1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid1.c : Multiple Devices driver for Linux
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
9 * RAID-1 management functions.
17 * bitmapped intelligence in resync:
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
34 #include <trace/events/block.h>
38 #include "md-bitmap.h"
40 #define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
49 #define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
52 #define RAID_1_10_NAME "raid1"
55 #define START(node) ((node)->start)
56 #define LAST(node) ((node)->last)
57 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
58 START, LAST, static inline, raid1_rb);
60 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
61 struct serial_info *si, int idx)
65 sector_t lo = r1_bio->sector;
66 sector_t hi = lo + r1_bio->sectors;
67 struct serial_in_rdev *serial = &rdev->serial[idx];
69 spin_lock_irqsave(&serial->serial_lock, flags);
70 /* collision happened */
71 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
76 raid1_rb_insert(si, &serial->serial_rb);
78 spin_unlock_irqrestore(&serial->serial_lock, flags);
83 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
85 struct mddev *mddev = rdev->mddev;
86 struct serial_info *si;
87 int idx = sector_to_idx(r1_bio->sector);
88 struct serial_in_rdev *serial = &rdev->serial[idx];
90 if (WARN_ON(!mddev->serial_info_pool))
92 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
93 wait_event(serial->serial_io_wait,
94 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
97 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
99 struct serial_info *si;
102 struct mddev *mddev = rdev->mddev;
103 int idx = sector_to_idx(lo);
104 struct serial_in_rdev *serial = &rdev->serial[idx];
106 spin_lock_irqsave(&serial->serial_lock, flags);
107 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
108 si; si = raid1_rb_iter_next(si, lo, hi)) {
109 if (si->start == lo && si->last == hi) {
110 raid1_rb_remove(si, &serial->serial_rb);
111 mempool_free(si, mddev->serial_info_pool);
117 WARN(1, "The write IO is not recorded for serialization\n");
118 spin_unlock_irqrestore(&serial->serial_lock, flags);
119 wake_up(&serial->serial_io_wait);
123 * for resync bio, r1bio pointer can be retrieved from the per-bio
124 * 'struct resync_pages'.
126 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
128 return get_resync_pages(bio)->raid_bio;
131 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
133 struct pool_info *pi = data;
134 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
136 /* allocate a r1bio with room for raid_disks entries in the bios array */
137 return kzalloc(size, gfp_flags);
140 #define RESYNC_DEPTH 32
141 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
142 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
143 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
144 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
147 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
149 struct pool_info *pi = data;
150 struct r1bio *r1_bio;
154 struct resync_pages *rps;
156 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
160 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
166 * Allocate bios : 1 for reading, n-1 for writing
168 for (j = pi->raid_disks ; j-- ; ) {
169 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
172 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
173 r1_bio->bios[j] = bio;
176 * Allocate RESYNC_PAGES data pages and attach them to
178 * If this is a user-requested check/repair, allocate
179 * RESYNC_PAGES for each bio.
181 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
182 need_pages = pi->raid_disks;
185 for (j = 0; j < pi->raid_disks; j++) {
186 struct resync_pages *rp = &rps[j];
188 bio = r1_bio->bios[j];
190 if (j < need_pages) {
191 if (resync_alloc_pages(rp, gfp_flags))
194 memcpy(rp, &rps[0], sizeof(*rp));
195 resync_get_all_pages(rp);
198 rp->raid_bio = r1_bio;
199 bio->bi_private = rp;
202 r1_bio->master_bio = NULL;
208 resync_free_pages(&rps[j]);
211 while (++j < pi->raid_disks) {
212 bio_uninit(r1_bio->bios[j]);
213 kfree(r1_bio->bios[j]);
218 rbio_pool_free(r1_bio, data);
222 static void r1buf_pool_free(void *__r1_bio, void *data)
224 struct pool_info *pi = data;
226 struct r1bio *r1bio = __r1_bio;
227 struct resync_pages *rp = NULL;
229 for (i = pi->raid_disks; i--; ) {
230 rp = get_resync_pages(r1bio->bios[i]);
231 resync_free_pages(rp);
232 bio_uninit(r1bio->bios[i]);
233 kfree(r1bio->bios[i]);
236 /* resync pages array stored in the 1st bio's .bi_private */
239 rbio_pool_free(r1bio, data);
242 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
246 for (i = 0; i < conf->raid_disks * 2; i++) {
247 struct bio **bio = r1_bio->bios + i;
248 if (!BIO_SPECIAL(*bio))
254 static void free_r1bio(struct r1bio *r1_bio)
256 struct r1conf *conf = r1_bio->mddev->private;
258 put_all_bios(conf, r1_bio);
259 mempool_free(r1_bio, &conf->r1bio_pool);
262 static void put_buf(struct r1bio *r1_bio)
264 struct r1conf *conf = r1_bio->mddev->private;
265 sector_t sect = r1_bio->sector;
268 for (i = 0; i < conf->raid_disks * 2; i++) {
269 struct bio *bio = r1_bio->bios[i];
271 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
274 mempool_free(r1_bio, &conf->r1buf_pool);
276 lower_barrier(conf, sect);
279 static void reschedule_retry(struct r1bio *r1_bio)
282 struct mddev *mddev = r1_bio->mddev;
283 struct r1conf *conf = mddev->private;
286 idx = sector_to_idx(r1_bio->sector);
287 spin_lock_irqsave(&conf->device_lock, flags);
288 list_add(&r1_bio->retry_list, &conf->retry_list);
289 atomic_inc(&conf->nr_queued[idx]);
290 spin_unlock_irqrestore(&conf->device_lock, flags);
292 wake_up(&conf->wait_barrier);
293 md_wakeup_thread(mddev->thread);
297 * raid_end_bio_io() is called when we have finished servicing a mirrored
298 * operation and are ready to return a success/failure code to the buffer
301 static void call_bio_endio(struct r1bio *r1_bio)
303 struct bio *bio = r1_bio->master_bio;
305 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
306 bio->bi_status = BLK_STS_IOERR;
311 static void raid_end_bio_io(struct r1bio *r1_bio)
313 struct bio *bio = r1_bio->master_bio;
314 struct r1conf *conf = r1_bio->mddev->private;
315 sector_t sector = r1_bio->sector;
317 /* if nobody has done the final endio yet, do it now */
318 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
319 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
320 (bio_data_dir(bio) == WRITE) ? "write" : "read",
321 (unsigned long long) bio->bi_iter.bi_sector,
322 (unsigned long long) bio_end_sector(bio) - 1);
324 call_bio_endio(r1_bio);
329 * Wake up any possible resync thread that waits for the device
330 * to go idle. All I/Os, even write-behind writes, are done.
332 allow_barrier(conf, sector);
336 * Update disk head position estimator based on IRQ completion info.
338 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
340 struct r1conf *conf = r1_bio->mddev->private;
342 conf->mirrors[disk].head_position =
343 r1_bio->sector + (r1_bio->sectors);
347 * Find the disk number which triggered given bio
349 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
352 struct r1conf *conf = r1_bio->mddev->private;
353 int raid_disks = conf->raid_disks;
355 for (mirror = 0; mirror < raid_disks * 2; mirror++)
356 if (r1_bio->bios[mirror] == bio)
359 BUG_ON(mirror == raid_disks * 2);
360 update_head_pos(mirror, r1_bio);
365 static void raid1_end_read_request(struct bio *bio)
367 int uptodate = !bio->bi_status;
368 struct r1bio *r1_bio = bio->bi_private;
369 struct r1conf *conf = r1_bio->mddev->private;
370 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
373 * this branch is our 'one mirror IO has finished' event handler:
375 update_head_pos(r1_bio->read_disk, r1_bio);
378 set_bit(R1BIO_Uptodate, &r1_bio->state);
379 else if (test_bit(FailFast, &rdev->flags) &&
380 test_bit(R1BIO_FailFast, &r1_bio->state))
381 /* This was a fail-fast read so we definitely
385 /* If all other devices have failed, we want to return
386 * the error upwards rather than fail the last device.
387 * Here we redefine "uptodate" to mean "Don't want to retry"
390 spin_lock_irqsave(&conf->device_lock, flags);
391 if (r1_bio->mddev->degraded == conf->raid_disks ||
392 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
393 test_bit(In_sync, &rdev->flags)))
395 spin_unlock_irqrestore(&conf->device_lock, flags);
399 raid_end_bio_io(r1_bio);
400 rdev_dec_pending(rdev, conf->mddev);
405 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
408 (unsigned long long)r1_bio->sector);
409 set_bit(R1BIO_ReadError, &r1_bio->state);
410 reschedule_retry(r1_bio);
411 /* don't drop the reference on read_disk yet */
415 static void close_write(struct r1bio *r1_bio)
417 /* it really is the end of this request */
418 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
419 bio_free_pages(r1_bio->behind_master_bio);
420 bio_put(r1_bio->behind_master_bio);
421 r1_bio->behind_master_bio = NULL;
423 /* clear the bitmap if all writes complete successfully */
424 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
426 !test_bit(R1BIO_Degraded, &r1_bio->state),
427 test_bit(R1BIO_BehindIO, &r1_bio->state));
428 md_write_end(r1_bio->mddev);
431 static void r1_bio_write_done(struct r1bio *r1_bio)
433 if (!atomic_dec_and_test(&r1_bio->remaining))
436 if (test_bit(R1BIO_WriteError, &r1_bio->state))
437 reschedule_retry(r1_bio);
440 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
441 reschedule_retry(r1_bio);
443 raid_end_bio_io(r1_bio);
447 static void raid1_end_write_request(struct bio *bio)
449 struct r1bio *r1_bio = bio->bi_private;
450 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
451 struct r1conf *conf = r1_bio->mddev->private;
452 struct bio *to_put = NULL;
453 int mirror = find_bio_disk(r1_bio, bio);
454 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
456 sector_t lo = r1_bio->sector;
457 sector_t hi = r1_bio->sector + r1_bio->sectors;
459 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
462 * 'one mirror IO has finished' event handler:
464 if (bio->bi_status && !discard_error) {
465 set_bit(WriteErrorSeen, &rdev->flags);
466 if (!test_and_set_bit(WantReplacement, &rdev->flags))
467 set_bit(MD_RECOVERY_NEEDED, &
468 conf->mddev->recovery);
470 if (test_bit(FailFast, &rdev->flags) &&
471 (bio->bi_opf & MD_FAILFAST) &&
472 /* We never try FailFast to WriteMostly devices */
473 !test_bit(WriteMostly, &rdev->flags)) {
474 md_error(r1_bio->mddev, rdev);
478 * When the device is faulty, it is not necessary to
479 * handle write error.
481 if (!test_bit(Faulty, &rdev->flags))
482 set_bit(R1BIO_WriteError, &r1_bio->state);
484 /* Fail the request */
485 set_bit(R1BIO_Degraded, &r1_bio->state);
486 /* Finished with this branch */
487 r1_bio->bios[mirror] = NULL;
492 * Set R1BIO_Uptodate in our master bio, so that we
493 * will return a good error code for to the higher
494 * levels even if IO on some other mirrored buffer
497 * The 'master' represents the composite IO operation
498 * to user-side. So if something waits for IO, then it
499 * will wait for the 'master' bio.
504 r1_bio->bios[mirror] = NULL;
507 * Do not set R1BIO_Uptodate if the current device is
508 * rebuilding or Faulty. This is because we cannot use
509 * such device for properly reading the data back (we could
510 * potentially use it, if the current write would have felt
511 * before rdev->recovery_offset, but for simplicity we don't
514 if (test_bit(In_sync, &rdev->flags) &&
515 !test_bit(Faulty, &rdev->flags))
516 set_bit(R1BIO_Uptodate, &r1_bio->state);
518 /* Maybe we can clear some bad blocks. */
519 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
520 &first_bad, &bad_sectors) && !discard_error) {
521 r1_bio->bios[mirror] = IO_MADE_GOOD;
522 set_bit(R1BIO_MadeGood, &r1_bio->state);
527 if (test_bit(CollisionCheck, &rdev->flags))
528 remove_serial(rdev, lo, hi);
529 if (test_bit(WriteMostly, &rdev->flags))
530 atomic_dec(&r1_bio->behind_remaining);
533 * In behind mode, we ACK the master bio once the I/O
534 * has safely reached all non-writemostly
535 * disks. Setting the Returned bit ensures that this
536 * gets done only once -- we don't ever want to return
537 * -EIO here, instead we'll wait
539 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
540 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
541 /* Maybe we can return now */
542 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
543 struct bio *mbio = r1_bio->master_bio;
544 pr_debug("raid1: behind end write sectors"
546 (unsigned long long) mbio->bi_iter.bi_sector,
547 (unsigned long long) bio_end_sector(mbio) - 1);
548 call_bio_endio(r1_bio);
551 } else if (rdev->mddev->serialize_policy)
552 remove_serial(rdev, lo, hi);
553 if (r1_bio->bios[mirror] == NULL)
554 rdev_dec_pending(rdev, conf->mddev);
557 * Let's see if all mirrored write operations have finished
560 r1_bio_write_done(r1_bio);
566 static sector_t align_to_barrier_unit_end(sector_t start_sector,
571 WARN_ON(sectors == 0);
573 * len is the number of sectors from start_sector to end of the
574 * barrier unit which start_sector belongs to.
576 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
586 * This routine returns the disk from which the requested read should
587 * be done. There is a per-array 'next expected sequential IO' sector
588 * number - if this matches on the next IO then we use the last disk.
589 * There is also a per-disk 'last know head position' sector that is
590 * maintained from IRQ contexts, both the normal and the resync IO
591 * completion handlers update this position correctly. If there is no
592 * perfect sequential match then we pick the disk whose head is closest.
594 * If there are 2 mirrors in the same 2 devices, performance degrades
595 * because position is mirror, not device based.
597 * The rdev for the device selected will have nr_pending incremented.
599 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
601 const sector_t this_sector = r1_bio->sector;
603 int best_good_sectors;
604 int best_disk, best_dist_disk, best_pending_disk;
608 unsigned int min_pending;
609 struct md_rdev *rdev;
611 int choose_next_idle;
614 * Check if we can balance. We can balance on the whole
615 * device if no resync is going on, or below the resync window.
616 * We take the first readable disk when above the resync window.
619 sectors = r1_bio->sectors;
622 best_dist = MaxSector;
623 best_pending_disk = -1;
624 min_pending = UINT_MAX;
625 best_good_sectors = 0;
627 choose_next_idle = 0;
628 clear_bit(R1BIO_FailFast, &r1_bio->state);
630 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
631 (mddev_is_clustered(conf->mddev) &&
632 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
633 this_sector + sectors)))
638 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
642 unsigned int pending;
645 rdev = conf->mirrors[disk].rdev;
646 if (r1_bio->bios[disk] == IO_BLOCKED
648 || test_bit(Faulty, &rdev->flags))
650 if (!test_bit(In_sync, &rdev->flags) &&
651 rdev->recovery_offset < this_sector + sectors)
653 if (test_bit(WriteMostly, &rdev->flags)) {
654 /* Don't balance among write-mostly, just
655 * use the first as a last resort */
656 if (best_dist_disk < 0) {
657 if (is_badblock(rdev, this_sector, sectors,
658 &first_bad, &bad_sectors)) {
659 if (first_bad <= this_sector)
660 /* Cannot use this */
662 best_good_sectors = first_bad - this_sector;
664 best_good_sectors = sectors;
665 best_dist_disk = disk;
666 best_pending_disk = disk;
670 /* This is a reasonable device to use. It might
673 if (is_badblock(rdev, this_sector, sectors,
674 &first_bad, &bad_sectors)) {
675 if (best_dist < MaxSector)
676 /* already have a better device */
678 if (first_bad <= this_sector) {
679 /* cannot read here. If this is the 'primary'
680 * device, then we must not read beyond
681 * bad_sectors from another device..
683 bad_sectors -= (this_sector - first_bad);
684 if (choose_first && sectors > bad_sectors)
685 sectors = bad_sectors;
686 if (best_good_sectors > sectors)
687 best_good_sectors = sectors;
690 sector_t good_sectors = first_bad - this_sector;
691 if (good_sectors > best_good_sectors) {
692 best_good_sectors = good_sectors;
700 if ((sectors > best_good_sectors) && (best_disk >= 0))
702 best_good_sectors = sectors;
706 /* At least two disks to choose from so failfast is OK */
707 set_bit(R1BIO_FailFast, &r1_bio->state);
709 nonrot = bdev_nonrot(rdev->bdev);
710 has_nonrot_disk |= nonrot;
711 pending = atomic_read(&rdev->nr_pending);
712 dist = abs(this_sector - conf->mirrors[disk].head_position);
717 /* Don't change to another disk for sequential reads */
718 if (conf->mirrors[disk].next_seq_sect == this_sector
720 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
721 struct raid1_info *mirror = &conf->mirrors[disk];
725 * If buffered sequential IO size exceeds optimal
726 * iosize, check if there is idle disk. If yes, choose
727 * the idle disk. read_balance could already choose an
728 * idle disk before noticing it's a sequential IO in
729 * this disk. This doesn't matter because this disk
730 * will idle, next time it will be utilized after the
731 * first disk has IO size exceeds optimal iosize. In
732 * this way, iosize of the first disk will be optimal
733 * iosize at least. iosize of the second disk might be
734 * small, but not a big deal since when the second disk
735 * starts IO, the first disk is likely still busy.
737 if (nonrot && opt_iosize > 0 &&
738 mirror->seq_start != MaxSector &&
739 mirror->next_seq_sect > opt_iosize &&
740 mirror->next_seq_sect - opt_iosize >=
742 choose_next_idle = 1;
748 if (choose_next_idle)
751 if (min_pending > pending) {
752 min_pending = pending;
753 best_pending_disk = disk;
756 if (dist < best_dist) {
758 best_dist_disk = disk;
763 * If all disks are rotational, choose the closest disk. If any disk is
764 * non-rotational, choose the disk with less pending request even the
765 * disk is rotational, which might/might not be optimal for raids with
766 * mixed ratation/non-rotational disks depending on workload.
768 if (best_disk == -1) {
769 if (has_nonrot_disk || min_pending == 0)
770 best_disk = best_pending_disk;
772 best_disk = best_dist_disk;
775 if (best_disk >= 0) {
776 rdev = conf->mirrors[best_disk].rdev;
779 atomic_inc(&rdev->nr_pending);
780 sectors = best_good_sectors;
782 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
783 conf->mirrors[best_disk].seq_start = this_sector;
785 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
787 *max_sectors = sectors;
792 static void wake_up_barrier(struct r1conf *conf)
794 if (wq_has_sleeper(&conf->wait_barrier))
795 wake_up(&conf->wait_barrier);
798 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
800 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
801 raid1_prepare_flush_writes(conf->mddev->bitmap);
802 wake_up_barrier(conf);
804 while (bio) { /* submit pending writes */
805 struct bio *next = bio->bi_next;
807 raid1_submit_write(bio);
813 static void flush_pending_writes(struct r1conf *conf)
815 /* Any writes that have been queued but are awaiting
816 * bitmap updates get flushed here.
818 spin_lock_irq(&conf->device_lock);
820 if (conf->pending_bio_list.head) {
821 struct blk_plug plug;
824 bio = bio_list_get(&conf->pending_bio_list);
825 spin_unlock_irq(&conf->device_lock);
828 * As this is called in a wait_event() loop (see freeze_array),
829 * current->state might be TASK_UNINTERRUPTIBLE which will
830 * cause a warning when we prepare to wait again. As it is
831 * rare that this path is taken, it is perfectly safe to force
832 * us to go around the wait_event() loop again, so the warning
833 * is a false-positive. Silence the warning by resetting
836 __set_current_state(TASK_RUNNING);
837 blk_start_plug(&plug);
838 flush_bio_list(conf, bio);
839 blk_finish_plug(&plug);
841 spin_unlock_irq(&conf->device_lock);
845 * Sometimes we need to suspend IO while we do something else,
846 * either some resync/recovery, or reconfigure the array.
847 * To do this we raise a 'barrier'.
848 * The 'barrier' is a counter that can be raised multiple times
849 * to count how many activities are happening which preclude
851 * We can only raise the barrier if there is no pending IO.
852 * i.e. if nr_pending == 0.
853 * We choose only to raise the barrier if no-one is waiting for the
854 * barrier to go down. This means that as soon as an IO request
855 * is ready, no other operations which require a barrier will start
856 * until the IO request has had a chance.
858 * So: regular IO calls 'wait_barrier'. When that returns there
859 * is no backgroup IO happening, It must arrange to call
860 * allow_barrier when it has finished its IO.
861 * backgroup IO calls must call raise_barrier. Once that returns
862 * there is no normal IO happeing. It must arrange to call
863 * lower_barrier when the particular background IO completes.
865 * If resync/recovery is interrupted, returns -EINTR;
866 * Otherwise, returns 0.
868 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
870 int idx = sector_to_idx(sector_nr);
872 spin_lock_irq(&conf->resync_lock);
874 /* Wait until no block IO is waiting */
875 wait_event_lock_irq(conf->wait_barrier,
876 !atomic_read(&conf->nr_waiting[idx]),
879 /* block any new IO from starting */
880 atomic_inc(&conf->barrier[idx]);
882 * In raise_barrier() we firstly increase conf->barrier[idx] then
883 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
884 * increase conf->nr_pending[idx] then check conf->barrier[idx].
885 * A memory barrier here to make sure conf->nr_pending[idx] won't
886 * be fetched before conf->barrier[idx] is increased. Otherwise
887 * there will be a race between raise_barrier() and _wait_barrier().
889 smp_mb__after_atomic();
891 /* For these conditions we must wait:
892 * A: while the array is in frozen state
893 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
894 * existing in corresponding I/O barrier bucket.
895 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
896 * max resync count which allowed on current I/O barrier bucket.
898 wait_event_lock_irq(conf->wait_barrier,
899 (!conf->array_frozen &&
900 !atomic_read(&conf->nr_pending[idx]) &&
901 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
902 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
905 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
906 atomic_dec(&conf->barrier[idx]);
907 spin_unlock_irq(&conf->resync_lock);
908 wake_up(&conf->wait_barrier);
912 atomic_inc(&conf->nr_sync_pending);
913 spin_unlock_irq(&conf->resync_lock);
918 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
920 int idx = sector_to_idx(sector_nr);
922 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
924 atomic_dec(&conf->barrier[idx]);
925 atomic_dec(&conf->nr_sync_pending);
926 wake_up(&conf->wait_barrier);
929 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
934 * We need to increase conf->nr_pending[idx] very early here,
935 * then raise_barrier() can be blocked when it waits for
936 * conf->nr_pending[idx] to be 0. Then we can avoid holding
937 * conf->resync_lock when there is no barrier raised in same
938 * barrier unit bucket. Also if the array is frozen, I/O
939 * should be blocked until array is unfrozen.
941 atomic_inc(&conf->nr_pending[idx]);
943 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
944 * check conf->barrier[idx]. In raise_barrier() we firstly increase
945 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
946 * barrier is necessary here to make sure conf->barrier[idx] won't be
947 * fetched before conf->nr_pending[idx] is increased. Otherwise there
948 * will be a race between _wait_barrier() and raise_barrier().
950 smp_mb__after_atomic();
953 * Don't worry about checking two atomic_t variables at same time
954 * here. If during we check conf->barrier[idx], the array is
955 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
956 * 0, it is safe to return and make the I/O continue. Because the
957 * array is frozen, all I/O returned here will eventually complete
958 * or be queued, no race will happen. See code comment in
961 if (!READ_ONCE(conf->array_frozen) &&
962 !atomic_read(&conf->barrier[idx]))
966 * After holding conf->resync_lock, conf->nr_pending[idx]
967 * should be decreased before waiting for barrier to drop.
968 * Otherwise, we may encounter a race condition because
969 * raise_barrer() might be waiting for conf->nr_pending[idx]
970 * to be 0 at same time.
972 spin_lock_irq(&conf->resync_lock);
973 atomic_inc(&conf->nr_waiting[idx]);
974 atomic_dec(&conf->nr_pending[idx]);
976 * In case freeze_array() is waiting for
977 * get_unqueued_pending() == extra
979 wake_up_barrier(conf);
980 /* Wait for the barrier in same barrier unit bucket to drop. */
982 /* Return false when nowait flag is set */
986 wait_event_lock_irq(conf->wait_barrier,
987 !conf->array_frozen &&
988 !atomic_read(&conf->barrier[idx]),
990 atomic_inc(&conf->nr_pending[idx]);
993 atomic_dec(&conf->nr_waiting[idx]);
994 spin_unlock_irq(&conf->resync_lock);
998 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1000 int idx = sector_to_idx(sector_nr);
1004 * Very similar to _wait_barrier(). The difference is, for read
1005 * I/O we don't need wait for sync I/O, but if the whole array
1006 * is frozen, the read I/O still has to wait until the array is
1007 * unfrozen. Since there is no ordering requirement with
1008 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1010 atomic_inc(&conf->nr_pending[idx]);
1012 if (!READ_ONCE(conf->array_frozen))
1015 spin_lock_irq(&conf->resync_lock);
1016 atomic_inc(&conf->nr_waiting[idx]);
1017 atomic_dec(&conf->nr_pending[idx]);
1019 * In case freeze_array() is waiting for
1020 * get_unqueued_pending() == extra
1022 wake_up_barrier(conf);
1023 /* Wait for array to be unfrozen */
1025 /* Return false when nowait flag is set */
1027 /* Return false when nowait flag is set */
1030 wait_event_lock_irq(conf->wait_barrier,
1031 !conf->array_frozen,
1033 atomic_inc(&conf->nr_pending[idx]);
1036 atomic_dec(&conf->nr_waiting[idx]);
1037 spin_unlock_irq(&conf->resync_lock);
1041 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1043 int idx = sector_to_idx(sector_nr);
1045 return _wait_barrier(conf, idx, nowait);
1048 static void _allow_barrier(struct r1conf *conf, int idx)
1050 atomic_dec(&conf->nr_pending[idx]);
1051 wake_up_barrier(conf);
1054 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1056 int idx = sector_to_idx(sector_nr);
1058 _allow_barrier(conf, idx);
1061 /* conf->resync_lock should be held */
1062 static int get_unqueued_pending(struct r1conf *conf)
1066 ret = atomic_read(&conf->nr_sync_pending);
1067 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1068 ret += atomic_read(&conf->nr_pending[idx]) -
1069 atomic_read(&conf->nr_queued[idx]);
1074 static void freeze_array(struct r1conf *conf, int extra)
1076 /* Stop sync I/O and normal I/O and wait for everything to
1078 * This is called in two situations:
1079 * 1) management command handlers (reshape, remove disk, quiesce).
1080 * 2) one normal I/O request failed.
1082 * After array_frozen is set to 1, new sync IO will be blocked at
1083 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1084 * or wait_read_barrier(). The flying I/Os will either complete or be
1085 * queued. When everything goes quite, there are only queued I/Os left.
1087 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1088 * barrier bucket index which this I/O request hits. When all sync and
1089 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1090 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1091 * in handle_read_error(), we may call freeze_array() before trying to
1092 * fix the read error. In this case, the error read I/O is not queued,
1093 * so get_unqueued_pending() == 1.
1095 * Therefore before this function returns, we need to wait until
1096 * get_unqueued_pendings(conf) gets equal to extra. For
1097 * normal I/O context, extra is 1, in rested situations extra is 0.
1099 spin_lock_irq(&conf->resync_lock);
1100 conf->array_frozen = 1;
1101 raid1_log(conf->mddev, "wait freeze");
1102 wait_event_lock_irq_cmd(
1104 get_unqueued_pending(conf) == extra,
1106 flush_pending_writes(conf));
1107 spin_unlock_irq(&conf->resync_lock);
1109 static void unfreeze_array(struct r1conf *conf)
1111 /* reverse the effect of the freeze */
1112 spin_lock_irq(&conf->resync_lock);
1113 conf->array_frozen = 0;
1114 spin_unlock_irq(&conf->resync_lock);
1115 wake_up(&conf->wait_barrier);
1118 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1121 int size = bio->bi_iter.bi_size;
1122 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1124 struct bio *behind_bio = NULL;
1126 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1127 &r1_bio->mddev->bio_set);
1129 /* discard op, we don't support writezero/writesame yet */
1130 if (!bio_has_data(bio)) {
1131 behind_bio->bi_iter.bi_size = size;
1135 while (i < vcnt && size) {
1137 int len = min_t(int, PAGE_SIZE, size);
1139 page = alloc_page(GFP_NOIO);
1140 if (unlikely(!page))
1143 if (!bio_add_page(behind_bio, page, len, 0)) {
1152 bio_copy_data(behind_bio, bio);
1154 r1_bio->behind_master_bio = behind_bio;
1155 set_bit(R1BIO_BehindIO, &r1_bio->state);
1160 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1161 bio->bi_iter.bi_size);
1162 bio_free_pages(behind_bio);
1163 bio_put(behind_bio);
1166 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1168 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1170 struct mddev *mddev = plug->cb.data;
1171 struct r1conf *conf = mddev->private;
1174 if (from_schedule) {
1175 spin_lock_irq(&conf->device_lock);
1176 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1177 spin_unlock_irq(&conf->device_lock);
1178 wake_up_barrier(conf);
1179 md_wakeup_thread(mddev->thread);
1184 /* we aren't scheduling, so we can do the write-out directly. */
1185 bio = bio_list_get(&plug->pending);
1186 flush_bio_list(conf, bio);
1190 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1192 r1_bio->master_bio = bio;
1193 r1_bio->sectors = bio_sectors(bio);
1195 r1_bio->mddev = mddev;
1196 r1_bio->sector = bio->bi_iter.bi_sector;
1199 static inline struct r1bio *
1200 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1202 struct r1conf *conf = mddev->private;
1203 struct r1bio *r1_bio;
1205 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1206 /* Ensure no bio records IO_BLOCKED */
1207 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1208 init_r1bio(r1_bio, mddev, bio);
1212 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1213 int max_read_sectors, struct r1bio *r1_bio)
1215 struct r1conf *conf = mddev->private;
1216 struct raid1_info *mirror;
1217 struct bio *read_bio;
1218 struct bitmap *bitmap = mddev->bitmap;
1219 const enum req_op op = bio_op(bio);
1220 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1223 bool r1bio_existed = !!r1_bio;
1224 char b[BDEVNAME_SIZE];
1227 * If r1_bio is set, we are blocking the raid1d thread
1228 * so there is a tiny risk of deadlock. So ask for
1229 * emergency memory if needed.
1231 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1233 if (r1bio_existed) {
1234 /* Need to get the block device name carefully */
1235 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1238 snprintf(b, sizeof(b), "%pg", rdev->bdev);
1244 * Still need barrier for READ in case that whole
1247 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1248 bio->bi_opf & REQ_NOWAIT)) {
1249 bio_wouldblock_error(bio);
1254 r1_bio = alloc_r1bio(mddev, bio);
1256 init_r1bio(r1_bio, mddev, bio);
1257 r1_bio->sectors = max_read_sectors;
1260 * make_request() can abort the operation when read-ahead is being
1261 * used and no empty request is available.
1263 rdisk = read_balance(conf, r1_bio, &max_sectors);
1266 /* couldn't find anywhere to read from */
1267 if (r1bio_existed) {
1268 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1271 (unsigned long long)r1_bio->sector);
1273 raid_end_bio_io(r1_bio);
1276 mirror = conf->mirrors + rdisk;
1279 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1281 (unsigned long long)r1_bio->sector,
1282 mirror->rdev->bdev);
1284 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1287 * Reading from a write-mostly device must take care not to
1288 * over-take any writes that are 'behind'
1290 raid1_log(mddev, "wait behind writes");
1291 wait_event(bitmap->behind_wait,
1292 atomic_read(&bitmap->behind_writes) == 0);
1295 if (max_sectors < bio_sectors(bio)) {
1296 struct bio *split = bio_split(bio, max_sectors,
1297 gfp, &conf->bio_split);
1298 bio_chain(split, bio);
1299 submit_bio_noacct(bio);
1301 r1_bio->master_bio = bio;
1302 r1_bio->sectors = max_sectors;
1305 r1_bio->read_disk = rdisk;
1306 if (!r1bio_existed) {
1307 md_account_bio(mddev, &bio);
1308 r1_bio->master_bio = bio;
1310 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1313 r1_bio->bios[rdisk] = read_bio;
1315 read_bio->bi_iter.bi_sector = r1_bio->sector +
1316 mirror->rdev->data_offset;
1317 read_bio->bi_end_io = raid1_end_read_request;
1318 read_bio->bi_opf = op | do_sync;
1319 if (test_bit(FailFast, &mirror->rdev->flags) &&
1320 test_bit(R1BIO_FailFast, &r1_bio->state))
1321 read_bio->bi_opf |= MD_FAILFAST;
1322 read_bio->bi_private = r1_bio;
1325 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1328 submit_bio_noacct(read_bio);
1331 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1332 int max_write_sectors)
1334 struct r1conf *conf = mddev->private;
1335 struct r1bio *r1_bio;
1337 struct bitmap *bitmap = mddev->bitmap;
1338 unsigned long flags;
1339 struct md_rdev *blocked_rdev;
1342 bool write_behind = false;
1343 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1345 if (mddev_is_clustered(mddev) &&
1346 md_cluster_ops->area_resyncing(mddev, WRITE,
1347 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1350 if (bio->bi_opf & REQ_NOWAIT) {
1351 bio_wouldblock_error(bio);
1355 prepare_to_wait(&conf->wait_barrier,
1357 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1358 bio->bi_iter.bi_sector,
1359 bio_end_sector(bio)))
1363 finish_wait(&conf->wait_barrier, &w);
1367 * Register the new request and wait if the reconstruction
1368 * thread has put up a bar for new requests.
1369 * Continue immediately if no resync is active currently.
1371 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1372 bio->bi_opf & REQ_NOWAIT)) {
1373 bio_wouldblock_error(bio);
1378 r1_bio = alloc_r1bio(mddev, bio);
1379 r1_bio->sectors = max_write_sectors;
1381 /* first select target devices under rcu_lock and
1382 * inc refcount on their rdev. Record them by setting
1384 * If there are known/acknowledged bad blocks on any device on
1385 * which we have seen a write error, we want to avoid writing those
1387 * This potentially requires several writes to write around
1388 * the bad blocks. Each set of writes gets it's own r1bio
1389 * with a set of bios attached.
1392 disks = conf->raid_disks * 2;
1393 blocked_rdev = NULL;
1394 max_sectors = r1_bio->sectors;
1395 for (i = 0; i < disks; i++) {
1396 struct md_rdev *rdev = conf->mirrors[i].rdev;
1399 * The write-behind io is only attempted on drives marked as
1400 * write-mostly, which means we could allocate write behind
1403 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1404 write_behind = true;
1406 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1407 atomic_inc(&rdev->nr_pending);
1408 blocked_rdev = rdev;
1411 r1_bio->bios[i] = NULL;
1412 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1413 if (i < conf->raid_disks)
1414 set_bit(R1BIO_Degraded, &r1_bio->state);
1418 atomic_inc(&rdev->nr_pending);
1419 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1424 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1425 &first_bad, &bad_sectors);
1427 /* mustn't write here until the bad block is
1429 set_bit(BlockedBadBlocks, &rdev->flags);
1430 blocked_rdev = rdev;
1433 if (is_bad && first_bad <= r1_bio->sector) {
1434 /* Cannot write here at all */
1435 bad_sectors -= (r1_bio->sector - first_bad);
1436 if (bad_sectors < max_sectors)
1437 /* mustn't write more than bad_sectors
1438 * to other devices yet
1440 max_sectors = bad_sectors;
1441 rdev_dec_pending(rdev, mddev);
1442 /* We don't set R1BIO_Degraded as that
1443 * only applies if the disk is
1444 * missing, so it might be re-added,
1445 * and we want to know to recover this
1447 * In this case the device is here,
1448 * and the fact that this chunk is not
1449 * in-sync is recorded in the bad
1455 int good_sectors = first_bad - r1_bio->sector;
1456 if (good_sectors < max_sectors)
1457 max_sectors = good_sectors;
1460 r1_bio->bios[i] = bio;
1463 if (unlikely(blocked_rdev)) {
1464 /* Wait for this device to become unblocked */
1467 for (j = 0; j < i; j++)
1468 if (r1_bio->bios[j])
1469 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1471 allow_barrier(conf, bio->bi_iter.bi_sector);
1473 if (bio->bi_opf & REQ_NOWAIT) {
1474 bio_wouldblock_error(bio);
1477 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1478 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1479 wait_barrier(conf, bio->bi_iter.bi_sector, false);
1484 * When using a bitmap, we may call alloc_behind_master_bio below.
1485 * alloc_behind_master_bio allocates a copy of the data payload a page
1486 * at a time and thus needs a new bio that can fit the whole payload
1487 * this bio in page sized chunks.
1489 if (write_behind && bitmap)
1490 max_sectors = min_t(int, max_sectors,
1491 BIO_MAX_VECS * (PAGE_SIZE >> 9));
1492 if (max_sectors < bio_sectors(bio)) {
1493 struct bio *split = bio_split(bio, max_sectors,
1494 GFP_NOIO, &conf->bio_split);
1495 bio_chain(split, bio);
1496 submit_bio_noacct(bio);
1498 r1_bio->master_bio = bio;
1499 r1_bio->sectors = max_sectors;
1502 md_account_bio(mddev, &bio);
1503 r1_bio->master_bio = bio;
1504 atomic_set(&r1_bio->remaining, 1);
1505 atomic_set(&r1_bio->behind_remaining, 0);
1509 for (i = 0; i < disks; i++) {
1510 struct bio *mbio = NULL;
1511 struct md_rdev *rdev = conf->mirrors[i].rdev;
1512 if (!r1_bio->bios[i])
1517 * Not if there are too many, or cannot
1518 * allocate memory, or a reader on WriteMostly
1519 * is waiting for behind writes to flush */
1520 if (bitmap && write_behind &&
1521 (atomic_read(&bitmap->behind_writes)
1522 < mddev->bitmap_info.max_write_behind) &&
1523 !waitqueue_active(&bitmap->behind_wait)) {
1524 alloc_behind_master_bio(r1_bio, bio);
1527 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1528 test_bit(R1BIO_BehindIO, &r1_bio->state));
1532 if (r1_bio->behind_master_bio) {
1533 mbio = bio_alloc_clone(rdev->bdev,
1534 r1_bio->behind_master_bio,
1535 GFP_NOIO, &mddev->bio_set);
1536 if (test_bit(CollisionCheck, &rdev->flags))
1537 wait_for_serialization(rdev, r1_bio);
1538 if (test_bit(WriteMostly, &rdev->flags))
1539 atomic_inc(&r1_bio->behind_remaining);
1541 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1544 if (mddev->serialize_policy)
1545 wait_for_serialization(rdev, r1_bio);
1548 r1_bio->bios[i] = mbio;
1550 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1551 mbio->bi_end_io = raid1_end_write_request;
1552 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1553 if (test_bit(FailFast, &rdev->flags) &&
1554 !test_bit(WriteMostly, &rdev->flags) &&
1555 conf->raid_disks - mddev->degraded > 1)
1556 mbio->bi_opf |= MD_FAILFAST;
1557 mbio->bi_private = r1_bio;
1559 atomic_inc(&r1_bio->remaining);
1562 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1564 /* flush_pending_writes() needs access to the rdev so...*/
1565 mbio->bi_bdev = (void *)rdev;
1566 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1567 spin_lock_irqsave(&conf->device_lock, flags);
1568 bio_list_add(&conf->pending_bio_list, mbio);
1569 spin_unlock_irqrestore(&conf->device_lock, flags);
1570 md_wakeup_thread(mddev->thread);
1574 r1_bio_write_done(r1_bio);
1576 /* In case raid1d snuck in to freeze_array */
1577 wake_up_barrier(conf);
1580 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1584 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1585 && md_flush_request(mddev, bio))
1589 * There is a limit to the maximum size, but
1590 * the read/write handler might find a lower limit
1591 * due to bad blocks. To avoid multiple splits,
1592 * we pass the maximum number of sectors down
1593 * and let the lower level perform the split.
1595 sectors = align_to_barrier_unit_end(
1596 bio->bi_iter.bi_sector, bio_sectors(bio));
1598 if (bio_data_dir(bio) == READ)
1599 raid1_read_request(mddev, bio, sectors, NULL);
1601 if (!md_write_start(mddev,bio))
1603 raid1_write_request(mddev, bio, sectors);
1608 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1610 struct r1conf *conf = mddev->private;
1613 lockdep_assert_held(&mddev->lock);
1615 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1616 conf->raid_disks - mddev->degraded);
1617 for (i = 0; i < conf->raid_disks; i++) {
1618 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1620 seq_printf(seq, "%s",
1621 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1623 seq_printf(seq, "]");
1627 * raid1_error() - RAID1 error handler.
1628 * @mddev: affected md device.
1629 * @rdev: member device to fail.
1631 * The routine acknowledges &rdev failure and determines new @mddev state.
1632 * If it failed, then:
1633 * - &MD_BROKEN flag is set in &mddev->flags.
1634 * - recovery is disabled.
1635 * Otherwise, it must be degraded:
1636 * - recovery is interrupted.
1637 * - &mddev->degraded is bumped.
1639 * @rdev is marked as &Faulty excluding case when array is failed and
1640 * &mddev->fail_last_dev is off.
1642 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1644 struct r1conf *conf = mddev->private;
1645 unsigned long flags;
1647 spin_lock_irqsave(&conf->device_lock, flags);
1649 if (test_bit(In_sync, &rdev->flags) &&
1650 (conf->raid_disks - mddev->degraded) == 1) {
1651 set_bit(MD_BROKEN, &mddev->flags);
1653 if (!mddev->fail_last_dev) {
1654 conf->recovery_disabled = mddev->recovery_disabled;
1655 spin_unlock_irqrestore(&conf->device_lock, flags);
1659 set_bit(Blocked, &rdev->flags);
1660 if (test_and_clear_bit(In_sync, &rdev->flags))
1662 set_bit(Faulty, &rdev->flags);
1663 spin_unlock_irqrestore(&conf->device_lock, flags);
1665 * if recovery is running, make sure it aborts.
1667 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1668 set_mask_bits(&mddev->sb_flags, 0,
1669 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1670 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1671 "md/raid1:%s: Operation continuing on %d devices.\n",
1672 mdname(mddev), rdev->bdev,
1673 mdname(mddev), conf->raid_disks - mddev->degraded);
1676 static void print_conf(struct r1conf *conf)
1680 pr_debug("RAID1 conf printout:\n");
1682 pr_debug("(!conf)\n");
1685 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1688 lockdep_assert_held(&conf->mddev->reconfig_mutex);
1689 for (i = 0; i < conf->raid_disks; i++) {
1690 struct md_rdev *rdev = conf->mirrors[i].rdev;
1692 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1693 i, !test_bit(In_sync, &rdev->flags),
1694 !test_bit(Faulty, &rdev->flags),
1699 static void close_sync(struct r1conf *conf)
1703 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1704 _wait_barrier(conf, idx, false);
1705 _allow_barrier(conf, idx);
1708 mempool_exit(&conf->r1buf_pool);
1711 static int raid1_spare_active(struct mddev *mddev)
1714 struct r1conf *conf = mddev->private;
1716 unsigned long flags;
1719 * Find all failed disks within the RAID1 configuration
1720 * and mark them readable.
1721 * Called under mddev lock, so rcu protection not needed.
1722 * device_lock used to avoid races with raid1_end_read_request
1723 * which expects 'In_sync' flags and ->degraded to be consistent.
1725 spin_lock_irqsave(&conf->device_lock, flags);
1726 for (i = 0; i < conf->raid_disks; i++) {
1727 struct md_rdev *rdev = conf->mirrors[i].rdev;
1728 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1730 && !test_bit(Candidate, &repl->flags)
1731 && repl->recovery_offset == MaxSector
1732 && !test_bit(Faulty, &repl->flags)
1733 && !test_and_set_bit(In_sync, &repl->flags)) {
1734 /* replacement has just become active */
1736 !test_and_clear_bit(In_sync, &rdev->flags))
1739 /* Replaced device not technically
1740 * faulty, but we need to be sure
1741 * it gets removed and never re-added
1743 set_bit(Faulty, &rdev->flags);
1744 sysfs_notify_dirent_safe(
1749 && rdev->recovery_offset == MaxSector
1750 && !test_bit(Faulty, &rdev->flags)
1751 && !test_and_set_bit(In_sync, &rdev->flags)) {
1753 sysfs_notify_dirent_safe(rdev->sysfs_state);
1756 mddev->degraded -= count;
1757 spin_unlock_irqrestore(&conf->device_lock, flags);
1763 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1765 struct r1conf *conf = mddev->private;
1767 int mirror = 0, repl_slot = -1;
1768 struct raid1_info *p;
1770 int last = conf->raid_disks - 1;
1772 if (mddev->recovery_disabled == conf->recovery_disabled)
1775 if (md_integrity_add_rdev(rdev, mddev))
1778 if (rdev->raid_disk >= 0)
1779 first = last = rdev->raid_disk;
1782 * find the disk ... but prefer rdev->saved_raid_disk
1785 if (rdev->saved_raid_disk >= 0 &&
1786 rdev->saved_raid_disk >= first &&
1787 rdev->saved_raid_disk < conf->raid_disks &&
1788 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1789 first = last = rdev->saved_raid_disk;
1791 for (mirror = first; mirror <= last; mirror++) {
1792 p = conf->mirrors + mirror;
1795 disk_stack_limits(mddev->gendisk, rdev->bdev,
1796 rdev->data_offset << 9);
1798 p->head_position = 0;
1799 rdev->raid_disk = mirror;
1801 /* As all devices are equivalent, we don't need a full recovery
1802 * if this was recently any drive of the array
1804 if (rdev->saved_raid_disk < 0)
1806 WRITE_ONCE(p->rdev, rdev);
1809 if (test_bit(WantReplacement, &p->rdev->flags) &&
1810 p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1814 if (err && repl_slot >= 0) {
1815 /* Add this device as a replacement */
1816 p = conf->mirrors + repl_slot;
1817 clear_bit(In_sync, &rdev->flags);
1818 set_bit(Replacement, &rdev->flags);
1819 rdev->raid_disk = repl_slot;
1822 WRITE_ONCE(p[conf->raid_disks].rdev, rdev);
1829 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1831 struct r1conf *conf = mddev->private;
1833 int number = rdev->raid_disk;
1834 struct raid1_info *p = conf->mirrors + number;
1836 if (unlikely(number >= conf->raid_disks))
1839 if (rdev != p->rdev)
1840 p = conf->mirrors + conf->raid_disks + number;
1843 if (rdev == p->rdev) {
1844 if (test_bit(In_sync, &rdev->flags) ||
1845 atomic_read(&rdev->nr_pending)) {
1849 /* Only remove non-faulty devices if recovery
1852 if (!test_bit(Faulty, &rdev->flags) &&
1853 mddev->recovery_disabled != conf->recovery_disabled &&
1854 mddev->degraded < conf->raid_disks) {
1858 WRITE_ONCE(p->rdev, NULL);
1859 if (conf->mirrors[conf->raid_disks + number].rdev) {
1860 /* We just removed a device that is being replaced.
1861 * Move down the replacement. We drain all IO before
1862 * doing this to avoid confusion.
1864 struct md_rdev *repl =
1865 conf->mirrors[conf->raid_disks + number].rdev;
1866 freeze_array(conf, 0);
1867 if (atomic_read(&repl->nr_pending)) {
1868 /* It means that some queued IO of retry_list
1869 * hold repl. Thus, we cannot set replacement
1870 * as NULL, avoiding rdev NULL pointer
1871 * dereference in sync_request_write and
1872 * handle_write_finished.
1875 unfreeze_array(conf);
1878 clear_bit(Replacement, &repl->flags);
1879 WRITE_ONCE(p->rdev, repl);
1880 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1881 unfreeze_array(conf);
1884 clear_bit(WantReplacement, &rdev->flags);
1885 err = md_integrity_register(mddev);
1893 static void end_sync_read(struct bio *bio)
1895 struct r1bio *r1_bio = get_resync_r1bio(bio);
1897 update_head_pos(r1_bio->read_disk, r1_bio);
1900 * we have read a block, now it needs to be re-written,
1901 * or re-read if the read failed.
1902 * We don't do much here, just schedule handling by raid1d
1904 if (!bio->bi_status)
1905 set_bit(R1BIO_Uptodate, &r1_bio->state);
1907 if (atomic_dec_and_test(&r1_bio->remaining))
1908 reschedule_retry(r1_bio);
1911 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1913 sector_t sync_blocks = 0;
1914 sector_t s = r1_bio->sector;
1915 long sectors_to_go = r1_bio->sectors;
1917 /* make sure these bits don't get cleared. */
1919 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1921 sectors_to_go -= sync_blocks;
1922 } while (sectors_to_go > 0);
1925 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1927 if (atomic_dec_and_test(&r1_bio->remaining)) {
1928 struct mddev *mddev = r1_bio->mddev;
1929 int s = r1_bio->sectors;
1931 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1932 test_bit(R1BIO_WriteError, &r1_bio->state))
1933 reschedule_retry(r1_bio);
1936 md_done_sync(mddev, s, uptodate);
1941 static void end_sync_write(struct bio *bio)
1943 int uptodate = !bio->bi_status;
1944 struct r1bio *r1_bio = get_resync_r1bio(bio);
1945 struct mddev *mddev = r1_bio->mddev;
1946 struct r1conf *conf = mddev->private;
1949 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1952 abort_sync_write(mddev, r1_bio);
1953 set_bit(WriteErrorSeen, &rdev->flags);
1954 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1955 set_bit(MD_RECOVERY_NEEDED, &
1957 set_bit(R1BIO_WriteError, &r1_bio->state);
1958 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1959 &first_bad, &bad_sectors) &&
1960 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1963 &first_bad, &bad_sectors)
1965 set_bit(R1BIO_MadeGood, &r1_bio->state);
1967 put_sync_write_buf(r1_bio, uptodate);
1970 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1971 int sectors, struct page *page, blk_opf_t rw)
1973 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1976 if (rw == REQ_OP_WRITE) {
1977 set_bit(WriteErrorSeen, &rdev->flags);
1978 if (!test_and_set_bit(WantReplacement,
1980 set_bit(MD_RECOVERY_NEEDED, &
1981 rdev->mddev->recovery);
1983 /* need to record an error - either for the block or the device */
1984 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1985 md_error(rdev->mddev, rdev);
1989 static int fix_sync_read_error(struct r1bio *r1_bio)
1991 /* Try some synchronous reads of other devices to get
1992 * good data, much like with normal read errors. Only
1993 * read into the pages we already have so we don't
1994 * need to re-issue the read request.
1995 * We don't need to freeze the array, because being in an
1996 * active sync request, there is no normal IO, and
1997 * no overlapping syncs.
1998 * We don't need to check is_badblock() again as we
1999 * made sure that anything with a bad block in range
2000 * will have bi_end_io clear.
2002 struct mddev *mddev = r1_bio->mddev;
2003 struct r1conf *conf = mddev->private;
2004 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2005 struct page **pages = get_resync_pages(bio)->pages;
2006 sector_t sect = r1_bio->sector;
2007 int sectors = r1_bio->sectors;
2009 struct md_rdev *rdev;
2011 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2012 if (test_bit(FailFast, &rdev->flags)) {
2013 /* Don't try recovering from here - just fail it
2014 * ... unless it is the last working device of course */
2015 md_error(mddev, rdev);
2016 if (test_bit(Faulty, &rdev->flags))
2017 /* Don't try to read from here, but make sure
2018 * put_buf does it's thing
2020 bio->bi_end_io = end_sync_write;
2025 int d = r1_bio->read_disk;
2029 if (s > (PAGE_SIZE>>9))
2032 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2033 /* No rcu protection needed here devices
2034 * can only be removed when no resync is
2035 * active, and resync is currently active
2037 rdev = conf->mirrors[d].rdev;
2038 if (sync_page_io(rdev, sect, s<<9,
2040 REQ_OP_READ, false)) {
2046 if (d == conf->raid_disks * 2)
2048 } while (!success && d != r1_bio->read_disk);
2052 /* Cannot read from anywhere, this block is lost.
2053 * Record a bad block on each device. If that doesn't
2054 * work just disable and interrupt the recovery.
2055 * Don't fail devices as that won't really help.
2057 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2058 mdname(mddev), bio->bi_bdev,
2059 (unsigned long long)r1_bio->sector);
2060 for (d = 0; d < conf->raid_disks * 2; d++) {
2061 rdev = conf->mirrors[d].rdev;
2062 if (!rdev || test_bit(Faulty, &rdev->flags))
2064 if (!rdev_set_badblocks(rdev, sect, s, 0))
2068 conf->recovery_disabled =
2069 mddev->recovery_disabled;
2070 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2071 md_done_sync(mddev, r1_bio->sectors, 0);
2083 /* write it back and re-read */
2084 while (d != r1_bio->read_disk) {
2086 d = conf->raid_disks * 2;
2088 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2090 rdev = conf->mirrors[d].rdev;
2091 if (r1_sync_page_io(rdev, sect, s,
2093 REQ_OP_WRITE) == 0) {
2094 r1_bio->bios[d]->bi_end_io = NULL;
2095 rdev_dec_pending(rdev, mddev);
2099 while (d != r1_bio->read_disk) {
2101 d = conf->raid_disks * 2;
2103 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2105 rdev = conf->mirrors[d].rdev;
2106 if (r1_sync_page_io(rdev, sect, s,
2109 atomic_add(s, &rdev->corrected_errors);
2115 set_bit(R1BIO_Uptodate, &r1_bio->state);
2120 static void process_checks(struct r1bio *r1_bio)
2122 /* We have read all readable devices. If we haven't
2123 * got the block, then there is no hope left.
2124 * If we have, then we want to do a comparison
2125 * and skip the write if everything is the same.
2126 * If any blocks failed to read, then we need to
2127 * attempt an over-write
2129 struct mddev *mddev = r1_bio->mddev;
2130 struct r1conf *conf = mddev->private;
2135 /* Fix variable parts of all bios */
2136 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2137 for (i = 0; i < conf->raid_disks * 2; i++) {
2138 blk_status_t status;
2139 struct bio *b = r1_bio->bios[i];
2140 struct resync_pages *rp = get_resync_pages(b);
2141 if (b->bi_end_io != end_sync_read)
2143 /* fixup the bio for reuse, but preserve errno */
2144 status = b->bi_status;
2145 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2146 b->bi_status = status;
2147 b->bi_iter.bi_sector = r1_bio->sector +
2148 conf->mirrors[i].rdev->data_offset;
2149 b->bi_end_io = end_sync_read;
2150 rp->raid_bio = r1_bio;
2153 /* initialize bvec table again */
2154 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2156 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2157 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2158 !r1_bio->bios[primary]->bi_status) {
2159 r1_bio->bios[primary]->bi_end_io = NULL;
2160 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2163 r1_bio->read_disk = primary;
2164 for (i = 0; i < conf->raid_disks * 2; i++) {
2166 struct bio *pbio = r1_bio->bios[primary];
2167 struct bio *sbio = r1_bio->bios[i];
2168 blk_status_t status = sbio->bi_status;
2169 struct page **ppages = get_resync_pages(pbio)->pages;
2170 struct page **spages = get_resync_pages(sbio)->pages;
2172 int page_len[RESYNC_PAGES] = { 0 };
2173 struct bvec_iter_all iter_all;
2175 if (sbio->bi_end_io != end_sync_read)
2177 /* Now we can 'fixup' the error value */
2178 sbio->bi_status = 0;
2180 bio_for_each_segment_all(bi, sbio, iter_all)
2181 page_len[j++] = bi->bv_len;
2184 for (j = vcnt; j-- ; ) {
2185 if (memcmp(page_address(ppages[j]),
2186 page_address(spages[j]),
2193 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2194 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2196 /* No need to write to this device. */
2197 sbio->bi_end_io = NULL;
2198 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2202 bio_copy_data(sbio, pbio);
2206 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2208 struct r1conf *conf = mddev->private;
2210 int disks = conf->raid_disks * 2;
2213 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2214 /* ouch - failed to read all of that. */
2215 if (!fix_sync_read_error(r1_bio))
2218 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2219 process_checks(r1_bio);
2224 atomic_set(&r1_bio->remaining, 1);
2225 for (i = 0; i < disks ; i++) {
2226 wbio = r1_bio->bios[i];
2227 if (wbio->bi_end_io == NULL ||
2228 (wbio->bi_end_io == end_sync_read &&
2229 (i == r1_bio->read_disk ||
2230 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2232 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2233 abort_sync_write(mddev, r1_bio);
2237 wbio->bi_opf = REQ_OP_WRITE;
2238 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2239 wbio->bi_opf |= MD_FAILFAST;
2241 wbio->bi_end_io = end_sync_write;
2242 atomic_inc(&r1_bio->remaining);
2243 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2245 submit_bio_noacct(wbio);
2248 put_sync_write_buf(r1_bio, 1);
2252 * This is a kernel thread which:
2254 * 1. Retries failed read operations on working mirrors.
2255 * 2. Updates the raid superblock when problems encounter.
2256 * 3. Performs writes following reads for array synchronising.
2259 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2261 sector_t sect = r1_bio->sector;
2262 int sectors = r1_bio->sectors;
2263 int read_disk = r1_bio->read_disk;
2264 struct mddev *mddev = conf->mddev;
2265 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2267 if (exceed_read_errors(mddev, rdev)) {
2268 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2278 if (s > (PAGE_SIZE>>9))
2285 rdev = conf->mirrors[d].rdev;
2287 (test_bit(In_sync, &rdev->flags) ||
2288 (!test_bit(Faulty, &rdev->flags) &&
2289 rdev->recovery_offset >= sect + s)) &&
2290 is_badblock(rdev, sect, s,
2291 &first_bad, &bad_sectors) == 0) {
2292 atomic_inc(&rdev->nr_pending);
2293 if (sync_page_io(rdev, sect, s<<9,
2294 conf->tmppage, REQ_OP_READ, false))
2296 rdev_dec_pending(rdev, mddev);
2302 if (d == conf->raid_disks * 2)
2304 } while (d != read_disk);
2307 /* Cannot read from anywhere - mark it bad */
2308 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2309 if (!rdev_set_badblocks(rdev, sect, s, 0))
2310 md_error(mddev, rdev);
2313 /* write it back and re-read */
2315 while (d != read_disk) {
2317 d = conf->raid_disks * 2;
2319 rdev = conf->mirrors[d].rdev;
2321 !test_bit(Faulty, &rdev->flags)) {
2322 atomic_inc(&rdev->nr_pending);
2323 r1_sync_page_io(rdev, sect, s,
2324 conf->tmppage, REQ_OP_WRITE);
2325 rdev_dec_pending(rdev, mddev);
2329 while (d != read_disk) {
2331 d = conf->raid_disks * 2;
2333 rdev = conf->mirrors[d].rdev;
2335 !test_bit(Faulty, &rdev->flags)) {
2336 atomic_inc(&rdev->nr_pending);
2337 if (r1_sync_page_io(rdev, sect, s,
2338 conf->tmppage, REQ_OP_READ)) {
2339 atomic_add(s, &rdev->corrected_errors);
2340 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2342 (unsigned long long)(sect +
2346 rdev_dec_pending(rdev, mddev);
2354 static int narrow_write_error(struct r1bio *r1_bio, int i)
2356 struct mddev *mddev = r1_bio->mddev;
2357 struct r1conf *conf = mddev->private;
2358 struct md_rdev *rdev = conf->mirrors[i].rdev;
2360 /* bio has the data to be written to device 'i' where
2361 * we just recently had a write error.
2362 * We repeatedly clone the bio and trim down to one block,
2363 * then try the write. Where the write fails we record
2365 * It is conceivable that the bio doesn't exactly align with
2366 * blocks. We must handle this somehow.
2368 * We currently own a reference on the rdev.
2374 int sect_to_write = r1_bio->sectors;
2377 if (rdev->badblocks.shift < 0)
2380 block_sectors = roundup(1 << rdev->badblocks.shift,
2381 bdev_logical_block_size(rdev->bdev) >> 9);
2382 sector = r1_bio->sector;
2383 sectors = ((sector + block_sectors)
2384 & ~(sector_t)(block_sectors - 1))
2387 while (sect_to_write) {
2389 if (sectors > sect_to_write)
2390 sectors = sect_to_write;
2391 /* Write at 'sector' for 'sectors'*/
2393 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2394 wbio = bio_alloc_clone(rdev->bdev,
2395 r1_bio->behind_master_bio,
2396 GFP_NOIO, &mddev->bio_set);
2398 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2399 GFP_NOIO, &mddev->bio_set);
2402 wbio->bi_opf = REQ_OP_WRITE;
2403 wbio->bi_iter.bi_sector = r1_bio->sector;
2404 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2406 bio_trim(wbio, sector - r1_bio->sector, sectors);
2407 wbio->bi_iter.bi_sector += rdev->data_offset;
2409 if (submit_bio_wait(wbio) < 0)
2411 ok = rdev_set_badblocks(rdev, sector,
2416 sect_to_write -= sectors;
2418 sectors = block_sectors;
2423 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2426 int s = r1_bio->sectors;
2427 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2428 struct md_rdev *rdev = conf->mirrors[m].rdev;
2429 struct bio *bio = r1_bio->bios[m];
2430 if (bio->bi_end_io == NULL)
2432 if (!bio->bi_status &&
2433 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2434 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2436 if (bio->bi_status &&
2437 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2438 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2439 md_error(conf->mddev, rdev);
2443 md_done_sync(conf->mddev, s, 1);
2446 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2451 for (m = 0; m < conf->raid_disks * 2 ; m++)
2452 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2453 struct md_rdev *rdev = conf->mirrors[m].rdev;
2454 rdev_clear_badblocks(rdev,
2456 r1_bio->sectors, 0);
2457 rdev_dec_pending(rdev, conf->mddev);
2458 } else if (r1_bio->bios[m] != NULL) {
2459 /* This drive got a write error. We need to
2460 * narrow down and record precise write
2464 if (!narrow_write_error(r1_bio, m)) {
2465 md_error(conf->mddev,
2466 conf->mirrors[m].rdev);
2467 /* an I/O failed, we can't clear the bitmap */
2468 set_bit(R1BIO_Degraded, &r1_bio->state);
2470 rdev_dec_pending(conf->mirrors[m].rdev,
2474 spin_lock_irq(&conf->device_lock);
2475 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2476 idx = sector_to_idx(r1_bio->sector);
2477 atomic_inc(&conf->nr_queued[idx]);
2478 spin_unlock_irq(&conf->device_lock);
2480 * In case freeze_array() is waiting for condition
2481 * get_unqueued_pending() == extra to be true.
2483 wake_up(&conf->wait_barrier);
2484 md_wakeup_thread(conf->mddev->thread);
2486 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2487 close_write(r1_bio);
2488 raid_end_bio_io(r1_bio);
2492 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2494 struct mddev *mddev = conf->mddev;
2496 struct md_rdev *rdev;
2499 clear_bit(R1BIO_ReadError, &r1_bio->state);
2500 /* we got a read error. Maybe the drive is bad. Maybe just
2501 * the block and we can fix it.
2502 * We freeze all other IO, and try reading the block from
2503 * other devices. When we find one, we re-write
2504 * and check it that fixes the read error.
2505 * This is all done synchronously while the array is
2509 bio = r1_bio->bios[r1_bio->read_disk];
2511 r1_bio->bios[r1_bio->read_disk] = NULL;
2513 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2515 && !test_bit(FailFast, &rdev->flags)) {
2516 freeze_array(conf, 1);
2517 fix_read_error(conf, r1_bio);
2518 unfreeze_array(conf);
2519 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2520 md_error(mddev, rdev);
2522 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2525 rdev_dec_pending(rdev, conf->mddev);
2526 sector = r1_bio->sector;
2527 bio = r1_bio->master_bio;
2529 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2531 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2532 allow_barrier(conf, sector);
2535 static void raid1d(struct md_thread *thread)
2537 struct mddev *mddev = thread->mddev;
2538 struct r1bio *r1_bio;
2539 unsigned long flags;
2540 struct r1conf *conf = mddev->private;
2541 struct list_head *head = &conf->retry_list;
2542 struct blk_plug plug;
2545 md_check_recovery(mddev);
2547 if (!list_empty_careful(&conf->bio_end_io_list) &&
2548 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2550 spin_lock_irqsave(&conf->device_lock, flags);
2551 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2552 list_splice_init(&conf->bio_end_io_list, &tmp);
2553 spin_unlock_irqrestore(&conf->device_lock, flags);
2554 while (!list_empty(&tmp)) {
2555 r1_bio = list_first_entry(&tmp, struct r1bio,
2557 list_del(&r1_bio->retry_list);
2558 idx = sector_to_idx(r1_bio->sector);
2559 atomic_dec(&conf->nr_queued[idx]);
2560 if (mddev->degraded)
2561 set_bit(R1BIO_Degraded, &r1_bio->state);
2562 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2563 close_write(r1_bio);
2564 raid_end_bio_io(r1_bio);
2568 blk_start_plug(&plug);
2571 flush_pending_writes(conf);
2573 spin_lock_irqsave(&conf->device_lock, flags);
2574 if (list_empty(head)) {
2575 spin_unlock_irqrestore(&conf->device_lock, flags);
2578 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2579 list_del(head->prev);
2580 idx = sector_to_idx(r1_bio->sector);
2581 atomic_dec(&conf->nr_queued[idx]);
2582 spin_unlock_irqrestore(&conf->device_lock, flags);
2584 mddev = r1_bio->mddev;
2585 conf = mddev->private;
2586 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2587 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2588 test_bit(R1BIO_WriteError, &r1_bio->state))
2589 handle_sync_write_finished(conf, r1_bio);
2591 sync_request_write(mddev, r1_bio);
2592 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2593 test_bit(R1BIO_WriteError, &r1_bio->state))
2594 handle_write_finished(conf, r1_bio);
2595 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2596 handle_read_error(conf, r1_bio);
2601 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2602 md_check_recovery(mddev);
2604 blk_finish_plug(&plug);
2607 static int init_resync(struct r1conf *conf)
2611 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2612 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2614 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2615 r1buf_pool_free, conf->poolinfo);
2618 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2620 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2621 struct resync_pages *rps;
2625 for (i = conf->poolinfo->raid_disks; i--; ) {
2626 bio = r1bio->bios[i];
2627 rps = bio->bi_private;
2628 bio_reset(bio, NULL, 0);
2629 bio->bi_private = rps;
2631 r1bio->master_bio = NULL;
2636 * perform a "sync" on one "block"
2638 * We need to make sure that no normal I/O request - particularly write
2639 * requests - conflict with active sync requests.
2641 * This is achieved by tracking pending requests and a 'barrier' concept
2642 * that can be installed to exclude normal IO requests.
2645 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2648 struct r1conf *conf = mddev->private;
2649 struct r1bio *r1_bio;
2651 sector_t max_sector, nr_sectors;
2655 int write_targets = 0, read_targets = 0;
2656 sector_t sync_blocks;
2657 int still_degraded = 0;
2658 int good_sectors = RESYNC_SECTORS;
2659 int min_bad = 0; /* number of sectors that are bad in all devices */
2660 int idx = sector_to_idx(sector_nr);
2663 if (!mempool_initialized(&conf->r1buf_pool))
2664 if (init_resync(conf))
2667 max_sector = mddev->dev_sectors;
2668 if (sector_nr >= max_sector) {
2669 /* If we aborted, we need to abort the
2670 * sync on the 'current' bitmap chunk (there will
2671 * only be one in raid1 resync.
2672 * We can find the current addess in mddev->curr_resync
2674 if (mddev->curr_resync < max_sector) /* aborted */
2675 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2677 else /* completed sync */
2680 md_bitmap_close_sync(mddev->bitmap);
2683 if (mddev_is_clustered(mddev)) {
2684 conf->cluster_sync_low = 0;
2685 conf->cluster_sync_high = 0;
2690 if (mddev->bitmap == NULL &&
2691 mddev->recovery_cp == MaxSector &&
2692 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2693 conf->fullsync == 0) {
2695 return max_sector - sector_nr;
2697 /* before building a request, check if we can skip these blocks..
2698 * This call the bitmap_start_sync doesn't actually record anything
2700 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2701 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2702 /* We can skip this block, and probably several more */
2708 * If there is non-resync activity waiting for a turn, then let it
2709 * though before starting on this new sync request.
2711 if (atomic_read(&conf->nr_waiting[idx]))
2712 schedule_timeout_uninterruptible(1);
2714 /* we are incrementing sector_nr below. To be safe, we check against
2715 * sector_nr + two times RESYNC_SECTORS
2718 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2719 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2722 if (raise_barrier(conf, sector_nr))
2725 r1_bio = raid1_alloc_init_r1buf(conf);
2728 * If we get a correctably read error during resync or recovery,
2729 * we might want to read from a different device. So we
2730 * flag all drives that could conceivably be read from for READ,
2731 * and any others (which will be non-In_sync devices) for WRITE.
2732 * If a read fails, we try reading from something else for which READ
2736 r1_bio->mddev = mddev;
2737 r1_bio->sector = sector_nr;
2739 set_bit(R1BIO_IsSync, &r1_bio->state);
2740 /* make sure good_sectors won't go across barrier unit boundary */
2741 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2743 for (i = 0; i < conf->raid_disks * 2; i++) {
2744 struct md_rdev *rdev;
2745 bio = r1_bio->bios[i];
2747 rdev = conf->mirrors[i].rdev;
2749 test_bit(Faulty, &rdev->flags)) {
2750 if (i < conf->raid_disks)
2752 } else if (!test_bit(In_sync, &rdev->flags)) {
2753 bio->bi_opf = REQ_OP_WRITE;
2754 bio->bi_end_io = end_sync_write;
2757 /* may need to read from here */
2758 sector_t first_bad = MaxSector;
2761 if (is_badblock(rdev, sector_nr, good_sectors,
2762 &first_bad, &bad_sectors)) {
2763 if (first_bad > sector_nr)
2764 good_sectors = first_bad - sector_nr;
2766 bad_sectors -= (sector_nr - first_bad);
2768 min_bad > bad_sectors)
2769 min_bad = bad_sectors;
2772 if (sector_nr < first_bad) {
2773 if (test_bit(WriteMostly, &rdev->flags)) {
2780 bio->bi_opf = REQ_OP_READ;
2781 bio->bi_end_io = end_sync_read;
2783 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2784 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2785 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2787 * The device is suitable for reading (InSync),
2788 * but has bad block(s) here. Let's try to correct them,
2789 * if we are doing resync or repair. Otherwise, leave
2790 * this device alone for this sync request.
2792 bio->bi_opf = REQ_OP_WRITE;
2793 bio->bi_end_io = end_sync_write;
2797 if (rdev && bio->bi_end_io) {
2798 atomic_inc(&rdev->nr_pending);
2799 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2800 bio_set_dev(bio, rdev->bdev);
2801 if (test_bit(FailFast, &rdev->flags))
2802 bio->bi_opf |= MD_FAILFAST;
2807 r1_bio->read_disk = disk;
2809 if (read_targets == 0 && min_bad > 0) {
2810 /* These sectors are bad on all InSync devices, so we
2811 * need to mark them bad on all write targets
2814 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2815 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2816 struct md_rdev *rdev = conf->mirrors[i].rdev;
2817 ok = rdev_set_badblocks(rdev, sector_nr,
2821 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2826 /* Cannot record the badblocks, so need to
2828 * If there are multiple read targets, could just
2829 * fail the really bad ones ???
2831 conf->recovery_disabled = mddev->recovery_disabled;
2832 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2838 if (min_bad > 0 && min_bad < good_sectors) {
2839 /* only resync enough to reach the next bad->good
2841 good_sectors = min_bad;
2844 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2845 /* extra read targets are also write targets */
2846 write_targets += read_targets-1;
2848 if (write_targets == 0 || read_targets == 0) {
2849 /* There is nowhere to write, so all non-sync
2850 * drives must be failed - so we are finished
2854 max_sector = sector_nr + min_bad;
2855 rv = max_sector - sector_nr;
2861 if (max_sector > mddev->resync_max)
2862 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2863 if (max_sector > sector_nr + good_sectors)
2864 max_sector = sector_nr + good_sectors;
2869 int len = PAGE_SIZE;
2870 if (sector_nr + (len>>9) > max_sector)
2871 len = (max_sector - sector_nr) << 9;
2874 if (sync_blocks == 0) {
2875 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2876 &sync_blocks, still_degraded) &&
2878 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2880 if ((len >> 9) > sync_blocks)
2881 len = sync_blocks<<9;
2884 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2885 struct resync_pages *rp;
2887 bio = r1_bio->bios[i];
2888 rp = get_resync_pages(bio);
2889 if (bio->bi_end_io) {
2890 page = resync_fetch_page(rp, page_idx);
2893 * won't fail because the vec table is big
2894 * enough to hold all these pages
2896 __bio_add_page(bio, page, len, 0);
2899 nr_sectors += len>>9;
2900 sector_nr += len>>9;
2901 sync_blocks -= (len>>9);
2902 } while (++page_idx < RESYNC_PAGES);
2904 r1_bio->sectors = nr_sectors;
2906 if (mddev_is_clustered(mddev) &&
2907 conf->cluster_sync_high < sector_nr + nr_sectors) {
2908 conf->cluster_sync_low = mddev->curr_resync_completed;
2909 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2910 /* Send resync message */
2911 md_cluster_ops->resync_info_update(mddev,
2912 conf->cluster_sync_low,
2913 conf->cluster_sync_high);
2916 /* For a user-requested sync, we read all readable devices and do a
2919 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2920 atomic_set(&r1_bio->remaining, read_targets);
2921 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2922 bio = r1_bio->bios[i];
2923 if (bio->bi_end_io == end_sync_read) {
2925 md_sync_acct_bio(bio, nr_sectors);
2926 if (read_targets == 1)
2927 bio->bi_opf &= ~MD_FAILFAST;
2928 submit_bio_noacct(bio);
2932 atomic_set(&r1_bio->remaining, 1);
2933 bio = r1_bio->bios[r1_bio->read_disk];
2934 md_sync_acct_bio(bio, nr_sectors);
2935 if (read_targets == 1)
2936 bio->bi_opf &= ~MD_FAILFAST;
2937 submit_bio_noacct(bio);
2942 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2947 return mddev->dev_sectors;
2950 static struct r1conf *setup_conf(struct mddev *mddev)
2952 struct r1conf *conf;
2954 struct raid1_info *disk;
2955 struct md_rdev *rdev;
2958 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2962 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2963 sizeof(atomic_t), GFP_KERNEL);
2964 if (!conf->nr_pending)
2967 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2968 sizeof(atomic_t), GFP_KERNEL);
2969 if (!conf->nr_waiting)
2972 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2973 sizeof(atomic_t), GFP_KERNEL);
2974 if (!conf->nr_queued)
2977 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2978 sizeof(atomic_t), GFP_KERNEL);
2982 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2983 mddev->raid_disks, 2),
2988 conf->tmppage = alloc_page(GFP_KERNEL);
2992 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2993 if (!conf->poolinfo)
2995 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2996 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2997 rbio_pool_free, conf->poolinfo);
3001 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3005 conf->poolinfo->mddev = mddev;
3008 spin_lock_init(&conf->device_lock);
3009 rdev_for_each(rdev, mddev) {
3010 int disk_idx = rdev->raid_disk;
3011 if (disk_idx >= mddev->raid_disks
3014 if (test_bit(Replacement, &rdev->flags))
3015 disk = conf->mirrors + mddev->raid_disks + disk_idx;
3017 disk = conf->mirrors + disk_idx;
3022 disk->head_position = 0;
3023 disk->seq_start = MaxSector;
3025 conf->raid_disks = mddev->raid_disks;
3026 conf->mddev = mddev;
3027 INIT_LIST_HEAD(&conf->retry_list);
3028 INIT_LIST_HEAD(&conf->bio_end_io_list);
3030 spin_lock_init(&conf->resync_lock);
3031 init_waitqueue_head(&conf->wait_barrier);
3033 bio_list_init(&conf->pending_bio_list);
3034 conf->recovery_disabled = mddev->recovery_disabled - 1;
3037 for (i = 0; i < conf->raid_disks * 2; i++) {
3039 disk = conf->mirrors + i;
3041 if (i < conf->raid_disks &&
3042 disk[conf->raid_disks].rdev) {
3043 /* This slot has a replacement. */
3045 /* No original, just make the replacement
3046 * a recovering spare
3049 disk[conf->raid_disks].rdev;
3050 disk[conf->raid_disks].rdev = NULL;
3051 } else if (!test_bit(In_sync, &disk->rdev->flags))
3052 /* Original is not in_sync - bad */
3057 !test_bit(In_sync, &disk->rdev->flags)) {
3058 disk->head_position = 0;
3060 (disk->rdev->saved_raid_disk < 0))
3066 rcu_assign_pointer(conf->thread,
3067 md_register_thread(raid1d, mddev, "raid1"));
3075 mempool_exit(&conf->r1bio_pool);
3076 kfree(conf->mirrors);
3077 safe_put_page(conf->tmppage);
3078 kfree(conf->poolinfo);
3079 kfree(conf->nr_pending);
3080 kfree(conf->nr_waiting);
3081 kfree(conf->nr_queued);
3082 kfree(conf->barrier);
3083 bioset_exit(&conf->bio_split);
3086 return ERR_PTR(err);
3089 static void raid1_free(struct mddev *mddev, void *priv);
3090 static int raid1_run(struct mddev *mddev)
3092 struct r1conf *conf;
3094 struct md_rdev *rdev;
3097 if (mddev->level != 1) {
3098 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3099 mdname(mddev), mddev->level);
3102 if (mddev->reshape_position != MaxSector) {
3103 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3109 * copy the already verified devices into our private RAID1
3110 * bookkeeping area. [whatever we allocate in run(),
3111 * should be freed in raid1_free()]
3113 if (mddev->private == NULL)
3114 conf = setup_conf(mddev);
3116 conf = mddev->private;
3119 return PTR_ERR(conf);
3122 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3124 rdev_for_each(rdev, mddev) {
3125 if (!mddev->gendisk)
3127 disk_stack_limits(mddev->gendisk, rdev->bdev,
3128 rdev->data_offset << 9);
3131 mddev->degraded = 0;
3132 for (i = 0; i < conf->raid_disks; i++)
3133 if (conf->mirrors[i].rdev == NULL ||
3134 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3135 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3138 * RAID1 needs at least one disk in active
3140 if (conf->raid_disks - mddev->degraded < 1) {
3141 md_unregister_thread(mddev, &conf->thread);
3146 if (conf->raid_disks - mddev->degraded == 1)
3147 mddev->recovery_cp = MaxSector;
3149 if (mddev->recovery_cp != MaxSector)
3150 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3152 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3153 mdname(mddev), mddev->raid_disks - mddev->degraded,
3157 * Ok, everything is just fine now
3159 rcu_assign_pointer(mddev->thread, conf->thread);
3160 rcu_assign_pointer(conf->thread, NULL);
3161 mddev->private = conf;
3162 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3164 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3166 ret = md_integrity_register(mddev);
3168 md_unregister_thread(mddev, &mddev->thread);
3174 raid1_free(mddev, conf);
3178 static void raid1_free(struct mddev *mddev, void *priv)
3180 struct r1conf *conf = priv;
3182 mempool_exit(&conf->r1bio_pool);
3183 kfree(conf->mirrors);
3184 safe_put_page(conf->tmppage);
3185 kfree(conf->poolinfo);
3186 kfree(conf->nr_pending);
3187 kfree(conf->nr_waiting);
3188 kfree(conf->nr_queued);
3189 kfree(conf->barrier);
3190 bioset_exit(&conf->bio_split);
3194 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3196 /* no resync is happening, and there is enough space
3197 * on all devices, so we can resize.
3198 * We need to make sure resync covers any new space.
3199 * If the array is shrinking we should possibly wait until
3200 * any io in the removed space completes, but it hardly seems
3203 sector_t newsize = raid1_size(mddev, sectors, 0);
3204 if (mddev->external_size &&
3205 mddev->array_sectors > newsize)
3207 if (mddev->bitmap) {
3208 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3212 md_set_array_sectors(mddev, newsize);
3213 if (sectors > mddev->dev_sectors &&
3214 mddev->recovery_cp > mddev->dev_sectors) {
3215 mddev->recovery_cp = mddev->dev_sectors;
3216 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3218 mddev->dev_sectors = sectors;
3219 mddev->resync_max_sectors = sectors;
3223 static int raid1_reshape(struct mddev *mddev)
3226 * 1/ resize the r1bio_pool
3227 * 2/ resize conf->mirrors
3229 * We allocate a new r1bio_pool if we can.
3230 * Then raise a device barrier and wait until all IO stops.
3231 * Then resize conf->mirrors and swap in the new r1bio pool.
3233 * At the same time, we "pack" the devices so that all the missing
3234 * devices have the higher raid_disk numbers.
3236 mempool_t newpool, oldpool;
3237 struct pool_info *newpoolinfo;
3238 struct raid1_info *newmirrors;
3239 struct r1conf *conf = mddev->private;
3240 int cnt, raid_disks;
3241 unsigned long flags;
3245 memset(&newpool, 0, sizeof(newpool));
3246 memset(&oldpool, 0, sizeof(oldpool));
3248 /* Cannot change chunk_size, layout, or level */
3249 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3250 mddev->layout != mddev->new_layout ||
3251 mddev->level != mddev->new_level) {
3252 mddev->new_chunk_sectors = mddev->chunk_sectors;
3253 mddev->new_layout = mddev->layout;
3254 mddev->new_level = mddev->level;
3258 if (!mddev_is_clustered(mddev))
3259 md_allow_write(mddev);
3261 raid_disks = mddev->raid_disks + mddev->delta_disks;
3263 if (raid_disks < conf->raid_disks) {
3265 for (d= 0; d < conf->raid_disks; d++)
3266 if (conf->mirrors[d].rdev)
3268 if (cnt > raid_disks)
3272 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3275 newpoolinfo->mddev = mddev;
3276 newpoolinfo->raid_disks = raid_disks * 2;
3278 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3279 rbio_pool_free, newpoolinfo);
3284 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3289 mempool_exit(&newpool);
3293 freeze_array(conf, 0);
3295 /* ok, everything is stopped */
3296 oldpool = conf->r1bio_pool;
3297 conf->r1bio_pool = newpool;
3299 for (d = d2 = 0; d < conf->raid_disks; d++) {
3300 struct md_rdev *rdev = conf->mirrors[d].rdev;
3301 if (rdev && rdev->raid_disk != d2) {
3302 sysfs_unlink_rdev(mddev, rdev);
3303 rdev->raid_disk = d2;
3304 sysfs_unlink_rdev(mddev, rdev);
3305 if (sysfs_link_rdev(mddev, rdev))
3306 pr_warn("md/raid1:%s: cannot register rd%d\n",
3307 mdname(mddev), rdev->raid_disk);
3310 newmirrors[d2++].rdev = rdev;
3312 kfree(conf->mirrors);
3313 conf->mirrors = newmirrors;
3314 kfree(conf->poolinfo);
3315 conf->poolinfo = newpoolinfo;
3317 spin_lock_irqsave(&conf->device_lock, flags);
3318 mddev->degraded += (raid_disks - conf->raid_disks);
3319 spin_unlock_irqrestore(&conf->device_lock, flags);
3320 conf->raid_disks = mddev->raid_disks = raid_disks;
3321 mddev->delta_disks = 0;
3323 unfreeze_array(conf);
3325 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3327 md_wakeup_thread(mddev->thread);
3329 mempool_exit(&oldpool);
3333 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3335 struct r1conf *conf = mddev->private;
3338 freeze_array(conf, 0);
3340 unfreeze_array(conf);
3343 static void *raid1_takeover(struct mddev *mddev)
3345 /* raid1 can take over:
3346 * raid5 with 2 devices, any layout or chunk size
3348 if (mddev->level == 5 && mddev->raid_disks == 2) {
3349 struct r1conf *conf;
3350 mddev->new_level = 1;
3351 mddev->new_layout = 0;
3352 mddev->new_chunk_sectors = 0;
3353 conf = setup_conf(mddev);
3354 if (!IS_ERR(conf)) {
3355 /* Array must appear to be quiesced */
3356 conf->array_frozen = 1;
3357 mddev_clear_unsupported_flags(mddev,
3358 UNSUPPORTED_MDDEV_FLAGS);
3362 return ERR_PTR(-EINVAL);
3365 static struct md_personality raid1_personality =
3369 .owner = THIS_MODULE,
3370 .make_request = raid1_make_request,
3373 .status = raid1_status,
3374 .error_handler = raid1_error,
3375 .hot_add_disk = raid1_add_disk,
3376 .hot_remove_disk= raid1_remove_disk,
3377 .spare_active = raid1_spare_active,
3378 .sync_request = raid1_sync_request,
3379 .resize = raid1_resize,
3381 .check_reshape = raid1_reshape,
3382 .quiesce = raid1_quiesce,
3383 .takeover = raid1_takeover,
3386 static int __init raid_init(void)
3388 return register_md_personality(&raid1_personality);
3391 static void raid_exit(void)
3393 unregister_md_personality(&raid1_personality);
3396 module_init(raid_init);
3397 module_exit(raid_exit);
3398 MODULE_LICENSE("GPL");
3399 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3400 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3401 MODULE_ALIAS("md-raid1");
3402 MODULE_ALIAS("md-level-1");