1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
83 #include "page_reporting.h"
85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86 typedef int __bitwise fpi_t;
88 /* No special request */
89 #define FPI_NONE ((__force fpi_t)0)
92 * Skip free page reporting notification for the (possibly merged) page.
93 * This does not hinder free page reporting from grabbing the page,
94 * reporting it and marking it "reported" - it only skips notifying
95 * the free page reporting infrastructure about a newly freed page. For
96 * example, used when temporarily pulling a page from a freelist and
97 * putting it back unmodified.
99 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
102 * Place the (possibly merged) page to the tail of the freelist. Will ignore
103 * page shuffling (relevant code - e.g., memory onlining - is expected to
104 * shuffle the whole zone).
106 * Note: No code should rely on this flag for correctness - it's purely
107 * to allow for optimizations when handing back either fresh pages
108 * (memory onlining) or untouched pages (page isolation, free page
111 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
114 * Don't poison memory with KASAN (only for the tag-based modes).
115 * During boot, all non-reserved memblock memory is exposed to page_alloc.
116 * Poisoning all that memory lengthens boot time, especially on systems with
117 * large amount of RAM. This flag is used to skip that poisoning.
118 * This is only done for the tag-based KASAN modes, as those are able to
119 * detect memory corruptions with the memory tags assigned by default.
120 * All memory allocated normally after boot gets poisoned as usual.
122 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
124 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
125 static DEFINE_MUTEX(pcp_batch_high_lock);
126 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
131 static DEFINE_PER_CPU(struct pagesets, pagesets) __maybe_unused = {
132 .lock = INIT_LOCAL_LOCK(lock),
135 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
136 DEFINE_PER_CPU(int, numa_node);
137 EXPORT_PER_CPU_SYMBOL(numa_node);
140 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
142 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
144 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
145 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
146 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
147 * defined in <linux/topology.h>.
149 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
150 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
153 /* work_structs for global per-cpu drains */
156 struct work_struct work;
158 static DEFINE_MUTEX(pcpu_drain_mutex);
159 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
161 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
162 volatile unsigned long latent_entropy __latent_entropy;
163 EXPORT_SYMBOL(latent_entropy);
167 * Array of node states.
169 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
170 [N_POSSIBLE] = NODE_MASK_ALL,
171 [N_ONLINE] = { { [0] = 1UL } },
173 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
174 #ifdef CONFIG_HIGHMEM
175 [N_HIGH_MEMORY] = { { [0] = 1UL } },
177 [N_MEMORY] = { { [0] = 1UL } },
178 [N_CPU] = { { [0] = 1UL } },
181 EXPORT_SYMBOL(node_states);
183 atomic_long_t _totalram_pages __read_mostly;
184 EXPORT_SYMBOL(_totalram_pages);
185 unsigned long totalreserve_pages __read_mostly;
186 unsigned long totalcma_pages __read_mostly;
188 int percpu_pagelist_high_fraction;
189 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
191 EXPORT_SYMBOL(init_on_alloc);
193 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
194 EXPORT_SYMBOL(init_on_free);
196 static bool _init_on_alloc_enabled_early __read_mostly
197 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
198 static int __init early_init_on_alloc(char *buf)
201 return kstrtobool(buf, &_init_on_alloc_enabled_early);
203 early_param("init_on_alloc", early_init_on_alloc);
205 static bool _init_on_free_enabled_early __read_mostly
206 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
207 static int __init early_init_on_free(char *buf)
209 return kstrtobool(buf, &_init_on_free_enabled_early);
211 early_param("init_on_free", early_init_on_free);
214 * A cached value of the page's pageblock's migratetype, used when the page is
215 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
216 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
217 * Also the migratetype set in the page does not necessarily match the pcplist
218 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
219 * other index - this ensures that it will be put on the correct CMA freelist.
221 static inline int get_pcppage_migratetype(struct page *page)
226 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
228 page->index = migratetype;
231 #ifdef CONFIG_PM_SLEEP
233 * The following functions are used by the suspend/hibernate code to temporarily
234 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
235 * while devices are suspended. To avoid races with the suspend/hibernate code,
236 * they should always be called with system_transition_mutex held
237 * (gfp_allowed_mask also should only be modified with system_transition_mutex
238 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
239 * with that modification).
242 static gfp_t saved_gfp_mask;
244 void pm_restore_gfp_mask(void)
246 WARN_ON(!mutex_is_locked(&system_transition_mutex));
247 if (saved_gfp_mask) {
248 gfp_allowed_mask = saved_gfp_mask;
253 void pm_restrict_gfp_mask(void)
255 WARN_ON(!mutex_is_locked(&system_transition_mutex));
256 WARN_ON(saved_gfp_mask);
257 saved_gfp_mask = gfp_allowed_mask;
258 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
261 bool pm_suspended_storage(void)
263 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
267 #endif /* CONFIG_PM_SLEEP */
269 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
270 unsigned int pageblock_order __read_mostly;
273 static void __free_pages_ok(struct page *page, unsigned int order,
277 * results with 256, 32 in the lowmem_reserve sysctl:
278 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
279 * 1G machine -> (16M dma, 784M normal, 224M high)
280 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
281 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
282 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
284 * TBD: should special case ZONE_DMA32 machines here - in those we normally
285 * don't need any ZONE_NORMAL reservation
287 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
288 #ifdef CONFIG_ZONE_DMA
291 #ifdef CONFIG_ZONE_DMA32
295 #ifdef CONFIG_HIGHMEM
301 static char * const zone_names[MAX_NR_ZONES] = {
302 #ifdef CONFIG_ZONE_DMA
305 #ifdef CONFIG_ZONE_DMA32
309 #ifdef CONFIG_HIGHMEM
313 #ifdef CONFIG_ZONE_DEVICE
318 const char * const migratetype_names[MIGRATE_TYPES] = {
326 #ifdef CONFIG_MEMORY_ISOLATION
331 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
332 [NULL_COMPOUND_DTOR] = NULL,
333 [COMPOUND_PAGE_DTOR] = free_compound_page,
334 #ifdef CONFIG_HUGETLB_PAGE
335 [HUGETLB_PAGE_DTOR] = free_huge_page,
337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
338 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
342 int min_free_kbytes = 1024;
343 int user_min_free_kbytes = -1;
344 int watermark_boost_factor __read_mostly = 15000;
345 int watermark_scale_factor = 10;
347 static unsigned long nr_kernel_pages __initdata;
348 static unsigned long nr_all_pages __initdata;
349 static unsigned long dma_reserve __initdata;
351 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
352 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
353 static unsigned long required_kernelcore __initdata;
354 static unsigned long required_kernelcore_percent __initdata;
355 static unsigned long required_movablecore __initdata;
356 static unsigned long required_movablecore_percent __initdata;
357 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
358 static bool mirrored_kernelcore __meminitdata;
360 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
362 EXPORT_SYMBOL(movable_zone);
365 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
366 unsigned int nr_online_nodes __read_mostly = 1;
367 EXPORT_SYMBOL(nr_node_ids);
368 EXPORT_SYMBOL(nr_online_nodes);
371 int page_group_by_mobility_disabled __read_mostly;
373 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
375 * During boot we initialize deferred pages on-demand, as needed, but once
376 * page_alloc_init_late() has finished, the deferred pages are all initialized,
377 * and we can permanently disable that path.
379 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
382 * Calling kasan_poison_pages() only after deferred memory initialization
383 * has completed. Poisoning pages during deferred memory init will greatly
384 * lengthen the process and cause problem in large memory systems as the
385 * deferred pages initialization is done with interrupt disabled.
387 * Assuming that there will be no reference to those newly initialized
388 * pages before they are ever allocated, this should have no effect on
389 * KASAN memory tracking as the poison will be properly inserted at page
390 * allocation time. The only corner case is when pages are allocated by
391 * on-demand allocation and then freed again before the deferred pages
392 * initialization is done, but this is not likely to happen.
394 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
396 return static_branch_unlikely(&deferred_pages) ||
397 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
398 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
399 PageSkipKASanPoison(page);
402 /* Returns true if the struct page for the pfn is uninitialised */
403 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
405 int nid = early_pfn_to_nid(pfn);
407 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
414 * Returns true when the remaining initialisation should be deferred until
415 * later in the boot cycle when it can be parallelised.
417 static bool __meminit
418 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
420 static unsigned long prev_end_pfn, nr_initialised;
423 * prev_end_pfn static that contains the end of previous zone
424 * No need to protect because called very early in boot before smp_init.
426 if (prev_end_pfn != end_pfn) {
427 prev_end_pfn = end_pfn;
431 /* Always populate low zones for address-constrained allocations */
432 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
435 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
438 * We start only with one section of pages, more pages are added as
439 * needed until the rest of deferred pages are initialized.
442 if ((nr_initialised > PAGES_PER_SECTION) &&
443 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
444 NODE_DATA(nid)->first_deferred_pfn = pfn;
450 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
452 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
453 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
454 PageSkipKASanPoison(page);
457 static inline bool early_page_uninitialised(unsigned long pfn)
462 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
468 /* Return a pointer to the bitmap storing bits affecting a block of pages */
469 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
472 #ifdef CONFIG_SPARSEMEM
473 return section_to_usemap(__pfn_to_section(pfn));
475 return page_zone(page)->pageblock_flags;
476 #endif /* CONFIG_SPARSEMEM */
479 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
481 #ifdef CONFIG_SPARSEMEM
482 pfn &= (PAGES_PER_SECTION-1);
484 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
485 #endif /* CONFIG_SPARSEMEM */
486 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
489 static __always_inline
490 unsigned long __get_pfnblock_flags_mask(const struct page *page,
494 unsigned long *bitmap;
495 unsigned long bitidx, word_bitidx;
498 bitmap = get_pageblock_bitmap(page, pfn);
499 bitidx = pfn_to_bitidx(page, pfn);
500 word_bitidx = bitidx / BITS_PER_LONG;
501 bitidx &= (BITS_PER_LONG-1);
503 word = bitmap[word_bitidx];
504 return (word >> bitidx) & mask;
508 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
509 * @page: The page within the block of interest
510 * @pfn: The target page frame number
511 * @mask: mask of bits that the caller is interested in
513 * Return: pageblock_bits flags
515 unsigned long get_pfnblock_flags_mask(const struct page *page,
516 unsigned long pfn, unsigned long mask)
518 return __get_pfnblock_flags_mask(page, pfn, mask);
521 static __always_inline int get_pfnblock_migratetype(const struct page *page,
524 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
528 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
529 * @page: The page within the block of interest
530 * @flags: The flags to set
531 * @pfn: The target page frame number
532 * @mask: mask of bits that the caller is interested in
534 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
538 unsigned long *bitmap;
539 unsigned long bitidx, word_bitidx;
540 unsigned long old_word, word;
542 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
543 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
545 bitmap = get_pageblock_bitmap(page, pfn);
546 bitidx = pfn_to_bitidx(page, pfn);
547 word_bitidx = bitidx / BITS_PER_LONG;
548 bitidx &= (BITS_PER_LONG-1);
550 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
555 word = READ_ONCE(bitmap[word_bitidx]);
557 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
558 if (word == old_word)
564 void set_pageblock_migratetype(struct page *page, int migratetype)
566 if (unlikely(page_group_by_mobility_disabled &&
567 migratetype < MIGRATE_PCPTYPES))
568 migratetype = MIGRATE_UNMOVABLE;
570 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
571 page_to_pfn(page), MIGRATETYPE_MASK);
574 #ifdef CONFIG_DEBUG_VM
575 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
579 unsigned long pfn = page_to_pfn(page);
580 unsigned long sp, start_pfn;
583 seq = zone_span_seqbegin(zone);
584 start_pfn = zone->zone_start_pfn;
585 sp = zone->spanned_pages;
586 if (!zone_spans_pfn(zone, pfn))
588 } while (zone_span_seqretry(zone, seq));
591 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
592 pfn, zone_to_nid(zone), zone->name,
593 start_pfn, start_pfn + sp);
598 static int page_is_consistent(struct zone *zone, struct page *page)
600 if (zone != page_zone(page))
606 * Temporary debugging check for pages not lying within a given zone.
608 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
610 if (page_outside_zone_boundaries(zone, page))
612 if (!page_is_consistent(zone, page))
618 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
624 static void bad_page(struct page *page, const char *reason)
626 static unsigned long resume;
627 static unsigned long nr_shown;
628 static unsigned long nr_unshown;
631 * Allow a burst of 60 reports, then keep quiet for that minute;
632 * or allow a steady drip of one report per second.
634 if (nr_shown == 60) {
635 if (time_before(jiffies, resume)) {
641 "BUG: Bad page state: %lu messages suppressed\n",
648 resume = jiffies + 60 * HZ;
650 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
651 current->comm, page_to_pfn(page));
652 dump_page(page, reason);
657 /* Leave bad fields for debug, except PageBuddy could make trouble */
658 page_mapcount_reset(page); /* remove PageBuddy */
659 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
662 static inline unsigned int order_to_pindex(int migratetype, int order)
666 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
667 if (order > PAGE_ALLOC_COSTLY_ORDER) {
668 VM_BUG_ON(order != pageblock_order);
669 base = PAGE_ALLOC_COSTLY_ORDER + 1;
672 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
675 return (MIGRATE_PCPTYPES * base) + migratetype;
678 static inline int pindex_to_order(unsigned int pindex)
680 int order = pindex / MIGRATE_PCPTYPES;
682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
683 if (order > PAGE_ALLOC_COSTLY_ORDER)
684 order = pageblock_order;
686 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
692 static inline bool pcp_allowed_order(unsigned int order)
694 if (order <= PAGE_ALLOC_COSTLY_ORDER)
696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
697 if (order == pageblock_order)
703 static inline void free_the_page(struct page *page, unsigned int order)
705 if (pcp_allowed_order(order)) /* Via pcp? */
706 free_unref_page(page, order);
708 __free_pages_ok(page, order, FPI_NONE);
712 * Higher-order pages are called "compound pages". They are structured thusly:
714 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
716 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
717 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
719 * The first tail page's ->compound_dtor holds the offset in array of compound
720 * page destructors. See compound_page_dtors.
722 * The first tail page's ->compound_order holds the order of allocation.
723 * This usage means that zero-order pages may not be compound.
726 void free_compound_page(struct page *page)
728 mem_cgroup_uncharge(page_folio(page));
729 free_the_page(page, compound_order(page));
732 static void prep_compound_head(struct page *page, unsigned int order)
734 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
735 set_compound_order(page, order);
736 atomic_set(compound_mapcount_ptr(page), -1);
737 if (hpage_pincount_available(page))
738 atomic_set(compound_pincount_ptr(page), 0);
741 static void prep_compound_tail(struct page *head, int tail_idx)
743 struct page *p = head + tail_idx;
745 p->mapping = TAIL_MAPPING;
746 set_compound_head(p, head);
749 void prep_compound_page(struct page *page, unsigned int order)
752 int nr_pages = 1 << order;
755 for (i = 1; i < nr_pages; i++)
756 prep_compound_tail(page, i);
758 prep_compound_head(page, order);
761 #ifdef CONFIG_DEBUG_PAGEALLOC
762 unsigned int _debug_guardpage_minorder;
764 bool _debug_pagealloc_enabled_early __read_mostly
765 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
766 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
767 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
768 EXPORT_SYMBOL(_debug_pagealloc_enabled);
770 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
772 static int __init early_debug_pagealloc(char *buf)
774 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
776 early_param("debug_pagealloc", early_debug_pagealloc);
778 static int __init debug_guardpage_minorder_setup(char *buf)
782 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
783 pr_err("Bad debug_guardpage_minorder value\n");
786 _debug_guardpage_minorder = res;
787 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
790 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
792 static inline bool set_page_guard(struct zone *zone, struct page *page,
793 unsigned int order, int migratetype)
795 if (!debug_guardpage_enabled())
798 if (order >= debug_guardpage_minorder())
801 __SetPageGuard(page);
802 INIT_LIST_HEAD(&page->lru);
803 set_page_private(page, order);
804 /* Guard pages are not available for any usage */
805 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
810 static inline void clear_page_guard(struct zone *zone, struct page *page,
811 unsigned int order, int migratetype)
813 if (!debug_guardpage_enabled())
816 __ClearPageGuard(page);
818 set_page_private(page, 0);
819 if (!is_migrate_isolate(migratetype))
820 __mod_zone_freepage_state(zone, (1 << order), migratetype);
823 static inline bool set_page_guard(struct zone *zone, struct page *page,
824 unsigned int order, int migratetype) { return false; }
825 static inline void clear_page_guard(struct zone *zone, struct page *page,
826 unsigned int order, int migratetype) {}
830 * Enable static keys related to various memory debugging and hardening options.
831 * Some override others, and depend on early params that are evaluated in the
832 * order of appearance. So we need to first gather the full picture of what was
833 * enabled, and then make decisions.
835 void init_mem_debugging_and_hardening(void)
837 bool page_poisoning_requested = false;
839 #ifdef CONFIG_PAGE_POISONING
841 * Page poisoning is debug page alloc for some arches. If
842 * either of those options are enabled, enable poisoning.
844 if (page_poisoning_enabled() ||
845 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
846 debug_pagealloc_enabled())) {
847 static_branch_enable(&_page_poisoning_enabled);
848 page_poisoning_requested = true;
852 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
853 page_poisoning_requested) {
854 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
855 "will take precedence over init_on_alloc and init_on_free\n");
856 _init_on_alloc_enabled_early = false;
857 _init_on_free_enabled_early = false;
860 if (_init_on_alloc_enabled_early)
861 static_branch_enable(&init_on_alloc);
863 static_branch_disable(&init_on_alloc);
865 if (_init_on_free_enabled_early)
866 static_branch_enable(&init_on_free);
868 static_branch_disable(&init_on_free);
870 #ifdef CONFIG_DEBUG_PAGEALLOC
871 if (!debug_pagealloc_enabled())
874 static_branch_enable(&_debug_pagealloc_enabled);
876 if (!debug_guardpage_minorder())
879 static_branch_enable(&_debug_guardpage_enabled);
883 static inline void set_buddy_order(struct page *page, unsigned int order)
885 set_page_private(page, order);
886 __SetPageBuddy(page);
890 * This function checks whether a page is free && is the buddy
891 * we can coalesce a page and its buddy if
892 * (a) the buddy is not in a hole (check before calling!) &&
893 * (b) the buddy is in the buddy system &&
894 * (c) a page and its buddy have the same order &&
895 * (d) a page and its buddy are in the same zone.
897 * For recording whether a page is in the buddy system, we set PageBuddy.
898 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
900 * For recording page's order, we use page_private(page).
902 static inline bool page_is_buddy(struct page *page, struct page *buddy,
905 if (!page_is_guard(buddy) && !PageBuddy(buddy))
908 if (buddy_order(buddy) != order)
912 * zone check is done late to avoid uselessly calculating
913 * zone/node ids for pages that could never merge.
915 if (page_zone_id(page) != page_zone_id(buddy))
918 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
923 #ifdef CONFIG_COMPACTION
924 static inline struct capture_control *task_capc(struct zone *zone)
926 struct capture_control *capc = current->capture_control;
928 return unlikely(capc) &&
929 !(current->flags & PF_KTHREAD) &&
931 capc->cc->zone == zone ? capc : NULL;
935 compaction_capture(struct capture_control *capc, struct page *page,
936 int order, int migratetype)
938 if (!capc || order != capc->cc->order)
941 /* Do not accidentally pollute CMA or isolated regions*/
942 if (is_migrate_cma(migratetype) ||
943 is_migrate_isolate(migratetype))
947 * Do not let lower order allocations pollute a movable pageblock.
948 * This might let an unmovable request use a reclaimable pageblock
949 * and vice-versa but no more than normal fallback logic which can
950 * have trouble finding a high-order free page.
952 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
960 static inline struct capture_control *task_capc(struct zone *zone)
966 compaction_capture(struct capture_control *capc, struct page *page,
967 int order, int migratetype)
971 #endif /* CONFIG_COMPACTION */
973 /* Used for pages not on another list */
974 static inline void add_to_free_list(struct page *page, struct zone *zone,
975 unsigned int order, int migratetype)
977 struct free_area *area = &zone->free_area[order];
979 list_add(&page->lru, &area->free_list[migratetype]);
983 /* Used for pages not on another list */
984 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
985 unsigned int order, int migratetype)
987 struct free_area *area = &zone->free_area[order];
989 list_add_tail(&page->lru, &area->free_list[migratetype]);
994 * Used for pages which are on another list. Move the pages to the tail
995 * of the list - so the moved pages won't immediately be considered for
996 * allocation again (e.g., optimization for memory onlining).
998 static inline void move_to_free_list(struct page *page, struct zone *zone,
999 unsigned int order, int migratetype)
1001 struct free_area *area = &zone->free_area[order];
1003 list_move_tail(&page->lru, &area->free_list[migratetype]);
1006 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1009 /* clear reported state and update reported page count */
1010 if (page_reported(page))
1011 __ClearPageReported(page);
1013 list_del(&page->lru);
1014 __ClearPageBuddy(page);
1015 set_page_private(page, 0);
1016 zone->free_area[order].nr_free--;
1020 * If this is not the largest possible page, check if the buddy
1021 * of the next-highest order is free. If it is, it's possible
1022 * that pages are being freed that will coalesce soon. In case,
1023 * that is happening, add the free page to the tail of the list
1024 * so it's less likely to be used soon and more likely to be merged
1025 * as a higher order page
1028 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1029 struct page *page, unsigned int order)
1031 struct page *higher_page, *higher_buddy;
1032 unsigned long combined_pfn;
1034 if (order >= MAX_ORDER - 2)
1037 combined_pfn = buddy_pfn & pfn;
1038 higher_page = page + (combined_pfn - pfn);
1039 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1040 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1042 return page_is_buddy(higher_page, higher_buddy, order + 1);
1046 * Freeing function for a buddy system allocator.
1048 * The concept of a buddy system is to maintain direct-mapped table
1049 * (containing bit values) for memory blocks of various "orders".
1050 * The bottom level table contains the map for the smallest allocatable
1051 * units of memory (here, pages), and each level above it describes
1052 * pairs of units from the levels below, hence, "buddies".
1053 * At a high level, all that happens here is marking the table entry
1054 * at the bottom level available, and propagating the changes upward
1055 * as necessary, plus some accounting needed to play nicely with other
1056 * parts of the VM system.
1057 * At each level, we keep a list of pages, which are heads of continuous
1058 * free pages of length of (1 << order) and marked with PageBuddy.
1059 * Page's order is recorded in page_private(page) field.
1060 * So when we are allocating or freeing one, we can derive the state of the
1061 * other. That is, if we allocate a small block, and both were
1062 * free, the remainder of the region must be split into blocks.
1063 * If a block is freed, and its buddy is also free, then this
1064 * triggers coalescing into a block of larger size.
1069 static inline void __free_one_page(struct page *page,
1071 struct zone *zone, unsigned int order,
1072 int migratetype, fpi_t fpi_flags)
1074 struct capture_control *capc = task_capc(zone);
1075 unsigned int max_order = pageblock_order;
1076 unsigned long buddy_pfn;
1077 unsigned long combined_pfn;
1081 VM_BUG_ON(!zone_is_initialized(zone));
1082 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1084 VM_BUG_ON(migratetype == -1);
1085 if (likely(!is_migrate_isolate(migratetype)))
1086 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1088 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1089 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1092 while (order < max_order) {
1093 if (compaction_capture(capc, page, order, migratetype)) {
1094 __mod_zone_freepage_state(zone, -(1 << order),
1098 buddy_pfn = __find_buddy_pfn(pfn, order);
1099 buddy = page + (buddy_pfn - pfn);
1101 if (!page_is_buddy(page, buddy, order))
1104 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1105 * merge with it and move up one order.
1107 if (page_is_guard(buddy))
1108 clear_page_guard(zone, buddy, order, migratetype);
1110 del_page_from_free_list(buddy, zone, order);
1111 combined_pfn = buddy_pfn & pfn;
1112 page = page + (combined_pfn - pfn);
1116 if (order < MAX_ORDER - 1) {
1117 /* If we are here, it means order is >= pageblock_order.
1118 * We want to prevent merge between freepages on pageblock
1119 * without fallbacks and normal pageblock. Without this,
1120 * pageblock isolation could cause incorrect freepage or CMA
1121 * accounting or HIGHATOMIC accounting.
1123 * We don't want to hit this code for the more frequent
1124 * low-order merging.
1128 buddy_pfn = __find_buddy_pfn(pfn, order);
1129 buddy = page + (buddy_pfn - pfn);
1130 buddy_mt = get_pageblock_migratetype(buddy);
1132 if (migratetype != buddy_mt
1133 && (!migratetype_is_mergeable(migratetype) ||
1134 !migratetype_is_mergeable(buddy_mt)))
1136 max_order = order + 1;
1137 goto continue_merging;
1141 set_buddy_order(page, order);
1143 if (fpi_flags & FPI_TO_TAIL)
1145 else if (is_shuffle_order(order))
1146 to_tail = shuffle_pick_tail();
1148 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1151 add_to_free_list_tail(page, zone, order, migratetype);
1153 add_to_free_list(page, zone, order, migratetype);
1155 /* Notify page reporting subsystem of freed page */
1156 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1157 page_reporting_notify_free(order);
1161 * A bad page could be due to a number of fields. Instead of multiple branches,
1162 * try and check multiple fields with one check. The caller must do a detailed
1163 * check if necessary.
1165 static inline bool page_expected_state(struct page *page,
1166 unsigned long check_flags)
1168 if (unlikely(atomic_read(&page->_mapcount) != -1))
1171 if (unlikely((unsigned long)page->mapping |
1172 page_ref_count(page) |
1176 (page->flags & check_flags)))
1182 static const char *page_bad_reason(struct page *page, unsigned long flags)
1184 const char *bad_reason = NULL;
1186 if (unlikely(atomic_read(&page->_mapcount) != -1))
1187 bad_reason = "nonzero mapcount";
1188 if (unlikely(page->mapping != NULL))
1189 bad_reason = "non-NULL mapping";
1190 if (unlikely(page_ref_count(page) != 0))
1191 bad_reason = "nonzero _refcount";
1192 if (unlikely(page->flags & flags)) {
1193 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1194 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1196 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1199 if (unlikely(page->memcg_data))
1200 bad_reason = "page still charged to cgroup";
1205 static void check_free_page_bad(struct page *page)
1208 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1211 static inline int check_free_page(struct page *page)
1213 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1216 /* Something has gone sideways, find it */
1217 check_free_page_bad(page);
1221 static int free_tail_pages_check(struct page *head_page, struct page *page)
1226 * We rely page->lru.next never has bit 0 set, unless the page
1227 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1229 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1231 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1235 switch (page - head_page) {
1237 /* the first tail page: ->mapping may be compound_mapcount() */
1238 if (unlikely(compound_mapcount(page))) {
1239 bad_page(page, "nonzero compound_mapcount");
1245 * the second tail page: ->mapping is
1246 * deferred_list.next -- ignore value.
1250 if (page->mapping != TAIL_MAPPING) {
1251 bad_page(page, "corrupted mapping in tail page");
1256 if (unlikely(!PageTail(page))) {
1257 bad_page(page, "PageTail not set");
1260 if (unlikely(compound_head(page) != head_page)) {
1261 bad_page(page, "compound_head not consistent");
1266 page->mapping = NULL;
1267 clear_compound_head(page);
1271 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1276 for (i = 0; i < numpages; i++)
1277 tag_clear_highpage(page + i);
1281 /* s390's use of memset() could override KASAN redzones. */
1282 kasan_disable_current();
1283 for (i = 0; i < numpages; i++) {
1284 u8 tag = page_kasan_tag(page + i);
1285 page_kasan_tag_reset(page + i);
1286 clear_highpage(page + i);
1287 page_kasan_tag_set(page + i, tag);
1289 kasan_enable_current();
1292 static __always_inline bool free_pages_prepare(struct page *page,
1293 unsigned int order, bool check_free, fpi_t fpi_flags)
1296 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1298 VM_BUG_ON_PAGE(PageTail(page), page);
1300 trace_mm_page_free(page, order);
1302 if (unlikely(PageHWPoison(page)) && !order) {
1304 * Do not let hwpoison pages hit pcplists/buddy
1305 * Untie memcg state and reset page's owner
1307 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1308 __memcg_kmem_uncharge_page(page, order);
1309 reset_page_owner(page, order);
1310 page_table_check_free(page, order);
1315 * Check tail pages before head page information is cleared to
1316 * avoid checking PageCompound for order-0 pages.
1318 if (unlikely(order)) {
1319 bool compound = PageCompound(page);
1322 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1325 ClearPageDoubleMap(page);
1326 ClearPageHasHWPoisoned(page);
1328 for (i = 1; i < (1 << order); i++) {
1330 bad += free_tail_pages_check(page, page + i);
1331 if (unlikely(check_free_page(page + i))) {
1335 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1338 if (PageMappingFlags(page))
1339 page->mapping = NULL;
1340 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1341 __memcg_kmem_uncharge_page(page, order);
1343 bad += check_free_page(page);
1347 page_cpupid_reset_last(page);
1348 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1349 reset_page_owner(page, order);
1350 page_table_check_free(page, order);
1352 if (!PageHighMem(page)) {
1353 debug_check_no_locks_freed(page_address(page),
1354 PAGE_SIZE << order);
1355 debug_check_no_obj_freed(page_address(page),
1356 PAGE_SIZE << order);
1359 kernel_poison_pages(page, 1 << order);
1362 * As memory initialization might be integrated into KASAN,
1363 * kasan_free_pages and kernel_init_free_pages must be
1364 * kept together to avoid discrepancies in behavior.
1366 * With hardware tag-based KASAN, memory tags must be set before the
1367 * page becomes unavailable via debug_pagealloc or arch_free_page.
1369 if (kasan_has_integrated_init()) {
1370 if (!skip_kasan_poison)
1371 kasan_free_pages(page, order);
1373 bool init = want_init_on_free();
1376 kernel_init_free_pages(page, 1 << order, false);
1377 if (!skip_kasan_poison)
1378 kasan_poison_pages(page, order, init);
1382 * arch_free_page() can make the page's contents inaccessible. s390
1383 * does this. So nothing which can access the page's contents should
1384 * happen after this.
1386 arch_free_page(page, order);
1388 debug_pagealloc_unmap_pages(page, 1 << order);
1393 #ifdef CONFIG_DEBUG_VM
1395 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1396 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1397 * moved from pcp lists to free lists.
1399 static bool free_pcp_prepare(struct page *page, unsigned int order)
1401 return free_pages_prepare(page, order, true, FPI_NONE);
1404 static bool bulkfree_pcp_prepare(struct page *page)
1406 if (debug_pagealloc_enabled_static())
1407 return check_free_page(page);
1413 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1414 * moving from pcp lists to free list in order to reduce overhead. With
1415 * debug_pagealloc enabled, they are checked also immediately when being freed
1418 static bool free_pcp_prepare(struct page *page, unsigned int order)
1420 if (debug_pagealloc_enabled_static())
1421 return free_pages_prepare(page, order, true, FPI_NONE);
1423 return free_pages_prepare(page, order, false, FPI_NONE);
1426 static bool bulkfree_pcp_prepare(struct page *page)
1428 return check_free_page(page);
1430 #endif /* CONFIG_DEBUG_VM */
1432 static inline void prefetch_buddy(struct page *page, unsigned int order)
1434 unsigned long pfn = page_to_pfn(page);
1435 unsigned long buddy_pfn = __find_buddy_pfn(pfn, order);
1436 struct page *buddy = page + (buddy_pfn - pfn);
1442 * Frees a number of pages from the PCP lists
1443 * Assumes all pages on list are in same zone.
1444 * count is the number of pages to free.
1446 static void free_pcppages_bulk(struct zone *zone, int count,
1447 struct per_cpu_pages *pcp,
1451 int max_pindex = NR_PCP_LISTS - 1;
1453 int prefetch_nr = READ_ONCE(pcp->batch);
1454 bool isolated_pageblocks;
1458 * Ensure proper count is passed which otherwise would stuck in the
1459 * below while (list_empty(list)) loop.
1461 count = min(pcp->count, count);
1463 /* Ensure requested pindex is drained first. */
1464 pindex = pindex - 1;
1467 * local_lock_irq held so equivalent to spin_lock_irqsave for
1468 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1470 spin_lock(&zone->lock);
1471 isolated_pageblocks = has_isolate_pageblock(zone);
1474 struct list_head *list;
1477 /* Remove pages from lists in a round-robin fashion. */
1479 if (++pindex > max_pindex)
1480 pindex = min_pindex;
1481 list = &pcp->lists[pindex];
1482 if (!list_empty(list))
1485 if (pindex == max_pindex)
1487 if (pindex == min_pindex)
1491 order = pindex_to_order(pindex);
1492 nr_pages = 1 << order;
1493 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1497 page = list_last_entry(list, struct page, lru);
1498 mt = get_pcppage_migratetype(page);
1500 /* must delete to avoid corrupting pcp list */
1501 list_del(&page->lru);
1503 pcp->count -= nr_pages;
1505 if (bulkfree_pcp_prepare(page))
1509 * We are going to put the page back to the global
1510 * pool, prefetch its buddy to speed up later access
1511 * under zone->lock. It is believed the overhead of
1512 * an additional test and calculating buddy_pfn here
1513 * can be offset by reduced memory latency later. To
1514 * avoid excessive prefetching due to large count, only
1515 * prefetch buddy for the first pcp->batch nr of pages.
1518 prefetch_buddy(page, order);
1522 /* MIGRATE_ISOLATE page should not go to pcplists */
1523 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1524 /* Pageblock could have been isolated meanwhile */
1525 if (unlikely(isolated_pageblocks))
1526 mt = get_pageblock_migratetype(page);
1528 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1529 trace_mm_page_pcpu_drain(page, order, mt);
1530 } while (count > 0 && !list_empty(list));
1533 spin_unlock(&zone->lock);
1536 static void free_one_page(struct zone *zone,
1537 struct page *page, unsigned long pfn,
1539 int migratetype, fpi_t fpi_flags)
1541 unsigned long flags;
1543 spin_lock_irqsave(&zone->lock, flags);
1544 if (unlikely(has_isolate_pageblock(zone) ||
1545 is_migrate_isolate(migratetype))) {
1546 migratetype = get_pfnblock_migratetype(page, pfn);
1548 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1549 spin_unlock_irqrestore(&zone->lock, flags);
1552 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1553 unsigned long zone, int nid)
1555 mm_zero_struct_page(page);
1556 set_page_links(page, zone, nid, pfn);
1557 init_page_count(page);
1558 page_mapcount_reset(page);
1559 page_cpupid_reset_last(page);
1560 page_kasan_tag_reset(page);
1562 INIT_LIST_HEAD(&page->lru);
1563 #ifdef WANT_PAGE_VIRTUAL
1564 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1565 if (!is_highmem_idx(zone))
1566 set_page_address(page, __va(pfn << PAGE_SHIFT));
1570 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1571 static void __meminit init_reserved_page(unsigned long pfn)
1576 if (!early_page_uninitialised(pfn))
1579 nid = early_pfn_to_nid(pfn);
1580 pgdat = NODE_DATA(nid);
1582 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1583 struct zone *zone = &pgdat->node_zones[zid];
1585 if (zone_spans_pfn(zone, pfn))
1588 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1591 static inline void init_reserved_page(unsigned long pfn)
1594 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1597 * Initialised pages do not have PageReserved set. This function is
1598 * called for each range allocated by the bootmem allocator and
1599 * marks the pages PageReserved. The remaining valid pages are later
1600 * sent to the buddy page allocator.
1602 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1604 unsigned long start_pfn = PFN_DOWN(start);
1605 unsigned long end_pfn = PFN_UP(end);
1607 for (; start_pfn < end_pfn; start_pfn++) {
1608 if (pfn_valid(start_pfn)) {
1609 struct page *page = pfn_to_page(start_pfn);
1611 init_reserved_page(start_pfn);
1613 /* Avoid false-positive PageTail() */
1614 INIT_LIST_HEAD(&page->lru);
1617 * no need for atomic set_bit because the struct
1618 * page is not visible yet so nobody should
1621 __SetPageReserved(page);
1626 static void __free_pages_ok(struct page *page, unsigned int order,
1629 unsigned long flags;
1631 unsigned long pfn = page_to_pfn(page);
1632 struct zone *zone = page_zone(page);
1634 if (!free_pages_prepare(page, order, true, fpi_flags))
1637 migratetype = get_pfnblock_migratetype(page, pfn);
1639 spin_lock_irqsave(&zone->lock, flags);
1640 if (unlikely(has_isolate_pageblock(zone) ||
1641 is_migrate_isolate(migratetype))) {
1642 migratetype = get_pfnblock_migratetype(page, pfn);
1644 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1645 spin_unlock_irqrestore(&zone->lock, flags);
1647 __count_vm_events(PGFREE, 1 << order);
1650 void __free_pages_core(struct page *page, unsigned int order)
1652 unsigned int nr_pages = 1 << order;
1653 struct page *p = page;
1657 * When initializing the memmap, __init_single_page() sets the refcount
1658 * of all pages to 1 ("allocated"/"not free"). We have to set the
1659 * refcount of all involved pages to 0.
1662 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1664 __ClearPageReserved(p);
1665 set_page_count(p, 0);
1667 __ClearPageReserved(p);
1668 set_page_count(p, 0);
1670 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1673 * Bypass PCP and place fresh pages right to the tail, primarily
1674 * relevant for memory onlining.
1676 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1682 * During memory init memblocks map pfns to nids. The search is expensive and
1683 * this caches recent lookups. The implementation of __early_pfn_to_nid
1684 * treats start/end as pfns.
1686 struct mminit_pfnnid_cache {
1687 unsigned long last_start;
1688 unsigned long last_end;
1692 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1695 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1697 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1698 struct mminit_pfnnid_cache *state)
1700 unsigned long start_pfn, end_pfn;
1703 if (state->last_start <= pfn && pfn < state->last_end)
1704 return state->last_nid;
1706 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1707 if (nid != NUMA_NO_NODE) {
1708 state->last_start = start_pfn;
1709 state->last_end = end_pfn;
1710 state->last_nid = nid;
1716 int __meminit early_pfn_to_nid(unsigned long pfn)
1718 static DEFINE_SPINLOCK(early_pfn_lock);
1721 spin_lock(&early_pfn_lock);
1722 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1724 nid = first_online_node;
1725 spin_unlock(&early_pfn_lock);
1729 #endif /* CONFIG_NUMA */
1731 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1734 if (early_page_uninitialised(pfn))
1736 __free_pages_core(page, order);
1740 * Check that the whole (or subset of) a pageblock given by the interval of
1741 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1742 * with the migration of free compaction scanner.
1744 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1746 * It's possible on some configurations to have a setup like node0 node1 node0
1747 * i.e. it's possible that all pages within a zones range of pages do not
1748 * belong to a single zone. We assume that a border between node0 and node1
1749 * can occur within a single pageblock, but not a node0 node1 node0
1750 * interleaving within a single pageblock. It is therefore sufficient to check
1751 * the first and last page of a pageblock and avoid checking each individual
1752 * page in a pageblock.
1754 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1755 unsigned long end_pfn, struct zone *zone)
1757 struct page *start_page;
1758 struct page *end_page;
1760 /* end_pfn is one past the range we are checking */
1763 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1766 start_page = pfn_to_online_page(start_pfn);
1770 if (page_zone(start_page) != zone)
1773 end_page = pfn_to_page(end_pfn);
1775 /* This gives a shorter code than deriving page_zone(end_page) */
1776 if (page_zone_id(start_page) != page_zone_id(end_page))
1782 void set_zone_contiguous(struct zone *zone)
1784 unsigned long block_start_pfn = zone->zone_start_pfn;
1785 unsigned long block_end_pfn;
1787 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1788 for (; block_start_pfn < zone_end_pfn(zone);
1789 block_start_pfn = block_end_pfn,
1790 block_end_pfn += pageblock_nr_pages) {
1792 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1794 if (!__pageblock_pfn_to_page(block_start_pfn,
1795 block_end_pfn, zone))
1800 /* We confirm that there is no hole */
1801 zone->contiguous = true;
1804 void clear_zone_contiguous(struct zone *zone)
1806 zone->contiguous = false;
1809 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1810 static void __init deferred_free_range(unsigned long pfn,
1811 unsigned long nr_pages)
1819 page = pfn_to_page(pfn);
1821 /* Free a large naturally-aligned chunk if possible */
1822 if (nr_pages == pageblock_nr_pages &&
1823 (pfn & (pageblock_nr_pages - 1)) == 0) {
1824 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1825 __free_pages_core(page, pageblock_order);
1829 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1830 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1831 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1832 __free_pages_core(page, 0);
1836 /* Completion tracking for deferred_init_memmap() threads */
1837 static atomic_t pgdat_init_n_undone __initdata;
1838 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1840 static inline void __init pgdat_init_report_one_done(void)
1842 if (atomic_dec_and_test(&pgdat_init_n_undone))
1843 complete(&pgdat_init_all_done_comp);
1847 * Returns true if page needs to be initialized or freed to buddy allocator.
1849 * First we check if pfn is valid on architectures where it is possible to have
1850 * holes within pageblock_nr_pages. On systems where it is not possible, this
1851 * function is optimized out.
1853 * Then, we check if a current large page is valid by only checking the validity
1856 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1858 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1864 * Free pages to buddy allocator. Try to free aligned pages in
1865 * pageblock_nr_pages sizes.
1867 static void __init deferred_free_pages(unsigned long pfn,
1868 unsigned long end_pfn)
1870 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1871 unsigned long nr_free = 0;
1873 for (; pfn < end_pfn; pfn++) {
1874 if (!deferred_pfn_valid(pfn)) {
1875 deferred_free_range(pfn - nr_free, nr_free);
1877 } else if (!(pfn & nr_pgmask)) {
1878 deferred_free_range(pfn - nr_free, nr_free);
1884 /* Free the last block of pages to allocator */
1885 deferred_free_range(pfn - nr_free, nr_free);
1889 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1890 * by performing it only once every pageblock_nr_pages.
1891 * Return number of pages initialized.
1893 static unsigned long __init deferred_init_pages(struct zone *zone,
1895 unsigned long end_pfn)
1897 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1898 int nid = zone_to_nid(zone);
1899 unsigned long nr_pages = 0;
1900 int zid = zone_idx(zone);
1901 struct page *page = NULL;
1903 for (; pfn < end_pfn; pfn++) {
1904 if (!deferred_pfn_valid(pfn)) {
1907 } else if (!page || !(pfn & nr_pgmask)) {
1908 page = pfn_to_page(pfn);
1912 __init_single_page(page, pfn, zid, nid);
1919 * This function is meant to pre-load the iterator for the zone init.
1920 * Specifically it walks through the ranges until we are caught up to the
1921 * first_init_pfn value and exits there. If we never encounter the value we
1922 * return false indicating there are no valid ranges left.
1925 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1926 unsigned long *spfn, unsigned long *epfn,
1927 unsigned long first_init_pfn)
1932 * Start out by walking through the ranges in this zone that have
1933 * already been initialized. We don't need to do anything with them
1934 * so we just need to flush them out of the system.
1936 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1937 if (*epfn <= first_init_pfn)
1939 if (*spfn < first_init_pfn)
1940 *spfn = first_init_pfn;
1949 * Initialize and free pages. We do it in two loops: first we initialize
1950 * struct page, then free to buddy allocator, because while we are
1951 * freeing pages we can access pages that are ahead (computing buddy
1952 * page in __free_one_page()).
1954 * In order to try and keep some memory in the cache we have the loop
1955 * broken along max page order boundaries. This way we will not cause
1956 * any issues with the buddy page computation.
1958 static unsigned long __init
1959 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1960 unsigned long *end_pfn)
1962 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1963 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1964 unsigned long nr_pages = 0;
1967 /* First we loop through and initialize the page values */
1968 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1971 if (mo_pfn <= *start_pfn)
1974 t = min(mo_pfn, *end_pfn);
1975 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1977 if (mo_pfn < *end_pfn) {
1978 *start_pfn = mo_pfn;
1983 /* Reset values and now loop through freeing pages as needed */
1986 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1992 t = min(mo_pfn, epfn);
1993 deferred_free_pages(spfn, t);
2003 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2006 unsigned long spfn, epfn;
2007 struct zone *zone = arg;
2010 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2013 * Initialize and free pages in MAX_ORDER sized increments so that we
2014 * can avoid introducing any issues with the buddy allocator.
2016 while (spfn < end_pfn) {
2017 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2022 /* An arch may override for more concurrency. */
2024 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2029 /* Initialise remaining memory on a node */
2030 static int __init deferred_init_memmap(void *data)
2032 pg_data_t *pgdat = data;
2033 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2034 unsigned long spfn = 0, epfn = 0;
2035 unsigned long first_init_pfn, flags;
2036 unsigned long start = jiffies;
2038 int zid, max_threads;
2041 /* Bind memory initialisation thread to a local node if possible */
2042 if (!cpumask_empty(cpumask))
2043 set_cpus_allowed_ptr(current, cpumask);
2045 pgdat_resize_lock(pgdat, &flags);
2046 first_init_pfn = pgdat->first_deferred_pfn;
2047 if (first_init_pfn == ULONG_MAX) {
2048 pgdat_resize_unlock(pgdat, &flags);
2049 pgdat_init_report_one_done();
2053 /* Sanity check boundaries */
2054 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2055 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2056 pgdat->first_deferred_pfn = ULONG_MAX;
2059 * Once we unlock here, the zone cannot be grown anymore, thus if an
2060 * interrupt thread must allocate this early in boot, zone must be
2061 * pre-grown prior to start of deferred page initialization.
2063 pgdat_resize_unlock(pgdat, &flags);
2065 /* Only the highest zone is deferred so find it */
2066 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2067 zone = pgdat->node_zones + zid;
2068 if (first_init_pfn < zone_end_pfn(zone))
2072 /* If the zone is empty somebody else may have cleared out the zone */
2073 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2077 max_threads = deferred_page_init_max_threads(cpumask);
2079 while (spfn < epfn) {
2080 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2081 struct padata_mt_job job = {
2082 .thread_fn = deferred_init_memmap_chunk,
2085 .size = epfn_align - spfn,
2086 .align = PAGES_PER_SECTION,
2087 .min_chunk = PAGES_PER_SECTION,
2088 .max_threads = max_threads,
2091 padata_do_multithreaded(&job);
2092 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2096 /* Sanity check that the next zone really is unpopulated */
2097 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2099 pr_info("node %d deferred pages initialised in %ums\n",
2100 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2102 pgdat_init_report_one_done();
2107 * If this zone has deferred pages, try to grow it by initializing enough
2108 * deferred pages to satisfy the allocation specified by order, rounded up to
2109 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2110 * of SECTION_SIZE bytes by initializing struct pages in increments of
2111 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2113 * Return true when zone was grown, otherwise return false. We return true even
2114 * when we grow less than requested, to let the caller decide if there are
2115 * enough pages to satisfy the allocation.
2117 * Note: We use noinline because this function is needed only during boot, and
2118 * it is called from a __ref function _deferred_grow_zone. This way we are
2119 * making sure that it is not inlined into permanent text section.
2121 static noinline bool __init
2122 deferred_grow_zone(struct zone *zone, unsigned int order)
2124 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2125 pg_data_t *pgdat = zone->zone_pgdat;
2126 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2127 unsigned long spfn, epfn, flags;
2128 unsigned long nr_pages = 0;
2131 /* Only the last zone may have deferred pages */
2132 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2135 pgdat_resize_lock(pgdat, &flags);
2138 * If someone grew this zone while we were waiting for spinlock, return
2139 * true, as there might be enough pages already.
2141 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2142 pgdat_resize_unlock(pgdat, &flags);
2146 /* If the zone is empty somebody else may have cleared out the zone */
2147 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2148 first_deferred_pfn)) {
2149 pgdat->first_deferred_pfn = ULONG_MAX;
2150 pgdat_resize_unlock(pgdat, &flags);
2151 /* Retry only once. */
2152 return first_deferred_pfn != ULONG_MAX;
2156 * Initialize and free pages in MAX_ORDER sized increments so
2157 * that we can avoid introducing any issues with the buddy
2160 while (spfn < epfn) {
2161 /* update our first deferred PFN for this section */
2162 first_deferred_pfn = spfn;
2164 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2165 touch_nmi_watchdog();
2167 /* We should only stop along section boundaries */
2168 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2171 /* If our quota has been met we can stop here */
2172 if (nr_pages >= nr_pages_needed)
2176 pgdat->first_deferred_pfn = spfn;
2177 pgdat_resize_unlock(pgdat, &flags);
2179 return nr_pages > 0;
2183 * deferred_grow_zone() is __init, but it is called from
2184 * get_page_from_freelist() during early boot until deferred_pages permanently
2185 * disables this call. This is why we have refdata wrapper to avoid warning,
2186 * and to ensure that the function body gets unloaded.
2189 _deferred_grow_zone(struct zone *zone, unsigned int order)
2191 return deferred_grow_zone(zone, order);
2194 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2196 void __init page_alloc_init_late(void)
2201 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2203 /* There will be num_node_state(N_MEMORY) threads */
2204 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2205 for_each_node_state(nid, N_MEMORY) {
2206 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2209 /* Block until all are initialised */
2210 wait_for_completion(&pgdat_init_all_done_comp);
2213 * We initialized the rest of the deferred pages. Permanently disable
2214 * on-demand struct page initialization.
2216 static_branch_disable(&deferred_pages);
2218 /* Reinit limits that are based on free pages after the kernel is up */
2219 files_maxfiles_init();
2224 /* Discard memblock private memory */
2227 for_each_node_state(nid, N_MEMORY)
2228 shuffle_free_memory(NODE_DATA(nid));
2230 for_each_populated_zone(zone)
2231 set_zone_contiguous(zone);
2235 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2236 void __init init_cma_reserved_pageblock(struct page *page)
2238 unsigned i = pageblock_nr_pages;
2239 struct page *p = page;
2242 __ClearPageReserved(p);
2243 set_page_count(p, 0);
2246 set_pageblock_migratetype(page, MIGRATE_CMA);
2247 set_page_refcounted(page);
2248 __free_pages(page, pageblock_order);
2250 adjust_managed_page_count(page, pageblock_nr_pages);
2251 page_zone(page)->cma_pages += pageblock_nr_pages;
2256 * The order of subdivision here is critical for the IO subsystem.
2257 * Please do not alter this order without good reasons and regression
2258 * testing. Specifically, as large blocks of memory are subdivided,
2259 * the order in which smaller blocks are delivered depends on the order
2260 * they're subdivided in this function. This is the primary factor
2261 * influencing the order in which pages are delivered to the IO
2262 * subsystem according to empirical testing, and this is also justified
2263 * by considering the behavior of a buddy system containing a single
2264 * large block of memory acted on by a series of small allocations.
2265 * This behavior is a critical factor in sglist merging's success.
2269 static inline void expand(struct zone *zone, struct page *page,
2270 int low, int high, int migratetype)
2272 unsigned long size = 1 << high;
2274 while (high > low) {
2277 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2280 * Mark as guard pages (or page), that will allow to
2281 * merge back to allocator when buddy will be freed.
2282 * Corresponding page table entries will not be touched,
2283 * pages will stay not present in virtual address space
2285 if (set_page_guard(zone, &page[size], high, migratetype))
2288 add_to_free_list(&page[size], zone, high, migratetype);
2289 set_buddy_order(&page[size], high);
2293 static void check_new_page_bad(struct page *page)
2295 if (unlikely(page->flags & __PG_HWPOISON)) {
2296 /* Don't complain about hwpoisoned pages */
2297 page_mapcount_reset(page); /* remove PageBuddy */
2302 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2306 * This page is about to be returned from the page allocator
2308 static inline int check_new_page(struct page *page)
2310 if (likely(page_expected_state(page,
2311 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2314 check_new_page_bad(page);
2318 #ifdef CONFIG_DEBUG_VM
2320 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2321 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2322 * also checked when pcp lists are refilled from the free lists.
2324 static inline bool check_pcp_refill(struct page *page)
2326 if (debug_pagealloc_enabled_static())
2327 return check_new_page(page);
2332 static inline bool check_new_pcp(struct page *page)
2334 return check_new_page(page);
2338 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2339 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2340 * enabled, they are also checked when being allocated from the pcp lists.
2342 static inline bool check_pcp_refill(struct page *page)
2344 return check_new_page(page);
2346 static inline bool check_new_pcp(struct page *page)
2348 if (debug_pagealloc_enabled_static())
2349 return check_new_page(page);
2353 #endif /* CONFIG_DEBUG_VM */
2355 static bool check_new_pages(struct page *page, unsigned int order)
2358 for (i = 0; i < (1 << order); i++) {
2359 struct page *p = page + i;
2361 if (unlikely(check_new_page(p)))
2368 inline void post_alloc_hook(struct page *page, unsigned int order,
2371 set_page_private(page, 0);
2372 set_page_refcounted(page);
2374 arch_alloc_page(page, order);
2375 debug_pagealloc_map_pages(page, 1 << order);
2378 * Page unpoisoning must happen before memory initialization.
2379 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2380 * allocations and the page unpoisoning code will complain.
2382 kernel_unpoison_pages(page, 1 << order);
2385 * As memory initialization might be integrated into KASAN,
2386 * kasan_alloc_pages and kernel_init_free_pages must be
2387 * kept together to avoid discrepancies in behavior.
2389 if (kasan_has_integrated_init()) {
2390 kasan_alloc_pages(page, order, gfp_flags);
2392 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2394 kasan_unpoison_pages(page, order, init);
2396 kernel_init_free_pages(page, 1 << order,
2397 gfp_flags & __GFP_ZEROTAGS);
2400 set_page_owner(page, order, gfp_flags);
2401 page_table_check_alloc(page, order);
2404 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2405 unsigned int alloc_flags)
2407 post_alloc_hook(page, order, gfp_flags);
2409 if (order && (gfp_flags & __GFP_COMP))
2410 prep_compound_page(page, order);
2413 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2414 * allocate the page. The expectation is that the caller is taking
2415 * steps that will free more memory. The caller should avoid the page
2416 * being used for !PFMEMALLOC purposes.
2418 if (alloc_flags & ALLOC_NO_WATERMARKS)
2419 set_page_pfmemalloc(page);
2421 clear_page_pfmemalloc(page);
2425 * Go through the free lists for the given migratetype and remove
2426 * the smallest available page from the freelists
2428 static __always_inline
2429 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2432 unsigned int current_order;
2433 struct free_area *area;
2436 /* Find a page of the appropriate size in the preferred list */
2437 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2438 area = &(zone->free_area[current_order]);
2439 page = get_page_from_free_area(area, migratetype);
2442 del_page_from_free_list(page, zone, current_order);
2443 expand(zone, page, order, current_order, migratetype);
2444 set_pcppage_migratetype(page, migratetype);
2453 * This array describes the order lists are fallen back to when
2454 * the free lists for the desirable migrate type are depleted
2456 * The other migratetypes do not have fallbacks.
2458 static int fallbacks[MIGRATE_TYPES][3] = {
2459 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2460 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2461 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2465 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2468 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2471 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2472 unsigned int order) { return NULL; }
2476 * Move the free pages in a range to the freelist tail of the requested type.
2477 * Note that start_page and end_pages are not aligned on a pageblock
2478 * boundary. If alignment is required, use move_freepages_block()
2480 static int move_freepages(struct zone *zone,
2481 unsigned long start_pfn, unsigned long end_pfn,
2482 int migratetype, int *num_movable)
2487 int pages_moved = 0;
2489 for (pfn = start_pfn; pfn <= end_pfn;) {
2490 page = pfn_to_page(pfn);
2491 if (!PageBuddy(page)) {
2493 * We assume that pages that could be isolated for
2494 * migration are movable. But we don't actually try
2495 * isolating, as that would be expensive.
2498 (PageLRU(page) || __PageMovable(page)))
2504 /* Make sure we are not inadvertently changing nodes */
2505 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2506 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2508 order = buddy_order(page);
2509 move_to_free_list(page, zone, order, migratetype);
2511 pages_moved += 1 << order;
2517 int move_freepages_block(struct zone *zone, struct page *page,
2518 int migratetype, int *num_movable)
2520 unsigned long start_pfn, end_pfn, pfn;
2525 pfn = page_to_pfn(page);
2526 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2527 end_pfn = start_pfn + pageblock_nr_pages - 1;
2529 /* Do not cross zone boundaries */
2530 if (!zone_spans_pfn(zone, start_pfn))
2532 if (!zone_spans_pfn(zone, end_pfn))
2535 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2539 static void change_pageblock_range(struct page *pageblock_page,
2540 int start_order, int migratetype)
2542 int nr_pageblocks = 1 << (start_order - pageblock_order);
2544 while (nr_pageblocks--) {
2545 set_pageblock_migratetype(pageblock_page, migratetype);
2546 pageblock_page += pageblock_nr_pages;
2551 * When we are falling back to another migratetype during allocation, try to
2552 * steal extra free pages from the same pageblocks to satisfy further
2553 * allocations, instead of polluting multiple pageblocks.
2555 * If we are stealing a relatively large buddy page, it is likely there will
2556 * be more free pages in the pageblock, so try to steal them all. For
2557 * reclaimable and unmovable allocations, we steal regardless of page size,
2558 * as fragmentation caused by those allocations polluting movable pageblocks
2559 * is worse than movable allocations stealing from unmovable and reclaimable
2562 static bool can_steal_fallback(unsigned int order, int start_mt)
2565 * Leaving this order check is intended, although there is
2566 * relaxed order check in next check. The reason is that
2567 * we can actually steal whole pageblock if this condition met,
2568 * but, below check doesn't guarantee it and that is just heuristic
2569 * so could be changed anytime.
2571 if (order >= pageblock_order)
2574 if (order >= pageblock_order / 2 ||
2575 start_mt == MIGRATE_RECLAIMABLE ||
2576 start_mt == MIGRATE_UNMOVABLE ||
2577 page_group_by_mobility_disabled)
2583 static inline bool boost_watermark(struct zone *zone)
2585 unsigned long max_boost;
2587 if (!watermark_boost_factor)
2590 * Don't bother in zones that are unlikely to produce results.
2591 * On small machines, including kdump capture kernels running
2592 * in a small area, boosting the watermark can cause an out of
2593 * memory situation immediately.
2595 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2598 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2599 watermark_boost_factor, 10000);
2602 * high watermark may be uninitialised if fragmentation occurs
2603 * very early in boot so do not boost. We do not fall
2604 * through and boost by pageblock_nr_pages as failing
2605 * allocations that early means that reclaim is not going
2606 * to help and it may even be impossible to reclaim the
2607 * boosted watermark resulting in a hang.
2612 max_boost = max(pageblock_nr_pages, max_boost);
2614 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2621 * This function implements actual steal behaviour. If order is large enough,
2622 * we can steal whole pageblock. If not, we first move freepages in this
2623 * pageblock to our migratetype and determine how many already-allocated pages
2624 * are there in the pageblock with a compatible migratetype. If at least half
2625 * of pages are free or compatible, we can change migratetype of the pageblock
2626 * itself, so pages freed in the future will be put on the correct free list.
2628 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2629 unsigned int alloc_flags, int start_type, bool whole_block)
2631 unsigned int current_order = buddy_order(page);
2632 int free_pages, movable_pages, alike_pages;
2635 old_block_type = get_pageblock_migratetype(page);
2638 * This can happen due to races and we want to prevent broken
2639 * highatomic accounting.
2641 if (is_migrate_highatomic(old_block_type))
2644 /* Take ownership for orders >= pageblock_order */
2645 if (current_order >= pageblock_order) {
2646 change_pageblock_range(page, current_order, start_type);
2651 * Boost watermarks to increase reclaim pressure to reduce the
2652 * likelihood of future fallbacks. Wake kswapd now as the node
2653 * may be balanced overall and kswapd will not wake naturally.
2655 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2656 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2658 /* We are not allowed to try stealing from the whole block */
2662 free_pages = move_freepages_block(zone, page, start_type,
2665 * Determine how many pages are compatible with our allocation.
2666 * For movable allocation, it's the number of movable pages which
2667 * we just obtained. For other types it's a bit more tricky.
2669 if (start_type == MIGRATE_MOVABLE) {
2670 alike_pages = movable_pages;
2673 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2674 * to MOVABLE pageblock, consider all non-movable pages as
2675 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2676 * vice versa, be conservative since we can't distinguish the
2677 * exact migratetype of non-movable pages.
2679 if (old_block_type == MIGRATE_MOVABLE)
2680 alike_pages = pageblock_nr_pages
2681 - (free_pages + movable_pages);
2686 /* moving whole block can fail due to zone boundary conditions */
2691 * If a sufficient number of pages in the block are either free or of
2692 * comparable migratability as our allocation, claim the whole block.
2694 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2695 page_group_by_mobility_disabled)
2696 set_pageblock_migratetype(page, start_type);
2701 move_to_free_list(page, zone, current_order, start_type);
2705 * Check whether there is a suitable fallback freepage with requested order.
2706 * If only_stealable is true, this function returns fallback_mt only if
2707 * we can steal other freepages all together. This would help to reduce
2708 * fragmentation due to mixed migratetype pages in one pageblock.
2710 int find_suitable_fallback(struct free_area *area, unsigned int order,
2711 int migratetype, bool only_stealable, bool *can_steal)
2716 if (area->nr_free == 0)
2721 fallback_mt = fallbacks[migratetype][i];
2722 if (fallback_mt == MIGRATE_TYPES)
2725 if (free_area_empty(area, fallback_mt))
2728 if (can_steal_fallback(order, migratetype))
2731 if (!only_stealable)
2742 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2743 * there are no empty page blocks that contain a page with a suitable order
2745 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2746 unsigned int alloc_order)
2749 unsigned long max_managed, flags;
2752 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2753 * Check is race-prone but harmless.
2755 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2756 if (zone->nr_reserved_highatomic >= max_managed)
2759 spin_lock_irqsave(&zone->lock, flags);
2761 /* Recheck the nr_reserved_highatomic limit under the lock */
2762 if (zone->nr_reserved_highatomic >= max_managed)
2766 mt = get_pageblock_migratetype(page);
2767 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2768 if (migratetype_is_mergeable(mt)) {
2769 zone->nr_reserved_highatomic += pageblock_nr_pages;
2770 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2771 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2775 spin_unlock_irqrestore(&zone->lock, flags);
2779 * Used when an allocation is about to fail under memory pressure. This
2780 * potentially hurts the reliability of high-order allocations when under
2781 * intense memory pressure but failed atomic allocations should be easier
2782 * to recover from than an OOM.
2784 * If @force is true, try to unreserve a pageblock even though highatomic
2785 * pageblock is exhausted.
2787 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2790 struct zonelist *zonelist = ac->zonelist;
2791 unsigned long flags;
2798 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2801 * Preserve at least one pageblock unless memory pressure
2804 if (!force && zone->nr_reserved_highatomic <=
2808 spin_lock_irqsave(&zone->lock, flags);
2809 for (order = 0; order < MAX_ORDER; order++) {
2810 struct free_area *area = &(zone->free_area[order]);
2812 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2817 * In page freeing path, migratetype change is racy so
2818 * we can counter several free pages in a pageblock
2819 * in this loop although we changed the pageblock type
2820 * from highatomic to ac->migratetype. So we should
2821 * adjust the count once.
2823 if (is_migrate_highatomic_page(page)) {
2825 * It should never happen but changes to
2826 * locking could inadvertently allow a per-cpu
2827 * drain to add pages to MIGRATE_HIGHATOMIC
2828 * while unreserving so be safe and watch for
2831 zone->nr_reserved_highatomic -= min(
2833 zone->nr_reserved_highatomic);
2837 * Convert to ac->migratetype and avoid the normal
2838 * pageblock stealing heuristics. Minimally, the caller
2839 * is doing the work and needs the pages. More
2840 * importantly, if the block was always converted to
2841 * MIGRATE_UNMOVABLE or another type then the number
2842 * of pageblocks that cannot be completely freed
2845 set_pageblock_migratetype(page, ac->migratetype);
2846 ret = move_freepages_block(zone, page, ac->migratetype,
2849 spin_unlock_irqrestore(&zone->lock, flags);
2853 spin_unlock_irqrestore(&zone->lock, flags);
2860 * Try finding a free buddy page on the fallback list and put it on the free
2861 * list of requested migratetype, possibly along with other pages from the same
2862 * block, depending on fragmentation avoidance heuristics. Returns true if
2863 * fallback was found so that __rmqueue_smallest() can grab it.
2865 * The use of signed ints for order and current_order is a deliberate
2866 * deviation from the rest of this file, to make the for loop
2867 * condition simpler.
2869 static __always_inline bool
2870 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2871 unsigned int alloc_flags)
2873 struct free_area *area;
2875 int min_order = order;
2881 * Do not steal pages from freelists belonging to other pageblocks
2882 * i.e. orders < pageblock_order. If there are no local zones free,
2883 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2885 if (alloc_flags & ALLOC_NOFRAGMENT)
2886 min_order = pageblock_order;
2889 * Find the largest available free page in the other list. This roughly
2890 * approximates finding the pageblock with the most free pages, which
2891 * would be too costly to do exactly.
2893 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2895 area = &(zone->free_area[current_order]);
2896 fallback_mt = find_suitable_fallback(area, current_order,
2897 start_migratetype, false, &can_steal);
2898 if (fallback_mt == -1)
2902 * We cannot steal all free pages from the pageblock and the
2903 * requested migratetype is movable. In that case it's better to
2904 * steal and split the smallest available page instead of the
2905 * largest available page, because even if the next movable
2906 * allocation falls back into a different pageblock than this
2907 * one, it won't cause permanent fragmentation.
2909 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2910 && current_order > order)
2919 for (current_order = order; current_order < MAX_ORDER;
2921 area = &(zone->free_area[current_order]);
2922 fallback_mt = find_suitable_fallback(area, current_order,
2923 start_migratetype, false, &can_steal);
2924 if (fallback_mt != -1)
2929 * This should not happen - we already found a suitable fallback
2930 * when looking for the largest page.
2932 VM_BUG_ON(current_order == MAX_ORDER);
2935 page = get_page_from_free_area(area, fallback_mt);
2937 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2940 trace_mm_page_alloc_extfrag(page, order, current_order,
2941 start_migratetype, fallback_mt);
2948 * Do the hard work of removing an element from the buddy allocator.
2949 * Call me with the zone->lock already held.
2951 static __always_inline struct page *
2952 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2953 unsigned int alloc_flags)
2957 if (IS_ENABLED(CONFIG_CMA)) {
2959 * Balance movable allocations between regular and CMA areas by
2960 * allocating from CMA when over half of the zone's free memory
2961 * is in the CMA area.
2963 if (alloc_flags & ALLOC_CMA &&
2964 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2965 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2966 page = __rmqueue_cma_fallback(zone, order);
2972 page = __rmqueue_smallest(zone, order, migratetype);
2973 if (unlikely(!page)) {
2974 if (alloc_flags & ALLOC_CMA)
2975 page = __rmqueue_cma_fallback(zone, order);
2977 if (!page && __rmqueue_fallback(zone, order, migratetype,
2983 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2988 * Obtain a specified number of elements from the buddy allocator, all under
2989 * a single hold of the lock, for efficiency. Add them to the supplied list.
2990 * Returns the number of new pages which were placed at *list.
2992 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2993 unsigned long count, struct list_head *list,
2994 int migratetype, unsigned int alloc_flags)
2996 int i, allocated = 0;
2999 * local_lock_irq held so equivalent to spin_lock_irqsave for
3000 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3002 spin_lock(&zone->lock);
3003 for (i = 0; i < count; ++i) {
3004 struct page *page = __rmqueue(zone, order, migratetype,
3006 if (unlikely(page == NULL))
3009 if (unlikely(check_pcp_refill(page)))
3013 * Split buddy pages returned by expand() are received here in
3014 * physical page order. The page is added to the tail of
3015 * caller's list. From the callers perspective, the linked list
3016 * is ordered by page number under some conditions. This is
3017 * useful for IO devices that can forward direction from the
3018 * head, thus also in the physical page order. This is useful
3019 * for IO devices that can merge IO requests if the physical
3020 * pages are ordered properly.
3022 list_add_tail(&page->lru, list);
3024 if (is_migrate_cma(get_pcppage_migratetype(page)))
3025 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3030 * i pages were removed from the buddy list even if some leak due
3031 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3032 * on i. Do not confuse with 'allocated' which is the number of
3033 * pages added to the pcp list.
3035 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3036 spin_unlock(&zone->lock);
3042 * Called from the vmstat counter updater to drain pagesets of this
3043 * currently executing processor on remote nodes after they have
3046 * Note that this function must be called with the thread pinned to
3047 * a single processor.
3049 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3051 unsigned long flags;
3052 int to_drain, batch;
3054 local_lock_irqsave(&pagesets.lock, flags);
3055 batch = READ_ONCE(pcp->batch);
3056 to_drain = min(pcp->count, batch);
3058 free_pcppages_bulk(zone, to_drain, pcp, 0);
3059 local_unlock_irqrestore(&pagesets.lock, flags);
3064 * Drain pcplists of the indicated processor and zone.
3066 * The processor must either be the current processor and the
3067 * thread pinned to the current processor or a processor that
3070 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3072 unsigned long flags;
3073 struct per_cpu_pages *pcp;
3075 local_lock_irqsave(&pagesets.lock, flags);
3077 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3079 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3081 local_unlock_irqrestore(&pagesets.lock, flags);
3085 * Drain pcplists of all zones on the indicated processor.
3087 * The processor must either be the current processor and the
3088 * thread pinned to the current processor or a processor that
3091 static void drain_pages(unsigned int cpu)
3095 for_each_populated_zone(zone) {
3096 drain_pages_zone(cpu, zone);
3101 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3103 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3104 * the single zone's pages.
3106 void drain_local_pages(struct zone *zone)
3108 int cpu = smp_processor_id();
3111 drain_pages_zone(cpu, zone);
3116 static void drain_local_pages_wq(struct work_struct *work)
3118 struct pcpu_drain *drain;
3120 drain = container_of(work, struct pcpu_drain, work);
3123 * drain_all_pages doesn't use proper cpu hotplug protection so
3124 * we can race with cpu offline when the WQ can move this from
3125 * a cpu pinned worker to an unbound one. We can operate on a different
3126 * cpu which is alright but we also have to make sure to not move to
3130 drain_local_pages(drain->zone);
3135 * The implementation of drain_all_pages(), exposing an extra parameter to
3136 * drain on all cpus.
3138 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3139 * not empty. The check for non-emptiness can however race with a free to
3140 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3141 * that need the guarantee that every CPU has drained can disable the
3142 * optimizing racy check.
3144 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3149 * Allocate in the BSS so we won't require allocation in
3150 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3152 static cpumask_t cpus_with_pcps;
3155 * Make sure nobody triggers this path before mm_percpu_wq is fully
3158 if (WARN_ON_ONCE(!mm_percpu_wq))
3162 * Do not drain if one is already in progress unless it's specific to
3163 * a zone. Such callers are primarily CMA and memory hotplug and need
3164 * the drain to be complete when the call returns.
3166 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3169 mutex_lock(&pcpu_drain_mutex);
3173 * We don't care about racing with CPU hotplug event
3174 * as offline notification will cause the notified
3175 * cpu to drain that CPU pcps and on_each_cpu_mask
3176 * disables preemption as part of its processing
3178 for_each_online_cpu(cpu) {
3179 struct per_cpu_pages *pcp;
3181 bool has_pcps = false;
3183 if (force_all_cpus) {
3185 * The pcp.count check is racy, some callers need a
3186 * guarantee that no cpu is missed.
3190 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3194 for_each_populated_zone(z) {
3195 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3204 cpumask_set_cpu(cpu, &cpus_with_pcps);
3206 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3209 for_each_cpu(cpu, &cpus_with_pcps) {
3210 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3213 INIT_WORK(&drain->work, drain_local_pages_wq);
3214 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3216 for_each_cpu(cpu, &cpus_with_pcps)
3217 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3219 mutex_unlock(&pcpu_drain_mutex);
3223 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3225 * When zone parameter is non-NULL, spill just the single zone's pages.
3227 * Note that this can be extremely slow as the draining happens in a workqueue.
3229 void drain_all_pages(struct zone *zone)
3231 __drain_all_pages(zone, false);
3234 #ifdef CONFIG_HIBERNATION
3237 * Touch the watchdog for every WD_PAGE_COUNT pages.
3239 #define WD_PAGE_COUNT (128*1024)
3241 void mark_free_pages(struct zone *zone)
3243 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3244 unsigned long flags;
3245 unsigned int order, t;
3248 if (zone_is_empty(zone))
3251 spin_lock_irqsave(&zone->lock, flags);
3253 max_zone_pfn = zone_end_pfn(zone);
3254 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3255 if (pfn_valid(pfn)) {
3256 page = pfn_to_page(pfn);
3258 if (!--page_count) {
3259 touch_nmi_watchdog();
3260 page_count = WD_PAGE_COUNT;
3263 if (page_zone(page) != zone)
3266 if (!swsusp_page_is_forbidden(page))
3267 swsusp_unset_page_free(page);
3270 for_each_migratetype_order(order, t) {
3271 list_for_each_entry(page,
3272 &zone->free_area[order].free_list[t], lru) {
3275 pfn = page_to_pfn(page);
3276 for (i = 0; i < (1UL << order); i++) {
3277 if (!--page_count) {
3278 touch_nmi_watchdog();
3279 page_count = WD_PAGE_COUNT;
3281 swsusp_set_page_free(pfn_to_page(pfn + i));
3285 spin_unlock_irqrestore(&zone->lock, flags);
3287 #endif /* CONFIG_PM */
3289 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3294 if (!free_pcp_prepare(page, order))
3297 migratetype = get_pfnblock_migratetype(page, pfn);
3298 set_pcppage_migratetype(page, migratetype);
3302 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3304 int min_nr_free, max_nr_free;
3306 /* Check for PCP disabled or boot pageset */
3307 if (unlikely(high < batch))
3310 /* Leave at least pcp->batch pages on the list */
3311 min_nr_free = batch;
3312 max_nr_free = high - batch;
3315 * Double the number of pages freed each time there is subsequent
3316 * freeing of pages without any allocation.
3318 batch <<= pcp->free_factor;
3319 if (batch < max_nr_free)
3321 batch = clamp(batch, min_nr_free, max_nr_free);
3326 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3328 int high = READ_ONCE(pcp->high);
3330 if (unlikely(!high))
3333 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3337 * If reclaim is active, limit the number of pages that can be
3338 * stored on pcp lists
3340 return min(READ_ONCE(pcp->batch) << 2, high);
3343 static void free_unref_page_commit(struct page *page, int migratetype,
3346 struct zone *zone = page_zone(page);
3347 struct per_cpu_pages *pcp;
3351 __count_vm_event(PGFREE);
3352 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3353 pindex = order_to_pindex(migratetype, order);
3354 list_add(&page->lru, &pcp->lists[pindex]);
3355 pcp->count += 1 << order;
3356 high = nr_pcp_high(pcp, zone);
3357 if (pcp->count >= high) {
3358 int batch = READ_ONCE(pcp->batch);
3360 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp, pindex);
3367 void free_unref_page(struct page *page, unsigned int order)
3369 unsigned long flags;
3370 unsigned long pfn = page_to_pfn(page);
3373 if (!free_unref_page_prepare(page, pfn, order))
3377 * We only track unmovable, reclaimable and movable on pcp lists.
3378 * Place ISOLATE pages on the isolated list because they are being
3379 * offlined but treat HIGHATOMIC as movable pages so we can get those
3380 * areas back if necessary. Otherwise, we may have to free
3381 * excessively into the page allocator
3383 migratetype = get_pcppage_migratetype(page);
3384 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3385 if (unlikely(is_migrate_isolate(migratetype))) {
3386 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3389 migratetype = MIGRATE_MOVABLE;
3392 local_lock_irqsave(&pagesets.lock, flags);
3393 free_unref_page_commit(page, migratetype, order);
3394 local_unlock_irqrestore(&pagesets.lock, flags);
3398 * Free a list of 0-order pages
3400 void free_unref_page_list(struct list_head *list)
3402 struct page *page, *next;
3403 unsigned long flags;
3404 int batch_count = 0;
3407 /* Prepare pages for freeing */
3408 list_for_each_entry_safe(page, next, list, lru) {
3409 unsigned long pfn = page_to_pfn(page);
3410 if (!free_unref_page_prepare(page, pfn, 0)) {
3411 list_del(&page->lru);
3416 * Free isolated pages directly to the allocator, see
3417 * comment in free_unref_page.
3419 migratetype = get_pcppage_migratetype(page);
3420 if (unlikely(is_migrate_isolate(migratetype))) {
3421 list_del(&page->lru);
3422 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3427 local_lock_irqsave(&pagesets.lock, flags);
3428 list_for_each_entry_safe(page, next, list, lru) {
3430 * Non-isolated types over MIGRATE_PCPTYPES get added
3431 * to the MIGRATE_MOVABLE pcp list.
3433 migratetype = get_pcppage_migratetype(page);
3434 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3435 migratetype = MIGRATE_MOVABLE;
3437 trace_mm_page_free_batched(page);
3438 free_unref_page_commit(page, migratetype, 0);
3441 * Guard against excessive IRQ disabled times when we get
3442 * a large list of pages to free.
3444 if (++batch_count == SWAP_CLUSTER_MAX) {
3445 local_unlock_irqrestore(&pagesets.lock, flags);
3447 local_lock_irqsave(&pagesets.lock, flags);
3450 local_unlock_irqrestore(&pagesets.lock, flags);
3454 * split_page takes a non-compound higher-order page, and splits it into
3455 * n (1<<order) sub-pages: page[0..n]
3456 * Each sub-page must be freed individually.
3458 * Note: this is probably too low level an operation for use in drivers.
3459 * Please consult with lkml before using this in your driver.
3461 void split_page(struct page *page, unsigned int order)
3465 VM_BUG_ON_PAGE(PageCompound(page), page);
3466 VM_BUG_ON_PAGE(!page_count(page), page);
3468 for (i = 1; i < (1 << order); i++)
3469 set_page_refcounted(page + i);
3470 split_page_owner(page, 1 << order);
3471 split_page_memcg(page, 1 << order);
3473 EXPORT_SYMBOL_GPL(split_page);
3475 int __isolate_free_page(struct page *page, unsigned int order)
3477 unsigned long watermark;
3481 BUG_ON(!PageBuddy(page));
3483 zone = page_zone(page);
3484 mt = get_pageblock_migratetype(page);
3486 if (!is_migrate_isolate(mt)) {
3488 * Obey watermarks as if the page was being allocated. We can
3489 * emulate a high-order watermark check with a raised order-0
3490 * watermark, because we already know our high-order page
3493 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3494 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3497 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3500 /* Remove page from free list */
3502 del_page_from_free_list(page, zone, order);
3505 * Set the pageblock if the isolated page is at least half of a
3508 if (order >= pageblock_order - 1) {
3509 struct page *endpage = page + (1 << order) - 1;
3510 for (; page < endpage; page += pageblock_nr_pages) {
3511 int mt = get_pageblock_migratetype(page);
3513 * Only change normal pageblocks (i.e., they can merge
3516 if (migratetype_is_mergeable(mt))
3517 set_pageblock_migratetype(page,
3523 return 1UL << order;
3527 * __putback_isolated_page - Return a now-isolated page back where we got it
3528 * @page: Page that was isolated
3529 * @order: Order of the isolated page
3530 * @mt: The page's pageblock's migratetype
3532 * This function is meant to return a page pulled from the free lists via
3533 * __isolate_free_page back to the free lists they were pulled from.
3535 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3537 struct zone *zone = page_zone(page);
3539 /* zone lock should be held when this function is called */
3540 lockdep_assert_held(&zone->lock);
3542 /* Return isolated page to tail of freelist. */
3543 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3544 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3548 * Update NUMA hit/miss statistics
3550 * Must be called with interrupts disabled.
3552 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3556 enum numa_stat_item local_stat = NUMA_LOCAL;
3558 /* skip numa counters update if numa stats is disabled */
3559 if (!static_branch_likely(&vm_numa_stat_key))
3562 if (zone_to_nid(z) != numa_node_id())
3563 local_stat = NUMA_OTHER;
3565 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3566 __count_numa_events(z, NUMA_HIT, nr_account);
3568 __count_numa_events(z, NUMA_MISS, nr_account);
3569 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3571 __count_numa_events(z, local_stat, nr_account);
3575 /* Remove page from the per-cpu list, caller must protect the list */
3577 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3579 unsigned int alloc_flags,
3580 struct per_cpu_pages *pcp,
3581 struct list_head *list)
3586 if (list_empty(list)) {
3587 int batch = READ_ONCE(pcp->batch);
3591 * Scale batch relative to order if batch implies
3592 * free pages can be stored on the PCP. Batch can
3593 * be 1 for small zones or for boot pagesets which
3594 * should never store free pages as the pages may
3595 * belong to arbitrary zones.
3598 batch = max(batch >> order, 2);
3599 alloced = rmqueue_bulk(zone, order,
3601 migratetype, alloc_flags);
3603 pcp->count += alloced << order;
3604 if (unlikely(list_empty(list)))
3608 page = list_first_entry(list, struct page, lru);
3609 list_del(&page->lru);
3610 pcp->count -= 1 << order;
3611 } while (check_new_pcp(page));
3616 /* Lock and remove page from the per-cpu list */
3617 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3618 struct zone *zone, unsigned int order,
3619 gfp_t gfp_flags, int migratetype,
3620 unsigned int alloc_flags)
3622 struct per_cpu_pages *pcp;
3623 struct list_head *list;
3625 unsigned long flags;
3627 local_lock_irqsave(&pagesets.lock, flags);
3630 * On allocation, reduce the number of pages that are batch freed.
3631 * See nr_pcp_free() where free_factor is increased for subsequent
3634 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3635 pcp->free_factor >>= 1;
3636 list = &pcp->lists[order_to_pindex(migratetype, order)];
3637 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3638 local_unlock_irqrestore(&pagesets.lock, flags);
3640 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3641 zone_statistics(preferred_zone, zone, 1);
3647 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3650 struct page *rmqueue(struct zone *preferred_zone,
3651 struct zone *zone, unsigned int order,
3652 gfp_t gfp_flags, unsigned int alloc_flags,
3655 unsigned long flags;
3658 if (likely(pcp_allowed_order(order))) {
3660 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3661 * we need to skip it when CMA area isn't allowed.
3663 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3664 migratetype != MIGRATE_MOVABLE) {
3665 page = rmqueue_pcplist(preferred_zone, zone, order,
3666 gfp_flags, migratetype, alloc_flags);
3672 * We most definitely don't want callers attempting to
3673 * allocate greater than order-1 page units with __GFP_NOFAIL.
3675 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3676 spin_lock_irqsave(&zone->lock, flags);
3681 * order-0 request can reach here when the pcplist is skipped
3682 * due to non-CMA allocation context. HIGHATOMIC area is
3683 * reserved for high-order atomic allocation, so order-0
3684 * request should skip it.
3686 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3687 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3689 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3692 page = __rmqueue(zone, order, migratetype, alloc_flags);
3693 } while (page && check_new_pages(page, order));
3697 __mod_zone_freepage_state(zone, -(1 << order),
3698 get_pcppage_migratetype(page));
3699 spin_unlock_irqrestore(&zone->lock, flags);
3701 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3702 zone_statistics(preferred_zone, zone, 1);
3705 /* Separate test+clear to avoid unnecessary atomics */
3706 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3707 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3708 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3711 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3715 spin_unlock_irqrestore(&zone->lock, flags);
3719 #ifdef CONFIG_FAIL_PAGE_ALLOC
3722 struct fault_attr attr;
3724 bool ignore_gfp_highmem;
3725 bool ignore_gfp_reclaim;
3727 } fail_page_alloc = {
3728 .attr = FAULT_ATTR_INITIALIZER,
3729 .ignore_gfp_reclaim = true,
3730 .ignore_gfp_highmem = true,
3734 static int __init setup_fail_page_alloc(char *str)
3736 return setup_fault_attr(&fail_page_alloc.attr, str);
3738 __setup("fail_page_alloc=", setup_fail_page_alloc);
3740 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3742 if (order < fail_page_alloc.min_order)
3744 if (gfp_mask & __GFP_NOFAIL)
3746 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3748 if (fail_page_alloc.ignore_gfp_reclaim &&
3749 (gfp_mask & __GFP_DIRECT_RECLAIM))
3752 return should_fail(&fail_page_alloc.attr, 1 << order);
3755 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3757 static int __init fail_page_alloc_debugfs(void)
3759 umode_t mode = S_IFREG | 0600;
3762 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3763 &fail_page_alloc.attr);
3765 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3766 &fail_page_alloc.ignore_gfp_reclaim);
3767 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3768 &fail_page_alloc.ignore_gfp_highmem);
3769 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3774 late_initcall(fail_page_alloc_debugfs);
3776 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3778 #else /* CONFIG_FAIL_PAGE_ALLOC */
3780 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3785 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3787 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3789 return __should_fail_alloc_page(gfp_mask, order);
3791 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3793 static inline long __zone_watermark_unusable_free(struct zone *z,
3794 unsigned int order, unsigned int alloc_flags)
3796 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3797 long unusable_free = (1 << order) - 1;
3800 * If the caller does not have rights to ALLOC_HARDER then subtract
3801 * the high-atomic reserves. This will over-estimate the size of the
3802 * atomic reserve but it avoids a search.
3804 if (likely(!alloc_harder))
3805 unusable_free += z->nr_reserved_highatomic;
3808 /* If allocation can't use CMA areas don't use free CMA pages */
3809 if (!(alloc_flags & ALLOC_CMA))
3810 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3813 return unusable_free;
3817 * Return true if free base pages are above 'mark'. For high-order checks it
3818 * will return true of the order-0 watermark is reached and there is at least
3819 * one free page of a suitable size. Checking now avoids taking the zone lock
3820 * to check in the allocation paths if no pages are free.
3822 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3823 int highest_zoneidx, unsigned int alloc_flags,
3828 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3830 /* free_pages may go negative - that's OK */
3831 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3833 if (alloc_flags & ALLOC_HIGH)
3836 if (unlikely(alloc_harder)) {
3838 * OOM victims can try even harder than normal ALLOC_HARDER
3839 * users on the grounds that it's definitely going to be in
3840 * the exit path shortly and free memory. Any allocation it
3841 * makes during the free path will be small and short-lived.
3843 if (alloc_flags & ALLOC_OOM)
3850 * Check watermarks for an order-0 allocation request. If these
3851 * are not met, then a high-order request also cannot go ahead
3852 * even if a suitable page happened to be free.
3854 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3857 /* If this is an order-0 request then the watermark is fine */
3861 /* For a high-order request, check at least one suitable page is free */
3862 for (o = order; o < MAX_ORDER; o++) {
3863 struct free_area *area = &z->free_area[o];
3869 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3870 if (!free_area_empty(area, mt))
3875 if ((alloc_flags & ALLOC_CMA) &&
3876 !free_area_empty(area, MIGRATE_CMA)) {
3880 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3886 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3887 int highest_zoneidx, unsigned int alloc_flags)
3889 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3890 zone_page_state(z, NR_FREE_PAGES));
3893 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3894 unsigned long mark, int highest_zoneidx,
3895 unsigned int alloc_flags, gfp_t gfp_mask)
3899 free_pages = zone_page_state(z, NR_FREE_PAGES);
3902 * Fast check for order-0 only. If this fails then the reserves
3903 * need to be calculated.
3908 fast_free = free_pages;
3909 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3910 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3914 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3918 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3919 * when checking the min watermark. The min watermark is the
3920 * point where boosting is ignored so that kswapd is woken up
3921 * when below the low watermark.
3923 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3924 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3925 mark = z->_watermark[WMARK_MIN];
3926 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3927 alloc_flags, free_pages);
3933 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3934 unsigned long mark, int highest_zoneidx)
3936 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3938 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3939 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3941 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3946 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3948 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3950 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3951 node_reclaim_distance;
3953 #else /* CONFIG_NUMA */
3954 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3958 #endif /* CONFIG_NUMA */
3961 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3962 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3963 * premature use of a lower zone may cause lowmem pressure problems that
3964 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3965 * probably too small. It only makes sense to spread allocations to avoid
3966 * fragmentation between the Normal and DMA32 zones.
3968 static inline unsigned int
3969 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3971 unsigned int alloc_flags;
3974 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3977 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3979 #ifdef CONFIG_ZONE_DMA32
3983 if (zone_idx(zone) != ZONE_NORMAL)
3987 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3988 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3989 * on UMA that if Normal is populated then so is DMA32.
3991 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3992 if (nr_online_nodes > 1 && !populated_zone(--zone))
3995 alloc_flags |= ALLOC_NOFRAGMENT;
3996 #endif /* CONFIG_ZONE_DMA32 */
4000 /* Must be called after current_gfp_context() which can change gfp_mask */
4001 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4002 unsigned int alloc_flags)
4005 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4006 alloc_flags |= ALLOC_CMA;
4012 * get_page_from_freelist goes through the zonelist trying to allocate
4015 static struct page *
4016 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4017 const struct alloc_context *ac)
4021 struct pglist_data *last_pgdat_dirty_limit = NULL;
4026 * Scan zonelist, looking for a zone with enough free.
4027 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4029 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4030 z = ac->preferred_zoneref;
4031 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4036 if (cpusets_enabled() &&
4037 (alloc_flags & ALLOC_CPUSET) &&
4038 !__cpuset_zone_allowed(zone, gfp_mask))
4041 * When allocating a page cache page for writing, we
4042 * want to get it from a node that is within its dirty
4043 * limit, such that no single node holds more than its
4044 * proportional share of globally allowed dirty pages.
4045 * The dirty limits take into account the node's
4046 * lowmem reserves and high watermark so that kswapd
4047 * should be able to balance it without having to
4048 * write pages from its LRU list.
4050 * XXX: For now, allow allocations to potentially
4051 * exceed the per-node dirty limit in the slowpath
4052 * (spread_dirty_pages unset) before going into reclaim,
4053 * which is important when on a NUMA setup the allowed
4054 * nodes are together not big enough to reach the
4055 * global limit. The proper fix for these situations
4056 * will require awareness of nodes in the
4057 * dirty-throttling and the flusher threads.
4059 if (ac->spread_dirty_pages) {
4060 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4063 if (!node_dirty_ok(zone->zone_pgdat)) {
4064 last_pgdat_dirty_limit = zone->zone_pgdat;
4069 if (no_fallback && nr_online_nodes > 1 &&
4070 zone != ac->preferred_zoneref->zone) {
4074 * If moving to a remote node, retry but allow
4075 * fragmenting fallbacks. Locality is more important
4076 * than fragmentation avoidance.
4078 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4079 if (zone_to_nid(zone) != local_nid) {
4080 alloc_flags &= ~ALLOC_NOFRAGMENT;
4085 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4086 if (!zone_watermark_fast(zone, order, mark,
4087 ac->highest_zoneidx, alloc_flags,
4091 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4093 * Watermark failed for this zone, but see if we can
4094 * grow this zone if it contains deferred pages.
4096 if (static_branch_unlikely(&deferred_pages)) {
4097 if (_deferred_grow_zone(zone, order))
4101 /* Checked here to keep the fast path fast */
4102 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4103 if (alloc_flags & ALLOC_NO_WATERMARKS)
4106 if (!node_reclaim_enabled() ||
4107 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4110 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4112 case NODE_RECLAIM_NOSCAN:
4115 case NODE_RECLAIM_FULL:
4116 /* scanned but unreclaimable */
4119 /* did we reclaim enough */
4120 if (zone_watermark_ok(zone, order, mark,
4121 ac->highest_zoneidx, alloc_flags))
4129 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4130 gfp_mask, alloc_flags, ac->migratetype);
4132 prep_new_page(page, order, gfp_mask, alloc_flags);
4135 * If this is a high-order atomic allocation then check
4136 * if the pageblock should be reserved for the future
4138 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4139 reserve_highatomic_pageblock(page, zone, order);
4143 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4144 /* Try again if zone has deferred pages */
4145 if (static_branch_unlikely(&deferred_pages)) {
4146 if (_deferred_grow_zone(zone, order))
4154 * It's possible on a UMA machine to get through all zones that are
4155 * fragmented. If avoiding fragmentation, reset and try again.
4158 alloc_flags &= ~ALLOC_NOFRAGMENT;
4165 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4167 unsigned int filter = SHOW_MEM_FILTER_NODES;
4170 * This documents exceptions given to allocations in certain
4171 * contexts that are allowed to allocate outside current's set
4174 if (!(gfp_mask & __GFP_NOMEMALLOC))
4175 if (tsk_is_oom_victim(current) ||
4176 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4177 filter &= ~SHOW_MEM_FILTER_NODES;
4178 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4179 filter &= ~SHOW_MEM_FILTER_NODES;
4181 show_mem(filter, nodemask);
4184 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4186 struct va_format vaf;
4188 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4190 if ((gfp_mask & __GFP_NOWARN) ||
4191 !__ratelimit(&nopage_rs) ||
4192 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4195 va_start(args, fmt);
4198 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4199 current->comm, &vaf, gfp_mask, &gfp_mask,
4200 nodemask_pr_args(nodemask));
4203 cpuset_print_current_mems_allowed();
4206 warn_alloc_show_mem(gfp_mask, nodemask);
4209 static inline struct page *
4210 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4211 unsigned int alloc_flags,
4212 const struct alloc_context *ac)
4216 page = get_page_from_freelist(gfp_mask, order,
4217 alloc_flags|ALLOC_CPUSET, ac);
4219 * fallback to ignore cpuset restriction if our nodes
4223 page = get_page_from_freelist(gfp_mask, order,
4229 static inline struct page *
4230 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4231 const struct alloc_context *ac, unsigned long *did_some_progress)
4233 struct oom_control oc = {
4234 .zonelist = ac->zonelist,
4235 .nodemask = ac->nodemask,
4237 .gfp_mask = gfp_mask,
4242 *did_some_progress = 0;
4245 * Acquire the oom lock. If that fails, somebody else is
4246 * making progress for us.
4248 if (!mutex_trylock(&oom_lock)) {
4249 *did_some_progress = 1;
4250 schedule_timeout_uninterruptible(1);
4255 * Go through the zonelist yet one more time, keep very high watermark
4256 * here, this is only to catch a parallel oom killing, we must fail if
4257 * we're still under heavy pressure. But make sure that this reclaim
4258 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4259 * allocation which will never fail due to oom_lock already held.
4261 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4262 ~__GFP_DIRECT_RECLAIM, order,
4263 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4267 /* Coredumps can quickly deplete all memory reserves */
4268 if (current->flags & PF_DUMPCORE)
4270 /* The OOM killer will not help higher order allocs */
4271 if (order > PAGE_ALLOC_COSTLY_ORDER)
4274 * We have already exhausted all our reclaim opportunities without any
4275 * success so it is time to admit defeat. We will skip the OOM killer
4276 * because it is very likely that the caller has a more reasonable
4277 * fallback than shooting a random task.
4279 * The OOM killer may not free memory on a specific node.
4281 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4283 /* The OOM killer does not needlessly kill tasks for lowmem */
4284 if (ac->highest_zoneidx < ZONE_NORMAL)
4286 if (pm_suspended_storage())
4289 * XXX: GFP_NOFS allocations should rather fail than rely on
4290 * other request to make a forward progress.
4291 * We are in an unfortunate situation where out_of_memory cannot
4292 * do much for this context but let's try it to at least get
4293 * access to memory reserved if the current task is killed (see
4294 * out_of_memory). Once filesystems are ready to handle allocation
4295 * failures more gracefully we should just bail out here.
4298 /* Exhausted what can be done so it's blame time */
4299 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4300 *did_some_progress = 1;
4303 * Help non-failing allocations by giving them access to memory
4306 if (gfp_mask & __GFP_NOFAIL)
4307 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4308 ALLOC_NO_WATERMARKS, ac);
4311 mutex_unlock(&oom_lock);
4316 * Maximum number of compaction retries with a progress before OOM
4317 * killer is consider as the only way to move forward.
4319 #define MAX_COMPACT_RETRIES 16
4321 #ifdef CONFIG_COMPACTION
4322 /* Try memory compaction for high-order allocations before reclaim */
4323 static struct page *
4324 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4325 unsigned int alloc_flags, const struct alloc_context *ac,
4326 enum compact_priority prio, enum compact_result *compact_result)
4328 struct page *page = NULL;
4329 unsigned long pflags;
4330 unsigned int noreclaim_flag;
4335 psi_memstall_enter(&pflags);
4336 delayacct_compact_start();
4337 noreclaim_flag = memalloc_noreclaim_save();
4339 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4342 memalloc_noreclaim_restore(noreclaim_flag);
4343 psi_memstall_leave(&pflags);
4344 delayacct_compact_end();
4346 if (*compact_result == COMPACT_SKIPPED)
4349 * At least in one zone compaction wasn't deferred or skipped, so let's
4350 * count a compaction stall
4352 count_vm_event(COMPACTSTALL);
4354 /* Prep a captured page if available */
4356 prep_new_page(page, order, gfp_mask, alloc_flags);
4358 /* Try get a page from the freelist if available */
4360 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4363 struct zone *zone = page_zone(page);
4365 zone->compact_blockskip_flush = false;
4366 compaction_defer_reset(zone, order, true);
4367 count_vm_event(COMPACTSUCCESS);
4372 * It's bad if compaction run occurs and fails. The most likely reason
4373 * is that pages exist, but not enough to satisfy watermarks.
4375 count_vm_event(COMPACTFAIL);
4383 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4384 enum compact_result compact_result,
4385 enum compact_priority *compact_priority,
4386 int *compaction_retries)
4388 int max_retries = MAX_COMPACT_RETRIES;
4391 int retries = *compaction_retries;
4392 enum compact_priority priority = *compact_priority;
4397 if (fatal_signal_pending(current))
4400 if (compaction_made_progress(compact_result))
4401 (*compaction_retries)++;
4404 * compaction considers all the zone as desperately out of memory
4405 * so it doesn't really make much sense to retry except when the
4406 * failure could be caused by insufficient priority
4408 if (compaction_failed(compact_result))
4409 goto check_priority;
4412 * compaction was skipped because there are not enough order-0 pages
4413 * to work with, so we retry only if it looks like reclaim can help.
4415 if (compaction_needs_reclaim(compact_result)) {
4416 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4421 * make sure the compaction wasn't deferred or didn't bail out early
4422 * due to locks contention before we declare that we should give up.
4423 * But the next retry should use a higher priority if allowed, so
4424 * we don't just keep bailing out endlessly.
4426 if (compaction_withdrawn(compact_result)) {
4427 goto check_priority;
4431 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4432 * costly ones because they are de facto nofail and invoke OOM
4433 * killer to move on while costly can fail and users are ready
4434 * to cope with that. 1/4 retries is rather arbitrary but we
4435 * would need much more detailed feedback from compaction to
4436 * make a better decision.
4438 if (order > PAGE_ALLOC_COSTLY_ORDER)
4440 if (*compaction_retries <= max_retries) {
4446 * Make sure there are attempts at the highest priority if we exhausted
4447 * all retries or failed at the lower priorities.
4450 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4451 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4453 if (*compact_priority > min_priority) {
4454 (*compact_priority)--;
4455 *compaction_retries = 0;
4459 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4463 static inline struct page *
4464 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4465 unsigned int alloc_flags, const struct alloc_context *ac,
4466 enum compact_priority prio, enum compact_result *compact_result)
4468 *compact_result = COMPACT_SKIPPED;
4473 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4474 enum compact_result compact_result,
4475 enum compact_priority *compact_priority,
4476 int *compaction_retries)
4481 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4485 * There are setups with compaction disabled which would prefer to loop
4486 * inside the allocator rather than hit the oom killer prematurely.
4487 * Let's give them a good hope and keep retrying while the order-0
4488 * watermarks are OK.
4490 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4491 ac->highest_zoneidx, ac->nodemask) {
4492 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4493 ac->highest_zoneidx, alloc_flags))
4498 #endif /* CONFIG_COMPACTION */
4500 #ifdef CONFIG_LOCKDEP
4501 static struct lockdep_map __fs_reclaim_map =
4502 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4504 static bool __need_reclaim(gfp_t gfp_mask)
4506 /* no reclaim without waiting on it */
4507 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4510 /* this guy won't enter reclaim */
4511 if (current->flags & PF_MEMALLOC)
4514 if (gfp_mask & __GFP_NOLOCKDEP)
4520 void __fs_reclaim_acquire(unsigned long ip)
4522 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4525 void __fs_reclaim_release(unsigned long ip)
4527 lock_release(&__fs_reclaim_map, ip);
4530 void fs_reclaim_acquire(gfp_t gfp_mask)
4532 gfp_mask = current_gfp_context(gfp_mask);
4534 if (__need_reclaim(gfp_mask)) {
4535 if (gfp_mask & __GFP_FS)
4536 __fs_reclaim_acquire(_RET_IP_);
4538 #ifdef CONFIG_MMU_NOTIFIER
4539 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4540 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4545 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4547 void fs_reclaim_release(gfp_t gfp_mask)
4549 gfp_mask = current_gfp_context(gfp_mask);
4551 if (__need_reclaim(gfp_mask)) {
4552 if (gfp_mask & __GFP_FS)
4553 __fs_reclaim_release(_RET_IP_);
4556 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4559 /* Perform direct synchronous page reclaim */
4560 static unsigned long
4561 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4562 const struct alloc_context *ac)
4564 unsigned int noreclaim_flag;
4565 unsigned long pflags, progress;
4569 /* We now go into synchronous reclaim */
4570 cpuset_memory_pressure_bump();
4571 psi_memstall_enter(&pflags);
4572 fs_reclaim_acquire(gfp_mask);
4573 noreclaim_flag = memalloc_noreclaim_save();
4575 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4578 memalloc_noreclaim_restore(noreclaim_flag);
4579 fs_reclaim_release(gfp_mask);
4580 psi_memstall_leave(&pflags);
4587 /* The really slow allocator path where we enter direct reclaim */
4588 static inline struct page *
4589 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4590 unsigned int alloc_flags, const struct alloc_context *ac,
4591 unsigned long *did_some_progress)
4593 struct page *page = NULL;
4594 bool drained = false;
4596 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4597 if (unlikely(!(*did_some_progress)))
4601 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4604 * If an allocation failed after direct reclaim, it could be because
4605 * pages are pinned on the per-cpu lists or in high alloc reserves.
4606 * Shrink them and try again
4608 if (!page && !drained) {
4609 unreserve_highatomic_pageblock(ac, false);
4610 drain_all_pages(NULL);
4618 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4619 const struct alloc_context *ac)
4623 pg_data_t *last_pgdat = NULL;
4624 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4626 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4628 if (last_pgdat != zone->zone_pgdat)
4629 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4630 last_pgdat = zone->zone_pgdat;
4634 static inline unsigned int
4635 gfp_to_alloc_flags(gfp_t gfp_mask)
4637 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4640 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4641 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4642 * to save two branches.
4644 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4645 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4648 * The caller may dip into page reserves a bit more if the caller
4649 * cannot run direct reclaim, or if the caller has realtime scheduling
4650 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4651 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4653 alloc_flags |= (__force int)
4654 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4656 if (gfp_mask & __GFP_ATOMIC) {
4658 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4659 * if it can't schedule.
4661 if (!(gfp_mask & __GFP_NOMEMALLOC))
4662 alloc_flags |= ALLOC_HARDER;
4664 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4665 * comment for __cpuset_node_allowed().
4667 alloc_flags &= ~ALLOC_CPUSET;
4668 } else if (unlikely(rt_task(current)) && in_task())
4669 alloc_flags |= ALLOC_HARDER;
4671 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4676 static bool oom_reserves_allowed(struct task_struct *tsk)
4678 if (!tsk_is_oom_victim(tsk))
4682 * !MMU doesn't have oom reaper so give access to memory reserves
4683 * only to the thread with TIF_MEMDIE set
4685 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4692 * Distinguish requests which really need access to full memory
4693 * reserves from oom victims which can live with a portion of it
4695 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4697 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4699 if (gfp_mask & __GFP_MEMALLOC)
4700 return ALLOC_NO_WATERMARKS;
4701 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4702 return ALLOC_NO_WATERMARKS;
4703 if (!in_interrupt()) {
4704 if (current->flags & PF_MEMALLOC)
4705 return ALLOC_NO_WATERMARKS;
4706 else if (oom_reserves_allowed(current))
4713 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4715 return !!__gfp_pfmemalloc_flags(gfp_mask);
4719 * Checks whether it makes sense to retry the reclaim to make a forward progress
4720 * for the given allocation request.
4722 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4723 * without success, or when we couldn't even meet the watermark if we
4724 * reclaimed all remaining pages on the LRU lists.
4726 * Returns true if a retry is viable or false to enter the oom path.
4729 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4730 struct alloc_context *ac, int alloc_flags,
4731 bool did_some_progress, int *no_progress_loops)
4738 * Costly allocations might have made a progress but this doesn't mean
4739 * their order will become available due to high fragmentation so
4740 * always increment the no progress counter for them
4742 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4743 *no_progress_loops = 0;
4745 (*no_progress_loops)++;
4748 * Make sure we converge to OOM if we cannot make any progress
4749 * several times in the row.
4751 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4752 /* Before OOM, exhaust highatomic_reserve */
4753 return unreserve_highatomic_pageblock(ac, true);
4757 * Keep reclaiming pages while there is a chance this will lead
4758 * somewhere. If none of the target zones can satisfy our allocation
4759 * request even if all reclaimable pages are considered then we are
4760 * screwed and have to go OOM.
4762 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4763 ac->highest_zoneidx, ac->nodemask) {
4764 unsigned long available;
4765 unsigned long reclaimable;
4766 unsigned long min_wmark = min_wmark_pages(zone);
4769 available = reclaimable = zone_reclaimable_pages(zone);
4770 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4773 * Would the allocation succeed if we reclaimed all
4774 * reclaimable pages?
4776 wmark = __zone_watermark_ok(zone, order, min_wmark,
4777 ac->highest_zoneidx, alloc_flags, available);
4778 trace_reclaim_retry_zone(z, order, reclaimable,
4779 available, min_wmark, *no_progress_loops, wmark);
4787 * Memory allocation/reclaim might be called from a WQ context and the
4788 * current implementation of the WQ concurrency control doesn't
4789 * recognize that a particular WQ is congested if the worker thread is
4790 * looping without ever sleeping. Therefore we have to do a short sleep
4791 * here rather than calling cond_resched().
4793 if (current->flags & PF_WQ_WORKER)
4794 schedule_timeout_uninterruptible(1);
4801 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4804 * It's possible that cpuset's mems_allowed and the nodemask from
4805 * mempolicy don't intersect. This should be normally dealt with by
4806 * policy_nodemask(), but it's possible to race with cpuset update in
4807 * such a way the check therein was true, and then it became false
4808 * before we got our cpuset_mems_cookie here.
4809 * This assumes that for all allocations, ac->nodemask can come only
4810 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4811 * when it does not intersect with the cpuset restrictions) or the
4812 * caller can deal with a violated nodemask.
4814 if (cpusets_enabled() && ac->nodemask &&
4815 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4816 ac->nodemask = NULL;
4821 * When updating a task's mems_allowed or mempolicy nodemask, it is
4822 * possible to race with parallel threads in such a way that our
4823 * allocation can fail while the mask is being updated. If we are about
4824 * to fail, check if the cpuset changed during allocation and if so,
4827 if (read_mems_allowed_retry(cpuset_mems_cookie))
4833 static inline struct page *
4834 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4835 struct alloc_context *ac)
4837 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4838 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4839 struct page *page = NULL;
4840 unsigned int alloc_flags;
4841 unsigned long did_some_progress;
4842 enum compact_priority compact_priority;
4843 enum compact_result compact_result;
4844 int compaction_retries;
4845 int no_progress_loops;
4846 unsigned int cpuset_mems_cookie;
4850 * We also sanity check to catch abuse of atomic reserves being used by
4851 * callers that are not in atomic context.
4853 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4854 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4855 gfp_mask &= ~__GFP_ATOMIC;
4858 compaction_retries = 0;
4859 no_progress_loops = 0;
4860 compact_priority = DEF_COMPACT_PRIORITY;
4861 cpuset_mems_cookie = read_mems_allowed_begin();
4864 * The fast path uses conservative alloc_flags to succeed only until
4865 * kswapd needs to be woken up, and to avoid the cost of setting up
4866 * alloc_flags precisely. So we do that now.
4868 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4871 * We need to recalculate the starting point for the zonelist iterator
4872 * because we might have used different nodemask in the fast path, or
4873 * there was a cpuset modification and we are retrying - otherwise we
4874 * could end up iterating over non-eligible zones endlessly.
4876 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4877 ac->highest_zoneidx, ac->nodemask);
4878 if (!ac->preferred_zoneref->zone)
4882 * Check for insane configurations where the cpuset doesn't contain
4883 * any suitable zone to satisfy the request - e.g. non-movable
4884 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4886 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4887 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4888 ac->highest_zoneidx,
4889 &cpuset_current_mems_allowed);
4894 if (alloc_flags & ALLOC_KSWAPD)
4895 wake_all_kswapds(order, gfp_mask, ac);
4898 * The adjusted alloc_flags might result in immediate success, so try
4901 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4906 * For costly allocations, try direct compaction first, as it's likely
4907 * that we have enough base pages and don't need to reclaim. For non-
4908 * movable high-order allocations, do that as well, as compaction will
4909 * try prevent permanent fragmentation by migrating from blocks of the
4911 * Don't try this for allocations that are allowed to ignore
4912 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4914 if (can_direct_reclaim &&
4916 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4917 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4918 page = __alloc_pages_direct_compact(gfp_mask, order,
4920 INIT_COMPACT_PRIORITY,
4926 * Checks for costly allocations with __GFP_NORETRY, which
4927 * includes some THP page fault allocations
4929 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4931 * If allocating entire pageblock(s) and compaction
4932 * failed because all zones are below low watermarks
4933 * or is prohibited because it recently failed at this
4934 * order, fail immediately unless the allocator has
4935 * requested compaction and reclaim retry.
4938 * - potentially very expensive because zones are far
4939 * below their low watermarks or this is part of very
4940 * bursty high order allocations,
4941 * - not guaranteed to help because isolate_freepages()
4942 * may not iterate over freed pages as part of its
4944 * - unlikely to make entire pageblocks free on its
4947 if (compact_result == COMPACT_SKIPPED ||
4948 compact_result == COMPACT_DEFERRED)
4952 * Looks like reclaim/compaction is worth trying, but
4953 * sync compaction could be very expensive, so keep
4954 * using async compaction.
4956 compact_priority = INIT_COMPACT_PRIORITY;
4961 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4962 if (alloc_flags & ALLOC_KSWAPD)
4963 wake_all_kswapds(order, gfp_mask, ac);
4965 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4967 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4970 * Reset the nodemask and zonelist iterators if memory policies can be
4971 * ignored. These allocations are high priority and system rather than
4974 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4975 ac->nodemask = NULL;
4976 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4977 ac->highest_zoneidx, ac->nodemask);
4980 /* Attempt with potentially adjusted zonelist and alloc_flags */
4981 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4985 /* Caller is not willing to reclaim, we can't balance anything */
4986 if (!can_direct_reclaim)
4989 /* Avoid recursion of direct reclaim */
4990 if (current->flags & PF_MEMALLOC)
4993 /* Try direct reclaim and then allocating */
4994 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4995 &did_some_progress);
4999 /* Try direct compaction and then allocating */
5000 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5001 compact_priority, &compact_result);
5005 /* Do not loop if specifically requested */
5006 if (gfp_mask & __GFP_NORETRY)
5010 * Do not retry costly high order allocations unless they are
5011 * __GFP_RETRY_MAYFAIL
5013 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5016 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5017 did_some_progress > 0, &no_progress_loops))
5021 * It doesn't make any sense to retry for the compaction if the order-0
5022 * reclaim is not able to make any progress because the current
5023 * implementation of the compaction depends on the sufficient amount
5024 * of free memory (see __compaction_suitable)
5026 if (did_some_progress > 0 &&
5027 should_compact_retry(ac, order, alloc_flags,
5028 compact_result, &compact_priority,
5029 &compaction_retries))
5033 /* Deal with possible cpuset update races before we start OOM killing */
5034 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5037 /* Reclaim has failed us, start killing things */
5038 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5042 /* Avoid allocations with no watermarks from looping endlessly */
5043 if (tsk_is_oom_victim(current) &&
5044 (alloc_flags & ALLOC_OOM ||
5045 (gfp_mask & __GFP_NOMEMALLOC)))
5048 /* Retry as long as the OOM killer is making progress */
5049 if (did_some_progress) {
5050 no_progress_loops = 0;
5055 /* Deal with possible cpuset update races before we fail */
5056 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5060 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5063 if (gfp_mask & __GFP_NOFAIL) {
5065 * All existing users of the __GFP_NOFAIL are blockable, so warn
5066 * of any new users that actually require GFP_NOWAIT
5068 if (WARN_ON_ONCE(!can_direct_reclaim))
5072 * PF_MEMALLOC request from this context is rather bizarre
5073 * because we cannot reclaim anything and only can loop waiting
5074 * for somebody to do a work for us
5076 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5079 * non failing costly orders are a hard requirement which we
5080 * are not prepared for much so let's warn about these users
5081 * so that we can identify them and convert them to something
5084 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5087 * Help non-failing allocations by giving them access to memory
5088 * reserves but do not use ALLOC_NO_WATERMARKS because this
5089 * could deplete whole memory reserves which would just make
5090 * the situation worse
5092 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5100 warn_alloc(gfp_mask, ac->nodemask,
5101 "page allocation failure: order:%u", order);
5106 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5107 int preferred_nid, nodemask_t *nodemask,
5108 struct alloc_context *ac, gfp_t *alloc_gfp,
5109 unsigned int *alloc_flags)
5111 ac->highest_zoneidx = gfp_zone(gfp_mask);
5112 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5113 ac->nodemask = nodemask;
5114 ac->migratetype = gfp_migratetype(gfp_mask);
5116 if (cpusets_enabled()) {
5117 *alloc_gfp |= __GFP_HARDWALL;
5119 * When we are in the interrupt context, it is irrelevant
5120 * to the current task context. It means that any node ok.
5122 if (in_task() && !ac->nodemask)
5123 ac->nodemask = &cpuset_current_mems_allowed;
5125 *alloc_flags |= ALLOC_CPUSET;
5128 fs_reclaim_acquire(gfp_mask);
5129 fs_reclaim_release(gfp_mask);
5131 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5133 if (should_fail_alloc_page(gfp_mask, order))
5136 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5138 /* Dirty zone balancing only done in the fast path */
5139 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5142 * The preferred zone is used for statistics but crucially it is
5143 * also used as the starting point for the zonelist iterator. It
5144 * may get reset for allocations that ignore memory policies.
5146 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5147 ac->highest_zoneidx, ac->nodemask);
5153 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5154 * @gfp: GFP flags for the allocation
5155 * @preferred_nid: The preferred NUMA node ID to allocate from
5156 * @nodemask: Set of nodes to allocate from, may be NULL
5157 * @nr_pages: The number of pages desired on the list or array
5158 * @page_list: Optional list to store the allocated pages
5159 * @page_array: Optional array to store the pages
5161 * This is a batched version of the page allocator that attempts to
5162 * allocate nr_pages quickly. Pages are added to page_list if page_list
5163 * is not NULL, otherwise it is assumed that the page_array is valid.
5165 * For lists, nr_pages is the number of pages that should be allocated.
5167 * For arrays, only NULL elements are populated with pages and nr_pages
5168 * is the maximum number of pages that will be stored in the array.
5170 * Returns the number of pages on the list or array.
5172 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5173 nodemask_t *nodemask, int nr_pages,
5174 struct list_head *page_list,
5175 struct page **page_array)
5178 unsigned long flags;
5181 struct per_cpu_pages *pcp;
5182 struct list_head *pcp_list;
5183 struct alloc_context ac;
5185 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5186 int nr_populated = 0, nr_account = 0;
5189 * Skip populated array elements to determine if any pages need
5190 * to be allocated before disabling IRQs.
5192 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5195 /* No pages requested? */
5196 if (unlikely(nr_pages <= 0))
5199 /* Already populated array? */
5200 if (unlikely(page_array && nr_pages - nr_populated == 0))
5203 /* Bulk allocator does not support memcg accounting. */
5204 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5207 /* Use the single page allocator for one page. */
5208 if (nr_pages - nr_populated == 1)
5211 #ifdef CONFIG_PAGE_OWNER
5213 * PAGE_OWNER may recurse into the allocator to allocate space to
5214 * save the stack with pagesets.lock held. Releasing/reacquiring
5215 * removes much of the performance benefit of bulk allocation so
5216 * force the caller to allocate one page at a time as it'll have
5217 * similar performance to added complexity to the bulk allocator.
5219 if (static_branch_unlikely(&page_owner_inited))
5223 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5224 gfp &= gfp_allowed_mask;
5226 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5230 /* Find an allowed local zone that meets the low watermark. */
5231 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5234 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5235 !__cpuset_zone_allowed(zone, gfp)) {
5239 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5240 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5244 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5245 if (zone_watermark_fast(zone, 0, mark,
5246 zonelist_zone_idx(ac.preferred_zoneref),
5247 alloc_flags, gfp)) {
5253 * If there are no allowed local zones that meets the watermarks then
5254 * try to allocate a single page and reclaim if necessary.
5256 if (unlikely(!zone))
5259 /* Attempt the batch allocation */
5260 local_lock_irqsave(&pagesets.lock, flags);
5261 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5262 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5264 while (nr_populated < nr_pages) {
5266 /* Skip existing pages */
5267 if (page_array && page_array[nr_populated]) {
5272 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5274 if (unlikely(!page)) {
5275 /* Try and get at least one page */
5282 prep_new_page(page, 0, gfp, 0);
5284 list_add(&page->lru, page_list);
5286 page_array[nr_populated] = page;
5290 local_unlock_irqrestore(&pagesets.lock, flags);
5292 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5293 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5296 return nr_populated;
5299 local_unlock_irqrestore(&pagesets.lock, flags);
5302 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5305 list_add(&page->lru, page_list);
5307 page_array[nr_populated] = page;
5313 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5316 * This is the 'heart' of the zoned buddy allocator.
5318 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5319 nodemask_t *nodemask)
5322 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5323 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5324 struct alloc_context ac = { };
5327 * There are several places where we assume that the order value is sane
5328 * so bail out early if the request is out of bound.
5330 if (unlikely(order >= MAX_ORDER)) {
5331 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5335 gfp &= gfp_allowed_mask;
5337 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5338 * resp. GFP_NOIO which has to be inherited for all allocation requests
5339 * from a particular context which has been marked by
5340 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5341 * movable zones are not used during allocation.
5343 gfp = current_gfp_context(gfp);
5345 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5346 &alloc_gfp, &alloc_flags))
5350 * Forbid the first pass from falling back to types that fragment
5351 * memory until all local zones are considered.
5353 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5355 /* First allocation attempt */
5356 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5361 ac.spread_dirty_pages = false;
5364 * Restore the original nodemask if it was potentially replaced with
5365 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5367 ac.nodemask = nodemask;
5369 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5372 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5373 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5374 __free_pages(page, order);
5378 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5382 EXPORT_SYMBOL(__alloc_pages);
5384 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5385 nodemask_t *nodemask)
5387 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5388 preferred_nid, nodemask);
5390 if (page && order > 1)
5391 prep_transhuge_page(page);
5392 return (struct folio *)page;
5394 EXPORT_SYMBOL(__folio_alloc);
5397 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5398 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5399 * you need to access high mem.
5401 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5405 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5408 return (unsigned long) page_address(page);
5410 EXPORT_SYMBOL(__get_free_pages);
5412 unsigned long get_zeroed_page(gfp_t gfp_mask)
5414 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5416 EXPORT_SYMBOL(get_zeroed_page);
5419 * __free_pages - Free pages allocated with alloc_pages().
5420 * @page: The page pointer returned from alloc_pages().
5421 * @order: The order of the allocation.
5423 * This function can free multi-page allocations that are not compound
5424 * pages. It does not check that the @order passed in matches that of
5425 * the allocation, so it is easy to leak memory. Freeing more memory
5426 * than was allocated will probably emit a warning.
5428 * If the last reference to this page is speculative, it will be released
5429 * by put_page() which only frees the first page of a non-compound
5430 * allocation. To prevent the remaining pages from being leaked, we free
5431 * the subsequent pages here. If you want to use the page's reference
5432 * count to decide when to free the allocation, you should allocate a
5433 * compound page, and use put_page() instead of __free_pages().
5435 * Context: May be called in interrupt context or while holding a normal
5436 * spinlock, but not in NMI context or while holding a raw spinlock.
5438 void __free_pages(struct page *page, unsigned int order)
5440 if (put_page_testzero(page))
5441 free_the_page(page, order);
5442 else if (!PageHead(page))
5444 free_the_page(page + (1 << order), order);
5446 EXPORT_SYMBOL(__free_pages);
5448 void free_pages(unsigned long addr, unsigned int order)
5451 VM_BUG_ON(!virt_addr_valid((void *)addr));
5452 __free_pages(virt_to_page((void *)addr), order);
5456 EXPORT_SYMBOL(free_pages);
5460 * An arbitrary-length arbitrary-offset area of memory which resides
5461 * within a 0 or higher order page. Multiple fragments within that page
5462 * are individually refcounted, in the page's reference counter.
5464 * The page_frag functions below provide a simple allocation framework for
5465 * page fragments. This is used by the network stack and network device
5466 * drivers to provide a backing region of memory for use as either an
5467 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5469 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5472 struct page *page = NULL;
5473 gfp_t gfp = gfp_mask;
5475 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5476 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5478 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5479 PAGE_FRAG_CACHE_MAX_ORDER);
5480 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5482 if (unlikely(!page))
5483 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5485 nc->va = page ? page_address(page) : NULL;
5490 void __page_frag_cache_drain(struct page *page, unsigned int count)
5492 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5494 if (page_ref_sub_and_test(page, count))
5495 free_the_page(page, compound_order(page));
5497 EXPORT_SYMBOL(__page_frag_cache_drain);
5499 void *page_frag_alloc_align(struct page_frag_cache *nc,
5500 unsigned int fragsz, gfp_t gfp_mask,
5501 unsigned int align_mask)
5503 unsigned int size = PAGE_SIZE;
5507 if (unlikely(!nc->va)) {
5509 page = __page_frag_cache_refill(nc, gfp_mask);
5513 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5514 /* if size can vary use size else just use PAGE_SIZE */
5517 /* Even if we own the page, we do not use atomic_set().
5518 * This would break get_page_unless_zero() users.
5520 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5522 /* reset page count bias and offset to start of new frag */
5523 nc->pfmemalloc = page_is_pfmemalloc(page);
5524 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5528 offset = nc->offset - fragsz;
5529 if (unlikely(offset < 0)) {
5530 page = virt_to_page(nc->va);
5532 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5535 if (unlikely(nc->pfmemalloc)) {
5536 free_the_page(page, compound_order(page));
5540 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5541 /* if size can vary use size else just use PAGE_SIZE */
5544 /* OK, page count is 0, we can safely set it */
5545 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5547 /* reset page count bias and offset to start of new frag */
5548 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5549 offset = size - fragsz;
5553 offset &= align_mask;
5554 nc->offset = offset;
5556 return nc->va + offset;
5558 EXPORT_SYMBOL(page_frag_alloc_align);
5561 * Frees a page fragment allocated out of either a compound or order 0 page.
5563 void page_frag_free(void *addr)
5565 struct page *page = virt_to_head_page(addr);
5567 if (unlikely(put_page_testzero(page)))
5568 free_the_page(page, compound_order(page));
5570 EXPORT_SYMBOL(page_frag_free);
5572 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5576 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5577 unsigned long used = addr + PAGE_ALIGN(size);
5579 split_page(virt_to_page((void *)addr), order);
5580 while (used < alloc_end) {
5585 return (void *)addr;
5589 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5590 * @size: the number of bytes to allocate
5591 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5593 * This function is similar to alloc_pages(), except that it allocates the
5594 * minimum number of pages to satisfy the request. alloc_pages() can only
5595 * allocate memory in power-of-two pages.
5597 * This function is also limited by MAX_ORDER.
5599 * Memory allocated by this function must be released by free_pages_exact().
5601 * Return: pointer to the allocated area or %NULL in case of error.
5603 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5605 unsigned int order = get_order(size);
5608 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5609 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5611 addr = __get_free_pages(gfp_mask, order);
5612 return make_alloc_exact(addr, order, size);
5614 EXPORT_SYMBOL(alloc_pages_exact);
5617 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5619 * @nid: the preferred node ID where memory should be allocated
5620 * @size: the number of bytes to allocate
5621 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5623 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5626 * Return: pointer to the allocated area or %NULL in case of error.
5628 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5630 unsigned int order = get_order(size);
5633 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5634 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5636 p = alloc_pages_node(nid, gfp_mask, order);
5639 return make_alloc_exact((unsigned long)page_address(p), order, size);
5643 * free_pages_exact - release memory allocated via alloc_pages_exact()
5644 * @virt: the value returned by alloc_pages_exact.
5645 * @size: size of allocation, same value as passed to alloc_pages_exact().
5647 * Release the memory allocated by a previous call to alloc_pages_exact.
5649 void free_pages_exact(void *virt, size_t size)
5651 unsigned long addr = (unsigned long)virt;
5652 unsigned long end = addr + PAGE_ALIGN(size);
5654 while (addr < end) {
5659 EXPORT_SYMBOL(free_pages_exact);
5662 * nr_free_zone_pages - count number of pages beyond high watermark
5663 * @offset: The zone index of the highest zone
5665 * nr_free_zone_pages() counts the number of pages which are beyond the
5666 * high watermark within all zones at or below a given zone index. For each
5667 * zone, the number of pages is calculated as:
5669 * nr_free_zone_pages = managed_pages - high_pages
5671 * Return: number of pages beyond high watermark.
5673 static unsigned long nr_free_zone_pages(int offset)
5678 /* Just pick one node, since fallback list is circular */
5679 unsigned long sum = 0;
5681 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5683 for_each_zone_zonelist(zone, z, zonelist, offset) {
5684 unsigned long size = zone_managed_pages(zone);
5685 unsigned long high = high_wmark_pages(zone);
5694 * nr_free_buffer_pages - count number of pages beyond high watermark
5696 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5697 * watermark within ZONE_DMA and ZONE_NORMAL.
5699 * Return: number of pages beyond high watermark within ZONE_DMA and
5702 unsigned long nr_free_buffer_pages(void)
5704 return nr_free_zone_pages(gfp_zone(GFP_USER));
5706 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5708 static inline void show_node(struct zone *zone)
5710 if (IS_ENABLED(CONFIG_NUMA))
5711 printk("Node %d ", zone_to_nid(zone));
5714 long si_mem_available(void)
5717 unsigned long pagecache;
5718 unsigned long wmark_low = 0;
5719 unsigned long pages[NR_LRU_LISTS];
5720 unsigned long reclaimable;
5724 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5725 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5728 wmark_low += low_wmark_pages(zone);
5731 * Estimate the amount of memory available for userspace allocations,
5732 * without causing swapping.
5734 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5737 * Not all the page cache can be freed, otherwise the system will
5738 * start swapping. Assume at least half of the page cache, or the
5739 * low watermark worth of cache, needs to stay.
5741 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5742 pagecache -= min(pagecache / 2, wmark_low);
5743 available += pagecache;
5746 * Part of the reclaimable slab and other kernel memory consists of
5747 * items that are in use, and cannot be freed. Cap this estimate at the
5750 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5751 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5752 available += reclaimable - min(reclaimable / 2, wmark_low);
5758 EXPORT_SYMBOL_GPL(si_mem_available);
5760 void si_meminfo(struct sysinfo *val)
5762 val->totalram = totalram_pages();
5763 val->sharedram = global_node_page_state(NR_SHMEM);
5764 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5765 val->bufferram = nr_blockdev_pages();
5766 val->totalhigh = totalhigh_pages();
5767 val->freehigh = nr_free_highpages();
5768 val->mem_unit = PAGE_SIZE;
5771 EXPORT_SYMBOL(si_meminfo);
5774 void si_meminfo_node(struct sysinfo *val, int nid)
5776 int zone_type; /* needs to be signed */
5777 unsigned long managed_pages = 0;
5778 unsigned long managed_highpages = 0;
5779 unsigned long free_highpages = 0;
5780 pg_data_t *pgdat = NODE_DATA(nid);
5782 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5783 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5784 val->totalram = managed_pages;
5785 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5786 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5787 #ifdef CONFIG_HIGHMEM
5788 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5789 struct zone *zone = &pgdat->node_zones[zone_type];
5791 if (is_highmem(zone)) {
5792 managed_highpages += zone_managed_pages(zone);
5793 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5796 val->totalhigh = managed_highpages;
5797 val->freehigh = free_highpages;
5799 val->totalhigh = managed_highpages;
5800 val->freehigh = free_highpages;
5802 val->mem_unit = PAGE_SIZE;
5807 * Determine whether the node should be displayed or not, depending on whether
5808 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5810 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5812 if (!(flags & SHOW_MEM_FILTER_NODES))
5816 * no node mask - aka implicit memory numa policy. Do not bother with
5817 * the synchronization - read_mems_allowed_begin - because we do not
5818 * have to be precise here.
5821 nodemask = &cpuset_current_mems_allowed;
5823 return !node_isset(nid, *nodemask);
5826 #define K(x) ((x) << (PAGE_SHIFT-10))
5828 static void show_migration_types(unsigned char type)
5830 static const char types[MIGRATE_TYPES] = {
5831 [MIGRATE_UNMOVABLE] = 'U',
5832 [MIGRATE_MOVABLE] = 'M',
5833 [MIGRATE_RECLAIMABLE] = 'E',
5834 [MIGRATE_HIGHATOMIC] = 'H',
5836 [MIGRATE_CMA] = 'C',
5838 #ifdef CONFIG_MEMORY_ISOLATION
5839 [MIGRATE_ISOLATE] = 'I',
5842 char tmp[MIGRATE_TYPES + 1];
5846 for (i = 0; i < MIGRATE_TYPES; i++) {
5847 if (type & (1 << i))
5852 printk(KERN_CONT "(%s) ", tmp);
5856 * Show free area list (used inside shift_scroll-lock stuff)
5857 * We also calculate the percentage fragmentation. We do this by counting the
5858 * memory on each free list with the exception of the first item on the list.
5861 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5864 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5866 unsigned long free_pcp = 0;
5871 for_each_populated_zone(zone) {
5872 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5875 for_each_online_cpu(cpu)
5876 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5879 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5880 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5881 " unevictable:%lu dirty:%lu writeback:%lu\n"
5882 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5883 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5884 " kernel_misc_reclaimable:%lu\n"
5885 " free:%lu free_pcp:%lu free_cma:%lu\n",
5886 global_node_page_state(NR_ACTIVE_ANON),
5887 global_node_page_state(NR_INACTIVE_ANON),
5888 global_node_page_state(NR_ISOLATED_ANON),
5889 global_node_page_state(NR_ACTIVE_FILE),
5890 global_node_page_state(NR_INACTIVE_FILE),
5891 global_node_page_state(NR_ISOLATED_FILE),
5892 global_node_page_state(NR_UNEVICTABLE),
5893 global_node_page_state(NR_FILE_DIRTY),
5894 global_node_page_state(NR_WRITEBACK),
5895 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5896 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5897 global_node_page_state(NR_FILE_MAPPED),
5898 global_node_page_state(NR_SHMEM),
5899 global_node_page_state(NR_PAGETABLE),
5900 global_zone_page_state(NR_BOUNCE),
5901 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5902 global_zone_page_state(NR_FREE_PAGES),
5904 global_zone_page_state(NR_FREE_CMA_PAGES));
5906 for_each_online_pgdat(pgdat) {
5907 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5911 " active_anon:%lukB"
5912 " inactive_anon:%lukB"
5913 " active_file:%lukB"
5914 " inactive_file:%lukB"
5915 " unevictable:%lukB"
5916 " isolated(anon):%lukB"
5917 " isolated(file):%lukB"
5922 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5924 " shmem_pmdmapped: %lukB"
5927 " writeback_tmp:%lukB"
5928 " kernel_stack:%lukB"
5929 #ifdef CONFIG_SHADOW_CALL_STACK
5930 " shadow_call_stack:%lukB"
5933 " all_unreclaimable? %s"
5936 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5937 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5938 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5939 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5940 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5941 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5942 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5943 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5944 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5945 K(node_page_state(pgdat, NR_WRITEBACK)),
5946 K(node_page_state(pgdat, NR_SHMEM)),
5947 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5948 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5949 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5950 K(node_page_state(pgdat, NR_ANON_THPS)),
5952 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5953 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5954 #ifdef CONFIG_SHADOW_CALL_STACK
5955 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5957 K(node_page_state(pgdat, NR_PAGETABLE)),
5958 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5962 for_each_populated_zone(zone) {
5965 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5969 for_each_online_cpu(cpu)
5970 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5980 " reserved_highatomic:%luKB"
5981 " active_anon:%lukB"
5982 " inactive_anon:%lukB"
5983 " active_file:%lukB"
5984 " inactive_file:%lukB"
5985 " unevictable:%lukB"
5986 " writepending:%lukB"
5996 K(zone_page_state(zone, NR_FREE_PAGES)),
5997 K(zone->watermark_boost),
5998 K(min_wmark_pages(zone)),
5999 K(low_wmark_pages(zone)),
6000 K(high_wmark_pages(zone)),
6001 K(zone->nr_reserved_highatomic),
6002 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6003 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6004 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6005 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6006 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6007 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6008 K(zone->present_pages),
6009 K(zone_managed_pages(zone)),
6010 K(zone_page_state(zone, NR_MLOCK)),
6011 K(zone_page_state(zone, NR_BOUNCE)),
6013 K(this_cpu_read(zone->per_cpu_pageset->count)),
6014 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6015 printk("lowmem_reserve[]:");
6016 for (i = 0; i < MAX_NR_ZONES; i++)
6017 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6018 printk(KERN_CONT "\n");
6021 for_each_populated_zone(zone) {
6023 unsigned long nr[MAX_ORDER], flags, total = 0;
6024 unsigned char types[MAX_ORDER];
6026 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6029 printk(KERN_CONT "%s: ", zone->name);
6031 spin_lock_irqsave(&zone->lock, flags);
6032 for (order = 0; order < MAX_ORDER; order++) {
6033 struct free_area *area = &zone->free_area[order];
6036 nr[order] = area->nr_free;
6037 total += nr[order] << order;
6040 for (type = 0; type < MIGRATE_TYPES; type++) {
6041 if (!free_area_empty(area, type))
6042 types[order] |= 1 << type;
6045 spin_unlock_irqrestore(&zone->lock, flags);
6046 for (order = 0; order < MAX_ORDER; order++) {
6047 printk(KERN_CONT "%lu*%lukB ",
6048 nr[order], K(1UL) << order);
6050 show_migration_types(types[order]);
6052 printk(KERN_CONT "= %lukB\n", K(total));
6055 hugetlb_show_meminfo();
6057 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6059 show_swap_cache_info();
6062 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6064 zoneref->zone = zone;
6065 zoneref->zone_idx = zone_idx(zone);
6069 * Builds allocation fallback zone lists.
6071 * Add all populated zones of a node to the zonelist.
6073 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6076 enum zone_type zone_type = MAX_NR_ZONES;
6081 zone = pgdat->node_zones + zone_type;
6082 if (managed_zone(zone)) {
6083 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6084 check_highest_zone(zone_type);
6086 } while (zone_type);
6093 static int __parse_numa_zonelist_order(char *s)
6096 * We used to support different zonelists modes but they turned
6097 * out to be just not useful. Let's keep the warning in place
6098 * if somebody still use the cmd line parameter so that we do
6099 * not fail it silently
6101 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6102 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6108 char numa_zonelist_order[] = "Node";
6111 * sysctl handler for numa_zonelist_order
6113 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6114 void *buffer, size_t *length, loff_t *ppos)
6117 return __parse_numa_zonelist_order(buffer);
6118 return proc_dostring(table, write, buffer, length, ppos);
6122 #define MAX_NODE_LOAD (nr_online_nodes)
6123 static int node_load[MAX_NUMNODES];
6126 * find_next_best_node - find the next node that should appear in a given node's fallback list
6127 * @node: node whose fallback list we're appending
6128 * @used_node_mask: nodemask_t of already used nodes
6130 * We use a number of factors to determine which is the next node that should
6131 * appear on a given node's fallback list. The node should not have appeared
6132 * already in @node's fallback list, and it should be the next closest node
6133 * according to the distance array (which contains arbitrary distance values
6134 * from each node to each node in the system), and should also prefer nodes
6135 * with no CPUs, since presumably they'll have very little allocation pressure
6136 * on them otherwise.
6138 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6140 int find_next_best_node(int node, nodemask_t *used_node_mask)
6143 int min_val = INT_MAX;
6144 int best_node = NUMA_NO_NODE;
6146 /* Use the local node if we haven't already */
6147 if (!node_isset(node, *used_node_mask)) {
6148 node_set(node, *used_node_mask);
6152 for_each_node_state(n, N_MEMORY) {
6154 /* Don't want a node to appear more than once */
6155 if (node_isset(n, *used_node_mask))
6158 /* Use the distance array to find the distance */
6159 val = node_distance(node, n);
6161 /* Penalize nodes under us ("prefer the next node") */
6164 /* Give preference to headless and unused nodes */
6165 if (!cpumask_empty(cpumask_of_node(n)))
6166 val += PENALTY_FOR_NODE_WITH_CPUS;
6168 /* Slight preference for less loaded node */
6169 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6170 val += node_load[n];
6172 if (val < min_val) {
6179 node_set(best_node, *used_node_mask);
6186 * Build zonelists ordered by node and zones within node.
6187 * This results in maximum locality--normal zone overflows into local
6188 * DMA zone, if any--but risks exhausting DMA zone.
6190 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6193 struct zoneref *zonerefs;
6196 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6198 for (i = 0; i < nr_nodes; i++) {
6201 pg_data_t *node = NODE_DATA(node_order[i]);
6203 nr_zones = build_zonerefs_node(node, zonerefs);
6204 zonerefs += nr_zones;
6206 zonerefs->zone = NULL;
6207 zonerefs->zone_idx = 0;
6211 * Build gfp_thisnode zonelists
6213 static void build_thisnode_zonelists(pg_data_t *pgdat)
6215 struct zoneref *zonerefs;
6218 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6219 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6220 zonerefs += nr_zones;
6221 zonerefs->zone = NULL;
6222 zonerefs->zone_idx = 0;
6226 * Build zonelists ordered by zone and nodes within zones.
6227 * This results in conserving DMA zone[s] until all Normal memory is
6228 * exhausted, but results in overflowing to remote node while memory
6229 * may still exist in local DMA zone.
6232 static void build_zonelists(pg_data_t *pgdat)
6234 static int node_order[MAX_NUMNODES];
6235 int node, load, nr_nodes = 0;
6236 nodemask_t used_mask = NODE_MASK_NONE;
6237 int local_node, prev_node;
6239 /* NUMA-aware ordering of nodes */
6240 local_node = pgdat->node_id;
6241 load = nr_online_nodes;
6242 prev_node = local_node;
6244 memset(node_order, 0, sizeof(node_order));
6245 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6247 * We don't want to pressure a particular node.
6248 * So adding penalty to the first node in same
6249 * distance group to make it round-robin.
6251 if (node_distance(local_node, node) !=
6252 node_distance(local_node, prev_node))
6253 node_load[node] += load;
6255 node_order[nr_nodes++] = node;
6260 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6261 build_thisnode_zonelists(pgdat);
6262 pr_info("Fallback order for Node %d: ", local_node);
6263 for (node = 0; node < nr_nodes; node++)
6264 pr_cont("%d ", node_order[node]);
6268 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6270 * Return node id of node used for "local" allocations.
6271 * I.e., first node id of first zone in arg node's generic zonelist.
6272 * Used for initializing percpu 'numa_mem', which is used primarily
6273 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6275 int local_memory_node(int node)
6279 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6280 gfp_zone(GFP_KERNEL),
6282 return zone_to_nid(z->zone);
6286 static void setup_min_unmapped_ratio(void);
6287 static void setup_min_slab_ratio(void);
6288 #else /* CONFIG_NUMA */
6290 static void build_zonelists(pg_data_t *pgdat)
6292 int node, local_node;
6293 struct zoneref *zonerefs;
6296 local_node = pgdat->node_id;
6298 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6299 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6300 zonerefs += nr_zones;
6303 * Now we build the zonelist so that it contains the zones
6304 * of all the other nodes.
6305 * We don't want to pressure a particular node, so when
6306 * building the zones for node N, we make sure that the
6307 * zones coming right after the local ones are those from
6308 * node N+1 (modulo N)
6310 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6311 if (!node_online(node))
6313 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6314 zonerefs += nr_zones;
6316 for (node = 0; node < local_node; node++) {
6317 if (!node_online(node))
6319 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6320 zonerefs += nr_zones;
6323 zonerefs->zone = NULL;
6324 zonerefs->zone_idx = 0;
6327 #endif /* CONFIG_NUMA */
6330 * Boot pageset table. One per cpu which is going to be used for all
6331 * zones and all nodes. The parameters will be set in such a way
6332 * that an item put on a list will immediately be handed over to
6333 * the buddy list. This is safe since pageset manipulation is done
6334 * with interrupts disabled.
6336 * The boot_pagesets must be kept even after bootup is complete for
6337 * unused processors and/or zones. They do play a role for bootstrapping
6338 * hotplugged processors.
6340 * zoneinfo_show() and maybe other functions do
6341 * not check if the processor is online before following the pageset pointer.
6342 * Other parts of the kernel may not check if the zone is available.
6344 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6345 /* These effectively disable the pcplists in the boot pageset completely */
6346 #define BOOT_PAGESET_HIGH 0
6347 #define BOOT_PAGESET_BATCH 1
6348 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6349 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6350 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6352 static void __build_all_zonelists(void *data)
6355 int __maybe_unused cpu;
6356 pg_data_t *self = data;
6357 static DEFINE_SPINLOCK(lock);
6362 memset(node_load, 0, sizeof(node_load));
6366 * This node is hotadded and no memory is yet present. So just
6367 * building zonelists is fine - no need to touch other nodes.
6369 if (self && !node_online(self->node_id)) {
6370 build_zonelists(self);
6372 for_each_online_node(nid) {
6373 pg_data_t *pgdat = NODE_DATA(nid);
6375 build_zonelists(pgdat);
6378 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6380 * We now know the "local memory node" for each node--
6381 * i.e., the node of the first zone in the generic zonelist.
6382 * Set up numa_mem percpu variable for on-line cpus. During
6383 * boot, only the boot cpu should be on-line; we'll init the
6384 * secondary cpus' numa_mem as they come on-line. During
6385 * node/memory hotplug, we'll fixup all on-line cpus.
6387 for_each_online_cpu(cpu)
6388 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6395 static noinline void __init
6396 build_all_zonelists_init(void)
6400 __build_all_zonelists(NULL);
6403 * Initialize the boot_pagesets that are going to be used
6404 * for bootstrapping processors. The real pagesets for
6405 * each zone will be allocated later when the per cpu
6406 * allocator is available.
6408 * boot_pagesets are used also for bootstrapping offline
6409 * cpus if the system is already booted because the pagesets
6410 * are needed to initialize allocators on a specific cpu too.
6411 * F.e. the percpu allocator needs the page allocator which
6412 * needs the percpu allocator in order to allocate its pagesets
6413 * (a chicken-egg dilemma).
6415 for_each_possible_cpu(cpu)
6416 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6418 mminit_verify_zonelist();
6419 cpuset_init_current_mems_allowed();
6423 * unless system_state == SYSTEM_BOOTING.
6425 * __ref due to call of __init annotated helper build_all_zonelists_init
6426 * [protected by SYSTEM_BOOTING].
6428 void __ref build_all_zonelists(pg_data_t *pgdat)
6430 unsigned long vm_total_pages;
6432 if (system_state == SYSTEM_BOOTING) {
6433 build_all_zonelists_init();
6435 __build_all_zonelists(pgdat);
6436 /* cpuset refresh routine should be here */
6438 /* Get the number of free pages beyond high watermark in all zones. */
6439 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6441 * Disable grouping by mobility if the number of pages in the
6442 * system is too low to allow the mechanism to work. It would be
6443 * more accurate, but expensive to check per-zone. This check is
6444 * made on memory-hotadd so a system can start with mobility
6445 * disabled and enable it later
6447 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6448 page_group_by_mobility_disabled = 1;
6450 page_group_by_mobility_disabled = 0;
6452 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6454 page_group_by_mobility_disabled ? "off" : "on",
6457 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6461 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6462 static bool __meminit
6463 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6465 static struct memblock_region *r;
6467 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6468 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6469 for_each_mem_region(r) {
6470 if (*pfn < memblock_region_memory_end_pfn(r))
6474 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6475 memblock_is_mirror(r)) {
6476 *pfn = memblock_region_memory_end_pfn(r);
6484 * Initially all pages are reserved - free ones are freed
6485 * up by memblock_free_all() once the early boot process is
6486 * done. Non-atomic initialization, single-pass.
6488 * All aligned pageblocks are initialized to the specified migratetype
6489 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6490 * zone stats (e.g., nr_isolate_pageblock) are touched.
6492 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6493 unsigned long start_pfn, unsigned long zone_end_pfn,
6494 enum meminit_context context,
6495 struct vmem_altmap *altmap, int migratetype)
6497 unsigned long pfn, end_pfn = start_pfn + size;
6500 if (highest_memmap_pfn < end_pfn - 1)
6501 highest_memmap_pfn = end_pfn - 1;
6503 #ifdef CONFIG_ZONE_DEVICE
6505 * Honor reservation requested by the driver for this ZONE_DEVICE
6506 * memory. We limit the total number of pages to initialize to just
6507 * those that might contain the memory mapping. We will defer the
6508 * ZONE_DEVICE page initialization until after we have released
6511 if (zone == ZONE_DEVICE) {
6515 if (start_pfn == altmap->base_pfn)
6516 start_pfn += altmap->reserve;
6517 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6521 for (pfn = start_pfn; pfn < end_pfn; ) {
6523 * There can be holes in boot-time mem_map[]s handed to this
6524 * function. They do not exist on hotplugged memory.
6526 if (context == MEMINIT_EARLY) {
6527 if (overlap_memmap_init(zone, &pfn))
6529 if (defer_init(nid, pfn, zone_end_pfn))
6533 page = pfn_to_page(pfn);
6534 __init_single_page(page, pfn, zone, nid);
6535 if (context == MEMINIT_HOTPLUG)
6536 __SetPageReserved(page);
6539 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6540 * such that unmovable allocations won't be scattered all
6541 * over the place during system boot.
6543 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6544 set_pageblock_migratetype(page, migratetype);
6551 #ifdef CONFIG_ZONE_DEVICE
6552 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6553 unsigned long zone_idx, int nid,
6554 struct dev_pagemap *pgmap)
6557 __init_single_page(page, pfn, zone_idx, nid);
6560 * Mark page reserved as it will need to wait for onlining
6561 * phase for it to be fully associated with a zone.
6563 * We can use the non-atomic __set_bit operation for setting
6564 * the flag as we are still initializing the pages.
6566 __SetPageReserved(page);
6569 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6570 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6571 * ever freed or placed on a driver-private list.
6573 page->pgmap = pgmap;
6574 page->zone_device_data = NULL;
6577 * Mark the block movable so that blocks are reserved for
6578 * movable at startup. This will force kernel allocations
6579 * to reserve their blocks rather than leaking throughout
6580 * the address space during boot when many long-lived
6581 * kernel allocations are made.
6583 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6584 * because this is done early in section_activate()
6586 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6587 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6592 static void __ref memmap_init_compound(struct page *head,
6593 unsigned long head_pfn,
6594 unsigned long zone_idx, int nid,
6595 struct dev_pagemap *pgmap,
6596 unsigned long nr_pages)
6598 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6599 unsigned int order = pgmap->vmemmap_shift;
6601 __SetPageHead(head);
6602 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6603 struct page *page = pfn_to_page(pfn);
6605 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6606 prep_compound_tail(head, pfn - head_pfn);
6607 set_page_count(page, 0);
6610 * The first tail page stores compound_mapcount_ptr() and
6611 * compound_order() and the second tail page stores
6612 * compound_pincount_ptr(). Call prep_compound_head() after
6613 * the first and second tail pages have been initialized to
6614 * not have the data overwritten.
6616 if (pfn == head_pfn + 2)
6617 prep_compound_head(head, order);
6621 void __ref memmap_init_zone_device(struct zone *zone,
6622 unsigned long start_pfn,
6623 unsigned long nr_pages,
6624 struct dev_pagemap *pgmap)
6626 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6627 struct pglist_data *pgdat = zone->zone_pgdat;
6628 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6629 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6630 unsigned long zone_idx = zone_idx(zone);
6631 unsigned long start = jiffies;
6632 int nid = pgdat->node_id;
6634 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6638 * The call to memmap_init should have already taken care
6639 * of the pages reserved for the memmap, so we can just jump to
6640 * the end of that region and start processing the device pages.
6643 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6644 nr_pages = end_pfn - start_pfn;
6647 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6648 struct page *page = pfn_to_page(pfn);
6650 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6652 if (pfns_per_compound == 1)
6655 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6659 pr_info("%s initialised %lu pages in %ums\n", __func__,
6660 nr_pages, jiffies_to_msecs(jiffies - start));
6664 static void __meminit zone_init_free_lists(struct zone *zone)
6666 unsigned int order, t;
6667 for_each_migratetype_order(order, t) {
6668 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6669 zone->free_area[order].nr_free = 0;
6674 * Only struct pages that correspond to ranges defined by memblock.memory
6675 * are zeroed and initialized by going through __init_single_page() during
6676 * memmap_init_zone_range().
6678 * But, there could be struct pages that correspond to holes in
6679 * memblock.memory. This can happen because of the following reasons:
6680 * - physical memory bank size is not necessarily the exact multiple of the
6681 * arbitrary section size
6682 * - early reserved memory may not be listed in memblock.memory
6683 * - memory layouts defined with memmap= kernel parameter may not align
6684 * nicely with memmap sections
6686 * Explicitly initialize those struct pages so that:
6687 * - PG_Reserved is set
6688 * - zone and node links point to zone and node that span the page if the
6689 * hole is in the middle of a zone
6690 * - zone and node links point to adjacent zone/node if the hole falls on
6691 * the zone boundary; the pages in such holes will be prepended to the
6692 * zone/node above the hole except for the trailing pages in the last
6693 * section that will be appended to the zone/node below.
6695 static void __init init_unavailable_range(unsigned long spfn,
6702 for (pfn = spfn; pfn < epfn; pfn++) {
6703 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6704 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6705 + pageblock_nr_pages - 1;
6708 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6709 __SetPageReserved(pfn_to_page(pfn));
6714 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6715 node, zone_names[zone], pgcnt);
6718 static void __init memmap_init_zone_range(struct zone *zone,
6719 unsigned long start_pfn,
6720 unsigned long end_pfn,
6721 unsigned long *hole_pfn)
6723 unsigned long zone_start_pfn = zone->zone_start_pfn;
6724 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6725 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6727 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6728 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6730 if (start_pfn >= end_pfn)
6733 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6734 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6736 if (*hole_pfn < start_pfn)
6737 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6739 *hole_pfn = end_pfn;
6742 static void __init memmap_init(void)
6744 unsigned long start_pfn, end_pfn;
6745 unsigned long hole_pfn = 0;
6746 int i, j, zone_id = 0, nid;
6748 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6749 struct pglist_data *node = NODE_DATA(nid);
6751 for (j = 0; j < MAX_NR_ZONES; j++) {
6752 struct zone *zone = node->node_zones + j;
6754 if (!populated_zone(zone))
6757 memmap_init_zone_range(zone, start_pfn, end_pfn,
6763 #ifdef CONFIG_SPARSEMEM
6765 * Initialize the memory map for hole in the range [memory_end,
6767 * Append the pages in this hole to the highest zone in the last
6769 * The call to init_unavailable_range() is outside the ifdef to
6770 * silence the compiler warining about zone_id set but not used;
6771 * for FLATMEM it is a nop anyway
6773 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6774 if (hole_pfn < end_pfn)
6776 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6779 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6780 phys_addr_t min_addr, int nid, bool exact_nid)
6785 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6786 MEMBLOCK_ALLOC_ACCESSIBLE,
6789 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6790 MEMBLOCK_ALLOC_ACCESSIBLE,
6793 if (ptr && size > 0)
6794 page_init_poison(ptr, size);
6799 static int zone_batchsize(struct zone *zone)
6805 * The number of pages to batch allocate is either ~0.1%
6806 * of the zone or 1MB, whichever is smaller. The batch
6807 * size is striking a balance between allocation latency
6808 * and zone lock contention.
6810 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6811 batch /= 4; /* We effectively *= 4 below */
6816 * Clamp the batch to a 2^n - 1 value. Having a power
6817 * of 2 value was found to be more likely to have
6818 * suboptimal cache aliasing properties in some cases.
6820 * For example if 2 tasks are alternately allocating
6821 * batches of pages, one task can end up with a lot
6822 * of pages of one half of the possible page colors
6823 * and the other with pages of the other colors.
6825 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6830 /* The deferral and batching of frees should be suppressed under NOMMU
6833 * The problem is that NOMMU needs to be able to allocate large chunks
6834 * of contiguous memory as there's no hardware page translation to
6835 * assemble apparent contiguous memory from discontiguous pages.
6837 * Queueing large contiguous runs of pages for batching, however,
6838 * causes the pages to actually be freed in smaller chunks. As there
6839 * can be a significant delay between the individual batches being
6840 * recycled, this leads to the once large chunks of space being
6841 * fragmented and becoming unavailable for high-order allocations.
6847 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6852 unsigned long total_pages;
6854 if (!percpu_pagelist_high_fraction) {
6856 * By default, the high value of the pcp is based on the zone
6857 * low watermark so that if they are full then background
6858 * reclaim will not be started prematurely.
6860 total_pages = low_wmark_pages(zone);
6863 * If percpu_pagelist_high_fraction is configured, the high
6864 * value is based on a fraction of the managed pages in the
6867 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6871 * Split the high value across all online CPUs local to the zone. Note
6872 * that early in boot that CPUs may not be online yet and that during
6873 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6874 * onlined. For memory nodes that have no CPUs, split pcp->high across
6875 * all online CPUs to mitigate the risk that reclaim is triggered
6876 * prematurely due to pages stored on pcp lists.
6878 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6880 nr_split_cpus = num_online_cpus();
6881 high = total_pages / nr_split_cpus;
6884 * Ensure high is at least batch*4. The multiple is based on the
6885 * historical relationship between high and batch.
6887 high = max(high, batch << 2);
6896 * pcp->high and pcp->batch values are related and generally batch is lower
6897 * than high. They are also related to pcp->count such that count is lower
6898 * than high, and as soon as it reaches high, the pcplist is flushed.
6900 * However, guaranteeing these relations at all times would require e.g. write
6901 * barriers here but also careful usage of read barriers at the read side, and
6902 * thus be prone to error and bad for performance. Thus the update only prevents
6903 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6904 * can cope with those fields changing asynchronously, and fully trust only the
6905 * pcp->count field on the local CPU with interrupts disabled.
6907 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6908 * outside of boot time (or some other assurance that no concurrent updaters
6911 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6912 unsigned long batch)
6914 WRITE_ONCE(pcp->batch, batch);
6915 WRITE_ONCE(pcp->high, high);
6918 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6922 memset(pcp, 0, sizeof(*pcp));
6923 memset(pzstats, 0, sizeof(*pzstats));
6925 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6926 INIT_LIST_HEAD(&pcp->lists[pindex]);
6929 * Set batch and high values safe for a boot pageset. A true percpu
6930 * pageset's initialization will update them subsequently. Here we don't
6931 * need to be as careful as pageset_update() as nobody can access the
6934 pcp->high = BOOT_PAGESET_HIGH;
6935 pcp->batch = BOOT_PAGESET_BATCH;
6936 pcp->free_factor = 0;
6939 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6940 unsigned long batch)
6942 struct per_cpu_pages *pcp;
6945 for_each_possible_cpu(cpu) {
6946 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6947 pageset_update(pcp, high, batch);
6952 * Calculate and set new high and batch values for all per-cpu pagesets of a
6953 * zone based on the zone's size.
6955 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6957 int new_high, new_batch;
6959 new_batch = max(1, zone_batchsize(zone));
6960 new_high = zone_highsize(zone, new_batch, cpu_online);
6962 if (zone->pageset_high == new_high &&
6963 zone->pageset_batch == new_batch)
6966 zone->pageset_high = new_high;
6967 zone->pageset_batch = new_batch;
6969 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6972 void __meminit setup_zone_pageset(struct zone *zone)
6976 /* Size may be 0 on !SMP && !NUMA */
6977 if (sizeof(struct per_cpu_zonestat) > 0)
6978 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6980 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6981 for_each_possible_cpu(cpu) {
6982 struct per_cpu_pages *pcp;
6983 struct per_cpu_zonestat *pzstats;
6985 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6986 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6987 per_cpu_pages_init(pcp, pzstats);
6990 zone_set_pageset_high_and_batch(zone, 0);
6994 * Allocate per cpu pagesets and initialize them.
6995 * Before this call only boot pagesets were available.
6997 void __init setup_per_cpu_pageset(void)
6999 struct pglist_data *pgdat;
7001 int __maybe_unused cpu;
7003 for_each_populated_zone(zone)
7004 setup_zone_pageset(zone);
7008 * Unpopulated zones continue using the boot pagesets.
7009 * The numa stats for these pagesets need to be reset.
7010 * Otherwise, they will end up skewing the stats of
7011 * the nodes these zones are associated with.
7013 for_each_possible_cpu(cpu) {
7014 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7015 memset(pzstats->vm_numa_event, 0,
7016 sizeof(pzstats->vm_numa_event));
7020 for_each_online_pgdat(pgdat)
7021 pgdat->per_cpu_nodestats =
7022 alloc_percpu(struct per_cpu_nodestat);
7025 static __meminit void zone_pcp_init(struct zone *zone)
7028 * per cpu subsystem is not up at this point. The following code
7029 * relies on the ability of the linker to provide the
7030 * offset of a (static) per cpu variable into the per cpu area.
7032 zone->per_cpu_pageset = &boot_pageset;
7033 zone->per_cpu_zonestats = &boot_zonestats;
7034 zone->pageset_high = BOOT_PAGESET_HIGH;
7035 zone->pageset_batch = BOOT_PAGESET_BATCH;
7037 if (populated_zone(zone))
7038 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7039 zone->present_pages, zone_batchsize(zone));
7042 void __meminit init_currently_empty_zone(struct zone *zone,
7043 unsigned long zone_start_pfn,
7046 struct pglist_data *pgdat = zone->zone_pgdat;
7047 int zone_idx = zone_idx(zone) + 1;
7049 if (zone_idx > pgdat->nr_zones)
7050 pgdat->nr_zones = zone_idx;
7052 zone->zone_start_pfn = zone_start_pfn;
7054 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7055 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7057 (unsigned long)zone_idx(zone),
7058 zone_start_pfn, (zone_start_pfn + size));
7060 zone_init_free_lists(zone);
7061 zone->initialized = 1;
7065 * get_pfn_range_for_nid - Return the start and end page frames for a node
7066 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7067 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7068 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7070 * It returns the start and end page frame of a node based on information
7071 * provided by memblock_set_node(). If called for a node
7072 * with no available memory, a warning is printed and the start and end
7075 void __init get_pfn_range_for_nid(unsigned int nid,
7076 unsigned long *start_pfn, unsigned long *end_pfn)
7078 unsigned long this_start_pfn, this_end_pfn;
7084 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7085 *start_pfn = min(*start_pfn, this_start_pfn);
7086 *end_pfn = max(*end_pfn, this_end_pfn);
7089 if (*start_pfn == -1UL)
7094 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7095 * assumption is made that zones within a node are ordered in monotonic
7096 * increasing memory addresses so that the "highest" populated zone is used
7098 static void __init find_usable_zone_for_movable(void)
7101 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7102 if (zone_index == ZONE_MOVABLE)
7105 if (arch_zone_highest_possible_pfn[zone_index] >
7106 arch_zone_lowest_possible_pfn[zone_index])
7110 VM_BUG_ON(zone_index == -1);
7111 movable_zone = zone_index;
7115 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7116 * because it is sized independent of architecture. Unlike the other zones,
7117 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7118 * in each node depending on the size of each node and how evenly kernelcore
7119 * is distributed. This helper function adjusts the zone ranges
7120 * provided by the architecture for a given node by using the end of the
7121 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7122 * zones within a node are in order of monotonic increases memory addresses
7124 static void __init adjust_zone_range_for_zone_movable(int nid,
7125 unsigned long zone_type,
7126 unsigned long node_start_pfn,
7127 unsigned long node_end_pfn,
7128 unsigned long *zone_start_pfn,
7129 unsigned long *zone_end_pfn)
7131 /* Only adjust if ZONE_MOVABLE is on this node */
7132 if (zone_movable_pfn[nid]) {
7133 /* Size ZONE_MOVABLE */
7134 if (zone_type == ZONE_MOVABLE) {
7135 *zone_start_pfn = zone_movable_pfn[nid];
7136 *zone_end_pfn = min(node_end_pfn,
7137 arch_zone_highest_possible_pfn[movable_zone]);
7139 /* Adjust for ZONE_MOVABLE starting within this range */
7140 } else if (!mirrored_kernelcore &&
7141 *zone_start_pfn < zone_movable_pfn[nid] &&
7142 *zone_end_pfn > zone_movable_pfn[nid]) {
7143 *zone_end_pfn = zone_movable_pfn[nid];
7145 /* Check if this whole range is within ZONE_MOVABLE */
7146 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7147 *zone_start_pfn = *zone_end_pfn;
7152 * Return the number of pages a zone spans in a node, including holes
7153 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7155 static unsigned long __init zone_spanned_pages_in_node(int nid,
7156 unsigned long zone_type,
7157 unsigned long node_start_pfn,
7158 unsigned long node_end_pfn,
7159 unsigned long *zone_start_pfn,
7160 unsigned long *zone_end_pfn)
7162 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7163 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7164 /* When hotadd a new node from cpu_up(), the node should be empty */
7165 if (!node_start_pfn && !node_end_pfn)
7168 /* Get the start and end of the zone */
7169 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7170 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7171 adjust_zone_range_for_zone_movable(nid, zone_type,
7172 node_start_pfn, node_end_pfn,
7173 zone_start_pfn, zone_end_pfn);
7175 /* Check that this node has pages within the zone's required range */
7176 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7179 /* Move the zone boundaries inside the node if necessary */
7180 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7181 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7183 /* Return the spanned pages */
7184 return *zone_end_pfn - *zone_start_pfn;
7188 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7189 * then all holes in the requested range will be accounted for.
7191 unsigned long __init __absent_pages_in_range(int nid,
7192 unsigned long range_start_pfn,
7193 unsigned long range_end_pfn)
7195 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7196 unsigned long start_pfn, end_pfn;
7199 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7200 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7201 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7202 nr_absent -= end_pfn - start_pfn;
7208 * absent_pages_in_range - Return number of page frames in holes within a range
7209 * @start_pfn: The start PFN to start searching for holes
7210 * @end_pfn: The end PFN to stop searching for holes
7212 * Return: the number of pages frames in memory holes within a range.
7214 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7215 unsigned long end_pfn)
7217 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7220 /* Return the number of page frames in holes in a zone on a node */
7221 static unsigned long __init zone_absent_pages_in_node(int nid,
7222 unsigned long zone_type,
7223 unsigned long node_start_pfn,
7224 unsigned long node_end_pfn)
7226 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7227 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7228 unsigned long zone_start_pfn, zone_end_pfn;
7229 unsigned long nr_absent;
7231 /* When hotadd a new node from cpu_up(), the node should be empty */
7232 if (!node_start_pfn && !node_end_pfn)
7235 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7236 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7238 adjust_zone_range_for_zone_movable(nid, zone_type,
7239 node_start_pfn, node_end_pfn,
7240 &zone_start_pfn, &zone_end_pfn);
7241 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7244 * ZONE_MOVABLE handling.
7245 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7248 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7249 unsigned long start_pfn, end_pfn;
7250 struct memblock_region *r;
7252 for_each_mem_region(r) {
7253 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7254 zone_start_pfn, zone_end_pfn);
7255 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7256 zone_start_pfn, zone_end_pfn);
7258 if (zone_type == ZONE_MOVABLE &&
7259 memblock_is_mirror(r))
7260 nr_absent += end_pfn - start_pfn;
7262 if (zone_type == ZONE_NORMAL &&
7263 !memblock_is_mirror(r))
7264 nr_absent += end_pfn - start_pfn;
7271 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7272 unsigned long node_start_pfn,
7273 unsigned long node_end_pfn)
7275 unsigned long realtotalpages = 0, totalpages = 0;
7278 for (i = 0; i < MAX_NR_ZONES; i++) {
7279 struct zone *zone = pgdat->node_zones + i;
7280 unsigned long zone_start_pfn, zone_end_pfn;
7281 unsigned long spanned, absent;
7282 unsigned long size, real_size;
7284 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7289 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7294 real_size = size - absent;
7297 zone->zone_start_pfn = zone_start_pfn;
7299 zone->zone_start_pfn = 0;
7300 zone->spanned_pages = size;
7301 zone->present_pages = real_size;
7302 #if defined(CONFIG_MEMORY_HOTPLUG)
7303 zone->present_early_pages = real_size;
7307 realtotalpages += real_size;
7310 pgdat->node_spanned_pages = totalpages;
7311 pgdat->node_present_pages = realtotalpages;
7312 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7315 #ifndef CONFIG_SPARSEMEM
7317 * Calculate the size of the zone->blockflags rounded to an unsigned long
7318 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7319 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7320 * round what is now in bits to nearest long in bits, then return it in
7323 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7325 unsigned long usemapsize;
7327 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7328 usemapsize = roundup(zonesize, pageblock_nr_pages);
7329 usemapsize = usemapsize >> pageblock_order;
7330 usemapsize *= NR_PAGEBLOCK_BITS;
7331 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7333 return usemapsize / 8;
7336 static void __ref setup_usemap(struct zone *zone)
7338 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7339 zone->spanned_pages);
7340 zone->pageblock_flags = NULL;
7342 zone->pageblock_flags =
7343 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7345 if (!zone->pageblock_flags)
7346 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7347 usemapsize, zone->name, zone_to_nid(zone));
7351 static inline void setup_usemap(struct zone *zone) {}
7352 #endif /* CONFIG_SPARSEMEM */
7354 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7356 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7357 void __init set_pageblock_order(void)
7359 unsigned int order = MAX_ORDER - 1;
7361 /* Check that pageblock_nr_pages has not already been setup */
7362 if (pageblock_order)
7365 /* Don't let pageblocks exceed the maximum allocation granularity. */
7366 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7367 order = HUGETLB_PAGE_ORDER;
7370 * Assume the largest contiguous order of interest is a huge page.
7371 * This value may be variable depending on boot parameters on IA64 and
7374 pageblock_order = order;
7376 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7379 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7380 * is unused as pageblock_order is set at compile-time. See
7381 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7384 void __init set_pageblock_order(void)
7388 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7390 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7391 unsigned long present_pages)
7393 unsigned long pages = spanned_pages;
7396 * Provide a more accurate estimation if there are holes within
7397 * the zone and SPARSEMEM is in use. If there are holes within the
7398 * zone, each populated memory region may cost us one or two extra
7399 * memmap pages due to alignment because memmap pages for each
7400 * populated regions may not be naturally aligned on page boundary.
7401 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7403 if (spanned_pages > present_pages + (present_pages >> 4) &&
7404 IS_ENABLED(CONFIG_SPARSEMEM))
7405 pages = present_pages;
7407 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7410 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7411 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7413 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7415 spin_lock_init(&ds_queue->split_queue_lock);
7416 INIT_LIST_HEAD(&ds_queue->split_queue);
7417 ds_queue->split_queue_len = 0;
7420 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7423 #ifdef CONFIG_COMPACTION
7424 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7426 init_waitqueue_head(&pgdat->kcompactd_wait);
7429 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7432 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7436 pgdat_resize_init(pgdat);
7438 pgdat_init_split_queue(pgdat);
7439 pgdat_init_kcompactd(pgdat);
7441 init_waitqueue_head(&pgdat->kswapd_wait);
7442 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7444 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7445 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7447 pgdat_page_ext_init(pgdat);
7448 lruvec_init(&pgdat->__lruvec);
7451 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7452 unsigned long remaining_pages)
7454 atomic_long_set(&zone->managed_pages, remaining_pages);
7455 zone_set_nid(zone, nid);
7456 zone->name = zone_names[idx];
7457 zone->zone_pgdat = NODE_DATA(nid);
7458 spin_lock_init(&zone->lock);
7459 zone_seqlock_init(zone);
7460 zone_pcp_init(zone);
7464 * Set up the zone data structures
7465 * - init pgdat internals
7466 * - init all zones belonging to this node
7468 * NOTE: this function is only called during memory hotplug
7470 #ifdef CONFIG_MEMORY_HOTPLUG
7471 void __ref free_area_init_core_hotplug(int nid)
7474 pg_data_t *pgdat = NODE_DATA(nid);
7476 pgdat_init_internals(pgdat);
7477 for (z = 0; z < MAX_NR_ZONES; z++)
7478 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7483 * Set up the zone data structures:
7484 * - mark all pages reserved
7485 * - mark all memory queues empty
7486 * - clear the memory bitmaps
7488 * NOTE: pgdat should get zeroed by caller.
7489 * NOTE: this function is only called during early init.
7491 static void __init free_area_init_core(struct pglist_data *pgdat)
7494 int nid = pgdat->node_id;
7496 pgdat_init_internals(pgdat);
7497 pgdat->per_cpu_nodestats = &boot_nodestats;
7499 for (j = 0; j < MAX_NR_ZONES; j++) {
7500 struct zone *zone = pgdat->node_zones + j;
7501 unsigned long size, freesize, memmap_pages;
7503 size = zone->spanned_pages;
7504 freesize = zone->present_pages;
7507 * Adjust freesize so that it accounts for how much memory
7508 * is used by this zone for memmap. This affects the watermark
7509 * and per-cpu initialisations
7511 memmap_pages = calc_memmap_size(size, freesize);
7512 if (!is_highmem_idx(j)) {
7513 if (freesize >= memmap_pages) {
7514 freesize -= memmap_pages;
7516 pr_debug(" %s zone: %lu pages used for memmap\n",
7517 zone_names[j], memmap_pages);
7519 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7520 zone_names[j], memmap_pages, freesize);
7523 /* Account for reserved pages */
7524 if (j == 0 && freesize > dma_reserve) {
7525 freesize -= dma_reserve;
7526 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7529 if (!is_highmem_idx(j))
7530 nr_kernel_pages += freesize;
7531 /* Charge for highmem memmap if there are enough kernel pages */
7532 else if (nr_kernel_pages > memmap_pages * 2)
7533 nr_kernel_pages -= memmap_pages;
7534 nr_all_pages += freesize;
7537 * Set an approximate value for lowmem here, it will be adjusted
7538 * when the bootmem allocator frees pages into the buddy system.
7539 * And all highmem pages will be managed by the buddy system.
7541 zone_init_internals(zone, j, nid, freesize);
7546 set_pageblock_order();
7548 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7552 #ifdef CONFIG_FLATMEM
7553 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7555 unsigned long __maybe_unused start = 0;
7556 unsigned long __maybe_unused offset = 0;
7558 /* Skip empty nodes */
7559 if (!pgdat->node_spanned_pages)
7562 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7563 offset = pgdat->node_start_pfn - start;
7564 /* ia64 gets its own node_mem_map, before this, without bootmem */
7565 if (!pgdat->node_mem_map) {
7566 unsigned long size, end;
7570 * The zone's endpoints aren't required to be MAX_ORDER
7571 * aligned but the node_mem_map endpoints must be in order
7572 * for the buddy allocator to function correctly.
7574 end = pgdat_end_pfn(pgdat);
7575 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7576 size = (end - start) * sizeof(struct page);
7577 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7578 pgdat->node_id, false);
7580 panic("Failed to allocate %ld bytes for node %d memory map\n",
7581 size, pgdat->node_id);
7582 pgdat->node_mem_map = map + offset;
7584 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7585 __func__, pgdat->node_id, (unsigned long)pgdat,
7586 (unsigned long)pgdat->node_mem_map);
7589 * With no DISCONTIG, the global mem_map is just set as node 0's
7591 if (pgdat == NODE_DATA(0)) {
7592 mem_map = NODE_DATA(0)->node_mem_map;
7593 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7599 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7600 #endif /* CONFIG_FLATMEM */
7602 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7603 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7605 pgdat->first_deferred_pfn = ULONG_MAX;
7608 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7611 static void __init free_area_init_node(int nid)
7613 pg_data_t *pgdat = NODE_DATA(nid);
7614 unsigned long start_pfn = 0;
7615 unsigned long end_pfn = 0;
7617 /* pg_data_t should be reset to zero when it's allocated */
7618 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7620 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7622 pgdat->node_id = nid;
7623 pgdat->node_start_pfn = start_pfn;
7624 pgdat->per_cpu_nodestats = NULL;
7626 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7627 (u64)start_pfn << PAGE_SHIFT,
7628 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7629 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7631 alloc_node_mem_map(pgdat);
7632 pgdat_set_deferred_range(pgdat);
7634 free_area_init_core(pgdat);
7637 void __init free_area_init_memoryless_node(int nid)
7639 free_area_init_node(nid);
7642 #if MAX_NUMNODES > 1
7644 * Figure out the number of possible node ids.
7646 void __init setup_nr_node_ids(void)
7648 unsigned int highest;
7650 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7651 nr_node_ids = highest + 1;
7656 * node_map_pfn_alignment - determine the maximum internode alignment
7658 * This function should be called after node map is populated and sorted.
7659 * It calculates the maximum power of two alignment which can distinguish
7662 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7663 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7664 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7665 * shifted, 1GiB is enough and this function will indicate so.
7667 * This is used to test whether pfn -> nid mapping of the chosen memory
7668 * model has fine enough granularity to avoid incorrect mapping for the
7669 * populated node map.
7671 * Return: the determined alignment in pfn's. 0 if there is no alignment
7672 * requirement (single node).
7674 unsigned long __init node_map_pfn_alignment(void)
7676 unsigned long accl_mask = 0, last_end = 0;
7677 unsigned long start, end, mask;
7678 int last_nid = NUMA_NO_NODE;
7681 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7682 if (!start || last_nid < 0 || last_nid == nid) {
7689 * Start with a mask granular enough to pin-point to the
7690 * start pfn and tick off bits one-by-one until it becomes
7691 * too coarse to separate the current node from the last.
7693 mask = ~((1 << __ffs(start)) - 1);
7694 while (mask && last_end <= (start & (mask << 1)))
7697 /* accumulate all internode masks */
7701 /* convert mask to number of pages */
7702 return ~accl_mask + 1;
7706 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7708 * Return: the minimum PFN based on information provided via
7709 * memblock_set_node().
7711 unsigned long __init find_min_pfn_with_active_regions(void)
7713 return PHYS_PFN(memblock_start_of_DRAM());
7717 * early_calculate_totalpages()
7718 * Sum pages in active regions for movable zone.
7719 * Populate N_MEMORY for calculating usable_nodes.
7721 static unsigned long __init early_calculate_totalpages(void)
7723 unsigned long totalpages = 0;
7724 unsigned long start_pfn, end_pfn;
7727 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7728 unsigned long pages = end_pfn - start_pfn;
7730 totalpages += pages;
7732 node_set_state(nid, N_MEMORY);
7738 * Find the PFN the Movable zone begins in each node. Kernel memory
7739 * is spread evenly between nodes as long as the nodes have enough
7740 * memory. When they don't, some nodes will have more kernelcore than
7743 static void __init find_zone_movable_pfns_for_nodes(void)
7746 unsigned long usable_startpfn;
7747 unsigned long kernelcore_node, kernelcore_remaining;
7748 /* save the state before borrow the nodemask */
7749 nodemask_t saved_node_state = node_states[N_MEMORY];
7750 unsigned long totalpages = early_calculate_totalpages();
7751 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7752 struct memblock_region *r;
7754 /* Need to find movable_zone earlier when movable_node is specified. */
7755 find_usable_zone_for_movable();
7758 * If movable_node is specified, ignore kernelcore and movablecore
7761 if (movable_node_is_enabled()) {
7762 for_each_mem_region(r) {
7763 if (!memblock_is_hotpluggable(r))
7766 nid = memblock_get_region_node(r);
7768 usable_startpfn = PFN_DOWN(r->base);
7769 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7770 min(usable_startpfn, zone_movable_pfn[nid]) :
7778 * If kernelcore=mirror is specified, ignore movablecore option
7780 if (mirrored_kernelcore) {
7781 bool mem_below_4gb_not_mirrored = false;
7783 for_each_mem_region(r) {
7784 if (memblock_is_mirror(r))
7787 nid = memblock_get_region_node(r);
7789 usable_startpfn = memblock_region_memory_base_pfn(r);
7791 if (usable_startpfn < 0x100000) {
7792 mem_below_4gb_not_mirrored = true;
7796 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7797 min(usable_startpfn, zone_movable_pfn[nid]) :
7801 if (mem_below_4gb_not_mirrored)
7802 pr_warn("This configuration results in unmirrored kernel memory.\n");
7808 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7809 * amount of necessary memory.
7811 if (required_kernelcore_percent)
7812 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7814 if (required_movablecore_percent)
7815 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7819 * If movablecore= was specified, calculate what size of
7820 * kernelcore that corresponds so that memory usable for
7821 * any allocation type is evenly spread. If both kernelcore
7822 * and movablecore are specified, then the value of kernelcore
7823 * will be used for required_kernelcore if it's greater than
7824 * what movablecore would have allowed.
7826 if (required_movablecore) {
7827 unsigned long corepages;
7830 * Round-up so that ZONE_MOVABLE is at least as large as what
7831 * was requested by the user
7833 required_movablecore =
7834 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7835 required_movablecore = min(totalpages, required_movablecore);
7836 corepages = totalpages - required_movablecore;
7838 required_kernelcore = max(required_kernelcore, corepages);
7842 * If kernelcore was not specified or kernelcore size is larger
7843 * than totalpages, there is no ZONE_MOVABLE.
7845 if (!required_kernelcore || required_kernelcore >= totalpages)
7848 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7849 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7852 /* Spread kernelcore memory as evenly as possible throughout nodes */
7853 kernelcore_node = required_kernelcore / usable_nodes;
7854 for_each_node_state(nid, N_MEMORY) {
7855 unsigned long start_pfn, end_pfn;
7858 * Recalculate kernelcore_node if the division per node
7859 * now exceeds what is necessary to satisfy the requested
7860 * amount of memory for the kernel
7862 if (required_kernelcore < kernelcore_node)
7863 kernelcore_node = required_kernelcore / usable_nodes;
7866 * As the map is walked, we track how much memory is usable
7867 * by the kernel using kernelcore_remaining. When it is
7868 * 0, the rest of the node is usable by ZONE_MOVABLE
7870 kernelcore_remaining = kernelcore_node;
7872 /* Go through each range of PFNs within this node */
7873 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7874 unsigned long size_pages;
7876 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7877 if (start_pfn >= end_pfn)
7880 /* Account for what is only usable for kernelcore */
7881 if (start_pfn < usable_startpfn) {
7882 unsigned long kernel_pages;
7883 kernel_pages = min(end_pfn, usable_startpfn)
7886 kernelcore_remaining -= min(kernel_pages,
7887 kernelcore_remaining);
7888 required_kernelcore -= min(kernel_pages,
7889 required_kernelcore);
7891 /* Continue if range is now fully accounted */
7892 if (end_pfn <= usable_startpfn) {
7895 * Push zone_movable_pfn to the end so
7896 * that if we have to rebalance
7897 * kernelcore across nodes, we will
7898 * not double account here
7900 zone_movable_pfn[nid] = end_pfn;
7903 start_pfn = usable_startpfn;
7907 * The usable PFN range for ZONE_MOVABLE is from
7908 * start_pfn->end_pfn. Calculate size_pages as the
7909 * number of pages used as kernelcore
7911 size_pages = end_pfn - start_pfn;
7912 if (size_pages > kernelcore_remaining)
7913 size_pages = kernelcore_remaining;
7914 zone_movable_pfn[nid] = start_pfn + size_pages;
7917 * Some kernelcore has been met, update counts and
7918 * break if the kernelcore for this node has been
7921 required_kernelcore -= min(required_kernelcore,
7923 kernelcore_remaining -= size_pages;
7924 if (!kernelcore_remaining)
7930 * If there is still required_kernelcore, we do another pass with one
7931 * less node in the count. This will push zone_movable_pfn[nid] further
7932 * along on the nodes that still have memory until kernelcore is
7936 if (usable_nodes && required_kernelcore > usable_nodes)
7940 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7941 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7942 unsigned long start_pfn, end_pfn;
7944 zone_movable_pfn[nid] =
7945 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7947 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7948 if (zone_movable_pfn[nid] >= end_pfn)
7949 zone_movable_pfn[nid] = 0;
7953 /* restore the node_state */
7954 node_states[N_MEMORY] = saved_node_state;
7957 /* Any regular or high memory on that node ? */
7958 static void check_for_memory(pg_data_t *pgdat, int nid)
7960 enum zone_type zone_type;
7962 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7963 struct zone *zone = &pgdat->node_zones[zone_type];
7964 if (populated_zone(zone)) {
7965 if (IS_ENABLED(CONFIG_HIGHMEM))
7966 node_set_state(nid, N_HIGH_MEMORY);
7967 if (zone_type <= ZONE_NORMAL)
7968 node_set_state(nid, N_NORMAL_MEMORY);
7975 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7976 * such cases we allow max_zone_pfn sorted in the descending order
7978 bool __weak arch_has_descending_max_zone_pfns(void)
7984 * free_area_init - Initialise all pg_data_t and zone data
7985 * @max_zone_pfn: an array of max PFNs for each zone
7987 * This will call free_area_init_node() for each active node in the system.
7988 * Using the page ranges provided by memblock_set_node(), the size of each
7989 * zone in each node and their holes is calculated. If the maximum PFN
7990 * between two adjacent zones match, it is assumed that the zone is empty.
7991 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7992 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7993 * starts where the previous one ended. For example, ZONE_DMA32 starts
7994 * at arch_max_dma_pfn.
7996 void __init free_area_init(unsigned long *max_zone_pfn)
7998 unsigned long start_pfn, end_pfn;
8002 /* Record where the zone boundaries are */
8003 memset(arch_zone_lowest_possible_pfn, 0,
8004 sizeof(arch_zone_lowest_possible_pfn));
8005 memset(arch_zone_highest_possible_pfn, 0,
8006 sizeof(arch_zone_highest_possible_pfn));
8008 start_pfn = find_min_pfn_with_active_regions();
8009 descending = arch_has_descending_max_zone_pfns();
8011 for (i = 0; i < MAX_NR_ZONES; i++) {
8013 zone = MAX_NR_ZONES - i - 1;
8017 if (zone == ZONE_MOVABLE)
8020 end_pfn = max(max_zone_pfn[zone], start_pfn);
8021 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8022 arch_zone_highest_possible_pfn[zone] = end_pfn;
8024 start_pfn = end_pfn;
8027 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8028 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8029 find_zone_movable_pfns_for_nodes();
8031 /* Print out the zone ranges */
8032 pr_info("Zone ranges:\n");
8033 for (i = 0; i < MAX_NR_ZONES; i++) {
8034 if (i == ZONE_MOVABLE)
8036 pr_info(" %-8s ", zone_names[i]);
8037 if (arch_zone_lowest_possible_pfn[i] ==
8038 arch_zone_highest_possible_pfn[i])
8041 pr_cont("[mem %#018Lx-%#018Lx]\n",
8042 (u64)arch_zone_lowest_possible_pfn[i]
8044 ((u64)arch_zone_highest_possible_pfn[i]
8045 << PAGE_SHIFT) - 1);
8048 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8049 pr_info("Movable zone start for each node\n");
8050 for (i = 0; i < MAX_NUMNODES; i++) {
8051 if (zone_movable_pfn[i])
8052 pr_info(" Node %d: %#018Lx\n", i,
8053 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8057 * Print out the early node map, and initialize the
8058 * subsection-map relative to active online memory ranges to
8059 * enable future "sub-section" extensions of the memory map.
8061 pr_info("Early memory node ranges\n");
8062 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8063 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8064 (u64)start_pfn << PAGE_SHIFT,
8065 ((u64)end_pfn << PAGE_SHIFT) - 1);
8066 subsection_map_init(start_pfn, end_pfn - start_pfn);
8069 /* Initialise every node */
8070 mminit_verify_pageflags_layout();
8071 setup_nr_node_ids();
8072 for_each_online_node(nid) {
8073 pg_data_t *pgdat = NODE_DATA(nid);
8074 free_area_init_node(nid);
8076 /* Any memory on that node */
8077 if (pgdat->node_present_pages)
8078 node_set_state(nid, N_MEMORY);
8079 check_for_memory(pgdat, nid);
8085 static int __init cmdline_parse_core(char *p, unsigned long *core,
8086 unsigned long *percent)
8088 unsigned long long coremem;
8094 /* Value may be a percentage of total memory, otherwise bytes */
8095 coremem = simple_strtoull(p, &endptr, 0);
8096 if (*endptr == '%') {
8097 /* Paranoid check for percent values greater than 100 */
8098 WARN_ON(coremem > 100);
8102 coremem = memparse(p, &p);
8103 /* Paranoid check that UL is enough for the coremem value */
8104 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8106 *core = coremem >> PAGE_SHIFT;
8113 * kernelcore=size sets the amount of memory for use for allocations that
8114 * cannot be reclaimed or migrated.
8116 static int __init cmdline_parse_kernelcore(char *p)
8118 /* parse kernelcore=mirror */
8119 if (parse_option_str(p, "mirror")) {
8120 mirrored_kernelcore = true;
8124 return cmdline_parse_core(p, &required_kernelcore,
8125 &required_kernelcore_percent);
8129 * movablecore=size sets the amount of memory for use for allocations that
8130 * can be reclaimed or migrated.
8132 static int __init cmdline_parse_movablecore(char *p)
8134 return cmdline_parse_core(p, &required_movablecore,
8135 &required_movablecore_percent);
8138 early_param("kernelcore", cmdline_parse_kernelcore);
8139 early_param("movablecore", cmdline_parse_movablecore);
8141 void adjust_managed_page_count(struct page *page, long count)
8143 atomic_long_add(count, &page_zone(page)->managed_pages);
8144 totalram_pages_add(count);
8145 #ifdef CONFIG_HIGHMEM
8146 if (PageHighMem(page))
8147 totalhigh_pages_add(count);
8150 EXPORT_SYMBOL(adjust_managed_page_count);
8152 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8155 unsigned long pages = 0;
8157 start = (void *)PAGE_ALIGN((unsigned long)start);
8158 end = (void *)((unsigned long)end & PAGE_MASK);
8159 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8160 struct page *page = virt_to_page(pos);
8161 void *direct_map_addr;
8164 * 'direct_map_addr' might be different from 'pos'
8165 * because some architectures' virt_to_page()
8166 * work with aliases. Getting the direct map
8167 * address ensures that we get a _writeable_
8168 * alias for the memset().
8170 direct_map_addr = page_address(page);
8172 * Perform a kasan-unchecked memset() since this memory
8173 * has not been initialized.
8175 direct_map_addr = kasan_reset_tag(direct_map_addr);
8176 if ((unsigned int)poison <= 0xFF)
8177 memset(direct_map_addr, poison, PAGE_SIZE);
8179 free_reserved_page(page);
8183 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8188 void __init mem_init_print_info(void)
8190 unsigned long physpages, codesize, datasize, rosize, bss_size;
8191 unsigned long init_code_size, init_data_size;
8193 physpages = get_num_physpages();
8194 codesize = _etext - _stext;
8195 datasize = _edata - _sdata;
8196 rosize = __end_rodata - __start_rodata;
8197 bss_size = __bss_stop - __bss_start;
8198 init_data_size = __init_end - __init_begin;
8199 init_code_size = _einittext - _sinittext;
8202 * Detect special cases and adjust section sizes accordingly:
8203 * 1) .init.* may be embedded into .data sections
8204 * 2) .init.text.* may be out of [__init_begin, __init_end],
8205 * please refer to arch/tile/kernel/vmlinux.lds.S.
8206 * 3) .rodata.* may be embedded into .text or .data sections.
8208 #define adj_init_size(start, end, size, pos, adj) \
8210 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8214 adj_init_size(__init_begin, __init_end, init_data_size,
8215 _sinittext, init_code_size);
8216 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8217 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8218 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8219 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8221 #undef adj_init_size
8223 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8224 #ifdef CONFIG_HIGHMEM
8228 K(nr_free_pages()), K(physpages),
8229 codesize >> 10, datasize >> 10, rosize >> 10,
8230 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8231 K(physpages - totalram_pages() - totalcma_pages),
8233 #ifdef CONFIG_HIGHMEM
8234 , K(totalhigh_pages())
8240 * set_dma_reserve - set the specified number of pages reserved in the first zone
8241 * @new_dma_reserve: The number of pages to mark reserved
8243 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8244 * In the DMA zone, a significant percentage may be consumed by kernel image
8245 * and other unfreeable allocations which can skew the watermarks badly. This
8246 * function may optionally be used to account for unfreeable pages in the
8247 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8248 * smaller per-cpu batchsize.
8250 void __init set_dma_reserve(unsigned long new_dma_reserve)
8252 dma_reserve = new_dma_reserve;
8255 static int page_alloc_cpu_dead(unsigned int cpu)
8259 lru_add_drain_cpu(cpu);
8263 * Spill the event counters of the dead processor
8264 * into the current processors event counters.
8265 * This artificially elevates the count of the current
8268 vm_events_fold_cpu(cpu);
8271 * Zero the differential counters of the dead processor
8272 * so that the vm statistics are consistent.
8274 * This is only okay since the processor is dead and cannot
8275 * race with what we are doing.
8277 cpu_vm_stats_fold(cpu);
8279 for_each_populated_zone(zone)
8280 zone_pcp_update(zone, 0);
8285 static int page_alloc_cpu_online(unsigned int cpu)
8289 for_each_populated_zone(zone)
8290 zone_pcp_update(zone, 1);
8295 int hashdist = HASHDIST_DEFAULT;
8297 static int __init set_hashdist(char *str)
8301 hashdist = simple_strtoul(str, &str, 0);
8304 __setup("hashdist=", set_hashdist);
8307 void __init page_alloc_init(void)
8312 if (num_node_state(N_MEMORY) == 1)
8316 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8317 "mm/page_alloc:pcp",
8318 page_alloc_cpu_online,
8319 page_alloc_cpu_dead);
8324 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8325 * or min_free_kbytes changes.
8327 static void calculate_totalreserve_pages(void)
8329 struct pglist_data *pgdat;
8330 unsigned long reserve_pages = 0;
8331 enum zone_type i, j;
8333 for_each_online_pgdat(pgdat) {
8335 pgdat->totalreserve_pages = 0;
8337 for (i = 0; i < MAX_NR_ZONES; i++) {
8338 struct zone *zone = pgdat->node_zones + i;
8340 unsigned long managed_pages = zone_managed_pages(zone);
8342 /* Find valid and maximum lowmem_reserve in the zone */
8343 for (j = i; j < MAX_NR_ZONES; j++) {
8344 if (zone->lowmem_reserve[j] > max)
8345 max = zone->lowmem_reserve[j];
8348 /* we treat the high watermark as reserved pages. */
8349 max += high_wmark_pages(zone);
8351 if (max > managed_pages)
8352 max = managed_pages;
8354 pgdat->totalreserve_pages += max;
8356 reserve_pages += max;
8359 totalreserve_pages = reserve_pages;
8363 * setup_per_zone_lowmem_reserve - called whenever
8364 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8365 * has a correct pages reserved value, so an adequate number of
8366 * pages are left in the zone after a successful __alloc_pages().
8368 static void setup_per_zone_lowmem_reserve(void)
8370 struct pglist_data *pgdat;
8371 enum zone_type i, j;
8373 for_each_online_pgdat(pgdat) {
8374 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8375 struct zone *zone = &pgdat->node_zones[i];
8376 int ratio = sysctl_lowmem_reserve_ratio[i];
8377 bool clear = !ratio || !zone_managed_pages(zone);
8378 unsigned long managed_pages = 0;
8380 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8381 struct zone *upper_zone = &pgdat->node_zones[j];
8383 managed_pages += zone_managed_pages(upper_zone);
8386 zone->lowmem_reserve[j] = 0;
8388 zone->lowmem_reserve[j] = managed_pages / ratio;
8393 /* update totalreserve_pages */
8394 calculate_totalreserve_pages();
8397 static void __setup_per_zone_wmarks(void)
8399 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8400 unsigned long lowmem_pages = 0;
8402 unsigned long flags;
8404 /* Calculate total number of !ZONE_HIGHMEM pages */
8405 for_each_zone(zone) {
8406 if (!is_highmem(zone))
8407 lowmem_pages += zone_managed_pages(zone);
8410 for_each_zone(zone) {
8413 spin_lock_irqsave(&zone->lock, flags);
8414 tmp = (u64)pages_min * zone_managed_pages(zone);
8415 do_div(tmp, lowmem_pages);
8416 if (is_highmem(zone)) {
8418 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8419 * need highmem pages, so cap pages_min to a small
8422 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8423 * deltas control async page reclaim, and so should
8424 * not be capped for highmem.
8426 unsigned long min_pages;
8428 min_pages = zone_managed_pages(zone) / 1024;
8429 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8430 zone->_watermark[WMARK_MIN] = min_pages;
8433 * If it's a lowmem zone, reserve a number of pages
8434 * proportionate to the zone's size.
8436 zone->_watermark[WMARK_MIN] = tmp;
8440 * Set the kswapd watermarks distance according to the
8441 * scale factor in proportion to available memory, but
8442 * ensure a minimum size on small systems.
8444 tmp = max_t(u64, tmp >> 2,
8445 mult_frac(zone_managed_pages(zone),
8446 watermark_scale_factor, 10000));
8448 zone->watermark_boost = 0;
8449 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8450 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8452 spin_unlock_irqrestore(&zone->lock, flags);
8455 /* update totalreserve_pages */
8456 calculate_totalreserve_pages();
8460 * setup_per_zone_wmarks - called when min_free_kbytes changes
8461 * or when memory is hot-{added|removed}
8463 * Ensures that the watermark[min,low,high] values for each zone are set
8464 * correctly with respect to min_free_kbytes.
8466 void setup_per_zone_wmarks(void)
8469 static DEFINE_SPINLOCK(lock);
8472 __setup_per_zone_wmarks();
8476 * The watermark size have changed so update the pcpu batch
8477 * and high limits or the limits may be inappropriate.
8480 zone_pcp_update(zone, 0);
8484 * Initialise min_free_kbytes.
8486 * For small machines we want it small (128k min). For large machines
8487 * we want it large (256MB max). But it is not linear, because network
8488 * bandwidth does not increase linearly with machine size. We use
8490 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8491 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8507 void calculate_min_free_kbytes(void)
8509 unsigned long lowmem_kbytes;
8510 int new_min_free_kbytes;
8512 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8513 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8515 if (new_min_free_kbytes > user_min_free_kbytes)
8516 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8518 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8519 new_min_free_kbytes, user_min_free_kbytes);
8523 int __meminit init_per_zone_wmark_min(void)
8525 calculate_min_free_kbytes();
8526 setup_per_zone_wmarks();
8527 refresh_zone_stat_thresholds();
8528 setup_per_zone_lowmem_reserve();
8531 setup_min_unmapped_ratio();
8532 setup_min_slab_ratio();
8535 khugepaged_min_free_kbytes_update();
8539 postcore_initcall(init_per_zone_wmark_min)
8542 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8543 * that we can call two helper functions whenever min_free_kbytes
8546 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8547 void *buffer, size_t *length, loff_t *ppos)
8551 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8556 user_min_free_kbytes = min_free_kbytes;
8557 setup_per_zone_wmarks();
8562 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8563 void *buffer, size_t *length, loff_t *ppos)
8567 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8572 setup_per_zone_wmarks();
8578 static void setup_min_unmapped_ratio(void)
8583 for_each_online_pgdat(pgdat)
8584 pgdat->min_unmapped_pages = 0;
8587 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8588 sysctl_min_unmapped_ratio) / 100;
8592 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8593 void *buffer, size_t *length, loff_t *ppos)
8597 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8601 setup_min_unmapped_ratio();
8606 static void setup_min_slab_ratio(void)
8611 for_each_online_pgdat(pgdat)
8612 pgdat->min_slab_pages = 0;
8615 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8616 sysctl_min_slab_ratio) / 100;
8619 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8620 void *buffer, size_t *length, loff_t *ppos)
8624 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8628 setup_min_slab_ratio();
8635 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8636 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8637 * whenever sysctl_lowmem_reserve_ratio changes.
8639 * The reserve ratio obviously has absolutely no relation with the
8640 * minimum watermarks. The lowmem reserve ratio can only make sense
8641 * if in function of the boot time zone sizes.
8643 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8644 void *buffer, size_t *length, loff_t *ppos)
8648 proc_dointvec_minmax(table, write, buffer, length, ppos);
8650 for (i = 0; i < MAX_NR_ZONES; i++) {
8651 if (sysctl_lowmem_reserve_ratio[i] < 1)
8652 sysctl_lowmem_reserve_ratio[i] = 0;
8655 setup_per_zone_lowmem_reserve();
8660 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8661 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8662 * pagelist can have before it gets flushed back to buddy allocator.
8664 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8665 int write, void *buffer, size_t *length, loff_t *ppos)
8668 int old_percpu_pagelist_high_fraction;
8671 mutex_lock(&pcp_batch_high_lock);
8672 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8674 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8675 if (!write || ret < 0)
8678 /* Sanity checking to avoid pcp imbalance */
8679 if (percpu_pagelist_high_fraction &&
8680 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8681 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8687 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8690 for_each_populated_zone(zone)
8691 zone_set_pageset_high_and_batch(zone, 0);
8693 mutex_unlock(&pcp_batch_high_lock);
8697 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8699 * Returns the number of pages that arch has reserved but
8700 * is not known to alloc_large_system_hash().
8702 static unsigned long __init arch_reserved_kernel_pages(void)
8709 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8710 * machines. As memory size is increased the scale is also increased but at
8711 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8712 * quadruples the scale is increased by one, which means the size of hash table
8713 * only doubles, instead of quadrupling as well.
8714 * Because 32-bit systems cannot have large physical memory, where this scaling
8715 * makes sense, it is disabled on such platforms.
8717 #if __BITS_PER_LONG > 32
8718 #define ADAPT_SCALE_BASE (64ul << 30)
8719 #define ADAPT_SCALE_SHIFT 2
8720 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8724 * allocate a large system hash table from bootmem
8725 * - it is assumed that the hash table must contain an exact power-of-2
8726 * quantity of entries
8727 * - limit is the number of hash buckets, not the total allocation size
8729 void *__init alloc_large_system_hash(const char *tablename,
8730 unsigned long bucketsize,
8731 unsigned long numentries,
8734 unsigned int *_hash_shift,
8735 unsigned int *_hash_mask,
8736 unsigned long low_limit,
8737 unsigned long high_limit)
8739 unsigned long long max = high_limit;
8740 unsigned long log2qty, size;
8746 /* allow the kernel cmdline to have a say */
8748 /* round applicable memory size up to nearest megabyte */
8749 numentries = nr_kernel_pages;
8750 numentries -= arch_reserved_kernel_pages();
8752 /* It isn't necessary when PAGE_SIZE >= 1MB */
8753 if (PAGE_SHIFT < 20)
8754 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8756 #if __BITS_PER_LONG > 32
8758 unsigned long adapt;
8760 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8761 adapt <<= ADAPT_SCALE_SHIFT)
8766 /* limit to 1 bucket per 2^scale bytes of low memory */
8767 if (scale > PAGE_SHIFT)
8768 numentries >>= (scale - PAGE_SHIFT);
8770 numentries <<= (PAGE_SHIFT - scale);
8772 /* Make sure we've got at least a 0-order allocation.. */
8773 if (unlikely(flags & HASH_SMALL)) {
8774 /* Makes no sense without HASH_EARLY */
8775 WARN_ON(!(flags & HASH_EARLY));
8776 if (!(numentries >> *_hash_shift)) {
8777 numentries = 1UL << *_hash_shift;
8778 BUG_ON(!numentries);
8780 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8781 numentries = PAGE_SIZE / bucketsize;
8783 numentries = roundup_pow_of_two(numentries);
8785 /* limit allocation size to 1/16 total memory by default */
8787 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8788 do_div(max, bucketsize);
8790 max = min(max, 0x80000000ULL);
8792 if (numentries < low_limit)
8793 numentries = low_limit;
8794 if (numentries > max)
8797 log2qty = ilog2(numentries);
8799 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8802 size = bucketsize << log2qty;
8803 if (flags & HASH_EARLY) {
8804 if (flags & HASH_ZERO)
8805 table = memblock_alloc(size, SMP_CACHE_BYTES);
8807 table = memblock_alloc_raw(size,
8809 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8810 table = __vmalloc(size, gfp_flags);
8813 huge = is_vm_area_hugepages(table);
8816 * If bucketsize is not a power-of-two, we may free
8817 * some pages at the end of hash table which
8818 * alloc_pages_exact() automatically does
8820 table = alloc_pages_exact(size, gfp_flags);
8821 kmemleak_alloc(table, size, 1, gfp_flags);
8823 } while (!table && size > PAGE_SIZE && --log2qty);
8826 panic("Failed to allocate %s hash table\n", tablename);
8828 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8829 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8830 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8833 *_hash_shift = log2qty;
8835 *_hash_mask = (1 << log2qty) - 1;
8841 * This function checks whether pageblock includes unmovable pages or not.
8843 * PageLRU check without isolation or lru_lock could race so that
8844 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8845 * check without lock_page also may miss some movable non-lru pages at
8846 * race condition. So you can't expect this function should be exact.
8848 * Returns a page without holding a reference. If the caller wants to
8849 * dereference that page (e.g., dumping), it has to make sure that it
8850 * cannot get removed (e.g., via memory unplug) concurrently.
8853 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8854 int migratetype, int flags)
8856 unsigned long iter = 0;
8857 unsigned long pfn = page_to_pfn(page);
8858 unsigned long offset = pfn % pageblock_nr_pages;
8860 if (is_migrate_cma_page(page)) {
8862 * CMA allocations (alloc_contig_range) really need to mark
8863 * isolate CMA pageblocks even when they are not movable in fact
8864 * so consider them movable here.
8866 if (is_migrate_cma(migratetype))
8872 for (; iter < pageblock_nr_pages - offset; iter++) {
8873 page = pfn_to_page(pfn + iter);
8876 * Both, bootmem allocations and memory holes are marked
8877 * PG_reserved and are unmovable. We can even have unmovable
8878 * allocations inside ZONE_MOVABLE, for example when
8879 * specifying "movablecore".
8881 if (PageReserved(page))
8885 * If the zone is movable and we have ruled out all reserved
8886 * pages then it should be reasonably safe to assume the rest
8889 if (zone_idx(zone) == ZONE_MOVABLE)
8893 * Hugepages are not in LRU lists, but they're movable.
8894 * THPs are on the LRU, but need to be counted as #small pages.
8895 * We need not scan over tail pages because we don't
8896 * handle each tail page individually in migration.
8898 if (PageHuge(page) || PageTransCompound(page)) {
8899 struct page *head = compound_head(page);
8900 unsigned int skip_pages;
8902 if (PageHuge(page)) {
8903 if (!hugepage_migration_supported(page_hstate(head)))
8905 } else if (!PageLRU(head) && !__PageMovable(head)) {
8909 skip_pages = compound_nr(head) - (page - head);
8910 iter += skip_pages - 1;
8915 * We can't use page_count without pin a page
8916 * because another CPU can free compound page.
8917 * This check already skips compound tails of THP
8918 * because their page->_refcount is zero at all time.
8920 if (!page_ref_count(page)) {
8921 if (PageBuddy(page))
8922 iter += (1 << buddy_order(page)) - 1;
8927 * The HWPoisoned page may be not in buddy system, and
8928 * page_count() is not 0.
8930 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8934 * We treat all PageOffline() pages as movable when offlining
8935 * to give drivers a chance to decrement their reference count
8936 * in MEM_GOING_OFFLINE in order to indicate that these pages
8937 * can be offlined as there are no direct references anymore.
8938 * For actually unmovable PageOffline() where the driver does
8939 * not support this, we will fail later when trying to actually
8940 * move these pages that still have a reference count > 0.
8941 * (false negatives in this function only)
8943 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8946 if (__PageMovable(page) || PageLRU(page))
8950 * If there are RECLAIMABLE pages, we need to check
8951 * it. But now, memory offline itself doesn't call
8952 * shrink_node_slabs() and it still to be fixed.
8959 #ifdef CONFIG_CONTIG_ALLOC
8960 static unsigned long pfn_max_align_down(unsigned long pfn)
8962 return ALIGN_DOWN(pfn, MAX_ORDER_NR_PAGES);
8965 static unsigned long pfn_max_align_up(unsigned long pfn)
8967 return ALIGN(pfn, MAX_ORDER_NR_PAGES);
8970 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8971 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8972 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8973 static void alloc_contig_dump_pages(struct list_head *page_list)
8975 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8977 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8981 list_for_each_entry(page, page_list, lru)
8982 dump_page(page, "migration failure");
8986 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8991 /* [start, end) must belong to a single zone. */
8992 static int __alloc_contig_migrate_range(struct compact_control *cc,
8993 unsigned long start, unsigned long end)
8995 /* This function is based on compact_zone() from compaction.c. */
8996 unsigned int nr_reclaimed;
8997 unsigned long pfn = start;
8998 unsigned int tries = 0;
9000 struct migration_target_control mtc = {
9001 .nid = zone_to_nid(cc->zone),
9002 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9005 lru_cache_disable();
9007 while (pfn < end || !list_empty(&cc->migratepages)) {
9008 if (fatal_signal_pending(current)) {
9013 if (list_empty(&cc->migratepages)) {
9014 cc->nr_migratepages = 0;
9015 ret = isolate_migratepages_range(cc, pfn, end);
9016 if (ret && ret != -EAGAIN)
9018 pfn = cc->migrate_pfn;
9020 } else if (++tries == 5) {
9025 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9027 cc->nr_migratepages -= nr_reclaimed;
9029 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9030 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9033 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9034 * to retry again over this error, so do the same here.
9043 alloc_contig_dump_pages(&cc->migratepages);
9044 putback_movable_pages(&cc->migratepages);
9051 * alloc_contig_range() -- tries to allocate given range of pages
9052 * @start: start PFN to allocate
9053 * @end: one-past-the-last PFN to allocate
9054 * @migratetype: migratetype of the underlying pageblocks (either
9055 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9056 * in range must have the same migratetype and it must
9057 * be either of the two.
9058 * @gfp_mask: GFP mask to use during compaction
9060 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9061 * aligned. The PFN range must belong to a single zone.
9063 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9064 * pageblocks in the range. Once isolated, the pageblocks should not
9065 * be modified by others.
9067 * Return: zero on success or negative error code. On success all
9068 * pages which PFN is in [start, end) are allocated for the caller and
9069 * need to be freed with free_contig_range().
9071 int alloc_contig_range(unsigned long start, unsigned long end,
9072 unsigned migratetype, gfp_t gfp_mask)
9074 unsigned long outer_start, outer_end;
9078 struct compact_control cc = {
9079 .nr_migratepages = 0,
9081 .zone = page_zone(pfn_to_page(start)),
9082 .mode = MIGRATE_SYNC,
9083 .ignore_skip_hint = true,
9084 .no_set_skip_hint = true,
9085 .gfp_mask = current_gfp_context(gfp_mask),
9086 .alloc_contig = true,
9088 INIT_LIST_HEAD(&cc.migratepages);
9091 * What we do here is we mark all pageblocks in range as
9092 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9093 * have different sizes, and due to the way page allocator
9094 * work, we align the range to biggest of the two pages so
9095 * that page allocator won't try to merge buddies from
9096 * different pageblocks and change MIGRATE_ISOLATE to some
9097 * other migration type.
9099 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9100 * migrate the pages from an unaligned range (ie. pages that
9101 * we are interested in). This will put all the pages in
9102 * range back to page allocator as MIGRATE_ISOLATE.
9104 * When this is done, we take the pages in range from page
9105 * allocator removing them from the buddy system. This way
9106 * page allocator will never consider using them.
9108 * This lets us mark the pageblocks back as
9109 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9110 * aligned range but not in the unaligned, original range are
9111 * put back to page allocator so that buddy can use them.
9114 ret = start_isolate_page_range(pfn_max_align_down(start),
9115 pfn_max_align_up(end), migratetype, 0);
9119 drain_all_pages(cc.zone);
9122 * In case of -EBUSY, we'd like to know which page causes problem.
9123 * So, just fall through. test_pages_isolated() has a tracepoint
9124 * which will report the busy page.
9126 * It is possible that busy pages could become available before
9127 * the call to test_pages_isolated, and the range will actually be
9128 * allocated. So, if we fall through be sure to clear ret so that
9129 * -EBUSY is not accidentally used or returned to caller.
9131 ret = __alloc_contig_migrate_range(&cc, start, end);
9132 if (ret && ret != -EBUSY)
9137 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9138 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9139 * more, all pages in [start, end) are free in page allocator.
9140 * What we are going to do is to allocate all pages from
9141 * [start, end) (that is remove them from page allocator).
9143 * The only problem is that pages at the beginning and at the
9144 * end of interesting range may be not aligned with pages that
9145 * page allocator holds, ie. they can be part of higher order
9146 * pages. Because of this, we reserve the bigger range and
9147 * once this is done free the pages we are not interested in.
9149 * We don't have to hold zone->lock here because the pages are
9150 * isolated thus they won't get removed from buddy.
9154 outer_start = start;
9155 while (!PageBuddy(pfn_to_page(outer_start))) {
9156 if (++order >= MAX_ORDER) {
9157 outer_start = start;
9160 outer_start &= ~0UL << order;
9163 if (outer_start != start) {
9164 order = buddy_order(pfn_to_page(outer_start));
9167 * outer_start page could be small order buddy page and
9168 * it doesn't include start page. Adjust outer_start
9169 * in this case to report failed page properly
9170 * on tracepoint in test_pages_isolated()
9172 if (outer_start + (1UL << order) <= start)
9173 outer_start = start;
9176 /* Make sure the range is really isolated. */
9177 if (test_pages_isolated(outer_start, end, 0)) {
9182 /* Grab isolated pages from freelists. */
9183 outer_end = isolate_freepages_range(&cc, outer_start, end);
9189 /* Free head and tail (if any) */
9190 if (start != outer_start)
9191 free_contig_range(outer_start, start - outer_start);
9192 if (end != outer_end)
9193 free_contig_range(end, outer_end - end);
9196 undo_isolate_page_range(pfn_max_align_down(start),
9197 pfn_max_align_up(end), migratetype);
9200 EXPORT_SYMBOL(alloc_contig_range);
9202 static int __alloc_contig_pages(unsigned long start_pfn,
9203 unsigned long nr_pages, gfp_t gfp_mask)
9205 unsigned long end_pfn = start_pfn + nr_pages;
9207 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9211 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9212 unsigned long nr_pages)
9214 unsigned long i, end_pfn = start_pfn + nr_pages;
9217 for (i = start_pfn; i < end_pfn; i++) {
9218 page = pfn_to_online_page(i);
9222 if (page_zone(page) != z)
9225 if (PageReserved(page))
9231 static bool zone_spans_last_pfn(const struct zone *zone,
9232 unsigned long start_pfn, unsigned long nr_pages)
9234 unsigned long last_pfn = start_pfn + nr_pages - 1;
9236 return zone_spans_pfn(zone, last_pfn);
9240 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9241 * @nr_pages: Number of contiguous pages to allocate
9242 * @gfp_mask: GFP mask to limit search and used during compaction
9244 * @nodemask: Mask for other possible nodes
9246 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9247 * on an applicable zonelist to find a contiguous pfn range which can then be
9248 * tried for allocation with alloc_contig_range(). This routine is intended
9249 * for allocation requests which can not be fulfilled with the buddy allocator.
9251 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9252 * power of two, then allocated range is also guaranteed to be aligned to same
9253 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9255 * Allocated pages can be freed with free_contig_range() or by manually calling
9256 * __free_page() on each allocated page.
9258 * Return: pointer to contiguous pages on success, or NULL if not successful.
9260 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9261 int nid, nodemask_t *nodemask)
9263 unsigned long ret, pfn, flags;
9264 struct zonelist *zonelist;
9268 zonelist = node_zonelist(nid, gfp_mask);
9269 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9270 gfp_zone(gfp_mask), nodemask) {
9271 spin_lock_irqsave(&zone->lock, flags);
9273 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9274 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9275 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9277 * We release the zone lock here because
9278 * alloc_contig_range() will also lock the zone
9279 * at some point. If there's an allocation
9280 * spinning on this lock, it may win the race
9281 * and cause alloc_contig_range() to fail...
9283 spin_unlock_irqrestore(&zone->lock, flags);
9284 ret = __alloc_contig_pages(pfn, nr_pages,
9287 return pfn_to_page(pfn);
9288 spin_lock_irqsave(&zone->lock, flags);
9292 spin_unlock_irqrestore(&zone->lock, flags);
9296 #endif /* CONFIG_CONTIG_ALLOC */
9298 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9300 unsigned long count = 0;
9302 for (; nr_pages--; pfn++) {
9303 struct page *page = pfn_to_page(pfn);
9305 count += page_count(page) != 1;
9308 WARN(count != 0, "%lu pages are still in use!\n", count);
9310 EXPORT_SYMBOL(free_contig_range);
9313 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9314 * page high values need to be recalculated.
9316 void zone_pcp_update(struct zone *zone, int cpu_online)
9318 mutex_lock(&pcp_batch_high_lock);
9319 zone_set_pageset_high_and_batch(zone, cpu_online);
9320 mutex_unlock(&pcp_batch_high_lock);
9324 * Effectively disable pcplists for the zone by setting the high limit to 0
9325 * and draining all cpus. A concurrent page freeing on another CPU that's about
9326 * to put the page on pcplist will either finish before the drain and the page
9327 * will be drained, or observe the new high limit and skip the pcplist.
9329 * Must be paired with a call to zone_pcp_enable().
9331 void zone_pcp_disable(struct zone *zone)
9333 mutex_lock(&pcp_batch_high_lock);
9334 __zone_set_pageset_high_and_batch(zone, 0, 1);
9335 __drain_all_pages(zone, true);
9338 void zone_pcp_enable(struct zone *zone)
9340 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9341 mutex_unlock(&pcp_batch_high_lock);
9344 void zone_pcp_reset(struct zone *zone)
9347 struct per_cpu_zonestat *pzstats;
9349 if (zone->per_cpu_pageset != &boot_pageset) {
9350 for_each_online_cpu(cpu) {
9351 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9352 drain_zonestat(zone, pzstats);
9354 free_percpu(zone->per_cpu_pageset);
9355 free_percpu(zone->per_cpu_zonestats);
9356 zone->per_cpu_pageset = &boot_pageset;
9357 zone->per_cpu_zonestats = &boot_zonestats;
9361 #ifdef CONFIG_MEMORY_HOTREMOVE
9363 * All pages in the range must be in a single zone, must not contain holes,
9364 * must span full sections, and must be isolated before calling this function.
9366 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9368 unsigned long pfn = start_pfn;
9372 unsigned long flags;
9374 offline_mem_sections(pfn, end_pfn);
9375 zone = page_zone(pfn_to_page(pfn));
9376 spin_lock_irqsave(&zone->lock, flags);
9377 while (pfn < end_pfn) {
9378 page = pfn_to_page(pfn);
9380 * The HWPoisoned page may be not in buddy system, and
9381 * page_count() is not 0.
9383 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9388 * At this point all remaining PageOffline() pages have a
9389 * reference count of 0 and can simply be skipped.
9391 if (PageOffline(page)) {
9392 BUG_ON(page_count(page));
9393 BUG_ON(PageBuddy(page));
9398 BUG_ON(page_count(page));
9399 BUG_ON(!PageBuddy(page));
9400 order = buddy_order(page);
9401 del_page_from_free_list(page, zone, order);
9402 pfn += (1 << order);
9404 spin_unlock_irqrestore(&zone->lock, flags);
9409 * This function returns a stable result only if called under zone lock.
9411 bool is_free_buddy_page(struct page *page)
9413 unsigned long pfn = page_to_pfn(page);
9416 for (order = 0; order < MAX_ORDER; order++) {
9417 struct page *page_head = page - (pfn & ((1 << order) - 1));
9419 if (PageBuddy(page_head) &&
9420 buddy_order_unsafe(page_head) >= order)
9424 return order < MAX_ORDER;
9427 #ifdef CONFIG_MEMORY_FAILURE
9429 * Break down a higher-order page in sub-pages, and keep our target out of
9432 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9433 struct page *target, int low, int high,
9436 unsigned long size = 1 << high;
9437 struct page *current_buddy, *next_page;
9439 while (high > low) {
9443 if (target >= &page[size]) {
9444 next_page = page + size;
9445 current_buddy = page;
9448 current_buddy = page + size;
9451 if (set_page_guard(zone, current_buddy, high, migratetype))
9454 if (current_buddy != target) {
9455 add_to_free_list(current_buddy, zone, high, migratetype);
9456 set_buddy_order(current_buddy, high);
9463 * Take a page that will be marked as poisoned off the buddy allocator.
9465 bool take_page_off_buddy(struct page *page)
9467 struct zone *zone = page_zone(page);
9468 unsigned long pfn = page_to_pfn(page);
9469 unsigned long flags;
9473 spin_lock_irqsave(&zone->lock, flags);
9474 for (order = 0; order < MAX_ORDER; order++) {
9475 struct page *page_head = page - (pfn & ((1 << order) - 1));
9476 int page_order = buddy_order(page_head);
9478 if (PageBuddy(page_head) && page_order >= order) {
9479 unsigned long pfn_head = page_to_pfn(page_head);
9480 int migratetype = get_pfnblock_migratetype(page_head,
9483 del_page_from_free_list(page_head, zone, page_order);
9484 break_down_buddy_pages(zone, page_head, page, 0,
9485 page_order, migratetype);
9486 SetPageHWPoisonTakenOff(page);
9487 if (!is_migrate_isolate(migratetype))
9488 __mod_zone_freepage_state(zone, -1, migratetype);
9492 if (page_count(page_head) > 0)
9495 spin_unlock_irqrestore(&zone->lock, flags);
9500 * Cancel takeoff done by take_page_off_buddy().
9502 bool put_page_back_buddy(struct page *page)
9504 struct zone *zone = page_zone(page);
9505 unsigned long pfn = page_to_pfn(page);
9506 unsigned long flags;
9507 int migratetype = get_pfnblock_migratetype(page, pfn);
9510 spin_lock_irqsave(&zone->lock, flags);
9511 if (put_page_testzero(page)) {
9512 ClearPageHWPoisonTakenOff(page);
9513 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9514 if (TestClearPageHWPoison(page)) {
9515 num_poisoned_pages_dec();
9519 spin_unlock_irqrestore(&zone->lock, flags);
9525 #ifdef CONFIG_ZONE_DMA
9526 bool has_managed_dma(void)
9528 struct pglist_data *pgdat;
9530 for_each_online_pgdat(pgdat) {
9531 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9533 if (managed_zone(zone))
9538 #endif /* CONFIG_ZONE_DMA */