1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
52 #include <linux/sched/signal.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
65 #include <net/af_unix.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
89 #include <uapi/linux/io_uring.h>
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
128 struct io_uring sq, cq;
130 * Bitmasks to apply to head and tail offsets (constant, equals
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
152 * Written by the kernel, shouldn't be modified by the
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
162 * Written by the application, shouldn't be modified by the
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
181 * Ring buffer of completion events.
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
190 struct io_mapped_ubuf {
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
198 struct fixed_file_table {
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
223 struct list_head list;
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
246 struct task_struct *thread;
247 struct wait_queue_head wait;
249 unsigned sq_thread_idle;
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
267 * Ring buffer of indices into array of io_uring_sqe, which is
268 * mmapped by the application using the IORING_OFF_SQES offset.
270 * This indirection could e.g. be used to assign fixed
271 * io_uring_sqe entries to operations and only submit them to
272 * the queue when needed.
274 * The kernel modifies neither the indices array nor the entries
278 unsigned cached_sq_head;
281 unsigned sq_thread_idle;
282 unsigned cached_sq_dropped;
283 unsigned cached_cq_overflow;
284 unsigned long sq_check_overflow;
286 struct list_head defer_list;
287 struct list_head timeout_list;
288 struct list_head cq_overflow_list;
290 struct io_uring_sqe *sq_sqes;
291 } ____cacheline_aligned_in_smp;
293 struct io_rings *rings;
299 * For SQPOLL usage - we hold a reference to the parent task, so we
300 * have access to the ->files
302 struct task_struct *sqo_task;
304 /* Only used for accounting purposes */
305 struct mm_struct *mm_account;
307 #ifdef CONFIG_BLK_CGROUP
308 struct cgroup_subsys_state *sqo_blkcg_css;
311 struct io_sq_data *sq_data; /* if using sq thread polling */
313 struct wait_queue_head sqo_sq_wait;
314 struct list_head sqd_list;
317 * If used, fixed file set. Writers must ensure that ->refs is dead,
318 * readers must ensure that ->refs is alive as long as the file* is
319 * used. Only updated through io_uring_register(2).
321 struct fixed_file_data *file_data;
322 unsigned nr_user_files;
324 /* if used, fixed mapped user buffers */
325 unsigned nr_user_bufs;
326 struct io_mapped_ubuf *user_bufs;
328 struct user_struct *user;
330 const struct cred *creds;
334 unsigned int sessionid;
337 struct completion ref_comp;
338 struct completion sq_thread_comp;
340 /* if all else fails... */
341 struct io_kiocb *fallback_req;
343 #if defined(CONFIG_UNIX)
344 struct socket *ring_sock;
347 struct idr io_buffer_idr;
349 struct idr personality_idr;
352 unsigned cached_cq_tail;
355 atomic_t cq_timeouts;
356 unsigned long cq_check_overflow;
357 struct wait_queue_head cq_wait;
358 struct fasync_struct *cq_fasync;
359 struct eventfd_ctx *cq_ev_fd;
360 } ____cacheline_aligned_in_smp;
363 struct mutex uring_lock;
364 wait_queue_head_t wait;
365 } ____cacheline_aligned_in_smp;
368 spinlock_t completion_lock;
371 * ->iopoll_list is protected by the ctx->uring_lock for
372 * io_uring instances that don't use IORING_SETUP_SQPOLL.
373 * For SQPOLL, only the single threaded io_sq_thread() will
374 * manipulate the list, hence no extra locking is needed there.
376 struct list_head iopoll_list;
377 struct hlist_head *cancel_hash;
378 unsigned cancel_hash_bits;
379 bool poll_multi_file;
381 spinlock_t inflight_lock;
382 struct list_head inflight_list;
383 } ____cacheline_aligned_in_smp;
385 struct delayed_work file_put_work;
386 struct llist_head file_put_llist;
388 struct work_struct exit_work;
389 struct io_restriction restrictions;
393 * First field must be the file pointer in all the
394 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
396 struct io_poll_iocb {
398 struct wait_queue_head *head;
402 struct wait_queue_entry wait;
405 struct io_poll_remove {
412 struct file *put_file;
416 struct io_timeout_data {
417 struct io_kiocb *req;
418 struct hrtimer timer;
419 struct timespec64 ts;
420 enum hrtimer_mode mode;
425 struct sockaddr __user *addr;
426 int __user *addr_len;
428 unsigned long nofile;
448 struct list_head list;
449 /* head of the link, used by linked timeouts only */
450 struct io_kiocb *head;
453 struct io_timeout_rem {
458 struct timespec64 ts;
463 /* NOTE: kiocb has the file as the first member, so don't do it here */
471 struct sockaddr __user *addr;
478 struct user_msghdr __user *umsg;
484 struct io_buffer *kbuf;
490 bool ignore_nonblock;
491 struct filename *filename;
493 unsigned long nofile;
496 struct io_files_update {
522 struct epoll_event event;
526 struct file *file_out;
527 struct file *file_in;
534 struct io_provide_buf {
548 const char __user *filename;
549 struct statx __user *buffer;
561 struct filename *oldpath;
562 struct filename *newpath;
570 struct filename *filename;
573 struct io_completion {
575 struct list_head list;
579 struct io_async_connect {
580 struct sockaddr_storage address;
583 struct io_async_msghdr {
584 struct iovec fast_iov[UIO_FASTIOV];
586 struct sockaddr __user *uaddr;
588 struct sockaddr_storage addr;
592 struct iovec fast_iov[UIO_FASTIOV];
593 const struct iovec *free_iovec;
594 struct iov_iter iter;
596 struct wait_page_queue wpq;
600 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
601 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
602 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
603 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
604 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
605 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
611 REQ_F_LINK_TIMEOUT_BIT,
613 REQ_F_NEED_CLEANUP_BIT,
615 REQ_F_BUFFER_SELECTED_BIT,
616 REQ_F_NO_FILE_TABLE_BIT,
617 REQ_F_WORK_INITIALIZED_BIT,
618 REQ_F_LTIMEOUT_ACTIVE_BIT,
620 /* not a real bit, just to check we're not overflowing the space */
626 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
627 /* drain existing IO first */
628 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
630 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
631 /* doesn't sever on completion < 0 */
632 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
634 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
635 /* IOSQE_BUFFER_SELECT */
636 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
638 /* fail rest of links */
639 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
640 /* on inflight list */
641 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
642 /* read/write uses file position */
643 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
644 /* must not punt to workers */
645 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
646 /* has or had linked timeout */
647 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
649 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
651 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
652 /* already went through poll handler */
653 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
654 /* buffer already selected */
655 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
656 /* doesn't need file table for this request */
657 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
658 /* io_wq_work is initialized */
659 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
660 /* linked timeout is active, i.e. prepared by link's head */
661 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
665 struct io_poll_iocb poll;
666 struct io_poll_iocb *double_poll;
670 * NOTE! Each of the iocb union members has the file pointer
671 * as the first entry in their struct definition. So you can
672 * access the file pointer through any of the sub-structs,
673 * or directly as just 'ki_filp' in this struct.
679 struct io_poll_iocb poll;
680 struct io_poll_remove poll_remove;
681 struct io_accept accept;
683 struct io_cancel cancel;
684 struct io_timeout timeout;
685 struct io_timeout_rem timeout_rem;
686 struct io_connect connect;
687 struct io_sr_msg sr_msg;
689 struct io_close close;
690 struct io_files_update files_update;
691 struct io_fadvise fadvise;
692 struct io_madvise madvise;
693 struct io_epoll epoll;
694 struct io_splice splice;
695 struct io_provide_buf pbuf;
696 struct io_statx statx;
697 struct io_shutdown shutdown;
698 struct io_rename rename;
699 struct io_unlink unlink;
700 /* use only after cleaning per-op data, see io_clean_op() */
701 struct io_completion compl;
704 /* opcode allocated if it needs to store data for async defer */
707 /* polled IO has completed */
713 struct io_ring_ctx *ctx;
716 struct task_struct *task;
719 struct io_kiocb *link;
720 struct percpu_ref *fixed_file_refs;
723 * 1. used with ctx->iopoll_list with reads/writes
724 * 2. to track reqs with ->files (see io_op_def::file_table)
726 struct list_head inflight_entry;
727 struct callback_head task_work;
728 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
729 struct hlist_node hash_node;
730 struct async_poll *apoll;
731 struct io_wq_work work;
734 struct io_defer_entry {
735 struct list_head list;
736 struct io_kiocb *req;
740 #define IO_IOPOLL_BATCH 8
742 struct io_comp_state {
744 struct list_head list;
745 struct io_ring_ctx *ctx;
748 struct io_submit_state {
749 struct blk_plug plug;
752 * io_kiocb alloc cache
754 void *reqs[IO_IOPOLL_BATCH];
755 unsigned int free_reqs;
760 * Batch completion logic
762 struct io_comp_state comp;
765 * File reference cache
769 unsigned int file_refs;
770 unsigned int ios_left;
774 /* needs req->file assigned */
775 unsigned needs_file : 1;
776 /* don't fail if file grab fails */
777 unsigned needs_file_no_error : 1;
778 /* hash wq insertion if file is a regular file */
779 unsigned hash_reg_file : 1;
780 /* unbound wq insertion if file is a non-regular file */
781 unsigned unbound_nonreg_file : 1;
782 /* opcode is not supported by this kernel */
783 unsigned not_supported : 1;
784 /* set if opcode supports polled "wait" */
786 unsigned pollout : 1;
787 /* op supports buffer selection */
788 unsigned buffer_select : 1;
789 /* must always have async data allocated */
790 unsigned needs_async_data : 1;
791 /* should block plug */
793 /* size of async data needed, if any */
794 unsigned short async_size;
798 static const struct io_op_def io_op_defs[] = {
799 [IORING_OP_NOP] = {},
800 [IORING_OP_READV] = {
802 .unbound_nonreg_file = 1,
805 .needs_async_data = 1,
807 .async_size = sizeof(struct io_async_rw),
808 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
810 [IORING_OP_WRITEV] = {
813 .unbound_nonreg_file = 1,
815 .needs_async_data = 1,
817 .async_size = sizeof(struct io_async_rw),
818 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
821 [IORING_OP_FSYNC] = {
823 .work_flags = IO_WQ_WORK_BLKCG,
825 [IORING_OP_READ_FIXED] = {
827 .unbound_nonreg_file = 1,
830 .async_size = sizeof(struct io_async_rw),
831 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
833 [IORING_OP_WRITE_FIXED] = {
836 .unbound_nonreg_file = 1,
839 .async_size = sizeof(struct io_async_rw),
840 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
843 [IORING_OP_POLL_ADD] = {
845 .unbound_nonreg_file = 1,
847 [IORING_OP_POLL_REMOVE] = {},
848 [IORING_OP_SYNC_FILE_RANGE] = {
850 .work_flags = IO_WQ_WORK_BLKCG,
852 [IORING_OP_SENDMSG] = {
854 .unbound_nonreg_file = 1,
856 .needs_async_data = 1,
857 .async_size = sizeof(struct io_async_msghdr),
858 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
860 [IORING_OP_RECVMSG] = {
862 .unbound_nonreg_file = 1,
865 .needs_async_data = 1,
866 .async_size = sizeof(struct io_async_msghdr),
867 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
869 [IORING_OP_TIMEOUT] = {
870 .needs_async_data = 1,
871 .async_size = sizeof(struct io_timeout_data),
872 .work_flags = IO_WQ_WORK_MM,
874 [IORING_OP_TIMEOUT_REMOVE] = {
875 /* used by timeout updates' prep() */
876 .work_flags = IO_WQ_WORK_MM,
878 [IORING_OP_ACCEPT] = {
880 .unbound_nonreg_file = 1,
882 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
884 [IORING_OP_ASYNC_CANCEL] = {},
885 [IORING_OP_LINK_TIMEOUT] = {
886 .needs_async_data = 1,
887 .async_size = sizeof(struct io_timeout_data),
888 .work_flags = IO_WQ_WORK_MM,
890 [IORING_OP_CONNECT] = {
892 .unbound_nonreg_file = 1,
894 .needs_async_data = 1,
895 .async_size = sizeof(struct io_async_connect),
896 .work_flags = IO_WQ_WORK_MM,
898 [IORING_OP_FALLOCATE] = {
900 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
902 [IORING_OP_OPENAT] = {
903 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
904 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
906 [IORING_OP_CLOSE] = {
908 .needs_file_no_error = 1,
909 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
911 [IORING_OP_FILES_UPDATE] = {
912 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
914 [IORING_OP_STATX] = {
915 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
916 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
920 .unbound_nonreg_file = 1,
924 .async_size = sizeof(struct io_async_rw),
925 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
927 [IORING_OP_WRITE] = {
929 .unbound_nonreg_file = 1,
932 .async_size = sizeof(struct io_async_rw),
933 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
936 [IORING_OP_FADVISE] = {
938 .work_flags = IO_WQ_WORK_BLKCG,
940 [IORING_OP_MADVISE] = {
941 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
945 .unbound_nonreg_file = 1,
947 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
951 .unbound_nonreg_file = 1,
954 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
956 [IORING_OP_OPENAT2] = {
957 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
958 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
960 [IORING_OP_EPOLL_CTL] = {
961 .unbound_nonreg_file = 1,
962 .work_flags = IO_WQ_WORK_FILES,
964 [IORING_OP_SPLICE] = {
967 .unbound_nonreg_file = 1,
968 .work_flags = IO_WQ_WORK_BLKCG,
970 [IORING_OP_PROVIDE_BUFFERS] = {},
971 [IORING_OP_REMOVE_BUFFERS] = {},
975 .unbound_nonreg_file = 1,
977 [IORING_OP_SHUTDOWN] = {
980 [IORING_OP_RENAMEAT] = {
981 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
982 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
984 [IORING_OP_UNLINKAT] = {
985 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
986 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
990 enum io_mem_account {
995 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node);
996 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
997 struct io_ring_ctx *ctx);
999 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
1000 struct io_comp_state *cs);
1001 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1002 static void io_put_req(struct io_kiocb *req);
1003 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1004 static void io_double_put_req(struct io_kiocb *req);
1005 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1006 static void __io_queue_linked_timeout(struct io_kiocb *req);
1007 static void io_queue_linked_timeout(struct io_kiocb *req);
1008 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1009 struct io_uring_files_update *ip,
1011 static void __io_clean_op(struct io_kiocb *req);
1012 static struct file *io_file_get(struct io_submit_state *state,
1013 struct io_kiocb *req, int fd, bool fixed);
1014 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1015 static void io_file_put_work(struct work_struct *work);
1017 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1018 struct iovec **iovec, struct iov_iter *iter,
1020 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1021 const struct iovec *fast_iov,
1022 struct iov_iter *iter, bool force);
1024 static struct kmem_cache *req_cachep;
1026 static const struct file_operations io_uring_fops;
1028 struct sock *io_uring_get_socket(struct file *file)
1030 #if defined(CONFIG_UNIX)
1031 if (file->f_op == &io_uring_fops) {
1032 struct io_ring_ctx *ctx = file->private_data;
1034 return ctx->ring_sock->sk;
1039 EXPORT_SYMBOL(io_uring_get_socket);
1041 #define io_for_each_link(pos, head) \
1042 for (pos = (head); pos; pos = pos->link)
1044 static inline void io_clean_op(struct io_kiocb *req)
1046 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
1051 static inline void io_set_resource_node(struct io_kiocb *req)
1053 struct io_ring_ctx *ctx = req->ctx;
1055 if (!req->fixed_file_refs) {
1056 req->fixed_file_refs = &ctx->file_data->node->refs;
1057 percpu_ref_get(req->fixed_file_refs);
1061 static bool io_match_task(struct io_kiocb *head,
1062 struct task_struct *task,
1063 struct files_struct *files)
1065 struct io_kiocb *req;
1067 if (task && head->task != task)
1072 io_for_each_link(req, head) {
1073 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
1074 (req->work.flags & IO_WQ_WORK_FILES) &&
1075 req->work.identity->files == files)
1081 static void io_sq_thread_drop_mm_files(void)
1083 struct files_struct *files = current->files;
1084 struct mm_struct *mm = current->mm;
1087 kthread_unuse_mm(mm);
1092 struct nsproxy *nsproxy = current->nsproxy;
1095 current->files = NULL;
1096 current->nsproxy = NULL;
1097 task_unlock(current);
1098 put_files_struct(files);
1099 put_nsproxy(nsproxy);
1103 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1105 if (!current->files) {
1106 struct files_struct *files;
1107 struct nsproxy *nsproxy;
1109 task_lock(ctx->sqo_task);
1110 files = ctx->sqo_task->files;
1112 task_unlock(ctx->sqo_task);
1115 atomic_inc(&files->count);
1116 get_nsproxy(ctx->sqo_task->nsproxy);
1117 nsproxy = ctx->sqo_task->nsproxy;
1118 task_unlock(ctx->sqo_task);
1121 current->files = files;
1122 current->nsproxy = nsproxy;
1123 task_unlock(current);
1128 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1130 struct mm_struct *mm;
1135 /* Should never happen */
1136 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1139 task_lock(ctx->sqo_task);
1140 mm = ctx->sqo_task->mm;
1141 if (unlikely(!mm || !mmget_not_zero(mm)))
1143 task_unlock(ctx->sqo_task);
1153 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1154 struct io_kiocb *req)
1156 const struct io_op_def *def = &io_op_defs[req->opcode];
1159 if (def->work_flags & IO_WQ_WORK_MM) {
1160 ret = __io_sq_thread_acquire_mm(ctx);
1165 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1166 ret = __io_sq_thread_acquire_files(ctx);
1174 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1175 struct cgroup_subsys_state **cur_css)
1178 #ifdef CONFIG_BLK_CGROUP
1179 /* puts the old one when swapping */
1180 if (*cur_css != ctx->sqo_blkcg_css) {
1181 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1182 *cur_css = ctx->sqo_blkcg_css;
1187 static void io_sq_thread_unassociate_blkcg(void)
1189 #ifdef CONFIG_BLK_CGROUP
1190 kthread_associate_blkcg(NULL);
1194 static inline void req_set_fail_links(struct io_kiocb *req)
1196 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1197 req->flags |= REQ_F_FAIL_LINK;
1201 * None of these are dereferenced, they are simply used to check if any of
1202 * them have changed. If we're under current and check they are still the
1203 * same, we're fine to grab references to them for actual out-of-line use.
1205 static void io_init_identity(struct io_identity *id)
1207 id->files = current->files;
1208 id->mm = current->mm;
1209 #ifdef CONFIG_BLK_CGROUP
1211 id->blkcg_css = blkcg_css();
1214 id->creds = current_cred();
1215 id->nsproxy = current->nsproxy;
1216 id->fs = current->fs;
1217 id->fsize = rlimit(RLIMIT_FSIZE);
1219 id->loginuid = current->loginuid;
1220 id->sessionid = current->sessionid;
1222 refcount_set(&id->count, 1);
1225 static inline void __io_req_init_async(struct io_kiocb *req)
1227 memset(&req->work, 0, sizeof(req->work));
1228 req->flags |= REQ_F_WORK_INITIALIZED;
1232 * Note: must call io_req_init_async() for the first time you
1233 * touch any members of io_wq_work.
1235 static inline void io_req_init_async(struct io_kiocb *req)
1237 struct io_uring_task *tctx = current->io_uring;
1239 if (req->flags & REQ_F_WORK_INITIALIZED)
1242 __io_req_init_async(req);
1244 /* Grab a ref if this isn't our static identity */
1245 req->work.identity = tctx->identity;
1246 if (tctx->identity != &tctx->__identity)
1247 refcount_inc(&req->work.identity->count);
1250 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1252 return ctx->flags & IORING_SETUP_SQPOLL;
1255 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1257 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1259 complete(&ctx->ref_comp);
1262 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1264 return !req->timeout.off;
1267 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1269 struct io_ring_ctx *ctx;
1272 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1276 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1277 if (!ctx->fallback_req)
1281 * Use 5 bits less than the max cq entries, that should give us around
1282 * 32 entries per hash list if totally full and uniformly spread.
1284 hash_bits = ilog2(p->cq_entries);
1288 ctx->cancel_hash_bits = hash_bits;
1289 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1291 if (!ctx->cancel_hash)
1293 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1295 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1296 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1299 ctx->flags = p->flags;
1300 init_waitqueue_head(&ctx->sqo_sq_wait);
1301 INIT_LIST_HEAD(&ctx->sqd_list);
1302 init_waitqueue_head(&ctx->cq_wait);
1303 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1304 init_completion(&ctx->ref_comp);
1305 init_completion(&ctx->sq_thread_comp);
1306 idr_init(&ctx->io_buffer_idr);
1307 idr_init(&ctx->personality_idr);
1308 mutex_init(&ctx->uring_lock);
1309 init_waitqueue_head(&ctx->wait);
1310 spin_lock_init(&ctx->completion_lock);
1311 INIT_LIST_HEAD(&ctx->iopoll_list);
1312 INIT_LIST_HEAD(&ctx->defer_list);
1313 INIT_LIST_HEAD(&ctx->timeout_list);
1314 spin_lock_init(&ctx->inflight_lock);
1315 INIT_LIST_HEAD(&ctx->inflight_list);
1316 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1317 init_llist_head(&ctx->file_put_llist);
1320 if (ctx->fallback_req)
1321 kmem_cache_free(req_cachep, ctx->fallback_req);
1322 kfree(ctx->cancel_hash);
1327 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1329 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1330 struct io_ring_ctx *ctx = req->ctx;
1332 return seq != ctx->cached_cq_tail
1333 + READ_ONCE(ctx->cached_cq_overflow);
1339 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1341 struct io_rings *rings = ctx->rings;
1343 /* order cqe stores with ring update */
1344 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1346 if (wq_has_sleeper(&ctx->cq_wait)) {
1347 wake_up_interruptible(&ctx->cq_wait);
1348 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1352 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1354 if (req->work.identity == &tctx->__identity)
1356 if (refcount_dec_and_test(&req->work.identity->count))
1357 kfree(req->work.identity);
1360 static void io_req_clean_work(struct io_kiocb *req)
1362 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1365 req->flags &= ~REQ_F_WORK_INITIALIZED;
1367 if (req->work.flags & IO_WQ_WORK_MM) {
1368 mmdrop(req->work.identity->mm);
1369 req->work.flags &= ~IO_WQ_WORK_MM;
1371 #ifdef CONFIG_BLK_CGROUP
1372 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1373 css_put(req->work.identity->blkcg_css);
1374 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1377 if (req->work.flags & IO_WQ_WORK_CREDS) {
1378 put_cred(req->work.identity->creds);
1379 req->work.flags &= ~IO_WQ_WORK_CREDS;
1381 if (req->work.flags & IO_WQ_WORK_FS) {
1382 struct fs_struct *fs = req->work.identity->fs;
1384 spin_lock(&req->work.identity->fs->lock);
1387 spin_unlock(&req->work.identity->fs->lock);
1390 req->work.flags &= ~IO_WQ_WORK_FS;
1393 io_put_identity(req->task->io_uring, req);
1397 * Create a private copy of io_identity, since some fields don't match
1398 * the current context.
1400 static bool io_identity_cow(struct io_kiocb *req)
1402 struct io_uring_task *tctx = current->io_uring;
1403 const struct cred *creds = NULL;
1404 struct io_identity *id;
1406 if (req->work.flags & IO_WQ_WORK_CREDS)
1407 creds = req->work.identity->creds;
1409 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1410 if (unlikely(!id)) {
1411 req->work.flags |= IO_WQ_WORK_CANCEL;
1416 * We can safely just re-init the creds we copied Either the field
1417 * matches the current one, or we haven't grabbed it yet. The only
1418 * exception is ->creds, through registered personalities, so handle
1419 * that one separately.
1421 io_init_identity(id);
1425 /* add one for this request */
1426 refcount_inc(&id->count);
1428 /* drop tctx and req identity references, if needed */
1429 if (tctx->identity != &tctx->__identity &&
1430 refcount_dec_and_test(&tctx->identity->count))
1431 kfree(tctx->identity);
1432 if (req->work.identity != &tctx->__identity &&
1433 refcount_dec_and_test(&req->work.identity->count))
1434 kfree(req->work.identity);
1436 req->work.identity = id;
1437 tctx->identity = id;
1441 static bool io_grab_identity(struct io_kiocb *req)
1443 const struct io_op_def *def = &io_op_defs[req->opcode];
1444 struct io_identity *id = req->work.identity;
1445 struct io_ring_ctx *ctx = req->ctx;
1447 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1448 if (id->fsize != rlimit(RLIMIT_FSIZE))
1450 req->work.flags |= IO_WQ_WORK_FSIZE;
1452 #ifdef CONFIG_BLK_CGROUP
1453 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1454 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1456 if (id->blkcg_css != blkcg_css()) {
1461 * This should be rare, either the cgroup is dying or the task
1462 * is moving cgroups. Just punt to root for the handful of ios.
1464 if (css_tryget_online(id->blkcg_css))
1465 req->work.flags |= IO_WQ_WORK_BLKCG;
1469 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1470 if (id->creds != current_cred())
1472 get_cred(id->creds);
1473 req->work.flags |= IO_WQ_WORK_CREDS;
1476 if (!uid_eq(current->loginuid, id->loginuid) ||
1477 current->sessionid != id->sessionid)
1480 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1481 (def->work_flags & IO_WQ_WORK_FS)) {
1482 if (current->fs != id->fs)
1484 spin_lock(&id->fs->lock);
1485 if (!id->fs->in_exec) {
1487 req->work.flags |= IO_WQ_WORK_FS;
1489 req->work.flags |= IO_WQ_WORK_CANCEL;
1491 spin_unlock(¤t->fs->lock);
1493 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1494 (def->work_flags & IO_WQ_WORK_FILES) &&
1495 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1496 if (id->files != current->files ||
1497 id->nsproxy != current->nsproxy)
1499 atomic_inc(&id->files->count);
1500 get_nsproxy(id->nsproxy);
1501 req->flags |= REQ_F_INFLIGHT;
1503 spin_lock_irq(&ctx->inflight_lock);
1504 list_add(&req->inflight_entry, &ctx->inflight_list);
1505 spin_unlock_irq(&ctx->inflight_lock);
1506 req->work.flags |= IO_WQ_WORK_FILES;
1508 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1509 (def->work_flags & IO_WQ_WORK_MM)) {
1510 if (id->mm != current->mm)
1513 req->work.flags |= IO_WQ_WORK_MM;
1519 static void io_prep_async_work(struct io_kiocb *req)
1521 const struct io_op_def *def = &io_op_defs[req->opcode];
1522 struct io_ring_ctx *ctx = req->ctx;
1523 struct io_identity *id;
1525 io_req_init_async(req);
1526 id = req->work.identity;
1528 if (req->flags & REQ_F_FORCE_ASYNC)
1529 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1531 if (req->flags & REQ_F_ISREG) {
1532 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1533 io_wq_hash_work(&req->work, file_inode(req->file));
1535 if (def->unbound_nonreg_file)
1536 req->work.flags |= IO_WQ_WORK_UNBOUND;
1539 /* if we fail grabbing identity, we must COW, regrab, and retry */
1540 if (io_grab_identity(req))
1543 if (!io_identity_cow(req))
1546 /* can't fail at this point */
1547 if (!io_grab_identity(req))
1551 static void io_prep_async_link(struct io_kiocb *req)
1553 struct io_kiocb *cur;
1555 io_for_each_link(cur, req)
1556 io_prep_async_work(cur);
1559 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1561 struct io_ring_ctx *ctx = req->ctx;
1562 struct io_kiocb *link = io_prep_linked_timeout(req);
1564 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1565 &req->work, req->flags);
1566 io_wq_enqueue(ctx->io_wq, &req->work);
1570 static void io_queue_async_work(struct io_kiocb *req)
1572 struct io_kiocb *link;
1574 /* init ->work of the whole link before punting */
1575 io_prep_async_link(req);
1576 link = __io_queue_async_work(req);
1579 io_queue_linked_timeout(link);
1582 static void io_kill_timeout(struct io_kiocb *req)
1584 struct io_timeout_data *io = req->async_data;
1587 ret = hrtimer_try_to_cancel(&io->timer);
1589 atomic_set(&req->ctx->cq_timeouts,
1590 atomic_read(&req->ctx->cq_timeouts) + 1);
1591 list_del_init(&req->timeout.list);
1592 io_cqring_fill_event(req, 0);
1593 io_put_req_deferred(req, 1);
1598 * Returns true if we found and killed one or more timeouts
1600 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1601 struct files_struct *files)
1603 struct io_kiocb *req, *tmp;
1606 spin_lock_irq(&ctx->completion_lock);
1607 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1608 if (io_match_task(req, tsk, files)) {
1609 io_kill_timeout(req);
1613 spin_unlock_irq(&ctx->completion_lock);
1614 return canceled != 0;
1617 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1620 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1621 struct io_defer_entry, list);
1622 struct io_kiocb *link;
1624 if (req_need_defer(de->req, de->seq))
1626 list_del_init(&de->list);
1627 /* punt-init is done before queueing for defer */
1628 link = __io_queue_async_work(de->req);
1630 __io_queue_linked_timeout(link);
1631 /* drop submission reference */
1632 io_put_req_deferred(link, 1);
1635 } while (!list_empty(&ctx->defer_list));
1638 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1640 while (!list_empty(&ctx->timeout_list)) {
1641 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1642 struct io_kiocb, timeout.list);
1644 if (io_is_timeout_noseq(req))
1646 if (req->timeout.target_seq != ctx->cached_cq_tail
1647 - atomic_read(&ctx->cq_timeouts))
1650 list_del_init(&req->timeout.list);
1651 io_kill_timeout(req);
1655 static void io_commit_cqring(struct io_ring_ctx *ctx)
1657 io_flush_timeouts(ctx);
1658 __io_commit_cqring(ctx);
1660 if (unlikely(!list_empty(&ctx->defer_list)))
1661 __io_queue_deferred(ctx);
1664 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1666 struct io_rings *r = ctx->rings;
1668 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1671 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1673 struct io_rings *rings = ctx->rings;
1676 tail = ctx->cached_cq_tail;
1678 * writes to the cq entry need to come after reading head; the
1679 * control dependency is enough as we're using WRITE_ONCE to
1682 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1685 ctx->cached_cq_tail++;
1686 return &rings->cqes[tail & ctx->cq_mask];
1689 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1693 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1695 if (!ctx->eventfd_async)
1697 return io_wq_current_is_worker();
1700 static inline unsigned __io_cqring_events(struct io_ring_ctx *ctx)
1702 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1705 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1707 if (waitqueue_active(&ctx->wait))
1708 wake_up(&ctx->wait);
1709 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1710 wake_up(&ctx->sq_data->wait);
1711 if (io_should_trigger_evfd(ctx))
1712 eventfd_signal(ctx->cq_ev_fd, 1);
1715 /* Returns true if there are no backlogged entries after the flush */
1716 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1717 struct task_struct *tsk,
1718 struct files_struct *files)
1720 struct io_rings *rings = ctx->rings;
1721 struct io_kiocb *req, *tmp;
1722 struct io_uring_cqe *cqe;
1723 unsigned long flags;
1727 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1730 spin_lock_irqsave(&ctx->completion_lock, flags);
1731 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1732 if (!io_match_task(req, tsk, files))
1735 cqe = io_get_cqring(ctx);
1739 list_move(&req->compl.list, &list);
1741 WRITE_ONCE(cqe->user_data, req->user_data);
1742 WRITE_ONCE(cqe->res, req->result);
1743 WRITE_ONCE(cqe->flags, req->compl.cflags);
1745 ctx->cached_cq_overflow++;
1746 WRITE_ONCE(ctx->rings->cq_overflow,
1747 ctx->cached_cq_overflow);
1751 all_flushed = list_empty(&ctx->cq_overflow_list);
1753 clear_bit(0, &ctx->sq_check_overflow);
1754 clear_bit(0, &ctx->cq_check_overflow);
1755 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1758 io_commit_cqring(ctx);
1759 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1760 io_cqring_ev_posted(ctx);
1762 while (!list_empty(&list)) {
1763 req = list_first_entry(&list, struct io_kiocb, compl.list);
1764 list_del(&req->compl.list);
1771 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1773 struct io_ring_ctx *ctx = req->ctx;
1774 struct io_uring_cqe *cqe;
1776 trace_io_uring_complete(ctx, req->user_data, res);
1779 * If we can't get a cq entry, userspace overflowed the
1780 * submission (by quite a lot). Increment the overflow count in
1783 cqe = io_get_cqring(ctx);
1785 WRITE_ONCE(cqe->user_data, req->user_data);
1786 WRITE_ONCE(cqe->res, res);
1787 WRITE_ONCE(cqe->flags, cflags);
1788 } else if (ctx->cq_overflow_flushed ||
1789 atomic_read(&req->task->io_uring->in_idle)) {
1791 * If we're in ring overflow flush mode, or in task cancel mode,
1792 * then we cannot store the request for later flushing, we need
1793 * to drop it on the floor.
1795 ctx->cached_cq_overflow++;
1796 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1798 if (list_empty(&ctx->cq_overflow_list)) {
1799 set_bit(0, &ctx->sq_check_overflow);
1800 set_bit(0, &ctx->cq_check_overflow);
1801 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1805 req->compl.cflags = cflags;
1806 refcount_inc(&req->refs);
1807 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1811 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1813 __io_cqring_fill_event(req, res, 0);
1816 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1818 struct io_ring_ctx *ctx = req->ctx;
1819 unsigned long flags;
1821 spin_lock_irqsave(&ctx->completion_lock, flags);
1822 __io_cqring_fill_event(req, res, cflags);
1823 io_commit_cqring(ctx);
1824 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1826 io_cqring_ev_posted(ctx);
1829 static void io_submit_flush_completions(struct io_comp_state *cs)
1831 struct io_ring_ctx *ctx = cs->ctx;
1833 spin_lock_irq(&ctx->completion_lock);
1834 while (!list_empty(&cs->list)) {
1835 struct io_kiocb *req;
1837 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1838 list_del(&req->compl.list);
1839 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1842 * io_free_req() doesn't care about completion_lock unless one
1843 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1844 * because of a potential deadlock with req->work.fs->lock
1846 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1847 |REQ_F_WORK_INITIALIZED)) {
1848 spin_unlock_irq(&ctx->completion_lock);
1850 spin_lock_irq(&ctx->completion_lock);
1855 io_commit_cqring(ctx);
1856 spin_unlock_irq(&ctx->completion_lock);
1858 io_cqring_ev_posted(ctx);
1862 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1863 struct io_comp_state *cs)
1866 io_cqring_add_event(req, res, cflags);
1871 req->compl.cflags = cflags;
1872 list_add_tail(&req->compl.list, &cs->list);
1874 io_submit_flush_completions(cs);
1878 static void io_req_complete(struct io_kiocb *req, long res)
1880 __io_req_complete(req, res, 0, NULL);
1883 static inline bool io_is_fallback_req(struct io_kiocb *req)
1885 return req == (struct io_kiocb *)
1886 ((unsigned long) req->ctx->fallback_req & ~1UL);
1889 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1891 struct io_kiocb *req;
1893 req = ctx->fallback_req;
1894 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1900 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1901 struct io_submit_state *state)
1903 if (!state->free_reqs) {
1904 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1908 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1909 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1912 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1913 * retry single alloc to be on the safe side.
1915 if (unlikely(ret <= 0)) {
1916 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1917 if (!state->reqs[0])
1921 state->free_reqs = ret;
1925 return state->reqs[state->free_reqs];
1927 return io_get_fallback_req(ctx);
1930 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1937 static void io_dismantle_req(struct io_kiocb *req)
1941 if (req->async_data)
1942 kfree(req->async_data);
1944 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1945 if (req->fixed_file_refs)
1946 percpu_ref_put(req->fixed_file_refs);
1947 io_req_clean_work(req);
1950 static void __io_free_req(struct io_kiocb *req)
1952 struct io_uring_task *tctx = req->task->io_uring;
1953 struct io_ring_ctx *ctx = req->ctx;
1955 io_dismantle_req(req);
1957 percpu_counter_dec(&tctx->inflight);
1958 if (atomic_read(&tctx->in_idle))
1959 wake_up(&tctx->wait);
1960 put_task_struct(req->task);
1962 if (likely(!io_is_fallback_req(req)))
1963 kmem_cache_free(req_cachep, req);
1965 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
1966 percpu_ref_put(&ctx->refs);
1969 static inline void io_remove_next_linked(struct io_kiocb *req)
1971 struct io_kiocb *nxt = req->link;
1973 req->link = nxt->link;
1977 static void io_kill_linked_timeout(struct io_kiocb *req)
1979 struct io_ring_ctx *ctx = req->ctx;
1980 struct io_kiocb *link;
1981 bool cancelled = false;
1982 unsigned long flags;
1984 spin_lock_irqsave(&ctx->completion_lock, flags);
1988 * Can happen if a linked timeout fired and link had been like
1989 * req -> link t-out -> link t-out [-> ...]
1991 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
1992 struct io_timeout_data *io = link->async_data;
1995 io_remove_next_linked(req);
1996 link->timeout.head = NULL;
1997 ret = hrtimer_try_to_cancel(&io->timer);
1999 io_cqring_fill_event(link, -ECANCELED);
2000 io_commit_cqring(ctx);
2004 req->flags &= ~REQ_F_LINK_TIMEOUT;
2005 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2008 io_cqring_ev_posted(ctx);
2014 static void io_fail_links(struct io_kiocb *req)
2016 struct io_kiocb *link, *nxt;
2017 struct io_ring_ctx *ctx = req->ctx;
2018 unsigned long flags;
2020 spin_lock_irqsave(&ctx->completion_lock, flags);
2028 trace_io_uring_fail_link(req, link);
2029 io_cqring_fill_event(link, -ECANCELED);
2032 * It's ok to free under spinlock as they're not linked anymore,
2033 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2036 if (link->flags & REQ_F_WORK_INITIALIZED)
2037 io_put_req_deferred(link, 2);
2039 io_double_put_req(link);
2042 io_commit_cqring(ctx);
2043 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2045 io_cqring_ev_posted(ctx);
2048 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2050 if (req->flags & REQ_F_LINK_TIMEOUT)
2051 io_kill_linked_timeout(req);
2054 * If LINK is set, we have dependent requests in this chain. If we
2055 * didn't fail this request, queue the first one up, moving any other
2056 * dependencies to the next request. In case of failure, fail the rest
2059 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2060 struct io_kiocb *nxt = req->link;
2069 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2071 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2073 return __io_req_find_next(req);
2076 static int io_req_task_work_add(struct io_kiocb *req)
2078 struct task_struct *tsk = req->task;
2079 struct io_ring_ctx *ctx = req->ctx;
2080 enum task_work_notify_mode notify;
2083 if (tsk->flags & PF_EXITING)
2087 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2088 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2089 * processing task_work. There's no reliable way to tell if TWA_RESUME
2093 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2094 notify = TWA_SIGNAL;
2096 ret = task_work_add(tsk, &req->task_work, notify);
2098 wake_up_process(tsk);
2103 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2105 struct io_ring_ctx *ctx = req->ctx;
2107 spin_lock_irq(&ctx->completion_lock);
2108 io_cqring_fill_event(req, error);
2109 io_commit_cqring(ctx);
2110 spin_unlock_irq(&ctx->completion_lock);
2112 io_cqring_ev_posted(ctx);
2113 req_set_fail_links(req);
2114 io_double_put_req(req);
2117 static void io_req_task_cancel(struct callback_head *cb)
2119 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2120 struct io_ring_ctx *ctx = req->ctx;
2122 __io_req_task_cancel(req, -ECANCELED);
2123 percpu_ref_put(&ctx->refs);
2126 static void __io_req_task_submit(struct io_kiocb *req)
2128 struct io_ring_ctx *ctx = req->ctx;
2130 if (!__io_sq_thread_acquire_mm(ctx) &&
2131 !__io_sq_thread_acquire_files(ctx)) {
2132 mutex_lock(&ctx->uring_lock);
2133 __io_queue_sqe(req, NULL);
2134 mutex_unlock(&ctx->uring_lock);
2136 __io_req_task_cancel(req, -EFAULT);
2140 static void io_req_task_submit(struct callback_head *cb)
2142 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2143 struct io_ring_ctx *ctx = req->ctx;
2145 __io_req_task_submit(req);
2146 percpu_ref_put(&ctx->refs);
2149 static void io_req_task_queue(struct io_kiocb *req)
2153 init_task_work(&req->task_work, io_req_task_submit);
2154 percpu_ref_get(&req->ctx->refs);
2156 ret = io_req_task_work_add(req);
2157 if (unlikely(ret)) {
2158 struct task_struct *tsk;
2160 init_task_work(&req->task_work, io_req_task_cancel);
2161 tsk = io_wq_get_task(req->ctx->io_wq);
2162 task_work_add(tsk, &req->task_work, TWA_NONE);
2163 wake_up_process(tsk);
2167 static inline void io_queue_next(struct io_kiocb *req)
2169 struct io_kiocb *nxt = io_req_find_next(req);
2172 io_req_task_queue(nxt);
2175 static void io_free_req(struct io_kiocb *req)
2182 void *reqs[IO_IOPOLL_BATCH];
2185 struct task_struct *task;
2189 static inline void io_init_req_batch(struct req_batch *rb)
2196 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2197 struct req_batch *rb)
2199 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2200 percpu_ref_put_many(&ctx->refs, rb->to_free);
2204 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2205 struct req_batch *rb)
2208 __io_req_free_batch_flush(ctx, rb);
2210 struct io_uring_task *tctx = rb->task->io_uring;
2212 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2213 put_task_struct_many(rb->task, rb->task_refs);
2218 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2220 if (unlikely(io_is_fallback_req(req))) {
2226 if (req->task != rb->task) {
2228 struct io_uring_task *tctx = rb->task->io_uring;
2230 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2231 put_task_struct_many(rb->task, rb->task_refs);
2233 rb->task = req->task;
2238 io_dismantle_req(req);
2239 rb->reqs[rb->to_free++] = req;
2240 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2241 __io_req_free_batch_flush(req->ctx, rb);
2245 * Drop reference to request, return next in chain (if there is one) if this
2246 * was the last reference to this request.
2248 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2250 struct io_kiocb *nxt = NULL;
2252 if (refcount_dec_and_test(&req->refs)) {
2253 nxt = io_req_find_next(req);
2259 static void io_put_req(struct io_kiocb *req)
2261 if (refcount_dec_and_test(&req->refs))
2265 static void io_put_req_deferred_cb(struct callback_head *cb)
2267 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2272 static void io_free_req_deferred(struct io_kiocb *req)
2276 init_task_work(&req->task_work, io_put_req_deferred_cb);
2277 ret = io_req_task_work_add(req);
2278 if (unlikely(ret)) {
2279 struct task_struct *tsk;
2281 tsk = io_wq_get_task(req->ctx->io_wq);
2282 task_work_add(tsk, &req->task_work, TWA_NONE);
2283 wake_up_process(tsk);
2287 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2289 if (refcount_sub_and_test(refs, &req->refs))
2290 io_free_req_deferred(req);
2293 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2295 struct io_kiocb *nxt;
2298 * A ref is owned by io-wq in which context we're. So, if that's the
2299 * last one, it's safe to steal next work. False negatives are Ok,
2300 * it just will be re-punted async in io_put_work()
2302 if (refcount_read(&req->refs) != 1)
2305 nxt = io_req_find_next(req);
2306 return nxt ? &nxt->work : NULL;
2309 static void io_double_put_req(struct io_kiocb *req)
2311 /* drop both submit and complete references */
2312 if (refcount_sub_and_test(2, &req->refs))
2316 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
2318 if (test_bit(0, &ctx->cq_check_overflow)) {
2320 * noflush == true is from the waitqueue handler, just ensure
2321 * we wake up the task, and the next invocation will flush the
2322 * entries. We cannot safely to it from here.
2327 io_cqring_overflow_flush(ctx, false, NULL, NULL);
2330 /* See comment at the top of this file */
2332 return __io_cqring_events(ctx);
2335 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2337 struct io_rings *rings = ctx->rings;
2339 /* make sure SQ entry isn't read before tail */
2340 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2343 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2345 unsigned int cflags;
2347 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2348 cflags |= IORING_CQE_F_BUFFER;
2349 req->flags &= ~REQ_F_BUFFER_SELECTED;
2354 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2356 struct io_buffer *kbuf;
2358 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2359 return io_put_kbuf(req, kbuf);
2362 static inline bool io_run_task_work(void)
2365 * Not safe to run on exiting task, and the task_work handling will
2366 * not add work to such a task.
2368 if (unlikely(current->flags & PF_EXITING))
2370 if (current->task_works) {
2371 __set_current_state(TASK_RUNNING);
2379 static void io_iopoll_queue(struct list_head *again)
2381 struct io_kiocb *req;
2384 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2385 list_del(&req->inflight_entry);
2386 __io_complete_rw(req, -EAGAIN, 0, NULL);
2387 } while (!list_empty(again));
2391 * Find and free completed poll iocbs
2393 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2394 struct list_head *done)
2396 struct req_batch rb;
2397 struct io_kiocb *req;
2400 /* order with ->result store in io_complete_rw_iopoll() */
2403 io_init_req_batch(&rb);
2404 while (!list_empty(done)) {
2407 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2408 if (READ_ONCE(req->result) == -EAGAIN) {
2410 req->iopoll_completed = 0;
2411 list_move_tail(&req->inflight_entry, &again);
2414 list_del(&req->inflight_entry);
2416 if (req->flags & REQ_F_BUFFER_SELECTED)
2417 cflags = io_put_rw_kbuf(req);
2419 __io_cqring_fill_event(req, req->result, cflags);
2422 if (refcount_dec_and_test(&req->refs))
2423 io_req_free_batch(&rb, req);
2426 io_commit_cqring(ctx);
2427 if (ctx->flags & IORING_SETUP_SQPOLL)
2428 io_cqring_ev_posted(ctx);
2429 io_req_free_batch_finish(ctx, &rb);
2431 if (!list_empty(&again))
2432 io_iopoll_queue(&again);
2435 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2438 struct io_kiocb *req, *tmp;
2444 * Only spin for completions if we don't have multiple devices hanging
2445 * off our complete list, and we're under the requested amount.
2447 spin = !ctx->poll_multi_file && *nr_events < min;
2450 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2451 struct kiocb *kiocb = &req->rw.kiocb;
2454 * Move completed and retryable entries to our local lists.
2455 * If we find a request that requires polling, break out
2456 * and complete those lists first, if we have entries there.
2458 if (READ_ONCE(req->iopoll_completed)) {
2459 list_move_tail(&req->inflight_entry, &done);
2462 if (!list_empty(&done))
2465 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2469 /* iopoll may have completed current req */
2470 if (READ_ONCE(req->iopoll_completed))
2471 list_move_tail(&req->inflight_entry, &done);
2478 if (!list_empty(&done))
2479 io_iopoll_complete(ctx, nr_events, &done);
2485 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2486 * non-spinning poll check - we'll still enter the driver poll loop, but only
2487 * as a non-spinning completion check.
2489 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2492 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2495 ret = io_do_iopoll(ctx, nr_events, min);
2498 if (*nr_events >= min)
2506 * We can't just wait for polled events to come to us, we have to actively
2507 * find and complete them.
2509 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2511 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2514 mutex_lock(&ctx->uring_lock);
2515 while (!list_empty(&ctx->iopoll_list)) {
2516 unsigned int nr_events = 0;
2518 io_do_iopoll(ctx, &nr_events, 0);
2520 /* let it sleep and repeat later if can't complete a request */
2524 * Ensure we allow local-to-the-cpu processing to take place,
2525 * in this case we need to ensure that we reap all events.
2526 * Also let task_work, etc. to progress by releasing the mutex
2528 if (need_resched()) {
2529 mutex_unlock(&ctx->uring_lock);
2531 mutex_lock(&ctx->uring_lock);
2534 mutex_unlock(&ctx->uring_lock);
2537 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2539 unsigned int nr_events = 0;
2540 int iters = 0, ret = 0;
2543 * We disallow the app entering submit/complete with polling, but we
2544 * still need to lock the ring to prevent racing with polled issue
2545 * that got punted to a workqueue.
2547 mutex_lock(&ctx->uring_lock);
2550 * Don't enter poll loop if we already have events pending.
2551 * If we do, we can potentially be spinning for commands that
2552 * already triggered a CQE (eg in error).
2554 if (io_cqring_events(ctx, false))
2558 * If a submit got punted to a workqueue, we can have the
2559 * application entering polling for a command before it gets
2560 * issued. That app will hold the uring_lock for the duration
2561 * of the poll right here, so we need to take a breather every
2562 * now and then to ensure that the issue has a chance to add
2563 * the poll to the issued list. Otherwise we can spin here
2564 * forever, while the workqueue is stuck trying to acquire the
2567 if (!(++iters & 7)) {
2568 mutex_unlock(&ctx->uring_lock);
2570 mutex_lock(&ctx->uring_lock);
2573 ret = io_iopoll_getevents(ctx, &nr_events, min);
2577 } while (min && !nr_events && !need_resched());
2579 mutex_unlock(&ctx->uring_lock);
2583 static void kiocb_end_write(struct io_kiocb *req)
2586 * Tell lockdep we inherited freeze protection from submission
2589 if (req->flags & REQ_F_ISREG) {
2590 struct inode *inode = file_inode(req->file);
2592 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2594 file_end_write(req->file);
2597 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2598 struct io_comp_state *cs)
2600 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2603 if (kiocb->ki_flags & IOCB_WRITE)
2604 kiocb_end_write(req);
2606 if (res != req->result)
2607 req_set_fail_links(req);
2608 if (req->flags & REQ_F_BUFFER_SELECTED)
2609 cflags = io_put_rw_kbuf(req);
2610 __io_req_complete(req, res, cflags, cs);
2614 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2616 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2617 ssize_t ret = -ECANCELED;
2618 struct iov_iter iter;
2626 switch (req->opcode) {
2627 case IORING_OP_READV:
2628 case IORING_OP_READ_FIXED:
2629 case IORING_OP_READ:
2632 case IORING_OP_WRITEV:
2633 case IORING_OP_WRITE_FIXED:
2634 case IORING_OP_WRITE:
2638 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2643 if (!req->async_data) {
2644 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2647 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2655 req_set_fail_links(req);
2660 static bool io_rw_reissue(struct io_kiocb *req, long res)
2663 umode_t mode = file_inode(req->file)->i_mode;
2666 if (!S_ISBLK(mode) && !S_ISREG(mode))
2668 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2671 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2673 if (io_resubmit_prep(req, ret)) {
2674 refcount_inc(&req->refs);
2675 io_queue_async_work(req);
2683 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2684 struct io_comp_state *cs)
2686 if (!io_rw_reissue(req, res))
2687 io_complete_rw_common(&req->rw.kiocb, res, cs);
2690 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2692 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2694 __io_complete_rw(req, res, res2, NULL);
2697 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2699 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2701 if (kiocb->ki_flags & IOCB_WRITE)
2702 kiocb_end_write(req);
2704 if (res != -EAGAIN && res != req->result)
2705 req_set_fail_links(req);
2707 WRITE_ONCE(req->result, res);
2708 /* order with io_poll_complete() checking ->result */
2710 WRITE_ONCE(req->iopoll_completed, 1);
2714 * After the iocb has been issued, it's safe to be found on the poll list.
2715 * Adding the kiocb to the list AFTER submission ensures that we don't
2716 * find it from a io_iopoll_getevents() thread before the issuer is done
2717 * accessing the kiocb cookie.
2719 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2721 struct io_ring_ctx *ctx = req->ctx;
2724 * Track whether we have multiple files in our lists. This will impact
2725 * how we do polling eventually, not spinning if we're on potentially
2726 * different devices.
2728 if (list_empty(&ctx->iopoll_list)) {
2729 ctx->poll_multi_file = false;
2730 } else if (!ctx->poll_multi_file) {
2731 struct io_kiocb *list_req;
2733 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2735 if (list_req->file != req->file)
2736 ctx->poll_multi_file = true;
2740 * For fast devices, IO may have already completed. If it has, add
2741 * it to the front so we find it first.
2743 if (READ_ONCE(req->iopoll_completed))
2744 list_add(&req->inflight_entry, &ctx->iopoll_list);
2746 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2749 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2750 * task context or in io worker task context. If current task context is
2751 * sq thread, we don't need to check whether should wake up sq thread.
2753 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2754 wq_has_sleeper(&ctx->sq_data->wait))
2755 wake_up(&ctx->sq_data->wait);
2758 static inline void __io_state_file_put(struct io_submit_state *state)
2760 fput_many(state->file, state->file_refs);
2761 state->file_refs = 0;
2764 static inline void io_state_file_put(struct io_submit_state *state)
2766 if (state->file_refs)
2767 __io_state_file_put(state);
2771 * Get as many references to a file as we have IOs left in this submission,
2772 * assuming most submissions are for one file, or at least that each file
2773 * has more than one submission.
2775 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2780 if (state->file_refs) {
2781 if (state->fd == fd) {
2785 __io_state_file_put(state);
2787 state->file = fget_many(fd, state->ios_left);
2788 if (unlikely(!state->file))
2792 state->file_refs = state->ios_left - 1;
2796 static bool io_bdev_nowait(struct block_device *bdev)
2798 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2802 * If we tracked the file through the SCM inflight mechanism, we could support
2803 * any file. For now, just ensure that anything potentially problematic is done
2806 static bool io_file_supports_async(struct file *file, int rw)
2808 umode_t mode = file_inode(file)->i_mode;
2810 if (S_ISBLK(mode)) {
2811 if (IS_ENABLED(CONFIG_BLOCK) &&
2812 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2816 if (S_ISCHR(mode) || S_ISSOCK(mode))
2818 if (S_ISREG(mode)) {
2819 if (IS_ENABLED(CONFIG_BLOCK) &&
2820 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2821 file->f_op != &io_uring_fops)
2826 /* any ->read/write should understand O_NONBLOCK */
2827 if (file->f_flags & O_NONBLOCK)
2830 if (!(file->f_mode & FMODE_NOWAIT))
2834 return file->f_op->read_iter != NULL;
2836 return file->f_op->write_iter != NULL;
2839 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2841 struct io_ring_ctx *ctx = req->ctx;
2842 struct kiocb *kiocb = &req->rw.kiocb;
2846 if (S_ISREG(file_inode(req->file)->i_mode))
2847 req->flags |= REQ_F_ISREG;
2849 kiocb->ki_pos = READ_ONCE(sqe->off);
2850 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2851 req->flags |= REQ_F_CUR_POS;
2852 kiocb->ki_pos = req->file->f_pos;
2854 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2855 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2856 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2860 ioprio = READ_ONCE(sqe->ioprio);
2862 ret = ioprio_check_cap(ioprio);
2866 kiocb->ki_ioprio = ioprio;
2868 kiocb->ki_ioprio = get_current_ioprio();
2870 /* don't allow async punt if RWF_NOWAIT was requested */
2871 if (kiocb->ki_flags & IOCB_NOWAIT)
2872 req->flags |= REQ_F_NOWAIT;
2874 if (ctx->flags & IORING_SETUP_IOPOLL) {
2875 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2876 !kiocb->ki_filp->f_op->iopoll)
2879 kiocb->ki_flags |= IOCB_HIPRI;
2880 kiocb->ki_complete = io_complete_rw_iopoll;
2881 req->iopoll_completed = 0;
2883 if (kiocb->ki_flags & IOCB_HIPRI)
2885 kiocb->ki_complete = io_complete_rw;
2888 req->rw.addr = READ_ONCE(sqe->addr);
2889 req->rw.len = READ_ONCE(sqe->len);
2890 req->buf_index = READ_ONCE(sqe->buf_index);
2894 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2900 case -ERESTARTNOINTR:
2901 case -ERESTARTNOHAND:
2902 case -ERESTART_RESTARTBLOCK:
2904 * We can't just restart the syscall, since previously
2905 * submitted sqes may already be in progress. Just fail this
2911 kiocb->ki_complete(kiocb, ret, 0);
2915 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2916 struct io_comp_state *cs)
2918 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2919 struct io_async_rw *io = req->async_data;
2921 /* add previously done IO, if any */
2922 if (io && io->bytes_done > 0) {
2924 ret = io->bytes_done;
2926 ret += io->bytes_done;
2929 if (req->flags & REQ_F_CUR_POS)
2930 req->file->f_pos = kiocb->ki_pos;
2931 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2932 __io_complete_rw(req, ret, 0, cs);
2934 io_rw_done(kiocb, ret);
2937 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2938 struct iov_iter *iter)
2940 struct io_ring_ctx *ctx = req->ctx;
2941 size_t len = req->rw.len;
2942 struct io_mapped_ubuf *imu;
2943 u16 index, buf_index = req->buf_index;
2947 if (unlikely(buf_index >= ctx->nr_user_bufs))
2949 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2950 imu = &ctx->user_bufs[index];
2951 buf_addr = req->rw.addr;
2954 if (buf_addr + len < buf_addr)
2956 /* not inside the mapped region */
2957 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2961 * May not be a start of buffer, set size appropriately
2962 * and advance us to the beginning.
2964 offset = buf_addr - imu->ubuf;
2965 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2969 * Don't use iov_iter_advance() here, as it's really slow for
2970 * using the latter parts of a big fixed buffer - it iterates
2971 * over each segment manually. We can cheat a bit here, because
2974 * 1) it's a BVEC iter, we set it up
2975 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2976 * first and last bvec
2978 * So just find our index, and adjust the iterator afterwards.
2979 * If the offset is within the first bvec (or the whole first
2980 * bvec, just use iov_iter_advance(). This makes it easier
2981 * since we can just skip the first segment, which may not
2982 * be PAGE_SIZE aligned.
2984 const struct bio_vec *bvec = imu->bvec;
2986 if (offset <= bvec->bv_len) {
2987 iov_iter_advance(iter, offset);
2989 unsigned long seg_skip;
2991 /* skip first vec */
2992 offset -= bvec->bv_len;
2993 seg_skip = 1 + (offset >> PAGE_SHIFT);
2995 iter->bvec = bvec + seg_skip;
2996 iter->nr_segs -= seg_skip;
2997 iter->count -= bvec->bv_len + offset;
2998 iter->iov_offset = offset & ~PAGE_MASK;
3005 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3008 mutex_unlock(&ctx->uring_lock);
3011 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3014 * "Normal" inline submissions always hold the uring_lock, since we
3015 * grab it from the system call. Same is true for the SQPOLL offload.
3016 * The only exception is when we've detached the request and issue it
3017 * from an async worker thread, grab the lock for that case.
3020 mutex_lock(&ctx->uring_lock);
3023 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3024 int bgid, struct io_buffer *kbuf,
3027 struct io_buffer *head;
3029 if (req->flags & REQ_F_BUFFER_SELECTED)
3032 io_ring_submit_lock(req->ctx, needs_lock);
3034 lockdep_assert_held(&req->ctx->uring_lock);
3036 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3038 if (!list_empty(&head->list)) {
3039 kbuf = list_last_entry(&head->list, struct io_buffer,
3041 list_del(&kbuf->list);
3044 idr_remove(&req->ctx->io_buffer_idr, bgid);
3046 if (*len > kbuf->len)
3049 kbuf = ERR_PTR(-ENOBUFS);
3052 io_ring_submit_unlock(req->ctx, needs_lock);
3057 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3060 struct io_buffer *kbuf;
3063 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3064 bgid = req->buf_index;
3065 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3068 req->rw.addr = (u64) (unsigned long) kbuf;
3069 req->flags |= REQ_F_BUFFER_SELECTED;
3070 return u64_to_user_ptr(kbuf->addr);
3073 #ifdef CONFIG_COMPAT
3074 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3077 struct compat_iovec __user *uiov;
3078 compat_ssize_t clen;
3082 uiov = u64_to_user_ptr(req->rw.addr);
3083 if (!access_ok(uiov, sizeof(*uiov)))
3085 if (__get_user(clen, &uiov->iov_len))
3091 buf = io_rw_buffer_select(req, &len, needs_lock);
3093 return PTR_ERR(buf);
3094 iov[0].iov_base = buf;
3095 iov[0].iov_len = (compat_size_t) len;
3100 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3103 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3107 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3110 len = iov[0].iov_len;
3113 buf = io_rw_buffer_select(req, &len, needs_lock);
3115 return PTR_ERR(buf);
3116 iov[0].iov_base = buf;
3117 iov[0].iov_len = len;
3121 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3124 if (req->flags & REQ_F_BUFFER_SELECTED) {
3125 struct io_buffer *kbuf;
3127 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3128 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3129 iov[0].iov_len = kbuf->len;
3132 if (req->rw.len != 1)
3135 #ifdef CONFIG_COMPAT
3136 if (req->ctx->compat)
3137 return io_compat_import(req, iov, needs_lock);
3140 return __io_iov_buffer_select(req, iov, needs_lock);
3143 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3144 struct iovec **iovec, struct iov_iter *iter,
3147 void __user *buf = u64_to_user_ptr(req->rw.addr);
3148 size_t sqe_len = req->rw.len;
3152 opcode = req->opcode;
3153 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3155 return io_import_fixed(req, rw, iter);
3158 /* buffer index only valid with fixed read/write, or buffer select */
3159 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3162 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3163 if (req->flags & REQ_F_BUFFER_SELECT) {
3164 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3166 return PTR_ERR(buf);
3167 req->rw.len = sqe_len;
3170 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3175 if (req->flags & REQ_F_BUFFER_SELECT) {
3176 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3178 ret = (*iovec)->iov_len;
3179 iov_iter_init(iter, rw, *iovec, 1, ret);
3185 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3189 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3191 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3195 * For files that don't have ->read_iter() and ->write_iter(), handle them
3196 * by looping over ->read() or ->write() manually.
3198 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3200 struct kiocb *kiocb = &req->rw.kiocb;
3201 struct file *file = req->file;
3205 * Don't support polled IO through this interface, and we can't
3206 * support non-blocking either. For the latter, this just causes
3207 * the kiocb to be handled from an async context.
3209 if (kiocb->ki_flags & IOCB_HIPRI)
3211 if (kiocb->ki_flags & IOCB_NOWAIT)
3214 while (iov_iter_count(iter)) {
3218 if (!iov_iter_is_bvec(iter)) {
3219 iovec = iov_iter_iovec(iter);
3221 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3222 iovec.iov_len = req->rw.len;
3226 nr = file->f_op->read(file, iovec.iov_base,
3227 iovec.iov_len, io_kiocb_ppos(kiocb));
3229 nr = file->f_op->write(file, iovec.iov_base,
3230 iovec.iov_len, io_kiocb_ppos(kiocb));
3239 if (nr != iovec.iov_len)
3243 iov_iter_advance(iter, nr);
3249 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3250 const struct iovec *fast_iov, struct iov_iter *iter)
3252 struct io_async_rw *rw = req->async_data;
3254 memcpy(&rw->iter, iter, sizeof(*iter));
3255 rw->free_iovec = iovec;
3257 /* can only be fixed buffers, no need to do anything */
3258 if (iov_iter_is_bvec(iter))
3261 unsigned iov_off = 0;
3263 rw->iter.iov = rw->fast_iov;
3264 if (iter->iov != fast_iov) {
3265 iov_off = iter->iov - fast_iov;
3266 rw->iter.iov += iov_off;
3268 if (rw->fast_iov != fast_iov)
3269 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3270 sizeof(struct iovec) * iter->nr_segs);
3272 req->flags |= REQ_F_NEED_CLEANUP;
3276 static inline int __io_alloc_async_data(struct io_kiocb *req)
3278 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3279 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3280 return req->async_data == NULL;
3283 static int io_alloc_async_data(struct io_kiocb *req)
3285 if (!io_op_defs[req->opcode].needs_async_data)
3288 return __io_alloc_async_data(req);
3291 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3292 const struct iovec *fast_iov,
3293 struct iov_iter *iter, bool force)
3295 if (!force && !io_op_defs[req->opcode].needs_async_data)
3297 if (!req->async_data) {
3298 if (__io_alloc_async_data(req))
3301 io_req_map_rw(req, iovec, fast_iov, iter);
3306 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3308 struct io_async_rw *iorw = req->async_data;
3309 struct iovec *iov = iorw->fast_iov;
3312 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3313 if (unlikely(ret < 0))
3316 iorw->bytes_done = 0;
3317 iorw->free_iovec = iov;
3319 req->flags |= REQ_F_NEED_CLEANUP;
3323 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3327 ret = io_prep_rw(req, sqe);
3331 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3334 /* either don't need iovec imported or already have it */
3335 if (!req->async_data)
3337 return io_rw_prep_async(req, READ);
3341 * This is our waitqueue callback handler, registered through lock_page_async()
3342 * when we initially tried to do the IO with the iocb armed our waitqueue.
3343 * This gets called when the page is unlocked, and we generally expect that to
3344 * happen when the page IO is completed and the page is now uptodate. This will
3345 * queue a task_work based retry of the operation, attempting to copy the data
3346 * again. If the latter fails because the page was NOT uptodate, then we will
3347 * do a thread based blocking retry of the operation. That's the unexpected
3350 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3351 int sync, void *arg)
3353 struct wait_page_queue *wpq;
3354 struct io_kiocb *req = wait->private;
3355 struct wait_page_key *key = arg;
3358 wpq = container_of(wait, struct wait_page_queue, wait);
3360 if (!wake_page_match(wpq, key))
3363 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3364 list_del_init(&wait->entry);
3366 init_task_work(&req->task_work, io_req_task_submit);
3367 percpu_ref_get(&req->ctx->refs);
3369 /* submit ref gets dropped, acquire a new one */
3370 refcount_inc(&req->refs);
3371 ret = io_req_task_work_add(req);
3372 if (unlikely(ret)) {
3373 struct task_struct *tsk;
3375 /* queue just for cancelation */
3376 init_task_work(&req->task_work, io_req_task_cancel);
3377 tsk = io_wq_get_task(req->ctx->io_wq);
3378 task_work_add(tsk, &req->task_work, TWA_NONE);
3379 wake_up_process(tsk);
3385 * This controls whether a given IO request should be armed for async page
3386 * based retry. If we return false here, the request is handed to the async
3387 * worker threads for retry. If we're doing buffered reads on a regular file,
3388 * we prepare a private wait_page_queue entry and retry the operation. This
3389 * will either succeed because the page is now uptodate and unlocked, or it
3390 * will register a callback when the page is unlocked at IO completion. Through
3391 * that callback, io_uring uses task_work to setup a retry of the operation.
3392 * That retry will attempt the buffered read again. The retry will generally
3393 * succeed, or in rare cases where it fails, we then fall back to using the
3394 * async worker threads for a blocking retry.
3396 static bool io_rw_should_retry(struct io_kiocb *req)
3398 struct io_async_rw *rw = req->async_data;
3399 struct wait_page_queue *wait = &rw->wpq;
3400 struct kiocb *kiocb = &req->rw.kiocb;
3402 /* never retry for NOWAIT, we just complete with -EAGAIN */
3403 if (req->flags & REQ_F_NOWAIT)
3406 /* Only for buffered IO */
3407 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3411 * just use poll if we can, and don't attempt if the fs doesn't
3412 * support callback based unlocks
3414 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3417 wait->wait.func = io_async_buf_func;
3418 wait->wait.private = req;
3419 wait->wait.flags = 0;
3420 INIT_LIST_HEAD(&wait->wait.entry);
3421 kiocb->ki_flags |= IOCB_WAITQ;
3422 kiocb->ki_flags &= ~IOCB_NOWAIT;
3423 kiocb->ki_waitq = wait;
3427 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3429 if (req->file->f_op->read_iter)
3430 return call_read_iter(req->file, &req->rw.kiocb, iter);
3431 else if (req->file->f_op->read)
3432 return loop_rw_iter(READ, req, iter);
3437 static int io_read(struct io_kiocb *req, bool force_nonblock,
3438 struct io_comp_state *cs)
3440 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3441 struct kiocb *kiocb = &req->rw.kiocb;
3442 struct iov_iter __iter, *iter = &__iter;
3443 struct io_async_rw *rw = req->async_data;
3444 ssize_t io_size, ret, ret2;
3451 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3455 io_size = iov_iter_count(iter);
3456 req->result = io_size;
3459 /* Ensure we clear previously set non-block flag */
3460 if (!force_nonblock)
3461 kiocb->ki_flags &= ~IOCB_NOWAIT;
3463 kiocb->ki_flags |= IOCB_NOWAIT;
3466 /* If the file doesn't support async, just async punt */
3467 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3471 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3475 ret = io_iter_do_read(req, iter);
3479 } else if (ret == -EIOCBQUEUED) {
3482 } else if (ret == -EAGAIN) {
3483 /* IOPOLL retry should happen for io-wq threads */
3484 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3486 /* no retry on NONBLOCK marked file */
3487 if (req->file->f_flags & O_NONBLOCK)
3489 /* some cases will consume bytes even on error returns */
3490 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3493 } else if (ret < 0) {
3494 /* make sure -ERESTARTSYS -> -EINTR is done */
3498 /* read it all, or we did blocking attempt. no retry. */
3499 if (!iov_iter_count(iter) || !force_nonblock ||
3500 (req->file->f_flags & O_NONBLOCK))
3505 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3512 rw = req->async_data;
3513 /* it's copied and will be cleaned with ->io */
3515 /* now use our persistent iterator, if we aren't already */
3518 rw->bytes_done += ret;
3519 /* if we can retry, do so with the callbacks armed */
3520 if (!io_rw_should_retry(req)) {
3521 kiocb->ki_flags &= ~IOCB_WAITQ;
3526 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3527 * get -EIOCBQUEUED, then we'll get a notification when the desired
3528 * page gets unlocked. We can also get a partial read here, and if we
3529 * do, then just retry at the new offset.
3531 ret = io_iter_do_read(req, iter);
3532 if (ret == -EIOCBQUEUED) {
3535 } else if (ret > 0 && ret < io_size) {
3536 /* we got some bytes, but not all. retry. */
3540 kiocb_done(kiocb, ret, cs);
3543 /* it's reportedly faster than delegating the null check to kfree() */
3549 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3553 ret = io_prep_rw(req, sqe);
3557 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3560 /* either don't need iovec imported or already have it */
3561 if (!req->async_data)
3563 return io_rw_prep_async(req, WRITE);
3566 static int io_write(struct io_kiocb *req, bool force_nonblock,
3567 struct io_comp_state *cs)
3569 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3570 struct kiocb *kiocb = &req->rw.kiocb;
3571 struct iov_iter __iter, *iter = &__iter;
3572 struct io_async_rw *rw = req->async_data;
3573 ssize_t ret, ret2, io_size;
3579 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3583 io_size = iov_iter_count(iter);
3584 req->result = io_size;
3586 /* Ensure we clear previously set non-block flag */
3587 if (!force_nonblock)
3588 kiocb->ki_flags &= ~IOCB_NOWAIT;
3590 kiocb->ki_flags |= IOCB_NOWAIT;
3592 /* If the file doesn't support async, just async punt */
3593 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3596 /* file path doesn't support NOWAIT for non-direct_IO */
3597 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3598 (req->flags & REQ_F_ISREG))
3601 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3606 * Open-code file_start_write here to grab freeze protection,
3607 * which will be released by another thread in
3608 * io_complete_rw(). Fool lockdep by telling it the lock got
3609 * released so that it doesn't complain about the held lock when
3610 * we return to userspace.
3612 if (req->flags & REQ_F_ISREG) {
3613 sb_start_write(file_inode(req->file)->i_sb);
3614 __sb_writers_release(file_inode(req->file)->i_sb,
3617 kiocb->ki_flags |= IOCB_WRITE;
3619 if (req->file->f_op->write_iter)
3620 ret2 = call_write_iter(req->file, kiocb, iter);
3621 else if (req->file->f_op->write)
3622 ret2 = loop_rw_iter(WRITE, req, iter);
3627 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3628 * retry them without IOCB_NOWAIT.
3630 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3632 /* no retry on NONBLOCK marked file */
3633 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3635 if (!force_nonblock || ret2 != -EAGAIN) {
3636 /* IOPOLL retry should happen for io-wq threads */
3637 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3640 kiocb_done(kiocb, ret2, cs);
3643 /* some cases will consume bytes even on error returns */
3644 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3645 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3650 /* it's reportedly faster than delegating the null check to kfree() */
3656 static int io_renameat_prep(struct io_kiocb *req,
3657 const struct io_uring_sqe *sqe)
3659 struct io_rename *ren = &req->rename;
3660 const char __user *oldf, *newf;
3662 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3665 ren->old_dfd = READ_ONCE(sqe->fd);
3666 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3667 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3668 ren->new_dfd = READ_ONCE(sqe->len);
3669 ren->flags = READ_ONCE(sqe->rename_flags);
3671 ren->oldpath = getname(oldf);
3672 if (IS_ERR(ren->oldpath))
3673 return PTR_ERR(ren->oldpath);
3675 ren->newpath = getname(newf);
3676 if (IS_ERR(ren->newpath)) {
3677 putname(ren->oldpath);
3678 return PTR_ERR(ren->newpath);
3681 req->flags |= REQ_F_NEED_CLEANUP;
3685 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3687 struct io_rename *ren = &req->rename;
3693 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3694 ren->newpath, ren->flags);
3696 req->flags &= ~REQ_F_NEED_CLEANUP;
3698 req_set_fail_links(req);
3699 io_req_complete(req, ret);
3703 static int io_unlinkat_prep(struct io_kiocb *req,
3704 const struct io_uring_sqe *sqe)
3706 struct io_unlink *un = &req->unlink;
3707 const char __user *fname;
3709 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3712 un->dfd = READ_ONCE(sqe->fd);
3714 un->flags = READ_ONCE(sqe->unlink_flags);
3715 if (un->flags & ~AT_REMOVEDIR)
3718 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3719 un->filename = getname(fname);
3720 if (IS_ERR(un->filename))
3721 return PTR_ERR(un->filename);
3723 req->flags |= REQ_F_NEED_CLEANUP;
3727 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3729 struct io_unlink *un = &req->unlink;
3735 if (un->flags & AT_REMOVEDIR)
3736 ret = do_rmdir(un->dfd, un->filename);
3738 ret = do_unlinkat(un->dfd, un->filename);
3740 req->flags &= ~REQ_F_NEED_CLEANUP;
3742 req_set_fail_links(req);
3743 io_req_complete(req, ret);
3747 static int io_shutdown_prep(struct io_kiocb *req,
3748 const struct io_uring_sqe *sqe)
3750 #if defined(CONFIG_NET)
3751 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3753 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3757 req->shutdown.how = READ_ONCE(sqe->len);
3764 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3766 #if defined(CONFIG_NET)
3767 struct socket *sock;
3773 sock = sock_from_file(req->file);
3774 if (unlikely(!sock))
3777 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3779 req_set_fail_links(req);
3780 io_req_complete(req, ret);
3787 static int __io_splice_prep(struct io_kiocb *req,
3788 const struct io_uring_sqe *sqe)
3790 struct io_splice* sp = &req->splice;
3791 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3793 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3797 sp->len = READ_ONCE(sqe->len);
3798 sp->flags = READ_ONCE(sqe->splice_flags);
3800 if (unlikely(sp->flags & ~valid_flags))
3803 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3804 (sp->flags & SPLICE_F_FD_IN_FIXED));
3807 req->flags |= REQ_F_NEED_CLEANUP;
3809 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3811 * Splice operation will be punted aync, and here need to
3812 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3814 io_req_init_async(req);
3815 req->work.flags |= IO_WQ_WORK_UNBOUND;
3821 static int io_tee_prep(struct io_kiocb *req,
3822 const struct io_uring_sqe *sqe)
3824 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3826 return __io_splice_prep(req, sqe);
3829 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3831 struct io_splice *sp = &req->splice;
3832 struct file *in = sp->file_in;
3833 struct file *out = sp->file_out;
3834 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3840 ret = do_tee(in, out, sp->len, flags);
3842 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3843 req->flags &= ~REQ_F_NEED_CLEANUP;
3846 req_set_fail_links(req);
3847 io_req_complete(req, ret);
3851 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3853 struct io_splice* sp = &req->splice;
3855 sp->off_in = READ_ONCE(sqe->splice_off_in);
3856 sp->off_out = READ_ONCE(sqe->off);
3857 return __io_splice_prep(req, sqe);
3860 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3862 struct io_splice *sp = &req->splice;
3863 struct file *in = sp->file_in;
3864 struct file *out = sp->file_out;
3865 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3866 loff_t *poff_in, *poff_out;
3872 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3873 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3876 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3878 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3879 req->flags &= ~REQ_F_NEED_CLEANUP;
3882 req_set_fail_links(req);
3883 io_req_complete(req, ret);
3888 * IORING_OP_NOP just posts a completion event, nothing else.
3890 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3892 struct io_ring_ctx *ctx = req->ctx;
3894 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3897 __io_req_complete(req, 0, 0, cs);
3901 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3903 struct io_ring_ctx *ctx = req->ctx;
3908 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3910 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3913 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3914 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3917 req->sync.off = READ_ONCE(sqe->off);
3918 req->sync.len = READ_ONCE(sqe->len);
3922 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3924 loff_t end = req->sync.off + req->sync.len;
3927 /* fsync always requires a blocking context */
3931 ret = vfs_fsync_range(req->file, req->sync.off,
3932 end > 0 ? end : LLONG_MAX,
3933 req->sync.flags & IORING_FSYNC_DATASYNC);
3935 req_set_fail_links(req);
3936 io_req_complete(req, ret);
3940 static int io_fallocate_prep(struct io_kiocb *req,
3941 const struct io_uring_sqe *sqe)
3943 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3945 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3948 req->sync.off = READ_ONCE(sqe->off);
3949 req->sync.len = READ_ONCE(sqe->addr);
3950 req->sync.mode = READ_ONCE(sqe->len);
3954 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
3958 /* fallocate always requiring blocking context */
3961 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3964 req_set_fail_links(req);
3965 io_req_complete(req, ret);
3969 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3971 const char __user *fname;
3974 if (unlikely(sqe->ioprio || sqe->buf_index))
3976 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3979 /* open.how should be already initialised */
3980 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3981 req->open.how.flags |= O_LARGEFILE;
3983 req->open.dfd = READ_ONCE(sqe->fd);
3984 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3985 req->open.filename = getname(fname);
3986 if (IS_ERR(req->open.filename)) {
3987 ret = PTR_ERR(req->open.filename);
3988 req->open.filename = NULL;
3991 req->open.nofile = rlimit(RLIMIT_NOFILE);
3992 req->open.ignore_nonblock = false;
3993 req->flags |= REQ_F_NEED_CLEANUP;
3997 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4001 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4003 mode = READ_ONCE(sqe->len);
4004 flags = READ_ONCE(sqe->open_flags);
4005 req->open.how = build_open_how(flags, mode);
4006 return __io_openat_prep(req, sqe);
4009 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4011 struct open_how __user *how;
4015 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4017 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4018 len = READ_ONCE(sqe->len);
4019 if (len < OPEN_HOW_SIZE_VER0)
4022 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4027 return __io_openat_prep(req, sqe);
4030 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4032 struct open_flags op;
4036 if (force_nonblock && !req->open.ignore_nonblock)
4039 ret = build_open_flags(&req->open.how, &op);
4043 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4047 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4050 ret = PTR_ERR(file);
4052 * A work-around to ensure that /proc/self works that way
4053 * that it should - if we get -EOPNOTSUPP back, then assume
4054 * that proc_self_get_link() failed us because we're in async
4055 * context. We should be safe to retry this from the task
4056 * itself with force_nonblock == false set, as it should not
4057 * block on lookup. Would be nice to know this upfront and
4058 * avoid the async dance, but doesn't seem feasible.
4060 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4061 req->open.ignore_nonblock = true;
4062 refcount_inc(&req->refs);
4063 io_req_task_queue(req);
4067 fsnotify_open(file);
4068 fd_install(ret, file);
4071 putname(req->open.filename);
4072 req->flags &= ~REQ_F_NEED_CLEANUP;
4074 req_set_fail_links(req);
4075 io_req_complete(req, ret);
4079 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4081 return io_openat2(req, force_nonblock);
4084 static int io_remove_buffers_prep(struct io_kiocb *req,
4085 const struct io_uring_sqe *sqe)
4087 struct io_provide_buf *p = &req->pbuf;
4090 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4093 tmp = READ_ONCE(sqe->fd);
4094 if (!tmp || tmp > USHRT_MAX)
4097 memset(p, 0, sizeof(*p));
4099 p->bgid = READ_ONCE(sqe->buf_group);
4103 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4104 int bgid, unsigned nbufs)
4108 /* shouldn't happen */
4112 /* the head kbuf is the list itself */
4113 while (!list_empty(&buf->list)) {
4114 struct io_buffer *nxt;
4116 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4117 list_del(&nxt->list);
4124 idr_remove(&ctx->io_buffer_idr, bgid);
4129 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4130 struct io_comp_state *cs)
4132 struct io_provide_buf *p = &req->pbuf;
4133 struct io_ring_ctx *ctx = req->ctx;
4134 struct io_buffer *head;
4137 io_ring_submit_lock(ctx, !force_nonblock);
4139 lockdep_assert_held(&ctx->uring_lock);
4142 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4144 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4146 req_set_fail_links(req);
4148 /* need to hold the lock to complete IOPOLL requests */
4149 if (ctx->flags & IORING_SETUP_IOPOLL) {
4150 __io_req_complete(req, ret, 0, cs);
4151 io_ring_submit_unlock(ctx, !force_nonblock);
4153 io_ring_submit_unlock(ctx, !force_nonblock);
4154 __io_req_complete(req, ret, 0, cs);
4159 static int io_provide_buffers_prep(struct io_kiocb *req,
4160 const struct io_uring_sqe *sqe)
4162 struct io_provide_buf *p = &req->pbuf;
4165 if (sqe->ioprio || sqe->rw_flags)
4168 tmp = READ_ONCE(sqe->fd);
4169 if (!tmp || tmp > USHRT_MAX)
4172 p->addr = READ_ONCE(sqe->addr);
4173 p->len = READ_ONCE(sqe->len);
4175 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4178 p->bgid = READ_ONCE(sqe->buf_group);
4179 tmp = READ_ONCE(sqe->off);
4180 if (tmp > USHRT_MAX)
4186 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4188 struct io_buffer *buf;
4189 u64 addr = pbuf->addr;
4190 int i, bid = pbuf->bid;
4192 for (i = 0; i < pbuf->nbufs; i++) {
4193 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4198 buf->len = pbuf->len;
4203 INIT_LIST_HEAD(&buf->list);
4206 list_add_tail(&buf->list, &(*head)->list);
4210 return i ? i : -ENOMEM;
4213 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4214 struct io_comp_state *cs)
4216 struct io_provide_buf *p = &req->pbuf;
4217 struct io_ring_ctx *ctx = req->ctx;
4218 struct io_buffer *head, *list;
4221 io_ring_submit_lock(ctx, !force_nonblock);
4223 lockdep_assert_held(&ctx->uring_lock);
4225 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4227 ret = io_add_buffers(p, &head);
4232 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4235 __io_remove_buffers(ctx, head, p->bgid, -1U);
4241 req_set_fail_links(req);
4243 /* need to hold the lock to complete IOPOLL requests */
4244 if (ctx->flags & IORING_SETUP_IOPOLL) {
4245 __io_req_complete(req, ret, 0, cs);
4246 io_ring_submit_unlock(ctx, !force_nonblock);
4248 io_ring_submit_unlock(ctx, !force_nonblock);
4249 __io_req_complete(req, ret, 0, cs);
4254 static int io_epoll_ctl_prep(struct io_kiocb *req,
4255 const struct io_uring_sqe *sqe)
4257 #if defined(CONFIG_EPOLL)
4258 if (sqe->ioprio || sqe->buf_index)
4260 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4263 req->epoll.epfd = READ_ONCE(sqe->fd);
4264 req->epoll.op = READ_ONCE(sqe->len);
4265 req->epoll.fd = READ_ONCE(sqe->off);
4267 if (ep_op_has_event(req->epoll.op)) {
4268 struct epoll_event __user *ev;
4270 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4271 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4281 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4282 struct io_comp_state *cs)
4284 #if defined(CONFIG_EPOLL)
4285 struct io_epoll *ie = &req->epoll;
4288 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4289 if (force_nonblock && ret == -EAGAIN)
4293 req_set_fail_links(req);
4294 __io_req_complete(req, ret, 0, cs);
4301 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4303 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4304 if (sqe->ioprio || sqe->buf_index || sqe->off)
4306 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4309 req->madvise.addr = READ_ONCE(sqe->addr);
4310 req->madvise.len = READ_ONCE(sqe->len);
4311 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4318 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4320 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4321 struct io_madvise *ma = &req->madvise;
4327 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4329 req_set_fail_links(req);
4330 io_req_complete(req, ret);
4337 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4339 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4341 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4344 req->fadvise.offset = READ_ONCE(sqe->off);
4345 req->fadvise.len = READ_ONCE(sqe->len);
4346 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4350 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4352 struct io_fadvise *fa = &req->fadvise;
4355 if (force_nonblock) {
4356 switch (fa->advice) {
4357 case POSIX_FADV_NORMAL:
4358 case POSIX_FADV_RANDOM:
4359 case POSIX_FADV_SEQUENTIAL:
4366 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4368 req_set_fail_links(req);
4369 io_req_complete(req, ret);
4373 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4375 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4377 if (sqe->ioprio || sqe->buf_index)
4379 if (req->flags & REQ_F_FIXED_FILE)
4382 req->statx.dfd = READ_ONCE(sqe->fd);
4383 req->statx.mask = READ_ONCE(sqe->len);
4384 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4385 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4386 req->statx.flags = READ_ONCE(sqe->statx_flags);
4391 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4393 struct io_statx *ctx = &req->statx;
4396 if (force_nonblock) {
4397 /* only need file table for an actual valid fd */
4398 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4399 req->flags |= REQ_F_NO_FILE_TABLE;
4403 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4407 req_set_fail_links(req);
4408 io_req_complete(req, ret);
4412 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4415 * If we queue this for async, it must not be cancellable. That would
4416 * leave the 'file' in an undeterminate state, and here need to modify
4417 * io_wq_work.flags, so initialize io_wq_work firstly.
4419 io_req_init_async(req);
4420 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4422 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4424 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4425 sqe->rw_flags || sqe->buf_index)
4427 if (req->flags & REQ_F_FIXED_FILE)
4430 req->close.fd = READ_ONCE(sqe->fd);
4431 if ((req->file && req->file->f_op == &io_uring_fops))
4434 req->close.put_file = NULL;
4438 static int io_close(struct io_kiocb *req, bool force_nonblock,
4439 struct io_comp_state *cs)
4441 struct io_close *close = &req->close;
4444 /* might be already done during nonblock submission */
4445 if (!close->put_file) {
4446 ret = close_fd_get_file(close->fd, &close->put_file);
4448 return (ret == -ENOENT) ? -EBADF : ret;
4451 /* if the file has a flush method, be safe and punt to async */
4452 if (close->put_file->f_op->flush && force_nonblock) {
4453 /* was never set, but play safe */
4454 req->flags &= ~REQ_F_NOWAIT;
4455 /* avoid grabbing files - we don't need the files */
4456 req->flags |= REQ_F_NO_FILE_TABLE;
4460 /* No ->flush() or already async, safely close from here */
4461 ret = filp_close(close->put_file, req->work.identity->files);
4463 req_set_fail_links(req);
4464 fput(close->put_file);
4465 close->put_file = NULL;
4466 __io_req_complete(req, ret, 0, cs);
4470 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4472 struct io_ring_ctx *ctx = req->ctx;
4477 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4479 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4482 req->sync.off = READ_ONCE(sqe->off);
4483 req->sync.len = READ_ONCE(sqe->len);
4484 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4488 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4492 /* sync_file_range always requires a blocking context */
4496 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4499 req_set_fail_links(req);
4500 io_req_complete(req, ret);
4504 #if defined(CONFIG_NET)
4505 static int io_setup_async_msg(struct io_kiocb *req,
4506 struct io_async_msghdr *kmsg)
4508 struct io_async_msghdr *async_msg = req->async_data;
4512 if (io_alloc_async_data(req)) {
4513 if (kmsg->iov != kmsg->fast_iov)
4517 async_msg = req->async_data;
4518 req->flags |= REQ_F_NEED_CLEANUP;
4519 memcpy(async_msg, kmsg, sizeof(*kmsg));
4523 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4524 struct io_async_msghdr *iomsg)
4526 iomsg->iov = iomsg->fast_iov;
4527 iomsg->msg.msg_name = &iomsg->addr;
4528 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4529 req->sr_msg.msg_flags, &iomsg->iov);
4532 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4534 struct io_async_msghdr *async_msg = req->async_data;
4535 struct io_sr_msg *sr = &req->sr_msg;
4538 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4541 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4542 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4543 sr->len = READ_ONCE(sqe->len);
4545 #ifdef CONFIG_COMPAT
4546 if (req->ctx->compat)
4547 sr->msg_flags |= MSG_CMSG_COMPAT;
4550 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4552 ret = io_sendmsg_copy_hdr(req, async_msg);
4554 req->flags |= REQ_F_NEED_CLEANUP;
4558 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4559 struct io_comp_state *cs)
4561 struct io_async_msghdr iomsg, *kmsg;
4562 struct socket *sock;
4566 sock = sock_from_file(req->file);
4567 if (unlikely(!sock))
4570 if (req->async_data) {
4571 kmsg = req->async_data;
4572 kmsg->msg.msg_name = &kmsg->addr;
4573 /* if iov is set, it's allocated already */
4575 kmsg->iov = kmsg->fast_iov;
4576 kmsg->msg.msg_iter.iov = kmsg->iov;
4578 ret = io_sendmsg_copy_hdr(req, &iomsg);
4584 flags = req->sr_msg.msg_flags;
4585 if (flags & MSG_DONTWAIT)
4586 req->flags |= REQ_F_NOWAIT;
4587 else if (force_nonblock)
4588 flags |= MSG_DONTWAIT;
4590 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4591 if (force_nonblock && ret == -EAGAIN)
4592 return io_setup_async_msg(req, kmsg);
4593 if (ret == -ERESTARTSYS)
4596 if (kmsg->iov != kmsg->fast_iov)
4598 req->flags &= ~REQ_F_NEED_CLEANUP;
4600 req_set_fail_links(req);
4601 __io_req_complete(req, ret, 0, cs);
4605 static int io_send(struct io_kiocb *req, bool force_nonblock,
4606 struct io_comp_state *cs)
4608 struct io_sr_msg *sr = &req->sr_msg;
4611 struct socket *sock;
4615 sock = sock_from_file(req->file);
4616 if (unlikely(!sock))
4619 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4623 msg.msg_name = NULL;
4624 msg.msg_control = NULL;
4625 msg.msg_controllen = 0;
4626 msg.msg_namelen = 0;
4628 flags = req->sr_msg.msg_flags;
4629 if (flags & MSG_DONTWAIT)
4630 req->flags |= REQ_F_NOWAIT;
4631 else if (force_nonblock)
4632 flags |= MSG_DONTWAIT;
4634 msg.msg_flags = flags;
4635 ret = sock_sendmsg(sock, &msg);
4636 if (force_nonblock && ret == -EAGAIN)
4638 if (ret == -ERESTARTSYS)
4642 req_set_fail_links(req);
4643 __io_req_complete(req, ret, 0, cs);
4647 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4648 struct io_async_msghdr *iomsg)
4650 struct io_sr_msg *sr = &req->sr_msg;
4651 struct iovec __user *uiov;
4655 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4656 &iomsg->uaddr, &uiov, &iov_len);
4660 if (req->flags & REQ_F_BUFFER_SELECT) {
4663 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4665 sr->len = iomsg->iov[0].iov_len;
4666 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4670 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4671 &iomsg->iov, &iomsg->msg.msg_iter,
4680 #ifdef CONFIG_COMPAT
4681 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4682 struct io_async_msghdr *iomsg)
4684 struct compat_msghdr __user *msg_compat;
4685 struct io_sr_msg *sr = &req->sr_msg;
4686 struct compat_iovec __user *uiov;
4691 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4692 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4697 uiov = compat_ptr(ptr);
4698 if (req->flags & REQ_F_BUFFER_SELECT) {
4699 compat_ssize_t clen;
4703 if (!access_ok(uiov, sizeof(*uiov)))
4705 if (__get_user(clen, &uiov->iov_len))
4710 iomsg->iov[0].iov_len = clen;
4713 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4714 UIO_FASTIOV, &iomsg->iov,
4715 &iomsg->msg.msg_iter, true);
4724 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4725 struct io_async_msghdr *iomsg)
4727 iomsg->msg.msg_name = &iomsg->addr;
4728 iomsg->iov = iomsg->fast_iov;
4730 #ifdef CONFIG_COMPAT
4731 if (req->ctx->compat)
4732 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4735 return __io_recvmsg_copy_hdr(req, iomsg);
4738 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4741 struct io_sr_msg *sr = &req->sr_msg;
4742 struct io_buffer *kbuf;
4744 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4749 req->flags |= REQ_F_BUFFER_SELECTED;
4753 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4755 return io_put_kbuf(req, req->sr_msg.kbuf);
4758 static int io_recvmsg_prep(struct io_kiocb *req,
4759 const struct io_uring_sqe *sqe)
4761 struct io_async_msghdr *async_msg = req->async_data;
4762 struct io_sr_msg *sr = &req->sr_msg;
4765 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4768 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4769 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4770 sr->len = READ_ONCE(sqe->len);
4771 sr->bgid = READ_ONCE(sqe->buf_group);
4773 #ifdef CONFIG_COMPAT
4774 if (req->ctx->compat)
4775 sr->msg_flags |= MSG_CMSG_COMPAT;
4778 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4780 ret = io_recvmsg_copy_hdr(req, async_msg);
4782 req->flags |= REQ_F_NEED_CLEANUP;
4786 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4787 struct io_comp_state *cs)
4789 struct io_async_msghdr iomsg, *kmsg;
4790 struct socket *sock;
4791 struct io_buffer *kbuf;
4793 int ret, cflags = 0;
4795 sock = sock_from_file(req->file);
4796 if (unlikely(!sock))
4799 if (req->async_data) {
4800 kmsg = req->async_data;
4801 kmsg->msg.msg_name = &kmsg->addr;
4802 /* if iov is set, it's allocated already */
4804 kmsg->iov = kmsg->fast_iov;
4805 kmsg->msg.msg_iter.iov = kmsg->iov;
4807 ret = io_recvmsg_copy_hdr(req, &iomsg);
4813 if (req->flags & REQ_F_BUFFER_SELECT) {
4814 kbuf = io_recv_buffer_select(req, !force_nonblock);
4816 return PTR_ERR(kbuf);
4817 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4818 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4819 1, req->sr_msg.len);
4822 flags = req->sr_msg.msg_flags;
4823 if (flags & MSG_DONTWAIT)
4824 req->flags |= REQ_F_NOWAIT;
4825 else if (force_nonblock)
4826 flags |= MSG_DONTWAIT;
4828 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4829 kmsg->uaddr, flags);
4830 if (force_nonblock && ret == -EAGAIN)
4831 return io_setup_async_msg(req, kmsg);
4832 if (ret == -ERESTARTSYS)
4835 if (req->flags & REQ_F_BUFFER_SELECTED)
4836 cflags = io_put_recv_kbuf(req);
4837 if (kmsg->iov != kmsg->fast_iov)
4839 req->flags &= ~REQ_F_NEED_CLEANUP;
4841 req_set_fail_links(req);
4842 __io_req_complete(req, ret, cflags, cs);
4846 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4847 struct io_comp_state *cs)
4849 struct io_buffer *kbuf;
4850 struct io_sr_msg *sr = &req->sr_msg;
4852 void __user *buf = sr->buf;
4853 struct socket *sock;
4856 int ret, cflags = 0;
4858 sock = sock_from_file(req->file);
4859 if (unlikely(!sock))
4862 if (req->flags & REQ_F_BUFFER_SELECT) {
4863 kbuf = io_recv_buffer_select(req, !force_nonblock);
4865 return PTR_ERR(kbuf);
4866 buf = u64_to_user_ptr(kbuf->addr);
4869 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4873 msg.msg_name = NULL;
4874 msg.msg_control = NULL;
4875 msg.msg_controllen = 0;
4876 msg.msg_namelen = 0;
4877 msg.msg_iocb = NULL;
4880 flags = req->sr_msg.msg_flags;
4881 if (flags & MSG_DONTWAIT)
4882 req->flags |= REQ_F_NOWAIT;
4883 else if (force_nonblock)
4884 flags |= MSG_DONTWAIT;
4886 ret = sock_recvmsg(sock, &msg, flags);
4887 if (force_nonblock && ret == -EAGAIN)
4889 if (ret == -ERESTARTSYS)
4892 if (req->flags & REQ_F_BUFFER_SELECTED)
4893 cflags = io_put_recv_kbuf(req);
4895 req_set_fail_links(req);
4896 __io_req_complete(req, ret, cflags, cs);
4900 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4902 struct io_accept *accept = &req->accept;
4904 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4906 if (sqe->ioprio || sqe->len || sqe->buf_index)
4909 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4910 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4911 accept->flags = READ_ONCE(sqe->accept_flags);
4912 accept->nofile = rlimit(RLIMIT_NOFILE);
4916 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4917 struct io_comp_state *cs)
4919 struct io_accept *accept = &req->accept;
4920 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4923 if (req->file->f_flags & O_NONBLOCK)
4924 req->flags |= REQ_F_NOWAIT;
4926 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4927 accept->addr_len, accept->flags,
4929 if (ret == -EAGAIN && force_nonblock)
4932 if (ret == -ERESTARTSYS)
4934 req_set_fail_links(req);
4936 __io_req_complete(req, ret, 0, cs);
4940 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4942 struct io_connect *conn = &req->connect;
4943 struct io_async_connect *io = req->async_data;
4945 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4947 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4950 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4951 conn->addr_len = READ_ONCE(sqe->addr2);
4956 return move_addr_to_kernel(conn->addr, conn->addr_len,
4960 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4961 struct io_comp_state *cs)
4963 struct io_async_connect __io, *io;
4964 unsigned file_flags;
4967 if (req->async_data) {
4968 io = req->async_data;
4970 ret = move_addr_to_kernel(req->connect.addr,
4971 req->connect.addr_len,
4978 file_flags = force_nonblock ? O_NONBLOCK : 0;
4980 ret = __sys_connect_file(req->file, &io->address,
4981 req->connect.addr_len, file_flags);
4982 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4983 if (req->async_data)
4985 if (io_alloc_async_data(req)) {
4989 io = req->async_data;
4990 memcpy(req->async_data, &__io, sizeof(__io));
4993 if (ret == -ERESTARTSYS)
4997 req_set_fail_links(req);
4998 __io_req_complete(req, ret, 0, cs);
5001 #else /* !CONFIG_NET */
5002 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5007 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5008 struct io_comp_state *cs)
5013 static int io_send(struct io_kiocb *req, bool force_nonblock,
5014 struct io_comp_state *cs)
5019 static int io_recvmsg_prep(struct io_kiocb *req,
5020 const struct io_uring_sqe *sqe)
5025 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5026 struct io_comp_state *cs)
5031 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5032 struct io_comp_state *cs)
5037 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5042 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5043 struct io_comp_state *cs)
5048 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5053 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5054 struct io_comp_state *cs)
5058 #endif /* CONFIG_NET */
5060 struct io_poll_table {
5061 struct poll_table_struct pt;
5062 struct io_kiocb *req;
5066 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5067 __poll_t mask, task_work_func_t func)
5071 /* for instances that support it check for an event match first: */
5072 if (mask && !(mask & poll->events))
5075 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5077 list_del_init(&poll->wait.entry);
5080 init_task_work(&req->task_work, func);
5081 percpu_ref_get(&req->ctx->refs);
5084 * If this fails, then the task is exiting. When a task exits, the
5085 * work gets canceled, so just cancel this request as well instead
5086 * of executing it. We can't safely execute it anyway, as we may not
5087 * have the needed state needed for it anyway.
5089 ret = io_req_task_work_add(req);
5090 if (unlikely(ret)) {
5091 struct task_struct *tsk;
5093 WRITE_ONCE(poll->canceled, true);
5094 tsk = io_wq_get_task(req->ctx->io_wq);
5095 task_work_add(tsk, &req->task_work, TWA_NONE);
5096 wake_up_process(tsk);
5101 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5102 __acquires(&req->ctx->completion_lock)
5104 struct io_ring_ctx *ctx = req->ctx;
5106 if (!req->result && !READ_ONCE(poll->canceled)) {
5107 struct poll_table_struct pt = { ._key = poll->events };
5109 req->result = vfs_poll(req->file, &pt) & poll->events;
5112 spin_lock_irq(&ctx->completion_lock);
5113 if (!req->result && !READ_ONCE(poll->canceled)) {
5114 add_wait_queue(poll->head, &poll->wait);
5121 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5123 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5124 if (req->opcode == IORING_OP_POLL_ADD)
5125 return req->async_data;
5126 return req->apoll->double_poll;
5129 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5131 if (req->opcode == IORING_OP_POLL_ADD)
5133 return &req->apoll->poll;
5136 static void io_poll_remove_double(struct io_kiocb *req)
5138 struct io_poll_iocb *poll = io_poll_get_double(req);
5140 lockdep_assert_held(&req->ctx->completion_lock);
5142 if (poll && poll->head) {
5143 struct wait_queue_head *head = poll->head;
5145 spin_lock(&head->lock);
5146 list_del_init(&poll->wait.entry);
5147 if (poll->wait.private)
5148 refcount_dec(&req->refs);
5150 spin_unlock(&head->lock);
5154 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5156 struct io_ring_ctx *ctx = req->ctx;
5158 io_poll_remove_double(req);
5159 req->poll.done = true;
5160 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5161 io_commit_cqring(ctx);
5164 static void io_poll_task_func(struct callback_head *cb)
5166 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5167 struct io_ring_ctx *ctx = req->ctx;
5168 struct io_kiocb *nxt;
5170 if (io_poll_rewait(req, &req->poll)) {
5171 spin_unlock_irq(&ctx->completion_lock);
5173 hash_del(&req->hash_node);
5174 io_poll_complete(req, req->result, 0);
5175 spin_unlock_irq(&ctx->completion_lock);
5177 nxt = io_put_req_find_next(req);
5178 io_cqring_ev_posted(ctx);
5180 __io_req_task_submit(nxt);
5183 percpu_ref_put(&ctx->refs);
5186 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5187 int sync, void *key)
5189 struct io_kiocb *req = wait->private;
5190 struct io_poll_iocb *poll = io_poll_get_single(req);
5191 __poll_t mask = key_to_poll(key);
5193 /* for instances that support it check for an event match first: */
5194 if (mask && !(mask & poll->events))
5197 list_del_init(&wait->entry);
5199 if (poll && poll->head) {
5202 spin_lock(&poll->head->lock);
5203 done = list_empty(&poll->wait.entry);
5205 list_del_init(&poll->wait.entry);
5206 /* make sure double remove sees this as being gone */
5207 wait->private = NULL;
5208 spin_unlock(&poll->head->lock);
5210 /* use wait func handler, so it matches the rq type */
5211 poll->wait.func(&poll->wait, mode, sync, key);
5214 refcount_dec(&req->refs);
5218 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5219 wait_queue_func_t wake_func)
5223 poll->canceled = false;
5224 poll->events = events;
5225 INIT_LIST_HEAD(&poll->wait.entry);
5226 init_waitqueue_func_entry(&poll->wait, wake_func);
5229 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5230 struct wait_queue_head *head,
5231 struct io_poll_iocb **poll_ptr)
5233 struct io_kiocb *req = pt->req;
5236 * If poll->head is already set, it's because the file being polled
5237 * uses multiple waitqueues for poll handling (eg one for read, one
5238 * for write). Setup a separate io_poll_iocb if this happens.
5240 if (unlikely(poll->head)) {
5241 struct io_poll_iocb *poll_one = poll;
5243 /* already have a 2nd entry, fail a third attempt */
5245 pt->error = -EINVAL;
5248 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5250 pt->error = -ENOMEM;
5253 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5254 refcount_inc(&req->refs);
5255 poll->wait.private = req;
5262 if (poll->events & EPOLLEXCLUSIVE)
5263 add_wait_queue_exclusive(head, &poll->wait);
5265 add_wait_queue(head, &poll->wait);
5268 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5269 struct poll_table_struct *p)
5271 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5272 struct async_poll *apoll = pt->req->apoll;
5274 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5277 static void io_async_task_func(struct callback_head *cb)
5279 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5280 struct async_poll *apoll = req->apoll;
5281 struct io_ring_ctx *ctx = req->ctx;
5283 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5285 if (io_poll_rewait(req, &apoll->poll)) {
5286 spin_unlock_irq(&ctx->completion_lock);
5287 percpu_ref_put(&ctx->refs);
5291 /* If req is still hashed, it cannot have been canceled. Don't check. */
5292 if (hash_hashed(&req->hash_node))
5293 hash_del(&req->hash_node);
5295 io_poll_remove_double(req);
5296 spin_unlock_irq(&ctx->completion_lock);
5298 if (!READ_ONCE(apoll->poll.canceled))
5299 __io_req_task_submit(req);
5301 __io_req_task_cancel(req, -ECANCELED);
5303 percpu_ref_put(&ctx->refs);
5304 kfree(apoll->double_poll);
5308 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5311 struct io_kiocb *req = wait->private;
5312 struct io_poll_iocb *poll = &req->apoll->poll;
5314 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5317 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5320 static void io_poll_req_insert(struct io_kiocb *req)
5322 struct io_ring_ctx *ctx = req->ctx;
5323 struct hlist_head *list;
5325 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5326 hlist_add_head(&req->hash_node, list);
5329 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5330 struct io_poll_iocb *poll,
5331 struct io_poll_table *ipt, __poll_t mask,
5332 wait_queue_func_t wake_func)
5333 __acquires(&ctx->completion_lock)
5335 struct io_ring_ctx *ctx = req->ctx;
5336 bool cancel = false;
5338 INIT_HLIST_NODE(&req->hash_node);
5339 io_init_poll_iocb(poll, mask, wake_func);
5340 poll->file = req->file;
5341 poll->wait.private = req;
5343 ipt->pt._key = mask;
5345 ipt->error = -EINVAL;
5347 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5349 spin_lock_irq(&ctx->completion_lock);
5350 if (likely(poll->head)) {
5351 spin_lock(&poll->head->lock);
5352 if (unlikely(list_empty(&poll->wait.entry))) {
5358 if (mask || ipt->error)
5359 list_del_init(&poll->wait.entry);
5361 WRITE_ONCE(poll->canceled, true);
5362 else if (!poll->done) /* actually waiting for an event */
5363 io_poll_req_insert(req);
5364 spin_unlock(&poll->head->lock);
5370 static bool io_arm_poll_handler(struct io_kiocb *req)
5372 const struct io_op_def *def = &io_op_defs[req->opcode];
5373 struct io_ring_ctx *ctx = req->ctx;
5374 struct async_poll *apoll;
5375 struct io_poll_table ipt;
5379 if (!req->file || !file_can_poll(req->file))
5381 if (req->flags & REQ_F_POLLED)
5385 else if (def->pollout)
5389 /* if we can't nonblock try, then no point in arming a poll handler */
5390 if (!io_file_supports_async(req->file, rw))
5393 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5394 if (unlikely(!apoll))
5396 apoll->double_poll = NULL;
5398 req->flags |= REQ_F_POLLED;
5403 mask |= POLLIN | POLLRDNORM;
5405 mask |= POLLOUT | POLLWRNORM;
5407 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5408 if ((req->opcode == IORING_OP_RECVMSG) &&
5409 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5412 mask |= POLLERR | POLLPRI;
5414 ipt.pt._qproc = io_async_queue_proc;
5416 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5418 if (ret || ipt.error) {
5419 io_poll_remove_double(req);
5420 spin_unlock_irq(&ctx->completion_lock);
5421 kfree(apoll->double_poll);
5425 spin_unlock_irq(&ctx->completion_lock);
5426 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5427 apoll->poll.events);
5431 static bool __io_poll_remove_one(struct io_kiocb *req,
5432 struct io_poll_iocb *poll)
5434 bool do_complete = false;
5436 spin_lock(&poll->head->lock);
5437 WRITE_ONCE(poll->canceled, true);
5438 if (!list_empty(&poll->wait.entry)) {
5439 list_del_init(&poll->wait.entry);
5442 spin_unlock(&poll->head->lock);
5443 hash_del(&req->hash_node);
5447 static bool io_poll_remove_one(struct io_kiocb *req)
5451 io_poll_remove_double(req);
5453 if (req->opcode == IORING_OP_POLL_ADD) {
5454 do_complete = __io_poll_remove_one(req, &req->poll);
5456 struct async_poll *apoll = req->apoll;
5458 /* non-poll requests have submit ref still */
5459 do_complete = __io_poll_remove_one(req, &apoll->poll);
5462 kfree(apoll->double_poll);
5468 io_cqring_fill_event(req, -ECANCELED);
5469 io_commit_cqring(req->ctx);
5470 req_set_fail_links(req);
5471 io_put_req_deferred(req, 1);
5478 * Returns true if we found and killed one or more poll requests
5480 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5481 struct files_struct *files)
5483 struct hlist_node *tmp;
5484 struct io_kiocb *req;
5487 spin_lock_irq(&ctx->completion_lock);
5488 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5489 struct hlist_head *list;
5491 list = &ctx->cancel_hash[i];
5492 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5493 if (io_match_task(req, tsk, files))
5494 posted += io_poll_remove_one(req);
5497 spin_unlock_irq(&ctx->completion_lock);
5500 io_cqring_ev_posted(ctx);
5505 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5507 struct hlist_head *list;
5508 struct io_kiocb *req;
5510 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5511 hlist_for_each_entry(req, list, hash_node) {
5512 if (sqe_addr != req->user_data)
5514 if (io_poll_remove_one(req))
5522 static int io_poll_remove_prep(struct io_kiocb *req,
5523 const struct io_uring_sqe *sqe)
5525 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5527 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5531 req->poll_remove.addr = READ_ONCE(sqe->addr);
5536 * Find a running poll command that matches one specified in sqe->addr,
5537 * and remove it if found.
5539 static int io_poll_remove(struct io_kiocb *req)
5541 struct io_ring_ctx *ctx = req->ctx;
5544 spin_lock_irq(&ctx->completion_lock);
5545 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5546 spin_unlock_irq(&ctx->completion_lock);
5549 req_set_fail_links(req);
5550 io_req_complete(req, ret);
5554 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5557 struct io_kiocb *req = wait->private;
5558 struct io_poll_iocb *poll = &req->poll;
5560 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5563 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5564 struct poll_table_struct *p)
5566 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5568 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5571 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5573 struct io_poll_iocb *poll = &req->poll;
5576 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5578 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5581 events = READ_ONCE(sqe->poll32_events);
5583 events = swahw32(events);
5585 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5586 (events & EPOLLEXCLUSIVE);
5590 static int io_poll_add(struct io_kiocb *req)
5592 struct io_poll_iocb *poll = &req->poll;
5593 struct io_ring_ctx *ctx = req->ctx;
5594 struct io_poll_table ipt;
5597 ipt.pt._qproc = io_poll_queue_proc;
5599 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5602 if (mask) { /* no async, we'd stolen it */
5604 io_poll_complete(req, mask, 0);
5606 spin_unlock_irq(&ctx->completion_lock);
5609 io_cqring_ev_posted(ctx);
5615 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5617 struct io_timeout_data *data = container_of(timer,
5618 struct io_timeout_data, timer);
5619 struct io_kiocb *req = data->req;
5620 struct io_ring_ctx *ctx = req->ctx;
5621 unsigned long flags;
5623 spin_lock_irqsave(&ctx->completion_lock, flags);
5624 list_del_init(&req->timeout.list);
5625 atomic_set(&req->ctx->cq_timeouts,
5626 atomic_read(&req->ctx->cq_timeouts) + 1);
5628 io_cqring_fill_event(req, -ETIME);
5629 io_commit_cqring(ctx);
5630 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5632 io_cqring_ev_posted(ctx);
5633 req_set_fail_links(req);
5635 return HRTIMER_NORESTART;
5638 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5641 struct io_timeout_data *io;
5642 struct io_kiocb *req;
5645 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5646 if (user_data == req->user_data) {
5653 return ERR_PTR(ret);
5655 io = req->async_data;
5656 ret = hrtimer_try_to_cancel(&io->timer);
5658 return ERR_PTR(-EALREADY);
5659 list_del_init(&req->timeout.list);
5663 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5665 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5668 return PTR_ERR(req);
5670 req_set_fail_links(req);
5671 io_cqring_fill_event(req, -ECANCELED);
5672 io_put_req_deferred(req, 1);
5676 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5677 struct timespec64 *ts, enum hrtimer_mode mode)
5679 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5680 struct io_timeout_data *data;
5683 return PTR_ERR(req);
5685 req->timeout.off = 0; /* noseq */
5686 data = req->async_data;
5687 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5688 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5689 data->timer.function = io_timeout_fn;
5690 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5694 static int io_timeout_remove_prep(struct io_kiocb *req,
5695 const struct io_uring_sqe *sqe)
5697 struct io_timeout_rem *tr = &req->timeout_rem;
5699 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5701 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5703 if (sqe->ioprio || sqe->buf_index || sqe->len)
5706 tr->addr = READ_ONCE(sqe->addr);
5707 tr->flags = READ_ONCE(sqe->timeout_flags);
5708 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5709 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5711 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5713 } else if (tr->flags) {
5714 /* timeout removal doesn't support flags */
5722 * Remove or update an existing timeout command
5724 static int io_timeout_remove(struct io_kiocb *req)
5726 struct io_timeout_rem *tr = &req->timeout_rem;
5727 struct io_ring_ctx *ctx = req->ctx;
5730 spin_lock_irq(&ctx->completion_lock);
5731 if (req->timeout_rem.flags & IORING_TIMEOUT_UPDATE) {
5732 enum hrtimer_mode mode = (tr->flags & IORING_TIMEOUT_ABS)
5733 ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
5735 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
5737 ret = io_timeout_cancel(ctx, tr->addr);
5740 io_cqring_fill_event(req, ret);
5741 io_commit_cqring(ctx);
5742 spin_unlock_irq(&ctx->completion_lock);
5743 io_cqring_ev_posted(ctx);
5745 req_set_fail_links(req);
5750 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5751 bool is_timeout_link)
5753 struct io_timeout_data *data;
5755 u32 off = READ_ONCE(sqe->off);
5757 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5759 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5761 if (off && is_timeout_link)
5763 flags = READ_ONCE(sqe->timeout_flags);
5764 if (flags & ~IORING_TIMEOUT_ABS)
5767 req->timeout.off = off;
5769 if (!req->async_data && io_alloc_async_data(req))
5772 data = req->async_data;
5775 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5778 if (flags & IORING_TIMEOUT_ABS)
5779 data->mode = HRTIMER_MODE_ABS;
5781 data->mode = HRTIMER_MODE_REL;
5783 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5787 static int io_timeout(struct io_kiocb *req)
5789 struct io_ring_ctx *ctx = req->ctx;
5790 struct io_timeout_data *data = req->async_data;
5791 struct list_head *entry;
5792 u32 tail, off = req->timeout.off;
5794 spin_lock_irq(&ctx->completion_lock);
5797 * sqe->off holds how many events that need to occur for this
5798 * timeout event to be satisfied. If it isn't set, then this is
5799 * a pure timeout request, sequence isn't used.
5801 if (io_is_timeout_noseq(req)) {
5802 entry = ctx->timeout_list.prev;
5806 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5807 req->timeout.target_seq = tail + off;
5810 * Insertion sort, ensuring the first entry in the list is always
5811 * the one we need first.
5813 list_for_each_prev(entry, &ctx->timeout_list) {
5814 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5817 if (io_is_timeout_noseq(nxt))
5819 /* nxt.seq is behind @tail, otherwise would've been completed */
5820 if (off >= nxt->timeout.target_seq - tail)
5824 list_add(&req->timeout.list, entry);
5825 data->timer.function = io_timeout_fn;
5826 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5827 spin_unlock_irq(&ctx->completion_lock);
5831 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5833 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5835 return req->user_data == (unsigned long) data;
5838 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5840 enum io_wq_cancel cancel_ret;
5843 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5844 switch (cancel_ret) {
5845 case IO_WQ_CANCEL_OK:
5848 case IO_WQ_CANCEL_RUNNING:
5851 case IO_WQ_CANCEL_NOTFOUND:
5859 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5860 struct io_kiocb *req, __u64 sqe_addr,
5863 unsigned long flags;
5866 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5867 if (ret != -ENOENT) {
5868 spin_lock_irqsave(&ctx->completion_lock, flags);
5872 spin_lock_irqsave(&ctx->completion_lock, flags);
5873 ret = io_timeout_cancel(ctx, sqe_addr);
5876 ret = io_poll_cancel(ctx, sqe_addr);
5880 io_cqring_fill_event(req, ret);
5881 io_commit_cqring(ctx);
5882 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5883 io_cqring_ev_posted(ctx);
5886 req_set_fail_links(req);
5890 static int io_async_cancel_prep(struct io_kiocb *req,
5891 const struct io_uring_sqe *sqe)
5893 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5895 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5897 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5900 req->cancel.addr = READ_ONCE(sqe->addr);
5904 static int io_async_cancel(struct io_kiocb *req)
5906 struct io_ring_ctx *ctx = req->ctx;
5908 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5912 static int io_files_update_prep(struct io_kiocb *req,
5913 const struct io_uring_sqe *sqe)
5915 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5917 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5919 if (sqe->ioprio || sqe->rw_flags)
5922 req->files_update.offset = READ_ONCE(sqe->off);
5923 req->files_update.nr_args = READ_ONCE(sqe->len);
5924 if (!req->files_update.nr_args)
5926 req->files_update.arg = READ_ONCE(sqe->addr);
5930 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5931 struct io_comp_state *cs)
5933 struct io_ring_ctx *ctx = req->ctx;
5934 struct io_uring_files_update up;
5940 up.offset = req->files_update.offset;
5941 up.fds = req->files_update.arg;
5943 mutex_lock(&ctx->uring_lock);
5944 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
5945 mutex_unlock(&ctx->uring_lock);
5948 req_set_fail_links(req);
5949 __io_req_complete(req, ret, 0, cs);
5953 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5955 switch (req->opcode) {
5958 case IORING_OP_READV:
5959 case IORING_OP_READ_FIXED:
5960 case IORING_OP_READ:
5961 return io_read_prep(req, sqe);
5962 case IORING_OP_WRITEV:
5963 case IORING_OP_WRITE_FIXED:
5964 case IORING_OP_WRITE:
5965 return io_write_prep(req, sqe);
5966 case IORING_OP_POLL_ADD:
5967 return io_poll_add_prep(req, sqe);
5968 case IORING_OP_POLL_REMOVE:
5969 return io_poll_remove_prep(req, sqe);
5970 case IORING_OP_FSYNC:
5971 return io_prep_fsync(req, sqe);
5972 case IORING_OP_SYNC_FILE_RANGE:
5973 return io_prep_sfr(req, sqe);
5974 case IORING_OP_SENDMSG:
5975 case IORING_OP_SEND:
5976 return io_sendmsg_prep(req, sqe);
5977 case IORING_OP_RECVMSG:
5978 case IORING_OP_RECV:
5979 return io_recvmsg_prep(req, sqe);
5980 case IORING_OP_CONNECT:
5981 return io_connect_prep(req, sqe);
5982 case IORING_OP_TIMEOUT:
5983 return io_timeout_prep(req, sqe, false);
5984 case IORING_OP_TIMEOUT_REMOVE:
5985 return io_timeout_remove_prep(req, sqe);
5986 case IORING_OP_ASYNC_CANCEL:
5987 return io_async_cancel_prep(req, sqe);
5988 case IORING_OP_LINK_TIMEOUT:
5989 return io_timeout_prep(req, sqe, true);
5990 case IORING_OP_ACCEPT:
5991 return io_accept_prep(req, sqe);
5992 case IORING_OP_FALLOCATE:
5993 return io_fallocate_prep(req, sqe);
5994 case IORING_OP_OPENAT:
5995 return io_openat_prep(req, sqe);
5996 case IORING_OP_CLOSE:
5997 return io_close_prep(req, sqe);
5998 case IORING_OP_FILES_UPDATE:
5999 return io_files_update_prep(req, sqe);
6000 case IORING_OP_STATX:
6001 return io_statx_prep(req, sqe);
6002 case IORING_OP_FADVISE:
6003 return io_fadvise_prep(req, sqe);
6004 case IORING_OP_MADVISE:
6005 return io_madvise_prep(req, sqe);
6006 case IORING_OP_OPENAT2:
6007 return io_openat2_prep(req, sqe);
6008 case IORING_OP_EPOLL_CTL:
6009 return io_epoll_ctl_prep(req, sqe);
6010 case IORING_OP_SPLICE:
6011 return io_splice_prep(req, sqe);
6012 case IORING_OP_PROVIDE_BUFFERS:
6013 return io_provide_buffers_prep(req, sqe);
6014 case IORING_OP_REMOVE_BUFFERS:
6015 return io_remove_buffers_prep(req, sqe);
6017 return io_tee_prep(req, sqe);
6018 case IORING_OP_SHUTDOWN:
6019 return io_shutdown_prep(req, sqe);
6020 case IORING_OP_RENAMEAT:
6021 return io_renameat_prep(req, sqe);
6022 case IORING_OP_UNLINKAT:
6023 return io_unlinkat_prep(req, sqe);
6026 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6031 static int io_req_defer_prep(struct io_kiocb *req,
6032 const struct io_uring_sqe *sqe)
6036 if (io_alloc_async_data(req))
6038 return io_req_prep(req, sqe);
6041 static u32 io_get_sequence(struct io_kiocb *req)
6043 struct io_kiocb *pos;
6044 struct io_ring_ctx *ctx = req->ctx;
6045 u32 total_submitted, nr_reqs = 0;
6047 io_for_each_link(pos, req)
6050 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6051 return total_submitted - nr_reqs;
6054 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6056 struct io_ring_ctx *ctx = req->ctx;
6057 struct io_defer_entry *de;
6061 /* Still need defer if there is pending req in defer list. */
6062 if (likely(list_empty_careful(&ctx->defer_list) &&
6063 !(req->flags & REQ_F_IO_DRAIN)))
6066 seq = io_get_sequence(req);
6067 /* Still a chance to pass the sequence check */
6068 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6071 if (!req->async_data) {
6072 ret = io_req_defer_prep(req, sqe);
6076 io_prep_async_link(req);
6077 de = kmalloc(sizeof(*de), GFP_KERNEL);
6081 spin_lock_irq(&ctx->completion_lock);
6082 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6083 spin_unlock_irq(&ctx->completion_lock);
6085 io_queue_async_work(req);
6086 return -EIOCBQUEUED;
6089 trace_io_uring_defer(ctx, req, req->user_data);
6092 list_add_tail(&de->list, &ctx->defer_list);
6093 spin_unlock_irq(&ctx->completion_lock);
6094 return -EIOCBQUEUED;
6097 static void io_req_drop_files(struct io_kiocb *req)
6099 struct io_ring_ctx *ctx = req->ctx;
6100 struct io_uring_task *tctx = req->task->io_uring;
6101 unsigned long flags;
6103 put_files_struct(req->work.identity->files);
6104 put_nsproxy(req->work.identity->nsproxy);
6105 spin_lock_irqsave(&ctx->inflight_lock, flags);
6106 list_del(&req->inflight_entry);
6107 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6108 req->flags &= ~REQ_F_INFLIGHT;
6109 req->work.flags &= ~IO_WQ_WORK_FILES;
6110 if (atomic_read(&tctx->in_idle))
6111 wake_up(&tctx->wait);
6114 static void __io_clean_op(struct io_kiocb *req)
6116 if (req->flags & REQ_F_BUFFER_SELECTED) {
6117 switch (req->opcode) {
6118 case IORING_OP_READV:
6119 case IORING_OP_READ_FIXED:
6120 case IORING_OP_READ:
6121 kfree((void *)(unsigned long)req->rw.addr);
6123 case IORING_OP_RECVMSG:
6124 case IORING_OP_RECV:
6125 kfree(req->sr_msg.kbuf);
6128 req->flags &= ~REQ_F_BUFFER_SELECTED;
6131 if (req->flags & REQ_F_NEED_CLEANUP) {
6132 switch (req->opcode) {
6133 case IORING_OP_READV:
6134 case IORING_OP_READ_FIXED:
6135 case IORING_OP_READ:
6136 case IORING_OP_WRITEV:
6137 case IORING_OP_WRITE_FIXED:
6138 case IORING_OP_WRITE: {
6139 struct io_async_rw *io = req->async_data;
6141 kfree(io->free_iovec);
6144 case IORING_OP_RECVMSG:
6145 case IORING_OP_SENDMSG: {
6146 struct io_async_msghdr *io = req->async_data;
6147 if (io->iov != io->fast_iov)
6151 case IORING_OP_SPLICE:
6153 io_put_file(req, req->splice.file_in,
6154 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6156 case IORING_OP_OPENAT:
6157 case IORING_OP_OPENAT2:
6158 if (req->open.filename)
6159 putname(req->open.filename);
6161 case IORING_OP_RENAMEAT:
6162 putname(req->rename.oldpath);
6163 putname(req->rename.newpath);
6165 case IORING_OP_UNLINKAT:
6166 putname(req->unlink.filename);
6169 req->flags &= ~REQ_F_NEED_CLEANUP;
6172 if (req->flags & REQ_F_INFLIGHT)
6173 io_req_drop_files(req);
6176 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6177 struct io_comp_state *cs)
6179 struct io_ring_ctx *ctx = req->ctx;
6182 switch (req->opcode) {
6184 ret = io_nop(req, cs);
6186 case IORING_OP_READV:
6187 case IORING_OP_READ_FIXED:
6188 case IORING_OP_READ:
6189 ret = io_read(req, force_nonblock, cs);
6191 case IORING_OP_WRITEV:
6192 case IORING_OP_WRITE_FIXED:
6193 case IORING_OP_WRITE:
6194 ret = io_write(req, force_nonblock, cs);
6196 case IORING_OP_FSYNC:
6197 ret = io_fsync(req, force_nonblock);
6199 case IORING_OP_POLL_ADD:
6200 ret = io_poll_add(req);
6202 case IORING_OP_POLL_REMOVE:
6203 ret = io_poll_remove(req);
6205 case IORING_OP_SYNC_FILE_RANGE:
6206 ret = io_sync_file_range(req, force_nonblock);
6208 case IORING_OP_SENDMSG:
6209 ret = io_sendmsg(req, force_nonblock, cs);
6211 case IORING_OP_SEND:
6212 ret = io_send(req, force_nonblock, cs);
6214 case IORING_OP_RECVMSG:
6215 ret = io_recvmsg(req, force_nonblock, cs);
6217 case IORING_OP_RECV:
6218 ret = io_recv(req, force_nonblock, cs);
6220 case IORING_OP_TIMEOUT:
6221 ret = io_timeout(req);
6223 case IORING_OP_TIMEOUT_REMOVE:
6224 ret = io_timeout_remove(req);
6226 case IORING_OP_ACCEPT:
6227 ret = io_accept(req, force_nonblock, cs);
6229 case IORING_OP_CONNECT:
6230 ret = io_connect(req, force_nonblock, cs);
6232 case IORING_OP_ASYNC_CANCEL:
6233 ret = io_async_cancel(req);
6235 case IORING_OP_FALLOCATE:
6236 ret = io_fallocate(req, force_nonblock);
6238 case IORING_OP_OPENAT:
6239 ret = io_openat(req, force_nonblock);
6241 case IORING_OP_CLOSE:
6242 ret = io_close(req, force_nonblock, cs);
6244 case IORING_OP_FILES_UPDATE:
6245 ret = io_files_update(req, force_nonblock, cs);
6247 case IORING_OP_STATX:
6248 ret = io_statx(req, force_nonblock);
6250 case IORING_OP_FADVISE:
6251 ret = io_fadvise(req, force_nonblock);
6253 case IORING_OP_MADVISE:
6254 ret = io_madvise(req, force_nonblock);
6256 case IORING_OP_OPENAT2:
6257 ret = io_openat2(req, force_nonblock);
6259 case IORING_OP_EPOLL_CTL:
6260 ret = io_epoll_ctl(req, force_nonblock, cs);
6262 case IORING_OP_SPLICE:
6263 ret = io_splice(req, force_nonblock);
6265 case IORING_OP_PROVIDE_BUFFERS:
6266 ret = io_provide_buffers(req, force_nonblock, cs);
6268 case IORING_OP_REMOVE_BUFFERS:
6269 ret = io_remove_buffers(req, force_nonblock, cs);
6272 ret = io_tee(req, force_nonblock);
6274 case IORING_OP_SHUTDOWN:
6275 ret = io_shutdown(req, force_nonblock);
6277 case IORING_OP_RENAMEAT:
6278 ret = io_renameat(req, force_nonblock);
6280 case IORING_OP_UNLINKAT:
6281 ret = io_unlinkat(req, force_nonblock);
6291 /* If the op doesn't have a file, we're not polling for it */
6292 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6293 const bool in_async = io_wq_current_is_worker();
6295 /* workqueue context doesn't hold uring_lock, grab it now */
6297 mutex_lock(&ctx->uring_lock);
6299 io_iopoll_req_issued(req, in_async);
6302 mutex_unlock(&ctx->uring_lock);
6308 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6310 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6311 struct io_kiocb *timeout;
6314 timeout = io_prep_linked_timeout(req);
6316 io_queue_linked_timeout(timeout);
6318 /* if NO_CANCEL is set, we must still run the work */
6319 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6320 IO_WQ_WORK_CANCEL) {
6326 ret = io_issue_sqe(req, false, NULL);
6328 * We can get EAGAIN for polled IO even though we're
6329 * forcing a sync submission from here, since we can't
6330 * wait for request slots on the block side.
6339 struct io_ring_ctx *lock_ctx = NULL;
6341 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6342 lock_ctx = req->ctx;
6345 * io_iopoll_complete() does not hold completion_lock to
6346 * complete polled io, so here for polled io, we can not call
6347 * io_req_complete() directly, otherwise there maybe concurrent
6348 * access to cqring, defer_list, etc, which is not safe. Given
6349 * that io_iopoll_complete() is always called under uring_lock,
6350 * so here for polled io, we also get uring_lock to complete
6354 mutex_lock(&lock_ctx->uring_lock);
6356 req_set_fail_links(req);
6357 io_req_complete(req, ret);
6360 mutex_unlock(&lock_ctx->uring_lock);
6363 return io_steal_work(req);
6366 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6369 struct fixed_file_table *table;
6371 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6372 return table->files[index & IORING_FILE_TABLE_MASK];
6375 static struct file *io_file_get(struct io_submit_state *state,
6376 struct io_kiocb *req, int fd, bool fixed)
6378 struct io_ring_ctx *ctx = req->ctx;
6382 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6384 fd = array_index_nospec(fd, ctx->nr_user_files);
6385 file = io_file_from_index(ctx, fd);
6386 io_set_resource_node(req);
6388 trace_io_uring_file_get(ctx, fd);
6389 file = __io_file_get(state, fd);
6395 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6397 struct io_timeout_data *data = container_of(timer,
6398 struct io_timeout_data, timer);
6399 struct io_kiocb *prev, *req = data->req;
6400 struct io_ring_ctx *ctx = req->ctx;
6401 unsigned long flags;
6403 spin_lock_irqsave(&ctx->completion_lock, flags);
6404 prev = req->timeout.head;
6405 req->timeout.head = NULL;
6408 * We don't expect the list to be empty, that will only happen if we
6409 * race with the completion of the linked work.
6411 if (prev && refcount_inc_not_zero(&prev->refs))
6412 io_remove_next_linked(prev);
6415 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6418 req_set_fail_links(prev);
6419 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6422 io_req_complete(req, -ETIME);
6424 return HRTIMER_NORESTART;
6427 static void __io_queue_linked_timeout(struct io_kiocb *req)
6430 * If the back reference is NULL, then our linked request finished
6431 * before we got a chance to setup the timer
6433 if (req->timeout.head) {
6434 struct io_timeout_data *data = req->async_data;
6436 data->timer.function = io_link_timeout_fn;
6437 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6442 static void io_queue_linked_timeout(struct io_kiocb *req)
6444 struct io_ring_ctx *ctx = req->ctx;
6446 spin_lock_irq(&ctx->completion_lock);
6447 __io_queue_linked_timeout(req);
6448 spin_unlock_irq(&ctx->completion_lock);
6450 /* drop submission reference */
6454 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6456 struct io_kiocb *nxt = req->link;
6458 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6459 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6462 nxt->timeout.head = req;
6463 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6464 req->flags |= REQ_F_LINK_TIMEOUT;
6468 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6470 struct io_kiocb *linked_timeout;
6471 const struct cred *old_creds = NULL;
6475 linked_timeout = io_prep_linked_timeout(req);
6477 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6478 (req->work.flags & IO_WQ_WORK_CREDS) &&
6479 req->work.identity->creds != current_cred()) {
6481 revert_creds(old_creds);
6482 if (old_creds == req->work.identity->creds)
6483 old_creds = NULL; /* restored original creds */
6485 old_creds = override_creds(req->work.identity->creds);
6488 ret = io_issue_sqe(req, true, cs);
6491 * We async punt it if the file wasn't marked NOWAIT, or if the file
6492 * doesn't support non-blocking read/write attempts
6494 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6495 if (!io_arm_poll_handler(req)) {
6497 * Queued up for async execution, worker will release
6498 * submit reference when the iocb is actually submitted.
6500 io_queue_async_work(req);
6504 io_queue_linked_timeout(linked_timeout);
6505 } else if (likely(!ret)) {
6506 /* drop submission reference */
6507 req = io_put_req_find_next(req);
6509 io_queue_linked_timeout(linked_timeout);
6512 if (!(req->flags & REQ_F_FORCE_ASYNC))
6514 io_queue_async_work(req);
6517 /* un-prep timeout, so it'll be killed as any other linked */
6518 req->flags &= ~REQ_F_LINK_TIMEOUT;
6519 req_set_fail_links(req);
6521 io_req_complete(req, ret);
6525 revert_creds(old_creds);
6528 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6529 struct io_comp_state *cs)
6533 ret = io_req_defer(req, sqe);
6535 if (ret != -EIOCBQUEUED) {
6537 req_set_fail_links(req);
6539 io_req_complete(req, ret);
6541 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6542 if (!req->async_data) {
6543 ret = io_req_defer_prep(req, sqe);
6547 io_queue_async_work(req);
6550 ret = io_req_prep(req, sqe);
6554 __io_queue_sqe(req, cs);
6558 static inline void io_queue_link_head(struct io_kiocb *req,
6559 struct io_comp_state *cs)
6561 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6563 io_req_complete(req, -ECANCELED);
6565 io_queue_sqe(req, NULL, cs);
6568 struct io_submit_link {
6569 struct io_kiocb *head;
6570 struct io_kiocb *last;
6573 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6574 struct io_submit_link *link, struct io_comp_state *cs)
6576 struct io_ring_ctx *ctx = req->ctx;
6580 * If we already have a head request, queue this one for async
6581 * submittal once the head completes. If we don't have a head but
6582 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6583 * submitted sync once the chain is complete. If none of those
6584 * conditions are true (normal request), then just queue it.
6587 struct io_kiocb *head = link->head;
6590 * Taking sequential execution of a link, draining both sides
6591 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6592 * requests in the link. So, it drains the head and the
6593 * next after the link request. The last one is done via
6594 * drain_next flag to persist the effect across calls.
6596 if (req->flags & REQ_F_IO_DRAIN) {
6597 head->flags |= REQ_F_IO_DRAIN;
6598 ctx->drain_next = 1;
6600 ret = io_req_defer_prep(req, sqe);
6601 if (unlikely(ret)) {
6602 /* fail even hard links since we don't submit */
6603 head->flags |= REQ_F_FAIL_LINK;
6606 trace_io_uring_link(ctx, req, head);
6607 link->last->link = req;
6610 /* last request of a link, enqueue the link */
6611 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6612 io_queue_link_head(head, cs);
6616 if (unlikely(ctx->drain_next)) {
6617 req->flags |= REQ_F_IO_DRAIN;
6618 ctx->drain_next = 0;
6620 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6621 ret = io_req_defer_prep(req, sqe);
6623 req->flags |= REQ_F_FAIL_LINK;
6627 io_queue_sqe(req, sqe, cs);
6635 * Batched submission is done, ensure local IO is flushed out.
6637 static void io_submit_state_end(struct io_submit_state *state)
6639 if (!list_empty(&state->comp.list))
6640 io_submit_flush_completions(&state->comp);
6641 if (state->plug_started)
6642 blk_finish_plug(&state->plug);
6643 io_state_file_put(state);
6644 if (state->free_reqs)
6645 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6649 * Start submission side cache.
6651 static void io_submit_state_start(struct io_submit_state *state,
6652 struct io_ring_ctx *ctx, unsigned int max_ios)
6654 state->plug_started = false;
6656 INIT_LIST_HEAD(&state->comp.list);
6657 state->comp.ctx = ctx;
6658 state->free_reqs = 0;
6659 state->file_refs = 0;
6660 state->ios_left = max_ios;
6663 static void io_commit_sqring(struct io_ring_ctx *ctx)
6665 struct io_rings *rings = ctx->rings;
6668 * Ensure any loads from the SQEs are done at this point,
6669 * since once we write the new head, the application could
6670 * write new data to them.
6672 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6676 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6677 * that is mapped by userspace. This means that care needs to be taken to
6678 * ensure that reads are stable, as we cannot rely on userspace always
6679 * being a good citizen. If members of the sqe are validated and then later
6680 * used, it's important that those reads are done through READ_ONCE() to
6681 * prevent a re-load down the line.
6683 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6685 u32 *sq_array = ctx->sq_array;
6689 * The cached sq head (or cq tail) serves two purposes:
6691 * 1) allows us to batch the cost of updating the user visible
6693 * 2) allows the kernel side to track the head on its own, even
6694 * though the application is the one updating it.
6696 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6697 if (likely(head < ctx->sq_entries))
6698 return &ctx->sq_sqes[head];
6700 /* drop invalid entries */
6701 ctx->cached_sq_dropped++;
6702 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6706 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6708 ctx->cached_sq_head++;
6712 * Check SQE restrictions (opcode and flags).
6714 * Returns 'true' if SQE is allowed, 'false' otherwise.
6716 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6717 struct io_kiocb *req,
6718 unsigned int sqe_flags)
6720 if (!ctx->restricted)
6723 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6726 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6727 ctx->restrictions.sqe_flags_required)
6730 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6731 ctx->restrictions.sqe_flags_required))
6737 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6738 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6739 IOSQE_BUFFER_SELECT)
6741 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6742 const struct io_uring_sqe *sqe,
6743 struct io_submit_state *state)
6745 unsigned int sqe_flags;
6748 req->opcode = READ_ONCE(sqe->opcode);
6749 req->user_data = READ_ONCE(sqe->user_data);
6750 req->async_data = NULL;
6755 req->fixed_file_refs = NULL;
6756 /* one is dropped after submission, the other at completion */
6757 refcount_set(&req->refs, 2);
6758 req->task = current;
6761 if (unlikely(req->opcode >= IORING_OP_LAST))
6764 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6767 sqe_flags = READ_ONCE(sqe->flags);
6768 /* enforce forwards compatibility on users */
6769 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6772 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6775 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6776 !io_op_defs[req->opcode].buffer_select)
6779 id = READ_ONCE(sqe->personality);
6781 struct io_identity *iod;
6783 iod = idr_find(&ctx->personality_idr, id);
6786 refcount_inc(&iod->count);
6788 __io_req_init_async(req);
6789 get_cred(iod->creds);
6790 req->work.identity = iod;
6791 req->work.flags |= IO_WQ_WORK_CREDS;
6794 /* same numerical values with corresponding REQ_F_*, safe to copy */
6795 req->flags |= sqe_flags;
6798 * Plug now if we have more than 1 IO left after this, and the target
6799 * is potentially a read/write to block based storage.
6801 if (!state->plug_started && state->ios_left > 1 &&
6802 io_op_defs[req->opcode].plug) {
6803 blk_start_plug(&state->plug);
6804 state->plug_started = true;
6808 if (io_op_defs[req->opcode].needs_file) {
6809 bool fixed = req->flags & REQ_F_FIXED_FILE;
6811 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6812 if (unlikely(!req->file &&
6813 !io_op_defs[req->opcode].needs_file_no_error))
6821 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6823 struct io_submit_state state;
6824 struct io_submit_link link;
6825 int i, submitted = 0;
6827 /* if we have a backlog and couldn't flush it all, return BUSY */
6828 if (test_bit(0, &ctx->sq_check_overflow)) {
6829 if (!io_cqring_overflow_flush(ctx, false, NULL, NULL))
6833 /* make sure SQ entry isn't read before tail */
6834 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6836 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6839 percpu_counter_add(¤t->io_uring->inflight, nr);
6840 refcount_add(nr, ¤t->usage);
6842 io_submit_state_start(&state, ctx, nr);
6845 for (i = 0; i < nr; i++) {
6846 const struct io_uring_sqe *sqe;
6847 struct io_kiocb *req;
6850 sqe = io_get_sqe(ctx);
6851 if (unlikely(!sqe)) {
6852 io_consume_sqe(ctx);
6855 req = io_alloc_req(ctx, &state);
6856 if (unlikely(!req)) {
6858 submitted = -EAGAIN;
6861 io_consume_sqe(ctx);
6862 /* will complete beyond this point, count as submitted */
6865 err = io_init_req(ctx, req, sqe, &state);
6866 if (unlikely(err)) {
6869 io_req_complete(req, err);
6873 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6874 true, io_async_submit(ctx));
6875 err = io_submit_sqe(req, sqe, &link, &state.comp);
6880 if (unlikely(submitted != nr)) {
6881 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6882 struct io_uring_task *tctx = current->io_uring;
6883 int unused = nr - ref_used;
6885 percpu_ref_put_many(&ctx->refs, unused);
6886 percpu_counter_sub(&tctx->inflight, unused);
6887 put_task_struct_many(current, unused);
6890 io_queue_link_head(link.head, &state.comp);
6891 io_submit_state_end(&state);
6893 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6894 io_commit_sqring(ctx);
6899 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6901 /* Tell userspace we may need a wakeup call */
6902 spin_lock_irq(&ctx->completion_lock);
6903 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6904 spin_unlock_irq(&ctx->completion_lock);
6907 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6909 spin_lock_irq(&ctx->completion_lock);
6910 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6911 spin_unlock_irq(&ctx->completion_lock);
6914 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6916 unsigned int to_submit;
6919 to_submit = io_sqring_entries(ctx);
6920 /* if we're handling multiple rings, cap submit size for fairness */
6921 if (cap_entries && to_submit > 8)
6924 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6925 unsigned nr_events = 0;
6927 mutex_lock(&ctx->uring_lock);
6928 if (!list_empty(&ctx->iopoll_list))
6929 io_do_iopoll(ctx, &nr_events, 0);
6931 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)))
6932 ret = io_submit_sqes(ctx, to_submit);
6933 mutex_unlock(&ctx->uring_lock);
6936 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6937 wake_up(&ctx->sqo_sq_wait);
6942 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6944 struct io_ring_ctx *ctx;
6945 unsigned sq_thread_idle = 0;
6947 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6948 if (sq_thread_idle < ctx->sq_thread_idle)
6949 sq_thread_idle = ctx->sq_thread_idle;
6952 sqd->sq_thread_idle = sq_thread_idle;
6955 static void io_sqd_init_new(struct io_sq_data *sqd)
6957 struct io_ring_ctx *ctx;
6959 while (!list_empty(&sqd->ctx_new_list)) {
6960 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
6961 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
6962 complete(&ctx->sq_thread_comp);
6965 io_sqd_update_thread_idle(sqd);
6968 static int io_sq_thread(void *data)
6970 struct cgroup_subsys_state *cur_css = NULL;
6971 struct files_struct *old_files = current->files;
6972 struct nsproxy *old_nsproxy = current->nsproxy;
6973 const struct cred *old_cred = NULL;
6974 struct io_sq_data *sqd = data;
6975 struct io_ring_ctx *ctx;
6976 unsigned long timeout = 0;
6980 current->files = NULL;
6981 current->nsproxy = NULL;
6982 task_unlock(current);
6984 while (!kthread_should_stop()) {
6986 bool cap_entries, sqt_spin, needs_sched;
6989 * Any changes to the sqd lists are synchronized through the
6990 * kthread parking. This synchronizes the thread vs users,
6991 * the users are synchronized on the sqd->ctx_lock.
6993 if (kthread_should_park()) {
6996 * When sq thread is unparked, in case the previous park operation
6997 * comes from io_put_sq_data(), which means that sq thread is going
6998 * to be stopped, so here needs to have a check.
7000 if (kthread_should_stop())
7004 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7005 io_sqd_init_new(sqd);
7006 timeout = jiffies + sqd->sq_thread_idle;
7010 cap_entries = !list_is_singular(&sqd->ctx_list);
7011 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7012 if (current->cred != ctx->creds) {
7014 revert_creds(old_cred);
7015 old_cred = override_creds(ctx->creds);
7017 io_sq_thread_associate_blkcg(ctx, &cur_css);
7019 current->loginuid = ctx->loginuid;
7020 current->sessionid = ctx->sessionid;
7023 ret = __io_sq_thread(ctx, cap_entries);
7024 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7027 io_sq_thread_drop_mm_files();
7030 if (sqt_spin || !time_after(jiffies, timeout)) {
7034 timeout = jiffies + sqd->sq_thread_idle;
7038 if (kthread_should_park())
7042 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7043 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7044 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7045 !list_empty_careful(&ctx->iopoll_list)) {
7046 needs_sched = false;
7049 if (io_sqring_entries(ctx)) {
7050 needs_sched = false;
7056 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7057 io_ring_set_wakeup_flag(ctx);
7060 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7061 io_ring_clear_wakeup_flag(ctx);
7064 finish_wait(&sqd->wait, &wait);
7065 timeout = jiffies + sqd->sq_thread_idle;
7071 io_sq_thread_unassociate_blkcg();
7073 revert_creds(old_cred);
7076 current->files = old_files;
7077 current->nsproxy = old_nsproxy;
7078 task_unlock(current);
7085 struct io_wait_queue {
7086 struct wait_queue_entry wq;
7087 struct io_ring_ctx *ctx;
7089 unsigned nr_timeouts;
7092 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
7094 struct io_ring_ctx *ctx = iowq->ctx;
7097 * Wake up if we have enough events, or if a timeout occurred since we
7098 * started waiting. For timeouts, we always want to return to userspace,
7099 * regardless of event count.
7101 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
7102 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7105 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7106 int wake_flags, void *key)
7108 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7111 /* use noflush == true, as we can't safely rely on locking context */
7112 if (!io_should_wake(iowq, true))
7115 return autoremove_wake_function(curr, mode, wake_flags, key);
7118 static int io_run_task_work_sig(void)
7120 if (io_run_task_work())
7122 if (!signal_pending(current))
7124 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7125 return -ERESTARTSYS;
7130 * Wait until events become available, if we don't already have some. The
7131 * application must reap them itself, as they reside on the shared cq ring.
7133 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7134 const sigset_t __user *sig, size_t sigsz,
7135 struct __kernel_timespec __user *uts)
7137 struct io_wait_queue iowq = {
7140 .func = io_wake_function,
7141 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7144 .to_wait = min_events,
7146 struct io_rings *rings = ctx->rings;
7147 struct timespec64 ts;
7148 signed long timeout = 0;
7152 if (io_cqring_events(ctx, false) >= min_events)
7154 if (!io_run_task_work())
7159 #ifdef CONFIG_COMPAT
7160 if (in_compat_syscall())
7161 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7165 ret = set_user_sigmask(sig, sigsz);
7172 if (get_timespec64(&ts, uts))
7174 timeout = timespec64_to_jiffies(&ts);
7177 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7178 trace_io_uring_cqring_wait(ctx, min_events);
7180 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7181 TASK_INTERRUPTIBLE);
7182 /* make sure we run task_work before checking for signals */
7183 ret = io_run_task_work_sig();
7188 if (io_should_wake(&iowq, false))
7191 timeout = schedule_timeout(timeout);
7200 finish_wait(&ctx->wait, &iowq.wq);
7202 restore_saved_sigmask_unless(ret == -EINTR);
7204 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7207 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7209 #if defined(CONFIG_UNIX)
7210 if (ctx->ring_sock) {
7211 struct sock *sock = ctx->ring_sock->sk;
7212 struct sk_buff *skb;
7214 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7220 for (i = 0; i < ctx->nr_user_files; i++) {
7223 file = io_file_from_index(ctx, i);
7230 static void io_file_ref_kill(struct percpu_ref *ref)
7232 struct fixed_file_data *data;
7234 data = container_of(ref, struct fixed_file_data, refs);
7235 complete(&data->done);
7238 static void io_sqe_files_set_node(struct fixed_file_data *file_data,
7239 struct fixed_file_ref_node *ref_node)
7241 spin_lock_bh(&file_data->lock);
7242 file_data->node = ref_node;
7243 list_add_tail(&ref_node->node, &file_data->ref_list);
7244 spin_unlock_bh(&file_data->lock);
7245 percpu_ref_get(&file_data->refs);
7248 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7250 struct fixed_file_data *data = ctx->file_data;
7251 struct fixed_file_ref_node *backup_node, *ref_node = NULL;
7252 unsigned nr_tables, i;
7257 backup_node = alloc_fixed_file_ref_node(ctx);
7261 spin_lock_bh(&data->lock);
7262 ref_node = data->node;
7263 spin_unlock_bh(&data->lock);
7265 percpu_ref_kill(&ref_node->refs);
7267 percpu_ref_kill(&data->refs);
7269 /* wait for all refs nodes to complete */
7270 flush_delayed_work(&ctx->file_put_work);
7272 ret = wait_for_completion_interruptible(&data->done);
7275 ret = io_run_task_work_sig();
7277 percpu_ref_resurrect(&data->refs);
7278 reinit_completion(&data->done);
7279 io_sqe_files_set_node(data, backup_node);
7284 __io_sqe_files_unregister(ctx);
7285 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7286 for (i = 0; i < nr_tables; i++)
7287 kfree(data->table[i].files);
7289 percpu_ref_exit(&data->refs);
7291 ctx->file_data = NULL;
7292 ctx->nr_user_files = 0;
7293 destroy_fixed_file_ref_node(backup_node);
7297 static void io_put_sq_data(struct io_sq_data *sqd)
7299 if (refcount_dec_and_test(&sqd->refs)) {
7301 * The park is a bit of a work-around, without it we get
7302 * warning spews on shutdown with SQPOLL set and affinity
7303 * set to a single CPU.
7306 kthread_park(sqd->thread);
7307 kthread_stop(sqd->thread);
7314 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7316 struct io_ring_ctx *ctx_attach;
7317 struct io_sq_data *sqd;
7320 f = fdget(p->wq_fd);
7322 return ERR_PTR(-ENXIO);
7323 if (f.file->f_op != &io_uring_fops) {
7325 return ERR_PTR(-EINVAL);
7328 ctx_attach = f.file->private_data;
7329 sqd = ctx_attach->sq_data;
7332 return ERR_PTR(-EINVAL);
7335 refcount_inc(&sqd->refs);
7340 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7342 struct io_sq_data *sqd;
7344 if (p->flags & IORING_SETUP_ATTACH_WQ)
7345 return io_attach_sq_data(p);
7347 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7349 return ERR_PTR(-ENOMEM);
7351 refcount_set(&sqd->refs, 1);
7352 INIT_LIST_HEAD(&sqd->ctx_list);
7353 INIT_LIST_HEAD(&sqd->ctx_new_list);
7354 mutex_init(&sqd->ctx_lock);
7355 mutex_init(&sqd->lock);
7356 init_waitqueue_head(&sqd->wait);
7360 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7361 __releases(&sqd->lock)
7365 kthread_unpark(sqd->thread);
7366 mutex_unlock(&sqd->lock);
7369 static void io_sq_thread_park(struct io_sq_data *sqd)
7370 __acquires(&sqd->lock)
7374 mutex_lock(&sqd->lock);
7375 kthread_park(sqd->thread);
7378 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7380 struct io_sq_data *sqd = ctx->sq_data;
7385 * We may arrive here from the error branch in
7386 * io_sq_offload_create() where the kthread is created
7387 * without being waked up, thus wake it up now to make
7388 * sure the wait will complete.
7390 wake_up_process(sqd->thread);
7391 wait_for_completion(&ctx->sq_thread_comp);
7393 io_sq_thread_park(sqd);
7396 mutex_lock(&sqd->ctx_lock);
7397 list_del(&ctx->sqd_list);
7398 io_sqd_update_thread_idle(sqd);
7399 mutex_unlock(&sqd->ctx_lock);
7402 io_sq_thread_unpark(sqd);
7404 io_put_sq_data(sqd);
7405 ctx->sq_data = NULL;
7409 static void io_finish_async(struct io_ring_ctx *ctx)
7411 io_sq_thread_stop(ctx);
7414 io_wq_destroy(ctx->io_wq);
7419 #if defined(CONFIG_UNIX)
7421 * Ensure the UNIX gc is aware of our file set, so we are certain that
7422 * the io_uring can be safely unregistered on process exit, even if we have
7423 * loops in the file referencing.
7425 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7427 struct sock *sk = ctx->ring_sock->sk;
7428 struct scm_fp_list *fpl;
7429 struct sk_buff *skb;
7432 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7436 skb = alloc_skb(0, GFP_KERNEL);
7445 fpl->user = get_uid(ctx->user);
7446 for (i = 0; i < nr; i++) {
7447 struct file *file = io_file_from_index(ctx, i + offset);
7451 fpl->fp[nr_files] = get_file(file);
7452 unix_inflight(fpl->user, fpl->fp[nr_files]);
7457 fpl->max = SCM_MAX_FD;
7458 fpl->count = nr_files;
7459 UNIXCB(skb).fp = fpl;
7460 skb->destructor = unix_destruct_scm;
7461 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7462 skb_queue_head(&sk->sk_receive_queue, skb);
7464 for (i = 0; i < nr_files; i++)
7475 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7476 * causes regular reference counting to break down. We rely on the UNIX
7477 * garbage collection to take care of this problem for us.
7479 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7481 unsigned left, total;
7485 left = ctx->nr_user_files;
7487 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7489 ret = __io_sqe_files_scm(ctx, this_files, total);
7493 total += this_files;
7499 while (total < ctx->nr_user_files) {
7500 struct file *file = io_file_from_index(ctx, total);
7510 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7516 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7517 unsigned nr_tables, unsigned nr_files)
7521 for (i = 0; i < nr_tables; i++) {
7522 struct fixed_file_table *table = &file_data->table[i];
7523 unsigned this_files;
7525 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7526 table->files = kcalloc(this_files, sizeof(struct file *),
7530 nr_files -= this_files;
7536 for (i = 0; i < nr_tables; i++) {
7537 struct fixed_file_table *table = &file_data->table[i];
7538 kfree(table->files);
7543 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7545 #if defined(CONFIG_UNIX)
7546 struct sock *sock = ctx->ring_sock->sk;
7547 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7548 struct sk_buff *skb;
7551 __skb_queue_head_init(&list);
7554 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7555 * remove this entry and rearrange the file array.
7557 skb = skb_dequeue(head);
7559 struct scm_fp_list *fp;
7561 fp = UNIXCB(skb).fp;
7562 for (i = 0; i < fp->count; i++) {
7565 if (fp->fp[i] != file)
7568 unix_notinflight(fp->user, fp->fp[i]);
7569 left = fp->count - 1 - i;
7571 memmove(&fp->fp[i], &fp->fp[i + 1],
7572 left * sizeof(struct file *));
7579 __skb_queue_tail(&list, skb);
7589 __skb_queue_tail(&list, skb);
7591 skb = skb_dequeue(head);
7594 if (skb_peek(&list)) {
7595 spin_lock_irq(&head->lock);
7596 while ((skb = __skb_dequeue(&list)) != NULL)
7597 __skb_queue_tail(head, skb);
7598 spin_unlock_irq(&head->lock);
7605 struct io_file_put {
7606 struct list_head list;
7610 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7612 struct fixed_file_data *file_data = ref_node->file_data;
7613 struct io_ring_ctx *ctx = file_data->ctx;
7614 struct io_file_put *pfile, *tmp;
7616 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7617 list_del(&pfile->list);
7618 io_ring_file_put(ctx, pfile->file);
7622 percpu_ref_exit(&ref_node->refs);
7624 percpu_ref_put(&file_data->refs);
7627 static void io_file_put_work(struct work_struct *work)
7629 struct io_ring_ctx *ctx;
7630 struct llist_node *node;
7632 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7633 node = llist_del_all(&ctx->file_put_llist);
7636 struct fixed_file_ref_node *ref_node;
7637 struct llist_node *next = node->next;
7639 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7640 __io_file_put_work(ref_node);
7645 static void io_file_data_ref_zero(struct percpu_ref *ref)
7647 struct fixed_file_ref_node *ref_node;
7648 struct fixed_file_data *data;
7649 struct io_ring_ctx *ctx;
7650 bool first_add = false;
7653 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7654 data = ref_node->file_data;
7657 spin_lock_bh(&data->lock);
7658 ref_node->done = true;
7660 while (!list_empty(&data->ref_list)) {
7661 ref_node = list_first_entry(&data->ref_list,
7662 struct fixed_file_ref_node, node);
7663 /* recycle ref nodes in order */
7664 if (!ref_node->done)
7666 list_del(&ref_node->node);
7667 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7669 spin_unlock_bh(&data->lock);
7671 if (percpu_ref_is_dying(&data->refs))
7675 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7677 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7680 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7681 struct io_ring_ctx *ctx)
7683 struct fixed_file_ref_node *ref_node;
7685 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7687 return ERR_PTR(-ENOMEM);
7689 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7692 return ERR_PTR(-ENOMEM);
7694 INIT_LIST_HEAD(&ref_node->node);
7695 INIT_LIST_HEAD(&ref_node->file_list);
7696 ref_node->file_data = ctx->file_data;
7697 ref_node->done = false;
7701 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7703 percpu_ref_exit(&ref_node->refs);
7707 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7710 __s32 __user *fds = (__s32 __user *) arg;
7711 unsigned nr_tables, i;
7713 int fd, ret = -ENOMEM;
7714 struct fixed_file_ref_node *ref_node;
7715 struct fixed_file_data *file_data;
7721 if (nr_args > IORING_MAX_FIXED_FILES)
7724 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7727 file_data->ctx = ctx;
7728 init_completion(&file_data->done);
7729 INIT_LIST_HEAD(&file_data->ref_list);
7730 spin_lock_init(&file_data->lock);
7732 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7733 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7735 if (!file_data->table)
7738 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7739 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7742 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7744 ctx->file_data = file_data;
7746 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7747 struct fixed_file_table *table;
7750 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7754 /* allow sparse sets */
7764 * Don't allow io_uring instances to be registered. If UNIX
7765 * isn't enabled, then this causes a reference cycle and this
7766 * instance can never get freed. If UNIX is enabled we'll
7767 * handle it just fine, but there's still no point in allowing
7768 * a ring fd as it doesn't support regular read/write anyway.
7770 if (file->f_op == &io_uring_fops) {
7774 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7775 index = i & IORING_FILE_TABLE_MASK;
7776 table->files[index] = file;
7779 ret = io_sqe_files_scm(ctx);
7781 io_sqe_files_unregister(ctx);
7785 ref_node = alloc_fixed_file_ref_node(ctx);
7786 if (IS_ERR(ref_node)) {
7787 io_sqe_files_unregister(ctx);
7788 return PTR_ERR(ref_node);
7791 io_sqe_files_set_node(file_data, ref_node);
7794 for (i = 0; i < ctx->nr_user_files; i++) {
7795 file = io_file_from_index(ctx, i);
7799 for (i = 0; i < nr_tables; i++)
7800 kfree(file_data->table[i].files);
7801 ctx->nr_user_files = 0;
7803 percpu_ref_exit(&file_data->refs);
7805 kfree(file_data->table);
7807 ctx->file_data = NULL;
7811 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7814 #if defined(CONFIG_UNIX)
7815 struct sock *sock = ctx->ring_sock->sk;
7816 struct sk_buff_head *head = &sock->sk_receive_queue;
7817 struct sk_buff *skb;
7820 * See if we can merge this file into an existing skb SCM_RIGHTS
7821 * file set. If there's no room, fall back to allocating a new skb
7822 * and filling it in.
7824 spin_lock_irq(&head->lock);
7825 skb = skb_peek(head);
7827 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7829 if (fpl->count < SCM_MAX_FD) {
7830 __skb_unlink(skb, head);
7831 spin_unlock_irq(&head->lock);
7832 fpl->fp[fpl->count] = get_file(file);
7833 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7835 spin_lock_irq(&head->lock);
7836 __skb_queue_head(head, skb);
7841 spin_unlock_irq(&head->lock);
7848 return __io_sqe_files_scm(ctx, 1, index);
7854 static int io_queue_file_removal(struct fixed_file_data *data,
7857 struct io_file_put *pfile;
7858 struct fixed_file_ref_node *ref_node = data->node;
7860 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7865 list_add(&pfile->list, &ref_node->file_list);
7870 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7871 struct io_uring_files_update *up,
7874 struct fixed_file_data *data = ctx->file_data;
7875 struct fixed_file_ref_node *ref_node;
7880 bool needs_switch = false;
7882 if (check_add_overflow(up->offset, nr_args, &done))
7884 if (done > ctx->nr_user_files)
7887 ref_node = alloc_fixed_file_ref_node(ctx);
7888 if (IS_ERR(ref_node))
7889 return PTR_ERR(ref_node);
7892 fds = u64_to_user_ptr(up->fds);
7894 struct fixed_file_table *table;
7898 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7902 i = array_index_nospec(up->offset, ctx->nr_user_files);
7903 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7904 index = i & IORING_FILE_TABLE_MASK;
7905 if (table->files[index]) {
7906 file = table->files[index];
7907 err = io_queue_file_removal(data, file);
7910 table->files[index] = NULL;
7911 needs_switch = true;
7920 * Don't allow io_uring instances to be registered. If
7921 * UNIX isn't enabled, then this causes a reference
7922 * cycle and this instance can never get freed. If UNIX
7923 * is enabled we'll handle it just fine, but there's
7924 * still no point in allowing a ring fd as it doesn't
7925 * support regular read/write anyway.
7927 if (file->f_op == &io_uring_fops) {
7932 table->files[index] = file;
7933 err = io_sqe_file_register(ctx, file, i);
7935 table->files[index] = NULL;
7946 percpu_ref_kill(&data->node->refs);
7947 io_sqe_files_set_node(data, ref_node);
7949 destroy_fixed_file_ref_node(ref_node);
7951 return done ? done : err;
7954 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
7957 struct io_uring_files_update up;
7959 if (!ctx->file_data)
7963 if (copy_from_user(&up, arg, sizeof(up)))
7968 return __io_sqe_files_update(ctx, &up, nr_args);
7971 static void io_free_work(struct io_wq_work *work)
7973 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7975 /* Consider that io_steal_work() relies on this ref */
7979 static int io_init_wq_offload(struct io_ring_ctx *ctx,
7980 struct io_uring_params *p)
7982 struct io_wq_data data;
7984 struct io_ring_ctx *ctx_attach;
7985 unsigned int concurrency;
7988 data.user = ctx->user;
7989 data.free_work = io_free_work;
7990 data.do_work = io_wq_submit_work;
7992 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
7993 /* Do QD, or 4 * CPUS, whatever is smallest */
7994 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7996 ctx->io_wq = io_wq_create(concurrency, &data);
7997 if (IS_ERR(ctx->io_wq)) {
7998 ret = PTR_ERR(ctx->io_wq);
8004 f = fdget(p->wq_fd);
8008 if (f.file->f_op != &io_uring_fops) {
8013 ctx_attach = f.file->private_data;
8014 /* @io_wq is protected by holding the fd */
8015 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8020 ctx->io_wq = ctx_attach->io_wq;
8026 static int io_uring_alloc_task_context(struct task_struct *task)
8028 struct io_uring_task *tctx;
8031 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8032 if (unlikely(!tctx))
8035 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8036 if (unlikely(ret)) {
8042 init_waitqueue_head(&tctx->wait);
8044 atomic_set(&tctx->in_idle, 0);
8045 tctx->sqpoll = false;
8046 io_init_identity(&tctx->__identity);
8047 tctx->identity = &tctx->__identity;
8048 task->io_uring = tctx;
8052 void __io_uring_free(struct task_struct *tsk)
8054 struct io_uring_task *tctx = tsk->io_uring;
8056 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8057 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8058 if (tctx->identity != &tctx->__identity)
8059 kfree(tctx->identity);
8060 percpu_counter_destroy(&tctx->inflight);
8062 tsk->io_uring = NULL;
8065 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8066 struct io_uring_params *p)
8070 if (ctx->flags & IORING_SETUP_SQPOLL) {
8071 struct io_sq_data *sqd;
8074 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8077 sqd = io_get_sq_data(p);
8084 io_sq_thread_park(sqd);
8085 mutex_lock(&sqd->ctx_lock);
8086 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8087 mutex_unlock(&sqd->ctx_lock);
8088 io_sq_thread_unpark(sqd);
8090 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8091 if (!ctx->sq_thread_idle)
8092 ctx->sq_thread_idle = HZ;
8097 if (p->flags & IORING_SETUP_SQ_AFF) {
8098 int cpu = p->sq_thread_cpu;
8101 if (cpu >= nr_cpu_ids)
8103 if (!cpu_online(cpu))
8106 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8107 cpu, "io_uring-sq");
8109 sqd->thread = kthread_create(io_sq_thread, sqd,
8112 if (IS_ERR(sqd->thread)) {
8113 ret = PTR_ERR(sqd->thread);
8117 ret = io_uring_alloc_task_context(sqd->thread);
8120 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8121 /* Can't have SQ_AFF without SQPOLL */
8127 ret = io_init_wq_offload(ctx, p);
8133 io_finish_async(ctx);
8137 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8139 struct io_sq_data *sqd = ctx->sq_data;
8141 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8142 wake_up_process(sqd->thread);
8145 static inline void __io_unaccount_mem(struct user_struct *user,
8146 unsigned long nr_pages)
8148 atomic_long_sub(nr_pages, &user->locked_vm);
8151 static inline int __io_account_mem(struct user_struct *user,
8152 unsigned long nr_pages)
8154 unsigned long page_limit, cur_pages, new_pages;
8156 /* Don't allow more pages than we can safely lock */
8157 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8160 cur_pages = atomic_long_read(&user->locked_vm);
8161 new_pages = cur_pages + nr_pages;
8162 if (new_pages > page_limit)
8164 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8165 new_pages) != cur_pages);
8170 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8171 enum io_mem_account acct)
8174 __io_unaccount_mem(ctx->user, nr_pages);
8176 if (ctx->mm_account) {
8177 if (acct == ACCT_LOCKED) {
8178 mmap_write_lock(ctx->mm_account);
8179 ctx->mm_account->locked_vm -= nr_pages;
8180 mmap_write_unlock(ctx->mm_account);
8181 }else if (acct == ACCT_PINNED) {
8182 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8187 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8188 enum io_mem_account acct)
8192 if (ctx->limit_mem) {
8193 ret = __io_account_mem(ctx->user, nr_pages);
8198 if (ctx->mm_account) {
8199 if (acct == ACCT_LOCKED) {
8200 mmap_write_lock(ctx->mm_account);
8201 ctx->mm_account->locked_vm += nr_pages;
8202 mmap_write_unlock(ctx->mm_account);
8203 } else if (acct == ACCT_PINNED) {
8204 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8211 static void io_mem_free(void *ptr)
8218 page = virt_to_head_page(ptr);
8219 if (put_page_testzero(page))
8220 free_compound_page(page);
8223 static void *io_mem_alloc(size_t size)
8225 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8228 return (void *) __get_free_pages(gfp_flags, get_order(size));
8231 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8234 struct io_rings *rings;
8235 size_t off, sq_array_size;
8237 off = struct_size(rings, cqes, cq_entries);
8238 if (off == SIZE_MAX)
8242 off = ALIGN(off, SMP_CACHE_BYTES);
8250 sq_array_size = array_size(sizeof(u32), sq_entries);
8251 if (sq_array_size == SIZE_MAX)
8254 if (check_add_overflow(off, sq_array_size, &off))
8260 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8264 pages = (size_t)1 << get_order(
8265 rings_size(sq_entries, cq_entries, NULL));
8266 pages += (size_t)1 << get_order(
8267 array_size(sizeof(struct io_uring_sqe), sq_entries));
8272 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8276 if (!ctx->user_bufs)
8279 for (i = 0; i < ctx->nr_user_bufs; i++) {
8280 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8282 for (j = 0; j < imu->nr_bvecs; j++)
8283 unpin_user_page(imu->bvec[j].bv_page);
8285 if (imu->acct_pages)
8286 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8291 kfree(ctx->user_bufs);
8292 ctx->user_bufs = NULL;
8293 ctx->nr_user_bufs = 0;
8297 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8298 void __user *arg, unsigned index)
8300 struct iovec __user *src;
8302 #ifdef CONFIG_COMPAT
8304 struct compat_iovec __user *ciovs;
8305 struct compat_iovec ciov;
8307 ciovs = (struct compat_iovec __user *) arg;
8308 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8311 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8312 dst->iov_len = ciov.iov_len;
8316 src = (struct iovec __user *) arg;
8317 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8323 * Not super efficient, but this is just a registration time. And we do cache
8324 * the last compound head, so generally we'll only do a full search if we don't
8327 * We check if the given compound head page has already been accounted, to
8328 * avoid double accounting it. This allows us to account the full size of the
8329 * page, not just the constituent pages of a huge page.
8331 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8332 int nr_pages, struct page *hpage)
8336 /* check current page array */
8337 for (i = 0; i < nr_pages; i++) {
8338 if (!PageCompound(pages[i]))
8340 if (compound_head(pages[i]) == hpage)
8344 /* check previously registered pages */
8345 for (i = 0; i < ctx->nr_user_bufs; i++) {
8346 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8348 for (j = 0; j < imu->nr_bvecs; j++) {
8349 if (!PageCompound(imu->bvec[j].bv_page))
8351 if (compound_head(imu->bvec[j].bv_page) == hpage)
8359 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8360 int nr_pages, struct io_mapped_ubuf *imu,
8361 struct page **last_hpage)
8365 for (i = 0; i < nr_pages; i++) {
8366 if (!PageCompound(pages[i])) {
8371 hpage = compound_head(pages[i]);
8372 if (hpage == *last_hpage)
8374 *last_hpage = hpage;
8375 if (headpage_already_acct(ctx, pages, i, hpage))
8377 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8381 if (!imu->acct_pages)
8384 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8386 imu->acct_pages = 0;
8390 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8393 struct vm_area_struct **vmas = NULL;
8394 struct page **pages = NULL;
8395 struct page *last_hpage = NULL;
8396 int i, j, got_pages = 0;
8401 if (!nr_args || nr_args > UIO_MAXIOV)
8404 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8406 if (!ctx->user_bufs)
8409 for (i = 0; i < nr_args; i++) {
8410 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8411 unsigned long off, start, end, ubuf;
8416 ret = io_copy_iov(ctx, &iov, arg, i);
8421 * Don't impose further limits on the size and buffer
8422 * constraints here, we'll -EINVAL later when IO is
8423 * submitted if they are wrong.
8426 if (!iov.iov_base || !iov.iov_len)
8429 /* arbitrary limit, but we need something */
8430 if (iov.iov_len > SZ_1G)
8433 ubuf = (unsigned long) iov.iov_base;
8434 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8435 start = ubuf >> PAGE_SHIFT;
8436 nr_pages = end - start;
8439 if (!pages || nr_pages > got_pages) {
8442 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8444 vmas = kvmalloc_array(nr_pages,
8445 sizeof(struct vm_area_struct *),
8447 if (!pages || !vmas) {
8451 got_pages = nr_pages;
8454 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8461 mmap_read_lock(current->mm);
8462 pret = pin_user_pages(ubuf, nr_pages,
8463 FOLL_WRITE | FOLL_LONGTERM,
8465 if (pret == nr_pages) {
8466 /* don't support file backed memory */
8467 for (j = 0; j < nr_pages; j++) {
8468 struct vm_area_struct *vma = vmas[j];
8471 !is_file_hugepages(vma->vm_file)) {
8477 ret = pret < 0 ? pret : -EFAULT;
8479 mmap_read_unlock(current->mm);
8482 * if we did partial map, or found file backed vmas,
8483 * release any pages we did get
8486 unpin_user_pages(pages, pret);
8491 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8493 unpin_user_pages(pages, pret);
8498 off = ubuf & ~PAGE_MASK;
8500 for (j = 0; j < nr_pages; j++) {
8503 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8504 imu->bvec[j].bv_page = pages[j];
8505 imu->bvec[j].bv_len = vec_len;
8506 imu->bvec[j].bv_offset = off;
8510 /* store original address for later verification */
8512 imu->len = iov.iov_len;
8513 imu->nr_bvecs = nr_pages;
8515 ctx->nr_user_bufs++;
8523 io_sqe_buffer_unregister(ctx);
8527 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8529 __s32 __user *fds = arg;
8535 if (copy_from_user(&fd, fds, sizeof(*fds)))
8538 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8539 if (IS_ERR(ctx->cq_ev_fd)) {
8540 int ret = PTR_ERR(ctx->cq_ev_fd);
8541 ctx->cq_ev_fd = NULL;
8548 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8550 if (ctx->cq_ev_fd) {
8551 eventfd_ctx_put(ctx->cq_ev_fd);
8552 ctx->cq_ev_fd = NULL;
8559 static int __io_destroy_buffers(int id, void *p, void *data)
8561 struct io_ring_ctx *ctx = data;
8562 struct io_buffer *buf = p;
8564 __io_remove_buffers(ctx, buf, id, -1U);
8568 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8570 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8571 idr_destroy(&ctx->io_buffer_idr);
8574 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8576 io_finish_async(ctx);
8577 io_sqe_buffer_unregister(ctx);
8579 if (ctx->sqo_task) {
8580 put_task_struct(ctx->sqo_task);
8581 ctx->sqo_task = NULL;
8582 mmdrop(ctx->mm_account);
8583 ctx->mm_account = NULL;
8586 #ifdef CONFIG_BLK_CGROUP
8587 if (ctx->sqo_blkcg_css)
8588 css_put(ctx->sqo_blkcg_css);
8591 io_sqe_files_unregister(ctx);
8592 io_eventfd_unregister(ctx);
8593 io_destroy_buffers(ctx);
8594 idr_destroy(&ctx->personality_idr);
8596 #if defined(CONFIG_UNIX)
8597 if (ctx->ring_sock) {
8598 ctx->ring_sock->file = NULL; /* so that iput() is called */
8599 sock_release(ctx->ring_sock);
8603 io_mem_free(ctx->rings);
8604 io_mem_free(ctx->sq_sqes);
8606 percpu_ref_exit(&ctx->refs);
8607 free_uid(ctx->user);
8608 put_cred(ctx->creds);
8609 kfree(ctx->cancel_hash);
8610 kmem_cache_free(req_cachep, ctx->fallback_req);
8614 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8616 struct io_ring_ctx *ctx = file->private_data;
8619 poll_wait(file, &ctx->cq_wait, wait);
8621 * synchronizes with barrier from wq_has_sleeper call in
8625 if (!io_sqring_full(ctx))
8626 mask |= EPOLLOUT | EPOLLWRNORM;
8627 if (io_cqring_events(ctx, false))
8628 mask |= EPOLLIN | EPOLLRDNORM;
8633 static int io_uring_fasync(int fd, struct file *file, int on)
8635 struct io_ring_ctx *ctx = file->private_data;
8637 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8640 static int io_remove_personalities(int id, void *p, void *data)
8642 struct io_ring_ctx *ctx = data;
8643 struct io_identity *iod;
8645 iod = idr_remove(&ctx->personality_idr, id);
8647 put_cred(iod->creds);
8648 if (refcount_dec_and_test(&iod->count))
8654 static void io_ring_exit_work(struct work_struct *work)
8656 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8660 * If we're doing polled IO and end up having requests being
8661 * submitted async (out-of-line), then completions can come in while
8662 * we're waiting for refs to drop. We need to reap these manually,
8663 * as nobody else will be looking for them.
8666 io_iopoll_try_reap_events(ctx);
8667 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8668 io_ring_ctx_free(ctx);
8671 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8673 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8675 return req->ctx == data;
8678 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8680 mutex_lock(&ctx->uring_lock);
8681 percpu_ref_kill(&ctx->refs);
8682 /* if force is set, the ring is going away. always drop after that */
8683 ctx->cq_overflow_flushed = 1;
8685 io_cqring_overflow_flush(ctx, true, NULL, NULL);
8686 mutex_unlock(&ctx->uring_lock);
8688 io_kill_timeouts(ctx, NULL, NULL);
8689 io_poll_remove_all(ctx, NULL, NULL);
8692 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8694 /* if we failed setting up the ctx, we might not have any rings */
8695 io_iopoll_try_reap_events(ctx);
8696 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8699 * Do this upfront, so we won't have a grace period where the ring
8700 * is closed but resources aren't reaped yet. This can cause
8701 * spurious failure in setting up a new ring.
8703 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8706 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8708 * Use system_unbound_wq to avoid spawning tons of event kworkers
8709 * if we're exiting a ton of rings at the same time. It just adds
8710 * noise and overhead, there's no discernable change in runtime
8711 * over using system_wq.
8713 queue_work(system_unbound_wq, &ctx->exit_work);
8716 static int io_uring_release(struct inode *inode, struct file *file)
8718 struct io_ring_ctx *ctx = file->private_data;
8720 file->private_data = NULL;
8721 io_ring_ctx_wait_and_kill(ctx);
8725 struct io_task_cancel {
8726 struct task_struct *task;
8727 struct files_struct *files;
8730 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8732 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8733 struct io_task_cancel *cancel = data;
8736 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8737 unsigned long flags;
8738 struct io_ring_ctx *ctx = req->ctx;
8740 /* protect against races with linked timeouts */
8741 spin_lock_irqsave(&ctx->completion_lock, flags);
8742 ret = io_match_task(req, cancel->task, cancel->files);
8743 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8745 ret = io_match_task(req, cancel->task, cancel->files);
8750 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8751 struct task_struct *task,
8752 struct files_struct *files)
8754 struct io_defer_entry *de = NULL;
8757 spin_lock_irq(&ctx->completion_lock);
8758 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8759 if (io_match_task(de->req, task, files)) {
8760 list_cut_position(&list, &ctx->defer_list, &de->list);
8764 spin_unlock_irq(&ctx->completion_lock);
8766 while (!list_empty(&list)) {
8767 de = list_first_entry(&list, struct io_defer_entry, list);
8768 list_del_init(&de->list);
8769 req_set_fail_links(de->req);
8770 io_put_req(de->req);
8771 io_req_complete(de->req, -ECANCELED);
8776 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8777 struct task_struct *task,
8778 struct files_struct *files)
8780 while (!list_empty_careful(&ctx->inflight_list)) {
8781 struct io_task_cancel cancel = { .task = task, .files = files };
8782 struct io_kiocb *req;
8786 spin_lock_irq(&ctx->inflight_lock);
8787 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
8788 if (req->task != task ||
8789 req->work.identity->files != files)
8795 prepare_to_wait(&task->io_uring->wait, &wait,
8796 TASK_UNINTERRUPTIBLE);
8797 spin_unlock_irq(&ctx->inflight_lock);
8799 /* We need to keep going until we don't find a matching req */
8803 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8804 io_poll_remove_all(ctx, task, files);
8805 io_kill_timeouts(ctx, task, files);
8806 /* cancellations _may_ trigger task work */
8809 finish_wait(&task->io_uring->wait, &wait);
8813 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8814 struct task_struct *task)
8817 struct io_task_cancel cancel = { .task = task, .files = NULL, };
8818 enum io_wq_cancel cret;
8821 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8822 if (cret != IO_WQ_CANCEL_NOTFOUND)
8825 /* SQPOLL thread does its own polling */
8826 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8827 while (!list_empty_careful(&ctx->iopoll_list)) {
8828 io_iopoll_try_reap_events(ctx);
8833 ret |= io_poll_remove_all(ctx, task, NULL);
8834 ret |= io_kill_timeouts(ctx, task, NULL);
8835 ret |= io_run_task_work();
8843 * We need to iteratively cancel requests, in case a request has dependent
8844 * hard links. These persist even for failure of cancelations, hence keep
8845 * looping until none are found.
8847 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8848 struct files_struct *files)
8850 struct task_struct *task = current;
8852 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8853 task = ctx->sq_data->thread;
8854 atomic_inc(&task->io_uring->in_idle);
8855 io_sq_thread_park(ctx->sq_data);
8858 io_cancel_defer_files(ctx, task, files);
8859 io_ring_submit_lock(ctx, (ctx->flags & IORING_SETUP_IOPOLL));
8860 io_cqring_overflow_flush(ctx, true, task, files);
8861 io_ring_submit_unlock(ctx, (ctx->flags & IORING_SETUP_IOPOLL));
8864 __io_uring_cancel_task_requests(ctx, task);
8866 io_uring_cancel_files(ctx, task, files);
8868 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8869 atomic_dec(&task->io_uring->in_idle);
8871 * If the files that are going away are the ones in the thread
8872 * identity, clear them out.
8874 if (task->io_uring->identity->files == files)
8875 task->io_uring->identity->files = NULL;
8876 io_sq_thread_unpark(ctx->sq_data);
8881 * Note that this task has used io_uring. We use it for cancelation purposes.
8883 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
8885 struct io_uring_task *tctx = current->io_uring;
8888 if (unlikely(!tctx)) {
8889 ret = io_uring_alloc_task_context(current);
8892 tctx = current->io_uring;
8894 if (tctx->last != file) {
8895 void *old = xa_load(&tctx->xa, (unsigned long)file);
8899 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
8910 * This is race safe in that the task itself is doing this, hence it
8911 * cannot be going through the exit/cancel paths at the same time.
8912 * This cannot be modified while exit/cancel is running.
8914 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
8915 tctx->sqpoll = true;
8921 * Remove this io_uring_file -> task mapping.
8923 static void io_uring_del_task_file(struct file *file)
8925 struct io_uring_task *tctx = current->io_uring;
8927 if (tctx->last == file)
8929 file = xa_erase(&tctx->xa, (unsigned long)file);
8935 * Drop task note for this file if we're the only ones that hold it after
8938 static void io_uring_attempt_task_drop(struct file *file)
8940 if (!current->io_uring)
8943 * fput() is pending, will be 2 if the only other ref is our potential
8944 * task file note. If the task is exiting, drop regardless of count.
8946 if (fatal_signal_pending(current) || (current->flags & PF_EXITING) ||
8947 atomic_long_read(&file->f_count) == 2)
8948 io_uring_del_task_file(file);
8951 void __io_uring_files_cancel(struct files_struct *files)
8953 struct io_uring_task *tctx = current->io_uring;
8955 unsigned long index;
8957 /* make sure overflow events are dropped */
8958 atomic_inc(&tctx->in_idle);
8960 xa_for_each(&tctx->xa, index, file) {
8961 struct io_ring_ctx *ctx = file->private_data;
8963 io_uring_cancel_task_requests(ctx, files);
8965 io_uring_del_task_file(file);
8968 atomic_dec(&tctx->in_idle);
8971 static s64 tctx_inflight(struct io_uring_task *tctx)
8973 unsigned long index;
8977 inflight = percpu_counter_sum(&tctx->inflight);
8982 * If we have SQPOLL rings, then we need to iterate and find them, and
8983 * add the pending count for those.
8985 xa_for_each(&tctx->xa, index, file) {
8986 struct io_ring_ctx *ctx = file->private_data;
8988 if (ctx->flags & IORING_SETUP_SQPOLL) {
8989 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
8991 inflight += percpu_counter_sum(&__tctx->inflight);
8999 * Find any io_uring fd that this task has registered or done IO on, and cancel
9002 void __io_uring_task_cancel(void)
9004 struct io_uring_task *tctx = current->io_uring;
9008 /* make sure overflow events are dropped */
9009 atomic_inc(&tctx->in_idle);
9012 /* read completions before cancelations */
9013 inflight = tctx_inflight(tctx);
9016 __io_uring_files_cancel(NULL);
9018 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9021 * If we've seen completions, retry. This avoids a race where
9022 * a completion comes in before we did prepare_to_wait().
9024 if (inflight != tctx_inflight(tctx))
9027 finish_wait(&tctx->wait, &wait);
9030 atomic_dec(&tctx->in_idle);
9033 static int io_uring_flush(struct file *file, void *data)
9035 io_uring_attempt_task_drop(file);
9039 static void *io_uring_validate_mmap_request(struct file *file,
9040 loff_t pgoff, size_t sz)
9042 struct io_ring_ctx *ctx = file->private_data;
9043 loff_t offset = pgoff << PAGE_SHIFT;
9048 case IORING_OFF_SQ_RING:
9049 case IORING_OFF_CQ_RING:
9052 case IORING_OFF_SQES:
9056 return ERR_PTR(-EINVAL);
9059 page = virt_to_head_page(ptr);
9060 if (sz > page_size(page))
9061 return ERR_PTR(-EINVAL);
9068 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9070 size_t sz = vma->vm_end - vma->vm_start;
9074 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9076 return PTR_ERR(ptr);
9078 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9079 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9082 #else /* !CONFIG_MMU */
9084 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9086 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9089 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9091 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9094 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9095 unsigned long addr, unsigned long len,
9096 unsigned long pgoff, unsigned long flags)
9100 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9102 return PTR_ERR(ptr);
9104 return (unsigned long) ptr;
9107 #endif /* !CONFIG_MMU */
9109 static void io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9114 if (!io_sqring_full(ctx))
9117 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9119 if (!io_sqring_full(ctx))
9123 } while (!signal_pending(current));
9125 finish_wait(&ctx->sqo_sq_wait, &wait);
9128 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9129 struct __kernel_timespec __user **ts,
9130 const sigset_t __user **sig)
9132 struct io_uring_getevents_arg arg;
9135 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9136 * is just a pointer to the sigset_t.
9138 if (!(flags & IORING_ENTER_EXT_ARG)) {
9139 *sig = (const sigset_t __user *) argp;
9145 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9146 * timespec and sigset_t pointers if good.
9148 if (*argsz != sizeof(arg))
9150 if (copy_from_user(&arg, argp, sizeof(arg)))
9152 *sig = u64_to_user_ptr(arg.sigmask);
9153 *argsz = arg.sigmask_sz;
9154 *ts = u64_to_user_ptr(arg.ts);
9158 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9159 u32, min_complete, u32, flags, const void __user *, argp,
9162 struct io_ring_ctx *ctx;
9169 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9170 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9178 if (f.file->f_op != &io_uring_fops)
9182 ctx = f.file->private_data;
9183 if (!percpu_ref_tryget(&ctx->refs))
9187 if (ctx->flags & IORING_SETUP_R_DISABLED)
9191 * For SQ polling, the thread will do all submissions and completions.
9192 * Just return the requested submit count, and wake the thread if
9196 if (ctx->flags & IORING_SETUP_SQPOLL) {
9197 if (!list_empty_careful(&ctx->cq_overflow_list)) {
9198 bool needs_lock = ctx->flags & IORING_SETUP_IOPOLL;
9200 io_ring_submit_lock(ctx, needs_lock);
9201 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9202 io_ring_submit_unlock(ctx, needs_lock);
9204 if (flags & IORING_ENTER_SQ_WAKEUP)
9205 wake_up(&ctx->sq_data->wait);
9206 if (flags & IORING_ENTER_SQ_WAIT)
9207 io_sqpoll_wait_sq(ctx);
9208 submitted = to_submit;
9209 } else if (to_submit) {
9210 ret = io_uring_add_task_file(ctx, f.file);
9213 mutex_lock(&ctx->uring_lock);
9214 submitted = io_submit_sqes(ctx, to_submit);
9215 mutex_unlock(&ctx->uring_lock);
9217 if (submitted != to_submit)
9220 if (flags & IORING_ENTER_GETEVENTS) {
9221 const sigset_t __user *sig;
9222 struct __kernel_timespec __user *ts;
9224 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9228 min_complete = min(min_complete, ctx->cq_entries);
9231 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9232 * space applications don't need to do io completion events
9233 * polling again, they can rely on io_sq_thread to do polling
9234 * work, which can reduce cpu usage and uring_lock contention.
9236 if (ctx->flags & IORING_SETUP_IOPOLL &&
9237 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9238 ret = io_iopoll_check(ctx, min_complete);
9240 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9245 percpu_ref_put(&ctx->refs);
9248 return submitted ? submitted : ret;
9251 #ifdef CONFIG_PROC_FS
9252 static int io_uring_show_cred(int id, void *p, void *data)
9254 struct io_identity *iod = p;
9255 const struct cred *cred = iod->creds;
9256 struct seq_file *m = data;
9257 struct user_namespace *uns = seq_user_ns(m);
9258 struct group_info *gi;
9263 seq_printf(m, "%5d\n", id);
9264 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9265 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9266 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9267 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9268 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9269 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9270 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9271 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9272 seq_puts(m, "\n\tGroups:\t");
9273 gi = cred->group_info;
9274 for (g = 0; g < gi->ngroups; g++) {
9275 seq_put_decimal_ull(m, g ? " " : "",
9276 from_kgid_munged(uns, gi->gid[g]));
9278 seq_puts(m, "\n\tCapEff:\t");
9279 cap = cred->cap_effective;
9280 CAP_FOR_EACH_U32(__capi)
9281 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9286 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9288 struct io_sq_data *sq = NULL;
9293 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9294 * since fdinfo case grabs it in the opposite direction of normal use
9295 * cases. If we fail to get the lock, we just don't iterate any
9296 * structures that could be going away outside the io_uring mutex.
9298 has_lock = mutex_trylock(&ctx->uring_lock);
9300 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9303 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9304 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9305 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9306 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9307 struct fixed_file_table *table;
9310 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9311 f = table->files[i & IORING_FILE_TABLE_MASK];
9313 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9315 seq_printf(m, "%5u: <none>\n", i);
9317 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9318 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9319 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9321 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9322 (unsigned int) buf->len);
9324 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9325 seq_printf(m, "Personalities:\n");
9326 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9328 seq_printf(m, "PollList:\n");
9329 spin_lock_irq(&ctx->completion_lock);
9330 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9331 struct hlist_head *list = &ctx->cancel_hash[i];
9332 struct io_kiocb *req;
9334 hlist_for_each_entry(req, list, hash_node)
9335 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9336 req->task->task_works != NULL);
9338 spin_unlock_irq(&ctx->completion_lock);
9340 mutex_unlock(&ctx->uring_lock);
9343 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9345 struct io_ring_ctx *ctx = f->private_data;
9347 if (percpu_ref_tryget(&ctx->refs)) {
9348 __io_uring_show_fdinfo(ctx, m);
9349 percpu_ref_put(&ctx->refs);
9354 static const struct file_operations io_uring_fops = {
9355 .release = io_uring_release,
9356 .flush = io_uring_flush,
9357 .mmap = io_uring_mmap,
9359 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9360 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9362 .poll = io_uring_poll,
9363 .fasync = io_uring_fasync,
9364 #ifdef CONFIG_PROC_FS
9365 .show_fdinfo = io_uring_show_fdinfo,
9369 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9370 struct io_uring_params *p)
9372 struct io_rings *rings;
9373 size_t size, sq_array_offset;
9375 /* make sure these are sane, as we already accounted them */
9376 ctx->sq_entries = p->sq_entries;
9377 ctx->cq_entries = p->cq_entries;
9379 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9380 if (size == SIZE_MAX)
9383 rings = io_mem_alloc(size);
9388 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9389 rings->sq_ring_mask = p->sq_entries - 1;
9390 rings->cq_ring_mask = p->cq_entries - 1;
9391 rings->sq_ring_entries = p->sq_entries;
9392 rings->cq_ring_entries = p->cq_entries;
9393 ctx->sq_mask = rings->sq_ring_mask;
9394 ctx->cq_mask = rings->cq_ring_mask;
9396 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9397 if (size == SIZE_MAX) {
9398 io_mem_free(ctx->rings);
9403 ctx->sq_sqes = io_mem_alloc(size);
9404 if (!ctx->sq_sqes) {
9405 io_mem_free(ctx->rings);
9413 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9417 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9421 ret = io_uring_add_task_file(ctx, file);
9426 fd_install(fd, file);
9431 * Allocate an anonymous fd, this is what constitutes the application
9432 * visible backing of an io_uring instance. The application mmaps this
9433 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9434 * we have to tie this fd to a socket for file garbage collection purposes.
9436 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9439 #if defined(CONFIG_UNIX)
9442 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9445 return ERR_PTR(ret);
9448 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9449 O_RDWR | O_CLOEXEC);
9450 #if defined(CONFIG_UNIX)
9452 sock_release(ctx->ring_sock);
9453 ctx->ring_sock = NULL;
9455 ctx->ring_sock->file = file;
9461 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9462 struct io_uring_params __user *params)
9464 struct user_struct *user = NULL;
9465 struct io_ring_ctx *ctx;
9472 if (entries > IORING_MAX_ENTRIES) {
9473 if (!(p->flags & IORING_SETUP_CLAMP))
9475 entries = IORING_MAX_ENTRIES;
9479 * Use twice as many entries for the CQ ring. It's possible for the
9480 * application to drive a higher depth than the size of the SQ ring,
9481 * since the sqes are only used at submission time. This allows for
9482 * some flexibility in overcommitting a bit. If the application has
9483 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9484 * of CQ ring entries manually.
9486 p->sq_entries = roundup_pow_of_two(entries);
9487 if (p->flags & IORING_SETUP_CQSIZE) {
9489 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9490 * to a power-of-two, if it isn't already. We do NOT impose
9491 * any cq vs sq ring sizing.
9495 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9496 if (!(p->flags & IORING_SETUP_CLAMP))
9498 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9500 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9501 if (p->cq_entries < p->sq_entries)
9504 p->cq_entries = 2 * p->sq_entries;
9507 user = get_uid(current_user());
9508 limit_mem = !capable(CAP_IPC_LOCK);
9511 ret = __io_account_mem(user,
9512 ring_pages(p->sq_entries, p->cq_entries));
9519 ctx = io_ring_ctx_alloc(p);
9522 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9527 ctx->compat = in_compat_syscall();
9529 ctx->creds = get_current_cred();
9531 ctx->loginuid = current->loginuid;
9532 ctx->sessionid = current->sessionid;
9534 ctx->sqo_task = get_task_struct(current);
9537 * This is just grabbed for accounting purposes. When a process exits,
9538 * the mm is exited and dropped before the files, hence we need to hang
9539 * on to this mm purely for the purposes of being able to unaccount
9540 * memory (locked/pinned vm). It's not used for anything else.
9542 mmgrab(current->mm);
9543 ctx->mm_account = current->mm;
9545 #ifdef CONFIG_BLK_CGROUP
9547 * The sq thread will belong to the original cgroup it was inited in.
9548 * If the cgroup goes offline (e.g. disabling the io controller), then
9549 * issued bios will be associated with the closest cgroup later in the
9553 ctx->sqo_blkcg_css = blkcg_css();
9554 ret = css_tryget_online(ctx->sqo_blkcg_css);
9557 /* don't init against a dying cgroup, have the user try again */
9558 ctx->sqo_blkcg_css = NULL;
9565 * Account memory _before_ installing the file descriptor. Once
9566 * the descriptor is installed, it can get closed at any time. Also
9567 * do this before hitting the general error path, as ring freeing
9568 * will un-account as well.
9570 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9572 ctx->limit_mem = limit_mem;
9574 ret = io_allocate_scq_urings(ctx, p);
9578 ret = io_sq_offload_create(ctx, p);
9582 if (!(p->flags & IORING_SETUP_R_DISABLED))
9583 io_sq_offload_start(ctx);
9585 memset(&p->sq_off, 0, sizeof(p->sq_off));
9586 p->sq_off.head = offsetof(struct io_rings, sq.head);
9587 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9588 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9589 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9590 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9591 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9592 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9594 memset(&p->cq_off, 0, sizeof(p->cq_off));
9595 p->cq_off.head = offsetof(struct io_rings, cq.head);
9596 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9597 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9598 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9599 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9600 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9601 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9603 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9604 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9605 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9606 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9607 IORING_FEAT_EXT_ARG;
9609 if (copy_to_user(params, p, sizeof(*p))) {
9614 file = io_uring_get_file(ctx);
9616 ret = PTR_ERR(file);
9621 * Install ring fd as the very last thing, so we don't risk someone
9622 * having closed it before we finish setup
9624 ret = io_uring_install_fd(ctx, file);
9626 /* fput will clean it up */
9631 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9634 io_ring_ctx_wait_and_kill(ctx);
9639 * Sets up an aio uring context, and returns the fd. Applications asks for a
9640 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9641 * params structure passed in.
9643 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9645 struct io_uring_params p;
9648 if (copy_from_user(&p, params, sizeof(p)))
9650 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9655 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9656 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9657 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9658 IORING_SETUP_R_DISABLED))
9661 return io_uring_create(entries, &p, params);
9664 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9665 struct io_uring_params __user *, params)
9667 return io_uring_setup(entries, params);
9670 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9672 struct io_uring_probe *p;
9676 size = struct_size(p, ops, nr_args);
9677 if (size == SIZE_MAX)
9679 p = kzalloc(size, GFP_KERNEL);
9684 if (copy_from_user(p, arg, size))
9687 if (memchr_inv(p, 0, size))
9690 p->last_op = IORING_OP_LAST - 1;
9691 if (nr_args > IORING_OP_LAST)
9692 nr_args = IORING_OP_LAST;
9694 for (i = 0; i < nr_args; i++) {
9696 if (!io_op_defs[i].not_supported)
9697 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9702 if (copy_to_user(arg, p, size))
9709 static int io_register_personality(struct io_ring_ctx *ctx)
9711 struct io_identity *id;
9714 id = kmalloc(sizeof(*id), GFP_KERNEL);
9718 io_init_identity(id);
9719 id->creds = get_current_cred();
9721 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9723 put_cred(id->creds);
9729 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9731 struct io_identity *iod;
9733 iod = idr_remove(&ctx->personality_idr, id);
9735 put_cred(iod->creds);
9736 if (refcount_dec_and_test(&iod->count))
9744 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9745 unsigned int nr_args)
9747 struct io_uring_restriction *res;
9751 /* Restrictions allowed only if rings started disabled */
9752 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9755 /* We allow only a single restrictions registration */
9756 if (ctx->restrictions.registered)
9759 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9762 size = array_size(nr_args, sizeof(*res));
9763 if (size == SIZE_MAX)
9766 res = memdup_user(arg, size);
9768 return PTR_ERR(res);
9772 for (i = 0; i < nr_args; i++) {
9773 switch (res[i].opcode) {
9774 case IORING_RESTRICTION_REGISTER_OP:
9775 if (res[i].register_op >= IORING_REGISTER_LAST) {
9780 __set_bit(res[i].register_op,
9781 ctx->restrictions.register_op);
9783 case IORING_RESTRICTION_SQE_OP:
9784 if (res[i].sqe_op >= IORING_OP_LAST) {
9789 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9791 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9792 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9794 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9795 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9804 /* Reset all restrictions if an error happened */
9806 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9808 ctx->restrictions.registered = true;
9814 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9816 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9819 if (ctx->restrictions.registered)
9820 ctx->restricted = 1;
9822 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9824 io_sq_offload_start(ctx);
9829 static bool io_register_op_must_quiesce(int op)
9832 case IORING_UNREGISTER_FILES:
9833 case IORING_REGISTER_FILES_UPDATE:
9834 case IORING_REGISTER_PROBE:
9835 case IORING_REGISTER_PERSONALITY:
9836 case IORING_UNREGISTER_PERSONALITY:
9843 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9844 void __user *arg, unsigned nr_args)
9845 __releases(ctx->uring_lock)
9846 __acquires(ctx->uring_lock)
9851 * We're inside the ring mutex, if the ref is already dying, then
9852 * someone else killed the ctx or is already going through
9853 * io_uring_register().
9855 if (percpu_ref_is_dying(&ctx->refs))
9858 if (io_register_op_must_quiesce(opcode)) {
9859 percpu_ref_kill(&ctx->refs);
9862 * Drop uring mutex before waiting for references to exit. If
9863 * another thread is currently inside io_uring_enter() it might
9864 * need to grab the uring_lock to make progress. If we hold it
9865 * here across the drain wait, then we can deadlock. It's safe
9866 * to drop the mutex here, since no new references will come in
9867 * after we've killed the percpu ref.
9869 mutex_unlock(&ctx->uring_lock);
9871 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9874 ret = io_run_task_work_sig();
9879 mutex_lock(&ctx->uring_lock);
9882 percpu_ref_resurrect(&ctx->refs);
9887 if (ctx->restricted) {
9888 if (opcode >= IORING_REGISTER_LAST) {
9893 if (!test_bit(opcode, ctx->restrictions.register_op)) {
9900 case IORING_REGISTER_BUFFERS:
9901 ret = io_sqe_buffer_register(ctx, arg, nr_args);
9903 case IORING_UNREGISTER_BUFFERS:
9907 ret = io_sqe_buffer_unregister(ctx);
9909 case IORING_REGISTER_FILES:
9910 ret = io_sqe_files_register(ctx, arg, nr_args);
9912 case IORING_UNREGISTER_FILES:
9916 ret = io_sqe_files_unregister(ctx);
9918 case IORING_REGISTER_FILES_UPDATE:
9919 ret = io_sqe_files_update(ctx, arg, nr_args);
9921 case IORING_REGISTER_EVENTFD:
9922 case IORING_REGISTER_EVENTFD_ASYNC:
9926 ret = io_eventfd_register(ctx, arg);
9929 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
9930 ctx->eventfd_async = 1;
9932 ctx->eventfd_async = 0;
9934 case IORING_UNREGISTER_EVENTFD:
9938 ret = io_eventfd_unregister(ctx);
9940 case IORING_REGISTER_PROBE:
9942 if (!arg || nr_args > 256)
9944 ret = io_probe(ctx, arg, nr_args);
9946 case IORING_REGISTER_PERSONALITY:
9950 ret = io_register_personality(ctx);
9952 case IORING_UNREGISTER_PERSONALITY:
9956 ret = io_unregister_personality(ctx, nr_args);
9958 case IORING_REGISTER_ENABLE_RINGS:
9962 ret = io_register_enable_rings(ctx);
9964 case IORING_REGISTER_RESTRICTIONS:
9965 ret = io_register_restrictions(ctx, arg, nr_args);
9973 if (io_register_op_must_quiesce(opcode)) {
9974 /* bring the ctx back to life */
9975 percpu_ref_reinit(&ctx->refs);
9977 reinit_completion(&ctx->ref_comp);
9982 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
9983 void __user *, arg, unsigned int, nr_args)
9985 struct io_ring_ctx *ctx;
9994 if (f.file->f_op != &io_uring_fops)
9997 ctx = f.file->private_data;
9999 mutex_lock(&ctx->uring_lock);
10000 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10001 mutex_unlock(&ctx->uring_lock);
10002 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10003 ctx->cq_ev_fd != NULL, ret);
10009 static int __init io_uring_init(void)
10011 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10012 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10013 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10016 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10017 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10018 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10019 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10020 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10021 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10022 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10023 BUILD_BUG_SQE_ELEM(8, __u64, off);
10024 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10025 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10026 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10027 BUILD_BUG_SQE_ELEM(24, __u32, len);
10028 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10029 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10030 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10031 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10032 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10033 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10034 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10035 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10036 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10037 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10038 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10039 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10040 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10041 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10042 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10043 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10044 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10045 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10046 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10048 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10049 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10050 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10053 __initcall(io_uring_init);