if (gentry &&
5400                             !((sp->role.word ^ base_role) & ~role_ign.word) &&
5401                             rmap_can_add(vcpu))
5402                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5403                         if (need_remote_flush(entry, *spte))
5404                                 remote_flush = true;
5405                         ++spte;
5406                 }
5407         }
5408         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5409         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5410         spin_unlock(&vcpu->kvm->mmu_lock);
5411 }
5412
5413 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5414 {
5415         gpa_t gpa;
5416         int r;
5417
5418         if (vcpu->arch.mmu->direct_map)
5419                 return 0;
5420
5421         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5422
5423         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5424
5425         return r;
5426 }
5427 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5428
5429 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5430                        void *insn, int insn_len)
5431 {
5432         int r, emulation_type = EMULTYPE_PF;
5433         bool direct = vcpu->arch.mmu->direct_map;
5434
5435         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5436                 return RET_PF_RETRY;
5437
5438         r = RET_PF_INVALID;
5439         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5440                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5441                 if (r == RET_PF_EMULATE)
5442                         goto emulate;
5443         }
5444
5445         if (r == RET_PF_INVALID) {
5446                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5447                                           lower_32_bits(error_code), false);
5448                 WARN_ON(r == RET_PF_INVALID);
5449         }
5450
5451         if (r == RET_PF_RETRY)
5452                 return 1;
5453         if (r < 0)
5454                 return r;
5455
5456         /*
5457          * Before emulating the instruction, check if the error code
5458          * was due to a RO violation while translating the guest page.
5459          * This can occur when using nested virtualization with nested
5460          * paging in both guests. If true, we simply unprotect the page
5461          * and resume the guest.
5462          */
5463         if (vcpu->arch.mmu->direct_map &&
5464             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5465                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5466                 return 1;
5467         }
5468
5469         /*
5470          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5471          * optimistically try to just unprotect the page and let the processor
5472          * re-execute the instruction that caused the page fault.  Do not allow
5473          * retrying MMIO emulation, as it's not only pointless but could also
5474          * cause us to enter an infinite loop because the processor will keep
5475          * faulting on the non-existent MMIO address.  Retrying an instruction
5476          * from a nested guest is also pointless and dangerous as we are only
5477          * explicitly shadowing L1's page tables, i.e. unprotecting something
5478          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5479          */
5480         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5481                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5482 emulate:
5483         /*
5484          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5485          * This can happen if a guest gets a page-fault on data access but the HW
5486          * table walker is not able to read the instruction page (e.g instruction
5487          * page is not present in memory). In those cases we simply restart the
5488          * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5489          */
5490         if (unlikely(insn && !insn_len)) {
5491                 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5492                         return 1;
5493         }
5494
5495         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5496                                        insn_len);
5497 }
5498 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5499
5500 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5501 {
5502         struct kvm_mmu *mmu = vcpu->arch.mmu;
5503         int i;
5504
5505         /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5506         if (is_noncanonical_address(gva, vcpu))
5507                 return;
5508
5509         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5510
5511         /*
5512          * INVLPG is required to invalidate any global mappings for the VA,
5513          * irrespective of PCID. Since it would take us roughly similar amount
5514          * of work to determine whether any of the prev_root mappings of the VA
5515          * is marked global, or to just sync it blindly, so we might as well
5516          * just always sync it.
5517          *
5518          * Mappings not reachable via the current cr3 or the prev_roots will be
5519          * synced when switching to that cr3, so nothing needs to be done here
5520          * for them.
5521          */
5522         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5523                 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5524                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5525
5526         kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5527         ++vcpu->stat.invlpg;
5528 }
5529 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5530
5531 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5532 {
5533         struct kvm_mmu *mmu = vcpu->arch.mmu;
5534         bool tlb_flush = false;
5535         uint i;
5536
5537         if (pcid == kvm_get_active_pcid(vcpu)) {
5538                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5539                 tlb_flush = true;
5540         }
5541
5542         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5543                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5544                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5545                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5546                         tlb_flush = true;
5547                 }
5548         }
5549
5550         if (tlb_flush)
5551                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5552
5553         ++vcpu->stat.invlpg;
5554
5555         /*
5556          * Mappings not reachable via the current cr3 or the prev_roots will be
5557          * synced when switching to that cr3, so nothing needs to be done here
5558          * for them.
5559          */
5560 }
5561 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5562
5563 void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
5564 {
5565         tdp_enabled = enable_tdp;
5566
5567         /*
5568          * max_page_level reflects the capabilities of KVM's MMU irrespective
5569          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5570          * the kernel is not.  But, KVM never creates a page size greater than
5571          * what is used by the kernel for any given HVA, i.e. the kernel's
5572          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5573          */
5574         if (tdp_enabled)
5575                 max_page_level = tdp_page_level;
5576         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5577                 max_page_level = PT_PDPE_LEVEL;
5578         else
5579                 max_page_level = PT_DIRECTORY_LEVEL;
5580 }
5581 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5582
5583 /* The return value indicates if tlb flush on all vcpus is needed. */
5584 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5585
5586 /* The caller should hold mmu-lock before calling this function. */
5587 static __always_inline bool
5588 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5589                         slot_level_handler fn, int start_level, int end_level,
5590                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5591 {
5592         struct slot_rmap_walk_iterator iterator;
5593         bool flush = false;
5594
5595         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5596                         end_gfn, &iterator) {
5597                 if (iterator.rmap)
5598                         flush |= fn(kvm, iterator.rmap);
5599
5600                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5601                         if (flush && lock_flush_tlb) {
5602                                 kvm_flush_remote_tlbs_with_address(kvm,
5603                                                 start_gfn,
5604                                                 iterator.gfn - start_gfn + 1);
5605                                 flush = false;
5606                         }
5607                         cond_resched_lock(&kvm->mmu_lock);
5608                 }
5609         }
5610
5611         if (flush && lock_flush_tlb) {
5612                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5613                                                    end_gfn - start_gfn + 1);
5614                 flush = false;
5615         }
5616
5617         return flush;
5618 }
5619
5620 static __always_inline bool
5621 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5622                   slot_level_handler fn, int start_level, int end_level,
5623                   bool lock_flush_tlb)
5624 {
5625         return slot_handle_level_range(kvm, memslot, fn, start_level,
5626                         end_level, memslot->base_gfn,
5627                         memslot->base_gfn + memslot->npages - 1,
5628                         lock_flush_tlb);
5629 }
5630
5631 static __always_inline bool
5632 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5633                       slot_level_handler fn, bool lock_flush_tlb)
5634 {
5635         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5636                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5637 }
5638
5639 static __always_inline bool
5640 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5641                         slot_level_handler fn, bool lock_flush_tlb)
5642 {
5643         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5644                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5645 }
5646
5647 static __always_inline bool
5648 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5649                  slot_level_handler fn, bool lock_flush_tlb)
5650 {
5651         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5652                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5653 }
5654
5655 static void free_mmu_pages(struct kvm_mmu *mmu)
5656 {
5657         free_page((unsigned long)mmu->pae_root);
5658         free_page((unsigned long)mmu->lm_root);
5659 }
5660
5661 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5662 {
5663         struct page *page;
5664         int i;
5665
5666         /*
5667          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5668          * while the PDP table is a per-vCPU construct that's allocated at MMU
5669          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5670          * x86_64.  Therefore we need to allocate the PDP table in the first
5671          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5672          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5673          * skip allocating the PDP table.
5674          */
5675         if (tdp_enabled && kvm_x86_ops.get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5676                 return 0;
5677
5678         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5679         if (!page)
5680                 return -ENOMEM;
5681
5682         mmu->pae_root = page_address(page);
5683         for (i = 0; i < 4; ++i)
5684                 mmu->pae_root[i] = INVALID_PAGE;
5685
5686         return 0;
5687 }
5688
5689 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5690 {
5691         uint i;
5692         int ret;
5693
5694         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5695         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5696
5697         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5698         vcpu->arch.root_mmu.root_cr3 = 0;
5699         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5700         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5701                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5702
5703         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5704         vcpu->arch.guest_mmu.root_cr3 = 0;
5705         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5706         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5707                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5708
5709         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5710
5711         ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5712         if (ret)
5713                 return ret;
5714
5715         ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5716         if (ret)
5717                 goto fail_allocate_root;
5718
5719         return ret;
5720  fail_allocate_root:
5721         free_mmu_pages(&vcpu->arch.guest_mmu);
5722         return ret;
5723 }
5724
5725 #define BATCH_ZAP_PAGES 10
5726 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5727 {
5728         struct kvm_mmu_page *sp, *node;
5729         int nr_zapped, batch = 0;
5730
5731 restart:
5732         list_for_each_entry_safe_reverse(sp, node,
5733               &kvm->arch.active_mmu_pages, link) {
5734                 /*
5735                  * No obsolete valid page exists before a newly created page
5736                  * since active_mmu_pages is a FIFO list.
5737                  */
5738                 if (!is_obsolete_sp(kvm, sp))
5739                         break;
5740
5741                 /*
5742                  * Skip invalid pages with a non-zero root count, zapping pages
5743                  * with a non-zero root count will never succeed, i.e. the page
5744                  * will get thrown back on active_mmu_pages and we'll get stuck
5745                  * in an infinite loop.
5746                  */
5747                 if (sp->role.invalid && sp->root_count)
5748                         continue;
5749
5750                 /*
5751                  * No need to flush the TLB since we're only zapping shadow
5752                  * pages with an obsolete generation number and all vCPUS have
5753                  * loaded a new root, i.e. the shadow pages being zapped cannot
5754                  * be in active use by the guest.
5755                  */
5756                 if (batch >= BATCH_ZAP_PAGES &&
5757                     cond_resched_lock(&kvm->mmu_lock)) {
5758                         batch = 0;
5759                         goto restart;
5760                 }
5761
5762                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5763                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5764                         batch += nr_zapped;
5765                         goto restart;
5766                 }
5767         }
5768
5769         /*
5770          * Trigger a remote TLB flush before freeing the page tables to ensure
5771          * KVM is not in the middle of a lockless shadow page table walk, which
5772          * may reference the pages.
5773          */
5774         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5775 }
5776
5777 /*
5778  * Fast invalidate all shadow pages and use lock-break technique
5779  * to zap obsolete pages.
5780  *
5781  * It's required when memslot is being deleted or VM is being
5782  * destroyed, in these cases, we should ensure that KVM MMU does
5783  * not use any resource of the being-deleted slot or all slots
5784  * after calling the function.
5785  */
5786 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5787 {
5788         lockdep_assert_held(&kvm->slots_lock);
5789
5790         spin_lock(&kvm->mmu_lock);
5791         trace_kvm_mmu_zap_all_fast(kvm);
5792
5793         /*
5794          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5795          * held for the entire duration of zapping obsolete pages, it's
5796          * impossible for there to be multiple invalid generations associated
5797          * with *valid* shadow pages at any given time, i.e. there is exactly
5798          * one valid generation and (at most) one invalid generation.
5799          */
5800         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5801
5802         /*
5803          * Notify all vcpus to reload its shadow page table and flush TLB.
5804          * Then all vcpus will switch to new shadow page table with the new
5805          * mmu_valid_gen.
5806          *
5807          * Note: we need to do this under the protection of mmu_lock,
5808          * otherwise, vcpu would purge shadow page but miss tlb flush.
5809          */
5810         kvm_reload_remote_mmus(kvm);
5811
5812         kvm_zap_obsolete_pages(kvm);
5813         spin_unlock(&kvm->mmu_lock);
5814 }
5815
5816 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5817 {
5818         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5819 }
5820
5821 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5822                         struct kvm_memory_slot *slot,
5823                         struct kvm_page_track_notifier_node *node)
5824 {
5825         kvm_mmu_zap_all_fast(kvm);
5826 }
5827
5828 void kvm_mmu_init_vm(struct kvm *kvm)
5829 {
5830         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5831
5832         node->track_write = kvm_mmu_pte_write;
5833         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5834         kvm_page_track_register_notifier(kvm, node);
5835 }
5836
5837 void kvm_mmu_uninit_vm(struct kvm *kvm)
5838 {
5839         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5840
5841         kvm_page_track_unregister_notifier(kvm, node);
5842 }
5843
5844 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5845 {
5846         struct kvm_memslots *slots;
5847         struct kvm_memory_slot *memslot;
5848         int i;
5849
5850         spin_lock(&kvm->mmu_lock);
5851         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5852                 slots = __kvm_memslots(kvm, i);
5853                 kvm_for_each_memslot(memslot, slots) {
5854                         gfn_t start, end;
5855
5856                         start = max(gfn_start, memslot->base_gfn);
5857                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5858                         if (start >= end)
5859                                 continue;
5860
5861                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5862                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5863                                                 start, end - 1, true);
5864                 }
5865         }
5866
5867         spin_unlock(&kvm->mmu_lock);
5868 }
5869
5870 static bool slot_rmap_write_protect(struct kvm *kvm,
5871                                     struct kvm_rmap_head *rmap_head)
5872 {
5873         return __rmap_write_protect(kvm, rmap_head, false);
5874 }
5875
5876 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5877                                       struct kvm_memory_slot *memslot,
5878                                       int start_level)
5879 {
5880         bool flush;
5881
5882         spin_lock(&kvm->mmu_lock);
5883         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5884                                 start_level, PT_MAX_HUGEPAGE_LEVEL, false);
5885         spin_unlock(&kvm->mmu_lock);
5886
5887         /*
5888          * We can flush all the TLBs out of the mmu lock without TLB
5889          * corruption since we just change the spte from writable to
5890          * readonly so that we only need to care the case of changing
5891          * spte from present to present (changing the spte from present
5892          * to nonpresent will flush all the TLBs immediately), in other
5893          * words, the only case we care is mmu_spte_update() where we
5894          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5895          * instead of PT_WRITABLE_MASK, that means it does not depend
5896          * on PT_WRITABLE_MASK anymore.
5897          */
5898         if (flush)
5899                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5900 }
5901
5902 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5903                                          struct kvm_rmap_head *rmap_head)
5904 {
5905         u64 *sptep;
5906         struct rmap_iterator iter;
5907         int need_tlb_flush = 0;
5908         kvm_pfn_t pfn;
5909         struct kvm_mmu_page *sp;
5910
5911 restart:
5912         for_each_rmap_spte(rmap_head, &iter, sptep) {
5913                 sp = page_header(__pa(sptep));
5914                 pfn = spte_to_pfn(*sptep);
5915
5916                 /*
5917                  * We cannot do huge page mapping for indirect shadow pages,
5918                  * which are found on the last rmap (level = 1) when not using
5919                  * tdp; such shadow pages are synced with the page table in
5920                  * the guest, and the guest page table is using 4K page size
5921                  * mapping if the indirect sp has level = 1.
5922                  */
5923                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5924                     (kvm_is_zone_device_pfn(pfn) ||
5925                      PageCompound(pfn_to_page(pfn)))) {
5926                         pte_list_remove(rmap_head, sptep);
5927
5928                         if (kvm_available_flush_tlb_with_range())
5929                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5930                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5931                         else
5932                                 need_tlb_flush = 1;
5933
5934                         goto restart;
5935                 }
5936         }
5937
5938         return need_tlb_flush;
5939 }
5940
5941 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5942                                    const struct kvm_memory_slot *memslot)
5943 {
5944         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5945         spin_lock(&kvm->mmu_lock);
5946         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5947                          kvm_mmu_zap_collapsible_spte, true);
5948         spin_unlock(&kvm->mmu_lock);
5949 }
5950
5951 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5952                                         struct kvm_memory_slot *memslot)
5953 {
5954         /*
5955          * All current use cases for flushing the TLBs for a specific memslot
5956          * are related to dirty logging, and do the TLB flush out of mmu_lock.
5957          * The interaction between the various operations on memslot must be
5958          * serialized by slots_locks to ensure the TLB flush from one operation
5959          * is observed by any other operation on the same memslot.
5960          */
5961         lockdep_assert_held(&kvm->slots_lock);
5962         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5963                                            memslot->npages);
5964 }
5965
5966 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5967                                    struct kvm_memory_slot *memslot)
5968 {
5969         bool flush;
5970
5971         spin_lock(&kvm->mmu_lock);
5972         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5973         spin_unlock(&kvm->mmu_lock);
5974
5975         /*
5976          * It's also safe to flush TLBs out of mmu lock here as currently this
5977          * function is only used for dirty logging, in which case flushing TLB
5978          * out of mmu lock also guarantees no dirty pages will be lost in
5979          * dirty_bitmap.
5980          */
5981         if (flush)
5982                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5983 }
5984 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5985
5986 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5987                                         struct kvm_memory_slot *memslot)
5988 {
5989         bool flush;
5990
5991         spin_lock(&kvm->mmu_lock);
5992         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5993                                         false);
5994         spin_unlock(&kvm->mmu_lock);
5995
5996         if (flush)
5997                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5998 }
5999 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6000
6001 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6002                             struct kvm_memory_slot *memslot)
6003 {
6004         bool flush;
6005
6006         spin_lock(&kvm->mmu_lock);
6007         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6008         spin_unlock(&kvm->mmu_lock);
6009
6010         if (flush)
6011                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6012 }
6013 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6014
6015 void kvm_mmu_zap_all(struct kvm *kvm)
6016 {
6017         struct kvm_mmu_page *sp, *node;
6018         LIST_HEAD(invalid_list);
6019         int ign;
6020
6021         spin_lock(&kvm->mmu_lock);
6022 restart:
6023         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6024                 if (sp->role.invalid && sp->root_count)
6025                         continue;
6026                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6027                         goto restart;
6028                 if (cond_resched_lock(&kvm->mmu_lock))
6029                         goto restart;
6030         }
6031
6032         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6033         spin_unlock(&kvm->mmu_lock);
6034 }
6035
6036 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6037 {
6038         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6039
6040         gen &= MMIO_SPTE_GEN_MASK;
6041
6042         /*
6043          * Generation numbers are incremented in multiples of the number of
6044          * address spaces in order to provide unique generations across all
6045          * address spaces.  Strip what is effectively the address space
6046          * modifier prior to checking for a wrap of the MMIO generation so
6047          * that a wrap in any address space is detected.
6048          */
6049         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6050
6051         /*
6052          * The very rare case: if the MMIO generation number has wrapped,
6053          * zap all shadow pages.
6054          */
6055         if (unlikely(gen == 0)) {
6056                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6057                 kvm_mmu_zap_all_fast(kvm);
6058         }
6059 }
6060
6061 static unsigned long
6062 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6063 {
6064         struct kvm *kvm;
6065         int nr_to_scan = sc->nr_to_scan;
6066         unsigned long freed = 0;
6067
6068         mutex_lock(&kvm_lock);
6069
6070         list_for_each_entry(kvm, &vm_list, vm_list) {
6071                 int idx;
6072                 LIST_HEAD(invalid_list);
6073
6074                 /*
6075                  * Never scan more than sc->nr_to_scan VM instances.
6076                  * Will not hit this condition practically since we do not try
6077                  * to shrink more than one VM and it is very unlikely to see
6078                  * !n_used_mmu_pages so many times.
6079                  */
6080                 if (!nr_to_scan--)
6081                         break;
6082                 /*
6083                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6084                  * here. We may skip a VM instance errorneosly, but we do not
6085                  * want to shrink a VM that only started to populate its MMU
6086                  * anyway.
6087                  */
6088                 if (!kvm->arch.n_used_mmu_pages &&
6089                     !kvm_has_zapped_obsolete_pages(kvm))
6090                         continue;
6091
6092                 idx = srcu_read_lock(&kvm->srcu);
6093                 spin_lock(&kvm->mmu_lock);
6094
6095                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6096                         kvm_mmu_commit_zap_page(kvm,
6097                               &kvm->arch.zapped_obsolete_pages);
6098                         goto unlock;
6099                 }
6100
6101                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6102                         freed++;
6103                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6104
6105 unlock:
6106                 spin_unlock(&kvm->mmu_lock);
6107                 srcu_read_unlock(&kvm->srcu, idx);
6108
6109                 /*
6110                  * unfair on small ones
6111                  * per-vm shrinkers cry out
6112                  * sadness comes quickly
6113                  */
6114                 list_move_tail(&kvm->vm_list, &vm_list);
6115                 break;
6116         }
6117
6118         mutex_unlock(&kvm_lock);
6119         return freed;
6120 }
6121
6122 static unsigned long
6123 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6124 {
6125         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6126 }
6127
6128 static struct shrinker mmu_shrinker = {
6129         .count_objects = mmu_shrink_count,
6130         .scan_objects = mmu_shrink_scan,
6131         .seeks = DEFAULT_SEEKS * 10,
6132 };
6133
6134 static void mmu_destroy_caches(void)
6135 {
6136         kmem_cache_destroy(pte_list_desc_cache);
6137         kmem_cache_destroy(mmu_page_header_cache);
6138 }
6139
6140 static void kvm_set_mmio_spte_mask(void)
6141 {
6142         u64 mask;
6143
6144         /*
6145          * Set the reserved bits and the present bit of an paging-structure
6146          * entry to generate page fault with PFER.RSV = 1.
6147          */
6148
6149         /*
6150          * Mask the uppermost physical address bit, which would be reserved as
6151          * long as the supported physical address width is less than 52.
6152          */
6153         mask = 1ull << 51;
6154
6155         /* Set the present bit. */
6156         mask |= 1ull;
6157
6158         /*
6159          * If reserved bit is not supported, clear the present bit to disable
6160          * mmio page fault.
6161          */
6162         if (shadow_phys_bits == 52)
6163                 mask &= ~1ull;
6164
6165         kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6166 }
6167
6168 static bool get_nx_auto_mode(void)
6169 {
6170         /* Return true when CPU has the bug, and mitigations are ON */
6171         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6172 }
6173
6174 static void __set_nx_huge_pages(bool val)
6175 {
6176         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6177 }
6178
6179 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6180 {
6181         bool old_val = nx_huge_pages;
6182         bool new_val;
6183
6184         /* In "auto" mode deploy workaround only if CPU has the bug. */
6185         if (sysfs_streq(val, "off"))
6186                 new_val = 0;
6187         else if (sysfs_streq(val, "force"))
6188                 new_val = 1;
6189         else if (sysfs_streq(val, "auto"))
6190                 new_val = get_nx_auto_mode();
6191         else if (strtobool(val, &new_val) < 0)
6192                 return -EINVAL;
6193
6194         __set_nx_huge_pages(new_val);
6195
6196         if (new_val != old_val) {
6197                 struct kvm *kvm;
6198
6199                 mutex_lock(&kvm_lock);
6200
6201                 list_for_each_entry(kvm, &vm_list, vm_list) {
6202                         mutex_lock(&kvm->slots_lock);
6203                         kvm_mmu_zap_all_fast(kvm);
6204                         mutex_unlock(&kvm->slots_lock);
6205
6206                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6207                 }
6208                 mutex_unlock(&kvm_lock);
6209         }
6210
6211         return 0;
6212 }
6213
6214 int kvm_mmu_module_init(void)
6215 {
6216         int ret = -ENOMEM;
6217
6218         if (nx_huge_pages == -1)
6219                 __set_nx_huge_pages(get_nx_auto_mode());
6220
6221         /*
6222          * MMU roles use union aliasing which is, generally speaking, an
6223          * undefined behavior. However, we supposedly know how compilers behave
6224          * and the current status quo is unlikely to change. Guardians below are
6225          * supposed to let us know if the assumption becomes false.
6226          */
6227         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6228         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6229         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6230
6231         kvm_mmu_reset_all_pte_masks();
6232
6233         kvm_set_mmio_spte_mask();
6234
6235         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6236                                             sizeof(struct pte_list_desc),
6237                                             0, SLAB_ACCOUNT, NULL);
6238         if (!pte_list_desc_cache)
6239                 goto out;
6240
6241         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6242                                                   sizeof(struct kvm_mmu_page),
6243                                                   0, SLAB_ACCOUNT, NULL);
6244         if (!mmu_page_header_cache)
6245                 goto out;
6246
6247         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6248                 goto out;
6249
6250         ret = register_shrinker(&mmu_shrinker);
6251         if (ret)
6252                 goto out;
6253
6254         return 0;
6255
6256 out:
6257         mmu_destroy_caches();
6258         return ret;
6259 }
6260
6261 /*
6262  * Calculate mmu pages needed for kvm.
6263  */
6264 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6265 {
6266         unsigned long nr_mmu_pages;
6267         unsigned long nr_pages = 0;
6268         struct kvm_memslots *slots;
6269         struct kvm_memory_slot *memslot;
6270         int i;
6271
6272         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6273                 slots = __kvm_memslots(kvm, i);
6274
6275                 kvm_for_each_memslot(memslot, slots)
6276                         nr_pages += memslot->npages;
6277         }
6278
6279         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6280         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6281
6282         return nr_mmu_pages;
6283 }
6284
6285 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6286 {
6287         kvm_mmu_unload(vcpu);
6288         free_mmu_pages(&vcpu->arch.root_mmu);
6289         free_mmu_pages(&vcpu->arch.guest_mmu);
6290         mmu_free_memory_caches(vcpu);
6291 }
6292
6293 void kvm_mmu_module_exit(void)
6294 {
6295         mmu_destroy_caches();
6296         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6297         unregister_shrinker(&mmu_shrinker);
6298         mmu_audit_disable();
6299 }
6300
6301 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6302 {
6303         unsigned int old_val;
6304         int err;
6305
6306         old_val = nx_huge_pages_recovery_ratio;
6307         err = param_set_uint(val, kp);
6308         if (err)
6309                 return err;
6310
6311         if (READ_ONCE(nx_huge_pages) &&
6312             !old_val && nx_huge_pages_recovery_ratio) {
6313                 struct kvm *kvm;
6314
6315                 mutex_lock(&kvm_lock);
6316
6317                 list_for_each_entry(kvm, &vm_list, vm_list)
6318                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6319
6320                 mutex_unlock(&kvm_lock);
6321         }
6322
6323         return err;
6324 }
6325
6326 static void kvm_recover_nx_lpages(struct kvm *kvm)
6327 {
6328         int rcu_idx;
6329         struct kvm_mmu_page *sp;
6330         unsigned int ratio;
6331         LIST_HEAD(invalid_list);
6332         ulong to_zap;
6333
6334         rcu_idx = srcu_read_lock(&kvm->srcu);
6335         spin_lock(&kvm->mmu_lock);
6336
6337         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6338         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6339         while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6340                 /*
6341                  * We use a separate list instead of just using active_mmu_pages
6342                  * because the number of lpage_disallowed pages is expected to
6343                  * be relatively small compared to the total.
6344                  */
6345                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6346                                       struct kvm_mmu_page,
6347                                       lpage_disallowed_link);
6348                 WARN_ON_ONCE(!sp->lpage_disallowed);
6349                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6350                 WARN_ON_ONCE(sp->lpage_disallowed);
6351
6352                 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6353                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6354                         if (to_zap)
6355                                 cond_resched_lock(&kvm->mmu_lock);
6356                 }
6357         }
6358
6359         spin_unlock(&kvm->mmu_lock);
6360         srcu_read_unlock(&kvm->srcu, rcu_idx);
6361 }
6362
6363 static long get_nx_lpage_recovery_timeout(u64 start_time)
6364 {
6365         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6366                 ? start_time + 60 * HZ - get_jiffies_64()
6367                 : MAX_SCHEDULE_TIMEOUT;
6368 }
6369
6370 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6371 {
6372         u64 start_time;
6373         long remaining_time;
6374
6375         while (true) {
6376                 start_time = get_jiffies_64();
6377                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6378
6379                 set_current_state(TASK_INTERRUPTIBLE);
6380                 while (!kthread_should_stop() && remaining_time > 0) {
6381                         schedule_timeout(remaining_time);
6382                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6383                         set_current_state(TASK_INTERRUPTIBLE);
6384                 }
6385
6386                 set_current_state(TASK_RUNNING);
6387
6388                 if (kthread_should_stop())
6389                         return 0;
6390
6391                 kvm_recover_nx_lpages(kvm);
6392         }
6393 }
6394
6395 int kvm_mmu_post_init_vm(struct kvm *kvm)
6396 {
6397         int err;
6398
6399         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6400                                           "kvm-nx-lpage-recovery",
6401                                           &kvm->arch.nx_lpage_recovery_thread);
6402         if (!err)
6403                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6404
6405         return err;
6406 }
6407
6408 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6409 {
6410         if (kvm->arch.nx_lpage_recovery_thread)
6411                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6412 }
This page took 0.387765 seconds and 4 git commands to generate.