4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
29 #include <linux/debugfs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/pseudo_fs.h>
35 #include <linux/slab.h>
36 #include <linux/srcu.h>
38 #include <drm/drm_client.h>
39 #include <drm/drm_color_mgmt.h>
40 #include <drm/drm_drv.h>
41 #include <drm/drm_file.h>
42 #include <drm/drm_mode_object.h>
43 #include <drm/drm_print.h>
45 #include "drm_crtc_internal.h"
46 #include "drm_internal.h"
47 #include "drm_legacy.h"
50 * drm_debug: Enable debug output.
51 * Bitmask of DRM_UT_x. See include/drm/drm_print.h for details.
53 unsigned int drm_debug = 0;
54 EXPORT_SYMBOL(drm_debug);
56 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
57 MODULE_DESCRIPTION("DRM shared core routines");
58 MODULE_LICENSE("GPL and additional rights");
59 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
60 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n"
61 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n"
62 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n"
63 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n"
64 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n"
65 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)\n"
66 "\t\tBit 7 (0x80) will enable LEASE messages (leasing code)\n"
67 "\t\tBit 8 (0x100) will enable DP messages (displayport code)");
68 module_param_named(debug, drm_debug, int, 0600);
70 static DEFINE_SPINLOCK(drm_minor_lock);
71 static struct idr drm_minors_idr;
74 * If the drm core fails to init for whatever reason,
75 * we should prevent any drivers from registering with it.
76 * It's best to check this at drm_dev_init(), as some drivers
77 * prefer to embed struct drm_device into their own device
78 * structure and call drm_dev_init() themselves.
80 static bool drm_core_init_complete = false;
82 static struct dentry *drm_debugfs_root;
84 DEFINE_STATIC_SRCU(drm_unplug_srcu);
88 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
89 * of them is represented by a drm_minor object. Depending on the capabilities
90 * of the device-driver, different interfaces are registered.
92 * Minors can be accessed via dev->$minor_name. This pointer is either
93 * NULL or a valid drm_minor pointer and stays valid as long as the device is
94 * valid. This means, DRM minors have the same life-time as the underlying
95 * device. However, this doesn't mean that the minor is active. Minors are
96 * registered and unregistered dynamically according to device-state.
99 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
103 case DRM_MINOR_PRIMARY:
104 return &dev->primary;
105 case DRM_MINOR_RENDER:
112 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
114 struct drm_minor *minor;
118 minor = kzalloc(sizeof(*minor), GFP_KERNEL);
125 idr_preload(GFP_KERNEL);
126 spin_lock_irqsave(&drm_minor_lock, flags);
127 r = idr_alloc(&drm_minors_idr,
132 spin_unlock_irqrestore(&drm_minor_lock, flags);
140 minor->kdev = drm_sysfs_minor_alloc(minor);
141 if (IS_ERR(minor->kdev)) {
142 r = PTR_ERR(minor->kdev);
146 *drm_minor_get_slot(dev, type) = minor;
150 spin_lock_irqsave(&drm_minor_lock, flags);
151 idr_remove(&drm_minors_idr, minor->index);
152 spin_unlock_irqrestore(&drm_minor_lock, flags);
158 static void drm_minor_free(struct drm_device *dev, unsigned int type)
160 struct drm_minor **slot, *minor;
163 slot = drm_minor_get_slot(dev, type);
168 put_device(minor->kdev);
170 spin_lock_irqsave(&drm_minor_lock, flags);
171 idr_remove(&drm_minors_idr, minor->index);
172 spin_unlock_irqrestore(&drm_minor_lock, flags);
178 static int drm_minor_register(struct drm_device *dev, unsigned int type)
180 struct drm_minor *minor;
186 minor = *drm_minor_get_slot(dev, type);
190 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
192 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
196 ret = device_add(minor->kdev);
200 /* replace NULL with @minor so lookups will succeed from now on */
201 spin_lock_irqsave(&drm_minor_lock, flags);
202 idr_replace(&drm_minors_idr, minor, minor->index);
203 spin_unlock_irqrestore(&drm_minor_lock, flags);
205 DRM_DEBUG("new minor registered %d\n", minor->index);
209 drm_debugfs_cleanup(minor);
213 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
215 struct drm_minor *minor;
218 minor = *drm_minor_get_slot(dev, type);
219 if (!minor || !device_is_registered(minor->kdev))
222 /* replace @minor with NULL so lookups will fail from now on */
223 spin_lock_irqsave(&drm_minor_lock, flags);
224 idr_replace(&drm_minors_idr, NULL, minor->index);
225 spin_unlock_irqrestore(&drm_minor_lock, flags);
227 device_del(minor->kdev);
228 dev_set_drvdata(minor->kdev, NULL); /* safety belt */
229 drm_debugfs_cleanup(minor);
233 * Looks up the given minor-ID and returns the respective DRM-minor object. The
234 * refence-count of the underlying device is increased so you must release this
235 * object with drm_minor_release().
237 * As long as you hold this minor, it is guaranteed that the object and the
238 * minor->dev pointer will stay valid! However, the device may get unplugged and
239 * unregistered while you hold the minor.
241 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
243 struct drm_minor *minor;
246 spin_lock_irqsave(&drm_minor_lock, flags);
247 minor = idr_find(&drm_minors_idr, minor_id);
249 drm_dev_get(minor->dev);
250 spin_unlock_irqrestore(&drm_minor_lock, flags);
253 return ERR_PTR(-ENODEV);
254 } else if (drm_dev_is_unplugged(minor->dev)) {
255 drm_dev_put(minor->dev);
256 return ERR_PTR(-ENODEV);
262 void drm_minor_release(struct drm_minor *minor)
264 drm_dev_put(minor->dev);
268 * DOC: driver instance overview
270 * A device instance for a drm driver is represented by &struct drm_device. This
271 * is initialized with drm_dev_init(), usually from bus-specific ->probe()
272 * callbacks implemented by the driver. The driver then needs to initialize all
273 * the various subsystems for the drm device like memory management, vblank
274 * handling, modesetting support and intial output configuration plus obviously
275 * initialize all the corresponding hardware bits. Finally when everything is up
276 * and running and ready for userspace the device instance can be published
277 * using drm_dev_register().
279 * There is also deprecated support for initalizing device instances using
280 * bus-specific helpers and the &drm_driver.load callback. But due to
281 * backwards-compatibility needs the device instance have to be published too
282 * early, which requires unpretty global locking to make safe and is therefore
283 * only support for existing drivers not yet converted to the new scheme.
285 * When cleaning up a device instance everything needs to be done in reverse:
286 * First unpublish the device instance with drm_dev_unregister(). Then clean up
287 * any other resources allocated at device initialization and drop the driver's
288 * reference to &drm_device using drm_dev_put().
290 * Note that the lifetime rules for &drm_device instance has still a lot of
291 * historical baggage. Hence use the reference counting provided by
292 * drm_dev_get() and drm_dev_put() only carefully.
294 * Display driver example
295 * ~~~~~~~~~~~~~~~~~~~~~~
297 * The following example shows a typical structure of a DRM display driver.
298 * The example focus on the probe() function and the other functions that is
299 * almost always present and serves as a demonstration of devm_drm_dev_init()
300 * usage with its accompanying drm_driver->release callback.
304 * struct driver_device {
305 * struct drm_device drm;
306 * void *userspace_facing;
310 * static void driver_drm_release(struct drm_device *drm)
312 * struct driver_device *priv = container_of(...);
314 * drm_mode_config_cleanup(drm);
316 * kfree(priv->userspace_facing);
320 * static struct drm_driver driver_drm_driver = {
322 * .release = driver_drm_release,
325 * static int driver_probe(struct platform_device *pdev)
327 * struct driver_device *priv;
328 * struct drm_device *drm;
332 * devm_kzalloc() can't be used here because the drm_device
333 * lifetime can exceed the device lifetime if driver unbind
334 * happens when userspace still has open file descriptors.
336 * priv = kzalloc(sizeof(*priv), GFP_KERNEL);
342 * ret = devm_drm_dev_init(&pdev->dev, drm, &driver_drm_driver);
348 * drm_mode_config_init(drm);
350 * priv->userspace_facing = kzalloc(..., GFP_KERNEL);
351 * if (!priv->userspace_facing)
354 * priv->pclk = devm_clk_get(dev, "PCLK");
355 * if (IS_ERR(priv->pclk))
356 * return PTR_ERR(priv->pclk);
358 * [ Further setup, display pipeline etc ]
360 * platform_set_drvdata(pdev, drm);
362 * drm_mode_config_reset(drm);
364 * ret = drm_dev_register(drm);
368 * drm_fbdev_generic_setup(drm, 32);
373 * [ This function is called before the devm_ resources are released ]
374 * static int driver_remove(struct platform_device *pdev)
376 * struct drm_device *drm = platform_get_drvdata(pdev);
378 * drm_dev_unregister(drm);
379 * drm_atomic_helper_shutdown(drm)
384 * [ This function is called on kernel restart and shutdown ]
385 * static void driver_shutdown(struct platform_device *pdev)
387 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
390 * static int __maybe_unused driver_pm_suspend(struct device *dev)
392 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
395 * static int __maybe_unused driver_pm_resume(struct device *dev)
397 * drm_mode_config_helper_resume(dev_get_drvdata(dev));
402 * static const struct dev_pm_ops driver_pm_ops = {
403 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
406 * static struct platform_driver driver_driver = {
409 * .pm = &driver_pm_ops,
411 * .probe = driver_probe,
412 * .remove = driver_remove,
413 * .shutdown = driver_shutdown,
415 * module_platform_driver(driver_driver);
417 * Drivers that want to support device unplugging (USB, DT overlay unload) should
418 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
419 * regions that is accessing device resources to prevent use after they're
420 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
421 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
422 * drm_atomic_helper_shutdown() is called. This means that if the disable code
423 * paths are protected, they will not run on regular driver module unload,
424 * possibily leaving the hardware enabled.
428 * drm_put_dev - Unregister and release a DRM device
431 * Called at module unload time or when a PCI device is unplugged.
433 * Cleans up all DRM device, calling drm_lastclose().
435 * Note: Use of this function is deprecated. It will eventually go away
436 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly
437 * instead to make sure that the device isn't userspace accessible any more
438 * while teardown is in progress, ensuring that userspace can't access an
439 * inconsistent state.
441 void drm_put_dev(struct drm_device *dev)
446 DRM_ERROR("cleanup called no dev\n");
450 drm_dev_unregister(dev);
453 EXPORT_SYMBOL(drm_put_dev);
456 * drm_dev_enter - Enter device critical section
458 * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
460 * This function marks and protects the beginning of a section that should not
461 * be entered after the device has been unplugged. The section end is marked
462 * with drm_dev_exit(). Calls to this function can be nested.
465 * True if it is OK to enter the section, false otherwise.
467 bool drm_dev_enter(struct drm_device *dev, int *idx)
469 *idx = srcu_read_lock(&drm_unplug_srcu);
471 if (dev->unplugged) {
472 srcu_read_unlock(&drm_unplug_srcu, *idx);
478 EXPORT_SYMBOL(drm_dev_enter);
481 * drm_dev_exit - Exit device critical section
482 * @idx: index returned from drm_dev_enter()
484 * This function marks the end of a section that should not be entered after
485 * the device has been unplugged.
487 void drm_dev_exit(int idx)
489 srcu_read_unlock(&drm_unplug_srcu, idx);
491 EXPORT_SYMBOL(drm_dev_exit);
494 * drm_dev_unplug - unplug a DRM device
497 * This unplugs a hotpluggable DRM device, which makes it inaccessible to
498 * userspace operations. Entry-points can use drm_dev_enter() and
499 * drm_dev_exit() to protect device resources in a race free manner. This
500 * essentially unregisters the device like drm_dev_unregister(), but can be
501 * called while there are still open users of @dev.
503 void drm_dev_unplug(struct drm_device *dev)
506 * After synchronizing any critical read section is guaranteed to see
507 * the new value of ->unplugged, and any critical section which might
508 * still have seen the old value of ->unplugged is guaranteed to have
511 dev->unplugged = true;
512 synchronize_srcu(&drm_unplug_srcu);
514 drm_dev_unregister(dev);
516 EXPORT_SYMBOL(drm_dev_unplug);
520 * We want to be able to allocate our own "struct address_space" to control
521 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
522 * stand-alone address_space objects, so we need an underlying inode. As there
523 * is no way to allocate an independent inode easily, we need a fake internal
526 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
527 * frees it again. You are allowed to use iget() and iput() to get references to
528 * the inode. But each drm_fs_inode_new() call must be paired with exactly one
529 * drm_fs_inode_free() call (which does not have to be the last iput()).
530 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
531 * between multiple inode-users. You could, technically, call
532 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
533 * iput(), but this way you'd end up with a new vfsmount for each inode.
536 static int drm_fs_cnt;
537 static struct vfsmount *drm_fs_mnt;
539 static int drm_fs_init_fs_context(struct fs_context *fc)
541 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
544 static struct file_system_type drm_fs_type = {
546 .owner = THIS_MODULE,
547 .init_fs_context = drm_fs_init_fs_context,
548 .kill_sb = kill_anon_super,
551 static struct inode *drm_fs_inode_new(void)
556 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
558 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
562 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
564 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
569 static void drm_fs_inode_free(struct inode *inode)
573 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
578 * DOC: component helper usage recommendations
580 * DRM drivers that drive hardware where a logical device consists of a pile of
581 * independent hardware blocks are recommended to use the :ref:`component helper
582 * library<component>`. For consistency and better options for code reuse the
583 * following guidelines apply:
585 * - The entire device initialization procedure should be run from the
586 * &component_master_ops.master_bind callback, starting with drm_dev_init(),
587 * then binding all components with component_bind_all() and finishing with
588 * drm_dev_register().
590 * - The opaque pointer passed to all components through component_bind_all()
591 * should point at &struct drm_device of the device instance, not some driver
592 * specific private structure.
594 * - The component helper fills the niche where further standardization of
595 * interfaces is not practical. When there already is, or will be, a
596 * standardized interface like &drm_bridge or &drm_panel, providing its own
597 * functions to find such components at driver load time, like
598 * drm_of_find_panel_or_bridge(), then the component helper should not be
603 * drm_dev_init - Initialise new DRM device
605 * @driver: DRM driver
606 * @parent: Parent device object
608 * Initialize a new DRM device. No device registration is done.
609 * Call drm_dev_register() to advertice the device to user space and register it
610 * with other core subsystems. This should be done last in the device
611 * initialization sequence to make sure userspace can't access an inconsistent
614 * The initial ref-count of the object is 1. Use drm_dev_get() and
615 * drm_dev_put() to take and drop further ref-counts.
617 * It is recommended that drivers embed &struct drm_device into their own device
620 * Drivers that do not want to allocate their own device struct
621 * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers
622 * that do embed &struct drm_device it must be placed first in the overall
623 * structure, and the overall structure must be allocated using kmalloc(): The
624 * drm core's release function unconditionally calls kfree() on the @dev pointer
625 * when the final reference is released. To override this behaviour, and so
626 * allow embedding of the drm_device inside the driver's device struct at an
627 * arbitrary offset, you must supply a &drm_driver.release callback and control
628 * the finalization explicitly.
631 * 0 on success, or error code on failure.
633 int drm_dev_init(struct drm_device *dev,
634 struct drm_driver *driver,
635 struct device *parent)
639 if (!drm_core_init_complete) {
640 DRM_ERROR("DRM core is not initialized\n");
646 kref_init(&dev->ref);
647 dev->dev = get_device(parent);
648 dev->driver = driver;
650 /* no per-device feature limits by default */
651 dev->driver_features = ~0u;
653 drm_legacy_init_members(dev);
654 INIT_LIST_HEAD(&dev->filelist);
655 INIT_LIST_HEAD(&dev->filelist_internal);
656 INIT_LIST_HEAD(&dev->clientlist);
657 INIT_LIST_HEAD(&dev->vblank_event_list);
659 spin_lock_init(&dev->event_lock);
660 mutex_init(&dev->struct_mutex);
661 mutex_init(&dev->filelist_mutex);
662 mutex_init(&dev->clientlist_mutex);
663 mutex_init(&dev->master_mutex);
665 dev->anon_inode = drm_fs_inode_new();
666 if (IS_ERR(dev->anon_inode)) {
667 ret = PTR_ERR(dev->anon_inode);
668 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
672 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
673 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
678 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
682 ret = drm_legacy_create_map_hash(dev);
686 drm_legacy_ctxbitmap_init(dev);
688 if (drm_core_check_feature(dev, DRIVER_GEM)) {
689 ret = drm_gem_init(dev);
691 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
696 ret = drm_dev_set_unique(dev, dev_name(parent));
703 if (drm_core_check_feature(dev, DRIVER_GEM))
704 drm_gem_destroy(dev);
706 drm_legacy_ctxbitmap_cleanup(dev);
707 drm_legacy_remove_map_hash(dev);
709 drm_minor_free(dev, DRM_MINOR_PRIMARY);
710 drm_minor_free(dev, DRM_MINOR_RENDER);
711 drm_fs_inode_free(dev->anon_inode);
713 put_device(dev->dev);
714 mutex_destroy(&dev->master_mutex);
715 mutex_destroy(&dev->clientlist_mutex);
716 mutex_destroy(&dev->filelist_mutex);
717 mutex_destroy(&dev->struct_mutex);
718 drm_legacy_destroy_members(dev);
721 EXPORT_SYMBOL(drm_dev_init);
723 static void devm_drm_dev_init_release(void *data)
729 * devm_drm_dev_init - Resource managed drm_dev_init()
730 * @parent: Parent device object
732 * @driver: DRM driver
734 * Managed drm_dev_init(). The DRM device initialized with this function is
735 * automatically put on driver detach using drm_dev_put(). You must supply a
736 * &drm_driver.release callback to control the finalization explicitly.
739 * 0 on success, or error code on failure.
741 int devm_drm_dev_init(struct device *parent,
742 struct drm_device *dev,
743 struct drm_driver *driver)
747 if (WARN_ON(!parent || !driver->release))
750 ret = drm_dev_init(dev, driver, parent);
754 ret = devm_add_action(parent, devm_drm_dev_init_release, dev);
756 devm_drm_dev_init_release(dev);
760 EXPORT_SYMBOL(devm_drm_dev_init);
763 * drm_dev_fini - Finalize a dead DRM device
766 * Finalize a dead DRM device. This is the converse to drm_dev_init() and
767 * frees up all data allocated by it. All driver private data should be
768 * finalized first. Note that this function does not free the @dev, that is
769 * left to the caller.
771 * The ref-count of @dev must be zero, and drm_dev_fini() should only be called
772 * from a &drm_driver.release callback.
774 void drm_dev_fini(struct drm_device *dev)
776 drm_vblank_cleanup(dev);
778 if (drm_core_check_feature(dev, DRIVER_GEM))
779 drm_gem_destroy(dev);
781 drm_legacy_ctxbitmap_cleanup(dev);
782 drm_legacy_remove_map_hash(dev);
783 drm_fs_inode_free(dev->anon_inode);
785 drm_minor_free(dev, DRM_MINOR_PRIMARY);
786 drm_minor_free(dev, DRM_MINOR_RENDER);
788 put_device(dev->dev);
790 mutex_destroy(&dev->master_mutex);
791 mutex_destroy(&dev->clientlist_mutex);
792 mutex_destroy(&dev->filelist_mutex);
793 mutex_destroy(&dev->struct_mutex);
794 drm_legacy_destroy_members(dev);
797 EXPORT_SYMBOL(drm_dev_fini);
800 * drm_dev_alloc - Allocate new DRM device
801 * @driver: DRM driver to allocate device for
802 * @parent: Parent device object
804 * Allocate and initialize a new DRM device. No device registration is done.
805 * Call drm_dev_register() to advertice the device to user space and register it
806 * with other core subsystems. This should be done last in the device
807 * initialization sequence to make sure userspace can't access an inconsistent
810 * The initial ref-count of the object is 1. Use drm_dev_get() and
811 * drm_dev_put() to take and drop further ref-counts.
813 * Note that for purely virtual devices @parent can be NULL.
815 * Drivers that wish to subclass or embed &struct drm_device into their
816 * own struct should look at using drm_dev_init() instead.
819 * Pointer to new DRM device, or ERR_PTR on failure.
821 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
822 struct device *parent)
824 struct drm_device *dev;
827 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
829 return ERR_PTR(-ENOMEM);
831 ret = drm_dev_init(dev, driver, parent);
839 EXPORT_SYMBOL(drm_dev_alloc);
841 static void drm_dev_release(struct kref *ref)
843 struct drm_device *dev = container_of(ref, struct drm_device, ref);
845 if (dev->driver->release) {
846 dev->driver->release(dev);
854 * drm_dev_get - Take reference of a DRM device
855 * @dev: device to take reference of or NULL
857 * This increases the ref-count of @dev by one. You *must* already own a
858 * reference when calling this. Use drm_dev_put() to drop this reference
861 * This function never fails. However, this function does not provide *any*
862 * guarantee whether the device is alive or running. It only provides a
863 * reference to the object and the memory associated with it.
865 void drm_dev_get(struct drm_device *dev)
870 EXPORT_SYMBOL(drm_dev_get);
873 * drm_dev_put - Drop reference of a DRM device
874 * @dev: device to drop reference of or NULL
876 * This decreases the ref-count of @dev by one. The device is destroyed if the
877 * ref-count drops to zero.
879 void drm_dev_put(struct drm_device *dev)
882 kref_put(&dev->ref, drm_dev_release);
884 EXPORT_SYMBOL(drm_dev_put);
886 static int create_compat_control_link(struct drm_device *dev)
888 struct drm_minor *minor;
892 if (!drm_core_check_feature(dev, DRIVER_MODESET))
895 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
900 * Some existing userspace out there uses the existing of the controlD*
901 * sysfs files to figure out whether it's a modeset driver. It only does
902 * readdir, hence a symlink is sufficient (and the least confusing
903 * option). Otherwise controlD* is entirely unused.
905 * Old controlD chardev have been allocated in the range
908 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
912 ret = sysfs_create_link(minor->kdev->kobj.parent,
921 static void remove_compat_control_link(struct drm_device *dev)
923 struct drm_minor *minor;
926 if (!drm_core_check_feature(dev, DRIVER_MODESET))
929 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
933 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
937 sysfs_remove_link(minor->kdev->kobj.parent, name);
943 * drm_dev_register - Register DRM device
944 * @dev: Device to register
945 * @flags: Flags passed to the driver's .load() function
947 * Register the DRM device @dev with the system, advertise device to user-space
948 * and start normal device operation. @dev must be initialized via drm_dev_init()
951 * Never call this twice on any device!
953 * NOTE: To ensure backward compatibility with existing drivers method this
954 * function calls the &drm_driver.load method after registering the device
955 * nodes, creating race conditions. Usage of the &drm_driver.load methods is
956 * therefore deprecated, drivers must perform all initialization before calling
957 * drm_dev_register().
960 * 0 on success, negative error code on failure.
962 int drm_dev_register(struct drm_device *dev, unsigned long flags)
964 struct drm_driver *driver = dev->driver;
967 mutex_lock(&drm_global_mutex);
969 ret = drm_minor_register(dev, DRM_MINOR_RENDER);
973 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
977 ret = create_compat_control_link(dev);
981 dev->registered = true;
983 if (dev->driver->load) {
984 ret = dev->driver->load(dev, flags);
989 if (drm_core_check_feature(dev, DRIVER_MODESET))
990 drm_modeset_register_all(dev);
994 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
995 driver->name, driver->major, driver->minor,
996 driver->patchlevel, driver->date,
997 dev->dev ? dev_name(dev->dev) : "virtual device",
998 dev->primary->index);
1003 remove_compat_control_link(dev);
1004 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1005 drm_minor_unregister(dev, DRM_MINOR_RENDER);
1007 mutex_unlock(&drm_global_mutex);
1010 EXPORT_SYMBOL(drm_dev_register);
1013 * drm_dev_unregister - Unregister DRM device
1014 * @dev: Device to unregister
1016 * Unregister the DRM device from the system. This does the reverse of
1017 * drm_dev_register() but does not deallocate the device. The caller must call
1018 * drm_dev_put() to drop their final reference.
1020 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
1021 * which can be called while there are still open users of @dev.
1023 * This should be called first in the device teardown code to make sure
1024 * userspace can't access the device instance any more.
1026 void drm_dev_unregister(struct drm_device *dev)
1028 if (drm_core_check_feature(dev, DRIVER_LEGACY))
1031 dev->registered = false;
1033 drm_client_dev_unregister(dev);
1035 if (drm_core_check_feature(dev, DRIVER_MODESET))
1036 drm_modeset_unregister_all(dev);
1038 if (dev->driver->unload)
1039 dev->driver->unload(dev);
1042 drm_pci_agp_destroy(dev);
1044 drm_legacy_rmmaps(dev);
1046 remove_compat_control_link(dev);
1047 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1048 drm_minor_unregister(dev, DRM_MINOR_RENDER);
1050 EXPORT_SYMBOL(drm_dev_unregister);
1053 * drm_dev_set_unique - Set the unique name of a DRM device
1054 * @dev: device of which to set the unique name
1055 * @name: unique name
1057 * Sets the unique name of a DRM device using the specified string. This is
1058 * already done by drm_dev_init(), drivers should only override the default
1059 * unique name for backwards compatibility reasons.
1061 * Return: 0 on success or a negative error code on failure.
1063 int drm_dev_set_unique(struct drm_device *dev, const char *name)
1066 dev->unique = kstrdup(name, GFP_KERNEL);
1068 return dev->unique ? 0 : -ENOMEM;
1070 EXPORT_SYMBOL(drm_dev_set_unique);
1074 * The DRM core module initializes all global DRM objects and makes them
1075 * available to drivers. Once setup, drivers can probe their respective
1077 * Currently, core management includes:
1078 * - The "DRM-Global" key/value database
1079 * - Global ID management for connectors
1080 * - DRM major number allocation
1081 * - DRM minor management
1083 * - DRM debugfs root
1085 * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1086 * interface registered on a DRM device, you can request minor numbers from DRM
1087 * core. DRM core takes care of major-number management and char-dev
1088 * registration. A stub ->open() callback forwards any open() requests to the
1092 static int drm_stub_open(struct inode *inode, struct file *filp)
1094 const struct file_operations *new_fops;
1095 struct drm_minor *minor;
1100 mutex_lock(&drm_global_mutex);
1101 minor = drm_minor_acquire(iminor(inode));
1102 if (IS_ERR(minor)) {
1103 err = PTR_ERR(minor);
1107 new_fops = fops_get(minor->dev->driver->fops);
1113 replace_fops(filp, new_fops);
1114 if (filp->f_op->open)
1115 err = filp->f_op->open(inode, filp);
1120 drm_minor_release(minor);
1122 mutex_unlock(&drm_global_mutex);
1126 static const struct file_operations drm_stub_fops = {
1127 .owner = THIS_MODULE,
1128 .open = drm_stub_open,
1129 .llseek = noop_llseek,
1132 static void drm_core_exit(void)
1134 unregister_chrdev(DRM_MAJOR, "drm");
1135 debugfs_remove(drm_debugfs_root);
1136 drm_sysfs_destroy();
1137 idr_destroy(&drm_minors_idr);
1138 drm_connector_ida_destroy();
1141 static int __init drm_core_init(void)
1145 drm_connector_ida_init();
1146 idr_init(&drm_minors_idr);
1148 ret = drm_sysfs_init();
1150 DRM_ERROR("Cannot create DRM class: %d\n", ret);
1154 drm_debugfs_root = debugfs_create_dir("dri", NULL);
1156 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1160 drm_core_init_complete = true;
1162 DRM_DEBUG("Initialized\n");
1170 module_init(drm_core_init);
1171 module_exit(drm_core_exit);