2 * Procedures for creating, accessing and interpreting the device tree.
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
31 #include "of_private.h"
33 LIST_HEAD(aliases_lookup);
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46 * This mutex must be held whenever modifications are being made to the
47 * device tree. The of_{attach,detach}_node() and
48 * of_{add,remove,update}_property() helpers make sure this happens.
50 DEFINE_MUTEX(of_mutex);
52 /* use when traversing tree through the child, sibling,
53 * or parent members of struct device_node.
55 DEFINE_RAW_SPINLOCK(devtree_lock);
57 int of_n_addr_cells(struct device_node *np)
64 ip = of_get_property(np, "#address-cells", NULL);
66 return be32_to_cpup(ip);
68 /* No #address-cells property for the root node */
69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
71 EXPORT_SYMBOL(of_n_addr_cells);
73 int of_n_size_cells(struct device_node *np)
80 ip = of_get_property(np, "#size-cells", NULL);
82 return be32_to_cpup(ip);
84 /* No #size-cells property for the root node */
85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
87 EXPORT_SYMBOL(of_n_size_cells);
90 int __weak of_node_to_nid(struct device_node *np)
92 return numa_node_id();
96 #ifndef CONFIG_OF_DYNAMIC
97 static void of_node_release(struct kobject *kobj)
99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
101 #endif /* CONFIG_OF_DYNAMIC */
103 struct kobj_type of_node_ktype = {
104 .release = of_node_release,
107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108 struct bin_attribute *bin_attr, char *buf,
109 loff_t offset, size_t count)
111 struct property *pp = container_of(bin_attr, struct property, attr);
112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
115 static const char *safe_name(struct kobject *kobj, const char *orig_name)
117 const char *name = orig_name;
118 struct kernfs_node *kn;
121 /* don't be a hero. After 16 tries give up */
122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
124 if (name != orig_name)
126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
129 if (name != orig_name)
130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131 kobject_name(kobj), name);
135 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
139 /* Important: Don't leak passwords */
140 bool secure = strncmp(pp->name, "security-", 9) == 0;
142 if (!IS_ENABLED(CONFIG_SYSFS))
145 if (!of_kset || !of_node_is_attached(np))
148 sysfs_bin_attr_init(&pp->attr);
149 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151 pp->attr.size = secure ? 0 : pp->length;
152 pp->attr.read = of_node_property_read;
154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
159 int __of_attach_node_sysfs(struct device_node *np)
165 if (!IS_ENABLED(CONFIG_SYSFS))
171 np->kobj.kset = of_kset;
173 /* Nodes without parents are new top level trees */
174 rc = kobject_add(&np->kobj, NULL, "%s",
175 safe_name(&of_kset->kobj, "base"));
177 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178 if (!name || !name[0])
181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
186 for_each_property_of_node(np, pp)
187 __of_add_property_sysfs(np, pp);
192 static int __init of_init(void)
194 struct device_node *np;
196 /* Create the kset, and register existing nodes */
197 mutex_lock(&of_mutex);
198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
200 mutex_unlock(&of_mutex);
203 for_each_of_allnodes(np)
204 __of_attach_node_sysfs(np);
205 mutex_unlock(&of_mutex);
207 /* Symlink in /proc as required by userspace ABI */
209 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
213 core_initcall(of_init);
215 static struct property *__of_find_property(const struct device_node *np,
216 const char *name, int *lenp)
223 for (pp = np->properties; pp; pp = pp->next) {
224 if (of_prop_cmp(pp->name, name) == 0) {
234 struct property *of_find_property(const struct device_node *np,
241 raw_spin_lock_irqsave(&devtree_lock, flags);
242 pp = __of_find_property(np, name, lenp);
243 raw_spin_unlock_irqrestore(&devtree_lock, flags);
247 EXPORT_SYMBOL(of_find_property);
249 struct device_node *__of_find_all_nodes(struct device_node *prev)
251 struct device_node *np;
254 } else if (prev->child) {
257 /* Walk back up looking for a sibling, or the end of the structure */
259 while (np->parent && !np->sibling)
261 np = np->sibling; /* Might be null at the end of the tree */
267 * of_find_all_nodes - Get next node in global list
268 * @prev: Previous node or NULL to start iteration
269 * of_node_put() will be called on it
271 * Returns a node pointer with refcount incremented, use
272 * of_node_put() on it when done.
274 struct device_node *of_find_all_nodes(struct device_node *prev)
276 struct device_node *np;
279 raw_spin_lock_irqsave(&devtree_lock, flags);
280 np = __of_find_all_nodes(prev);
283 raw_spin_unlock_irqrestore(&devtree_lock, flags);
286 EXPORT_SYMBOL(of_find_all_nodes);
289 * Find a property with a given name for a given node
290 * and return the value.
292 const void *__of_get_property(const struct device_node *np,
293 const char *name, int *lenp)
295 struct property *pp = __of_find_property(np, name, lenp);
297 return pp ? pp->value : NULL;
301 * Find a property with a given name for a given node
302 * and return the value.
304 const void *of_get_property(const struct device_node *np, const char *name,
307 struct property *pp = of_find_property(np, name, lenp);
309 return pp ? pp->value : NULL;
311 EXPORT_SYMBOL(of_get_property);
314 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
316 * @cpu: logical cpu index of a core/thread
317 * @phys_id: physical identifier of a core/thread
319 * CPU logical to physical index mapping is architecture specific.
320 * However this __weak function provides a default match of physical
321 * id to logical cpu index. phys_id provided here is usually values read
322 * from the device tree which must match the hardware internal registers.
324 * Returns true if the physical identifier and the logical cpu index
325 * correspond to the same core/thread, false otherwise.
327 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
329 return (u32)phys_id == cpu;
333 * Checks if the given "prop_name" property holds the physical id of the
334 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
335 * NULL, local thread number within the core is returned in it.
337 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
338 const char *prop_name, int cpu, unsigned int *thread)
341 int ac, prop_len, tid;
344 ac = of_n_addr_cells(cpun);
345 cell = of_get_property(cpun, prop_name, &prop_len);
348 prop_len /= sizeof(*cell) * ac;
349 for (tid = 0; tid < prop_len; tid++) {
350 hwid = of_read_number(cell, ac);
351 if (arch_match_cpu_phys_id(cpu, hwid)) {
362 * arch_find_n_match_cpu_physical_id - See if the given device node is
363 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
364 * else false. If 'thread' is non-NULL, the local thread number within the
365 * core is returned in it.
367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
368 int cpu, unsigned int *thread)
370 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
371 * for thread ids on PowerPC. If it doesn't exist fallback to
372 * standard "reg" property.
374 if (IS_ENABLED(CONFIG_PPC) &&
375 __of_find_n_match_cpu_property(cpun,
376 "ibm,ppc-interrupt-server#s",
380 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
387 * of_get_cpu_node - Get device node associated with the given logical CPU
389 * @cpu: CPU number(logical index) for which device node is required
390 * @thread: if not NULL, local thread number within the physical core is
393 * The main purpose of this function is to retrieve the device node for the
394 * given logical CPU index. It should be used to initialize the of_node in
395 * cpu device. Once of_node in cpu device is populated, all the further
396 * references can use that instead.
398 * CPU logical to physical index mapping is architecture specific and is built
399 * before booting secondary cores. This function uses arch_match_cpu_phys_id
400 * which can be overridden by architecture specific implementation.
402 * Returns a node pointer for the logical cpu if found, else NULL.
404 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
406 struct device_node *cpun;
408 for_each_node_by_type(cpun, "cpu") {
409 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
414 EXPORT_SYMBOL(of_get_cpu_node);
417 * __of_device_is_compatible() - Check if the node matches given constraints
418 * @device: pointer to node
419 * @compat: required compatible string, NULL or "" for any match
420 * @type: required device_type value, NULL or "" for any match
421 * @name: required node name, NULL or "" for any match
423 * Checks if the given @compat, @type and @name strings match the
424 * properties of the given @device. A constraints can be skipped by
425 * passing NULL or an empty string as the constraint.
427 * Returns 0 for no match, and a positive integer on match. The return
428 * value is a relative score with larger values indicating better
429 * matches. The score is weighted for the most specific compatible value
430 * to get the highest score. Matching type is next, followed by matching
431 * name. Practically speaking, this results in the following priority
434 * 1. specific compatible && type && name
435 * 2. specific compatible && type
436 * 3. specific compatible && name
437 * 4. specific compatible
438 * 5. general compatible && type && name
439 * 6. general compatible && type
440 * 7. general compatible && name
441 * 8. general compatible
446 static int __of_device_is_compatible(const struct device_node *device,
447 const char *compat, const char *type, const char *name)
449 struct property *prop;
451 int index = 0, score = 0;
453 /* Compatible match has highest priority */
454 if (compat && compat[0]) {
455 prop = __of_find_property(device, "compatible", NULL);
456 for (cp = of_prop_next_string(prop, NULL); cp;
457 cp = of_prop_next_string(prop, cp), index++) {
458 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
459 score = INT_MAX/2 - (index << 2);
467 /* Matching type is better than matching name */
468 if (type && type[0]) {
469 if (!device->type || of_node_cmp(type, device->type))
474 /* Matching name is a bit better than not */
475 if (name && name[0]) {
476 if (!device->name || of_node_cmp(name, device->name))
484 /** Checks if the given "compat" string matches one of the strings in
485 * the device's "compatible" property
487 int of_device_is_compatible(const struct device_node *device,
493 raw_spin_lock_irqsave(&devtree_lock, flags);
494 res = __of_device_is_compatible(device, compat, NULL, NULL);
495 raw_spin_unlock_irqrestore(&devtree_lock, flags);
498 EXPORT_SYMBOL(of_device_is_compatible);
501 * of_machine_is_compatible - Test root of device tree for a given compatible value
502 * @compat: compatible string to look for in root node's compatible property.
504 * Returns a positive integer if the root node has the given value in its
505 * compatible property.
507 int of_machine_is_compatible(const char *compat)
509 struct device_node *root;
512 root = of_find_node_by_path("/");
514 rc = of_device_is_compatible(root, compat);
519 EXPORT_SYMBOL(of_machine_is_compatible);
522 * __of_device_is_available - check if a device is available for use
524 * @device: Node to check for availability, with locks already held
526 * Returns true if the status property is absent or set to "okay" or "ok",
529 static bool __of_device_is_available(const struct device_node *device)
537 status = __of_get_property(device, "status", &statlen);
542 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
550 * of_device_is_available - check if a device is available for use
552 * @device: Node to check for availability
554 * Returns true if the status property is absent or set to "okay" or "ok",
557 bool of_device_is_available(const struct device_node *device)
562 raw_spin_lock_irqsave(&devtree_lock, flags);
563 res = __of_device_is_available(device);
564 raw_spin_unlock_irqrestore(&devtree_lock, flags);
568 EXPORT_SYMBOL(of_device_is_available);
571 * of_get_parent - Get a node's parent if any
572 * @node: Node to get parent
574 * Returns a node pointer with refcount incremented, use
575 * of_node_put() on it when done.
577 struct device_node *of_get_parent(const struct device_node *node)
579 struct device_node *np;
585 raw_spin_lock_irqsave(&devtree_lock, flags);
586 np = of_node_get(node->parent);
587 raw_spin_unlock_irqrestore(&devtree_lock, flags);
590 EXPORT_SYMBOL(of_get_parent);
593 * of_get_next_parent - Iterate to a node's parent
594 * @node: Node to get parent of
596 * This is like of_get_parent() except that it drops the
597 * refcount on the passed node, making it suitable for iterating
598 * through a node's parents.
600 * Returns a node pointer with refcount incremented, use
601 * of_node_put() on it when done.
603 struct device_node *of_get_next_parent(struct device_node *node)
605 struct device_node *parent;
611 raw_spin_lock_irqsave(&devtree_lock, flags);
612 parent = of_node_get(node->parent);
614 raw_spin_unlock_irqrestore(&devtree_lock, flags);
617 EXPORT_SYMBOL(of_get_next_parent);
619 static struct device_node *__of_get_next_child(const struct device_node *node,
620 struct device_node *prev)
622 struct device_node *next;
627 next = prev ? prev->sibling : node->child;
628 for (; next; next = next->sibling)
629 if (of_node_get(next))
634 #define __for_each_child_of_node(parent, child) \
635 for (child = __of_get_next_child(parent, NULL); child != NULL; \
636 child = __of_get_next_child(parent, child))
639 * of_get_next_child - Iterate a node childs
641 * @prev: previous child of the parent node, or NULL to get first
643 * Returns a node pointer with refcount incremented, use
644 * of_node_put() on it when done.
646 struct device_node *of_get_next_child(const struct device_node *node,
647 struct device_node *prev)
649 struct device_node *next;
652 raw_spin_lock_irqsave(&devtree_lock, flags);
653 next = __of_get_next_child(node, prev);
654 raw_spin_unlock_irqrestore(&devtree_lock, flags);
657 EXPORT_SYMBOL(of_get_next_child);
660 * of_get_next_available_child - Find the next available child node
662 * @prev: previous child of the parent node, or NULL to get first
664 * This function is like of_get_next_child(), except that it
665 * automatically skips any disabled nodes (i.e. status = "disabled").
667 struct device_node *of_get_next_available_child(const struct device_node *node,
668 struct device_node *prev)
670 struct device_node *next;
676 raw_spin_lock_irqsave(&devtree_lock, flags);
677 next = prev ? prev->sibling : node->child;
678 for (; next; next = next->sibling) {
679 if (!__of_device_is_available(next))
681 if (of_node_get(next))
685 raw_spin_unlock_irqrestore(&devtree_lock, flags);
688 EXPORT_SYMBOL(of_get_next_available_child);
691 * of_get_child_by_name - Find the child node by name for a given parent
693 * @name: child name to look for.
695 * This function looks for child node for given matching name
697 * Returns a node pointer if found, with refcount incremented, use
698 * of_node_put() on it when done.
699 * Returns NULL if node is not found.
701 struct device_node *of_get_child_by_name(const struct device_node *node,
704 struct device_node *child;
706 for_each_child_of_node(node, child)
707 if (child->name && (of_node_cmp(child->name, name) == 0))
711 EXPORT_SYMBOL(of_get_child_by_name);
713 static struct device_node *__of_find_node_by_path(struct device_node *parent,
716 struct device_node *child;
717 int len = strchrnul(path, '/') - path;
723 term = strchrnul(path, ':') - path;
727 __for_each_child_of_node(parent, child) {
728 const char *name = strrchr(child->full_name, '/');
729 if (WARN(!name, "malformed device_node %s\n", child->full_name))
732 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
739 * of_find_node_opts_by_path - Find a node matching a full OF path
740 * @path: Either the full path to match, or if the path does not
741 * start with '/', the name of a property of the /aliases
742 * node (an alias). In the case of an alias, the node
743 * matching the alias' value will be returned.
744 * @opts: Address of a pointer into which to store the start of
745 * an options string appended to the end of the path with
751 * foo/bar Valid alias + relative path
753 * Returns a node pointer with refcount incremented, use
754 * of_node_put() on it when done.
756 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
758 struct device_node *np = NULL;
761 const char *separator = strchr(path, ':');
764 *opts = separator ? separator + 1 : NULL;
766 if (strcmp(path, "/") == 0)
767 return of_node_get(of_root);
769 /* The path could begin with an alias */
771 char *p = strchrnul(path, '/');
772 int len = separator ? separator - path : p - path;
774 /* of_aliases must not be NULL */
778 for_each_property_of_node(of_aliases, pp) {
779 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
780 np = of_find_node_by_path(pp->value);
789 /* Step down the tree matching path components */
790 raw_spin_lock_irqsave(&devtree_lock, flags);
792 np = of_node_get(of_root);
793 while (np && *path == '/') {
794 path++; /* Increment past '/' delimiter */
795 np = __of_find_node_by_path(np, path);
796 path = strchrnul(path, '/');
798 raw_spin_unlock_irqrestore(&devtree_lock, flags);
801 EXPORT_SYMBOL(of_find_node_opts_by_path);
804 * of_find_node_by_name - Find a node by its "name" property
805 * @from: The node to start searching from or NULL, the node
806 * you pass will not be searched, only the next one
807 * will; typically, you pass what the previous call
808 * returned. of_node_put() will be called on it
809 * @name: The name string to match against
811 * Returns a node pointer with refcount incremented, use
812 * of_node_put() on it when done.
814 struct device_node *of_find_node_by_name(struct device_node *from,
817 struct device_node *np;
820 raw_spin_lock_irqsave(&devtree_lock, flags);
821 for_each_of_allnodes_from(from, np)
822 if (np->name && (of_node_cmp(np->name, name) == 0)
826 raw_spin_unlock_irqrestore(&devtree_lock, flags);
829 EXPORT_SYMBOL(of_find_node_by_name);
832 * of_find_node_by_type - Find a node by its "device_type" property
833 * @from: The node to start searching from, or NULL to start searching
834 * the entire device tree. The node you pass will not be
835 * searched, only the next one will; typically, you pass
836 * what the previous call returned. of_node_put() will be
837 * called on from for you.
838 * @type: The type string to match against
840 * Returns a node pointer with refcount incremented, use
841 * of_node_put() on it when done.
843 struct device_node *of_find_node_by_type(struct device_node *from,
846 struct device_node *np;
849 raw_spin_lock_irqsave(&devtree_lock, flags);
850 for_each_of_allnodes_from(from, np)
851 if (np->type && (of_node_cmp(np->type, type) == 0)
855 raw_spin_unlock_irqrestore(&devtree_lock, flags);
858 EXPORT_SYMBOL(of_find_node_by_type);
861 * of_find_compatible_node - Find a node based on type and one of the
862 * tokens in its "compatible" property
863 * @from: The node to start searching from or NULL, the node
864 * you pass will not be searched, only the next one
865 * will; typically, you pass what the previous call
866 * returned. of_node_put() will be called on it
867 * @type: The type string to match "device_type" or NULL to ignore
868 * @compatible: The string to match to one of the tokens in the device
871 * Returns a node pointer with refcount incremented, use
872 * of_node_put() on it when done.
874 struct device_node *of_find_compatible_node(struct device_node *from,
875 const char *type, const char *compatible)
877 struct device_node *np;
880 raw_spin_lock_irqsave(&devtree_lock, flags);
881 for_each_of_allnodes_from(from, np)
882 if (__of_device_is_compatible(np, compatible, type, NULL) &&
886 raw_spin_unlock_irqrestore(&devtree_lock, flags);
889 EXPORT_SYMBOL(of_find_compatible_node);
892 * of_find_node_with_property - Find a node which has a property with
894 * @from: The node to start searching from or NULL, the node
895 * you pass will not be searched, only the next one
896 * will; typically, you pass what the previous call
897 * returned. of_node_put() will be called on it
898 * @prop_name: The name of the property to look for.
900 * Returns a node pointer with refcount incremented, use
901 * of_node_put() on it when done.
903 struct device_node *of_find_node_with_property(struct device_node *from,
904 const char *prop_name)
906 struct device_node *np;
910 raw_spin_lock_irqsave(&devtree_lock, flags);
911 for_each_of_allnodes_from(from, np) {
912 for (pp = np->properties; pp; pp = pp->next) {
913 if (of_prop_cmp(pp->name, prop_name) == 0) {
921 raw_spin_unlock_irqrestore(&devtree_lock, flags);
924 EXPORT_SYMBOL(of_find_node_with_property);
927 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
928 const struct device_node *node)
930 const struct of_device_id *best_match = NULL;
931 int score, best_score = 0;
936 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
937 score = __of_device_is_compatible(node, matches->compatible,
938 matches->type, matches->name);
939 if (score > best_score) {
940 best_match = matches;
949 * of_match_node - Tell if a device_node has a matching of_match structure
950 * @matches: array of of device match structures to search in
951 * @node: the of device structure to match against
953 * Low level utility function used by device matching.
955 const struct of_device_id *of_match_node(const struct of_device_id *matches,
956 const struct device_node *node)
958 const struct of_device_id *match;
961 raw_spin_lock_irqsave(&devtree_lock, flags);
962 match = __of_match_node(matches, node);
963 raw_spin_unlock_irqrestore(&devtree_lock, flags);
966 EXPORT_SYMBOL(of_match_node);
969 * of_find_matching_node_and_match - Find a node based on an of_device_id
971 * @from: The node to start searching from or NULL, the node
972 * you pass will not be searched, only the next one
973 * will; typically, you pass what the previous call
974 * returned. of_node_put() will be called on it
975 * @matches: array of of device match structures to search in
976 * @match Updated to point at the matches entry which matched
978 * Returns a node pointer with refcount incremented, use
979 * of_node_put() on it when done.
981 struct device_node *of_find_matching_node_and_match(struct device_node *from,
982 const struct of_device_id *matches,
983 const struct of_device_id **match)
985 struct device_node *np;
986 const struct of_device_id *m;
992 raw_spin_lock_irqsave(&devtree_lock, flags);
993 for_each_of_allnodes_from(from, np) {
994 m = __of_match_node(matches, np);
995 if (m && of_node_get(np)) {
1002 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1005 EXPORT_SYMBOL(of_find_matching_node_and_match);
1008 * of_modalias_node - Lookup appropriate modalias for a device node
1009 * @node: pointer to a device tree node
1010 * @modalias: Pointer to buffer that modalias value will be copied into
1011 * @len: Length of modalias value
1013 * Based on the value of the compatible property, this routine will attempt
1014 * to choose an appropriate modalias value for a particular device tree node.
1015 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1016 * from the first entry in the compatible list property.
1018 * This routine returns 0 on success, <0 on failure.
1020 int of_modalias_node(struct device_node *node, char *modalias, int len)
1022 const char *compatible, *p;
1025 compatible = of_get_property(node, "compatible", &cplen);
1026 if (!compatible || strlen(compatible) > cplen)
1028 p = strchr(compatible, ',');
1029 strlcpy(modalias, p ? p + 1 : compatible, len);
1032 EXPORT_SYMBOL_GPL(of_modalias_node);
1035 * of_find_node_by_phandle - Find a node given a phandle
1036 * @handle: phandle of the node to find
1038 * Returns a node pointer with refcount incremented, use
1039 * of_node_put() on it when done.
1041 struct device_node *of_find_node_by_phandle(phandle handle)
1043 struct device_node *np;
1044 unsigned long flags;
1049 raw_spin_lock_irqsave(&devtree_lock, flags);
1050 for_each_of_allnodes(np)
1051 if (np->phandle == handle)
1054 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1057 EXPORT_SYMBOL(of_find_node_by_phandle);
1060 * of_property_count_elems_of_size - Count the number of elements in a property
1062 * @np: device node from which the property value is to be read.
1063 * @propname: name of the property to be searched.
1064 * @elem_size: size of the individual element
1066 * Search for a property in a device node and count the number of elements of
1067 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1068 * property does not exist or its length does not match a multiple of elem_size
1069 * and -ENODATA if the property does not have a value.
1071 int of_property_count_elems_of_size(const struct device_node *np,
1072 const char *propname, int elem_size)
1074 struct property *prop = of_find_property(np, propname, NULL);
1081 if (prop->length % elem_size != 0) {
1082 pr_err("size of %s in node %s is not a multiple of %d\n",
1083 propname, np->full_name, elem_size);
1087 return prop->length / elem_size;
1089 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1092 * of_find_property_value_of_size
1094 * @np: device node from which the property value is to be read.
1095 * @propname: name of the property to be searched.
1096 * @len: requested length of property value
1098 * Search for a property in a device node and valid the requested size.
1099 * Returns the property value on success, -EINVAL if the property does not
1100 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1101 * property data isn't large enough.
1104 static void *of_find_property_value_of_size(const struct device_node *np,
1105 const char *propname, u32 len)
1107 struct property *prop = of_find_property(np, propname, NULL);
1110 return ERR_PTR(-EINVAL);
1112 return ERR_PTR(-ENODATA);
1113 if (len > prop->length)
1114 return ERR_PTR(-EOVERFLOW);
1120 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1122 * @np: device node from which the property value is to be read.
1123 * @propname: name of the property to be searched.
1124 * @index: index of the u32 in the list of values
1125 * @out_value: pointer to return value, modified only if no error.
1127 * Search for a property in a device node and read nth 32-bit value from
1128 * it. Returns 0 on success, -EINVAL if the property does not exist,
1129 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1130 * property data isn't large enough.
1132 * The out_value is modified only if a valid u32 value can be decoded.
1134 int of_property_read_u32_index(const struct device_node *np,
1135 const char *propname,
1136 u32 index, u32 *out_value)
1138 const u32 *val = of_find_property_value_of_size(np, propname,
1139 ((index + 1) * sizeof(*out_value)));
1142 return PTR_ERR(val);
1144 *out_value = be32_to_cpup(((__be32 *)val) + index);
1147 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1150 * of_property_read_u8_array - Find and read an array of u8 from a property.
1152 * @np: device node from which the property value is to be read.
1153 * @propname: name of the property to be searched.
1154 * @out_values: pointer to return value, modified only if return value is 0.
1155 * @sz: number of array elements to read
1157 * Search for a property in a device node and read 8-bit value(s) from
1158 * it. Returns 0 on success, -EINVAL if the property does not exist,
1159 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1160 * property data isn't large enough.
1162 * dts entry of array should be like:
1163 * property = /bits/ 8 <0x50 0x60 0x70>;
1165 * The out_values is modified only if a valid u8 value can be decoded.
1167 int of_property_read_u8_array(const struct device_node *np,
1168 const char *propname, u8 *out_values, size_t sz)
1170 const u8 *val = of_find_property_value_of_size(np, propname,
1171 (sz * sizeof(*out_values)));
1174 return PTR_ERR(val);
1177 *out_values++ = *val++;
1180 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1183 * of_property_read_u16_array - Find and read an array of u16 from a property.
1185 * @np: device node from which the property value is to be read.
1186 * @propname: name of the property to be searched.
1187 * @out_values: pointer to return value, modified only if return value is 0.
1188 * @sz: number of array elements to read
1190 * Search for a property in a device node and read 16-bit value(s) from
1191 * it. Returns 0 on success, -EINVAL if the property does not exist,
1192 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1193 * property data isn't large enough.
1195 * dts entry of array should be like:
1196 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1198 * The out_values is modified only if a valid u16 value can be decoded.
1200 int of_property_read_u16_array(const struct device_node *np,
1201 const char *propname, u16 *out_values, size_t sz)
1203 const __be16 *val = of_find_property_value_of_size(np, propname,
1204 (sz * sizeof(*out_values)));
1207 return PTR_ERR(val);
1210 *out_values++ = be16_to_cpup(val++);
1213 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1216 * of_property_read_u32_array - Find and read an array of 32 bit integers
1219 * @np: device node from which the property value is to be read.
1220 * @propname: name of the property to be searched.
1221 * @out_values: pointer to return value, modified only if return value is 0.
1222 * @sz: number of array elements to read
1224 * Search for a property in a device node and read 32-bit value(s) from
1225 * it. Returns 0 on success, -EINVAL if the property does not exist,
1226 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1227 * property data isn't large enough.
1229 * The out_values is modified only if a valid u32 value can be decoded.
1231 int of_property_read_u32_array(const struct device_node *np,
1232 const char *propname, u32 *out_values,
1235 const __be32 *val = of_find_property_value_of_size(np, propname,
1236 (sz * sizeof(*out_values)));
1239 return PTR_ERR(val);
1242 *out_values++ = be32_to_cpup(val++);
1245 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1248 * of_property_read_u64 - Find and read a 64 bit integer from a property
1249 * @np: device node from which the property value is to be read.
1250 * @propname: name of the property to be searched.
1251 * @out_value: pointer to return value, modified only if return value is 0.
1253 * Search for a property in a device node and read a 64-bit value from
1254 * it. Returns 0 on success, -EINVAL if the property does not exist,
1255 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1256 * property data isn't large enough.
1258 * The out_value is modified only if a valid u64 value can be decoded.
1260 int of_property_read_u64(const struct device_node *np, const char *propname,
1263 const __be32 *val = of_find_property_value_of_size(np, propname,
1264 sizeof(*out_value));
1267 return PTR_ERR(val);
1269 *out_value = of_read_number(val, 2);
1272 EXPORT_SYMBOL_GPL(of_property_read_u64);
1275 * of_property_read_u64_array - Find and read an array of 64 bit integers
1278 * @np: device node from which the property value is to be read.
1279 * @propname: name of the property to be searched.
1280 * @out_values: pointer to return value, modified only if return value is 0.
1281 * @sz: number of array elements to read
1283 * Search for a property in a device node and read 64-bit value(s) from
1284 * it. Returns 0 on success, -EINVAL if the property does not exist,
1285 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1286 * property data isn't large enough.
1288 * The out_values is modified only if a valid u64 value can be decoded.
1290 int of_property_read_u64_array(const struct device_node *np,
1291 const char *propname, u64 *out_values,
1294 const __be32 *val = of_find_property_value_of_size(np, propname,
1295 (sz * sizeof(*out_values)));
1298 return PTR_ERR(val);
1301 *out_values++ = of_read_number(val, 2);
1306 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1309 * of_property_read_string - Find and read a string from a property
1310 * @np: device node from which the property value is to be read.
1311 * @propname: name of the property to be searched.
1312 * @out_string: pointer to null terminated return string, modified only if
1313 * return value is 0.
1315 * Search for a property in a device tree node and retrieve a null
1316 * terminated string value (pointer to data, not a copy). Returns 0 on
1317 * success, -EINVAL if the property does not exist, -ENODATA if property
1318 * does not have a value, and -EILSEQ if the string is not null-terminated
1319 * within the length of the property data.
1321 * The out_string pointer is modified only if a valid string can be decoded.
1323 int of_property_read_string(struct device_node *np, const char *propname,
1324 const char **out_string)
1326 struct property *prop = of_find_property(np, propname, NULL);
1331 if (strnlen(prop->value, prop->length) >= prop->length)
1333 *out_string = prop->value;
1336 EXPORT_SYMBOL_GPL(of_property_read_string);
1339 * of_property_match_string() - Find string in a list and return index
1340 * @np: pointer to node containing string list property
1341 * @propname: string list property name
1342 * @string: pointer to string to search for in string list
1344 * This function searches a string list property and returns the index
1345 * of a specific string value.
1347 int of_property_match_string(struct device_node *np, const char *propname,
1350 struct property *prop = of_find_property(np, propname, NULL);
1353 const char *p, *end;
1361 end = p + prop->length;
1363 for (i = 0; p < end; i++, p += l) {
1364 l = strnlen(p, end - p) + 1;
1367 pr_debug("comparing %s with %s\n", string, p);
1368 if (strcmp(string, p) == 0)
1369 return i; /* Found it; return index */
1373 EXPORT_SYMBOL_GPL(of_property_match_string);
1376 * of_property_read_string_helper() - Utility helper for parsing string properties
1377 * @np: device node from which the property value is to be read.
1378 * @propname: name of the property to be searched.
1379 * @out_strs: output array of string pointers.
1380 * @sz: number of array elements to read.
1381 * @skip: Number of strings to skip over at beginning of list.
1383 * Don't call this function directly. It is a utility helper for the
1384 * of_property_read_string*() family of functions.
1386 int of_property_read_string_helper(struct device_node *np, const char *propname,
1387 const char **out_strs, size_t sz, int skip)
1389 struct property *prop = of_find_property(np, propname, NULL);
1391 const char *p, *end;
1398 end = p + prop->length;
1400 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1401 l = strnlen(p, end - p) + 1;
1404 if (out_strs && i >= skip)
1408 return i <= 0 ? -ENODATA : i;
1410 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1412 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1415 printk("%s %s", msg, of_node_full_name(args->np));
1416 for (i = 0; i < args->args_count; i++)
1417 printk(i ? ",%08x" : ":%08x", args->args[i]);
1421 static int __of_parse_phandle_with_args(const struct device_node *np,
1422 const char *list_name,
1423 const char *cells_name,
1424 int cell_count, int index,
1425 struct of_phandle_args *out_args)
1427 const __be32 *list, *list_end;
1428 int rc = 0, size, cur_index = 0;
1430 struct device_node *node = NULL;
1433 /* Retrieve the phandle list property */
1434 list = of_get_property(np, list_name, &size);
1437 list_end = list + size / sizeof(*list);
1439 /* Loop over the phandles until all the requested entry is found */
1440 while (list < list_end) {
1445 * If phandle is 0, then it is an empty entry with no
1446 * arguments. Skip forward to the next entry.
1448 phandle = be32_to_cpup(list++);
1451 * Find the provider node and parse the #*-cells
1452 * property to determine the argument length.
1454 * This is not needed if the cell count is hard-coded
1455 * (i.e. cells_name not set, but cell_count is set),
1456 * except when we're going to return the found node
1459 if (cells_name || cur_index == index) {
1460 node = of_find_node_by_phandle(phandle);
1462 pr_err("%s: could not find phandle\n",
1469 if (of_property_read_u32(node, cells_name,
1471 pr_err("%s: could not get %s for %s\n",
1472 np->full_name, cells_name,
1481 * Make sure that the arguments actually fit in the
1482 * remaining property data length
1484 if (list + count > list_end) {
1485 pr_err("%s: arguments longer than property\n",
1492 * All of the error cases above bail out of the loop, so at
1493 * this point, the parsing is successful. If the requested
1494 * index matches, then fill the out_args structure and return,
1495 * or return -ENOENT for an empty entry.
1498 if (cur_index == index) {
1504 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1505 count = MAX_PHANDLE_ARGS;
1506 out_args->np = node;
1507 out_args->args_count = count;
1508 for (i = 0; i < count; i++)
1509 out_args->args[i] = be32_to_cpup(list++);
1514 /* Found it! return success */
1525 * Unlock node before returning result; will be one of:
1526 * -ENOENT : index is for empty phandle
1527 * -EINVAL : parsing error on data
1528 * [1..n] : Number of phandle (count mode; when index = -1)
1530 rc = index < 0 ? cur_index : -ENOENT;
1538 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1539 * @np: Pointer to device node holding phandle property
1540 * @phandle_name: Name of property holding a phandle value
1541 * @index: For properties holding a table of phandles, this is the index into
1544 * Returns the device_node pointer with refcount incremented. Use
1545 * of_node_put() on it when done.
1547 struct device_node *of_parse_phandle(const struct device_node *np,
1548 const char *phandle_name, int index)
1550 struct of_phandle_args args;
1555 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1561 EXPORT_SYMBOL(of_parse_phandle);
1564 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1565 * @np: pointer to a device tree node containing a list
1566 * @list_name: property name that contains a list
1567 * @cells_name: property name that specifies phandles' arguments count
1568 * @index: index of a phandle to parse out
1569 * @out_args: optional pointer to output arguments structure (will be filled)
1571 * This function is useful to parse lists of phandles and their arguments.
1572 * Returns 0 on success and fills out_args, on error returns appropriate
1575 * Caller is responsible to call of_node_put() on the returned out_args->np
1581 * #list-cells = <2>;
1585 * #list-cells = <1>;
1589 * list = <&phandle1 1 2 &phandle2 3>;
1592 * To get a device_node of the `node2' node you may call this:
1593 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1595 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1596 const char *cells_name, int index,
1597 struct of_phandle_args *out_args)
1601 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1604 EXPORT_SYMBOL(of_parse_phandle_with_args);
1607 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1608 * @np: pointer to a device tree node containing a list
1609 * @list_name: property name that contains a list
1610 * @cell_count: number of argument cells following the phandle
1611 * @index: index of a phandle to parse out
1612 * @out_args: optional pointer to output arguments structure (will be filled)
1614 * This function is useful to parse lists of phandles and their arguments.
1615 * Returns 0 on success and fills out_args, on error returns appropriate
1618 * Caller is responsible to call of_node_put() on the returned out_args->np
1630 * list = <&phandle1 0 2 &phandle2 2 3>;
1633 * To get a device_node of the `node2' node you may call this:
1634 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1636 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1637 const char *list_name, int cell_count,
1638 int index, struct of_phandle_args *out_args)
1642 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1645 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1648 * of_count_phandle_with_args() - Find the number of phandles references in a property
1649 * @np: pointer to a device tree node containing a list
1650 * @list_name: property name that contains a list
1651 * @cells_name: property name that specifies phandles' arguments count
1653 * Returns the number of phandle + argument tuples within a property. It
1654 * is a typical pattern to encode a list of phandle and variable
1655 * arguments into a single property. The number of arguments is encoded
1656 * by a property in the phandle-target node. For example, a gpios
1657 * property would contain a list of GPIO specifies consisting of a
1658 * phandle and 1 or more arguments. The number of arguments are
1659 * determined by the #gpio-cells property in the node pointed to by the
1662 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1663 const char *cells_name)
1665 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1668 EXPORT_SYMBOL(of_count_phandle_with_args);
1671 * __of_add_property - Add a property to a node without lock operations
1673 int __of_add_property(struct device_node *np, struct property *prop)
1675 struct property **next;
1678 next = &np->properties;
1680 if (strcmp(prop->name, (*next)->name) == 0)
1681 /* duplicate ! don't insert it */
1684 next = &(*next)->next;
1692 * of_add_property - Add a property to a node
1694 int of_add_property(struct device_node *np, struct property *prop)
1696 unsigned long flags;
1699 mutex_lock(&of_mutex);
1701 raw_spin_lock_irqsave(&devtree_lock, flags);
1702 rc = __of_add_property(np, prop);
1703 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1706 __of_add_property_sysfs(np, prop);
1708 mutex_unlock(&of_mutex);
1711 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1716 int __of_remove_property(struct device_node *np, struct property *prop)
1718 struct property **next;
1720 for (next = &np->properties; *next; next = &(*next)->next) {
1727 /* found the node */
1729 prop->next = np->deadprops;
1730 np->deadprops = prop;
1735 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1737 if (!IS_ENABLED(CONFIG_SYSFS))
1740 /* at early boot, bail here and defer setup to of_init() */
1741 if (of_kset && of_node_is_attached(np))
1742 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1746 * of_remove_property - Remove a property from a node.
1748 * Note that we don't actually remove it, since we have given out
1749 * who-knows-how-many pointers to the data using get-property.
1750 * Instead we just move the property to the "dead properties"
1751 * list, so it won't be found any more.
1753 int of_remove_property(struct device_node *np, struct property *prop)
1755 unsigned long flags;
1758 mutex_lock(&of_mutex);
1760 raw_spin_lock_irqsave(&devtree_lock, flags);
1761 rc = __of_remove_property(np, prop);
1762 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1765 __of_remove_property_sysfs(np, prop);
1767 mutex_unlock(&of_mutex);
1770 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1775 int __of_update_property(struct device_node *np, struct property *newprop,
1776 struct property **oldpropp)
1778 struct property **next, *oldprop;
1780 for (next = &np->properties; *next; next = &(*next)->next) {
1781 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1784 *oldpropp = oldprop = *next;
1787 /* replace the node */
1788 newprop->next = oldprop->next;
1790 oldprop->next = np->deadprops;
1791 np->deadprops = oldprop;
1794 newprop->next = NULL;
1801 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1802 struct property *oldprop)
1804 if (!IS_ENABLED(CONFIG_SYSFS))
1807 /* At early boot, bail out and defer setup to of_init() */
1812 sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1813 __of_add_property_sysfs(np, newprop);
1817 * of_update_property - Update a property in a node, if the property does
1818 * not exist, add it.
1820 * Note that we don't actually remove it, since we have given out
1821 * who-knows-how-many pointers to the data using get-property.
1822 * Instead we just move the property to the "dead properties" list,
1823 * and add the new property to the property list
1825 int of_update_property(struct device_node *np, struct property *newprop)
1827 struct property *oldprop;
1828 unsigned long flags;
1834 mutex_lock(&of_mutex);
1836 raw_spin_lock_irqsave(&devtree_lock, flags);
1837 rc = __of_update_property(np, newprop, &oldprop);
1838 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1841 __of_update_property_sysfs(np, newprop, oldprop);
1843 mutex_unlock(&of_mutex);
1846 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1851 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1852 int id, const char *stem, int stem_len)
1856 strncpy(ap->stem, stem, stem_len);
1857 ap->stem[stem_len] = 0;
1858 list_add_tail(&ap->link, &aliases_lookup);
1859 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1860 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1864 * of_alias_scan - Scan all properties of the 'aliases' node
1866 * The function scans all the properties of the 'aliases' node and populates
1867 * the global lookup table with the properties. It returns the
1868 * number of alias properties found, or an error code in case of failure.
1870 * @dt_alloc: An allocator that provides a virtual address to memory
1871 * for storing the resulting tree
1873 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1875 struct property *pp;
1877 of_aliases = of_find_node_by_path("/aliases");
1878 of_chosen = of_find_node_by_path("/chosen");
1879 if (of_chosen == NULL)
1880 of_chosen = of_find_node_by_path("/chosen@0");
1883 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1884 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1886 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1887 if (IS_ENABLED(CONFIG_PPC) && !name)
1888 name = of_get_property(of_aliases, "stdout", NULL);
1890 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1896 for_each_property_of_node(of_aliases, pp) {
1897 const char *start = pp->name;
1898 const char *end = start + strlen(start);
1899 struct device_node *np;
1900 struct alias_prop *ap;
1903 /* Skip those we do not want to proceed */
1904 if (!strcmp(pp->name, "name") ||
1905 !strcmp(pp->name, "phandle") ||
1906 !strcmp(pp->name, "linux,phandle"))
1909 np = of_find_node_by_path(pp->value);
1913 /* walk the alias backwards to extract the id and work out
1914 * the 'stem' string */
1915 while (isdigit(*(end-1)) && end > start)
1919 if (kstrtoint(end, 10, &id) < 0)
1922 /* Allocate an alias_prop with enough space for the stem */
1923 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1926 memset(ap, 0, sizeof(*ap) + len + 1);
1928 of_alias_add(ap, np, id, start, len);
1933 * of_alias_get_id - Get alias id for the given device_node
1934 * @np: Pointer to the given device_node
1935 * @stem: Alias stem of the given device_node
1937 * The function travels the lookup table to get the alias id for the given
1938 * device_node and alias stem. It returns the alias id if found.
1940 int of_alias_get_id(struct device_node *np, const char *stem)
1942 struct alias_prop *app;
1945 mutex_lock(&of_mutex);
1946 list_for_each_entry(app, &aliases_lookup, link) {
1947 if (strcmp(app->stem, stem) != 0)
1950 if (np == app->np) {
1955 mutex_unlock(&of_mutex);
1959 EXPORT_SYMBOL_GPL(of_alias_get_id);
1961 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1964 const void *curv = cur;
1974 curv += sizeof(*cur);
1975 if (curv >= prop->value + prop->length)
1979 *pu = be32_to_cpup(curv);
1982 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1984 const char *of_prop_next_string(struct property *prop, const char *cur)
1986 const void *curv = cur;
1994 curv += strlen(cur) + 1;
1995 if (curv >= prop->value + prop->length)
2000 EXPORT_SYMBOL_GPL(of_prop_next_string);
2003 * of_console_check() - Test and setup console for DT setup
2004 * @dn - Pointer to device node
2005 * @name - Name to use for preferred console without index. ex. "ttyS"
2006 * @index - Index to use for preferred console.
2008 * Check if the given device node matches the stdout-path property in the
2009 * /chosen node. If it does then register it as the preferred console and return
2010 * TRUE. Otherwise return FALSE.
2012 bool of_console_check(struct device_node *dn, char *name, int index)
2014 if (!dn || dn != of_stdout || console_set_on_cmdline)
2016 return !add_preferred_console(name, index,
2017 kstrdup(of_stdout_options, GFP_KERNEL));
2019 EXPORT_SYMBOL_GPL(of_console_check);
2022 * of_find_next_cache_node - Find a node's subsidiary cache
2023 * @np: node of type "cpu" or "cache"
2025 * Returns a node pointer with refcount incremented, use
2026 * of_node_put() on it when done. Caller should hold a reference
2029 struct device_node *of_find_next_cache_node(const struct device_node *np)
2031 struct device_node *child;
2032 const phandle *handle;
2034 handle = of_get_property(np, "l2-cache", NULL);
2036 handle = of_get_property(np, "next-level-cache", NULL);
2039 return of_find_node_by_phandle(be32_to_cpup(handle));
2041 /* OF on pmac has nodes instead of properties named "l2-cache"
2042 * beneath CPU nodes.
2044 if (!strcmp(np->type, "cpu"))
2045 for_each_child_of_node(np, child)
2046 if (!strcmp(child->type, "cache"))
2053 * of_graph_parse_endpoint() - parse common endpoint node properties
2054 * @node: pointer to endpoint device_node
2055 * @endpoint: pointer to the OF endpoint data structure
2057 * The caller should hold a reference to @node.
2059 int of_graph_parse_endpoint(const struct device_node *node,
2060 struct of_endpoint *endpoint)
2062 struct device_node *port_node = of_get_parent(node);
2064 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2065 __func__, node->full_name);
2067 memset(endpoint, 0, sizeof(*endpoint));
2069 endpoint->local_node = node;
2071 * It doesn't matter whether the two calls below succeed.
2072 * If they don't then the default value 0 is used.
2074 of_property_read_u32(port_node, "reg", &endpoint->port);
2075 of_property_read_u32(node, "reg", &endpoint->id);
2077 of_node_put(port_node);
2081 EXPORT_SYMBOL(of_graph_parse_endpoint);
2084 * of_graph_get_next_endpoint() - get next endpoint node
2085 * @parent: pointer to the parent device node
2086 * @prev: previous endpoint node, or NULL to get first
2088 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2089 * of the passed @prev node is not decremented, the caller have to use
2090 * of_node_put() on it when done.
2092 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2093 struct device_node *prev)
2095 struct device_node *endpoint;
2096 struct device_node *port;
2102 * Start by locating the port node. If no previous endpoint is specified
2103 * search for the first port node, otherwise get the previous endpoint
2107 struct device_node *node;
2109 node = of_get_child_by_name(parent, "ports");
2113 port = of_get_child_by_name(parent, "port");
2117 pr_err("%s(): no port node found in %s\n",
2118 __func__, parent->full_name);
2122 port = of_get_parent(prev);
2123 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2124 __func__, prev->full_name))
2128 * Avoid dropping prev node refcount to 0 when getting the next
2136 * Now that we have a port node, get the next endpoint by
2137 * getting the next child. If the previous endpoint is NULL this
2138 * will return the first child.
2140 endpoint = of_get_next_child(port, prev);
2146 /* No more endpoints under this port, try the next one. */
2150 port = of_get_next_child(parent, port);
2153 } while (of_node_cmp(port->name, "port"));
2156 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2159 * of_graph_get_remote_port_parent() - get remote port's parent node
2160 * @node: pointer to a local endpoint device_node
2162 * Return: Remote device node associated with remote endpoint node linked
2163 * to @node. Use of_node_put() on it when done.
2165 struct device_node *of_graph_get_remote_port_parent(
2166 const struct device_node *node)
2168 struct device_node *np;
2171 /* Get remote endpoint node. */
2172 np = of_parse_phandle(node, "remote-endpoint", 0);
2174 /* Walk 3 levels up only if there is 'ports' node. */
2175 for (depth = 3; depth && np; depth--) {
2176 np = of_get_next_parent(np);
2177 if (depth == 2 && of_node_cmp(np->name, "ports"))
2182 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2185 * of_graph_get_remote_port() - get remote port node
2186 * @node: pointer to a local endpoint device_node
2188 * Return: Remote port node associated with remote endpoint node linked
2189 * to @node. Use of_node_put() on it when done.
2191 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2193 struct device_node *np;
2195 /* Get remote endpoint node. */
2196 np = of_parse_phandle(node, "remote-endpoint", 0);
2199 return of_get_next_parent(np);
2201 EXPORT_SYMBOL(of_graph_get_remote_port);