1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
26 #include <trace/events/f2fs.h>
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *inmem_entry_slab;
35 static unsigned long __reverse_ulong(unsigned char *str)
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
40 #if BITS_PER_LONG == 64
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
54 static inline unsigned long __reverse_ffs(unsigned long word)
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
64 if ((word & 0xffff0000) == 0)
69 if ((word & 0xff00) == 0)
74 if ((word & 0xf0) == 0)
79 if ((word & 0xc) == 0)
84 if ((word & 0x2) == 0)
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
115 tmp = __reverse_ulong((unsigned char *)p);
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
123 if (size <= BITS_PER_LONG)
125 size -= BITS_PER_LONG;
131 return result - size + __reverse_ffs(tmp);
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
151 tmp = __reverse_ulong((unsigned char *)p);
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
160 if (size <= BITS_PER_LONG)
162 size -= BITS_PER_LONG;
168 return result - size + __reverse_ffz(tmp);
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177 if (f2fs_lfs_mode(sbi))
179 if (sbi->gc_mode == GC_URGENT_HIGH)
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
188 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
190 struct inmem_pages *new;
192 set_page_private_atomic(page);
194 new = f2fs_kmem_cache_alloc(inmem_entry_slab,
195 GFP_NOFS, true, NULL);
197 /* add atomic page indices to the list */
199 INIT_LIST_HEAD(&new->list);
201 /* increase reference count with clean state */
203 mutex_lock(&F2FS_I(inode)->inmem_lock);
204 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
205 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
206 mutex_unlock(&F2FS_I(inode)->inmem_lock);
208 trace_f2fs_register_inmem_page(page, INMEM);
211 static int __revoke_inmem_pages(struct inode *inode,
212 struct list_head *head, bool drop, bool recover,
215 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
216 struct inmem_pages *cur, *tmp;
219 list_for_each_entry_safe(cur, tmp, head, list) {
220 struct page *page = cur->page;
223 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
227 * to avoid deadlock in between page lock and
230 if (!trylock_page(page))
236 f2fs_wait_on_page_writeback(page, DATA, true, true);
239 struct dnode_of_data dn;
242 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
244 set_new_dnode(&dn, inode, NULL, NULL, 0);
245 err = f2fs_get_dnode_of_data(&dn, page->index,
248 if (err == -ENOMEM) {
249 memalloc_retry_wait(GFP_NOFS);
256 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
262 if (cur->old_addr == NEW_ADDR) {
263 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
264 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
266 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
267 cur->old_addr, ni.version, true, true);
271 /* we don't need to invalidate this in the sccessful status */
272 if (drop || recover) {
273 ClearPageUptodate(page);
274 clear_page_private_gcing(page);
276 detach_page_private(page);
277 set_page_private(page, 0);
278 f2fs_put_page(page, 1);
280 list_del(&cur->list);
281 kmem_cache_free(inmem_entry_slab, cur);
282 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
289 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
291 struct f2fs_inode_info *fi;
292 unsigned int count = sbi->atomic_files;
293 unsigned int looped = 0;
295 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296 if (list_empty(head)) {
297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
300 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301 inode = igrab(&fi->vfs_inode);
303 list_move_tail(&fi->inmem_ilist, head);
304 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
308 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
311 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312 f2fs_drop_inmem_pages(inode);
316 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
318 if (++looped >= count)
324 void f2fs_drop_inmem_pages(struct inode *inode)
326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
327 struct f2fs_inode_info *fi = F2FS_I(inode);
330 mutex_lock(&fi->inmem_lock);
331 if (list_empty(&fi->inmem_pages)) {
332 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
334 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
335 if (!list_empty(&fi->inmem_ilist))
336 list_del_init(&fi->inmem_ilist);
337 if (f2fs_is_atomic_file(inode)) {
338 clear_inode_flag(inode, FI_ATOMIC_FILE);
341 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
343 mutex_unlock(&fi->inmem_lock);
346 __revoke_inmem_pages(inode, &fi->inmem_pages,
348 mutex_unlock(&fi->inmem_lock);
352 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
354 struct f2fs_inode_info *fi = F2FS_I(inode);
355 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
356 struct list_head *head = &fi->inmem_pages;
357 struct inmem_pages *cur = NULL;
359 f2fs_bug_on(sbi, !page_private_atomic(page));
361 mutex_lock(&fi->inmem_lock);
362 list_for_each_entry(cur, head, list) {
363 if (cur->page == page)
367 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
368 list_del(&cur->list);
369 mutex_unlock(&fi->inmem_lock);
371 dec_page_count(sbi, F2FS_INMEM_PAGES);
372 kmem_cache_free(inmem_entry_slab, cur);
374 ClearPageUptodate(page);
375 clear_page_private_atomic(page);
376 f2fs_put_page(page, 0);
378 detach_page_private(page);
379 set_page_private(page, 0);
381 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
384 static int __f2fs_commit_inmem_pages(struct inode *inode)
386 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
387 struct f2fs_inode_info *fi = F2FS_I(inode);
388 struct inmem_pages *cur, *tmp;
389 struct f2fs_io_info fio = {
394 .op_flags = REQ_SYNC | REQ_PRIO,
395 .io_type = FS_DATA_IO,
397 struct list_head revoke_list;
398 bool submit_bio = false;
401 INIT_LIST_HEAD(&revoke_list);
403 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
404 struct page *page = cur->page;
407 if (page->mapping == inode->i_mapping) {
408 trace_f2fs_commit_inmem_page(page, INMEM);
410 f2fs_wait_on_page_writeback(page, DATA, true, true);
412 set_page_dirty(page);
413 if (clear_page_dirty_for_io(page)) {
414 inode_dec_dirty_pages(inode);
415 f2fs_remove_dirty_inode(inode);
419 fio.old_blkaddr = NULL_ADDR;
420 fio.encrypted_page = NULL;
421 fio.need_lock = LOCK_DONE;
422 err = f2fs_do_write_data_page(&fio);
424 if (err == -ENOMEM) {
425 memalloc_retry_wait(GFP_NOFS);
431 /* record old blkaddr for revoking */
432 cur->old_addr = fio.old_blkaddr;
436 list_move_tail(&cur->list, &revoke_list);
440 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
444 * try to revoke all committed pages, but still we could fail
445 * due to no memory or other reason, if that happened, EAGAIN
446 * will be returned, which means in such case, transaction is
447 * already not integrity, caller should use journal to do the
448 * recovery or rewrite & commit last transaction. For other
449 * error number, revoking was done by filesystem itself.
451 err = __revoke_inmem_pages(inode, &revoke_list,
454 /* drop all uncommitted pages */
455 __revoke_inmem_pages(inode, &fi->inmem_pages,
458 __revoke_inmem_pages(inode, &revoke_list,
459 false, false, false);
465 int f2fs_commit_inmem_pages(struct inode *inode)
467 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
468 struct f2fs_inode_info *fi = F2FS_I(inode);
471 f2fs_balance_fs(sbi, true);
473 down_write(&fi->i_gc_rwsem[WRITE]);
476 set_inode_flag(inode, FI_ATOMIC_COMMIT);
478 mutex_lock(&fi->inmem_lock);
479 err = __f2fs_commit_inmem_pages(inode);
480 mutex_unlock(&fi->inmem_lock);
482 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
485 up_write(&fi->i_gc_rwsem[WRITE]);
491 * This function balances dirty node and dentry pages.
492 * In addition, it controls garbage collection.
494 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
496 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
497 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
498 f2fs_stop_checkpoint(sbi, false);
501 /* balance_fs_bg is able to be pending */
502 if (need && excess_cached_nats(sbi))
503 f2fs_balance_fs_bg(sbi, false);
505 if (!f2fs_is_checkpoint_ready(sbi))
509 * We should do GC or end up with checkpoint, if there are so many dirty
510 * dir/node pages without enough free segments.
512 if (has_not_enough_free_secs(sbi, 0, 0)) {
513 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
514 sbi->gc_thread->f2fs_gc_task) {
517 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
518 TASK_UNINTERRUPTIBLE);
519 wake_up(&sbi->gc_thread->gc_wait_queue_head);
521 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
523 down_write(&sbi->gc_lock);
524 f2fs_gc(sbi, false, false, false, NULL_SEGNO);
529 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
531 int factor = rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
532 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
533 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
534 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
535 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
536 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
537 unsigned int threshold = sbi->blocks_per_seg * factor *
538 DEFAULT_DIRTY_THRESHOLD;
539 unsigned int global_threshold = threshold * 3 / 2;
541 if (dents >= threshold || qdata >= threshold ||
542 nodes >= threshold || meta >= threshold ||
545 return dents + qdata + nodes + meta + imeta > global_threshold;
548 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
550 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
553 /* try to shrink extent cache when there is no enough memory */
554 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
555 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
557 /* check the # of cached NAT entries */
558 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
559 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
561 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
562 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
564 f2fs_build_free_nids(sbi, false, false);
566 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
567 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
570 /* there is background inflight IO or foreground operation recently */
571 if (is_inflight_io(sbi, REQ_TIME) ||
572 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
575 /* exceed periodical checkpoint timeout threshold */
576 if (f2fs_time_over(sbi, CP_TIME))
579 /* checkpoint is the only way to shrink partial cached entries */
580 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
581 f2fs_available_free_memory(sbi, INO_ENTRIES))
585 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
586 struct blk_plug plug;
588 mutex_lock(&sbi->flush_lock);
590 blk_start_plug(&plug);
591 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
592 blk_finish_plug(&plug);
594 mutex_unlock(&sbi->flush_lock);
596 f2fs_sync_fs(sbi->sb, true);
597 stat_inc_bg_cp_count(sbi->stat_info);
600 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
601 struct block_device *bdev)
603 int ret = blkdev_issue_flush(bdev);
605 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
606 test_opt(sbi, FLUSH_MERGE), ret);
610 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
615 if (!f2fs_is_multi_device(sbi))
616 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
618 for (i = 0; i < sbi->s_ndevs; i++) {
619 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
621 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
628 static int issue_flush_thread(void *data)
630 struct f2fs_sb_info *sbi = data;
631 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
632 wait_queue_head_t *q = &fcc->flush_wait_queue;
634 if (kthread_should_stop())
637 if (!llist_empty(&fcc->issue_list)) {
638 struct flush_cmd *cmd, *next;
641 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
642 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
644 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
646 ret = submit_flush_wait(sbi, cmd->ino);
647 atomic_inc(&fcc->issued_flush);
649 llist_for_each_entry_safe(cmd, next,
650 fcc->dispatch_list, llnode) {
652 complete(&cmd->wait);
654 fcc->dispatch_list = NULL;
657 wait_event_interruptible(*q,
658 kthread_should_stop() || !llist_empty(&fcc->issue_list));
662 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
664 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
665 struct flush_cmd cmd;
668 if (test_opt(sbi, NOBARRIER))
671 if (!test_opt(sbi, FLUSH_MERGE)) {
672 atomic_inc(&fcc->queued_flush);
673 ret = submit_flush_wait(sbi, ino);
674 atomic_dec(&fcc->queued_flush);
675 atomic_inc(&fcc->issued_flush);
679 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
680 f2fs_is_multi_device(sbi)) {
681 ret = submit_flush_wait(sbi, ino);
682 atomic_dec(&fcc->queued_flush);
684 atomic_inc(&fcc->issued_flush);
689 init_completion(&cmd.wait);
691 llist_add(&cmd.llnode, &fcc->issue_list);
694 * update issue_list before we wake up issue_flush thread, this
695 * smp_mb() pairs with another barrier in ___wait_event(), see
696 * more details in comments of waitqueue_active().
700 if (waitqueue_active(&fcc->flush_wait_queue))
701 wake_up(&fcc->flush_wait_queue);
703 if (fcc->f2fs_issue_flush) {
704 wait_for_completion(&cmd.wait);
705 atomic_dec(&fcc->queued_flush);
707 struct llist_node *list;
709 list = llist_del_all(&fcc->issue_list);
711 wait_for_completion(&cmd.wait);
712 atomic_dec(&fcc->queued_flush);
714 struct flush_cmd *tmp, *next;
716 ret = submit_flush_wait(sbi, ino);
718 llist_for_each_entry_safe(tmp, next, list, llnode) {
721 atomic_dec(&fcc->queued_flush);
725 complete(&tmp->wait);
733 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
735 dev_t dev = sbi->sb->s_bdev->bd_dev;
736 struct flush_cmd_control *fcc;
739 if (SM_I(sbi)->fcc_info) {
740 fcc = SM_I(sbi)->fcc_info;
741 if (fcc->f2fs_issue_flush)
746 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
749 atomic_set(&fcc->issued_flush, 0);
750 atomic_set(&fcc->queued_flush, 0);
751 init_waitqueue_head(&fcc->flush_wait_queue);
752 init_llist_head(&fcc->issue_list);
753 SM_I(sbi)->fcc_info = fcc;
754 if (!test_opt(sbi, FLUSH_MERGE))
758 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
759 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
760 if (IS_ERR(fcc->f2fs_issue_flush)) {
761 err = PTR_ERR(fcc->f2fs_issue_flush);
763 SM_I(sbi)->fcc_info = NULL;
770 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
772 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
774 if (fcc && fcc->f2fs_issue_flush) {
775 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
777 fcc->f2fs_issue_flush = NULL;
778 kthread_stop(flush_thread);
782 SM_I(sbi)->fcc_info = NULL;
786 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
790 if (!f2fs_is_multi_device(sbi))
793 if (test_opt(sbi, NOBARRIER))
796 for (i = 1; i < sbi->s_ndevs; i++) {
797 int count = DEFAULT_RETRY_IO_COUNT;
799 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
803 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
805 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
806 } while (ret && --count);
809 f2fs_stop_checkpoint(sbi, false);
813 spin_lock(&sbi->dev_lock);
814 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
815 spin_unlock(&sbi->dev_lock);
821 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
822 enum dirty_type dirty_type)
824 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
826 /* need not be added */
827 if (IS_CURSEG(sbi, segno))
830 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
831 dirty_i->nr_dirty[dirty_type]++;
833 if (dirty_type == DIRTY) {
834 struct seg_entry *sentry = get_seg_entry(sbi, segno);
835 enum dirty_type t = sentry->type;
837 if (unlikely(t >= DIRTY)) {
841 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
842 dirty_i->nr_dirty[t]++;
844 if (__is_large_section(sbi)) {
845 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
846 block_t valid_blocks =
847 get_valid_blocks(sbi, segno, true);
849 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
850 valid_blocks == BLKS_PER_SEC(sbi)));
852 if (!IS_CURSEC(sbi, secno))
853 set_bit(secno, dirty_i->dirty_secmap);
858 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
859 enum dirty_type dirty_type)
861 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
862 block_t valid_blocks;
864 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
865 dirty_i->nr_dirty[dirty_type]--;
867 if (dirty_type == DIRTY) {
868 struct seg_entry *sentry = get_seg_entry(sbi, segno);
869 enum dirty_type t = sentry->type;
871 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
872 dirty_i->nr_dirty[t]--;
874 valid_blocks = get_valid_blocks(sbi, segno, true);
875 if (valid_blocks == 0) {
876 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
877 dirty_i->victim_secmap);
878 #ifdef CONFIG_F2FS_CHECK_FS
879 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
882 if (__is_large_section(sbi)) {
883 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
886 valid_blocks == BLKS_PER_SEC(sbi)) {
887 clear_bit(secno, dirty_i->dirty_secmap);
891 if (!IS_CURSEC(sbi, secno))
892 set_bit(secno, dirty_i->dirty_secmap);
898 * Should not occur error such as -ENOMEM.
899 * Adding dirty entry into seglist is not critical operation.
900 * If a given segment is one of current working segments, it won't be added.
902 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
904 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
905 unsigned short valid_blocks, ckpt_valid_blocks;
906 unsigned int usable_blocks;
908 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
911 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
912 mutex_lock(&dirty_i->seglist_lock);
914 valid_blocks = get_valid_blocks(sbi, segno, false);
915 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
917 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
918 ckpt_valid_blocks == usable_blocks)) {
919 __locate_dirty_segment(sbi, segno, PRE);
920 __remove_dirty_segment(sbi, segno, DIRTY);
921 } else if (valid_blocks < usable_blocks) {
922 __locate_dirty_segment(sbi, segno, DIRTY);
924 /* Recovery routine with SSR needs this */
925 __remove_dirty_segment(sbi, segno, DIRTY);
928 mutex_unlock(&dirty_i->seglist_lock);
931 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
932 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
934 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
937 mutex_lock(&dirty_i->seglist_lock);
938 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
939 if (get_valid_blocks(sbi, segno, false))
941 if (IS_CURSEG(sbi, segno))
943 __locate_dirty_segment(sbi, segno, PRE);
944 __remove_dirty_segment(sbi, segno, DIRTY);
946 mutex_unlock(&dirty_i->seglist_lock);
949 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
952 (overprovision_segments(sbi) - reserved_segments(sbi));
953 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
954 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
955 block_t holes[2] = {0, 0}; /* DATA and NODE */
957 struct seg_entry *se;
960 mutex_lock(&dirty_i->seglist_lock);
961 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
962 se = get_seg_entry(sbi, segno);
963 if (IS_NODESEG(se->type))
964 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
967 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
970 mutex_unlock(&dirty_i->seglist_lock);
972 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
973 if (unusable > ovp_holes)
974 return unusable - ovp_holes;
978 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
981 (overprovision_segments(sbi) - reserved_segments(sbi));
982 if (unusable > F2FS_OPTION(sbi).unusable_cap)
984 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
985 dirty_segments(sbi) > ovp_hole_segs)
990 /* This is only used by SBI_CP_DISABLED */
991 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
993 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
994 unsigned int segno = 0;
996 mutex_lock(&dirty_i->seglist_lock);
997 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
998 if (get_valid_blocks(sbi, segno, false))
1000 if (get_ckpt_valid_blocks(sbi, segno, false))
1002 mutex_unlock(&dirty_i->seglist_lock);
1005 mutex_unlock(&dirty_i->seglist_lock);
1009 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
1010 struct block_device *bdev, block_t lstart,
1011 block_t start, block_t len)
1013 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1014 struct list_head *pend_list;
1015 struct discard_cmd *dc;
1017 f2fs_bug_on(sbi, !len);
1019 pend_list = &dcc->pend_list[plist_idx(len)];
1021 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
1022 INIT_LIST_HEAD(&dc->list);
1024 dc->lstart = lstart;
1031 init_completion(&dc->wait);
1032 list_add_tail(&dc->list, pend_list);
1033 spin_lock_init(&dc->lock);
1035 atomic_inc(&dcc->discard_cmd_cnt);
1036 dcc->undiscard_blks += len;
1041 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1042 struct block_device *bdev, block_t lstart,
1043 block_t start, block_t len,
1044 struct rb_node *parent, struct rb_node **p,
1047 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1048 struct discard_cmd *dc;
1050 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1052 rb_link_node(&dc->rb_node, parent, p);
1053 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1058 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1059 struct discard_cmd *dc)
1061 if (dc->state == D_DONE)
1062 atomic_sub(dc->queued, &dcc->queued_discard);
1064 list_del(&dc->list);
1065 rb_erase_cached(&dc->rb_node, &dcc->root);
1066 dcc->undiscard_blks -= dc->len;
1068 kmem_cache_free(discard_cmd_slab, dc);
1070 atomic_dec(&dcc->discard_cmd_cnt);
1073 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1074 struct discard_cmd *dc)
1076 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1077 unsigned long flags;
1079 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1081 spin_lock_irqsave(&dc->lock, flags);
1083 spin_unlock_irqrestore(&dc->lock, flags);
1086 spin_unlock_irqrestore(&dc->lock, flags);
1088 f2fs_bug_on(sbi, dc->ref);
1090 if (dc->error == -EOPNOTSUPP)
1095 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1096 KERN_INFO, sbi->sb->s_id,
1097 dc->lstart, dc->start, dc->len, dc->error);
1098 __detach_discard_cmd(dcc, dc);
1101 static void f2fs_submit_discard_endio(struct bio *bio)
1103 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1104 unsigned long flags;
1106 spin_lock_irqsave(&dc->lock, flags);
1108 dc->error = blk_status_to_errno(bio->bi_status);
1110 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1112 complete_all(&dc->wait);
1114 spin_unlock_irqrestore(&dc->lock, flags);
1118 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1119 block_t start, block_t end)
1121 #ifdef CONFIG_F2FS_CHECK_FS
1122 struct seg_entry *sentry;
1124 block_t blk = start;
1125 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1129 segno = GET_SEGNO(sbi, blk);
1130 sentry = get_seg_entry(sbi, segno);
1131 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1133 if (end < START_BLOCK(sbi, segno + 1))
1134 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1137 map = (unsigned long *)(sentry->cur_valid_map);
1138 offset = __find_rev_next_bit(map, size, offset);
1139 f2fs_bug_on(sbi, offset != size);
1140 blk = START_BLOCK(sbi, segno + 1);
1145 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1146 struct discard_policy *dpolicy,
1147 int discard_type, unsigned int granularity)
1149 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1152 dpolicy->type = discard_type;
1153 dpolicy->sync = true;
1154 dpolicy->ordered = false;
1155 dpolicy->granularity = granularity;
1157 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1158 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1159 dpolicy->timeout = false;
1161 if (discard_type == DPOLICY_BG) {
1162 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1163 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1164 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1165 dpolicy->io_aware = true;
1166 dpolicy->sync = false;
1167 dpolicy->ordered = true;
1168 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1169 dpolicy->granularity = 1;
1170 if (atomic_read(&dcc->discard_cmd_cnt))
1171 dpolicy->max_interval =
1172 DEF_MIN_DISCARD_ISSUE_TIME;
1174 } else if (discard_type == DPOLICY_FORCE) {
1175 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1176 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1177 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1178 dpolicy->io_aware = false;
1179 } else if (discard_type == DPOLICY_FSTRIM) {
1180 dpolicy->io_aware = false;
1181 } else if (discard_type == DPOLICY_UMOUNT) {
1182 dpolicy->io_aware = false;
1183 /* we need to issue all to keep CP_TRIMMED_FLAG */
1184 dpolicy->granularity = 1;
1185 dpolicy->timeout = true;
1189 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1190 struct block_device *bdev, block_t lstart,
1191 block_t start, block_t len);
1192 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1193 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1194 struct discard_policy *dpolicy,
1195 struct discard_cmd *dc,
1196 unsigned int *issued)
1198 struct block_device *bdev = dc->bdev;
1199 struct request_queue *q = bdev_get_queue(bdev);
1200 unsigned int max_discard_blocks =
1201 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1202 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1203 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1204 &(dcc->fstrim_list) : &(dcc->wait_list);
1205 int flag = dpolicy->sync ? REQ_SYNC : 0;
1206 block_t lstart, start, len, total_len;
1209 if (dc->state != D_PREP)
1212 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1215 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1217 lstart = dc->lstart;
1224 while (total_len && *issued < dpolicy->max_requests && !err) {
1225 struct bio *bio = NULL;
1226 unsigned long flags;
1229 if (len > max_discard_blocks) {
1230 len = max_discard_blocks;
1235 if (*issued == dpolicy->max_requests)
1240 if (time_to_inject(sbi, FAULT_DISCARD)) {
1241 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1245 err = __blkdev_issue_discard(bdev,
1246 SECTOR_FROM_BLOCK(start),
1247 SECTOR_FROM_BLOCK(len),
1251 spin_lock_irqsave(&dc->lock, flags);
1252 if (dc->state == D_PARTIAL)
1253 dc->state = D_SUBMIT;
1254 spin_unlock_irqrestore(&dc->lock, flags);
1259 f2fs_bug_on(sbi, !bio);
1262 * should keep before submission to avoid D_DONE
1265 spin_lock_irqsave(&dc->lock, flags);
1267 dc->state = D_SUBMIT;
1269 dc->state = D_PARTIAL;
1271 spin_unlock_irqrestore(&dc->lock, flags);
1273 atomic_inc(&dcc->queued_discard);
1275 list_move_tail(&dc->list, wait_list);
1277 /* sanity check on discard range */
1278 __check_sit_bitmap(sbi, lstart, lstart + len);
1280 bio->bi_private = dc;
1281 bio->bi_end_io = f2fs_submit_discard_endio;
1282 bio->bi_opf |= flag;
1285 atomic_inc(&dcc->issued_discard);
1287 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1296 dcc->undiscard_blks -= len;
1297 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1302 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1303 struct block_device *bdev, block_t lstart,
1304 block_t start, block_t len,
1305 struct rb_node **insert_p,
1306 struct rb_node *insert_parent)
1308 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1310 struct rb_node *parent = NULL;
1311 bool leftmost = true;
1313 if (insert_p && insert_parent) {
1314 parent = insert_parent;
1319 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1322 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1326 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1327 struct discard_cmd *dc)
1329 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1332 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1333 struct discard_cmd *dc, block_t blkaddr)
1335 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1336 struct discard_info di = dc->di;
1337 bool modified = false;
1339 if (dc->state == D_DONE || dc->len == 1) {
1340 __remove_discard_cmd(sbi, dc);
1344 dcc->undiscard_blks -= di.len;
1346 if (blkaddr > di.lstart) {
1347 dc->len = blkaddr - dc->lstart;
1348 dcc->undiscard_blks += dc->len;
1349 __relocate_discard_cmd(dcc, dc);
1353 if (blkaddr < di.lstart + di.len - 1) {
1355 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1356 di.start + blkaddr + 1 - di.lstart,
1357 di.lstart + di.len - 1 - blkaddr,
1363 dcc->undiscard_blks += dc->len;
1364 __relocate_discard_cmd(dcc, dc);
1369 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1370 struct block_device *bdev, block_t lstart,
1371 block_t start, block_t len)
1373 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1374 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1375 struct discard_cmd *dc;
1376 struct discard_info di = {0};
1377 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1378 struct request_queue *q = bdev_get_queue(bdev);
1379 unsigned int max_discard_blocks =
1380 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1381 block_t end = lstart + len;
1383 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1385 (struct rb_entry **)&prev_dc,
1386 (struct rb_entry **)&next_dc,
1387 &insert_p, &insert_parent, true, NULL);
1393 di.len = next_dc ? next_dc->lstart - lstart : len;
1394 di.len = min(di.len, len);
1399 struct rb_node *node;
1400 bool merged = false;
1401 struct discard_cmd *tdc = NULL;
1404 di.lstart = prev_dc->lstart + prev_dc->len;
1405 if (di.lstart < lstart)
1407 if (di.lstart >= end)
1410 if (!next_dc || next_dc->lstart > end)
1411 di.len = end - di.lstart;
1413 di.len = next_dc->lstart - di.lstart;
1414 di.start = start + di.lstart - lstart;
1420 if (prev_dc && prev_dc->state == D_PREP &&
1421 prev_dc->bdev == bdev &&
1422 __is_discard_back_mergeable(&di, &prev_dc->di,
1423 max_discard_blocks)) {
1424 prev_dc->di.len += di.len;
1425 dcc->undiscard_blks += di.len;
1426 __relocate_discard_cmd(dcc, prev_dc);
1432 if (next_dc && next_dc->state == D_PREP &&
1433 next_dc->bdev == bdev &&
1434 __is_discard_front_mergeable(&di, &next_dc->di,
1435 max_discard_blocks)) {
1436 next_dc->di.lstart = di.lstart;
1437 next_dc->di.len += di.len;
1438 next_dc->di.start = di.start;
1439 dcc->undiscard_blks += di.len;
1440 __relocate_discard_cmd(dcc, next_dc);
1442 __remove_discard_cmd(sbi, tdc);
1447 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1448 di.len, NULL, NULL);
1455 node = rb_next(&prev_dc->rb_node);
1456 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1460 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1461 struct block_device *bdev, block_t blkstart, block_t blklen)
1463 block_t lblkstart = blkstart;
1465 if (!f2fs_bdev_support_discard(bdev))
1468 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1470 if (f2fs_is_multi_device(sbi)) {
1471 int devi = f2fs_target_device_index(sbi, blkstart);
1473 blkstart -= FDEV(devi).start_blk;
1475 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1476 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1477 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1481 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1482 struct discard_policy *dpolicy)
1484 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1485 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1486 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1487 struct discard_cmd *dc;
1488 struct blk_plug plug;
1489 unsigned int pos = dcc->next_pos;
1490 unsigned int issued = 0;
1491 bool io_interrupted = false;
1493 mutex_lock(&dcc->cmd_lock);
1494 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1496 (struct rb_entry **)&prev_dc,
1497 (struct rb_entry **)&next_dc,
1498 &insert_p, &insert_parent, true, NULL);
1502 blk_start_plug(&plug);
1505 struct rb_node *node;
1508 if (dc->state != D_PREP)
1511 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1512 io_interrupted = true;
1516 dcc->next_pos = dc->lstart + dc->len;
1517 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1519 if (issued >= dpolicy->max_requests)
1522 node = rb_next(&dc->rb_node);
1524 __remove_discard_cmd(sbi, dc);
1525 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1528 blk_finish_plug(&plug);
1533 mutex_unlock(&dcc->cmd_lock);
1535 if (!issued && io_interrupted)
1540 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1541 struct discard_policy *dpolicy);
1543 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1544 struct discard_policy *dpolicy)
1546 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1547 struct list_head *pend_list;
1548 struct discard_cmd *dc, *tmp;
1549 struct blk_plug plug;
1551 bool io_interrupted = false;
1553 if (dpolicy->timeout)
1554 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1558 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1559 if (dpolicy->timeout &&
1560 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1563 if (i + 1 < dpolicy->granularity)
1566 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1567 return __issue_discard_cmd_orderly(sbi, dpolicy);
1569 pend_list = &dcc->pend_list[i];
1571 mutex_lock(&dcc->cmd_lock);
1572 if (list_empty(pend_list))
1574 if (unlikely(dcc->rbtree_check))
1575 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1576 &dcc->root, false));
1577 blk_start_plug(&plug);
1578 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1579 f2fs_bug_on(sbi, dc->state != D_PREP);
1581 if (dpolicy->timeout &&
1582 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1585 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1586 !is_idle(sbi, DISCARD_TIME)) {
1587 io_interrupted = true;
1591 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1593 if (issued >= dpolicy->max_requests)
1596 blk_finish_plug(&plug);
1598 mutex_unlock(&dcc->cmd_lock);
1600 if (issued >= dpolicy->max_requests || io_interrupted)
1604 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1605 __wait_all_discard_cmd(sbi, dpolicy);
1609 if (!issued && io_interrupted)
1615 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1617 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1618 struct list_head *pend_list;
1619 struct discard_cmd *dc, *tmp;
1621 bool dropped = false;
1623 mutex_lock(&dcc->cmd_lock);
1624 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1625 pend_list = &dcc->pend_list[i];
1626 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1627 f2fs_bug_on(sbi, dc->state != D_PREP);
1628 __remove_discard_cmd(sbi, dc);
1632 mutex_unlock(&dcc->cmd_lock);
1637 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1639 __drop_discard_cmd(sbi);
1642 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1643 struct discard_cmd *dc)
1645 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1646 unsigned int len = 0;
1648 wait_for_completion_io(&dc->wait);
1649 mutex_lock(&dcc->cmd_lock);
1650 f2fs_bug_on(sbi, dc->state != D_DONE);
1655 __remove_discard_cmd(sbi, dc);
1657 mutex_unlock(&dcc->cmd_lock);
1662 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1663 struct discard_policy *dpolicy,
1664 block_t start, block_t end)
1666 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1667 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1668 &(dcc->fstrim_list) : &(dcc->wait_list);
1669 struct discard_cmd *dc, *tmp;
1671 unsigned int trimmed = 0;
1676 mutex_lock(&dcc->cmd_lock);
1677 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1678 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1680 if (dc->len < dpolicy->granularity)
1682 if (dc->state == D_DONE && !dc->ref) {
1683 wait_for_completion_io(&dc->wait);
1686 __remove_discard_cmd(sbi, dc);
1693 mutex_unlock(&dcc->cmd_lock);
1696 trimmed += __wait_one_discard_bio(sbi, dc);
1703 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1704 struct discard_policy *dpolicy)
1706 struct discard_policy dp;
1707 unsigned int discard_blks;
1710 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1713 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1714 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1715 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1716 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1718 return discard_blks;
1721 /* This should be covered by global mutex, &sit_i->sentry_lock */
1722 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1724 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1725 struct discard_cmd *dc;
1726 bool need_wait = false;
1728 mutex_lock(&dcc->cmd_lock);
1729 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1732 if (dc->state == D_PREP) {
1733 __punch_discard_cmd(sbi, dc, blkaddr);
1739 mutex_unlock(&dcc->cmd_lock);
1742 __wait_one_discard_bio(sbi, dc);
1745 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1747 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1749 if (dcc && dcc->f2fs_issue_discard) {
1750 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1752 dcc->f2fs_issue_discard = NULL;
1753 kthread_stop(discard_thread);
1757 /* This comes from f2fs_put_super */
1758 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1760 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1761 struct discard_policy dpolicy;
1764 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1765 dcc->discard_granularity);
1766 __issue_discard_cmd(sbi, &dpolicy);
1767 dropped = __drop_discard_cmd(sbi);
1769 /* just to make sure there is no pending discard commands */
1770 __wait_all_discard_cmd(sbi, NULL);
1772 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1776 static int issue_discard_thread(void *data)
1778 struct f2fs_sb_info *sbi = data;
1779 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1780 wait_queue_head_t *q = &dcc->discard_wait_queue;
1781 struct discard_policy dpolicy;
1782 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1788 if (sbi->gc_mode == GC_URGENT_HIGH ||
1789 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1790 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1792 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1793 dcc->discard_granularity);
1795 if (!atomic_read(&dcc->discard_cmd_cnt))
1796 wait_ms = dpolicy.max_interval;
1798 wait_event_interruptible_timeout(*q,
1799 kthread_should_stop() || freezing(current) ||
1801 msecs_to_jiffies(wait_ms));
1803 if (dcc->discard_wake)
1804 dcc->discard_wake = 0;
1806 /* clean up pending candidates before going to sleep */
1807 if (atomic_read(&dcc->queued_discard))
1808 __wait_all_discard_cmd(sbi, NULL);
1810 if (try_to_freeze())
1812 if (f2fs_readonly(sbi->sb))
1814 if (kthread_should_stop())
1816 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1817 wait_ms = dpolicy.max_interval;
1820 if (!atomic_read(&dcc->discard_cmd_cnt))
1823 sb_start_intwrite(sbi->sb);
1825 issued = __issue_discard_cmd(sbi, &dpolicy);
1827 __wait_all_discard_cmd(sbi, &dpolicy);
1828 wait_ms = dpolicy.min_interval;
1829 } else if (issued == -1) {
1830 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1832 wait_ms = dpolicy.mid_interval;
1834 wait_ms = dpolicy.max_interval;
1837 sb_end_intwrite(sbi->sb);
1839 } while (!kthread_should_stop());
1843 #ifdef CONFIG_BLK_DEV_ZONED
1844 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1845 struct block_device *bdev, block_t blkstart, block_t blklen)
1847 sector_t sector, nr_sects;
1848 block_t lblkstart = blkstart;
1851 if (f2fs_is_multi_device(sbi)) {
1852 devi = f2fs_target_device_index(sbi, blkstart);
1853 if (blkstart < FDEV(devi).start_blk ||
1854 blkstart > FDEV(devi).end_blk) {
1855 f2fs_err(sbi, "Invalid block %x", blkstart);
1858 blkstart -= FDEV(devi).start_blk;
1861 /* For sequential zones, reset the zone write pointer */
1862 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1863 sector = SECTOR_FROM_BLOCK(blkstart);
1864 nr_sects = SECTOR_FROM_BLOCK(blklen);
1866 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1867 nr_sects != bdev_zone_sectors(bdev)) {
1868 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1869 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1873 trace_f2fs_issue_reset_zone(bdev, blkstart);
1874 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1875 sector, nr_sects, GFP_NOFS);
1878 /* For conventional zones, use regular discard if supported */
1879 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1883 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1884 struct block_device *bdev, block_t blkstart, block_t blklen)
1886 #ifdef CONFIG_BLK_DEV_ZONED
1887 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1888 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1890 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1893 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1894 block_t blkstart, block_t blklen)
1896 sector_t start = blkstart, len = 0;
1897 struct block_device *bdev;
1898 struct seg_entry *se;
1899 unsigned int offset;
1903 bdev = f2fs_target_device(sbi, blkstart, NULL);
1905 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1907 struct block_device *bdev2 =
1908 f2fs_target_device(sbi, i, NULL);
1910 if (bdev2 != bdev) {
1911 err = __issue_discard_async(sbi, bdev,
1921 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1922 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1924 if (f2fs_block_unit_discard(sbi) &&
1925 !f2fs_test_and_set_bit(offset, se->discard_map))
1926 sbi->discard_blks--;
1930 err = __issue_discard_async(sbi, bdev, start, len);
1934 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1937 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1938 int max_blocks = sbi->blocks_per_seg;
1939 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1940 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1941 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1942 unsigned long *discard_map = (unsigned long *)se->discard_map;
1943 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1944 unsigned int start = 0, end = -1;
1945 bool force = (cpc->reason & CP_DISCARD);
1946 struct discard_entry *de = NULL;
1947 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1950 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1951 !f2fs_block_unit_discard(sbi))
1955 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1956 SM_I(sbi)->dcc_info->nr_discards >=
1957 SM_I(sbi)->dcc_info->max_discards)
1961 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1962 for (i = 0; i < entries; i++)
1963 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1964 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1966 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1967 SM_I(sbi)->dcc_info->max_discards) {
1968 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1969 if (start >= max_blocks)
1972 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1973 if (force && start && end != max_blocks
1974 && (end - start) < cpc->trim_minlen)
1981 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1982 GFP_F2FS_ZERO, true, NULL);
1983 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1984 list_add_tail(&de->list, head);
1987 for (i = start; i < end; i++)
1988 __set_bit_le(i, (void *)de->discard_map);
1990 SM_I(sbi)->dcc_info->nr_discards += end - start;
1995 static void release_discard_addr(struct discard_entry *entry)
1997 list_del(&entry->list);
1998 kmem_cache_free(discard_entry_slab, entry);
2001 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2003 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2004 struct discard_entry *entry, *this;
2007 list_for_each_entry_safe(entry, this, head, list)
2008 release_discard_addr(entry);
2012 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2014 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2016 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2019 mutex_lock(&dirty_i->seglist_lock);
2020 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2021 __set_test_and_free(sbi, segno, false);
2022 mutex_unlock(&dirty_i->seglist_lock);
2025 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2026 struct cp_control *cpc)
2028 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2029 struct list_head *head = &dcc->entry_list;
2030 struct discard_entry *entry, *this;
2031 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2032 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2033 unsigned int start = 0, end = -1;
2034 unsigned int secno, start_segno;
2035 bool force = (cpc->reason & CP_DISCARD);
2036 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2037 DISCARD_UNIT_SECTION;
2039 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2040 section_alignment = true;
2042 mutex_lock(&dirty_i->seglist_lock);
2047 if (section_alignment && end != -1)
2049 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2050 if (start >= MAIN_SEGS(sbi))
2052 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2055 if (section_alignment) {
2056 start = rounddown(start, sbi->segs_per_sec);
2057 end = roundup(end, sbi->segs_per_sec);
2060 for (i = start; i < end; i++) {
2061 if (test_and_clear_bit(i, prefree_map))
2062 dirty_i->nr_dirty[PRE]--;
2065 if (!f2fs_realtime_discard_enable(sbi))
2068 if (force && start >= cpc->trim_start &&
2069 (end - 1) <= cpc->trim_end)
2072 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2073 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2074 (end - start) << sbi->log_blocks_per_seg);
2078 secno = GET_SEC_FROM_SEG(sbi, start);
2079 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2080 if (!IS_CURSEC(sbi, secno) &&
2081 !get_valid_blocks(sbi, start, true))
2082 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2083 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2085 start = start_segno + sbi->segs_per_sec;
2091 mutex_unlock(&dirty_i->seglist_lock);
2093 if (!f2fs_block_unit_discard(sbi))
2096 /* send small discards */
2097 list_for_each_entry_safe(entry, this, head, list) {
2098 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2099 bool is_valid = test_bit_le(0, entry->discard_map);
2103 next_pos = find_next_zero_bit_le(entry->discard_map,
2104 sbi->blocks_per_seg, cur_pos);
2105 len = next_pos - cur_pos;
2107 if (f2fs_sb_has_blkzoned(sbi) ||
2108 (force && len < cpc->trim_minlen))
2111 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2115 next_pos = find_next_bit_le(entry->discard_map,
2116 sbi->blocks_per_seg, cur_pos);
2120 is_valid = !is_valid;
2122 if (cur_pos < sbi->blocks_per_seg)
2125 release_discard_addr(entry);
2126 dcc->nr_discards -= total_len;
2130 wake_up_discard_thread(sbi, false);
2133 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2135 dev_t dev = sbi->sb->s_bdev->bd_dev;
2136 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2139 if (!f2fs_realtime_discard_enable(sbi))
2142 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2143 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2144 if (IS_ERR(dcc->f2fs_issue_discard))
2145 err = PTR_ERR(dcc->f2fs_issue_discard);
2150 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2152 struct discard_cmd_control *dcc;
2155 if (SM_I(sbi)->dcc_info) {
2156 dcc = SM_I(sbi)->dcc_info;
2160 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2164 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2165 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2166 dcc->discard_granularity = sbi->blocks_per_seg;
2167 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2168 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2170 INIT_LIST_HEAD(&dcc->entry_list);
2171 for (i = 0; i < MAX_PLIST_NUM; i++)
2172 INIT_LIST_HEAD(&dcc->pend_list[i]);
2173 INIT_LIST_HEAD(&dcc->wait_list);
2174 INIT_LIST_HEAD(&dcc->fstrim_list);
2175 mutex_init(&dcc->cmd_lock);
2176 atomic_set(&dcc->issued_discard, 0);
2177 atomic_set(&dcc->queued_discard, 0);
2178 atomic_set(&dcc->discard_cmd_cnt, 0);
2179 dcc->nr_discards = 0;
2180 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2181 dcc->undiscard_blks = 0;
2183 dcc->root = RB_ROOT_CACHED;
2184 dcc->rbtree_check = false;
2186 init_waitqueue_head(&dcc->discard_wait_queue);
2187 SM_I(sbi)->dcc_info = dcc;
2189 err = f2fs_start_discard_thread(sbi);
2192 SM_I(sbi)->dcc_info = NULL;
2198 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2200 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2205 f2fs_stop_discard_thread(sbi);
2208 * Recovery can cache discard commands, so in error path of
2209 * fill_super(), it needs to give a chance to handle them.
2211 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2212 f2fs_issue_discard_timeout(sbi);
2215 SM_I(sbi)->dcc_info = NULL;
2218 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2220 struct sit_info *sit_i = SIT_I(sbi);
2222 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2223 sit_i->dirty_sentries++;
2230 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2231 unsigned int segno, int modified)
2233 struct seg_entry *se = get_seg_entry(sbi, segno);
2237 __mark_sit_entry_dirty(sbi, segno);
2240 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2243 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2245 if (segno == NULL_SEGNO)
2247 return get_seg_entry(sbi, segno)->mtime;
2250 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2251 unsigned long long old_mtime)
2253 struct seg_entry *se;
2254 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2255 unsigned long long ctime = get_mtime(sbi, false);
2256 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2258 if (segno == NULL_SEGNO)
2261 se = get_seg_entry(sbi, segno);
2266 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2267 se->valid_blocks + 1);
2269 if (ctime > SIT_I(sbi)->max_mtime)
2270 SIT_I(sbi)->max_mtime = ctime;
2273 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2275 struct seg_entry *se;
2276 unsigned int segno, offset;
2277 long int new_vblocks;
2279 #ifdef CONFIG_F2FS_CHECK_FS
2283 segno = GET_SEGNO(sbi, blkaddr);
2285 se = get_seg_entry(sbi, segno);
2286 new_vblocks = se->valid_blocks + del;
2287 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2289 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2290 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2292 se->valid_blocks = new_vblocks;
2294 /* Update valid block bitmap */
2296 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2297 #ifdef CONFIG_F2FS_CHECK_FS
2298 mir_exist = f2fs_test_and_set_bit(offset,
2299 se->cur_valid_map_mir);
2300 if (unlikely(exist != mir_exist)) {
2301 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2303 f2fs_bug_on(sbi, 1);
2306 if (unlikely(exist)) {
2307 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2309 f2fs_bug_on(sbi, 1);
2314 if (f2fs_block_unit_discard(sbi) &&
2315 !f2fs_test_and_set_bit(offset, se->discard_map))
2316 sbi->discard_blks--;
2319 * SSR should never reuse block which is checkpointed
2320 * or newly invalidated.
2322 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2323 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2324 se->ckpt_valid_blocks++;
2327 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2328 #ifdef CONFIG_F2FS_CHECK_FS
2329 mir_exist = f2fs_test_and_clear_bit(offset,
2330 se->cur_valid_map_mir);
2331 if (unlikely(exist != mir_exist)) {
2332 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2334 f2fs_bug_on(sbi, 1);
2337 if (unlikely(!exist)) {
2338 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2340 f2fs_bug_on(sbi, 1);
2343 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2345 * If checkpoints are off, we must not reuse data that
2346 * was used in the previous checkpoint. If it was used
2347 * before, we must track that to know how much space we
2350 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2351 spin_lock(&sbi->stat_lock);
2352 sbi->unusable_block_count++;
2353 spin_unlock(&sbi->stat_lock);
2357 if (f2fs_block_unit_discard(sbi) &&
2358 f2fs_test_and_clear_bit(offset, se->discard_map))
2359 sbi->discard_blks++;
2361 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2362 se->ckpt_valid_blocks += del;
2364 __mark_sit_entry_dirty(sbi, segno);
2366 /* update total number of valid blocks to be written in ckpt area */
2367 SIT_I(sbi)->written_valid_blocks += del;
2369 if (__is_large_section(sbi))
2370 get_sec_entry(sbi, segno)->valid_blocks += del;
2373 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2375 unsigned int segno = GET_SEGNO(sbi, addr);
2376 struct sit_info *sit_i = SIT_I(sbi);
2378 f2fs_bug_on(sbi, addr == NULL_ADDR);
2379 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2382 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2383 f2fs_invalidate_compress_page(sbi, addr);
2385 /* add it into sit main buffer */
2386 down_write(&sit_i->sentry_lock);
2388 update_segment_mtime(sbi, addr, 0);
2389 update_sit_entry(sbi, addr, -1);
2391 /* add it into dirty seglist */
2392 locate_dirty_segment(sbi, segno);
2394 up_write(&sit_i->sentry_lock);
2397 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2399 struct sit_info *sit_i = SIT_I(sbi);
2400 unsigned int segno, offset;
2401 struct seg_entry *se;
2404 if (!__is_valid_data_blkaddr(blkaddr))
2407 down_read(&sit_i->sentry_lock);
2409 segno = GET_SEGNO(sbi, blkaddr);
2410 se = get_seg_entry(sbi, segno);
2411 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2413 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2416 up_read(&sit_i->sentry_lock);
2422 * This function should be resided under the curseg_mutex lock
2424 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2425 struct f2fs_summary *sum)
2427 struct curseg_info *curseg = CURSEG_I(sbi, type);
2428 void *addr = curseg->sum_blk;
2430 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2431 memcpy(addr, sum, sizeof(struct f2fs_summary));
2435 * Calculate the number of current summary pages for writing
2437 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2439 int valid_sum_count = 0;
2442 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2443 if (sbi->ckpt->alloc_type[i] == SSR)
2444 valid_sum_count += sbi->blocks_per_seg;
2447 valid_sum_count += le16_to_cpu(
2448 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2450 valid_sum_count += curseg_blkoff(sbi, i);
2454 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2455 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2456 if (valid_sum_count <= sum_in_page)
2458 else if ((valid_sum_count - sum_in_page) <=
2459 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2465 * Caller should put this summary page
2467 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2469 if (unlikely(f2fs_cp_error(sbi)))
2470 return ERR_PTR(-EIO);
2471 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2474 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2475 void *src, block_t blk_addr)
2477 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2479 memcpy(page_address(page), src, PAGE_SIZE);
2480 set_page_dirty(page);
2481 f2fs_put_page(page, 1);
2484 static void write_sum_page(struct f2fs_sb_info *sbi,
2485 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2487 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2490 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2491 int type, block_t blk_addr)
2493 struct curseg_info *curseg = CURSEG_I(sbi, type);
2494 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2495 struct f2fs_summary_block *src = curseg->sum_blk;
2496 struct f2fs_summary_block *dst;
2498 dst = (struct f2fs_summary_block *)page_address(page);
2499 memset(dst, 0, PAGE_SIZE);
2501 mutex_lock(&curseg->curseg_mutex);
2503 down_read(&curseg->journal_rwsem);
2504 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2505 up_read(&curseg->journal_rwsem);
2507 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2508 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2510 mutex_unlock(&curseg->curseg_mutex);
2512 set_page_dirty(page);
2513 f2fs_put_page(page, 1);
2516 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2517 struct curseg_info *curseg, int type)
2519 unsigned int segno = curseg->segno + 1;
2520 struct free_segmap_info *free_i = FREE_I(sbi);
2522 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2523 return !test_bit(segno, free_i->free_segmap);
2528 * Find a new segment from the free segments bitmap to right order
2529 * This function should be returned with success, otherwise BUG
2531 static void get_new_segment(struct f2fs_sb_info *sbi,
2532 unsigned int *newseg, bool new_sec, int dir)
2534 struct free_segmap_info *free_i = FREE_I(sbi);
2535 unsigned int segno, secno, zoneno;
2536 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2537 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2538 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2539 unsigned int left_start = hint;
2544 spin_lock(&free_i->segmap_lock);
2546 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2547 segno = find_next_zero_bit(free_i->free_segmap,
2548 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2549 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2553 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2554 if (secno >= MAIN_SECS(sbi)) {
2555 if (dir == ALLOC_RIGHT) {
2556 secno = find_first_zero_bit(free_i->free_secmap,
2558 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2561 left_start = hint - 1;
2567 while (test_bit(left_start, free_i->free_secmap)) {
2568 if (left_start > 0) {
2572 left_start = find_first_zero_bit(free_i->free_secmap,
2574 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2579 segno = GET_SEG_FROM_SEC(sbi, secno);
2580 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2582 /* give up on finding another zone */
2585 if (sbi->secs_per_zone == 1)
2587 if (zoneno == old_zoneno)
2589 if (dir == ALLOC_LEFT) {
2590 if (!go_left && zoneno + 1 >= total_zones)
2592 if (go_left && zoneno == 0)
2595 for (i = 0; i < NR_CURSEG_TYPE; i++)
2596 if (CURSEG_I(sbi, i)->zone == zoneno)
2599 if (i < NR_CURSEG_TYPE) {
2600 /* zone is in user, try another */
2602 hint = zoneno * sbi->secs_per_zone - 1;
2603 else if (zoneno + 1 >= total_zones)
2606 hint = (zoneno + 1) * sbi->secs_per_zone;
2608 goto find_other_zone;
2611 /* set it as dirty segment in free segmap */
2612 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2613 __set_inuse(sbi, segno);
2615 spin_unlock(&free_i->segmap_lock);
2618 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2620 struct curseg_info *curseg = CURSEG_I(sbi, type);
2621 struct summary_footer *sum_footer;
2622 unsigned short seg_type = curseg->seg_type;
2624 curseg->inited = true;
2625 curseg->segno = curseg->next_segno;
2626 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2627 curseg->next_blkoff = 0;
2628 curseg->next_segno = NULL_SEGNO;
2630 sum_footer = &(curseg->sum_blk->footer);
2631 memset(sum_footer, 0, sizeof(struct summary_footer));
2633 sanity_check_seg_type(sbi, seg_type);
2635 if (IS_DATASEG(seg_type))
2636 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2637 if (IS_NODESEG(seg_type))
2638 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2639 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2642 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2644 struct curseg_info *curseg = CURSEG_I(sbi, type);
2645 unsigned short seg_type = curseg->seg_type;
2647 sanity_check_seg_type(sbi, seg_type);
2648 if (f2fs_need_rand_seg(sbi))
2649 return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
2651 /* if segs_per_sec is large than 1, we need to keep original policy. */
2652 if (__is_large_section(sbi))
2653 return curseg->segno;
2655 /* inmem log may not locate on any segment after mount */
2656 if (!curseg->inited)
2659 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2662 if (test_opt(sbi, NOHEAP) &&
2663 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2666 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2667 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2669 /* find segments from 0 to reuse freed segments */
2670 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2673 return curseg->segno;
2677 * Allocate a current working segment.
2678 * This function always allocates a free segment in LFS manner.
2680 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2682 struct curseg_info *curseg = CURSEG_I(sbi, type);
2683 unsigned short seg_type = curseg->seg_type;
2684 unsigned int segno = curseg->segno;
2685 int dir = ALLOC_LEFT;
2688 write_sum_page(sbi, curseg->sum_blk,
2689 GET_SUM_BLOCK(sbi, segno));
2690 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2693 if (test_opt(sbi, NOHEAP))
2696 segno = __get_next_segno(sbi, type);
2697 get_new_segment(sbi, &segno, new_sec, dir);
2698 curseg->next_segno = segno;
2699 reset_curseg(sbi, type, 1);
2700 curseg->alloc_type = LFS;
2701 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2702 curseg->fragment_remained_chunk =
2703 prandom_u32() % sbi->max_fragment_chunk + 1;
2706 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2707 int segno, block_t start)
2709 struct seg_entry *se = get_seg_entry(sbi, segno);
2710 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2711 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2712 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2713 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2716 for (i = 0; i < entries; i++)
2717 target_map[i] = ckpt_map[i] | cur_map[i];
2719 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2723 * If a segment is written by LFS manner, next block offset is just obtained
2724 * by increasing the current block offset. However, if a segment is written by
2725 * SSR manner, next block offset obtained by calling __next_free_blkoff
2727 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2728 struct curseg_info *seg)
2730 if (seg->alloc_type == SSR) {
2732 __next_free_blkoff(sbi, seg->segno,
2733 seg->next_blkoff + 1);
2736 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2737 /* To allocate block chunks in different sizes, use random number */
2738 if (--seg->fragment_remained_chunk <= 0) {
2739 seg->fragment_remained_chunk =
2740 prandom_u32() % sbi->max_fragment_chunk + 1;
2742 prandom_u32() % sbi->max_fragment_hole + 1;
2748 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2750 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2754 * This function always allocates a used segment(from dirty seglist) by SSR
2755 * manner, so it should recover the existing segment information of valid blocks
2757 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2759 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2760 struct curseg_info *curseg = CURSEG_I(sbi, type);
2761 unsigned int new_segno = curseg->next_segno;
2762 struct f2fs_summary_block *sum_node;
2763 struct page *sum_page;
2766 write_sum_page(sbi, curseg->sum_blk,
2767 GET_SUM_BLOCK(sbi, curseg->segno));
2769 __set_test_and_inuse(sbi, new_segno);
2771 mutex_lock(&dirty_i->seglist_lock);
2772 __remove_dirty_segment(sbi, new_segno, PRE);
2773 __remove_dirty_segment(sbi, new_segno, DIRTY);
2774 mutex_unlock(&dirty_i->seglist_lock);
2776 reset_curseg(sbi, type, 1);
2777 curseg->alloc_type = SSR;
2778 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2780 sum_page = f2fs_get_sum_page(sbi, new_segno);
2781 if (IS_ERR(sum_page)) {
2782 /* GC won't be able to use stale summary pages by cp_error */
2783 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2786 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2787 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2788 f2fs_put_page(sum_page, 1);
2791 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2792 int alloc_mode, unsigned long long age);
2794 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2795 int target_type, int alloc_mode,
2796 unsigned long long age)
2798 struct curseg_info *curseg = CURSEG_I(sbi, type);
2800 curseg->seg_type = target_type;
2802 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2803 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2805 curseg->seg_type = se->type;
2806 change_curseg(sbi, type, true);
2808 /* allocate cold segment by default */
2809 curseg->seg_type = CURSEG_COLD_DATA;
2810 new_curseg(sbi, type, true);
2812 stat_inc_seg_type(sbi, curseg);
2815 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2817 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2819 if (!sbi->am.atgc_enabled)
2822 down_read(&SM_I(sbi)->curseg_lock);
2824 mutex_lock(&curseg->curseg_mutex);
2825 down_write(&SIT_I(sbi)->sentry_lock);
2827 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2829 up_write(&SIT_I(sbi)->sentry_lock);
2830 mutex_unlock(&curseg->curseg_mutex);
2832 up_read(&SM_I(sbi)->curseg_lock);
2835 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2837 __f2fs_init_atgc_curseg(sbi);
2840 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2842 struct curseg_info *curseg = CURSEG_I(sbi, type);
2844 mutex_lock(&curseg->curseg_mutex);
2845 if (!curseg->inited)
2848 if (get_valid_blocks(sbi, curseg->segno, false)) {
2849 write_sum_page(sbi, curseg->sum_blk,
2850 GET_SUM_BLOCK(sbi, curseg->segno));
2852 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2853 __set_test_and_free(sbi, curseg->segno, true);
2854 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2857 mutex_unlock(&curseg->curseg_mutex);
2860 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2862 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2864 if (sbi->am.atgc_enabled)
2865 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2868 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2870 struct curseg_info *curseg = CURSEG_I(sbi, type);
2872 mutex_lock(&curseg->curseg_mutex);
2873 if (!curseg->inited)
2875 if (get_valid_blocks(sbi, curseg->segno, false))
2878 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2879 __set_test_and_inuse(sbi, curseg->segno);
2880 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2882 mutex_unlock(&curseg->curseg_mutex);
2885 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2887 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2889 if (sbi->am.atgc_enabled)
2890 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2893 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2894 int alloc_mode, unsigned long long age)
2896 struct curseg_info *curseg = CURSEG_I(sbi, type);
2897 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2898 unsigned segno = NULL_SEGNO;
2899 unsigned short seg_type = curseg->seg_type;
2901 bool reversed = false;
2903 sanity_check_seg_type(sbi, seg_type);
2905 /* f2fs_need_SSR() already forces to do this */
2906 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2907 curseg->next_segno = segno;
2911 /* For node segments, let's do SSR more intensively */
2912 if (IS_NODESEG(seg_type)) {
2913 if (seg_type >= CURSEG_WARM_NODE) {
2915 i = CURSEG_COLD_NODE;
2917 i = CURSEG_HOT_NODE;
2919 cnt = NR_CURSEG_NODE_TYPE;
2921 if (seg_type >= CURSEG_WARM_DATA) {
2923 i = CURSEG_COLD_DATA;
2925 i = CURSEG_HOT_DATA;
2927 cnt = NR_CURSEG_DATA_TYPE;
2930 for (; cnt-- > 0; reversed ? i-- : i++) {
2933 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2934 curseg->next_segno = segno;
2939 /* find valid_blocks=0 in dirty list */
2940 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2941 segno = get_free_segment(sbi);
2942 if (segno != NULL_SEGNO) {
2943 curseg->next_segno = segno;
2951 * flush out current segment and replace it with new segment
2952 * This function should be returned with success, otherwise BUG
2954 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2955 int type, bool force)
2957 struct curseg_info *curseg = CURSEG_I(sbi, type);
2960 new_curseg(sbi, type, true);
2961 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2962 curseg->seg_type == CURSEG_WARM_NODE)
2963 new_curseg(sbi, type, false);
2964 else if (curseg->alloc_type == LFS &&
2965 is_next_segment_free(sbi, curseg, type) &&
2966 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2967 new_curseg(sbi, type, false);
2968 else if (f2fs_need_SSR(sbi) &&
2969 get_ssr_segment(sbi, type, SSR, 0))
2970 change_curseg(sbi, type, true);
2972 new_curseg(sbi, type, false);
2974 stat_inc_seg_type(sbi, curseg);
2977 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2978 unsigned int start, unsigned int end)
2980 struct curseg_info *curseg = CURSEG_I(sbi, type);
2983 down_read(&SM_I(sbi)->curseg_lock);
2984 mutex_lock(&curseg->curseg_mutex);
2985 down_write(&SIT_I(sbi)->sentry_lock);
2987 segno = CURSEG_I(sbi, type)->segno;
2988 if (segno < start || segno > end)
2991 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2992 change_curseg(sbi, type, true);
2994 new_curseg(sbi, type, true);
2996 stat_inc_seg_type(sbi, curseg);
2998 locate_dirty_segment(sbi, segno);
3000 up_write(&SIT_I(sbi)->sentry_lock);
3002 if (segno != curseg->segno)
3003 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3004 type, segno, curseg->segno);
3006 mutex_unlock(&curseg->curseg_mutex);
3007 up_read(&SM_I(sbi)->curseg_lock);
3010 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3011 bool new_sec, bool force)
3013 struct curseg_info *curseg = CURSEG_I(sbi, type);
3014 unsigned int old_segno;
3016 if (!curseg->inited)
3019 if (force || curseg->next_blkoff ||
3020 get_valid_blocks(sbi, curseg->segno, new_sec))
3023 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3026 old_segno = curseg->segno;
3027 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
3028 locate_dirty_segment(sbi, old_segno);
3031 static void __allocate_new_section(struct f2fs_sb_info *sbi,
3032 int type, bool force)
3034 __allocate_new_segment(sbi, type, true, force);
3037 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3039 down_read(&SM_I(sbi)->curseg_lock);
3040 down_write(&SIT_I(sbi)->sentry_lock);
3041 __allocate_new_section(sbi, type, force);
3042 up_write(&SIT_I(sbi)->sentry_lock);
3043 up_read(&SM_I(sbi)->curseg_lock);
3046 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3050 down_read(&SM_I(sbi)->curseg_lock);
3051 down_write(&SIT_I(sbi)->sentry_lock);
3052 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3053 __allocate_new_segment(sbi, i, false, false);
3054 up_write(&SIT_I(sbi)->sentry_lock);
3055 up_read(&SM_I(sbi)->curseg_lock);
3058 static const struct segment_allocation default_salloc_ops = {
3059 .allocate_segment = allocate_segment_by_default,
3062 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3063 struct cp_control *cpc)
3065 __u64 trim_start = cpc->trim_start;
3066 bool has_candidate = false;
3068 down_write(&SIT_I(sbi)->sentry_lock);
3069 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3070 if (add_discard_addrs(sbi, cpc, true)) {
3071 has_candidate = true;
3075 up_write(&SIT_I(sbi)->sentry_lock);
3077 cpc->trim_start = trim_start;
3078 return has_candidate;
3081 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3082 struct discard_policy *dpolicy,
3083 unsigned int start, unsigned int end)
3085 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3086 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3087 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3088 struct discard_cmd *dc;
3089 struct blk_plug plug;
3091 unsigned int trimmed = 0;
3096 mutex_lock(&dcc->cmd_lock);
3097 if (unlikely(dcc->rbtree_check))
3098 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3099 &dcc->root, false));
3101 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3103 (struct rb_entry **)&prev_dc,
3104 (struct rb_entry **)&next_dc,
3105 &insert_p, &insert_parent, true, NULL);
3109 blk_start_plug(&plug);
3111 while (dc && dc->lstart <= end) {
3112 struct rb_node *node;
3115 if (dc->len < dpolicy->granularity)
3118 if (dc->state != D_PREP) {
3119 list_move_tail(&dc->list, &dcc->fstrim_list);
3123 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3125 if (issued >= dpolicy->max_requests) {
3126 start = dc->lstart + dc->len;
3129 __remove_discard_cmd(sbi, dc);
3131 blk_finish_plug(&plug);
3132 mutex_unlock(&dcc->cmd_lock);
3133 trimmed += __wait_all_discard_cmd(sbi, NULL);
3134 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3138 node = rb_next(&dc->rb_node);
3140 __remove_discard_cmd(sbi, dc);
3141 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3143 if (fatal_signal_pending(current))
3147 blk_finish_plug(&plug);
3148 mutex_unlock(&dcc->cmd_lock);
3153 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3155 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3156 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3157 unsigned int start_segno, end_segno;
3158 block_t start_block, end_block;
3159 struct cp_control cpc;
3160 struct discard_policy dpolicy;
3161 unsigned long long trimmed = 0;
3163 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3165 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3168 if (end < MAIN_BLKADDR(sbi))
3171 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3172 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3173 return -EFSCORRUPTED;
3176 /* start/end segment number in main_area */
3177 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3178 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3179 GET_SEGNO(sbi, end);
3181 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3182 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3185 cpc.reason = CP_DISCARD;
3186 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3187 cpc.trim_start = start_segno;
3188 cpc.trim_end = end_segno;
3190 if (sbi->discard_blks == 0)
3193 down_write(&sbi->gc_lock);
3194 err = f2fs_write_checkpoint(sbi, &cpc);
3195 up_write(&sbi->gc_lock);
3200 * We filed discard candidates, but actually we don't need to wait for
3201 * all of them, since they'll be issued in idle time along with runtime
3202 * discard option. User configuration looks like using runtime discard
3203 * or periodic fstrim instead of it.
3205 if (f2fs_realtime_discard_enable(sbi))
3208 start_block = START_BLOCK(sbi, start_segno);
3209 end_block = START_BLOCK(sbi, end_segno + 1);
3211 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3212 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3213 start_block, end_block);
3215 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3216 start_block, end_block);
3219 range->len = F2FS_BLK_TO_BYTES(trimmed);
3223 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3224 struct curseg_info *curseg)
3226 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3230 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3233 case WRITE_LIFE_SHORT:
3234 return CURSEG_HOT_DATA;
3235 case WRITE_LIFE_EXTREME:
3236 return CURSEG_COLD_DATA;
3238 return CURSEG_WARM_DATA;
3242 /* This returns write hints for each segment type. This hints will be
3243 * passed down to block layer. There are mapping tables which depend on
3244 * the mount option 'whint_mode'.
3246 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3248 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3252 * META WRITE_LIFE_NOT_SET
3256 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3257 * extension list " "
3260 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3261 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3262 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3263 * WRITE_LIFE_NONE " "
3264 * WRITE_LIFE_MEDIUM " "
3265 * WRITE_LIFE_LONG " "
3268 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3269 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3270 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3271 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3272 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3273 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3275 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3279 * META WRITE_LIFE_MEDIUM;
3280 * HOT_NODE WRITE_LIFE_NOT_SET
3282 * COLD_NODE WRITE_LIFE_NONE
3283 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3284 * extension list " "
3287 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3288 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3289 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
3290 * WRITE_LIFE_NONE " "
3291 * WRITE_LIFE_MEDIUM " "
3292 * WRITE_LIFE_LONG " "
3295 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3296 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3297 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3298 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3299 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3300 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3303 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3304 enum page_type type, enum temp_type temp)
3306 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3309 return WRITE_LIFE_NOT_SET;
3310 else if (temp == HOT)
3311 return WRITE_LIFE_SHORT;
3312 else if (temp == COLD)
3313 return WRITE_LIFE_EXTREME;
3315 return WRITE_LIFE_NOT_SET;
3317 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3320 return WRITE_LIFE_LONG;
3321 else if (temp == HOT)
3322 return WRITE_LIFE_SHORT;
3323 else if (temp == COLD)
3324 return WRITE_LIFE_EXTREME;
3325 } else if (type == NODE) {
3326 if (temp == WARM || temp == HOT)
3327 return WRITE_LIFE_NOT_SET;
3328 else if (temp == COLD)
3329 return WRITE_LIFE_NONE;
3330 } else if (type == META) {
3331 return WRITE_LIFE_MEDIUM;
3334 return WRITE_LIFE_NOT_SET;
3337 static int __get_segment_type_2(struct f2fs_io_info *fio)
3339 if (fio->type == DATA)
3340 return CURSEG_HOT_DATA;
3342 return CURSEG_HOT_NODE;
3345 static int __get_segment_type_4(struct f2fs_io_info *fio)
3347 if (fio->type == DATA) {
3348 struct inode *inode = fio->page->mapping->host;
3350 if (S_ISDIR(inode->i_mode))
3351 return CURSEG_HOT_DATA;
3353 return CURSEG_COLD_DATA;
3355 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3356 return CURSEG_WARM_NODE;
3358 return CURSEG_COLD_NODE;
3362 static int __get_segment_type_6(struct f2fs_io_info *fio)
3364 if (fio->type == DATA) {
3365 struct inode *inode = fio->page->mapping->host;
3367 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3368 return CURSEG_COLD_DATA_PINNED;
3370 if (page_private_gcing(fio->page)) {
3371 if (fio->sbi->am.atgc_enabled &&
3372 (fio->io_type == FS_DATA_IO) &&
3373 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3374 return CURSEG_ALL_DATA_ATGC;
3376 return CURSEG_COLD_DATA;
3378 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3379 return CURSEG_COLD_DATA;
3380 if (file_is_hot(inode) ||
3381 is_inode_flag_set(inode, FI_HOT_DATA) ||
3382 f2fs_is_atomic_file(inode) ||
3383 f2fs_is_volatile_file(inode))
3384 return CURSEG_HOT_DATA;
3385 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3387 if (IS_DNODE(fio->page))
3388 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3390 return CURSEG_COLD_NODE;
3394 static int __get_segment_type(struct f2fs_io_info *fio)
3398 switch (F2FS_OPTION(fio->sbi).active_logs) {
3400 type = __get_segment_type_2(fio);
3403 type = __get_segment_type_4(fio);
3406 type = __get_segment_type_6(fio);
3409 f2fs_bug_on(fio->sbi, true);
3414 else if (IS_WARM(type))
3421 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3422 block_t old_blkaddr, block_t *new_blkaddr,
3423 struct f2fs_summary *sum, int type,
3424 struct f2fs_io_info *fio)
3426 struct sit_info *sit_i = SIT_I(sbi);
3427 struct curseg_info *curseg = CURSEG_I(sbi, type);
3428 unsigned long long old_mtime;
3429 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3430 struct seg_entry *se = NULL;
3432 down_read(&SM_I(sbi)->curseg_lock);
3434 mutex_lock(&curseg->curseg_mutex);
3435 down_write(&sit_i->sentry_lock);
3438 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3439 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3440 sanity_check_seg_type(sbi, se->type);
3441 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3443 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3445 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3447 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3450 * __add_sum_entry should be resided under the curseg_mutex
3451 * because, this function updates a summary entry in the
3452 * current summary block.
3454 __add_sum_entry(sbi, type, sum);
3456 __refresh_next_blkoff(sbi, curseg);
3458 stat_inc_block_count(sbi, curseg);
3461 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3463 update_segment_mtime(sbi, old_blkaddr, 0);
3466 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3469 * SIT information should be updated before segment allocation,
3470 * since SSR needs latest valid block information.
3472 update_sit_entry(sbi, *new_blkaddr, 1);
3473 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3474 update_sit_entry(sbi, old_blkaddr, -1);
3476 if (!__has_curseg_space(sbi, curseg)) {
3478 get_atssr_segment(sbi, type, se->type,
3481 sit_i->s_ops->allocate_segment(sbi, type, false);
3484 * segment dirty status should be updated after segment allocation,
3485 * so we just need to update status only one time after previous
3486 * segment being closed.
3488 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3489 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3491 up_write(&sit_i->sentry_lock);
3493 if (page && IS_NODESEG(type)) {
3494 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3496 f2fs_inode_chksum_set(sbi, page);
3500 struct f2fs_bio_info *io;
3502 if (F2FS_IO_ALIGNED(sbi))
3505 INIT_LIST_HEAD(&fio->list);
3506 fio->in_list = true;
3507 io = sbi->write_io[fio->type] + fio->temp;
3508 spin_lock(&io->io_lock);
3509 list_add_tail(&fio->list, &io->io_list);
3510 spin_unlock(&io->io_lock);
3513 mutex_unlock(&curseg->curseg_mutex);
3515 up_read(&SM_I(sbi)->curseg_lock);
3518 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3519 block_t blkaddr, unsigned int blkcnt)
3521 if (!f2fs_is_multi_device(sbi))
3525 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3526 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3528 /* update device state for fsync */
3529 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3531 /* update device state for checkpoint */
3532 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3533 spin_lock(&sbi->dev_lock);
3534 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3535 spin_unlock(&sbi->dev_lock);
3545 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3547 int type = __get_segment_type(fio);
3548 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3551 down_read(&fio->sbi->io_order_lock);
3553 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3554 &fio->new_blkaddr, sum, type, fio);
3555 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3556 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3557 fio->old_blkaddr, fio->old_blkaddr);
3558 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3561 /* writeout dirty page into bdev */
3562 f2fs_submit_page_write(fio);
3564 fio->old_blkaddr = fio->new_blkaddr;
3568 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3571 up_read(&fio->sbi->io_order_lock);
3574 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3575 enum iostat_type io_type)
3577 struct f2fs_io_info fio = {
3582 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3583 .old_blkaddr = page->index,
3584 .new_blkaddr = page->index,
3586 .encrypted_page = NULL,
3590 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3591 fio.op_flags &= ~REQ_META;
3593 set_page_writeback(page);
3594 ClearPageError(page);
3595 f2fs_submit_page_write(&fio);
3597 stat_inc_meta_count(sbi, page->index);
3598 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3601 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3603 struct f2fs_summary sum;
3605 set_summary(&sum, nid, 0, 0);
3606 do_write_page(&sum, fio);
3608 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3611 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3612 struct f2fs_io_info *fio)
3614 struct f2fs_sb_info *sbi = fio->sbi;
3615 struct f2fs_summary sum;
3617 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3618 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3619 do_write_page(&sum, fio);
3620 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3622 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3625 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3628 struct f2fs_sb_info *sbi = fio->sbi;
3631 fio->new_blkaddr = fio->old_blkaddr;
3632 /* i/o temperature is needed for passing down write hints */
3633 __get_segment_type(fio);
3635 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3637 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3638 set_sbi_flag(sbi, SBI_NEED_FSCK);
3639 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3641 err = -EFSCORRUPTED;
3645 if (f2fs_cp_error(sbi)) {
3650 invalidate_mapping_pages(META_MAPPING(sbi),
3651 fio->new_blkaddr, fio->new_blkaddr);
3653 stat_inc_inplace_blocks(fio->sbi);
3655 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3656 err = f2fs_merge_page_bio(fio);
3658 err = f2fs_submit_page_bio(fio);
3660 f2fs_update_device_state(fio->sbi, fio->ino,
3661 fio->new_blkaddr, 1);
3662 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3667 if (fio->bio && *(fio->bio)) {
3668 struct bio *bio = *(fio->bio);
3670 bio->bi_status = BLK_STS_IOERR;
3677 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3682 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3683 if (CURSEG_I(sbi, i)->segno == segno)
3689 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3690 block_t old_blkaddr, block_t new_blkaddr,
3691 bool recover_curseg, bool recover_newaddr,
3694 struct sit_info *sit_i = SIT_I(sbi);
3695 struct curseg_info *curseg;
3696 unsigned int segno, old_cursegno;
3697 struct seg_entry *se;
3699 unsigned short old_blkoff;
3700 unsigned char old_alloc_type;
3702 segno = GET_SEGNO(sbi, new_blkaddr);
3703 se = get_seg_entry(sbi, segno);
3706 down_write(&SM_I(sbi)->curseg_lock);
3708 if (!recover_curseg) {
3709 /* for recovery flow */
3710 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3711 if (old_blkaddr == NULL_ADDR)
3712 type = CURSEG_COLD_DATA;
3714 type = CURSEG_WARM_DATA;
3717 if (IS_CURSEG(sbi, segno)) {
3718 /* se->type is volatile as SSR allocation */
3719 type = __f2fs_get_curseg(sbi, segno);
3720 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3722 type = CURSEG_WARM_DATA;
3726 f2fs_bug_on(sbi, !IS_DATASEG(type));
3727 curseg = CURSEG_I(sbi, type);
3729 mutex_lock(&curseg->curseg_mutex);
3730 down_write(&sit_i->sentry_lock);
3732 old_cursegno = curseg->segno;
3733 old_blkoff = curseg->next_blkoff;
3734 old_alloc_type = curseg->alloc_type;
3736 /* change the current segment */
3737 if (segno != curseg->segno) {
3738 curseg->next_segno = segno;
3739 change_curseg(sbi, type, true);
3742 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3743 __add_sum_entry(sbi, type, sum);
3745 if (!recover_curseg || recover_newaddr) {
3747 update_segment_mtime(sbi, new_blkaddr, 0);
3748 update_sit_entry(sbi, new_blkaddr, 1);
3750 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3751 invalidate_mapping_pages(META_MAPPING(sbi),
3752 old_blkaddr, old_blkaddr);
3753 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3755 update_segment_mtime(sbi, old_blkaddr, 0);
3756 update_sit_entry(sbi, old_blkaddr, -1);
3759 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3760 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3762 locate_dirty_segment(sbi, old_cursegno);
3764 if (recover_curseg) {
3765 if (old_cursegno != curseg->segno) {
3766 curseg->next_segno = old_cursegno;
3767 change_curseg(sbi, type, true);
3769 curseg->next_blkoff = old_blkoff;
3770 curseg->alloc_type = old_alloc_type;
3773 up_write(&sit_i->sentry_lock);
3774 mutex_unlock(&curseg->curseg_mutex);
3775 up_write(&SM_I(sbi)->curseg_lock);
3778 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3779 block_t old_addr, block_t new_addr,
3780 unsigned char version, bool recover_curseg,
3781 bool recover_newaddr)
3783 struct f2fs_summary sum;
3785 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3787 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3788 recover_curseg, recover_newaddr, false);
3790 f2fs_update_data_blkaddr(dn, new_addr);
3793 void f2fs_wait_on_page_writeback(struct page *page,
3794 enum page_type type, bool ordered, bool locked)
3796 if (PageWriteback(page)) {
3797 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3799 /* submit cached LFS IO */
3800 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3801 /* sbumit cached IPU IO */
3802 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3804 wait_on_page_writeback(page);
3805 f2fs_bug_on(sbi, locked && PageWriteback(page));
3807 wait_for_stable_page(page);
3812 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3814 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3817 if (!f2fs_post_read_required(inode))
3820 if (!__is_valid_data_blkaddr(blkaddr))
3823 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3825 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3826 f2fs_put_page(cpage, 1);
3830 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3835 for (i = 0; i < len; i++)
3836 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3839 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3841 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3842 struct curseg_info *seg_i;
3843 unsigned char *kaddr;
3848 start = start_sum_block(sbi);
3850 page = f2fs_get_meta_page(sbi, start++);
3852 return PTR_ERR(page);
3853 kaddr = (unsigned char *)page_address(page);
3855 /* Step 1: restore nat cache */
3856 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3857 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3859 /* Step 2: restore sit cache */
3860 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3861 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3862 offset = 2 * SUM_JOURNAL_SIZE;
3864 /* Step 3: restore summary entries */
3865 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3866 unsigned short blk_off;
3869 seg_i = CURSEG_I(sbi, i);
3870 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3871 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3872 seg_i->next_segno = segno;
3873 reset_curseg(sbi, i, 0);
3874 seg_i->alloc_type = ckpt->alloc_type[i];
3875 seg_i->next_blkoff = blk_off;
3877 if (seg_i->alloc_type == SSR)
3878 blk_off = sbi->blocks_per_seg;
3880 for (j = 0; j < blk_off; j++) {
3881 struct f2fs_summary *s;
3883 s = (struct f2fs_summary *)(kaddr + offset);
3884 seg_i->sum_blk->entries[j] = *s;
3885 offset += SUMMARY_SIZE;
3886 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3890 f2fs_put_page(page, 1);
3893 page = f2fs_get_meta_page(sbi, start++);
3895 return PTR_ERR(page);
3896 kaddr = (unsigned char *)page_address(page);
3900 f2fs_put_page(page, 1);
3904 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3906 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3907 struct f2fs_summary_block *sum;
3908 struct curseg_info *curseg;
3910 unsigned short blk_off;
3911 unsigned int segno = 0;
3912 block_t blk_addr = 0;
3915 /* get segment number and block addr */
3916 if (IS_DATASEG(type)) {
3917 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3918 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3920 if (__exist_node_summaries(sbi))
3921 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3923 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3925 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3927 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3929 if (__exist_node_summaries(sbi))
3930 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3931 type - CURSEG_HOT_NODE);
3933 blk_addr = GET_SUM_BLOCK(sbi, segno);
3936 new = f2fs_get_meta_page(sbi, blk_addr);
3938 return PTR_ERR(new);
3939 sum = (struct f2fs_summary_block *)page_address(new);
3941 if (IS_NODESEG(type)) {
3942 if (__exist_node_summaries(sbi)) {
3943 struct f2fs_summary *ns = &sum->entries[0];
3946 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3948 ns->ofs_in_node = 0;
3951 err = f2fs_restore_node_summary(sbi, segno, sum);
3957 /* set uncompleted segment to curseg */
3958 curseg = CURSEG_I(sbi, type);
3959 mutex_lock(&curseg->curseg_mutex);
3961 /* update journal info */
3962 down_write(&curseg->journal_rwsem);
3963 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3964 up_write(&curseg->journal_rwsem);
3966 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3967 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3968 curseg->next_segno = segno;
3969 reset_curseg(sbi, type, 0);
3970 curseg->alloc_type = ckpt->alloc_type[type];
3971 curseg->next_blkoff = blk_off;
3972 mutex_unlock(&curseg->curseg_mutex);
3974 f2fs_put_page(new, 1);
3978 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3980 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3981 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3982 int type = CURSEG_HOT_DATA;
3985 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3986 int npages = f2fs_npages_for_summary_flush(sbi, true);
3989 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3992 /* restore for compacted data summary */
3993 err = read_compacted_summaries(sbi);
3996 type = CURSEG_HOT_NODE;
3999 if (__exist_node_summaries(sbi))
4000 f2fs_ra_meta_pages(sbi,
4001 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4002 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4004 for (; type <= CURSEG_COLD_NODE; type++) {
4005 err = read_normal_summaries(sbi, type);
4010 /* sanity check for summary blocks */
4011 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4012 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4013 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4014 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4021 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4024 unsigned char *kaddr;
4025 struct f2fs_summary *summary;
4026 struct curseg_info *seg_i;
4027 int written_size = 0;
4030 page = f2fs_grab_meta_page(sbi, blkaddr++);
4031 kaddr = (unsigned char *)page_address(page);
4032 memset(kaddr, 0, PAGE_SIZE);
4034 /* Step 1: write nat cache */
4035 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4036 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4037 written_size += SUM_JOURNAL_SIZE;
4039 /* Step 2: write sit cache */
4040 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4041 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4042 written_size += SUM_JOURNAL_SIZE;
4044 /* Step 3: write summary entries */
4045 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4046 unsigned short blkoff;
4048 seg_i = CURSEG_I(sbi, i);
4049 if (sbi->ckpt->alloc_type[i] == SSR)
4050 blkoff = sbi->blocks_per_seg;
4052 blkoff = curseg_blkoff(sbi, i);
4054 for (j = 0; j < blkoff; j++) {
4056 page = f2fs_grab_meta_page(sbi, blkaddr++);
4057 kaddr = (unsigned char *)page_address(page);
4058 memset(kaddr, 0, PAGE_SIZE);
4061 summary = (struct f2fs_summary *)(kaddr + written_size);
4062 *summary = seg_i->sum_blk->entries[j];
4063 written_size += SUMMARY_SIZE;
4065 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4069 set_page_dirty(page);
4070 f2fs_put_page(page, 1);
4075 set_page_dirty(page);
4076 f2fs_put_page(page, 1);
4080 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4081 block_t blkaddr, int type)
4085 if (IS_DATASEG(type))
4086 end = type + NR_CURSEG_DATA_TYPE;
4088 end = type + NR_CURSEG_NODE_TYPE;
4090 for (i = type; i < end; i++)
4091 write_current_sum_page(sbi, i, blkaddr + (i - type));
4094 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4096 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4097 write_compacted_summaries(sbi, start_blk);
4099 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4102 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4104 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4107 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4108 unsigned int val, int alloc)
4112 if (type == NAT_JOURNAL) {
4113 for (i = 0; i < nats_in_cursum(journal); i++) {
4114 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4117 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4118 return update_nats_in_cursum(journal, 1);
4119 } else if (type == SIT_JOURNAL) {
4120 for (i = 0; i < sits_in_cursum(journal); i++)
4121 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4123 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4124 return update_sits_in_cursum(journal, 1);
4129 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4132 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4135 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4138 struct sit_info *sit_i = SIT_I(sbi);
4140 pgoff_t src_off, dst_off;
4142 src_off = current_sit_addr(sbi, start);
4143 dst_off = next_sit_addr(sbi, src_off);
4145 page = f2fs_grab_meta_page(sbi, dst_off);
4146 seg_info_to_sit_page(sbi, page, start);
4148 set_page_dirty(page);
4149 set_to_next_sit(sit_i, start);
4154 static struct sit_entry_set *grab_sit_entry_set(void)
4156 struct sit_entry_set *ses =
4157 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4158 GFP_NOFS, true, NULL);
4161 INIT_LIST_HEAD(&ses->set_list);
4165 static void release_sit_entry_set(struct sit_entry_set *ses)
4167 list_del(&ses->set_list);
4168 kmem_cache_free(sit_entry_set_slab, ses);
4171 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4172 struct list_head *head)
4174 struct sit_entry_set *next = ses;
4176 if (list_is_last(&ses->set_list, head))
4179 list_for_each_entry_continue(next, head, set_list)
4180 if (ses->entry_cnt <= next->entry_cnt)
4183 list_move_tail(&ses->set_list, &next->set_list);
4186 static void add_sit_entry(unsigned int segno, struct list_head *head)
4188 struct sit_entry_set *ses;
4189 unsigned int start_segno = START_SEGNO(segno);
4191 list_for_each_entry(ses, head, set_list) {
4192 if (ses->start_segno == start_segno) {
4194 adjust_sit_entry_set(ses, head);
4199 ses = grab_sit_entry_set();
4201 ses->start_segno = start_segno;
4203 list_add(&ses->set_list, head);
4206 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4208 struct f2fs_sm_info *sm_info = SM_I(sbi);
4209 struct list_head *set_list = &sm_info->sit_entry_set;
4210 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4213 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4214 add_sit_entry(segno, set_list);
4217 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4219 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4220 struct f2fs_journal *journal = curseg->journal;
4223 down_write(&curseg->journal_rwsem);
4224 for (i = 0; i < sits_in_cursum(journal); i++) {
4228 segno = le32_to_cpu(segno_in_journal(journal, i));
4229 dirtied = __mark_sit_entry_dirty(sbi, segno);
4232 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4234 update_sits_in_cursum(journal, -i);
4235 up_write(&curseg->journal_rwsem);
4239 * CP calls this function, which flushes SIT entries including sit_journal,
4240 * and moves prefree segs to free segs.
4242 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4244 struct sit_info *sit_i = SIT_I(sbi);
4245 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4246 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4247 struct f2fs_journal *journal = curseg->journal;
4248 struct sit_entry_set *ses, *tmp;
4249 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4250 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4251 struct seg_entry *se;
4253 down_write(&sit_i->sentry_lock);
4255 if (!sit_i->dirty_sentries)
4259 * add and account sit entries of dirty bitmap in sit entry
4262 add_sits_in_set(sbi);
4265 * if there are no enough space in journal to store dirty sit
4266 * entries, remove all entries from journal and add and account
4267 * them in sit entry set.
4269 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4271 remove_sits_in_journal(sbi);
4274 * there are two steps to flush sit entries:
4275 * #1, flush sit entries to journal in current cold data summary block.
4276 * #2, flush sit entries to sit page.
4278 list_for_each_entry_safe(ses, tmp, head, set_list) {
4279 struct page *page = NULL;
4280 struct f2fs_sit_block *raw_sit = NULL;
4281 unsigned int start_segno = ses->start_segno;
4282 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4283 (unsigned long)MAIN_SEGS(sbi));
4284 unsigned int segno = start_segno;
4287 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4291 down_write(&curseg->journal_rwsem);
4293 page = get_next_sit_page(sbi, start_segno);
4294 raw_sit = page_address(page);
4297 /* flush dirty sit entries in region of current sit set */
4298 for_each_set_bit_from(segno, bitmap, end) {
4299 int offset, sit_offset;
4301 se = get_seg_entry(sbi, segno);
4302 #ifdef CONFIG_F2FS_CHECK_FS
4303 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4304 SIT_VBLOCK_MAP_SIZE))
4305 f2fs_bug_on(sbi, 1);
4308 /* add discard candidates */
4309 if (!(cpc->reason & CP_DISCARD)) {
4310 cpc->trim_start = segno;
4311 add_discard_addrs(sbi, cpc, false);
4315 offset = f2fs_lookup_journal_in_cursum(journal,
4316 SIT_JOURNAL, segno, 1);
4317 f2fs_bug_on(sbi, offset < 0);
4318 segno_in_journal(journal, offset) =
4320 seg_info_to_raw_sit(se,
4321 &sit_in_journal(journal, offset));
4322 check_block_count(sbi, segno,
4323 &sit_in_journal(journal, offset));
4325 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4326 seg_info_to_raw_sit(se,
4327 &raw_sit->entries[sit_offset]);
4328 check_block_count(sbi, segno,
4329 &raw_sit->entries[sit_offset]);
4332 __clear_bit(segno, bitmap);
4333 sit_i->dirty_sentries--;
4338 up_write(&curseg->journal_rwsem);
4340 f2fs_put_page(page, 1);
4342 f2fs_bug_on(sbi, ses->entry_cnt);
4343 release_sit_entry_set(ses);
4346 f2fs_bug_on(sbi, !list_empty(head));
4347 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4349 if (cpc->reason & CP_DISCARD) {
4350 __u64 trim_start = cpc->trim_start;
4352 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4353 add_discard_addrs(sbi, cpc, false);
4355 cpc->trim_start = trim_start;
4357 up_write(&sit_i->sentry_lock);
4359 set_prefree_as_free_segments(sbi);
4362 static int build_sit_info(struct f2fs_sb_info *sbi)
4364 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4365 struct sit_info *sit_i;
4366 unsigned int sit_segs, start;
4367 char *src_bitmap, *bitmap;
4368 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4369 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4371 /* allocate memory for SIT information */
4372 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4376 SM_I(sbi)->sit_info = sit_i;
4379 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4382 if (!sit_i->sentries)
4385 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4386 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4388 if (!sit_i->dirty_sentries_bitmap)
4391 #ifdef CONFIG_F2FS_CHECK_FS
4392 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4394 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4396 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4400 bitmap = sit_i->bitmap;
4402 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4403 sit_i->sentries[start].cur_valid_map = bitmap;
4404 bitmap += SIT_VBLOCK_MAP_SIZE;
4406 sit_i->sentries[start].ckpt_valid_map = bitmap;
4407 bitmap += SIT_VBLOCK_MAP_SIZE;
4409 #ifdef CONFIG_F2FS_CHECK_FS
4410 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4411 bitmap += SIT_VBLOCK_MAP_SIZE;
4415 sit_i->sentries[start].discard_map = bitmap;
4416 bitmap += SIT_VBLOCK_MAP_SIZE;
4420 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4421 if (!sit_i->tmp_map)
4424 if (__is_large_section(sbi)) {
4425 sit_i->sec_entries =
4426 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4429 if (!sit_i->sec_entries)
4433 /* get information related with SIT */
4434 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4436 /* setup SIT bitmap from ckeckpoint pack */
4437 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4438 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4440 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4441 if (!sit_i->sit_bitmap)
4444 #ifdef CONFIG_F2FS_CHECK_FS
4445 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4446 sit_bitmap_size, GFP_KERNEL);
4447 if (!sit_i->sit_bitmap_mir)
4450 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4451 main_bitmap_size, GFP_KERNEL);
4452 if (!sit_i->invalid_segmap)
4456 /* init SIT information */
4457 sit_i->s_ops = &default_salloc_ops;
4459 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4460 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4461 sit_i->written_valid_blocks = 0;
4462 sit_i->bitmap_size = sit_bitmap_size;
4463 sit_i->dirty_sentries = 0;
4464 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4465 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4466 sit_i->mounted_time = ktime_get_boottime_seconds();
4467 init_rwsem(&sit_i->sentry_lock);
4471 static int build_free_segmap(struct f2fs_sb_info *sbi)
4473 struct free_segmap_info *free_i;
4474 unsigned int bitmap_size, sec_bitmap_size;
4476 /* allocate memory for free segmap information */
4477 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4481 SM_I(sbi)->free_info = free_i;
4483 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4484 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4485 if (!free_i->free_segmap)
4488 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4489 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4490 if (!free_i->free_secmap)
4493 /* set all segments as dirty temporarily */
4494 memset(free_i->free_segmap, 0xff, bitmap_size);
4495 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4497 /* init free segmap information */
4498 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4499 free_i->free_segments = 0;
4500 free_i->free_sections = 0;
4501 spin_lock_init(&free_i->segmap_lock);
4505 static int build_curseg(struct f2fs_sb_info *sbi)
4507 struct curseg_info *array;
4510 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4511 sizeof(*array)), GFP_KERNEL);
4515 SM_I(sbi)->curseg_array = array;
4517 for (i = 0; i < NO_CHECK_TYPE; i++) {
4518 mutex_init(&array[i].curseg_mutex);
4519 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4520 if (!array[i].sum_blk)
4522 init_rwsem(&array[i].journal_rwsem);
4523 array[i].journal = f2fs_kzalloc(sbi,
4524 sizeof(struct f2fs_journal), GFP_KERNEL);
4525 if (!array[i].journal)
4527 if (i < NR_PERSISTENT_LOG)
4528 array[i].seg_type = CURSEG_HOT_DATA + i;
4529 else if (i == CURSEG_COLD_DATA_PINNED)
4530 array[i].seg_type = CURSEG_COLD_DATA;
4531 else if (i == CURSEG_ALL_DATA_ATGC)
4532 array[i].seg_type = CURSEG_COLD_DATA;
4533 array[i].segno = NULL_SEGNO;
4534 array[i].next_blkoff = 0;
4535 array[i].inited = false;
4537 return restore_curseg_summaries(sbi);
4540 static int build_sit_entries(struct f2fs_sb_info *sbi)
4542 struct sit_info *sit_i = SIT_I(sbi);
4543 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4544 struct f2fs_journal *journal = curseg->journal;
4545 struct seg_entry *se;
4546 struct f2fs_sit_entry sit;
4547 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4548 unsigned int i, start, end;
4549 unsigned int readed, start_blk = 0;
4551 block_t total_node_blocks = 0;
4554 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4557 start = start_blk * sit_i->sents_per_block;
4558 end = (start_blk + readed) * sit_i->sents_per_block;
4560 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4561 struct f2fs_sit_block *sit_blk;
4564 se = &sit_i->sentries[start];
4565 page = get_current_sit_page(sbi, start);
4567 return PTR_ERR(page);
4568 sit_blk = (struct f2fs_sit_block *)page_address(page);
4569 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4570 f2fs_put_page(page, 1);
4572 err = check_block_count(sbi, start, &sit);
4575 seg_info_from_raw_sit(se, &sit);
4576 if (IS_NODESEG(se->type))
4577 total_node_blocks += se->valid_blocks;
4579 if (f2fs_block_unit_discard(sbi)) {
4580 /* build discard map only one time */
4581 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4582 memset(se->discard_map, 0xff,
4583 SIT_VBLOCK_MAP_SIZE);
4585 memcpy(se->discard_map,
4587 SIT_VBLOCK_MAP_SIZE);
4588 sbi->discard_blks +=
4589 sbi->blocks_per_seg -
4594 if (__is_large_section(sbi))
4595 get_sec_entry(sbi, start)->valid_blocks +=
4598 start_blk += readed;
4599 } while (start_blk < sit_blk_cnt);
4601 down_read(&curseg->journal_rwsem);
4602 for (i = 0; i < sits_in_cursum(journal); i++) {
4603 unsigned int old_valid_blocks;
4605 start = le32_to_cpu(segno_in_journal(journal, i));
4606 if (start >= MAIN_SEGS(sbi)) {
4607 f2fs_err(sbi, "Wrong journal entry on segno %u",
4609 err = -EFSCORRUPTED;
4613 se = &sit_i->sentries[start];
4614 sit = sit_in_journal(journal, i);
4616 old_valid_blocks = se->valid_blocks;
4617 if (IS_NODESEG(se->type))
4618 total_node_blocks -= old_valid_blocks;
4620 err = check_block_count(sbi, start, &sit);
4623 seg_info_from_raw_sit(se, &sit);
4624 if (IS_NODESEG(se->type))
4625 total_node_blocks += se->valid_blocks;
4627 if (f2fs_block_unit_discard(sbi)) {
4628 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4629 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4631 memcpy(se->discard_map, se->cur_valid_map,
4632 SIT_VBLOCK_MAP_SIZE);
4633 sbi->discard_blks += old_valid_blocks;
4634 sbi->discard_blks -= se->valid_blocks;
4638 if (__is_large_section(sbi)) {
4639 get_sec_entry(sbi, start)->valid_blocks +=
4641 get_sec_entry(sbi, start)->valid_blocks -=
4645 up_read(&curseg->journal_rwsem);
4647 if (!err && total_node_blocks != valid_node_count(sbi)) {
4648 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4649 total_node_blocks, valid_node_count(sbi));
4650 err = -EFSCORRUPTED;
4656 static void init_free_segmap(struct f2fs_sb_info *sbi)
4660 struct seg_entry *sentry;
4662 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4663 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4665 sentry = get_seg_entry(sbi, start);
4666 if (!sentry->valid_blocks)
4667 __set_free(sbi, start);
4669 SIT_I(sbi)->written_valid_blocks +=
4670 sentry->valid_blocks;
4673 /* set use the current segments */
4674 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4675 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4677 __set_test_and_inuse(sbi, curseg_t->segno);
4681 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4683 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4684 struct free_segmap_info *free_i = FREE_I(sbi);
4685 unsigned int segno = 0, offset = 0, secno;
4686 block_t valid_blocks, usable_blks_in_seg;
4687 block_t blks_per_sec = BLKS_PER_SEC(sbi);
4690 /* find dirty segment based on free segmap */
4691 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4692 if (segno >= MAIN_SEGS(sbi))
4695 valid_blocks = get_valid_blocks(sbi, segno, false);
4696 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4697 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4699 if (valid_blocks > usable_blks_in_seg) {
4700 f2fs_bug_on(sbi, 1);
4703 mutex_lock(&dirty_i->seglist_lock);
4704 __locate_dirty_segment(sbi, segno, DIRTY);
4705 mutex_unlock(&dirty_i->seglist_lock);
4708 if (!__is_large_section(sbi))
4711 mutex_lock(&dirty_i->seglist_lock);
4712 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4713 valid_blocks = get_valid_blocks(sbi, segno, true);
4714 secno = GET_SEC_FROM_SEG(sbi, segno);
4716 if (!valid_blocks || valid_blocks == blks_per_sec)
4718 if (IS_CURSEC(sbi, secno))
4720 set_bit(secno, dirty_i->dirty_secmap);
4722 mutex_unlock(&dirty_i->seglist_lock);
4725 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4727 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4728 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4730 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4731 if (!dirty_i->victim_secmap)
4736 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4738 struct dirty_seglist_info *dirty_i;
4739 unsigned int bitmap_size, i;
4741 /* allocate memory for dirty segments list information */
4742 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4747 SM_I(sbi)->dirty_info = dirty_i;
4748 mutex_init(&dirty_i->seglist_lock);
4750 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4752 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4753 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4755 if (!dirty_i->dirty_segmap[i])
4759 if (__is_large_section(sbi)) {
4760 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4761 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4762 bitmap_size, GFP_KERNEL);
4763 if (!dirty_i->dirty_secmap)
4767 init_dirty_segmap(sbi);
4768 return init_victim_secmap(sbi);
4771 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4776 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4777 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4779 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4780 struct curseg_info *curseg = CURSEG_I(sbi, i);
4781 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4782 unsigned int blkofs = curseg->next_blkoff;
4784 if (f2fs_sb_has_readonly(sbi) &&
4785 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4788 sanity_check_seg_type(sbi, curseg->seg_type);
4790 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4793 if (curseg->alloc_type == SSR)
4796 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4797 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4801 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4802 i, curseg->segno, curseg->alloc_type,
4803 curseg->next_blkoff, blkofs);
4804 return -EFSCORRUPTED;
4810 #ifdef CONFIG_BLK_DEV_ZONED
4812 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4813 struct f2fs_dev_info *fdev,
4814 struct blk_zone *zone)
4816 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4817 block_t zone_block, wp_block, last_valid_block;
4818 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4820 struct seg_entry *se;
4822 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4825 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4826 wp_segno = GET_SEGNO(sbi, wp_block);
4827 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4828 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4829 zone_segno = GET_SEGNO(sbi, zone_block);
4830 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4832 if (zone_segno >= MAIN_SEGS(sbi))
4836 * Skip check of zones cursegs point to, since
4837 * fix_curseg_write_pointer() checks them.
4839 for (i = 0; i < NO_CHECK_TYPE; i++)
4840 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4841 CURSEG_I(sbi, i)->segno))
4845 * Get last valid block of the zone.
4847 last_valid_block = zone_block - 1;
4848 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4849 segno = zone_segno + s;
4850 se = get_seg_entry(sbi, segno);
4851 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4852 if (f2fs_test_bit(b, se->cur_valid_map)) {
4853 last_valid_block = START_BLOCK(sbi, segno) + b;
4856 if (last_valid_block >= zone_block)
4861 * If last valid block is beyond the write pointer, report the
4862 * inconsistency. This inconsistency does not cause write error
4863 * because the zone will not be selected for write operation until
4864 * it get discarded. Just report it.
4866 if (last_valid_block >= wp_block) {
4867 f2fs_notice(sbi, "Valid block beyond write pointer: "
4868 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4869 GET_SEGNO(sbi, last_valid_block),
4870 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4871 wp_segno, wp_blkoff);
4876 * If there is no valid block in the zone and if write pointer is
4877 * not at zone start, reset the write pointer.
4879 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4881 "Zone without valid block has non-zero write "
4882 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4883 wp_segno, wp_blkoff);
4884 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4885 zone->len >> log_sectors_per_block);
4887 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4896 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4897 block_t zone_blkaddr)
4901 for (i = 0; i < sbi->s_ndevs; i++) {
4902 if (!bdev_is_zoned(FDEV(i).bdev))
4904 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4905 zone_blkaddr <= FDEV(i).end_blk))
4912 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4915 memcpy(data, zone, sizeof(struct blk_zone));
4919 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4921 struct curseg_info *cs = CURSEG_I(sbi, type);
4922 struct f2fs_dev_info *zbd;
4923 struct blk_zone zone;
4924 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4925 block_t cs_zone_block, wp_block;
4926 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4927 sector_t zone_sector;
4930 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4931 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4933 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4937 /* report zone for the sector the curseg points to */
4938 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4939 << log_sectors_per_block;
4940 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4941 report_one_zone_cb, &zone);
4943 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4948 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4951 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4952 wp_segno = GET_SEGNO(sbi, wp_block);
4953 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4954 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4956 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4960 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4961 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4962 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4964 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4965 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4967 f2fs_allocate_new_section(sbi, type, true);
4969 /* check consistency of the zone curseg pointed to */
4970 if (check_zone_write_pointer(sbi, zbd, &zone))
4973 /* check newly assigned zone */
4974 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4975 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4977 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4981 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4982 << log_sectors_per_block;
4983 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4984 report_one_zone_cb, &zone);
4986 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4991 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4994 if (zone.wp != zone.start) {
4996 "New zone for curseg[%d] is not yet discarded. "
4997 "Reset the zone: curseg[0x%x,0x%x]",
4998 type, cs->segno, cs->next_blkoff);
4999 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
5000 zone_sector >> log_sectors_per_block,
5001 zone.len >> log_sectors_per_block);
5003 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5012 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5016 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5017 ret = fix_curseg_write_pointer(sbi, i);
5025 struct check_zone_write_pointer_args {
5026 struct f2fs_sb_info *sbi;
5027 struct f2fs_dev_info *fdev;
5030 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5033 struct check_zone_write_pointer_args *args;
5035 args = (struct check_zone_write_pointer_args *)data;
5037 return check_zone_write_pointer(args->sbi, args->fdev, zone);
5040 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5043 struct check_zone_write_pointer_args args;
5045 for (i = 0; i < sbi->s_ndevs; i++) {
5046 if (!bdev_is_zoned(FDEV(i).bdev))
5050 args.fdev = &FDEV(i);
5051 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5052 check_zone_write_pointer_cb, &args);
5060 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
5061 unsigned int dev_idx)
5063 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
5065 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
5068 /* Return the zone index in the given device */
5069 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
5072 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5074 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
5075 sbi->log_blocks_per_blkz;
5079 * Return the usable segments in a section based on the zone's
5080 * corresponding zone capacity. Zone is equal to a section.
5082 static inline unsigned int f2fs_usable_zone_segs_in_sec(
5083 struct f2fs_sb_info *sbi, unsigned int segno)
5085 unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
5087 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
5088 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
5090 /* Conventional zone's capacity is always equal to zone size */
5091 if (is_conv_zone(sbi, zone_idx, dev_idx))
5092 return sbi->segs_per_sec;
5095 * If the zone_capacity_blocks array is NULL, then zone capacity
5096 * is equal to the zone size for all zones
5098 if (!FDEV(dev_idx).zone_capacity_blocks)
5099 return sbi->segs_per_sec;
5101 /* Get the segment count beyond zone capacity block */
5102 unusable_segs_in_sec = (sbi->blocks_per_blkz -
5103 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5104 sbi->log_blocks_per_seg;
5105 return sbi->segs_per_sec - unusable_segs_in_sec;
5109 * Return the number of usable blocks in a segment. The number of blocks
5110 * returned is always equal to the number of blocks in a segment for
5111 * segments fully contained within a sequential zone capacity or a
5112 * conventional zone. For segments partially contained in a sequential
5113 * zone capacity, the number of usable blocks up to the zone capacity
5114 * is returned. 0 is returned in all other cases.
5116 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5117 struct f2fs_sb_info *sbi, unsigned int segno)
5119 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5120 unsigned int zone_idx, dev_idx, secno;
5122 secno = GET_SEC_FROM_SEG(sbi, segno);
5123 seg_start = START_BLOCK(sbi, segno);
5124 dev_idx = f2fs_target_device_index(sbi, seg_start);
5125 zone_idx = get_zone_idx(sbi, secno, dev_idx);
5128 * Conventional zone's capacity is always equal to zone size,
5129 * so, blocks per segment is unchanged.
5131 if (is_conv_zone(sbi, zone_idx, dev_idx))
5132 return sbi->blocks_per_seg;
5134 if (!FDEV(dev_idx).zone_capacity_blocks)
5135 return sbi->blocks_per_seg;
5137 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5138 sec_cap_blkaddr = sec_start_blkaddr +
5139 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5142 * If segment starts before zone capacity and spans beyond
5143 * zone capacity, then usable blocks are from seg start to
5144 * zone capacity. If the segment starts after the zone capacity,
5145 * then there are no usable blocks.
5147 if (seg_start >= sec_cap_blkaddr)
5149 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5150 return sec_cap_blkaddr - seg_start;
5152 return sbi->blocks_per_seg;
5155 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5160 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5165 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5171 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5177 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5180 if (f2fs_sb_has_blkzoned(sbi))
5181 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5183 return sbi->blocks_per_seg;
5186 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5189 if (f2fs_sb_has_blkzoned(sbi))
5190 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5192 return sbi->segs_per_sec;
5196 * Update min, max modified time for cost-benefit GC algorithm
5198 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5200 struct sit_info *sit_i = SIT_I(sbi);
5203 down_write(&sit_i->sentry_lock);
5205 sit_i->min_mtime = ULLONG_MAX;
5207 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5209 unsigned long long mtime = 0;
5211 for (i = 0; i < sbi->segs_per_sec; i++)
5212 mtime += get_seg_entry(sbi, segno + i)->mtime;
5214 mtime = div_u64(mtime, sbi->segs_per_sec);
5216 if (sit_i->min_mtime > mtime)
5217 sit_i->min_mtime = mtime;
5219 sit_i->max_mtime = get_mtime(sbi, false);
5220 sit_i->dirty_max_mtime = 0;
5221 up_write(&sit_i->sentry_lock);
5224 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5226 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5227 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5228 struct f2fs_sm_info *sm_info;
5231 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5236 sbi->sm_info = sm_info;
5237 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5238 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5239 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5240 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5241 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5242 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5243 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5244 sm_info->rec_prefree_segments = sm_info->main_segments *
5245 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5246 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5247 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5249 if (!f2fs_lfs_mode(sbi))
5250 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5251 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5252 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5253 sm_info->min_seq_blocks = sbi->blocks_per_seg;
5254 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5255 sm_info->min_ssr_sections = reserved_sections(sbi);
5257 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5259 init_rwsem(&sm_info->curseg_lock);
5261 if (!f2fs_readonly(sbi->sb)) {
5262 err = f2fs_create_flush_cmd_control(sbi);
5267 err = create_discard_cmd_control(sbi);
5271 err = build_sit_info(sbi);
5274 err = build_free_segmap(sbi);
5277 err = build_curseg(sbi);
5281 /* reinit free segmap based on SIT */
5282 err = build_sit_entries(sbi);
5286 init_free_segmap(sbi);
5287 err = build_dirty_segmap(sbi);
5291 err = sanity_check_curseg(sbi);
5295 init_min_max_mtime(sbi);
5299 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5300 enum dirty_type dirty_type)
5302 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5304 mutex_lock(&dirty_i->seglist_lock);
5305 kvfree(dirty_i->dirty_segmap[dirty_type]);
5306 dirty_i->nr_dirty[dirty_type] = 0;
5307 mutex_unlock(&dirty_i->seglist_lock);
5310 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5312 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5314 kvfree(dirty_i->victim_secmap);
5317 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5319 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5325 /* discard pre-free/dirty segments list */
5326 for (i = 0; i < NR_DIRTY_TYPE; i++)
5327 discard_dirty_segmap(sbi, i);
5329 if (__is_large_section(sbi)) {
5330 mutex_lock(&dirty_i->seglist_lock);
5331 kvfree(dirty_i->dirty_secmap);
5332 mutex_unlock(&dirty_i->seglist_lock);
5335 destroy_victim_secmap(sbi);
5336 SM_I(sbi)->dirty_info = NULL;
5340 static void destroy_curseg(struct f2fs_sb_info *sbi)
5342 struct curseg_info *array = SM_I(sbi)->curseg_array;
5347 SM_I(sbi)->curseg_array = NULL;
5348 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5349 kfree(array[i].sum_blk);
5350 kfree(array[i].journal);
5355 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5357 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5361 SM_I(sbi)->free_info = NULL;
5362 kvfree(free_i->free_segmap);
5363 kvfree(free_i->free_secmap);
5367 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5369 struct sit_info *sit_i = SIT_I(sbi);
5374 if (sit_i->sentries)
5375 kvfree(sit_i->bitmap);
5376 kfree(sit_i->tmp_map);
5378 kvfree(sit_i->sentries);
5379 kvfree(sit_i->sec_entries);
5380 kvfree(sit_i->dirty_sentries_bitmap);
5382 SM_I(sbi)->sit_info = NULL;
5383 kvfree(sit_i->sit_bitmap);
5384 #ifdef CONFIG_F2FS_CHECK_FS
5385 kvfree(sit_i->sit_bitmap_mir);
5386 kvfree(sit_i->invalid_segmap);
5391 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5393 struct f2fs_sm_info *sm_info = SM_I(sbi);
5397 f2fs_destroy_flush_cmd_control(sbi, true);
5398 destroy_discard_cmd_control(sbi);
5399 destroy_dirty_segmap(sbi);
5400 destroy_curseg(sbi);
5401 destroy_free_segmap(sbi);
5402 destroy_sit_info(sbi);
5403 sbi->sm_info = NULL;
5407 int __init f2fs_create_segment_manager_caches(void)
5409 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5410 sizeof(struct discard_entry));
5411 if (!discard_entry_slab)
5414 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5415 sizeof(struct discard_cmd));
5416 if (!discard_cmd_slab)
5417 goto destroy_discard_entry;
5419 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5420 sizeof(struct sit_entry_set));
5421 if (!sit_entry_set_slab)
5422 goto destroy_discard_cmd;
5424 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5425 sizeof(struct inmem_pages));
5426 if (!inmem_entry_slab)
5427 goto destroy_sit_entry_set;
5430 destroy_sit_entry_set:
5431 kmem_cache_destroy(sit_entry_set_slab);
5432 destroy_discard_cmd:
5433 kmem_cache_destroy(discard_cmd_slab);
5434 destroy_discard_entry:
5435 kmem_cache_destroy(discard_entry_slab);
5440 void f2fs_destroy_segment_manager_caches(void)
5442 kmem_cache_destroy(sit_entry_set_slab);
5443 kmem_cache_destroy(discard_cmd_slab);
5444 kmem_cache_destroy(discard_entry_slab);
5445 kmem_cache_destroy(inmem_entry_slab);