2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
25 #include <trace/events/block.h>
27 #define DM_MSG_PREFIX "core"
31 * ratelimit state to be used in DMXXX_LIMIT().
33 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
34 DEFAULT_RATELIMIT_INTERVAL,
35 DEFAULT_RATELIMIT_BURST);
36 EXPORT_SYMBOL(dm_ratelimit_state);
40 * Cookies are numeric values sent with CHANGE and REMOVE
41 * uevents while resuming, removing or renaming the device.
43 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
44 #define DM_COOKIE_LENGTH 24
46 static const char *_name = DM_NAME;
48 static unsigned int major = 0;
49 static unsigned int _major = 0;
51 static DEFINE_IDR(_minor_idr);
53 static DEFINE_SPINLOCK(_minor_lock);
55 static void do_deferred_remove(struct work_struct *w);
57 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
59 static struct workqueue_struct *deferred_remove_workqueue;
63 * One of these is allocated per bio.
66 struct mapped_device *md;
70 unsigned long start_time;
71 spinlock_t endio_lock;
72 struct dm_stats_aux stats_aux;
76 * For request-based dm.
77 * One of these is allocated per request.
79 struct dm_rq_target_io {
80 struct mapped_device *md;
82 struct request *orig, *clone;
83 struct kthread_work work;
89 * For request-based dm - the bio clones we allocate are embedded in these
92 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
93 * the bioset is created - this means the bio has to come at the end of the
96 struct dm_rq_clone_bio_info {
98 struct dm_rq_target_io *tio;
102 union map_info *dm_get_rq_mapinfo(struct request *rq)
104 if (rq && rq->end_io_data)
105 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
110 #define MINOR_ALLOCED ((void *)-1)
113 * Bits for the md->flags field.
115 #define DMF_BLOCK_IO_FOR_SUSPEND 0
116 #define DMF_SUSPENDED 1
118 #define DMF_FREEING 3
119 #define DMF_DELETING 4
120 #define DMF_NOFLUSH_SUSPENDING 5
121 #define DMF_MERGE_IS_OPTIONAL 6
122 #define DMF_DEFERRED_REMOVE 7
123 #define DMF_SUSPENDED_INTERNALLY 8
126 * A dummy definition to make RCU happy.
127 * struct dm_table should never be dereferenced in this file.
134 * Work processed by per-device workqueue.
136 struct mapped_device {
137 struct srcu_struct io_barrier;
138 struct mutex suspend_lock;
143 * The current mapping.
144 * Use dm_get_live_table{_fast} or take suspend_lock for
147 struct dm_table __rcu *map;
149 struct list_head table_devices;
150 struct mutex table_devices_lock;
154 struct request_queue *queue;
156 /* Protect queue and type against concurrent access. */
157 struct mutex type_lock;
159 struct target_type *immutable_target_type;
161 struct gendisk *disk;
167 * A list of ios that arrived while we were suspended.
170 wait_queue_head_t wait;
171 struct work_struct work;
172 struct bio_list deferred;
173 spinlock_t deferred_lock;
176 * Processing queue (flush)
178 struct workqueue_struct *wq;
181 * io objects are allocated from here.
192 wait_queue_head_t eventq;
194 struct list_head uevent_list;
195 spinlock_t uevent_lock; /* Protect access to uevent_list */
198 * freeze/thaw support require holding onto a super block
200 struct super_block *frozen_sb;
201 struct block_device *bdev;
203 /* forced geometry settings */
204 struct hd_geometry geometry;
206 /* kobject and completion */
207 struct dm_kobject_holder kobj_holder;
209 /* zero-length flush that will be cloned and submitted to targets */
210 struct bio flush_bio;
212 /* the number of internal suspends */
213 unsigned internal_suspend_count;
215 struct dm_stats stats;
217 struct kthread_worker kworker;
218 struct task_struct *kworker_task;
222 * For mempools pre-allocation at the table loading time.
224 struct dm_md_mempools {
230 struct table_device {
231 struct list_head list;
233 struct dm_dev dm_dev;
236 #define RESERVED_BIO_BASED_IOS 16
237 #define RESERVED_REQUEST_BASED_IOS 256
238 #define RESERVED_MAX_IOS 1024
239 static struct kmem_cache *_io_cache;
240 static struct kmem_cache *_rq_tio_cache;
241 static struct kmem_cache *_rq_cache;
244 * Bio-based DM's mempools' reserved IOs set by the user.
246 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
249 * Request-based DM's mempools' reserved IOs set by the user.
251 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
253 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
254 unsigned def, unsigned max)
256 unsigned ios = ACCESS_ONCE(*reserved_ios);
257 unsigned modified_ios = 0;
265 (void)cmpxchg(reserved_ios, ios, modified_ios);
272 unsigned dm_get_reserved_bio_based_ios(void)
274 return __dm_get_reserved_ios(&reserved_bio_based_ios,
275 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
277 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
279 unsigned dm_get_reserved_rq_based_ios(void)
281 return __dm_get_reserved_ios(&reserved_rq_based_ios,
282 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
284 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
286 static int __init local_init(void)
290 /* allocate a slab for the dm_ios */
291 _io_cache = KMEM_CACHE(dm_io, 0);
295 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
297 goto out_free_io_cache;
299 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
300 __alignof__(struct request), 0, NULL);
302 goto out_free_rq_tio_cache;
304 r = dm_uevent_init();
306 goto out_free_rq_cache;
308 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
309 if (!deferred_remove_workqueue) {
311 goto out_uevent_exit;
315 r = register_blkdev(_major, _name);
317 goto out_free_workqueue;
325 destroy_workqueue(deferred_remove_workqueue);
329 kmem_cache_destroy(_rq_cache);
330 out_free_rq_tio_cache:
331 kmem_cache_destroy(_rq_tio_cache);
333 kmem_cache_destroy(_io_cache);
338 static void local_exit(void)
340 flush_scheduled_work();
341 destroy_workqueue(deferred_remove_workqueue);
343 kmem_cache_destroy(_rq_cache);
344 kmem_cache_destroy(_rq_tio_cache);
345 kmem_cache_destroy(_io_cache);
346 unregister_blkdev(_major, _name);
351 DMINFO("cleaned up");
354 static int (*_inits[])(void) __initdata = {
365 static void (*_exits[])(void) = {
376 static int __init dm_init(void)
378 const int count = ARRAY_SIZE(_inits);
382 for (i = 0; i < count; i++) {
397 static void __exit dm_exit(void)
399 int i = ARRAY_SIZE(_exits);
405 * Should be empty by this point.
407 idr_destroy(&_minor_idr);
411 * Block device functions
413 int dm_deleting_md(struct mapped_device *md)
415 return test_bit(DMF_DELETING, &md->flags);
418 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
420 struct mapped_device *md;
422 spin_lock(&_minor_lock);
424 md = bdev->bd_disk->private_data;
428 if (test_bit(DMF_FREEING, &md->flags) ||
429 dm_deleting_md(md)) {
435 atomic_inc(&md->open_count);
438 spin_unlock(&_minor_lock);
440 return md ? 0 : -ENXIO;
443 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
445 struct mapped_device *md = disk->private_data;
447 spin_lock(&_minor_lock);
449 if (atomic_dec_and_test(&md->open_count) &&
450 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
451 queue_work(deferred_remove_workqueue, &deferred_remove_work);
455 spin_unlock(&_minor_lock);
458 int dm_open_count(struct mapped_device *md)
460 return atomic_read(&md->open_count);
464 * Guarantees nothing is using the device before it's deleted.
466 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
470 spin_lock(&_minor_lock);
472 if (dm_open_count(md)) {
475 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
476 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
479 set_bit(DMF_DELETING, &md->flags);
481 spin_unlock(&_minor_lock);
486 int dm_cancel_deferred_remove(struct mapped_device *md)
490 spin_lock(&_minor_lock);
492 if (test_bit(DMF_DELETING, &md->flags))
495 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
497 spin_unlock(&_minor_lock);
502 static void do_deferred_remove(struct work_struct *w)
504 dm_deferred_remove();
507 sector_t dm_get_size(struct mapped_device *md)
509 return get_capacity(md->disk);
512 struct request_queue *dm_get_md_queue(struct mapped_device *md)
517 struct dm_stats *dm_get_stats(struct mapped_device *md)
522 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
524 struct mapped_device *md = bdev->bd_disk->private_data;
526 return dm_get_geometry(md, geo);
529 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
530 unsigned int cmd, unsigned long arg)
532 struct mapped_device *md = bdev->bd_disk->private_data;
534 struct dm_table *map;
535 struct dm_target *tgt;
539 map = dm_get_live_table(md, &srcu_idx);
541 if (!map || !dm_table_get_size(map))
544 /* We only support devices that have a single target */
545 if (dm_table_get_num_targets(map) != 1)
548 tgt = dm_table_get_target(map, 0);
549 if (!tgt->type->ioctl)
552 if (dm_suspended_md(md)) {
557 r = tgt->type->ioctl(tgt, cmd, arg);
560 dm_put_live_table(md, srcu_idx);
562 if (r == -ENOTCONN) {
570 static struct dm_io *alloc_io(struct mapped_device *md)
572 return mempool_alloc(md->io_pool, GFP_NOIO);
575 static void free_io(struct mapped_device *md, struct dm_io *io)
577 mempool_free(io, md->io_pool);
580 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
582 bio_put(&tio->clone);
585 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
588 return mempool_alloc(md->io_pool, gfp_mask);
591 static void free_rq_tio(struct dm_rq_target_io *tio)
593 mempool_free(tio, tio->md->io_pool);
596 static struct request *alloc_clone_request(struct mapped_device *md,
599 return mempool_alloc(md->rq_pool, gfp_mask);
602 static void free_clone_request(struct mapped_device *md, struct request *rq)
604 mempool_free(rq, md->rq_pool);
607 static int md_in_flight(struct mapped_device *md)
609 return atomic_read(&md->pending[READ]) +
610 atomic_read(&md->pending[WRITE]);
613 static void start_io_acct(struct dm_io *io)
615 struct mapped_device *md = io->md;
616 struct bio *bio = io->bio;
618 int rw = bio_data_dir(bio);
620 io->start_time = jiffies;
622 cpu = part_stat_lock();
623 part_round_stats(cpu, &dm_disk(md)->part0);
625 atomic_set(&dm_disk(md)->part0.in_flight[rw],
626 atomic_inc_return(&md->pending[rw]));
628 if (unlikely(dm_stats_used(&md->stats)))
629 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
630 bio_sectors(bio), false, 0, &io->stats_aux);
633 static void end_io_acct(struct dm_io *io)
635 struct mapped_device *md = io->md;
636 struct bio *bio = io->bio;
637 unsigned long duration = jiffies - io->start_time;
639 int rw = bio_data_dir(bio);
641 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
643 if (unlikely(dm_stats_used(&md->stats)))
644 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
645 bio_sectors(bio), true, duration, &io->stats_aux);
648 * After this is decremented the bio must not be touched if it is
651 pending = atomic_dec_return(&md->pending[rw]);
652 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
653 pending += atomic_read(&md->pending[rw^0x1]);
655 /* nudge anyone waiting on suspend queue */
661 * Add the bio to the list of deferred io.
663 static void queue_io(struct mapped_device *md, struct bio *bio)
667 spin_lock_irqsave(&md->deferred_lock, flags);
668 bio_list_add(&md->deferred, bio);
669 spin_unlock_irqrestore(&md->deferred_lock, flags);
670 queue_work(md->wq, &md->work);
674 * Everyone (including functions in this file), should use this
675 * function to access the md->map field, and make sure they call
676 * dm_put_live_table() when finished.
678 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
680 *srcu_idx = srcu_read_lock(&md->io_barrier);
682 return srcu_dereference(md->map, &md->io_barrier);
685 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
687 srcu_read_unlock(&md->io_barrier, srcu_idx);
690 void dm_sync_table(struct mapped_device *md)
692 synchronize_srcu(&md->io_barrier);
693 synchronize_rcu_expedited();
697 * A fast alternative to dm_get_live_table/dm_put_live_table.
698 * The caller must not block between these two functions.
700 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
703 return rcu_dereference(md->map);
706 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
712 * Open a table device so we can use it as a map destination.
714 static int open_table_device(struct table_device *td, dev_t dev,
715 struct mapped_device *md)
717 static char *_claim_ptr = "I belong to device-mapper";
718 struct block_device *bdev;
722 BUG_ON(td->dm_dev.bdev);
724 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
726 return PTR_ERR(bdev);
728 r = bd_link_disk_holder(bdev, dm_disk(md));
730 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
734 td->dm_dev.bdev = bdev;
739 * Close a table device that we've been using.
741 static void close_table_device(struct table_device *td, struct mapped_device *md)
743 if (!td->dm_dev.bdev)
746 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
747 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
748 td->dm_dev.bdev = NULL;
751 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
753 struct table_device *td;
755 list_for_each_entry(td, l, list)
756 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
762 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
763 struct dm_dev **result) {
765 struct table_device *td;
767 mutex_lock(&md->table_devices_lock);
768 td = find_table_device(&md->table_devices, dev, mode);
770 td = kmalloc(sizeof(*td), GFP_KERNEL);
772 mutex_unlock(&md->table_devices_lock);
776 td->dm_dev.mode = mode;
777 td->dm_dev.bdev = NULL;
779 if ((r = open_table_device(td, dev, md))) {
780 mutex_unlock(&md->table_devices_lock);
785 format_dev_t(td->dm_dev.name, dev);
787 atomic_set(&td->count, 0);
788 list_add(&td->list, &md->table_devices);
790 atomic_inc(&td->count);
791 mutex_unlock(&md->table_devices_lock);
793 *result = &td->dm_dev;
796 EXPORT_SYMBOL_GPL(dm_get_table_device);
798 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
800 struct table_device *td = container_of(d, struct table_device, dm_dev);
802 mutex_lock(&md->table_devices_lock);
803 if (atomic_dec_and_test(&td->count)) {
804 close_table_device(td, md);
808 mutex_unlock(&md->table_devices_lock);
810 EXPORT_SYMBOL(dm_put_table_device);
812 static void free_table_devices(struct list_head *devices)
814 struct list_head *tmp, *next;
816 list_for_each_safe(tmp, next, devices) {
817 struct table_device *td = list_entry(tmp, struct table_device, list);
819 DMWARN("dm_destroy: %s still exists with %d references",
820 td->dm_dev.name, atomic_read(&td->count));
826 * Get the geometry associated with a dm device
828 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
836 * Set the geometry of a device.
838 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
840 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
842 if (geo->start > sz) {
843 DMWARN("Start sector is beyond the geometry limits.");
852 /*-----------------------------------------------------------------
854 * A more elegant soln is in the works that uses the queue
855 * merge fn, unfortunately there are a couple of changes to
856 * the block layer that I want to make for this. So in the
857 * interests of getting something for people to use I give
858 * you this clearly demarcated crap.
859 *---------------------------------------------------------------*/
861 static int __noflush_suspending(struct mapped_device *md)
863 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
867 * Decrements the number of outstanding ios that a bio has been
868 * cloned into, completing the original io if necc.
870 static void dec_pending(struct dm_io *io, int error)
875 struct mapped_device *md = io->md;
877 /* Push-back supersedes any I/O errors */
878 if (unlikely(error)) {
879 spin_lock_irqsave(&io->endio_lock, flags);
880 if (!(io->error > 0 && __noflush_suspending(md)))
882 spin_unlock_irqrestore(&io->endio_lock, flags);
885 if (atomic_dec_and_test(&io->io_count)) {
886 if (io->error == DM_ENDIO_REQUEUE) {
888 * Target requested pushing back the I/O.
890 spin_lock_irqsave(&md->deferred_lock, flags);
891 if (__noflush_suspending(md))
892 bio_list_add_head(&md->deferred, io->bio);
894 /* noflush suspend was interrupted. */
896 spin_unlock_irqrestore(&md->deferred_lock, flags);
899 io_error = io->error;
904 if (io_error == DM_ENDIO_REQUEUE)
907 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
909 * Preflush done for flush with data, reissue
912 bio->bi_rw &= ~REQ_FLUSH;
915 /* done with normal IO or empty flush */
916 trace_block_bio_complete(md->queue, bio, io_error);
917 bio_endio(bio, io_error);
922 static void disable_write_same(struct mapped_device *md)
924 struct queue_limits *limits = dm_get_queue_limits(md);
926 /* device doesn't really support WRITE SAME, disable it */
927 limits->max_write_same_sectors = 0;
930 static void clone_endio(struct bio *bio, int error)
933 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
934 struct dm_io *io = tio->io;
935 struct mapped_device *md = tio->io->md;
936 dm_endio_fn endio = tio->ti->type->end_io;
938 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
942 r = endio(tio->ti, bio, error);
943 if (r < 0 || r == DM_ENDIO_REQUEUE)
945 * error and requeue request are handled
949 else if (r == DM_ENDIO_INCOMPLETE)
950 /* The target will handle the io */
953 DMWARN("unimplemented target endio return value: %d", r);
958 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
959 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
960 disable_write_same(md);
963 dec_pending(io, error);
967 * Partial completion handling for request-based dm
969 static void end_clone_bio(struct bio *clone, int error)
971 struct dm_rq_clone_bio_info *info =
972 container_of(clone, struct dm_rq_clone_bio_info, clone);
973 struct dm_rq_target_io *tio = info->tio;
974 struct bio *bio = info->orig;
975 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
981 * An error has already been detected on the request.
982 * Once error occurred, just let clone->end_io() handle
988 * Don't notice the error to the upper layer yet.
989 * The error handling decision is made by the target driver,
990 * when the request is completed.
997 * I/O for the bio successfully completed.
998 * Notice the data completion to the upper layer.
1002 * bios are processed from the head of the list.
1003 * So the completing bio should always be rq->bio.
1004 * If it's not, something wrong is happening.
1006 if (tio->orig->bio != bio)
1007 DMERR("bio completion is going in the middle of the request");
1010 * Update the original request.
1011 * Do not use blk_end_request() here, because it may complete
1012 * the original request before the clone, and break the ordering.
1014 blk_update_request(tio->orig, 0, nr_bytes);
1018 * Don't touch any member of the md after calling this function because
1019 * the md may be freed in dm_put() at the end of this function.
1020 * Or do dm_get() before calling this function and dm_put() later.
1022 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1024 atomic_dec(&md->pending[rw]);
1026 /* nudge anyone waiting on suspend queue */
1027 if (!md_in_flight(md))
1031 * Run this off this callpath, as drivers could invoke end_io while
1032 * inside their request_fn (and holding the queue lock). Calling
1033 * back into ->request_fn() could deadlock attempting to grab the
1037 blk_run_queue_async(md->queue);
1040 * dm_put() must be at the end of this function. See the comment above
1045 static void free_rq_clone(struct request *clone)
1047 struct dm_rq_target_io *tio = clone->end_io_data;
1049 blk_rq_unprep_clone(clone);
1050 if (clone->q && clone->q->mq_ops)
1051 tio->ti->type->release_clone_rq(clone);
1053 free_clone_request(tio->md, clone);
1058 * Complete the clone and the original request.
1059 * Must be called without clone's queue lock held,
1060 * see end_clone_request() for more details.
1062 static void dm_end_request(struct request *clone, int error)
1064 int rw = rq_data_dir(clone);
1065 struct dm_rq_target_io *tio = clone->end_io_data;
1066 struct mapped_device *md = tio->md;
1067 struct request *rq = tio->orig;
1069 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1070 rq->errors = clone->errors;
1071 rq->resid_len = clone->resid_len;
1075 * We are using the sense buffer of the original
1077 * So setting the length of the sense data is enough.
1079 rq->sense_len = clone->sense_len;
1082 free_rq_clone(clone);
1083 blk_end_request_all(rq, error);
1084 rq_completed(md, rw, true);
1087 static void dm_unprep_request(struct request *rq)
1089 struct dm_rq_target_io *tio = rq->special;
1090 struct request *clone = tio->clone;
1093 rq->cmd_flags &= ~REQ_DONTPREP;
1096 free_rq_clone(clone);
1100 * Requeue the original request of a clone.
1102 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1105 int rw = rq_data_dir(rq);
1106 struct request_queue *q = rq->q;
1107 unsigned long flags;
1109 dm_unprep_request(rq);
1111 spin_lock_irqsave(q->queue_lock, flags);
1112 blk_requeue_request(q, rq);
1113 spin_unlock_irqrestore(q->queue_lock, flags);
1115 rq_completed(md, rw, false);
1118 static void dm_requeue_unmapped_request(struct request *clone)
1120 struct dm_rq_target_io *tio = clone->end_io_data;
1122 dm_requeue_unmapped_original_request(tio->md, tio->orig);
1125 static void __stop_queue(struct request_queue *q)
1130 static void stop_queue(struct request_queue *q)
1132 unsigned long flags;
1134 spin_lock_irqsave(q->queue_lock, flags);
1136 spin_unlock_irqrestore(q->queue_lock, flags);
1139 static void __start_queue(struct request_queue *q)
1141 if (blk_queue_stopped(q))
1145 static void start_queue(struct request_queue *q)
1147 unsigned long flags;
1149 spin_lock_irqsave(q->queue_lock, flags);
1151 spin_unlock_irqrestore(q->queue_lock, flags);
1154 static void dm_done(struct request *clone, int error, bool mapped)
1157 struct dm_rq_target_io *tio = clone->end_io_data;
1158 dm_request_endio_fn rq_end_io = NULL;
1161 rq_end_io = tio->ti->type->rq_end_io;
1163 if (mapped && rq_end_io)
1164 r = rq_end_io(tio->ti, clone, error, &tio->info);
1167 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1168 !clone->q->limits.max_write_same_sectors))
1169 disable_write_same(tio->md);
1172 /* The target wants to complete the I/O */
1173 dm_end_request(clone, r);
1174 else if (r == DM_ENDIO_INCOMPLETE)
1175 /* The target will handle the I/O */
1177 else if (r == DM_ENDIO_REQUEUE)
1178 /* The target wants to requeue the I/O */
1179 dm_requeue_unmapped_request(clone);
1181 DMWARN("unimplemented target endio return value: %d", r);
1187 * Request completion handler for request-based dm
1189 static void dm_softirq_done(struct request *rq)
1192 struct dm_rq_target_io *tio = rq->special;
1193 struct request *clone = tio->clone;
1196 blk_end_request_all(rq, tio->error);
1197 rq_completed(tio->md, rq_data_dir(rq), false);
1202 if (rq->cmd_flags & REQ_FAILED)
1205 dm_done(clone, tio->error, mapped);
1209 * Complete the clone and the original request with the error status
1210 * through softirq context.
1212 static void dm_complete_request(struct request *rq, int error)
1214 struct dm_rq_target_io *tio = rq->special;
1217 blk_complete_request(rq);
1221 * Complete the not-mapped clone and the original request with the error status
1222 * through softirq context.
1223 * Target's rq_end_io() function isn't called.
1224 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1226 static void dm_kill_unmapped_request(struct request *rq, int error)
1228 rq->cmd_flags |= REQ_FAILED;
1229 dm_complete_request(rq, error);
1233 * Called with the clone's queue lock held
1235 static void end_clone_request(struct request *clone, int error)
1237 struct dm_rq_target_io *tio = clone->end_io_data;
1239 if (!clone->q->mq_ops) {
1241 * For just cleaning up the information of the queue in which
1242 * the clone was dispatched.
1243 * The clone is *NOT* freed actually here because it is alloced
1244 * from dm own mempool (REQ_ALLOCED isn't set).
1246 __blk_put_request(clone->q, clone);
1250 * Actual request completion is done in a softirq context which doesn't
1251 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1252 * - another request may be submitted by the upper level driver
1253 * of the stacking during the completion
1254 * - the submission which requires queue lock may be done
1255 * against this clone's queue
1257 dm_complete_request(tio->orig, error);
1261 * Return maximum size of I/O possible at the supplied sector up to the current
1264 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1266 sector_t target_offset = dm_target_offset(ti, sector);
1268 return ti->len - target_offset;
1271 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1273 sector_t len = max_io_len_target_boundary(sector, ti);
1274 sector_t offset, max_len;
1277 * Does the target need to split even further?
1279 if (ti->max_io_len) {
1280 offset = dm_target_offset(ti, sector);
1281 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1282 max_len = sector_div(offset, ti->max_io_len);
1284 max_len = offset & (ti->max_io_len - 1);
1285 max_len = ti->max_io_len - max_len;
1294 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1296 if (len > UINT_MAX) {
1297 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1298 (unsigned long long)len, UINT_MAX);
1299 ti->error = "Maximum size of target IO is too large";
1303 ti->max_io_len = (uint32_t) len;
1307 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1310 * A target may call dm_accept_partial_bio only from the map routine. It is
1311 * allowed for all bio types except REQ_FLUSH.
1313 * dm_accept_partial_bio informs the dm that the target only wants to process
1314 * additional n_sectors sectors of the bio and the rest of the data should be
1315 * sent in a next bio.
1317 * A diagram that explains the arithmetics:
1318 * +--------------------+---------------+-------+
1320 * +--------------------+---------------+-------+
1322 * <-------------- *tio->len_ptr --------------->
1323 * <------- bi_size ------->
1326 * Region 1 was already iterated over with bio_advance or similar function.
1327 * (it may be empty if the target doesn't use bio_advance)
1328 * Region 2 is the remaining bio size that the target wants to process.
1329 * (it may be empty if region 1 is non-empty, although there is no reason
1331 * The target requires that region 3 is to be sent in the next bio.
1333 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1334 * the partially processed part (the sum of regions 1+2) must be the same for all
1335 * copies of the bio.
1337 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1339 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1340 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1341 BUG_ON(bio->bi_rw & REQ_FLUSH);
1342 BUG_ON(bi_size > *tio->len_ptr);
1343 BUG_ON(n_sectors > bi_size);
1344 *tio->len_ptr -= bi_size - n_sectors;
1345 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1347 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1349 static void __map_bio(struct dm_target_io *tio)
1353 struct mapped_device *md;
1354 struct bio *clone = &tio->clone;
1355 struct dm_target *ti = tio->ti;
1357 clone->bi_end_io = clone_endio;
1360 * Map the clone. If r == 0 we don't need to do
1361 * anything, the target has assumed ownership of
1364 atomic_inc(&tio->io->io_count);
1365 sector = clone->bi_iter.bi_sector;
1366 r = ti->type->map(ti, clone);
1367 if (r == DM_MAPIO_REMAPPED) {
1368 /* the bio has been remapped so dispatch it */
1370 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1371 tio->io->bio->bi_bdev->bd_dev, sector);
1373 generic_make_request(clone);
1374 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1375 /* error the io and bail out, or requeue it if needed */
1377 dec_pending(tio->io, r);
1380 DMWARN("unimplemented target map return value: %d", r);
1386 struct mapped_device *md;
1387 struct dm_table *map;
1391 unsigned sector_count;
1394 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1396 bio->bi_iter.bi_sector = sector;
1397 bio->bi_iter.bi_size = to_bytes(len);
1401 * Creates a bio that consists of range of complete bvecs.
1403 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1404 sector_t sector, unsigned len)
1406 struct bio *clone = &tio->clone;
1408 __bio_clone_fast(clone, bio);
1410 if (bio_integrity(bio))
1411 bio_integrity_clone(clone, bio, GFP_NOIO);
1413 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1414 clone->bi_iter.bi_size = to_bytes(len);
1416 if (bio_integrity(bio))
1417 bio_integrity_trim(clone, 0, len);
1420 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1421 struct dm_target *ti,
1422 unsigned target_bio_nr)
1424 struct dm_target_io *tio;
1427 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1428 tio = container_of(clone, struct dm_target_io, clone);
1432 tio->target_bio_nr = target_bio_nr;
1437 static void __clone_and_map_simple_bio(struct clone_info *ci,
1438 struct dm_target *ti,
1439 unsigned target_bio_nr, unsigned *len)
1441 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1442 struct bio *clone = &tio->clone;
1446 __bio_clone_fast(clone, ci->bio);
1448 bio_setup_sector(clone, ci->sector, *len);
1453 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1454 unsigned num_bios, unsigned *len)
1456 unsigned target_bio_nr;
1458 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1459 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1462 static int __send_empty_flush(struct clone_info *ci)
1464 unsigned target_nr = 0;
1465 struct dm_target *ti;
1467 BUG_ON(bio_has_data(ci->bio));
1468 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1469 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1474 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1475 sector_t sector, unsigned *len)
1477 struct bio *bio = ci->bio;
1478 struct dm_target_io *tio;
1479 unsigned target_bio_nr;
1480 unsigned num_target_bios = 1;
1483 * Does the target want to receive duplicate copies of the bio?
1485 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1486 num_target_bios = ti->num_write_bios(ti, bio);
1488 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1489 tio = alloc_tio(ci, ti, target_bio_nr);
1491 clone_bio(tio, bio, sector, *len);
1496 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1498 static unsigned get_num_discard_bios(struct dm_target *ti)
1500 return ti->num_discard_bios;
1503 static unsigned get_num_write_same_bios(struct dm_target *ti)
1505 return ti->num_write_same_bios;
1508 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1510 static bool is_split_required_for_discard(struct dm_target *ti)
1512 return ti->split_discard_bios;
1515 static int __send_changing_extent_only(struct clone_info *ci,
1516 get_num_bios_fn get_num_bios,
1517 is_split_required_fn is_split_required)
1519 struct dm_target *ti;
1524 ti = dm_table_find_target(ci->map, ci->sector);
1525 if (!dm_target_is_valid(ti))
1529 * Even though the device advertised support for this type of
1530 * request, that does not mean every target supports it, and
1531 * reconfiguration might also have changed that since the
1532 * check was performed.
1534 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1538 if (is_split_required && !is_split_required(ti))
1539 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1541 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1543 __send_duplicate_bios(ci, ti, num_bios, &len);
1546 } while (ci->sector_count -= len);
1551 static int __send_discard(struct clone_info *ci)
1553 return __send_changing_extent_only(ci, get_num_discard_bios,
1554 is_split_required_for_discard);
1557 static int __send_write_same(struct clone_info *ci)
1559 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1563 * Select the correct strategy for processing a non-flush bio.
1565 static int __split_and_process_non_flush(struct clone_info *ci)
1567 struct bio *bio = ci->bio;
1568 struct dm_target *ti;
1571 if (unlikely(bio->bi_rw & REQ_DISCARD))
1572 return __send_discard(ci);
1573 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1574 return __send_write_same(ci);
1576 ti = dm_table_find_target(ci->map, ci->sector);
1577 if (!dm_target_is_valid(ti))
1580 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1582 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1585 ci->sector_count -= len;
1591 * Entry point to split a bio into clones and submit them to the targets.
1593 static void __split_and_process_bio(struct mapped_device *md,
1594 struct dm_table *map, struct bio *bio)
1596 struct clone_info ci;
1599 if (unlikely(!map)) {
1606 ci.io = alloc_io(md);
1608 atomic_set(&ci.io->io_count, 1);
1611 spin_lock_init(&ci.io->endio_lock);
1612 ci.sector = bio->bi_iter.bi_sector;
1614 start_io_acct(ci.io);
1616 if (bio->bi_rw & REQ_FLUSH) {
1617 ci.bio = &ci.md->flush_bio;
1618 ci.sector_count = 0;
1619 error = __send_empty_flush(&ci);
1620 /* dec_pending submits any data associated with flush */
1623 ci.sector_count = bio_sectors(bio);
1624 while (ci.sector_count && !error)
1625 error = __split_and_process_non_flush(&ci);
1628 /* drop the extra reference count */
1629 dec_pending(ci.io, error);
1631 /*-----------------------------------------------------------------
1633 *---------------------------------------------------------------*/
1635 static int dm_merge_bvec(struct request_queue *q,
1636 struct bvec_merge_data *bvm,
1637 struct bio_vec *biovec)
1639 struct mapped_device *md = q->queuedata;
1640 struct dm_table *map = dm_get_live_table_fast(md);
1641 struct dm_target *ti;
1642 sector_t max_sectors;
1648 ti = dm_table_find_target(map, bvm->bi_sector);
1649 if (!dm_target_is_valid(ti))
1653 * Find maximum amount of I/O that won't need splitting
1655 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1656 (sector_t) queue_max_sectors(q));
1657 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1658 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1662 * merge_bvec_fn() returns number of bytes
1663 * it can accept at this offset
1664 * max is precomputed maximal io size
1666 if (max_size && ti->type->merge)
1667 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1669 * If the target doesn't support merge method and some of the devices
1670 * provided their merge_bvec method (we know this by looking for the
1671 * max_hw_sectors that dm_set_device_limits may set), then we can't
1672 * allow bios with multiple vector entries. So always set max_size
1673 * to 0, and the code below allows just one page.
1675 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1679 dm_put_live_table_fast(md);
1681 * Always allow an entire first page
1683 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1684 max_size = biovec->bv_len;
1690 * The request function that just remaps the bio built up by
1693 static void _dm_request(struct request_queue *q, struct bio *bio)
1695 int rw = bio_data_dir(bio);
1696 struct mapped_device *md = q->queuedata;
1698 struct dm_table *map;
1700 map = dm_get_live_table(md, &srcu_idx);
1702 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1704 /* if we're suspended, we have to queue this io for later */
1705 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1706 dm_put_live_table(md, srcu_idx);
1708 if (bio_rw(bio) != READA)
1715 __split_and_process_bio(md, map, bio);
1716 dm_put_live_table(md, srcu_idx);
1720 int dm_request_based(struct mapped_device *md)
1722 return blk_queue_stackable(md->queue);
1725 static void dm_request(struct request_queue *q, struct bio *bio)
1727 struct mapped_device *md = q->queuedata;
1729 if (dm_request_based(md))
1730 blk_queue_bio(q, bio);
1732 _dm_request(q, bio);
1735 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1739 if (blk_queue_io_stat(clone->q))
1740 clone->cmd_flags |= REQ_IO_STAT;
1742 clone->start_time = jiffies;
1743 r = blk_insert_cloned_request(clone->q, clone);
1745 /* must complete clone in terms of original request */
1746 dm_complete_request(rq, r);
1749 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1752 struct dm_rq_target_io *tio = data;
1753 struct dm_rq_clone_bio_info *info =
1754 container_of(bio, struct dm_rq_clone_bio_info, clone);
1756 info->orig = bio_orig;
1758 bio->bi_end_io = end_clone_bio;
1763 static int setup_clone(struct request *clone, struct request *rq,
1764 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1768 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1769 dm_rq_bio_constructor, tio);
1773 clone->cmd = rq->cmd;
1774 clone->cmd_len = rq->cmd_len;
1775 clone->sense = rq->sense;
1776 clone->end_io = end_clone_request;
1777 clone->end_io_data = tio;
1784 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1785 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1787 struct request *clone = alloc_clone_request(md, gfp_mask);
1792 blk_rq_init(NULL, clone);
1793 if (setup_clone(clone, rq, tio, gfp_mask)) {
1795 free_clone_request(md, clone);
1802 static void map_tio_request(struct kthread_work *work);
1804 static struct dm_rq_target_io *prep_tio(struct request *rq,
1805 struct mapped_device *md, gfp_t gfp_mask)
1807 struct dm_rq_target_io *tio;
1809 struct dm_table *table;
1811 tio = alloc_rq_tio(md, gfp_mask);
1820 memset(&tio->info, 0, sizeof(tio->info));
1821 init_kthread_work(&tio->work, map_tio_request);
1823 table = dm_get_live_table(md, &srcu_idx);
1824 if (!dm_table_mq_request_based(table)) {
1825 if (!clone_rq(rq, md, tio, gfp_mask)) {
1826 dm_put_live_table(md, srcu_idx);
1831 dm_put_live_table(md, srcu_idx);
1837 * Called with the queue lock held.
1839 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1841 struct mapped_device *md = q->queuedata;
1842 struct dm_rq_target_io *tio;
1844 if (unlikely(rq->special)) {
1845 DMWARN("Already has something in rq->special.");
1846 return BLKPREP_KILL;
1849 tio = prep_tio(rq, md, GFP_ATOMIC);
1851 return BLKPREP_DEFER;
1854 rq->cmd_flags |= REQ_DONTPREP;
1861 * 0 : the request has been processed
1862 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1863 * < 0 : the request was completed due to failure
1865 static int map_request(struct dm_target *ti, struct request *rq,
1866 struct mapped_device *md)
1869 struct dm_rq_target_io *tio = rq->special;
1870 struct request *clone = NULL;
1874 r = ti->type->map_rq(ti, clone, &tio->info);
1876 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1878 /* The target wants to complete the I/O */
1879 dm_kill_unmapped_request(rq, r);
1883 return DM_MAPIO_REQUEUE;
1884 if (setup_clone(clone, rq, tio, GFP_KERNEL)) {
1886 ti->type->release_clone_rq(clone);
1887 return DM_MAPIO_REQUEUE;
1892 case DM_MAPIO_SUBMITTED:
1893 /* The target has taken the I/O to submit by itself later */
1895 case DM_MAPIO_REMAPPED:
1896 /* The target has remapped the I/O so dispatch it */
1897 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1899 dm_dispatch_clone_request(clone, rq);
1901 case DM_MAPIO_REQUEUE:
1902 /* The target wants to requeue the I/O */
1903 dm_requeue_unmapped_request(clone);
1907 DMWARN("unimplemented target map return value: %d", r);
1911 /* The target wants to complete the I/O */
1912 dm_kill_unmapped_request(rq, r);
1919 static void map_tio_request(struct kthread_work *work)
1921 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1922 struct request *rq = tio->orig;
1923 struct mapped_device *md = tio->md;
1925 if (map_request(tio->ti, rq, md) == DM_MAPIO_REQUEUE)
1926 dm_requeue_unmapped_original_request(md, rq);
1929 static void dm_start_request(struct mapped_device *md, struct request *orig)
1931 blk_start_request(orig);
1932 atomic_inc(&md->pending[rq_data_dir(orig)]);
1935 * Hold the md reference here for the in-flight I/O.
1936 * We can't rely on the reference count by device opener,
1937 * because the device may be closed during the request completion
1938 * when all bios are completed.
1939 * See the comment in rq_completed() too.
1945 * q->request_fn for request-based dm.
1946 * Called with the queue lock held.
1948 static void dm_request_fn(struct request_queue *q)
1950 struct mapped_device *md = q->queuedata;
1952 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1953 struct dm_target *ti;
1955 struct dm_rq_target_io *tio;
1959 * For suspend, check blk_queue_stopped() and increment
1960 * ->pending within a single queue_lock not to increment the
1961 * number of in-flight I/Os after the queue is stopped in
1964 while (!blk_queue_stopped(q)) {
1965 rq = blk_peek_request(q);
1969 /* always use block 0 to find the target for flushes for now */
1971 if (!(rq->cmd_flags & REQ_FLUSH))
1972 pos = blk_rq_pos(rq);
1974 ti = dm_table_find_target(map, pos);
1975 if (!dm_target_is_valid(ti)) {
1977 * Must perform setup, that rq_completed() requires,
1978 * before calling dm_kill_unmapped_request
1980 DMERR_LIMIT("request attempted access beyond the end of device");
1981 dm_start_request(md, rq);
1982 dm_kill_unmapped_request(rq, -EIO);
1986 if (ti->type->busy && ti->type->busy(ti))
1989 dm_start_request(md, rq);
1992 /* Establish tio->ti before queuing work (map_tio_request) */
1994 queue_kthread_work(&md->kworker, &tio->work);
1995 BUG_ON(!irqs_disabled());
2001 blk_delay_queue(q, HZ / 10);
2003 dm_put_live_table(md, srcu_idx);
2006 int dm_underlying_device_busy(struct request_queue *q)
2008 return blk_lld_busy(q);
2010 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
2012 static int dm_lld_busy(struct request_queue *q)
2015 struct mapped_device *md = q->queuedata;
2016 struct dm_table *map = dm_get_live_table_fast(md);
2018 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
2021 r = dm_table_any_busy_target(map);
2023 dm_put_live_table_fast(md);
2028 static int dm_any_congested(void *congested_data, int bdi_bits)
2031 struct mapped_device *md = congested_data;
2032 struct dm_table *map;
2034 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2035 map = dm_get_live_table_fast(md);
2038 * Request-based dm cares about only own queue for
2039 * the query about congestion status of request_queue
2041 if (dm_request_based(md))
2042 r = md->queue->backing_dev_info.state &
2045 r = dm_table_any_congested(map, bdi_bits);
2047 dm_put_live_table_fast(md);
2053 /*-----------------------------------------------------------------
2054 * An IDR is used to keep track of allocated minor numbers.
2055 *---------------------------------------------------------------*/
2056 static void free_minor(int minor)
2058 spin_lock(&_minor_lock);
2059 idr_remove(&_minor_idr, minor);
2060 spin_unlock(&_minor_lock);
2064 * See if the device with a specific minor # is free.
2066 static int specific_minor(int minor)
2070 if (minor >= (1 << MINORBITS))
2073 idr_preload(GFP_KERNEL);
2074 spin_lock(&_minor_lock);
2076 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2078 spin_unlock(&_minor_lock);
2081 return r == -ENOSPC ? -EBUSY : r;
2085 static int next_free_minor(int *minor)
2089 idr_preload(GFP_KERNEL);
2090 spin_lock(&_minor_lock);
2092 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2094 spin_unlock(&_minor_lock);
2102 static const struct block_device_operations dm_blk_dops;
2104 static void dm_wq_work(struct work_struct *work);
2106 static void dm_init_md_queue(struct mapped_device *md)
2109 * Request-based dm devices cannot be stacked on top of bio-based dm
2110 * devices. The type of this dm device has not been decided yet.
2111 * The type is decided at the first table loading time.
2112 * To prevent problematic device stacking, clear the queue flag
2113 * for request stacking support until then.
2115 * This queue is new, so no concurrency on the queue_flags.
2117 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2119 md->queue->queuedata = md;
2120 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2121 md->queue->backing_dev_info.congested_data = md;
2122 blk_queue_make_request(md->queue, dm_request);
2123 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2124 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2128 * Allocate and initialise a blank device with a given minor.
2130 static struct mapped_device *alloc_dev(int minor)
2133 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2137 DMWARN("unable to allocate device, out of memory.");
2141 if (!try_module_get(THIS_MODULE))
2142 goto bad_module_get;
2144 /* get a minor number for the dev */
2145 if (minor == DM_ANY_MINOR)
2146 r = next_free_minor(&minor);
2148 r = specific_minor(minor);
2152 r = init_srcu_struct(&md->io_barrier);
2154 goto bad_io_barrier;
2156 md->type = DM_TYPE_NONE;
2157 mutex_init(&md->suspend_lock);
2158 mutex_init(&md->type_lock);
2159 mutex_init(&md->table_devices_lock);
2160 spin_lock_init(&md->deferred_lock);
2161 atomic_set(&md->holders, 1);
2162 atomic_set(&md->open_count, 0);
2163 atomic_set(&md->event_nr, 0);
2164 atomic_set(&md->uevent_seq, 0);
2165 INIT_LIST_HEAD(&md->uevent_list);
2166 INIT_LIST_HEAD(&md->table_devices);
2167 spin_lock_init(&md->uevent_lock);
2169 md->queue = blk_alloc_queue(GFP_KERNEL);
2173 dm_init_md_queue(md);
2175 md->disk = alloc_disk(1);
2179 atomic_set(&md->pending[0], 0);
2180 atomic_set(&md->pending[1], 0);
2181 init_waitqueue_head(&md->wait);
2182 INIT_WORK(&md->work, dm_wq_work);
2183 init_waitqueue_head(&md->eventq);
2184 init_completion(&md->kobj_holder.completion);
2185 md->kworker_task = NULL;
2187 md->disk->major = _major;
2188 md->disk->first_minor = minor;
2189 md->disk->fops = &dm_blk_dops;
2190 md->disk->queue = md->queue;
2191 md->disk->private_data = md;
2192 sprintf(md->disk->disk_name, "dm-%d", minor);
2194 format_dev_t(md->name, MKDEV(_major, minor));
2196 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2200 md->bdev = bdget_disk(md->disk, 0);
2204 bio_init(&md->flush_bio);
2205 md->flush_bio.bi_bdev = md->bdev;
2206 md->flush_bio.bi_rw = WRITE_FLUSH;
2208 dm_stats_init(&md->stats);
2210 /* Populate the mapping, nobody knows we exist yet */
2211 spin_lock(&_minor_lock);
2212 old_md = idr_replace(&_minor_idr, md, minor);
2213 spin_unlock(&_minor_lock);
2215 BUG_ON(old_md != MINOR_ALLOCED);
2220 destroy_workqueue(md->wq);
2222 del_gendisk(md->disk);
2225 blk_cleanup_queue(md->queue);
2227 cleanup_srcu_struct(&md->io_barrier);
2231 module_put(THIS_MODULE);
2237 static void unlock_fs(struct mapped_device *md);
2239 static void free_dev(struct mapped_device *md)
2241 int minor = MINOR(disk_devt(md->disk));
2245 destroy_workqueue(md->wq);
2247 if (md->kworker_task)
2248 kthread_stop(md->kworker_task);
2250 mempool_destroy(md->io_pool);
2252 mempool_destroy(md->rq_pool);
2254 bioset_free(md->bs);
2255 blk_integrity_unregister(md->disk);
2256 del_gendisk(md->disk);
2257 cleanup_srcu_struct(&md->io_barrier);
2258 free_table_devices(&md->table_devices);
2261 spin_lock(&_minor_lock);
2262 md->disk->private_data = NULL;
2263 spin_unlock(&_minor_lock);
2266 blk_cleanup_queue(md->queue);
2267 dm_stats_cleanup(&md->stats);
2268 module_put(THIS_MODULE);
2272 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2274 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2276 if (md->io_pool && md->bs) {
2277 /* The md already has necessary mempools. */
2278 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2280 * Reload bioset because front_pad may have changed
2281 * because a different table was loaded.
2283 bioset_free(md->bs);
2288 * There's no need to reload with request-based dm
2289 * because the size of front_pad doesn't change.
2290 * Note for future: If you are to reload bioset,
2291 * prep-ed requests in the queue may refer
2292 * to bio from the old bioset, so you must walk
2293 * through the queue to unprep.
2298 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2300 md->io_pool = p->io_pool;
2302 md->rq_pool = p->rq_pool;
2308 /* mempool bind completed, now no need any mempools in the table */
2309 dm_table_free_md_mempools(t);
2313 * Bind a table to the device.
2315 static void event_callback(void *context)
2317 unsigned long flags;
2319 struct mapped_device *md = (struct mapped_device *) context;
2321 spin_lock_irqsave(&md->uevent_lock, flags);
2322 list_splice_init(&md->uevent_list, &uevents);
2323 spin_unlock_irqrestore(&md->uevent_lock, flags);
2325 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2327 atomic_inc(&md->event_nr);
2328 wake_up(&md->eventq);
2332 * Protected by md->suspend_lock obtained by dm_swap_table().
2334 static void __set_size(struct mapped_device *md, sector_t size)
2336 set_capacity(md->disk, size);
2338 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2342 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2344 * If this function returns 0, then the device is either a non-dm
2345 * device without a merge_bvec_fn, or it is a dm device that is
2346 * able to split any bios it receives that are too big.
2348 int dm_queue_merge_is_compulsory(struct request_queue *q)
2350 struct mapped_device *dev_md;
2352 if (!q->merge_bvec_fn)
2355 if (q->make_request_fn == dm_request) {
2356 dev_md = q->queuedata;
2357 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2364 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2365 struct dm_dev *dev, sector_t start,
2366 sector_t len, void *data)
2368 struct block_device *bdev = dev->bdev;
2369 struct request_queue *q = bdev_get_queue(bdev);
2371 return dm_queue_merge_is_compulsory(q);
2375 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2376 * on the properties of the underlying devices.
2378 static int dm_table_merge_is_optional(struct dm_table *table)
2381 struct dm_target *ti;
2383 while (i < dm_table_get_num_targets(table)) {
2384 ti = dm_table_get_target(table, i++);
2386 if (ti->type->iterate_devices &&
2387 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2395 * Returns old map, which caller must destroy.
2397 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2398 struct queue_limits *limits)
2400 struct dm_table *old_map;
2401 struct request_queue *q = md->queue;
2403 int merge_is_optional;
2405 size = dm_table_get_size(t);
2408 * Wipe any geometry if the size of the table changed.
2410 if (size != dm_get_size(md))
2411 memset(&md->geometry, 0, sizeof(md->geometry));
2413 __set_size(md, size);
2415 dm_table_event_callback(t, event_callback, md);
2418 * The queue hasn't been stopped yet, if the old table type wasn't
2419 * for request-based during suspension. So stop it to prevent
2420 * I/O mapping before resume.
2421 * This must be done before setting the queue restrictions,
2422 * because request-based dm may be run just after the setting.
2424 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2427 __bind_mempools(md, t);
2429 merge_is_optional = dm_table_merge_is_optional(t);
2431 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2432 rcu_assign_pointer(md->map, t);
2433 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2435 dm_table_set_restrictions(t, q, limits);
2436 if (merge_is_optional)
2437 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2439 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2447 * Returns unbound table for the caller to free.
2449 static struct dm_table *__unbind(struct mapped_device *md)
2451 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2456 dm_table_event_callback(map, NULL, NULL);
2457 RCU_INIT_POINTER(md->map, NULL);
2464 * Constructor for a new device.
2466 int dm_create(int minor, struct mapped_device **result)
2468 struct mapped_device *md;
2470 md = alloc_dev(minor);
2481 * Functions to manage md->type.
2482 * All are required to hold md->type_lock.
2484 void dm_lock_md_type(struct mapped_device *md)
2486 mutex_lock(&md->type_lock);
2489 void dm_unlock_md_type(struct mapped_device *md)
2491 mutex_unlock(&md->type_lock);
2494 void dm_set_md_type(struct mapped_device *md, unsigned type)
2496 BUG_ON(!mutex_is_locked(&md->type_lock));
2500 unsigned dm_get_md_type(struct mapped_device *md)
2502 BUG_ON(!mutex_is_locked(&md->type_lock));
2506 static bool dm_md_type_request_based(struct mapped_device *md)
2508 unsigned table_type = dm_get_md_type(md);
2510 return (table_type == DM_TYPE_REQUEST_BASED ||
2511 table_type == DM_TYPE_MQ_REQUEST_BASED);
2514 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2516 return md->immutable_target_type;
2520 * The queue_limits are only valid as long as you have a reference
2523 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2525 BUG_ON(!atomic_read(&md->holders));
2526 return &md->queue->limits;
2528 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2531 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2533 static int dm_init_request_based_queue(struct mapped_device *md)
2535 struct request_queue *q = NULL;
2537 if (md->queue->elevator)
2540 /* Fully initialize the queue */
2541 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2546 dm_init_md_queue(md);
2547 blk_queue_softirq_done(md->queue, dm_softirq_done);
2548 blk_queue_prep_rq(md->queue, dm_prep_fn);
2549 blk_queue_lld_busy(md->queue, dm_lld_busy);
2551 /* Also initialize the request-based DM worker thread */
2552 init_kthread_worker(&md->kworker);
2553 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2554 "kdmwork-%s", dm_device_name(md));
2556 elv_register_queue(md->queue);
2562 * Setup the DM device's queue based on md's type
2564 int dm_setup_md_queue(struct mapped_device *md)
2566 if (dm_md_type_request_based(md) && !dm_init_request_based_queue(md)) {
2567 DMWARN("Cannot initialize queue for request-based mapped device");
2574 struct mapped_device *dm_get_md(dev_t dev)
2576 struct mapped_device *md;
2577 unsigned minor = MINOR(dev);
2579 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2582 spin_lock(&_minor_lock);
2584 md = idr_find(&_minor_idr, minor);
2586 if ((md == MINOR_ALLOCED ||
2587 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2588 dm_deleting_md(md) ||
2589 test_bit(DMF_FREEING, &md->flags))) {
2597 spin_unlock(&_minor_lock);
2601 EXPORT_SYMBOL_GPL(dm_get_md);
2603 void *dm_get_mdptr(struct mapped_device *md)
2605 return md->interface_ptr;
2608 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2610 md->interface_ptr = ptr;
2613 void dm_get(struct mapped_device *md)
2615 atomic_inc(&md->holders);
2616 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2619 const char *dm_device_name(struct mapped_device *md)
2623 EXPORT_SYMBOL_GPL(dm_device_name);
2625 static void __dm_destroy(struct mapped_device *md, bool wait)
2627 struct dm_table *map;
2632 spin_lock(&_minor_lock);
2633 map = dm_get_live_table(md, &srcu_idx);
2634 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2635 set_bit(DMF_FREEING, &md->flags);
2636 spin_unlock(&_minor_lock);
2638 if (dm_request_based(md))
2639 flush_kthread_worker(&md->kworker);
2641 if (!dm_suspended_md(md)) {
2642 dm_table_presuspend_targets(map);
2643 dm_table_postsuspend_targets(map);
2646 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2647 dm_put_live_table(md, srcu_idx);
2650 * Rare, but there may be I/O requests still going to complete,
2651 * for example. Wait for all references to disappear.
2652 * No one should increment the reference count of the mapped_device,
2653 * after the mapped_device state becomes DMF_FREEING.
2656 while (atomic_read(&md->holders))
2658 else if (atomic_read(&md->holders))
2659 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2660 dm_device_name(md), atomic_read(&md->holders));
2663 dm_table_destroy(__unbind(md));
2667 void dm_destroy(struct mapped_device *md)
2669 __dm_destroy(md, true);
2672 void dm_destroy_immediate(struct mapped_device *md)
2674 __dm_destroy(md, false);
2677 void dm_put(struct mapped_device *md)
2679 atomic_dec(&md->holders);
2681 EXPORT_SYMBOL_GPL(dm_put);
2683 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2686 DECLARE_WAITQUEUE(wait, current);
2688 add_wait_queue(&md->wait, &wait);
2691 set_current_state(interruptible);
2693 if (!md_in_flight(md))
2696 if (interruptible == TASK_INTERRUPTIBLE &&
2697 signal_pending(current)) {
2704 set_current_state(TASK_RUNNING);
2706 remove_wait_queue(&md->wait, &wait);
2712 * Process the deferred bios
2714 static void dm_wq_work(struct work_struct *work)
2716 struct mapped_device *md = container_of(work, struct mapped_device,
2720 struct dm_table *map;
2722 map = dm_get_live_table(md, &srcu_idx);
2724 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2725 spin_lock_irq(&md->deferred_lock);
2726 c = bio_list_pop(&md->deferred);
2727 spin_unlock_irq(&md->deferred_lock);
2732 if (dm_request_based(md))
2733 generic_make_request(c);
2735 __split_and_process_bio(md, map, c);
2738 dm_put_live_table(md, srcu_idx);
2741 static void dm_queue_flush(struct mapped_device *md)
2743 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2744 smp_mb__after_atomic();
2745 queue_work(md->wq, &md->work);
2749 * Swap in a new table, returning the old one for the caller to destroy.
2751 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2753 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2754 struct queue_limits limits;
2757 mutex_lock(&md->suspend_lock);
2759 /* device must be suspended */
2760 if (!dm_suspended_md(md))
2764 * If the new table has no data devices, retain the existing limits.
2765 * This helps multipath with queue_if_no_path if all paths disappear,
2766 * then new I/O is queued based on these limits, and then some paths
2769 if (dm_table_has_no_data_devices(table)) {
2770 live_map = dm_get_live_table_fast(md);
2772 limits = md->queue->limits;
2773 dm_put_live_table_fast(md);
2777 r = dm_calculate_queue_limits(table, &limits);
2784 map = __bind(md, table, &limits);
2787 mutex_unlock(&md->suspend_lock);
2792 * Functions to lock and unlock any filesystem running on the
2795 static int lock_fs(struct mapped_device *md)
2799 WARN_ON(md->frozen_sb);
2801 md->frozen_sb = freeze_bdev(md->bdev);
2802 if (IS_ERR(md->frozen_sb)) {
2803 r = PTR_ERR(md->frozen_sb);
2804 md->frozen_sb = NULL;
2808 set_bit(DMF_FROZEN, &md->flags);
2813 static void unlock_fs(struct mapped_device *md)
2815 if (!test_bit(DMF_FROZEN, &md->flags))
2818 thaw_bdev(md->bdev, md->frozen_sb);
2819 md->frozen_sb = NULL;
2820 clear_bit(DMF_FROZEN, &md->flags);
2824 * If __dm_suspend returns 0, the device is completely quiescent
2825 * now. There is no request-processing activity. All new requests
2826 * are being added to md->deferred list.
2828 * Caller must hold md->suspend_lock
2830 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2831 unsigned suspend_flags, int interruptible)
2833 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2834 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2838 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2839 * This flag is cleared before dm_suspend returns.
2842 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2845 * This gets reverted if there's an error later and the targets
2846 * provide the .presuspend_undo hook.
2848 dm_table_presuspend_targets(map);
2851 * Flush I/O to the device.
2852 * Any I/O submitted after lock_fs() may not be flushed.
2853 * noflush takes precedence over do_lockfs.
2854 * (lock_fs() flushes I/Os and waits for them to complete.)
2856 if (!noflush && do_lockfs) {
2859 dm_table_presuspend_undo_targets(map);
2865 * Here we must make sure that no processes are submitting requests
2866 * to target drivers i.e. no one may be executing
2867 * __split_and_process_bio. This is called from dm_request and
2870 * To get all processes out of __split_and_process_bio in dm_request,
2871 * we take the write lock. To prevent any process from reentering
2872 * __split_and_process_bio from dm_request and quiesce the thread
2873 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2874 * flush_workqueue(md->wq).
2876 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2878 synchronize_srcu(&md->io_barrier);
2881 * Stop md->queue before flushing md->wq in case request-based
2882 * dm defers requests to md->wq from md->queue.
2884 if (dm_request_based(md)) {
2885 stop_queue(md->queue);
2886 flush_kthread_worker(&md->kworker);
2889 flush_workqueue(md->wq);
2892 * At this point no more requests are entering target request routines.
2893 * We call dm_wait_for_completion to wait for all existing requests
2896 r = dm_wait_for_completion(md, interruptible);
2899 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2901 synchronize_srcu(&md->io_barrier);
2903 /* were we interrupted ? */
2907 if (dm_request_based(md))
2908 start_queue(md->queue);
2911 dm_table_presuspend_undo_targets(map);
2912 /* pushback list is already flushed, so skip flush */
2919 * We need to be able to change a mapping table under a mounted
2920 * filesystem. For example we might want to move some data in
2921 * the background. Before the table can be swapped with
2922 * dm_bind_table, dm_suspend must be called to flush any in
2923 * flight bios and ensure that any further io gets deferred.
2926 * Suspend mechanism in request-based dm.
2928 * 1. Flush all I/Os by lock_fs() if needed.
2929 * 2. Stop dispatching any I/O by stopping the request_queue.
2930 * 3. Wait for all in-flight I/Os to be completed or requeued.
2932 * To abort suspend, start the request_queue.
2934 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2936 struct dm_table *map = NULL;
2940 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2942 if (dm_suspended_md(md)) {
2947 if (dm_suspended_internally_md(md)) {
2948 /* already internally suspended, wait for internal resume */
2949 mutex_unlock(&md->suspend_lock);
2950 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2956 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2958 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
2962 set_bit(DMF_SUSPENDED, &md->flags);
2964 dm_table_postsuspend_targets(map);
2967 mutex_unlock(&md->suspend_lock);
2971 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2974 int r = dm_table_resume_targets(map);
2982 * Flushing deferred I/Os must be done after targets are resumed
2983 * so that mapping of targets can work correctly.
2984 * Request-based dm is queueing the deferred I/Os in its request_queue.
2986 if (dm_request_based(md))
2987 start_queue(md->queue);
2994 int dm_resume(struct mapped_device *md)
2997 struct dm_table *map = NULL;
3000 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3002 if (!dm_suspended_md(md))
3005 if (dm_suspended_internally_md(md)) {
3006 /* already internally suspended, wait for internal resume */
3007 mutex_unlock(&md->suspend_lock);
3008 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3014 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3015 if (!map || !dm_table_get_size(map))
3018 r = __dm_resume(md, map);
3022 clear_bit(DMF_SUSPENDED, &md->flags);
3026 mutex_unlock(&md->suspend_lock);
3032 * Internal suspend/resume works like userspace-driven suspend. It waits
3033 * until all bios finish and prevents issuing new bios to the target drivers.
3034 * It may be used only from the kernel.
3037 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3039 struct dm_table *map = NULL;
3041 if (md->internal_suspend_count++)
3042 return; /* nested internal suspend */
3044 if (dm_suspended_md(md)) {
3045 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3046 return; /* nest suspend */
3049 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3052 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3053 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3054 * would require changing .presuspend to return an error -- avoid this
3055 * until there is a need for more elaborate variants of internal suspend.
3057 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3059 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3061 dm_table_postsuspend_targets(map);
3064 static void __dm_internal_resume(struct mapped_device *md)
3066 BUG_ON(!md->internal_suspend_count);
3068 if (--md->internal_suspend_count)
3069 return; /* resume from nested internal suspend */
3071 if (dm_suspended_md(md))
3072 goto done; /* resume from nested suspend */
3075 * NOTE: existing callers don't need to call dm_table_resume_targets
3076 * (which may fail -- so best to avoid it for now by passing NULL map)
3078 (void) __dm_resume(md, NULL);
3081 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3082 smp_mb__after_atomic();
3083 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3086 void dm_internal_suspend_noflush(struct mapped_device *md)
3088 mutex_lock(&md->suspend_lock);
3089 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3090 mutex_unlock(&md->suspend_lock);
3092 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3094 void dm_internal_resume(struct mapped_device *md)
3096 mutex_lock(&md->suspend_lock);
3097 __dm_internal_resume(md);
3098 mutex_unlock(&md->suspend_lock);
3100 EXPORT_SYMBOL_GPL(dm_internal_resume);
3103 * Fast variants of internal suspend/resume hold md->suspend_lock,
3104 * which prevents interaction with userspace-driven suspend.
3107 void dm_internal_suspend_fast(struct mapped_device *md)
3109 mutex_lock(&md->suspend_lock);
3110 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3113 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3114 synchronize_srcu(&md->io_barrier);
3115 flush_workqueue(md->wq);
3116 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3119 void dm_internal_resume_fast(struct mapped_device *md)
3121 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3127 mutex_unlock(&md->suspend_lock);
3130 /*-----------------------------------------------------------------
3131 * Event notification.
3132 *---------------------------------------------------------------*/
3133 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3136 char udev_cookie[DM_COOKIE_LENGTH];
3137 char *envp[] = { udev_cookie, NULL };
3140 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3142 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3143 DM_COOKIE_ENV_VAR_NAME, cookie);
3144 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3149 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3151 return atomic_add_return(1, &md->uevent_seq);
3154 uint32_t dm_get_event_nr(struct mapped_device *md)
3156 return atomic_read(&md->event_nr);
3159 int dm_wait_event(struct mapped_device *md, int event_nr)
3161 return wait_event_interruptible(md->eventq,
3162 (event_nr != atomic_read(&md->event_nr)));
3165 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3167 unsigned long flags;
3169 spin_lock_irqsave(&md->uevent_lock, flags);
3170 list_add(elist, &md->uevent_list);
3171 spin_unlock_irqrestore(&md->uevent_lock, flags);
3175 * The gendisk is only valid as long as you have a reference
3178 struct gendisk *dm_disk(struct mapped_device *md)
3183 struct kobject *dm_kobject(struct mapped_device *md)
3185 return &md->kobj_holder.kobj;
3188 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3190 struct mapped_device *md;
3192 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3194 if (test_bit(DMF_FREEING, &md->flags) ||
3202 int dm_suspended_md(struct mapped_device *md)
3204 return test_bit(DMF_SUSPENDED, &md->flags);
3207 int dm_suspended_internally_md(struct mapped_device *md)
3209 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3212 int dm_test_deferred_remove_flag(struct mapped_device *md)
3214 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3217 int dm_suspended(struct dm_target *ti)
3219 return dm_suspended_md(dm_table_get_md(ti->table));
3221 EXPORT_SYMBOL_GPL(dm_suspended);
3223 int dm_noflush_suspending(struct dm_target *ti)
3225 return __noflush_suspending(dm_table_get_md(ti->table));
3227 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3229 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
3231 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3232 struct kmem_cache *cachep;
3233 unsigned int pool_size = 0;
3234 unsigned int front_pad;
3240 case DM_TYPE_BIO_BASED:
3242 pool_size = dm_get_reserved_bio_based_ios();
3243 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3245 case DM_TYPE_REQUEST_BASED:
3246 pool_size = dm_get_reserved_rq_based_ios();
3247 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3248 if (!pools->rq_pool)
3250 /* fall through to setup remaining rq-based pools */
3251 case DM_TYPE_MQ_REQUEST_BASED:
3252 cachep = _rq_tio_cache;
3254 pool_size = dm_get_reserved_rq_based_ios();
3255 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3256 /* per_bio_data_size is not used. See __bind_mempools(). */
3257 WARN_ON(per_bio_data_size != 0);
3263 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3264 if (!pools->io_pool)
3267 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3271 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3277 dm_free_md_mempools(pools);
3282 void dm_free_md_mempools(struct dm_md_mempools *pools)
3288 mempool_destroy(pools->io_pool);
3291 mempool_destroy(pools->rq_pool);
3294 bioset_free(pools->bs);
3299 static const struct block_device_operations dm_blk_dops = {
3300 .open = dm_blk_open,
3301 .release = dm_blk_close,
3302 .ioctl = dm_blk_ioctl,
3303 .getgeo = dm_blk_getgeo,
3304 .owner = THIS_MODULE
3310 module_init(dm_init);
3311 module_exit(dm_exit);
3313 module_param(major, uint, 0);
3314 MODULE_PARM_DESC(major, "The major number of the device mapper");
3316 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3317 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3319 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3320 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3322 MODULE_DESCRIPTION(DM_NAME " driver");
3324 MODULE_LICENSE("GPL");