]> Git Repo - linux.git/blob - fs/f2fs/segment.c
mm/page_alloc: free pages in a single pass during bulk free
[linux.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *inmem_entry_slab;
34
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37         unsigned long tmp = 0;
38         int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41         shift = 56;
42 #endif
43         while (shift >= 0) {
44                 tmp |= (unsigned long)str[idx++] << shift;
45                 shift -= BITS_PER_BYTE;
46         }
47         return tmp;
48 }
49
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56         int num = 0;
57
58 #if BITS_PER_LONG == 64
59         if ((word & 0xffffffff00000000UL) == 0)
60                 num += 32;
61         else
62                 word >>= 32;
63 #endif
64         if ((word & 0xffff0000) == 0)
65                 num += 16;
66         else
67                 word >>= 16;
68
69         if ((word & 0xff00) == 0)
70                 num += 8;
71         else
72                 word >>= 8;
73
74         if ((word & 0xf0) == 0)
75                 num += 4;
76         else
77                 word >>= 4;
78
79         if ((word & 0xc) == 0)
80                 num += 2;
81         else
82                 word >>= 2;
83
84         if ((word & 0x2) == 0)
85                 num += 1;
86         return num;
87 }
88
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99                         unsigned long size, unsigned long offset)
100 {
101         const unsigned long *p = addr + BIT_WORD(offset);
102         unsigned long result = size;
103         unsigned long tmp;
104
105         if (offset >= size)
106                 return size;
107
108         size -= (offset & ~(BITS_PER_LONG - 1));
109         offset %= BITS_PER_LONG;
110
111         while (1) {
112                 if (*p == 0)
113                         goto pass;
114
115                 tmp = __reverse_ulong((unsigned char *)p);
116
117                 tmp &= ~0UL >> offset;
118                 if (size < BITS_PER_LONG)
119                         tmp &= (~0UL << (BITS_PER_LONG - size));
120                 if (tmp)
121                         goto found;
122 pass:
123                 if (size <= BITS_PER_LONG)
124                         break;
125                 size -= BITS_PER_LONG;
126                 offset = 0;
127                 p++;
128         }
129         return result;
130 found:
131         return result - size + __reverse_ffs(tmp);
132 }
133
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135                         unsigned long size, unsigned long offset)
136 {
137         const unsigned long *p = addr + BIT_WORD(offset);
138         unsigned long result = size;
139         unsigned long tmp;
140
141         if (offset >= size)
142                 return size;
143
144         size -= (offset & ~(BITS_PER_LONG - 1));
145         offset %= BITS_PER_LONG;
146
147         while (1) {
148                 if (*p == ~0UL)
149                         goto pass;
150
151                 tmp = __reverse_ulong((unsigned char *)p);
152
153                 if (offset)
154                         tmp |= ~0UL << (BITS_PER_LONG - offset);
155                 if (size < BITS_PER_LONG)
156                         tmp |= ~0UL >> size;
157                 if (tmp != ~0UL)
158                         goto found;
159 pass:
160                 if (size <= BITS_PER_LONG)
161                         break;
162                 size -= BITS_PER_LONG;
163                 offset = 0;
164                 p++;
165         }
166         return result;
167 found:
168         return result - size + __reverse_ffz(tmp);
169 }
170
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177         if (f2fs_lfs_mode(sbi))
178                 return false;
179         if (sbi->gc_mode == GC_URGENT_HIGH)
180                 return true;
181         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182                 return true;
183
184         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
188 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
189 {
190         struct inmem_pages *new;
191
192         set_page_private_atomic(page);
193
194         new = f2fs_kmem_cache_alloc(inmem_entry_slab,
195                                         GFP_NOFS, true, NULL);
196
197         /* add atomic page indices to the list */
198         new->page = page;
199         INIT_LIST_HEAD(&new->list);
200
201         /* increase reference count with clean state */
202         get_page(page);
203         mutex_lock(&F2FS_I(inode)->inmem_lock);
204         list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
205         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
206         mutex_unlock(&F2FS_I(inode)->inmem_lock);
207
208         trace_f2fs_register_inmem_page(page, INMEM);
209 }
210
211 static int __revoke_inmem_pages(struct inode *inode,
212                                 struct list_head *head, bool drop, bool recover,
213                                 bool trylock)
214 {
215         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
216         struct inmem_pages *cur, *tmp;
217         int err = 0;
218
219         list_for_each_entry_safe(cur, tmp, head, list) {
220                 struct page *page = cur->page;
221
222                 if (drop)
223                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
224
225                 if (trylock) {
226                         /*
227                          * to avoid deadlock in between page lock and
228                          * inmem_lock.
229                          */
230                         if (!trylock_page(page))
231                                 continue;
232                 } else {
233                         lock_page(page);
234                 }
235
236                 f2fs_wait_on_page_writeback(page, DATA, true, true);
237
238                 if (recover) {
239                         struct dnode_of_data dn;
240                         struct node_info ni;
241
242                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
243 retry:
244                         set_new_dnode(&dn, inode, NULL, NULL, 0);
245                         err = f2fs_get_dnode_of_data(&dn, page->index,
246                                                                 LOOKUP_NODE);
247                         if (err) {
248                                 if (err == -ENOMEM) {
249                                         memalloc_retry_wait(GFP_NOFS);
250                                         goto retry;
251                                 }
252                                 err = -EAGAIN;
253                                 goto next;
254                         }
255
256                         err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
257                         if (err) {
258                                 f2fs_put_dnode(&dn);
259                                 return err;
260                         }
261
262                         if (cur->old_addr == NEW_ADDR) {
263                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
264                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
265                         } else
266                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
267                                         cur->old_addr, ni.version, true, true);
268                         f2fs_put_dnode(&dn);
269                 }
270 next:
271                 /* we don't need to invalidate this in the sccessful status */
272                 if (drop || recover) {
273                         ClearPageUptodate(page);
274                         clear_page_private_gcing(page);
275                 }
276                 detach_page_private(page);
277                 set_page_private(page, 0);
278                 f2fs_put_page(page, 1);
279
280                 list_del(&cur->list);
281                 kmem_cache_free(inmem_entry_slab, cur);
282                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283         }
284         return err;
285 }
286
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290         struct inode *inode;
291         struct f2fs_inode_info *fi;
292         unsigned int count = sbi->atomic_files;
293         unsigned int looped = 0;
294 next:
295         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296         if (list_empty(head)) {
297                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298                 return;
299         }
300         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301         inode = igrab(&fi->vfs_inode);
302         if (inode)
303                 list_move_tail(&fi->inmem_ilist, head);
304         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305
306         if (inode) {
307                 if (gc_failure) {
308                         if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309                                 goto skip;
310                 }
311                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312                 f2fs_drop_inmem_pages(inode);
313 skip:
314                 iput(inode);
315         }
316         f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
317         if (gc_failure) {
318                 if (++looped >= count)
319                         return;
320         }
321         goto next;
322 }
323
324 void f2fs_drop_inmem_pages(struct inode *inode)
325 {
326         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
327         struct f2fs_inode_info *fi = F2FS_I(inode);
328
329         do {
330                 mutex_lock(&fi->inmem_lock);
331                 if (list_empty(&fi->inmem_pages)) {
332                         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
333
334                         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
335                         if (!list_empty(&fi->inmem_ilist))
336                                 list_del_init(&fi->inmem_ilist);
337                         if (f2fs_is_atomic_file(inode)) {
338                                 clear_inode_flag(inode, FI_ATOMIC_FILE);
339                                 sbi->atomic_files--;
340                         }
341                         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
342
343                         mutex_unlock(&fi->inmem_lock);
344                         break;
345                 }
346                 __revoke_inmem_pages(inode, &fi->inmem_pages,
347                                                 true, false, true);
348                 mutex_unlock(&fi->inmem_lock);
349         } while (1);
350 }
351
352 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
353 {
354         struct f2fs_inode_info *fi = F2FS_I(inode);
355         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
356         struct list_head *head = &fi->inmem_pages;
357         struct inmem_pages *cur = NULL;
358
359         f2fs_bug_on(sbi, !page_private_atomic(page));
360
361         mutex_lock(&fi->inmem_lock);
362         list_for_each_entry(cur, head, list) {
363                 if (cur->page == page)
364                         break;
365         }
366
367         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
368         list_del(&cur->list);
369         mutex_unlock(&fi->inmem_lock);
370
371         dec_page_count(sbi, F2FS_INMEM_PAGES);
372         kmem_cache_free(inmem_entry_slab, cur);
373
374         ClearPageUptodate(page);
375         clear_page_private_atomic(page);
376         f2fs_put_page(page, 0);
377
378         detach_page_private(page);
379         set_page_private(page, 0);
380
381         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
382 }
383
384 static int __f2fs_commit_inmem_pages(struct inode *inode)
385 {
386         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
387         struct f2fs_inode_info *fi = F2FS_I(inode);
388         struct inmem_pages *cur, *tmp;
389         struct f2fs_io_info fio = {
390                 .sbi = sbi,
391                 .ino = inode->i_ino,
392                 .type = DATA,
393                 .op = REQ_OP_WRITE,
394                 .op_flags = REQ_SYNC | REQ_PRIO,
395                 .io_type = FS_DATA_IO,
396         };
397         struct list_head revoke_list;
398         bool submit_bio = false;
399         int err = 0;
400
401         INIT_LIST_HEAD(&revoke_list);
402
403         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
404                 struct page *page = cur->page;
405
406                 lock_page(page);
407                 if (page->mapping == inode->i_mapping) {
408                         trace_f2fs_commit_inmem_page(page, INMEM);
409
410                         f2fs_wait_on_page_writeback(page, DATA, true, true);
411
412                         set_page_dirty(page);
413                         if (clear_page_dirty_for_io(page)) {
414                                 inode_dec_dirty_pages(inode);
415                                 f2fs_remove_dirty_inode(inode);
416                         }
417 retry:
418                         fio.page = page;
419                         fio.old_blkaddr = NULL_ADDR;
420                         fio.encrypted_page = NULL;
421                         fio.need_lock = LOCK_DONE;
422                         err = f2fs_do_write_data_page(&fio);
423                         if (err) {
424                                 if (err == -ENOMEM) {
425                                         memalloc_retry_wait(GFP_NOFS);
426                                         goto retry;
427                                 }
428                                 unlock_page(page);
429                                 break;
430                         }
431                         /* record old blkaddr for revoking */
432                         cur->old_addr = fio.old_blkaddr;
433                         submit_bio = true;
434                 }
435                 unlock_page(page);
436                 list_move_tail(&cur->list, &revoke_list);
437         }
438
439         if (submit_bio)
440                 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
441
442         if (err) {
443                 /*
444                  * try to revoke all committed pages, but still we could fail
445                  * due to no memory or other reason, if that happened, EAGAIN
446                  * will be returned, which means in such case, transaction is
447                  * already not integrity, caller should use journal to do the
448                  * recovery or rewrite & commit last transaction. For other
449                  * error number, revoking was done by filesystem itself.
450                  */
451                 err = __revoke_inmem_pages(inode, &revoke_list,
452                                                 false, true, false);
453
454                 /* drop all uncommitted pages */
455                 __revoke_inmem_pages(inode, &fi->inmem_pages,
456                                                 true, false, false);
457         } else {
458                 __revoke_inmem_pages(inode, &revoke_list,
459                                                 false, false, false);
460         }
461
462         return err;
463 }
464
465 int f2fs_commit_inmem_pages(struct inode *inode)
466 {
467         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
468         struct f2fs_inode_info *fi = F2FS_I(inode);
469         int err;
470
471         f2fs_balance_fs(sbi, true);
472
473         down_write(&fi->i_gc_rwsem[WRITE]);
474
475         f2fs_lock_op(sbi);
476         set_inode_flag(inode, FI_ATOMIC_COMMIT);
477
478         mutex_lock(&fi->inmem_lock);
479         err = __f2fs_commit_inmem_pages(inode);
480         mutex_unlock(&fi->inmem_lock);
481
482         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
483
484         f2fs_unlock_op(sbi);
485         up_write(&fi->i_gc_rwsem[WRITE]);
486
487         return err;
488 }
489
490 /*
491  * This function balances dirty node and dentry pages.
492  * In addition, it controls garbage collection.
493  */
494 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
495 {
496         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
497                 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
498                 f2fs_stop_checkpoint(sbi, false);
499         }
500
501         /* balance_fs_bg is able to be pending */
502         if (need && excess_cached_nats(sbi))
503                 f2fs_balance_fs_bg(sbi, false);
504
505         if (!f2fs_is_checkpoint_ready(sbi))
506                 return;
507
508         /*
509          * We should do GC or end up with checkpoint, if there are so many dirty
510          * dir/node pages without enough free segments.
511          */
512         if (has_not_enough_free_secs(sbi, 0, 0)) {
513                 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
514                                         sbi->gc_thread->f2fs_gc_task) {
515                         DEFINE_WAIT(wait);
516
517                         prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
518                                                 TASK_UNINTERRUPTIBLE);
519                         wake_up(&sbi->gc_thread->gc_wait_queue_head);
520                         io_schedule();
521                         finish_wait(&sbi->gc_thread->fggc_wq, &wait);
522                 } else {
523                         down_write(&sbi->gc_lock);
524                         f2fs_gc(sbi, false, false, false, NULL_SEGNO);
525                 }
526         }
527 }
528
529 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
530 {
531         int factor = rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
532         unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
533         unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
534         unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
535         unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
536         unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
537         unsigned int threshold = sbi->blocks_per_seg * factor *
538                                         DEFAULT_DIRTY_THRESHOLD;
539         unsigned int global_threshold = threshold * 3 / 2;
540
541         if (dents >= threshold || qdata >= threshold ||
542                 nodes >= threshold || meta >= threshold ||
543                 imeta >= threshold)
544                 return true;
545         return dents + qdata + nodes + meta + imeta >  global_threshold;
546 }
547
548 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
549 {
550         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
551                 return;
552
553         /* try to shrink extent cache when there is no enough memory */
554         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
555                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
556
557         /* check the # of cached NAT entries */
558         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
559                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
560
561         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
562                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
563         else
564                 f2fs_build_free_nids(sbi, false, false);
565
566         if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
567                 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
568                 goto do_sync;
569
570         /* there is background inflight IO or foreground operation recently */
571         if (is_inflight_io(sbi, REQ_TIME) ||
572                 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
573                 return;
574
575         /* exceed periodical checkpoint timeout threshold */
576         if (f2fs_time_over(sbi, CP_TIME))
577                 goto do_sync;
578
579         /* checkpoint is the only way to shrink partial cached entries */
580         if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
581                 f2fs_available_free_memory(sbi, INO_ENTRIES))
582                 return;
583
584 do_sync:
585         if (test_opt(sbi, DATA_FLUSH) && from_bg) {
586                 struct blk_plug plug;
587
588                 mutex_lock(&sbi->flush_lock);
589
590                 blk_start_plug(&plug);
591                 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
592                 blk_finish_plug(&plug);
593
594                 mutex_unlock(&sbi->flush_lock);
595         }
596         f2fs_sync_fs(sbi->sb, true);
597         stat_inc_bg_cp_count(sbi->stat_info);
598 }
599
600 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
601                                 struct block_device *bdev)
602 {
603         int ret = blkdev_issue_flush(bdev);
604
605         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
606                                 test_opt(sbi, FLUSH_MERGE), ret);
607         return ret;
608 }
609
610 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
611 {
612         int ret = 0;
613         int i;
614
615         if (!f2fs_is_multi_device(sbi))
616                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
617
618         for (i = 0; i < sbi->s_ndevs; i++) {
619                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
620                         continue;
621                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
622                 if (ret)
623                         break;
624         }
625         return ret;
626 }
627
628 static int issue_flush_thread(void *data)
629 {
630         struct f2fs_sb_info *sbi = data;
631         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
632         wait_queue_head_t *q = &fcc->flush_wait_queue;
633 repeat:
634         if (kthread_should_stop())
635                 return 0;
636
637         if (!llist_empty(&fcc->issue_list)) {
638                 struct flush_cmd *cmd, *next;
639                 int ret;
640
641                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
642                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
643
644                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
645
646                 ret = submit_flush_wait(sbi, cmd->ino);
647                 atomic_inc(&fcc->issued_flush);
648
649                 llist_for_each_entry_safe(cmd, next,
650                                           fcc->dispatch_list, llnode) {
651                         cmd->ret = ret;
652                         complete(&cmd->wait);
653                 }
654                 fcc->dispatch_list = NULL;
655         }
656
657         wait_event_interruptible(*q,
658                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
659         goto repeat;
660 }
661
662 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
663 {
664         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
665         struct flush_cmd cmd;
666         int ret;
667
668         if (test_opt(sbi, NOBARRIER))
669                 return 0;
670
671         if (!test_opt(sbi, FLUSH_MERGE)) {
672                 atomic_inc(&fcc->queued_flush);
673                 ret = submit_flush_wait(sbi, ino);
674                 atomic_dec(&fcc->queued_flush);
675                 atomic_inc(&fcc->issued_flush);
676                 return ret;
677         }
678
679         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
680             f2fs_is_multi_device(sbi)) {
681                 ret = submit_flush_wait(sbi, ino);
682                 atomic_dec(&fcc->queued_flush);
683
684                 atomic_inc(&fcc->issued_flush);
685                 return ret;
686         }
687
688         cmd.ino = ino;
689         init_completion(&cmd.wait);
690
691         llist_add(&cmd.llnode, &fcc->issue_list);
692
693         /*
694          * update issue_list before we wake up issue_flush thread, this
695          * smp_mb() pairs with another barrier in ___wait_event(), see
696          * more details in comments of waitqueue_active().
697          */
698         smp_mb();
699
700         if (waitqueue_active(&fcc->flush_wait_queue))
701                 wake_up(&fcc->flush_wait_queue);
702
703         if (fcc->f2fs_issue_flush) {
704                 wait_for_completion(&cmd.wait);
705                 atomic_dec(&fcc->queued_flush);
706         } else {
707                 struct llist_node *list;
708
709                 list = llist_del_all(&fcc->issue_list);
710                 if (!list) {
711                         wait_for_completion(&cmd.wait);
712                         atomic_dec(&fcc->queued_flush);
713                 } else {
714                         struct flush_cmd *tmp, *next;
715
716                         ret = submit_flush_wait(sbi, ino);
717
718                         llist_for_each_entry_safe(tmp, next, list, llnode) {
719                                 if (tmp == &cmd) {
720                                         cmd.ret = ret;
721                                         atomic_dec(&fcc->queued_flush);
722                                         continue;
723                                 }
724                                 tmp->ret = ret;
725                                 complete(&tmp->wait);
726                         }
727                 }
728         }
729
730         return cmd.ret;
731 }
732
733 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
734 {
735         dev_t dev = sbi->sb->s_bdev->bd_dev;
736         struct flush_cmd_control *fcc;
737         int err = 0;
738
739         if (SM_I(sbi)->fcc_info) {
740                 fcc = SM_I(sbi)->fcc_info;
741                 if (fcc->f2fs_issue_flush)
742                         return err;
743                 goto init_thread;
744         }
745
746         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
747         if (!fcc)
748                 return -ENOMEM;
749         atomic_set(&fcc->issued_flush, 0);
750         atomic_set(&fcc->queued_flush, 0);
751         init_waitqueue_head(&fcc->flush_wait_queue);
752         init_llist_head(&fcc->issue_list);
753         SM_I(sbi)->fcc_info = fcc;
754         if (!test_opt(sbi, FLUSH_MERGE))
755                 return err;
756
757 init_thread:
758         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
759                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
760         if (IS_ERR(fcc->f2fs_issue_flush)) {
761                 err = PTR_ERR(fcc->f2fs_issue_flush);
762                 kfree(fcc);
763                 SM_I(sbi)->fcc_info = NULL;
764                 return err;
765         }
766
767         return err;
768 }
769
770 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
771 {
772         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
773
774         if (fcc && fcc->f2fs_issue_flush) {
775                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
776
777                 fcc->f2fs_issue_flush = NULL;
778                 kthread_stop(flush_thread);
779         }
780         if (free) {
781                 kfree(fcc);
782                 SM_I(sbi)->fcc_info = NULL;
783         }
784 }
785
786 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
787 {
788         int ret = 0, i;
789
790         if (!f2fs_is_multi_device(sbi))
791                 return 0;
792
793         if (test_opt(sbi, NOBARRIER))
794                 return 0;
795
796         for (i = 1; i < sbi->s_ndevs; i++) {
797                 int count = DEFAULT_RETRY_IO_COUNT;
798
799                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
800                         continue;
801
802                 do {
803                         ret = __submit_flush_wait(sbi, FDEV(i).bdev);
804                         if (ret)
805                                 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
806                 } while (ret && --count);
807
808                 if (ret) {
809                         f2fs_stop_checkpoint(sbi, false);
810                         break;
811                 }
812
813                 spin_lock(&sbi->dev_lock);
814                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
815                 spin_unlock(&sbi->dev_lock);
816         }
817
818         return ret;
819 }
820
821 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
822                 enum dirty_type dirty_type)
823 {
824         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
825
826         /* need not be added */
827         if (IS_CURSEG(sbi, segno))
828                 return;
829
830         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
831                 dirty_i->nr_dirty[dirty_type]++;
832
833         if (dirty_type == DIRTY) {
834                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
835                 enum dirty_type t = sentry->type;
836
837                 if (unlikely(t >= DIRTY)) {
838                         f2fs_bug_on(sbi, 1);
839                         return;
840                 }
841                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
842                         dirty_i->nr_dirty[t]++;
843
844                 if (__is_large_section(sbi)) {
845                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
846                         block_t valid_blocks =
847                                 get_valid_blocks(sbi, segno, true);
848
849                         f2fs_bug_on(sbi, unlikely(!valid_blocks ||
850                                         valid_blocks == BLKS_PER_SEC(sbi)));
851
852                         if (!IS_CURSEC(sbi, secno))
853                                 set_bit(secno, dirty_i->dirty_secmap);
854                 }
855         }
856 }
857
858 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
859                 enum dirty_type dirty_type)
860 {
861         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
862         block_t valid_blocks;
863
864         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
865                 dirty_i->nr_dirty[dirty_type]--;
866
867         if (dirty_type == DIRTY) {
868                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
869                 enum dirty_type t = sentry->type;
870
871                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
872                         dirty_i->nr_dirty[t]--;
873
874                 valid_blocks = get_valid_blocks(sbi, segno, true);
875                 if (valid_blocks == 0) {
876                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
877                                                 dirty_i->victim_secmap);
878 #ifdef CONFIG_F2FS_CHECK_FS
879                         clear_bit(segno, SIT_I(sbi)->invalid_segmap);
880 #endif
881                 }
882                 if (__is_large_section(sbi)) {
883                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
884
885                         if (!valid_blocks ||
886                                         valid_blocks == BLKS_PER_SEC(sbi)) {
887                                 clear_bit(secno, dirty_i->dirty_secmap);
888                                 return;
889                         }
890
891                         if (!IS_CURSEC(sbi, secno))
892                                 set_bit(secno, dirty_i->dirty_secmap);
893                 }
894         }
895 }
896
897 /*
898  * Should not occur error such as -ENOMEM.
899  * Adding dirty entry into seglist is not critical operation.
900  * If a given segment is one of current working segments, it won't be added.
901  */
902 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
903 {
904         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
905         unsigned short valid_blocks, ckpt_valid_blocks;
906         unsigned int usable_blocks;
907
908         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
909                 return;
910
911         usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
912         mutex_lock(&dirty_i->seglist_lock);
913
914         valid_blocks = get_valid_blocks(sbi, segno, false);
915         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
916
917         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
918                 ckpt_valid_blocks == usable_blocks)) {
919                 __locate_dirty_segment(sbi, segno, PRE);
920                 __remove_dirty_segment(sbi, segno, DIRTY);
921         } else if (valid_blocks < usable_blocks) {
922                 __locate_dirty_segment(sbi, segno, DIRTY);
923         } else {
924                 /* Recovery routine with SSR needs this */
925                 __remove_dirty_segment(sbi, segno, DIRTY);
926         }
927
928         mutex_unlock(&dirty_i->seglist_lock);
929 }
930
931 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
932 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
933 {
934         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
935         unsigned int segno;
936
937         mutex_lock(&dirty_i->seglist_lock);
938         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
939                 if (get_valid_blocks(sbi, segno, false))
940                         continue;
941                 if (IS_CURSEG(sbi, segno))
942                         continue;
943                 __locate_dirty_segment(sbi, segno, PRE);
944                 __remove_dirty_segment(sbi, segno, DIRTY);
945         }
946         mutex_unlock(&dirty_i->seglist_lock);
947 }
948
949 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
950 {
951         int ovp_hole_segs =
952                 (overprovision_segments(sbi) - reserved_segments(sbi));
953         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
954         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
955         block_t holes[2] = {0, 0};      /* DATA and NODE */
956         block_t unusable;
957         struct seg_entry *se;
958         unsigned int segno;
959
960         mutex_lock(&dirty_i->seglist_lock);
961         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
962                 se = get_seg_entry(sbi, segno);
963                 if (IS_NODESEG(se->type))
964                         holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
965                                                         se->valid_blocks;
966                 else
967                         holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
968                                                         se->valid_blocks;
969         }
970         mutex_unlock(&dirty_i->seglist_lock);
971
972         unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
973         if (unusable > ovp_holes)
974                 return unusable - ovp_holes;
975         return 0;
976 }
977
978 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
979 {
980         int ovp_hole_segs =
981                 (overprovision_segments(sbi) - reserved_segments(sbi));
982         if (unusable > F2FS_OPTION(sbi).unusable_cap)
983                 return -EAGAIN;
984         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
985                 dirty_segments(sbi) > ovp_hole_segs)
986                 return -EAGAIN;
987         return 0;
988 }
989
990 /* This is only used by SBI_CP_DISABLED */
991 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
992 {
993         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
994         unsigned int segno = 0;
995
996         mutex_lock(&dirty_i->seglist_lock);
997         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
998                 if (get_valid_blocks(sbi, segno, false))
999                         continue;
1000                 if (get_ckpt_valid_blocks(sbi, segno, false))
1001                         continue;
1002                 mutex_unlock(&dirty_i->seglist_lock);
1003                 return segno;
1004         }
1005         mutex_unlock(&dirty_i->seglist_lock);
1006         return NULL_SEGNO;
1007 }
1008
1009 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
1010                 struct block_device *bdev, block_t lstart,
1011                 block_t start, block_t len)
1012 {
1013         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1014         struct list_head *pend_list;
1015         struct discard_cmd *dc;
1016
1017         f2fs_bug_on(sbi, !len);
1018
1019         pend_list = &dcc->pend_list[plist_idx(len)];
1020
1021         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
1022         INIT_LIST_HEAD(&dc->list);
1023         dc->bdev = bdev;
1024         dc->lstart = lstart;
1025         dc->start = start;
1026         dc->len = len;
1027         dc->ref = 0;
1028         dc->state = D_PREP;
1029         dc->queued = 0;
1030         dc->error = 0;
1031         init_completion(&dc->wait);
1032         list_add_tail(&dc->list, pend_list);
1033         spin_lock_init(&dc->lock);
1034         dc->bio_ref = 0;
1035         atomic_inc(&dcc->discard_cmd_cnt);
1036         dcc->undiscard_blks += len;
1037
1038         return dc;
1039 }
1040
1041 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1042                                 struct block_device *bdev, block_t lstart,
1043                                 block_t start, block_t len,
1044                                 struct rb_node *parent, struct rb_node **p,
1045                                 bool leftmost)
1046 {
1047         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1048         struct discard_cmd *dc;
1049
1050         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1051
1052         rb_link_node(&dc->rb_node, parent, p);
1053         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1054
1055         return dc;
1056 }
1057
1058 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1059                                                         struct discard_cmd *dc)
1060 {
1061         if (dc->state == D_DONE)
1062                 atomic_sub(dc->queued, &dcc->queued_discard);
1063
1064         list_del(&dc->list);
1065         rb_erase_cached(&dc->rb_node, &dcc->root);
1066         dcc->undiscard_blks -= dc->len;
1067
1068         kmem_cache_free(discard_cmd_slab, dc);
1069
1070         atomic_dec(&dcc->discard_cmd_cnt);
1071 }
1072
1073 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1074                                                         struct discard_cmd *dc)
1075 {
1076         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1077         unsigned long flags;
1078
1079         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1080
1081         spin_lock_irqsave(&dc->lock, flags);
1082         if (dc->bio_ref) {
1083                 spin_unlock_irqrestore(&dc->lock, flags);
1084                 return;
1085         }
1086         spin_unlock_irqrestore(&dc->lock, flags);
1087
1088         f2fs_bug_on(sbi, dc->ref);
1089
1090         if (dc->error == -EOPNOTSUPP)
1091                 dc->error = 0;
1092
1093         if (dc->error)
1094                 printk_ratelimited(
1095                         "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1096                         KERN_INFO, sbi->sb->s_id,
1097                         dc->lstart, dc->start, dc->len, dc->error);
1098         __detach_discard_cmd(dcc, dc);
1099 }
1100
1101 static void f2fs_submit_discard_endio(struct bio *bio)
1102 {
1103         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1104         unsigned long flags;
1105
1106         spin_lock_irqsave(&dc->lock, flags);
1107         if (!dc->error)
1108                 dc->error = blk_status_to_errno(bio->bi_status);
1109         dc->bio_ref--;
1110         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1111                 dc->state = D_DONE;
1112                 complete_all(&dc->wait);
1113         }
1114         spin_unlock_irqrestore(&dc->lock, flags);
1115         bio_put(bio);
1116 }
1117
1118 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1119                                 block_t start, block_t end)
1120 {
1121 #ifdef CONFIG_F2FS_CHECK_FS
1122         struct seg_entry *sentry;
1123         unsigned int segno;
1124         block_t blk = start;
1125         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1126         unsigned long *map;
1127
1128         while (blk < end) {
1129                 segno = GET_SEGNO(sbi, blk);
1130                 sentry = get_seg_entry(sbi, segno);
1131                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1132
1133                 if (end < START_BLOCK(sbi, segno + 1))
1134                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1135                 else
1136                         size = max_blocks;
1137                 map = (unsigned long *)(sentry->cur_valid_map);
1138                 offset = __find_rev_next_bit(map, size, offset);
1139                 f2fs_bug_on(sbi, offset != size);
1140                 blk = START_BLOCK(sbi, segno + 1);
1141         }
1142 #endif
1143 }
1144
1145 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1146                                 struct discard_policy *dpolicy,
1147                                 int discard_type, unsigned int granularity)
1148 {
1149         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1150
1151         /* common policy */
1152         dpolicy->type = discard_type;
1153         dpolicy->sync = true;
1154         dpolicy->ordered = false;
1155         dpolicy->granularity = granularity;
1156
1157         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1158         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1159         dpolicy->timeout = false;
1160
1161         if (discard_type == DPOLICY_BG) {
1162                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1163                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1164                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1165                 dpolicy->io_aware = true;
1166                 dpolicy->sync = false;
1167                 dpolicy->ordered = true;
1168                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1169                         dpolicy->granularity = 1;
1170                         if (atomic_read(&dcc->discard_cmd_cnt))
1171                                 dpolicy->max_interval =
1172                                         DEF_MIN_DISCARD_ISSUE_TIME;
1173                 }
1174         } else if (discard_type == DPOLICY_FORCE) {
1175                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1176                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1177                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1178                 dpolicy->io_aware = false;
1179         } else if (discard_type == DPOLICY_FSTRIM) {
1180                 dpolicy->io_aware = false;
1181         } else if (discard_type == DPOLICY_UMOUNT) {
1182                 dpolicy->io_aware = false;
1183                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1184                 dpolicy->granularity = 1;
1185                 dpolicy->timeout = true;
1186         }
1187 }
1188
1189 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1190                                 struct block_device *bdev, block_t lstart,
1191                                 block_t start, block_t len);
1192 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1193 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1194                                                 struct discard_policy *dpolicy,
1195                                                 struct discard_cmd *dc,
1196                                                 unsigned int *issued)
1197 {
1198         struct block_device *bdev = dc->bdev;
1199         struct request_queue *q = bdev_get_queue(bdev);
1200         unsigned int max_discard_blocks =
1201                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1202         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1203         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1204                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1205         int flag = dpolicy->sync ? REQ_SYNC : 0;
1206         block_t lstart, start, len, total_len;
1207         int err = 0;
1208
1209         if (dc->state != D_PREP)
1210                 return 0;
1211
1212         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1213                 return 0;
1214
1215         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1216
1217         lstart = dc->lstart;
1218         start = dc->start;
1219         len = dc->len;
1220         total_len = len;
1221
1222         dc->len = 0;
1223
1224         while (total_len && *issued < dpolicy->max_requests && !err) {
1225                 struct bio *bio = NULL;
1226                 unsigned long flags;
1227                 bool last = true;
1228
1229                 if (len > max_discard_blocks) {
1230                         len = max_discard_blocks;
1231                         last = false;
1232                 }
1233
1234                 (*issued)++;
1235                 if (*issued == dpolicy->max_requests)
1236                         last = true;
1237
1238                 dc->len += len;
1239
1240                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1241                         f2fs_show_injection_info(sbi, FAULT_DISCARD);
1242                         err = -EIO;
1243                         goto submit;
1244                 }
1245                 err = __blkdev_issue_discard(bdev,
1246                                         SECTOR_FROM_BLOCK(start),
1247                                         SECTOR_FROM_BLOCK(len),
1248                                         GFP_NOFS, 0, &bio);
1249 submit:
1250                 if (err) {
1251                         spin_lock_irqsave(&dc->lock, flags);
1252                         if (dc->state == D_PARTIAL)
1253                                 dc->state = D_SUBMIT;
1254                         spin_unlock_irqrestore(&dc->lock, flags);
1255
1256                         break;
1257                 }
1258
1259                 f2fs_bug_on(sbi, !bio);
1260
1261                 /*
1262                  * should keep before submission to avoid D_DONE
1263                  * right away
1264                  */
1265                 spin_lock_irqsave(&dc->lock, flags);
1266                 if (last)
1267                         dc->state = D_SUBMIT;
1268                 else
1269                         dc->state = D_PARTIAL;
1270                 dc->bio_ref++;
1271                 spin_unlock_irqrestore(&dc->lock, flags);
1272
1273                 atomic_inc(&dcc->queued_discard);
1274                 dc->queued++;
1275                 list_move_tail(&dc->list, wait_list);
1276
1277                 /* sanity check on discard range */
1278                 __check_sit_bitmap(sbi, lstart, lstart + len);
1279
1280                 bio->bi_private = dc;
1281                 bio->bi_end_io = f2fs_submit_discard_endio;
1282                 bio->bi_opf |= flag;
1283                 submit_bio(bio);
1284
1285                 atomic_inc(&dcc->issued_discard);
1286
1287                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1288
1289                 lstart += len;
1290                 start += len;
1291                 total_len -= len;
1292                 len = total_len;
1293         }
1294
1295         if (!err && len) {
1296                 dcc->undiscard_blks -= len;
1297                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1298         }
1299         return err;
1300 }
1301
1302 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1303                                 struct block_device *bdev, block_t lstart,
1304                                 block_t start, block_t len,
1305                                 struct rb_node **insert_p,
1306                                 struct rb_node *insert_parent)
1307 {
1308         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1309         struct rb_node **p;
1310         struct rb_node *parent = NULL;
1311         bool leftmost = true;
1312
1313         if (insert_p && insert_parent) {
1314                 parent = insert_parent;
1315                 p = insert_p;
1316                 goto do_insert;
1317         }
1318
1319         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1320                                                         lstart, &leftmost);
1321 do_insert:
1322         __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1323                                                                 p, leftmost);
1324 }
1325
1326 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1327                                                 struct discard_cmd *dc)
1328 {
1329         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1330 }
1331
1332 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1333                                 struct discard_cmd *dc, block_t blkaddr)
1334 {
1335         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1336         struct discard_info di = dc->di;
1337         bool modified = false;
1338
1339         if (dc->state == D_DONE || dc->len == 1) {
1340                 __remove_discard_cmd(sbi, dc);
1341                 return;
1342         }
1343
1344         dcc->undiscard_blks -= di.len;
1345
1346         if (blkaddr > di.lstart) {
1347                 dc->len = blkaddr - dc->lstart;
1348                 dcc->undiscard_blks += dc->len;
1349                 __relocate_discard_cmd(dcc, dc);
1350                 modified = true;
1351         }
1352
1353         if (blkaddr < di.lstart + di.len - 1) {
1354                 if (modified) {
1355                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1356                                         di.start + blkaddr + 1 - di.lstart,
1357                                         di.lstart + di.len - 1 - blkaddr,
1358                                         NULL, NULL);
1359                 } else {
1360                         dc->lstart++;
1361                         dc->len--;
1362                         dc->start++;
1363                         dcc->undiscard_blks += dc->len;
1364                         __relocate_discard_cmd(dcc, dc);
1365                 }
1366         }
1367 }
1368
1369 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1370                                 struct block_device *bdev, block_t lstart,
1371                                 block_t start, block_t len)
1372 {
1373         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1374         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1375         struct discard_cmd *dc;
1376         struct discard_info di = {0};
1377         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1378         struct request_queue *q = bdev_get_queue(bdev);
1379         unsigned int max_discard_blocks =
1380                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1381         block_t end = lstart + len;
1382
1383         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1384                                         NULL, lstart,
1385                                         (struct rb_entry **)&prev_dc,
1386                                         (struct rb_entry **)&next_dc,
1387                                         &insert_p, &insert_parent, true, NULL);
1388         if (dc)
1389                 prev_dc = dc;
1390
1391         if (!prev_dc) {
1392                 di.lstart = lstart;
1393                 di.len = next_dc ? next_dc->lstart - lstart : len;
1394                 di.len = min(di.len, len);
1395                 di.start = start;
1396         }
1397
1398         while (1) {
1399                 struct rb_node *node;
1400                 bool merged = false;
1401                 struct discard_cmd *tdc = NULL;
1402
1403                 if (prev_dc) {
1404                         di.lstart = prev_dc->lstart + prev_dc->len;
1405                         if (di.lstart < lstart)
1406                                 di.lstart = lstart;
1407                         if (di.lstart >= end)
1408                                 break;
1409
1410                         if (!next_dc || next_dc->lstart > end)
1411                                 di.len = end - di.lstart;
1412                         else
1413                                 di.len = next_dc->lstart - di.lstart;
1414                         di.start = start + di.lstart - lstart;
1415                 }
1416
1417                 if (!di.len)
1418                         goto next;
1419
1420                 if (prev_dc && prev_dc->state == D_PREP &&
1421                         prev_dc->bdev == bdev &&
1422                         __is_discard_back_mergeable(&di, &prev_dc->di,
1423                                                         max_discard_blocks)) {
1424                         prev_dc->di.len += di.len;
1425                         dcc->undiscard_blks += di.len;
1426                         __relocate_discard_cmd(dcc, prev_dc);
1427                         di = prev_dc->di;
1428                         tdc = prev_dc;
1429                         merged = true;
1430                 }
1431
1432                 if (next_dc && next_dc->state == D_PREP &&
1433                         next_dc->bdev == bdev &&
1434                         __is_discard_front_mergeable(&di, &next_dc->di,
1435                                                         max_discard_blocks)) {
1436                         next_dc->di.lstart = di.lstart;
1437                         next_dc->di.len += di.len;
1438                         next_dc->di.start = di.start;
1439                         dcc->undiscard_blks += di.len;
1440                         __relocate_discard_cmd(dcc, next_dc);
1441                         if (tdc)
1442                                 __remove_discard_cmd(sbi, tdc);
1443                         merged = true;
1444                 }
1445
1446                 if (!merged) {
1447                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1448                                                         di.len, NULL, NULL);
1449                 }
1450  next:
1451                 prev_dc = next_dc;
1452                 if (!prev_dc)
1453                         break;
1454
1455                 node = rb_next(&prev_dc->rb_node);
1456                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1457         }
1458 }
1459
1460 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1461                 struct block_device *bdev, block_t blkstart, block_t blklen)
1462 {
1463         block_t lblkstart = blkstart;
1464
1465         if (!f2fs_bdev_support_discard(bdev))
1466                 return 0;
1467
1468         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1469
1470         if (f2fs_is_multi_device(sbi)) {
1471                 int devi = f2fs_target_device_index(sbi, blkstart);
1472
1473                 blkstart -= FDEV(devi).start_blk;
1474         }
1475         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1476         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1477         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1478         return 0;
1479 }
1480
1481 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1482                                         struct discard_policy *dpolicy)
1483 {
1484         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1485         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1486         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1487         struct discard_cmd *dc;
1488         struct blk_plug plug;
1489         unsigned int pos = dcc->next_pos;
1490         unsigned int issued = 0;
1491         bool io_interrupted = false;
1492
1493         mutex_lock(&dcc->cmd_lock);
1494         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1495                                         NULL, pos,
1496                                         (struct rb_entry **)&prev_dc,
1497                                         (struct rb_entry **)&next_dc,
1498                                         &insert_p, &insert_parent, true, NULL);
1499         if (!dc)
1500                 dc = next_dc;
1501
1502         blk_start_plug(&plug);
1503
1504         while (dc) {
1505                 struct rb_node *node;
1506                 int err = 0;
1507
1508                 if (dc->state != D_PREP)
1509                         goto next;
1510
1511                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1512                         io_interrupted = true;
1513                         break;
1514                 }
1515
1516                 dcc->next_pos = dc->lstart + dc->len;
1517                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1518
1519                 if (issued >= dpolicy->max_requests)
1520                         break;
1521 next:
1522                 node = rb_next(&dc->rb_node);
1523                 if (err)
1524                         __remove_discard_cmd(sbi, dc);
1525                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1526         }
1527
1528         blk_finish_plug(&plug);
1529
1530         if (!dc)
1531                 dcc->next_pos = 0;
1532
1533         mutex_unlock(&dcc->cmd_lock);
1534
1535         if (!issued && io_interrupted)
1536                 issued = -1;
1537
1538         return issued;
1539 }
1540 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1541                                         struct discard_policy *dpolicy);
1542
1543 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1544                                         struct discard_policy *dpolicy)
1545 {
1546         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1547         struct list_head *pend_list;
1548         struct discard_cmd *dc, *tmp;
1549         struct blk_plug plug;
1550         int i, issued;
1551         bool io_interrupted = false;
1552
1553         if (dpolicy->timeout)
1554                 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1555
1556 retry:
1557         issued = 0;
1558         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1559                 if (dpolicy->timeout &&
1560                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1561                         break;
1562
1563                 if (i + 1 < dpolicy->granularity)
1564                         break;
1565
1566                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1567                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1568
1569                 pend_list = &dcc->pend_list[i];
1570
1571                 mutex_lock(&dcc->cmd_lock);
1572                 if (list_empty(pend_list))
1573                         goto next;
1574                 if (unlikely(dcc->rbtree_check))
1575                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1576                                                         &dcc->root, false));
1577                 blk_start_plug(&plug);
1578                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1579                         f2fs_bug_on(sbi, dc->state != D_PREP);
1580
1581                         if (dpolicy->timeout &&
1582                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1583                                 break;
1584
1585                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1586                                                 !is_idle(sbi, DISCARD_TIME)) {
1587                                 io_interrupted = true;
1588                                 break;
1589                         }
1590
1591                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1592
1593                         if (issued >= dpolicy->max_requests)
1594                                 break;
1595                 }
1596                 blk_finish_plug(&plug);
1597 next:
1598                 mutex_unlock(&dcc->cmd_lock);
1599
1600                 if (issued >= dpolicy->max_requests || io_interrupted)
1601                         break;
1602         }
1603
1604         if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1605                 __wait_all_discard_cmd(sbi, dpolicy);
1606                 goto retry;
1607         }
1608
1609         if (!issued && io_interrupted)
1610                 issued = -1;
1611
1612         return issued;
1613 }
1614
1615 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1616 {
1617         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1618         struct list_head *pend_list;
1619         struct discard_cmd *dc, *tmp;
1620         int i;
1621         bool dropped = false;
1622
1623         mutex_lock(&dcc->cmd_lock);
1624         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1625                 pend_list = &dcc->pend_list[i];
1626                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1627                         f2fs_bug_on(sbi, dc->state != D_PREP);
1628                         __remove_discard_cmd(sbi, dc);
1629                         dropped = true;
1630                 }
1631         }
1632         mutex_unlock(&dcc->cmd_lock);
1633
1634         return dropped;
1635 }
1636
1637 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1638 {
1639         __drop_discard_cmd(sbi);
1640 }
1641
1642 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1643                                                         struct discard_cmd *dc)
1644 {
1645         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1646         unsigned int len = 0;
1647
1648         wait_for_completion_io(&dc->wait);
1649         mutex_lock(&dcc->cmd_lock);
1650         f2fs_bug_on(sbi, dc->state != D_DONE);
1651         dc->ref--;
1652         if (!dc->ref) {
1653                 if (!dc->error)
1654                         len = dc->len;
1655                 __remove_discard_cmd(sbi, dc);
1656         }
1657         mutex_unlock(&dcc->cmd_lock);
1658
1659         return len;
1660 }
1661
1662 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1663                                                 struct discard_policy *dpolicy,
1664                                                 block_t start, block_t end)
1665 {
1666         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1667         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1668                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1669         struct discard_cmd *dc, *tmp;
1670         bool need_wait;
1671         unsigned int trimmed = 0;
1672
1673 next:
1674         need_wait = false;
1675
1676         mutex_lock(&dcc->cmd_lock);
1677         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1678                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1679                         continue;
1680                 if (dc->len < dpolicy->granularity)
1681                         continue;
1682                 if (dc->state == D_DONE && !dc->ref) {
1683                         wait_for_completion_io(&dc->wait);
1684                         if (!dc->error)
1685                                 trimmed += dc->len;
1686                         __remove_discard_cmd(sbi, dc);
1687                 } else {
1688                         dc->ref++;
1689                         need_wait = true;
1690                         break;
1691                 }
1692         }
1693         mutex_unlock(&dcc->cmd_lock);
1694
1695         if (need_wait) {
1696                 trimmed += __wait_one_discard_bio(sbi, dc);
1697                 goto next;
1698         }
1699
1700         return trimmed;
1701 }
1702
1703 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1704                                                 struct discard_policy *dpolicy)
1705 {
1706         struct discard_policy dp;
1707         unsigned int discard_blks;
1708
1709         if (dpolicy)
1710                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1711
1712         /* wait all */
1713         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1714         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1715         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1716         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1717
1718         return discard_blks;
1719 }
1720
1721 /* This should be covered by global mutex, &sit_i->sentry_lock */
1722 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1723 {
1724         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1725         struct discard_cmd *dc;
1726         bool need_wait = false;
1727
1728         mutex_lock(&dcc->cmd_lock);
1729         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1730                                                         NULL, blkaddr);
1731         if (dc) {
1732                 if (dc->state == D_PREP) {
1733                         __punch_discard_cmd(sbi, dc, blkaddr);
1734                 } else {
1735                         dc->ref++;
1736                         need_wait = true;
1737                 }
1738         }
1739         mutex_unlock(&dcc->cmd_lock);
1740
1741         if (need_wait)
1742                 __wait_one_discard_bio(sbi, dc);
1743 }
1744
1745 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1746 {
1747         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1748
1749         if (dcc && dcc->f2fs_issue_discard) {
1750                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1751
1752                 dcc->f2fs_issue_discard = NULL;
1753                 kthread_stop(discard_thread);
1754         }
1755 }
1756
1757 /* This comes from f2fs_put_super */
1758 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1759 {
1760         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1761         struct discard_policy dpolicy;
1762         bool dropped;
1763
1764         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1765                                         dcc->discard_granularity);
1766         __issue_discard_cmd(sbi, &dpolicy);
1767         dropped = __drop_discard_cmd(sbi);
1768
1769         /* just to make sure there is no pending discard commands */
1770         __wait_all_discard_cmd(sbi, NULL);
1771
1772         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1773         return dropped;
1774 }
1775
1776 static int issue_discard_thread(void *data)
1777 {
1778         struct f2fs_sb_info *sbi = data;
1779         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1780         wait_queue_head_t *q = &dcc->discard_wait_queue;
1781         struct discard_policy dpolicy;
1782         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1783         int issued;
1784
1785         set_freezable();
1786
1787         do {
1788                 if (sbi->gc_mode == GC_URGENT_HIGH ||
1789                         !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1790                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1791                 else
1792                         __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1793                                                 dcc->discard_granularity);
1794
1795                 if (!atomic_read(&dcc->discard_cmd_cnt))
1796                        wait_ms = dpolicy.max_interval;
1797
1798                 wait_event_interruptible_timeout(*q,
1799                                 kthread_should_stop() || freezing(current) ||
1800                                 dcc->discard_wake,
1801                                 msecs_to_jiffies(wait_ms));
1802
1803                 if (dcc->discard_wake)
1804                         dcc->discard_wake = 0;
1805
1806                 /* clean up pending candidates before going to sleep */
1807                 if (atomic_read(&dcc->queued_discard))
1808                         __wait_all_discard_cmd(sbi, NULL);
1809
1810                 if (try_to_freeze())
1811                         continue;
1812                 if (f2fs_readonly(sbi->sb))
1813                         continue;
1814                 if (kthread_should_stop())
1815                         return 0;
1816                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1817                         wait_ms = dpolicy.max_interval;
1818                         continue;
1819                 }
1820                 if (!atomic_read(&dcc->discard_cmd_cnt))
1821                         continue;
1822
1823                 sb_start_intwrite(sbi->sb);
1824
1825                 issued = __issue_discard_cmd(sbi, &dpolicy);
1826                 if (issued > 0) {
1827                         __wait_all_discard_cmd(sbi, &dpolicy);
1828                         wait_ms = dpolicy.min_interval;
1829                 } else if (issued == -1) {
1830                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1831                         if (!wait_ms)
1832                                 wait_ms = dpolicy.mid_interval;
1833                 } else {
1834                         wait_ms = dpolicy.max_interval;
1835                 }
1836
1837                 sb_end_intwrite(sbi->sb);
1838
1839         } while (!kthread_should_stop());
1840         return 0;
1841 }
1842
1843 #ifdef CONFIG_BLK_DEV_ZONED
1844 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1845                 struct block_device *bdev, block_t blkstart, block_t blklen)
1846 {
1847         sector_t sector, nr_sects;
1848         block_t lblkstart = blkstart;
1849         int devi = 0;
1850
1851         if (f2fs_is_multi_device(sbi)) {
1852                 devi = f2fs_target_device_index(sbi, blkstart);
1853                 if (blkstart < FDEV(devi).start_blk ||
1854                     blkstart > FDEV(devi).end_blk) {
1855                         f2fs_err(sbi, "Invalid block %x", blkstart);
1856                         return -EIO;
1857                 }
1858                 blkstart -= FDEV(devi).start_blk;
1859         }
1860
1861         /* For sequential zones, reset the zone write pointer */
1862         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1863                 sector = SECTOR_FROM_BLOCK(blkstart);
1864                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1865
1866                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1867                                 nr_sects != bdev_zone_sectors(bdev)) {
1868                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1869                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1870                                  blkstart, blklen);
1871                         return -EIO;
1872                 }
1873                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1874                 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1875                                         sector, nr_sects, GFP_NOFS);
1876         }
1877
1878         /* For conventional zones, use regular discard if supported */
1879         return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1880 }
1881 #endif
1882
1883 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1884                 struct block_device *bdev, block_t blkstart, block_t blklen)
1885 {
1886 #ifdef CONFIG_BLK_DEV_ZONED
1887         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1888                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1889 #endif
1890         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1891 }
1892
1893 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1894                                 block_t blkstart, block_t blklen)
1895 {
1896         sector_t start = blkstart, len = 0;
1897         struct block_device *bdev;
1898         struct seg_entry *se;
1899         unsigned int offset;
1900         block_t i;
1901         int err = 0;
1902
1903         bdev = f2fs_target_device(sbi, blkstart, NULL);
1904
1905         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1906                 if (i != start) {
1907                         struct block_device *bdev2 =
1908                                 f2fs_target_device(sbi, i, NULL);
1909
1910                         if (bdev2 != bdev) {
1911                                 err = __issue_discard_async(sbi, bdev,
1912                                                 start, len);
1913                                 if (err)
1914                                         return err;
1915                                 bdev = bdev2;
1916                                 start = i;
1917                                 len = 0;
1918                         }
1919                 }
1920
1921                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1922                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1923
1924                 if (f2fs_block_unit_discard(sbi) &&
1925                                 !f2fs_test_and_set_bit(offset, se->discard_map))
1926                         sbi->discard_blks--;
1927         }
1928
1929         if (len)
1930                 err = __issue_discard_async(sbi, bdev, start, len);
1931         return err;
1932 }
1933
1934 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1935                                                         bool check_only)
1936 {
1937         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1938         int max_blocks = sbi->blocks_per_seg;
1939         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1940         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1941         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1942         unsigned long *discard_map = (unsigned long *)se->discard_map;
1943         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1944         unsigned int start = 0, end = -1;
1945         bool force = (cpc->reason & CP_DISCARD);
1946         struct discard_entry *de = NULL;
1947         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1948         int i;
1949
1950         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1951                         !f2fs_block_unit_discard(sbi))
1952                 return false;
1953
1954         if (!force) {
1955                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1956                         SM_I(sbi)->dcc_info->nr_discards >=
1957                                 SM_I(sbi)->dcc_info->max_discards)
1958                         return false;
1959         }
1960
1961         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1962         for (i = 0; i < entries; i++)
1963                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1964                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1965
1966         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1967                                 SM_I(sbi)->dcc_info->max_discards) {
1968                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1969                 if (start >= max_blocks)
1970                         break;
1971
1972                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1973                 if (force && start && end != max_blocks
1974                                         && (end - start) < cpc->trim_minlen)
1975                         continue;
1976
1977                 if (check_only)
1978                         return true;
1979
1980                 if (!de) {
1981                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1982                                                 GFP_F2FS_ZERO, true, NULL);
1983                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1984                         list_add_tail(&de->list, head);
1985                 }
1986
1987                 for (i = start; i < end; i++)
1988                         __set_bit_le(i, (void *)de->discard_map);
1989
1990                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1991         }
1992         return false;
1993 }
1994
1995 static void release_discard_addr(struct discard_entry *entry)
1996 {
1997         list_del(&entry->list);
1998         kmem_cache_free(discard_entry_slab, entry);
1999 }
2000
2001 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2002 {
2003         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2004         struct discard_entry *entry, *this;
2005
2006         /* drop caches */
2007         list_for_each_entry_safe(entry, this, head, list)
2008                 release_discard_addr(entry);
2009 }
2010
2011 /*
2012  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2013  */
2014 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2015 {
2016         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2017         unsigned int segno;
2018
2019         mutex_lock(&dirty_i->seglist_lock);
2020         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2021                 __set_test_and_free(sbi, segno, false);
2022         mutex_unlock(&dirty_i->seglist_lock);
2023 }
2024
2025 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2026                                                 struct cp_control *cpc)
2027 {
2028         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2029         struct list_head *head = &dcc->entry_list;
2030         struct discard_entry *entry, *this;
2031         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2032         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2033         unsigned int start = 0, end = -1;
2034         unsigned int secno, start_segno;
2035         bool force = (cpc->reason & CP_DISCARD);
2036         bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2037                                                 DISCARD_UNIT_SECTION;
2038
2039         if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2040                 section_alignment = true;
2041
2042         mutex_lock(&dirty_i->seglist_lock);
2043
2044         while (1) {
2045                 int i;
2046
2047                 if (section_alignment && end != -1)
2048                         end--;
2049                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2050                 if (start >= MAIN_SEGS(sbi))
2051                         break;
2052                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2053                                                                 start + 1);
2054
2055                 if (section_alignment) {
2056                         start = rounddown(start, sbi->segs_per_sec);
2057                         end = roundup(end, sbi->segs_per_sec);
2058                 }
2059
2060                 for (i = start; i < end; i++) {
2061                         if (test_and_clear_bit(i, prefree_map))
2062                                 dirty_i->nr_dirty[PRE]--;
2063                 }
2064
2065                 if (!f2fs_realtime_discard_enable(sbi))
2066                         continue;
2067
2068                 if (force && start >= cpc->trim_start &&
2069                                         (end - 1) <= cpc->trim_end)
2070                                 continue;
2071
2072                 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2073                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2074                                 (end - start) << sbi->log_blocks_per_seg);
2075                         continue;
2076                 }
2077 next:
2078                 secno = GET_SEC_FROM_SEG(sbi, start);
2079                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2080                 if (!IS_CURSEC(sbi, secno) &&
2081                         !get_valid_blocks(sbi, start, true))
2082                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2083                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2084
2085                 start = start_segno + sbi->segs_per_sec;
2086                 if (start < end)
2087                         goto next;
2088                 else
2089                         end = start - 1;
2090         }
2091         mutex_unlock(&dirty_i->seglist_lock);
2092
2093         if (!f2fs_block_unit_discard(sbi))
2094                 goto wakeup;
2095
2096         /* send small discards */
2097         list_for_each_entry_safe(entry, this, head, list) {
2098                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2099                 bool is_valid = test_bit_le(0, entry->discard_map);
2100
2101 find_next:
2102                 if (is_valid) {
2103                         next_pos = find_next_zero_bit_le(entry->discard_map,
2104                                         sbi->blocks_per_seg, cur_pos);
2105                         len = next_pos - cur_pos;
2106
2107                         if (f2fs_sb_has_blkzoned(sbi) ||
2108                             (force && len < cpc->trim_minlen))
2109                                 goto skip;
2110
2111                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2112                                                                         len);
2113                         total_len += len;
2114                 } else {
2115                         next_pos = find_next_bit_le(entry->discard_map,
2116                                         sbi->blocks_per_seg, cur_pos);
2117                 }
2118 skip:
2119                 cur_pos = next_pos;
2120                 is_valid = !is_valid;
2121
2122                 if (cur_pos < sbi->blocks_per_seg)
2123                         goto find_next;
2124
2125                 release_discard_addr(entry);
2126                 dcc->nr_discards -= total_len;
2127         }
2128
2129 wakeup:
2130         wake_up_discard_thread(sbi, false);
2131 }
2132
2133 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2134 {
2135         dev_t dev = sbi->sb->s_bdev->bd_dev;
2136         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2137         int err = 0;
2138
2139         if (!f2fs_realtime_discard_enable(sbi))
2140                 return 0;
2141
2142         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2143                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2144         if (IS_ERR(dcc->f2fs_issue_discard))
2145                 err = PTR_ERR(dcc->f2fs_issue_discard);
2146
2147         return err;
2148 }
2149
2150 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2151 {
2152         struct discard_cmd_control *dcc;
2153         int err = 0, i;
2154
2155         if (SM_I(sbi)->dcc_info) {
2156                 dcc = SM_I(sbi)->dcc_info;
2157                 goto init_thread;
2158         }
2159
2160         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2161         if (!dcc)
2162                 return -ENOMEM;
2163
2164         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2165         if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2166                 dcc->discard_granularity = sbi->blocks_per_seg;
2167         else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2168                 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2169
2170         INIT_LIST_HEAD(&dcc->entry_list);
2171         for (i = 0; i < MAX_PLIST_NUM; i++)
2172                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2173         INIT_LIST_HEAD(&dcc->wait_list);
2174         INIT_LIST_HEAD(&dcc->fstrim_list);
2175         mutex_init(&dcc->cmd_lock);
2176         atomic_set(&dcc->issued_discard, 0);
2177         atomic_set(&dcc->queued_discard, 0);
2178         atomic_set(&dcc->discard_cmd_cnt, 0);
2179         dcc->nr_discards = 0;
2180         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2181         dcc->undiscard_blks = 0;
2182         dcc->next_pos = 0;
2183         dcc->root = RB_ROOT_CACHED;
2184         dcc->rbtree_check = false;
2185
2186         init_waitqueue_head(&dcc->discard_wait_queue);
2187         SM_I(sbi)->dcc_info = dcc;
2188 init_thread:
2189         err = f2fs_start_discard_thread(sbi);
2190         if (err) {
2191                 kfree(dcc);
2192                 SM_I(sbi)->dcc_info = NULL;
2193         }
2194
2195         return err;
2196 }
2197
2198 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2199 {
2200         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2201
2202         if (!dcc)
2203                 return;
2204
2205         f2fs_stop_discard_thread(sbi);
2206
2207         /*
2208          * Recovery can cache discard commands, so in error path of
2209          * fill_super(), it needs to give a chance to handle them.
2210          */
2211         if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2212                 f2fs_issue_discard_timeout(sbi);
2213
2214         kfree(dcc);
2215         SM_I(sbi)->dcc_info = NULL;
2216 }
2217
2218 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2219 {
2220         struct sit_info *sit_i = SIT_I(sbi);
2221
2222         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2223                 sit_i->dirty_sentries++;
2224                 return false;
2225         }
2226
2227         return true;
2228 }
2229
2230 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2231                                         unsigned int segno, int modified)
2232 {
2233         struct seg_entry *se = get_seg_entry(sbi, segno);
2234
2235         se->type = type;
2236         if (modified)
2237                 __mark_sit_entry_dirty(sbi, segno);
2238 }
2239
2240 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2241                                                                 block_t blkaddr)
2242 {
2243         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2244
2245         if (segno == NULL_SEGNO)
2246                 return 0;
2247         return get_seg_entry(sbi, segno)->mtime;
2248 }
2249
2250 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2251                                                 unsigned long long old_mtime)
2252 {
2253         struct seg_entry *se;
2254         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2255         unsigned long long ctime = get_mtime(sbi, false);
2256         unsigned long long mtime = old_mtime ? old_mtime : ctime;
2257
2258         if (segno == NULL_SEGNO)
2259                 return;
2260
2261         se = get_seg_entry(sbi, segno);
2262
2263         if (!se->mtime)
2264                 se->mtime = mtime;
2265         else
2266                 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2267                                                 se->valid_blocks + 1);
2268
2269         if (ctime > SIT_I(sbi)->max_mtime)
2270                 SIT_I(sbi)->max_mtime = ctime;
2271 }
2272
2273 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2274 {
2275         struct seg_entry *se;
2276         unsigned int segno, offset;
2277         long int new_vblocks;
2278         bool exist;
2279 #ifdef CONFIG_F2FS_CHECK_FS
2280         bool mir_exist;
2281 #endif
2282
2283         segno = GET_SEGNO(sbi, blkaddr);
2284
2285         se = get_seg_entry(sbi, segno);
2286         new_vblocks = se->valid_blocks + del;
2287         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2288
2289         f2fs_bug_on(sbi, (new_vblocks < 0 ||
2290                         (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2291
2292         se->valid_blocks = new_vblocks;
2293
2294         /* Update valid block bitmap */
2295         if (del > 0) {
2296                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2297 #ifdef CONFIG_F2FS_CHECK_FS
2298                 mir_exist = f2fs_test_and_set_bit(offset,
2299                                                 se->cur_valid_map_mir);
2300                 if (unlikely(exist != mir_exist)) {
2301                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2302                                  blkaddr, exist);
2303                         f2fs_bug_on(sbi, 1);
2304                 }
2305 #endif
2306                 if (unlikely(exist)) {
2307                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2308                                  blkaddr);
2309                         f2fs_bug_on(sbi, 1);
2310                         se->valid_blocks--;
2311                         del = 0;
2312                 }
2313
2314                 if (f2fs_block_unit_discard(sbi) &&
2315                                 !f2fs_test_and_set_bit(offset, se->discard_map))
2316                         sbi->discard_blks--;
2317
2318                 /*
2319                  * SSR should never reuse block which is checkpointed
2320                  * or newly invalidated.
2321                  */
2322                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2323                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2324                                 se->ckpt_valid_blocks++;
2325                 }
2326         } else {
2327                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2328 #ifdef CONFIG_F2FS_CHECK_FS
2329                 mir_exist = f2fs_test_and_clear_bit(offset,
2330                                                 se->cur_valid_map_mir);
2331                 if (unlikely(exist != mir_exist)) {
2332                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2333                                  blkaddr, exist);
2334                         f2fs_bug_on(sbi, 1);
2335                 }
2336 #endif
2337                 if (unlikely(!exist)) {
2338                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2339                                  blkaddr);
2340                         f2fs_bug_on(sbi, 1);
2341                         se->valid_blocks++;
2342                         del = 0;
2343                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2344                         /*
2345                          * If checkpoints are off, we must not reuse data that
2346                          * was used in the previous checkpoint. If it was used
2347                          * before, we must track that to know how much space we
2348                          * really have.
2349                          */
2350                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2351                                 spin_lock(&sbi->stat_lock);
2352                                 sbi->unusable_block_count++;
2353                                 spin_unlock(&sbi->stat_lock);
2354                         }
2355                 }
2356
2357                 if (f2fs_block_unit_discard(sbi) &&
2358                         f2fs_test_and_clear_bit(offset, se->discard_map))
2359                         sbi->discard_blks++;
2360         }
2361         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2362                 se->ckpt_valid_blocks += del;
2363
2364         __mark_sit_entry_dirty(sbi, segno);
2365
2366         /* update total number of valid blocks to be written in ckpt area */
2367         SIT_I(sbi)->written_valid_blocks += del;
2368
2369         if (__is_large_section(sbi))
2370                 get_sec_entry(sbi, segno)->valid_blocks += del;
2371 }
2372
2373 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2374 {
2375         unsigned int segno = GET_SEGNO(sbi, addr);
2376         struct sit_info *sit_i = SIT_I(sbi);
2377
2378         f2fs_bug_on(sbi, addr == NULL_ADDR);
2379         if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2380                 return;
2381
2382         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2383         f2fs_invalidate_compress_page(sbi, addr);
2384
2385         /* add it into sit main buffer */
2386         down_write(&sit_i->sentry_lock);
2387
2388         update_segment_mtime(sbi, addr, 0);
2389         update_sit_entry(sbi, addr, -1);
2390
2391         /* add it into dirty seglist */
2392         locate_dirty_segment(sbi, segno);
2393
2394         up_write(&sit_i->sentry_lock);
2395 }
2396
2397 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2398 {
2399         struct sit_info *sit_i = SIT_I(sbi);
2400         unsigned int segno, offset;
2401         struct seg_entry *se;
2402         bool is_cp = false;
2403
2404         if (!__is_valid_data_blkaddr(blkaddr))
2405                 return true;
2406
2407         down_read(&sit_i->sentry_lock);
2408
2409         segno = GET_SEGNO(sbi, blkaddr);
2410         se = get_seg_entry(sbi, segno);
2411         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2412
2413         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2414                 is_cp = true;
2415
2416         up_read(&sit_i->sentry_lock);
2417
2418         return is_cp;
2419 }
2420
2421 /*
2422  * This function should be resided under the curseg_mutex lock
2423  */
2424 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2425                                         struct f2fs_summary *sum)
2426 {
2427         struct curseg_info *curseg = CURSEG_I(sbi, type);
2428         void *addr = curseg->sum_blk;
2429
2430         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2431         memcpy(addr, sum, sizeof(struct f2fs_summary));
2432 }
2433
2434 /*
2435  * Calculate the number of current summary pages for writing
2436  */
2437 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2438 {
2439         int valid_sum_count = 0;
2440         int i, sum_in_page;
2441
2442         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2443                 if (sbi->ckpt->alloc_type[i] == SSR)
2444                         valid_sum_count += sbi->blocks_per_seg;
2445                 else {
2446                         if (for_ra)
2447                                 valid_sum_count += le16_to_cpu(
2448                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2449                         else
2450                                 valid_sum_count += curseg_blkoff(sbi, i);
2451                 }
2452         }
2453
2454         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2455                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2456         if (valid_sum_count <= sum_in_page)
2457                 return 1;
2458         else if ((valid_sum_count - sum_in_page) <=
2459                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2460                 return 2;
2461         return 3;
2462 }
2463
2464 /*
2465  * Caller should put this summary page
2466  */
2467 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2468 {
2469         if (unlikely(f2fs_cp_error(sbi)))
2470                 return ERR_PTR(-EIO);
2471         return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2472 }
2473
2474 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2475                                         void *src, block_t blk_addr)
2476 {
2477         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2478
2479         memcpy(page_address(page), src, PAGE_SIZE);
2480         set_page_dirty(page);
2481         f2fs_put_page(page, 1);
2482 }
2483
2484 static void write_sum_page(struct f2fs_sb_info *sbi,
2485                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2486 {
2487         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2488 }
2489
2490 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2491                                                 int type, block_t blk_addr)
2492 {
2493         struct curseg_info *curseg = CURSEG_I(sbi, type);
2494         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2495         struct f2fs_summary_block *src = curseg->sum_blk;
2496         struct f2fs_summary_block *dst;
2497
2498         dst = (struct f2fs_summary_block *)page_address(page);
2499         memset(dst, 0, PAGE_SIZE);
2500
2501         mutex_lock(&curseg->curseg_mutex);
2502
2503         down_read(&curseg->journal_rwsem);
2504         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2505         up_read(&curseg->journal_rwsem);
2506
2507         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2508         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2509
2510         mutex_unlock(&curseg->curseg_mutex);
2511
2512         set_page_dirty(page);
2513         f2fs_put_page(page, 1);
2514 }
2515
2516 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2517                                 struct curseg_info *curseg, int type)
2518 {
2519         unsigned int segno = curseg->segno + 1;
2520         struct free_segmap_info *free_i = FREE_I(sbi);
2521
2522         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2523                 return !test_bit(segno, free_i->free_segmap);
2524         return 0;
2525 }
2526
2527 /*
2528  * Find a new segment from the free segments bitmap to right order
2529  * This function should be returned with success, otherwise BUG
2530  */
2531 static void get_new_segment(struct f2fs_sb_info *sbi,
2532                         unsigned int *newseg, bool new_sec, int dir)
2533 {
2534         struct free_segmap_info *free_i = FREE_I(sbi);
2535         unsigned int segno, secno, zoneno;
2536         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2537         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2538         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2539         unsigned int left_start = hint;
2540         bool init = true;
2541         int go_left = 0;
2542         int i;
2543
2544         spin_lock(&free_i->segmap_lock);
2545
2546         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2547                 segno = find_next_zero_bit(free_i->free_segmap,
2548                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2549                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2550                         goto got_it;
2551         }
2552 find_other_zone:
2553         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2554         if (secno >= MAIN_SECS(sbi)) {
2555                 if (dir == ALLOC_RIGHT) {
2556                         secno = find_first_zero_bit(free_i->free_secmap,
2557                                                         MAIN_SECS(sbi));
2558                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2559                 } else {
2560                         go_left = 1;
2561                         left_start = hint - 1;
2562                 }
2563         }
2564         if (go_left == 0)
2565                 goto skip_left;
2566
2567         while (test_bit(left_start, free_i->free_secmap)) {
2568                 if (left_start > 0) {
2569                         left_start--;
2570                         continue;
2571                 }
2572                 left_start = find_first_zero_bit(free_i->free_secmap,
2573                                                         MAIN_SECS(sbi));
2574                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2575                 break;
2576         }
2577         secno = left_start;
2578 skip_left:
2579         segno = GET_SEG_FROM_SEC(sbi, secno);
2580         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2581
2582         /* give up on finding another zone */
2583         if (!init)
2584                 goto got_it;
2585         if (sbi->secs_per_zone == 1)
2586                 goto got_it;
2587         if (zoneno == old_zoneno)
2588                 goto got_it;
2589         if (dir == ALLOC_LEFT) {
2590                 if (!go_left && zoneno + 1 >= total_zones)
2591                         goto got_it;
2592                 if (go_left && zoneno == 0)
2593                         goto got_it;
2594         }
2595         for (i = 0; i < NR_CURSEG_TYPE; i++)
2596                 if (CURSEG_I(sbi, i)->zone == zoneno)
2597                         break;
2598
2599         if (i < NR_CURSEG_TYPE) {
2600                 /* zone is in user, try another */
2601                 if (go_left)
2602                         hint = zoneno * sbi->secs_per_zone - 1;
2603                 else if (zoneno + 1 >= total_zones)
2604                         hint = 0;
2605                 else
2606                         hint = (zoneno + 1) * sbi->secs_per_zone;
2607                 init = false;
2608                 goto find_other_zone;
2609         }
2610 got_it:
2611         /* set it as dirty segment in free segmap */
2612         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2613         __set_inuse(sbi, segno);
2614         *newseg = segno;
2615         spin_unlock(&free_i->segmap_lock);
2616 }
2617
2618 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2619 {
2620         struct curseg_info *curseg = CURSEG_I(sbi, type);
2621         struct summary_footer *sum_footer;
2622         unsigned short seg_type = curseg->seg_type;
2623
2624         curseg->inited = true;
2625         curseg->segno = curseg->next_segno;
2626         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2627         curseg->next_blkoff = 0;
2628         curseg->next_segno = NULL_SEGNO;
2629
2630         sum_footer = &(curseg->sum_blk->footer);
2631         memset(sum_footer, 0, sizeof(struct summary_footer));
2632
2633         sanity_check_seg_type(sbi, seg_type);
2634
2635         if (IS_DATASEG(seg_type))
2636                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2637         if (IS_NODESEG(seg_type))
2638                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2639         __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2640 }
2641
2642 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2643 {
2644         struct curseg_info *curseg = CURSEG_I(sbi, type);
2645         unsigned short seg_type = curseg->seg_type;
2646
2647         sanity_check_seg_type(sbi, seg_type);
2648         if (f2fs_need_rand_seg(sbi))
2649                 return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
2650
2651         /* if segs_per_sec is large than 1, we need to keep original policy. */
2652         if (__is_large_section(sbi))
2653                 return curseg->segno;
2654
2655         /* inmem log may not locate on any segment after mount */
2656         if (!curseg->inited)
2657                 return 0;
2658
2659         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2660                 return 0;
2661
2662         if (test_opt(sbi, NOHEAP) &&
2663                 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2664                 return 0;
2665
2666         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2667                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2668
2669         /* find segments from 0 to reuse freed segments */
2670         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2671                 return 0;
2672
2673         return curseg->segno;
2674 }
2675
2676 /*
2677  * Allocate a current working segment.
2678  * This function always allocates a free segment in LFS manner.
2679  */
2680 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2681 {
2682         struct curseg_info *curseg = CURSEG_I(sbi, type);
2683         unsigned short seg_type = curseg->seg_type;
2684         unsigned int segno = curseg->segno;
2685         int dir = ALLOC_LEFT;
2686
2687         if (curseg->inited)
2688                 write_sum_page(sbi, curseg->sum_blk,
2689                                 GET_SUM_BLOCK(sbi, segno));
2690         if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2691                 dir = ALLOC_RIGHT;
2692
2693         if (test_opt(sbi, NOHEAP))
2694                 dir = ALLOC_RIGHT;
2695
2696         segno = __get_next_segno(sbi, type);
2697         get_new_segment(sbi, &segno, new_sec, dir);
2698         curseg->next_segno = segno;
2699         reset_curseg(sbi, type, 1);
2700         curseg->alloc_type = LFS;
2701         if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2702                 curseg->fragment_remained_chunk =
2703                                 prandom_u32() % sbi->max_fragment_chunk + 1;
2704 }
2705
2706 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2707                                         int segno, block_t start)
2708 {
2709         struct seg_entry *se = get_seg_entry(sbi, segno);
2710         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2711         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2712         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2713         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2714         int i;
2715
2716         for (i = 0; i < entries; i++)
2717                 target_map[i] = ckpt_map[i] | cur_map[i];
2718
2719         return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2720 }
2721
2722 /*
2723  * If a segment is written by LFS manner, next block offset is just obtained
2724  * by increasing the current block offset. However, if a segment is written by
2725  * SSR manner, next block offset obtained by calling __next_free_blkoff
2726  */
2727 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2728                                 struct curseg_info *seg)
2729 {
2730         if (seg->alloc_type == SSR) {
2731                 seg->next_blkoff =
2732                         __next_free_blkoff(sbi, seg->segno,
2733                                                 seg->next_blkoff + 1);
2734         } else {
2735                 seg->next_blkoff++;
2736                 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2737                         /* To allocate block chunks in different sizes, use random number */
2738                         if (--seg->fragment_remained_chunk <= 0) {
2739                                 seg->fragment_remained_chunk =
2740                                    prandom_u32() % sbi->max_fragment_chunk + 1;
2741                                 seg->next_blkoff +=
2742                                    prandom_u32() % sbi->max_fragment_hole + 1;
2743                         }
2744                 }
2745         }
2746 }
2747
2748 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2749 {
2750         return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2751 }
2752
2753 /*
2754  * This function always allocates a used segment(from dirty seglist) by SSR
2755  * manner, so it should recover the existing segment information of valid blocks
2756  */
2757 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2758 {
2759         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2760         struct curseg_info *curseg = CURSEG_I(sbi, type);
2761         unsigned int new_segno = curseg->next_segno;
2762         struct f2fs_summary_block *sum_node;
2763         struct page *sum_page;
2764
2765         if (flush)
2766                 write_sum_page(sbi, curseg->sum_blk,
2767                                         GET_SUM_BLOCK(sbi, curseg->segno));
2768
2769         __set_test_and_inuse(sbi, new_segno);
2770
2771         mutex_lock(&dirty_i->seglist_lock);
2772         __remove_dirty_segment(sbi, new_segno, PRE);
2773         __remove_dirty_segment(sbi, new_segno, DIRTY);
2774         mutex_unlock(&dirty_i->seglist_lock);
2775
2776         reset_curseg(sbi, type, 1);
2777         curseg->alloc_type = SSR;
2778         curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2779
2780         sum_page = f2fs_get_sum_page(sbi, new_segno);
2781         if (IS_ERR(sum_page)) {
2782                 /* GC won't be able to use stale summary pages by cp_error */
2783                 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2784                 return;
2785         }
2786         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2787         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2788         f2fs_put_page(sum_page, 1);
2789 }
2790
2791 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2792                                 int alloc_mode, unsigned long long age);
2793
2794 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2795                                         int target_type, int alloc_mode,
2796                                         unsigned long long age)
2797 {
2798         struct curseg_info *curseg = CURSEG_I(sbi, type);
2799
2800         curseg->seg_type = target_type;
2801
2802         if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2803                 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2804
2805                 curseg->seg_type = se->type;
2806                 change_curseg(sbi, type, true);
2807         } else {
2808                 /* allocate cold segment by default */
2809                 curseg->seg_type = CURSEG_COLD_DATA;
2810                 new_curseg(sbi, type, true);
2811         }
2812         stat_inc_seg_type(sbi, curseg);
2813 }
2814
2815 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2816 {
2817         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2818
2819         if (!sbi->am.atgc_enabled)
2820                 return;
2821
2822         down_read(&SM_I(sbi)->curseg_lock);
2823
2824         mutex_lock(&curseg->curseg_mutex);
2825         down_write(&SIT_I(sbi)->sentry_lock);
2826
2827         get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2828
2829         up_write(&SIT_I(sbi)->sentry_lock);
2830         mutex_unlock(&curseg->curseg_mutex);
2831
2832         up_read(&SM_I(sbi)->curseg_lock);
2833
2834 }
2835 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2836 {
2837         __f2fs_init_atgc_curseg(sbi);
2838 }
2839
2840 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2841 {
2842         struct curseg_info *curseg = CURSEG_I(sbi, type);
2843
2844         mutex_lock(&curseg->curseg_mutex);
2845         if (!curseg->inited)
2846                 goto out;
2847
2848         if (get_valid_blocks(sbi, curseg->segno, false)) {
2849                 write_sum_page(sbi, curseg->sum_blk,
2850                                 GET_SUM_BLOCK(sbi, curseg->segno));
2851         } else {
2852                 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2853                 __set_test_and_free(sbi, curseg->segno, true);
2854                 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2855         }
2856 out:
2857         mutex_unlock(&curseg->curseg_mutex);
2858 }
2859
2860 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2861 {
2862         __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2863
2864         if (sbi->am.atgc_enabled)
2865                 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2866 }
2867
2868 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2869 {
2870         struct curseg_info *curseg = CURSEG_I(sbi, type);
2871
2872         mutex_lock(&curseg->curseg_mutex);
2873         if (!curseg->inited)
2874                 goto out;
2875         if (get_valid_blocks(sbi, curseg->segno, false))
2876                 goto out;
2877
2878         mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2879         __set_test_and_inuse(sbi, curseg->segno);
2880         mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2881 out:
2882         mutex_unlock(&curseg->curseg_mutex);
2883 }
2884
2885 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2886 {
2887         __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2888
2889         if (sbi->am.atgc_enabled)
2890                 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2891 }
2892
2893 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2894                                 int alloc_mode, unsigned long long age)
2895 {
2896         struct curseg_info *curseg = CURSEG_I(sbi, type);
2897         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2898         unsigned segno = NULL_SEGNO;
2899         unsigned short seg_type = curseg->seg_type;
2900         int i, cnt;
2901         bool reversed = false;
2902
2903         sanity_check_seg_type(sbi, seg_type);
2904
2905         /* f2fs_need_SSR() already forces to do this */
2906         if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2907                 curseg->next_segno = segno;
2908                 return 1;
2909         }
2910
2911         /* For node segments, let's do SSR more intensively */
2912         if (IS_NODESEG(seg_type)) {
2913                 if (seg_type >= CURSEG_WARM_NODE) {
2914                         reversed = true;
2915                         i = CURSEG_COLD_NODE;
2916                 } else {
2917                         i = CURSEG_HOT_NODE;
2918                 }
2919                 cnt = NR_CURSEG_NODE_TYPE;
2920         } else {
2921                 if (seg_type >= CURSEG_WARM_DATA) {
2922                         reversed = true;
2923                         i = CURSEG_COLD_DATA;
2924                 } else {
2925                         i = CURSEG_HOT_DATA;
2926                 }
2927                 cnt = NR_CURSEG_DATA_TYPE;
2928         }
2929
2930         for (; cnt-- > 0; reversed ? i-- : i++) {
2931                 if (i == seg_type)
2932                         continue;
2933                 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2934                         curseg->next_segno = segno;
2935                         return 1;
2936                 }
2937         }
2938
2939         /* find valid_blocks=0 in dirty list */
2940         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2941                 segno = get_free_segment(sbi);
2942                 if (segno != NULL_SEGNO) {
2943                         curseg->next_segno = segno;
2944                         return 1;
2945                 }
2946         }
2947         return 0;
2948 }
2949
2950 /*
2951  * flush out current segment and replace it with new segment
2952  * This function should be returned with success, otherwise BUG
2953  */
2954 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2955                                                 int type, bool force)
2956 {
2957         struct curseg_info *curseg = CURSEG_I(sbi, type);
2958
2959         if (force)
2960                 new_curseg(sbi, type, true);
2961         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2962                                         curseg->seg_type == CURSEG_WARM_NODE)
2963                 new_curseg(sbi, type, false);
2964         else if (curseg->alloc_type == LFS &&
2965                         is_next_segment_free(sbi, curseg, type) &&
2966                         likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2967                 new_curseg(sbi, type, false);
2968         else if (f2fs_need_SSR(sbi) &&
2969                         get_ssr_segment(sbi, type, SSR, 0))
2970                 change_curseg(sbi, type, true);
2971         else
2972                 new_curseg(sbi, type, false);
2973
2974         stat_inc_seg_type(sbi, curseg);
2975 }
2976
2977 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2978                                         unsigned int start, unsigned int end)
2979 {
2980         struct curseg_info *curseg = CURSEG_I(sbi, type);
2981         unsigned int segno;
2982
2983         down_read(&SM_I(sbi)->curseg_lock);
2984         mutex_lock(&curseg->curseg_mutex);
2985         down_write(&SIT_I(sbi)->sentry_lock);
2986
2987         segno = CURSEG_I(sbi, type)->segno;
2988         if (segno < start || segno > end)
2989                 goto unlock;
2990
2991         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2992                 change_curseg(sbi, type, true);
2993         else
2994                 new_curseg(sbi, type, true);
2995
2996         stat_inc_seg_type(sbi, curseg);
2997
2998         locate_dirty_segment(sbi, segno);
2999 unlock:
3000         up_write(&SIT_I(sbi)->sentry_lock);
3001
3002         if (segno != curseg->segno)
3003                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3004                             type, segno, curseg->segno);
3005
3006         mutex_unlock(&curseg->curseg_mutex);
3007         up_read(&SM_I(sbi)->curseg_lock);
3008 }
3009
3010 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3011                                                 bool new_sec, bool force)
3012 {
3013         struct curseg_info *curseg = CURSEG_I(sbi, type);
3014         unsigned int old_segno;
3015
3016         if (!curseg->inited)
3017                 goto alloc;
3018
3019         if (force || curseg->next_blkoff ||
3020                 get_valid_blocks(sbi, curseg->segno, new_sec))
3021                 goto alloc;
3022
3023         if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3024                 return;
3025 alloc:
3026         old_segno = curseg->segno;
3027         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
3028         locate_dirty_segment(sbi, old_segno);
3029 }
3030
3031 static void __allocate_new_section(struct f2fs_sb_info *sbi,
3032                                                 int type, bool force)
3033 {
3034         __allocate_new_segment(sbi, type, true, force);
3035 }
3036
3037 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3038 {
3039         down_read(&SM_I(sbi)->curseg_lock);
3040         down_write(&SIT_I(sbi)->sentry_lock);
3041         __allocate_new_section(sbi, type, force);
3042         up_write(&SIT_I(sbi)->sentry_lock);
3043         up_read(&SM_I(sbi)->curseg_lock);
3044 }
3045
3046 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3047 {
3048         int i;
3049
3050         down_read(&SM_I(sbi)->curseg_lock);
3051         down_write(&SIT_I(sbi)->sentry_lock);
3052         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3053                 __allocate_new_segment(sbi, i, false, false);
3054         up_write(&SIT_I(sbi)->sentry_lock);
3055         up_read(&SM_I(sbi)->curseg_lock);
3056 }
3057
3058 static const struct segment_allocation default_salloc_ops = {
3059         .allocate_segment = allocate_segment_by_default,
3060 };
3061
3062 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3063                                                 struct cp_control *cpc)
3064 {
3065         __u64 trim_start = cpc->trim_start;
3066         bool has_candidate = false;
3067
3068         down_write(&SIT_I(sbi)->sentry_lock);
3069         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3070                 if (add_discard_addrs(sbi, cpc, true)) {
3071                         has_candidate = true;
3072                         break;
3073                 }
3074         }
3075         up_write(&SIT_I(sbi)->sentry_lock);
3076
3077         cpc->trim_start = trim_start;
3078         return has_candidate;
3079 }
3080
3081 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3082                                         struct discard_policy *dpolicy,
3083                                         unsigned int start, unsigned int end)
3084 {
3085         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3086         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3087         struct rb_node **insert_p = NULL, *insert_parent = NULL;
3088         struct discard_cmd *dc;
3089         struct blk_plug plug;
3090         int issued;
3091         unsigned int trimmed = 0;
3092
3093 next:
3094         issued = 0;
3095
3096         mutex_lock(&dcc->cmd_lock);
3097         if (unlikely(dcc->rbtree_check))
3098                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3099                                                         &dcc->root, false));
3100
3101         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3102                                         NULL, start,
3103                                         (struct rb_entry **)&prev_dc,
3104                                         (struct rb_entry **)&next_dc,
3105                                         &insert_p, &insert_parent, true, NULL);
3106         if (!dc)
3107                 dc = next_dc;
3108
3109         blk_start_plug(&plug);
3110
3111         while (dc && dc->lstart <= end) {
3112                 struct rb_node *node;
3113                 int err = 0;
3114
3115                 if (dc->len < dpolicy->granularity)
3116                         goto skip;
3117
3118                 if (dc->state != D_PREP) {
3119                         list_move_tail(&dc->list, &dcc->fstrim_list);
3120                         goto skip;
3121                 }
3122
3123                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3124
3125                 if (issued >= dpolicy->max_requests) {
3126                         start = dc->lstart + dc->len;
3127
3128                         if (err)
3129                                 __remove_discard_cmd(sbi, dc);
3130
3131                         blk_finish_plug(&plug);
3132                         mutex_unlock(&dcc->cmd_lock);
3133                         trimmed += __wait_all_discard_cmd(sbi, NULL);
3134                         f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3135                         goto next;
3136                 }
3137 skip:
3138                 node = rb_next(&dc->rb_node);
3139                 if (err)
3140                         __remove_discard_cmd(sbi, dc);
3141                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3142
3143                 if (fatal_signal_pending(current))
3144                         break;
3145         }
3146
3147         blk_finish_plug(&plug);
3148         mutex_unlock(&dcc->cmd_lock);
3149
3150         return trimmed;
3151 }
3152
3153 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3154 {
3155         __u64 start = F2FS_BYTES_TO_BLK(range->start);
3156         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3157         unsigned int start_segno, end_segno;
3158         block_t start_block, end_block;
3159         struct cp_control cpc;
3160         struct discard_policy dpolicy;
3161         unsigned long long trimmed = 0;
3162         int err = 0;
3163         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3164
3165         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3166                 return -EINVAL;
3167
3168         if (end < MAIN_BLKADDR(sbi))
3169                 goto out;
3170
3171         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3172                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3173                 return -EFSCORRUPTED;
3174         }
3175
3176         /* start/end segment number in main_area */
3177         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3178         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3179                                                 GET_SEGNO(sbi, end);
3180         if (need_align) {
3181                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3182                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3183         }
3184
3185         cpc.reason = CP_DISCARD;
3186         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3187         cpc.trim_start = start_segno;
3188         cpc.trim_end = end_segno;
3189
3190         if (sbi->discard_blks == 0)
3191                 goto out;
3192
3193         down_write(&sbi->gc_lock);
3194         err = f2fs_write_checkpoint(sbi, &cpc);
3195         up_write(&sbi->gc_lock);
3196         if (err)
3197                 goto out;
3198
3199         /*
3200          * We filed discard candidates, but actually we don't need to wait for
3201          * all of them, since they'll be issued in idle time along with runtime
3202          * discard option. User configuration looks like using runtime discard
3203          * or periodic fstrim instead of it.
3204          */
3205         if (f2fs_realtime_discard_enable(sbi))
3206                 goto out;
3207
3208         start_block = START_BLOCK(sbi, start_segno);
3209         end_block = START_BLOCK(sbi, end_segno + 1);
3210
3211         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3212         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3213                                         start_block, end_block);
3214
3215         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3216                                         start_block, end_block);
3217 out:
3218         if (!err)
3219                 range->len = F2FS_BLK_TO_BYTES(trimmed);
3220         return err;
3221 }
3222
3223 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3224                                         struct curseg_info *curseg)
3225 {
3226         return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3227                                                         curseg->segno);
3228 }
3229
3230 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3231 {
3232         switch (hint) {
3233         case WRITE_LIFE_SHORT:
3234                 return CURSEG_HOT_DATA;
3235         case WRITE_LIFE_EXTREME:
3236                 return CURSEG_COLD_DATA;
3237         default:
3238                 return CURSEG_WARM_DATA;
3239         }
3240 }
3241
3242 /* This returns write hints for each segment type. This hints will be
3243  * passed down to block layer. There are mapping tables which depend on
3244  * the mount option 'whint_mode'.
3245  *
3246  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3247  *
3248  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3249  *
3250  * User                  F2FS                     Block
3251  * ----                  ----                     -----
3252  *                       META                     WRITE_LIFE_NOT_SET
3253  *                       HOT_NODE                 "
3254  *                       WARM_NODE                "
3255  *                       COLD_NODE                "
3256  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3257  * extension list        "                        "
3258  *
3259  * -- buffered io
3260  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3261  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3262  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3263  * WRITE_LIFE_NONE       "                        "
3264  * WRITE_LIFE_MEDIUM     "                        "
3265  * WRITE_LIFE_LONG       "                        "
3266  *
3267  * -- direct io
3268  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3269  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3270  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3271  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3272  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3273  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3274  *
3275  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3276  *
3277  * User                  F2FS                     Block
3278  * ----                  ----                     -----
3279  *                       META                     WRITE_LIFE_MEDIUM;
3280  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3281  *                       WARM_NODE                "
3282  *                       COLD_NODE                WRITE_LIFE_NONE
3283  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3284  * extension list        "                        "
3285  *
3286  * -- buffered io
3287  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3288  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3289  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3290  * WRITE_LIFE_NONE       "                        "
3291  * WRITE_LIFE_MEDIUM     "                        "
3292  * WRITE_LIFE_LONG       "                        "
3293  *
3294  * -- direct io
3295  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3296  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3297  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3298  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3299  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3300  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3301  */
3302
3303 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3304                                 enum page_type type, enum temp_type temp)
3305 {
3306         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3307                 if (type == DATA) {
3308                         if (temp == WARM)
3309                                 return WRITE_LIFE_NOT_SET;
3310                         else if (temp == HOT)
3311                                 return WRITE_LIFE_SHORT;
3312                         else if (temp == COLD)
3313                                 return WRITE_LIFE_EXTREME;
3314                 } else {
3315                         return WRITE_LIFE_NOT_SET;
3316                 }
3317         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3318                 if (type == DATA) {
3319                         if (temp == WARM)
3320                                 return WRITE_LIFE_LONG;
3321                         else if (temp == HOT)
3322                                 return WRITE_LIFE_SHORT;
3323                         else if (temp == COLD)
3324                                 return WRITE_LIFE_EXTREME;
3325                 } else if (type == NODE) {
3326                         if (temp == WARM || temp == HOT)
3327                                 return WRITE_LIFE_NOT_SET;
3328                         else if (temp == COLD)
3329                                 return WRITE_LIFE_NONE;
3330                 } else if (type == META) {
3331                         return WRITE_LIFE_MEDIUM;
3332                 }
3333         }
3334         return WRITE_LIFE_NOT_SET;
3335 }
3336
3337 static int __get_segment_type_2(struct f2fs_io_info *fio)
3338 {
3339         if (fio->type == DATA)
3340                 return CURSEG_HOT_DATA;
3341         else
3342                 return CURSEG_HOT_NODE;
3343 }
3344
3345 static int __get_segment_type_4(struct f2fs_io_info *fio)
3346 {
3347         if (fio->type == DATA) {
3348                 struct inode *inode = fio->page->mapping->host;
3349
3350                 if (S_ISDIR(inode->i_mode))
3351                         return CURSEG_HOT_DATA;
3352                 else
3353                         return CURSEG_COLD_DATA;
3354         } else {
3355                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3356                         return CURSEG_WARM_NODE;
3357                 else
3358                         return CURSEG_COLD_NODE;
3359         }
3360 }
3361
3362 static int __get_segment_type_6(struct f2fs_io_info *fio)
3363 {
3364         if (fio->type == DATA) {
3365                 struct inode *inode = fio->page->mapping->host;
3366
3367                 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3368                         return CURSEG_COLD_DATA_PINNED;
3369
3370                 if (page_private_gcing(fio->page)) {
3371                         if (fio->sbi->am.atgc_enabled &&
3372                                 (fio->io_type == FS_DATA_IO) &&
3373                                 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3374                                 return CURSEG_ALL_DATA_ATGC;
3375                         else
3376                                 return CURSEG_COLD_DATA;
3377                 }
3378                 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3379                         return CURSEG_COLD_DATA;
3380                 if (file_is_hot(inode) ||
3381                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3382                                 f2fs_is_atomic_file(inode) ||
3383                                 f2fs_is_volatile_file(inode))
3384                         return CURSEG_HOT_DATA;
3385                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3386         } else {
3387                 if (IS_DNODE(fio->page))
3388                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3389                                                 CURSEG_HOT_NODE;
3390                 return CURSEG_COLD_NODE;
3391         }
3392 }
3393
3394 static int __get_segment_type(struct f2fs_io_info *fio)
3395 {
3396         int type = 0;
3397
3398         switch (F2FS_OPTION(fio->sbi).active_logs) {
3399         case 2:
3400                 type = __get_segment_type_2(fio);
3401                 break;
3402         case 4:
3403                 type = __get_segment_type_4(fio);
3404                 break;
3405         case 6:
3406                 type = __get_segment_type_6(fio);
3407                 break;
3408         default:
3409                 f2fs_bug_on(fio->sbi, true);
3410         }
3411
3412         if (IS_HOT(type))
3413                 fio->temp = HOT;
3414         else if (IS_WARM(type))
3415                 fio->temp = WARM;
3416         else
3417                 fio->temp = COLD;
3418         return type;
3419 }
3420
3421 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3422                 block_t old_blkaddr, block_t *new_blkaddr,
3423                 struct f2fs_summary *sum, int type,
3424                 struct f2fs_io_info *fio)
3425 {
3426         struct sit_info *sit_i = SIT_I(sbi);
3427         struct curseg_info *curseg = CURSEG_I(sbi, type);
3428         unsigned long long old_mtime;
3429         bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3430         struct seg_entry *se = NULL;
3431
3432         down_read(&SM_I(sbi)->curseg_lock);
3433
3434         mutex_lock(&curseg->curseg_mutex);
3435         down_write(&sit_i->sentry_lock);
3436
3437         if (from_gc) {
3438                 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3439                 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3440                 sanity_check_seg_type(sbi, se->type);
3441                 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3442         }
3443         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3444
3445         f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3446
3447         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3448
3449         /*
3450          * __add_sum_entry should be resided under the curseg_mutex
3451          * because, this function updates a summary entry in the
3452          * current summary block.
3453          */
3454         __add_sum_entry(sbi, type, sum);
3455
3456         __refresh_next_blkoff(sbi, curseg);
3457
3458         stat_inc_block_count(sbi, curseg);
3459
3460         if (from_gc) {
3461                 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3462         } else {
3463                 update_segment_mtime(sbi, old_blkaddr, 0);
3464                 old_mtime = 0;
3465         }
3466         update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3467
3468         /*
3469          * SIT information should be updated before segment allocation,
3470          * since SSR needs latest valid block information.
3471          */
3472         update_sit_entry(sbi, *new_blkaddr, 1);
3473         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3474                 update_sit_entry(sbi, old_blkaddr, -1);
3475
3476         if (!__has_curseg_space(sbi, curseg)) {
3477                 if (from_gc)
3478                         get_atssr_segment(sbi, type, se->type,
3479                                                 AT_SSR, se->mtime);
3480                 else
3481                         sit_i->s_ops->allocate_segment(sbi, type, false);
3482         }
3483         /*
3484          * segment dirty status should be updated after segment allocation,
3485          * so we just need to update status only one time after previous
3486          * segment being closed.
3487          */
3488         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3489         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3490
3491         up_write(&sit_i->sentry_lock);
3492
3493         if (page && IS_NODESEG(type)) {
3494                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3495
3496                 f2fs_inode_chksum_set(sbi, page);
3497         }
3498
3499         if (fio) {
3500                 struct f2fs_bio_info *io;
3501
3502                 if (F2FS_IO_ALIGNED(sbi))
3503                         fio->retry = false;
3504
3505                 INIT_LIST_HEAD(&fio->list);
3506                 fio->in_list = true;
3507                 io = sbi->write_io[fio->type] + fio->temp;
3508                 spin_lock(&io->io_lock);
3509                 list_add_tail(&fio->list, &io->io_list);
3510                 spin_unlock(&io->io_lock);
3511         }
3512
3513         mutex_unlock(&curseg->curseg_mutex);
3514
3515         up_read(&SM_I(sbi)->curseg_lock);
3516 }
3517
3518 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3519                                         block_t blkaddr, unsigned int blkcnt)
3520 {
3521         if (!f2fs_is_multi_device(sbi))
3522                 return;
3523
3524         while (1) {
3525                 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3526                 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3527
3528                 /* update device state for fsync */
3529                 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3530
3531                 /* update device state for checkpoint */
3532                 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3533                         spin_lock(&sbi->dev_lock);
3534                         f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3535                         spin_unlock(&sbi->dev_lock);
3536                 }
3537
3538                 if (blkcnt <= blks)
3539                         break;
3540                 blkcnt -= blks;
3541                 blkaddr += blks;
3542         }
3543 }
3544
3545 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3546 {
3547         int type = __get_segment_type(fio);
3548         bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3549
3550         if (keep_order)
3551                 down_read(&fio->sbi->io_order_lock);
3552 reallocate:
3553         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3554                         &fio->new_blkaddr, sum, type, fio);
3555         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3556                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3557                                         fio->old_blkaddr, fio->old_blkaddr);
3558                 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3559         }
3560
3561         /* writeout dirty page into bdev */
3562         f2fs_submit_page_write(fio);
3563         if (fio->retry) {
3564                 fio->old_blkaddr = fio->new_blkaddr;
3565                 goto reallocate;
3566         }
3567
3568         f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3569
3570         if (keep_order)
3571                 up_read(&fio->sbi->io_order_lock);
3572 }
3573
3574 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3575                                         enum iostat_type io_type)
3576 {
3577         struct f2fs_io_info fio = {
3578                 .sbi = sbi,
3579                 .type = META,
3580                 .temp = HOT,
3581                 .op = REQ_OP_WRITE,
3582                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3583                 .old_blkaddr = page->index,
3584                 .new_blkaddr = page->index,
3585                 .page = page,
3586                 .encrypted_page = NULL,
3587                 .in_list = false,
3588         };
3589
3590         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3591                 fio.op_flags &= ~REQ_META;
3592
3593         set_page_writeback(page);
3594         ClearPageError(page);
3595         f2fs_submit_page_write(&fio);
3596
3597         stat_inc_meta_count(sbi, page->index);
3598         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3599 }
3600
3601 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3602 {
3603         struct f2fs_summary sum;
3604
3605         set_summary(&sum, nid, 0, 0);
3606         do_write_page(&sum, fio);
3607
3608         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3609 }
3610
3611 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3612                                         struct f2fs_io_info *fio)
3613 {
3614         struct f2fs_sb_info *sbi = fio->sbi;
3615         struct f2fs_summary sum;
3616
3617         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3618         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3619         do_write_page(&sum, fio);
3620         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3621
3622         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3623 }
3624
3625 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3626 {
3627         int err;
3628         struct f2fs_sb_info *sbi = fio->sbi;
3629         unsigned int segno;
3630
3631         fio->new_blkaddr = fio->old_blkaddr;
3632         /* i/o temperature is needed for passing down write hints */
3633         __get_segment_type(fio);
3634
3635         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3636
3637         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3638                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3639                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3640                           __func__, segno);
3641                 err = -EFSCORRUPTED;
3642                 goto drop_bio;
3643         }
3644
3645         if (f2fs_cp_error(sbi)) {
3646                 err = -EIO;
3647                 goto drop_bio;
3648         }
3649
3650         invalidate_mapping_pages(META_MAPPING(sbi),
3651                                 fio->new_blkaddr, fio->new_blkaddr);
3652
3653         stat_inc_inplace_blocks(fio->sbi);
3654
3655         if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3656                 err = f2fs_merge_page_bio(fio);
3657         else
3658                 err = f2fs_submit_page_bio(fio);
3659         if (!err) {
3660                 f2fs_update_device_state(fio->sbi, fio->ino,
3661                                                 fio->new_blkaddr, 1);
3662                 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3663         }
3664
3665         return err;
3666 drop_bio:
3667         if (fio->bio && *(fio->bio)) {
3668                 struct bio *bio = *(fio->bio);
3669
3670                 bio->bi_status = BLK_STS_IOERR;
3671                 bio_endio(bio);
3672                 *(fio->bio) = NULL;
3673         }
3674         return err;
3675 }
3676
3677 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3678                                                 unsigned int segno)
3679 {
3680         int i;
3681
3682         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3683                 if (CURSEG_I(sbi, i)->segno == segno)
3684                         break;
3685         }
3686         return i;
3687 }
3688
3689 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3690                                 block_t old_blkaddr, block_t new_blkaddr,
3691                                 bool recover_curseg, bool recover_newaddr,
3692                                 bool from_gc)
3693 {
3694         struct sit_info *sit_i = SIT_I(sbi);
3695         struct curseg_info *curseg;
3696         unsigned int segno, old_cursegno;
3697         struct seg_entry *se;
3698         int type;
3699         unsigned short old_blkoff;
3700         unsigned char old_alloc_type;
3701
3702         segno = GET_SEGNO(sbi, new_blkaddr);
3703         se = get_seg_entry(sbi, segno);
3704         type = se->type;
3705
3706         down_write(&SM_I(sbi)->curseg_lock);
3707
3708         if (!recover_curseg) {
3709                 /* for recovery flow */
3710                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3711                         if (old_blkaddr == NULL_ADDR)
3712                                 type = CURSEG_COLD_DATA;
3713                         else
3714                                 type = CURSEG_WARM_DATA;
3715                 }
3716         } else {
3717                 if (IS_CURSEG(sbi, segno)) {
3718                         /* se->type is volatile as SSR allocation */
3719                         type = __f2fs_get_curseg(sbi, segno);
3720                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3721                 } else {
3722                         type = CURSEG_WARM_DATA;
3723                 }
3724         }
3725
3726         f2fs_bug_on(sbi, !IS_DATASEG(type));
3727         curseg = CURSEG_I(sbi, type);
3728
3729         mutex_lock(&curseg->curseg_mutex);
3730         down_write(&sit_i->sentry_lock);
3731
3732         old_cursegno = curseg->segno;
3733         old_blkoff = curseg->next_blkoff;
3734         old_alloc_type = curseg->alloc_type;
3735
3736         /* change the current segment */
3737         if (segno != curseg->segno) {
3738                 curseg->next_segno = segno;
3739                 change_curseg(sbi, type, true);
3740         }
3741
3742         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3743         __add_sum_entry(sbi, type, sum);
3744
3745         if (!recover_curseg || recover_newaddr) {
3746                 if (!from_gc)
3747                         update_segment_mtime(sbi, new_blkaddr, 0);
3748                 update_sit_entry(sbi, new_blkaddr, 1);
3749         }
3750         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3751                 invalidate_mapping_pages(META_MAPPING(sbi),
3752                                         old_blkaddr, old_blkaddr);
3753                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3754                 if (!from_gc)
3755                         update_segment_mtime(sbi, old_blkaddr, 0);
3756                 update_sit_entry(sbi, old_blkaddr, -1);
3757         }
3758
3759         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3760         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3761
3762         locate_dirty_segment(sbi, old_cursegno);
3763
3764         if (recover_curseg) {
3765                 if (old_cursegno != curseg->segno) {
3766                         curseg->next_segno = old_cursegno;
3767                         change_curseg(sbi, type, true);
3768                 }
3769                 curseg->next_blkoff = old_blkoff;
3770                 curseg->alloc_type = old_alloc_type;
3771         }
3772
3773         up_write(&sit_i->sentry_lock);
3774         mutex_unlock(&curseg->curseg_mutex);
3775         up_write(&SM_I(sbi)->curseg_lock);
3776 }
3777
3778 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3779                                 block_t old_addr, block_t new_addr,
3780                                 unsigned char version, bool recover_curseg,
3781                                 bool recover_newaddr)
3782 {
3783         struct f2fs_summary sum;
3784
3785         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3786
3787         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3788                                         recover_curseg, recover_newaddr, false);
3789
3790         f2fs_update_data_blkaddr(dn, new_addr);
3791 }
3792
3793 void f2fs_wait_on_page_writeback(struct page *page,
3794                                 enum page_type type, bool ordered, bool locked)
3795 {
3796         if (PageWriteback(page)) {
3797                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3798
3799                 /* submit cached LFS IO */
3800                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3801                 /* sbumit cached IPU IO */
3802                 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3803                 if (ordered) {
3804                         wait_on_page_writeback(page);
3805                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3806                 } else {
3807                         wait_for_stable_page(page);
3808                 }
3809         }
3810 }
3811
3812 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3813 {
3814         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3815         struct page *cpage;
3816
3817         if (!f2fs_post_read_required(inode))
3818                 return;
3819
3820         if (!__is_valid_data_blkaddr(blkaddr))
3821                 return;
3822
3823         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3824         if (cpage) {
3825                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3826                 f2fs_put_page(cpage, 1);
3827         }
3828 }
3829
3830 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3831                                                                 block_t len)
3832 {
3833         block_t i;
3834
3835         for (i = 0; i < len; i++)
3836                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3837 }
3838
3839 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3840 {
3841         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3842         struct curseg_info *seg_i;
3843         unsigned char *kaddr;
3844         struct page *page;
3845         block_t start;
3846         int i, j, offset;
3847
3848         start = start_sum_block(sbi);
3849
3850         page = f2fs_get_meta_page(sbi, start++);
3851         if (IS_ERR(page))
3852                 return PTR_ERR(page);
3853         kaddr = (unsigned char *)page_address(page);
3854
3855         /* Step 1: restore nat cache */
3856         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3857         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3858
3859         /* Step 2: restore sit cache */
3860         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3861         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3862         offset = 2 * SUM_JOURNAL_SIZE;
3863
3864         /* Step 3: restore summary entries */
3865         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3866                 unsigned short blk_off;
3867                 unsigned int segno;
3868
3869                 seg_i = CURSEG_I(sbi, i);
3870                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3871                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3872                 seg_i->next_segno = segno;
3873                 reset_curseg(sbi, i, 0);
3874                 seg_i->alloc_type = ckpt->alloc_type[i];
3875                 seg_i->next_blkoff = blk_off;
3876
3877                 if (seg_i->alloc_type == SSR)
3878                         blk_off = sbi->blocks_per_seg;
3879
3880                 for (j = 0; j < blk_off; j++) {
3881                         struct f2fs_summary *s;
3882
3883                         s = (struct f2fs_summary *)(kaddr + offset);
3884                         seg_i->sum_blk->entries[j] = *s;
3885                         offset += SUMMARY_SIZE;
3886                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3887                                                 SUM_FOOTER_SIZE)
3888                                 continue;
3889
3890                         f2fs_put_page(page, 1);
3891                         page = NULL;
3892
3893                         page = f2fs_get_meta_page(sbi, start++);
3894                         if (IS_ERR(page))
3895                                 return PTR_ERR(page);
3896                         kaddr = (unsigned char *)page_address(page);
3897                         offset = 0;
3898                 }
3899         }
3900         f2fs_put_page(page, 1);
3901         return 0;
3902 }
3903
3904 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3905 {
3906         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3907         struct f2fs_summary_block *sum;
3908         struct curseg_info *curseg;
3909         struct page *new;
3910         unsigned short blk_off;
3911         unsigned int segno = 0;
3912         block_t blk_addr = 0;
3913         int err = 0;
3914
3915         /* get segment number and block addr */
3916         if (IS_DATASEG(type)) {
3917                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3918                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3919                                                         CURSEG_HOT_DATA]);
3920                 if (__exist_node_summaries(sbi))
3921                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3922                 else
3923                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3924         } else {
3925                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3926                                                         CURSEG_HOT_NODE]);
3927                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3928                                                         CURSEG_HOT_NODE]);
3929                 if (__exist_node_summaries(sbi))
3930                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3931                                                         type - CURSEG_HOT_NODE);
3932                 else
3933                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3934         }
3935
3936         new = f2fs_get_meta_page(sbi, blk_addr);
3937         if (IS_ERR(new))
3938                 return PTR_ERR(new);
3939         sum = (struct f2fs_summary_block *)page_address(new);
3940
3941         if (IS_NODESEG(type)) {
3942                 if (__exist_node_summaries(sbi)) {
3943                         struct f2fs_summary *ns = &sum->entries[0];
3944                         int i;
3945
3946                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3947                                 ns->version = 0;
3948                                 ns->ofs_in_node = 0;
3949                         }
3950                 } else {
3951                         err = f2fs_restore_node_summary(sbi, segno, sum);
3952                         if (err)
3953                                 goto out;
3954                 }
3955         }
3956
3957         /* set uncompleted segment to curseg */
3958         curseg = CURSEG_I(sbi, type);
3959         mutex_lock(&curseg->curseg_mutex);
3960
3961         /* update journal info */
3962         down_write(&curseg->journal_rwsem);
3963         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3964         up_write(&curseg->journal_rwsem);
3965
3966         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3967         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3968         curseg->next_segno = segno;
3969         reset_curseg(sbi, type, 0);
3970         curseg->alloc_type = ckpt->alloc_type[type];
3971         curseg->next_blkoff = blk_off;
3972         mutex_unlock(&curseg->curseg_mutex);
3973 out:
3974         f2fs_put_page(new, 1);
3975         return err;
3976 }
3977
3978 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3979 {
3980         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3981         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3982         int type = CURSEG_HOT_DATA;
3983         int err;
3984
3985         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3986                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3987
3988                 if (npages >= 2)
3989                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3990                                                         META_CP, true);
3991
3992                 /* restore for compacted data summary */
3993                 err = read_compacted_summaries(sbi);
3994                 if (err)
3995                         return err;
3996                 type = CURSEG_HOT_NODE;
3997         }
3998
3999         if (__exist_node_summaries(sbi))
4000                 f2fs_ra_meta_pages(sbi,
4001                                 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4002                                 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4003
4004         for (; type <= CURSEG_COLD_NODE; type++) {
4005                 err = read_normal_summaries(sbi, type);
4006                 if (err)
4007                         return err;
4008         }
4009
4010         /* sanity check for summary blocks */
4011         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4012                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4013                 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4014                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4015                 return -EINVAL;
4016         }
4017
4018         return 0;
4019 }
4020
4021 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4022 {
4023         struct page *page;
4024         unsigned char *kaddr;
4025         struct f2fs_summary *summary;
4026         struct curseg_info *seg_i;
4027         int written_size = 0;
4028         int i, j;
4029
4030         page = f2fs_grab_meta_page(sbi, blkaddr++);
4031         kaddr = (unsigned char *)page_address(page);
4032         memset(kaddr, 0, PAGE_SIZE);
4033
4034         /* Step 1: write nat cache */
4035         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4036         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4037         written_size += SUM_JOURNAL_SIZE;
4038
4039         /* Step 2: write sit cache */
4040         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4041         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4042         written_size += SUM_JOURNAL_SIZE;
4043
4044         /* Step 3: write summary entries */
4045         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4046                 unsigned short blkoff;
4047
4048                 seg_i = CURSEG_I(sbi, i);
4049                 if (sbi->ckpt->alloc_type[i] == SSR)
4050                         blkoff = sbi->blocks_per_seg;
4051                 else
4052                         blkoff = curseg_blkoff(sbi, i);
4053
4054                 for (j = 0; j < blkoff; j++) {
4055                         if (!page) {
4056                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
4057                                 kaddr = (unsigned char *)page_address(page);
4058                                 memset(kaddr, 0, PAGE_SIZE);
4059                                 written_size = 0;
4060                         }
4061                         summary = (struct f2fs_summary *)(kaddr + written_size);
4062                         *summary = seg_i->sum_blk->entries[j];
4063                         written_size += SUMMARY_SIZE;
4064
4065                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4066                                                         SUM_FOOTER_SIZE)
4067                                 continue;
4068
4069                         set_page_dirty(page);
4070                         f2fs_put_page(page, 1);
4071                         page = NULL;
4072                 }
4073         }
4074         if (page) {
4075                 set_page_dirty(page);
4076                 f2fs_put_page(page, 1);
4077         }
4078 }
4079
4080 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4081                                         block_t blkaddr, int type)
4082 {
4083         int i, end;
4084
4085         if (IS_DATASEG(type))
4086                 end = type + NR_CURSEG_DATA_TYPE;
4087         else
4088                 end = type + NR_CURSEG_NODE_TYPE;
4089
4090         for (i = type; i < end; i++)
4091                 write_current_sum_page(sbi, i, blkaddr + (i - type));
4092 }
4093
4094 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4095 {
4096         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4097                 write_compacted_summaries(sbi, start_blk);
4098         else
4099                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4100 }
4101
4102 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4103 {
4104         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4105 }
4106
4107 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4108                                         unsigned int val, int alloc)
4109 {
4110         int i;
4111
4112         if (type == NAT_JOURNAL) {
4113                 for (i = 0; i < nats_in_cursum(journal); i++) {
4114                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4115                                 return i;
4116                 }
4117                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4118                         return update_nats_in_cursum(journal, 1);
4119         } else if (type == SIT_JOURNAL) {
4120                 for (i = 0; i < sits_in_cursum(journal); i++)
4121                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4122                                 return i;
4123                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4124                         return update_sits_in_cursum(journal, 1);
4125         }
4126         return -1;
4127 }
4128
4129 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4130                                         unsigned int segno)
4131 {
4132         return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4133 }
4134
4135 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4136                                         unsigned int start)
4137 {
4138         struct sit_info *sit_i = SIT_I(sbi);
4139         struct page *page;
4140         pgoff_t src_off, dst_off;
4141
4142         src_off = current_sit_addr(sbi, start);
4143         dst_off = next_sit_addr(sbi, src_off);
4144
4145         page = f2fs_grab_meta_page(sbi, dst_off);
4146         seg_info_to_sit_page(sbi, page, start);
4147
4148         set_page_dirty(page);
4149         set_to_next_sit(sit_i, start);
4150
4151         return page;
4152 }
4153
4154 static struct sit_entry_set *grab_sit_entry_set(void)
4155 {
4156         struct sit_entry_set *ses =
4157                         f2fs_kmem_cache_alloc(sit_entry_set_slab,
4158                                                 GFP_NOFS, true, NULL);
4159
4160         ses->entry_cnt = 0;
4161         INIT_LIST_HEAD(&ses->set_list);
4162         return ses;
4163 }
4164
4165 static void release_sit_entry_set(struct sit_entry_set *ses)
4166 {
4167         list_del(&ses->set_list);
4168         kmem_cache_free(sit_entry_set_slab, ses);
4169 }
4170
4171 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4172                                                 struct list_head *head)
4173 {
4174         struct sit_entry_set *next = ses;
4175
4176         if (list_is_last(&ses->set_list, head))
4177                 return;
4178
4179         list_for_each_entry_continue(next, head, set_list)
4180                 if (ses->entry_cnt <= next->entry_cnt)
4181                         break;
4182
4183         list_move_tail(&ses->set_list, &next->set_list);
4184 }
4185
4186 static void add_sit_entry(unsigned int segno, struct list_head *head)
4187 {
4188         struct sit_entry_set *ses;
4189         unsigned int start_segno = START_SEGNO(segno);
4190
4191         list_for_each_entry(ses, head, set_list) {
4192                 if (ses->start_segno == start_segno) {
4193                         ses->entry_cnt++;
4194                         adjust_sit_entry_set(ses, head);
4195                         return;
4196                 }
4197         }
4198
4199         ses = grab_sit_entry_set();
4200
4201         ses->start_segno = start_segno;
4202         ses->entry_cnt++;
4203         list_add(&ses->set_list, head);
4204 }
4205
4206 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4207 {
4208         struct f2fs_sm_info *sm_info = SM_I(sbi);
4209         struct list_head *set_list = &sm_info->sit_entry_set;
4210         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4211         unsigned int segno;
4212
4213         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4214                 add_sit_entry(segno, set_list);
4215 }
4216
4217 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4218 {
4219         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4220         struct f2fs_journal *journal = curseg->journal;
4221         int i;
4222
4223         down_write(&curseg->journal_rwsem);
4224         for (i = 0; i < sits_in_cursum(journal); i++) {
4225                 unsigned int segno;
4226                 bool dirtied;
4227
4228                 segno = le32_to_cpu(segno_in_journal(journal, i));
4229                 dirtied = __mark_sit_entry_dirty(sbi, segno);
4230
4231                 if (!dirtied)
4232                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4233         }
4234         update_sits_in_cursum(journal, -i);
4235         up_write(&curseg->journal_rwsem);
4236 }
4237
4238 /*
4239  * CP calls this function, which flushes SIT entries including sit_journal,
4240  * and moves prefree segs to free segs.
4241  */
4242 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4243 {
4244         struct sit_info *sit_i = SIT_I(sbi);
4245         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4246         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4247         struct f2fs_journal *journal = curseg->journal;
4248         struct sit_entry_set *ses, *tmp;
4249         struct list_head *head = &SM_I(sbi)->sit_entry_set;
4250         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4251         struct seg_entry *se;
4252
4253         down_write(&sit_i->sentry_lock);
4254
4255         if (!sit_i->dirty_sentries)
4256                 goto out;
4257
4258         /*
4259          * add and account sit entries of dirty bitmap in sit entry
4260          * set temporarily
4261          */
4262         add_sits_in_set(sbi);
4263
4264         /*
4265          * if there are no enough space in journal to store dirty sit
4266          * entries, remove all entries from journal and add and account
4267          * them in sit entry set.
4268          */
4269         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4270                                                                 !to_journal)
4271                 remove_sits_in_journal(sbi);
4272
4273         /*
4274          * there are two steps to flush sit entries:
4275          * #1, flush sit entries to journal in current cold data summary block.
4276          * #2, flush sit entries to sit page.
4277          */
4278         list_for_each_entry_safe(ses, tmp, head, set_list) {
4279                 struct page *page = NULL;
4280                 struct f2fs_sit_block *raw_sit = NULL;
4281                 unsigned int start_segno = ses->start_segno;
4282                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4283                                                 (unsigned long)MAIN_SEGS(sbi));
4284                 unsigned int segno = start_segno;
4285
4286                 if (to_journal &&
4287                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4288                         to_journal = false;
4289
4290                 if (to_journal) {
4291                         down_write(&curseg->journal_rwsem);
4292                 } else {
4293                         page = get_next_sit_page(sbi, start_segno);
4294                         raw_sit = page_address(page);
4295                 }
4296
4297                 /* flush dirty sit entries in region of current sit set */
4298                 for_each_set_bit_from(segno, bitmap, end) {
4299                         int offset, sit_offset;
4300
4301                         se = get_seg_entry(sbi, segno);
4302 #ifdef CONFIG_F2FS_CHECK_FS
4303                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4304                                                 SIT_VBLOCK_MAP_SIZE))
4305                                 f2fs_bug_on(sbi, 1);
4306 #endif
4307
4308                         /* add discard candidates */
4309                         if (!(cpc->reason & CP_DISCARD)) {
4310                                 cpc->trim_start = segno;
4311                                 add_discard_addrs(sbi, cpc, false);
4312                         }
4313
4314                         if (to_journal) {
4315                                 offset = f2fs_lookup_journal_in_cursum(journal,
4316                                                         SIT_JOURNAL, segno, 1);
4317                                 f2fs_bug_on(sbi, offset < 0);
4318                                 segno_in_journal(journal, offset) =
4319                                                         cpu_to_le32(segno);
4320                                 seg_info_to_raw_sit(se,
4321                                         &sit_in_journal(journal, offset));
4322                                 check_block_count(sbi, segno,
4323                                         &sit_in_journal(journal, offset));
4324                         } else {
4325                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4326                                 seg_info_to_raw_sit(se,
4327                                                 &raw_sit->entries[sit_offset]);
4328                                 check_block_count(sbi, segno,
4329                                                 &raw_sit->entries[sit_offset]);
4330                         }
4331
4332                         __clear_bit(segno, bitmap);
4333                         sit_i->dirty_sentries--;
4334                         ses->entry_cnt--;
4335                 }
4336
4337                 if (to_journal)
4338                         up_write(&curseg->journal_rwsem);
4339                 else
4340                         f2fs_put_page(page, 1);
4341
4342                 f2fs_bug_on(sbi, ses->entry_cnt);
4343                 release_sit_entry_set(ses);
4344         }
4345
4346         f2fs_bug_on(sbi, !list_empty(head));
4347         f2fs_bug_on(sbi, sit_i->dirty_sentries);
4348 out:
4349         if (cpc->reason & CP_DISCARD) {
4350                 __u64 trim_start = cpc->trim_start;
4351
4352                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4353                         add_discard_addrs(sbi, cpc, false);
4354
4355                 cpc->trim_start = trim_start;
4356         }
4357         up_write(&sit_i->sentry_lock);
4358
4359         set_prefree_as_free_segments(sbi);
4360 }
4361
4362 static int build_sit_info(struct f2fs_sb_info *sbi)
4363 {
4364         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4365         struct sit_info *sit_i;
4366         unsigned int sit_segs, start;
4367         char *src_bitmap, *bitmap;
4368         unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4369         unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4370
4371         /* allocate memory for SIT information */
4372         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4373         if (!sit_i)
4374                 return -ENOMEM;
4375
4376         SM_I(sbi)->sit_info = sit_i;
4377
4378         sit_i->sentries =
4379                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4380                                               MAIN_SEGS(sbi)),
4381                               GFP_KERNEL);
4382         if (!sit_i->sentries)
4383                 return -ENOMEM;
4384
4385         main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4386         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4387                                                                 GFP_KERNEL);
4388         if (!sit_i->dirty_sentries_bitmap)
4389                 return -ENOMEM;
4390
4391 #ifdef CONFIG_F2FS_CHECK_FS
4392         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4393 #else
4394         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4395 #endif
4396         sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4397         if (!sit_i->bitmap)
4398                 return -ENOMEM;
4399
4400         bitmap = sit_i->bitmap;
4401
4402         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4403                 sit_i->sentries[start].cur_valid_map = bitmap;
4404                 bitmap += SIT_VBLOCK_MAP_SIZE;
4405
4406                 sit_i->sentries[start].ckpt_valid_map = bitmap;
4407                 bitmap += SIT_VBLOCK_MAP_SIZE;
4408
4409 #ifdef CONFIG_F2FS_CHECK_FS
4410                 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4411                 bitmap += SIT_VBLOCK_MAP_SIZE;
4412 #endif
4413
4414                 if (discard_map) {
4415                         sit_i->sentries[start].discard_map = bitmap;
4416                         bitmap += SIT_VBLOCK_MAP_SIZE;
4417                 }
4418         }
4419
4420         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4421         if (!sit_i->tmp_map)
4422                 return -ENOMEM;
4423
4424         if (__is_large_section(sbi)) {
4425                 sit_i->sec_entries =
4426                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4427                                                       MAIN_SECS(sbi)),
4428                                       GFP_KERNEL);
4429                 if (!sit_i->sec_entries)
4430                         return -ENOMEM;
4431         }
4432
4433         /* get information related with SIT */
4434         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4435
4436         /* setup SIT bitmap from ckeckpoint pack */
4437         sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4438         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4439
4440         sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4441         if (!sit_i->sit_bitmap)
4442                 return -ENOMEM;
4443
4444 #ifdef CONFIG_F2FS_CHECK_FS
4445         sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4446                                         sit_bitmap_size, GFP_KERNEL);
4447         if (!sit_i->sit_bitmap_mir)
4448                 return -ENOMEM;
4449
4450         sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4451                                         main_bitmap_size, GFP_KERNEL);
4452         if (!sit_i->invalid_segmap)
4453                 return -ENOMEM;
4454 #endif
4455
4456         /* init SIT information */
4457         sit_i->s_ops = &default_salloc_ops;
4458
4459         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4460         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4461         sit_i->written_valid_blocks = 0;
4462         sit_i->bitmap_size = sit_bitmap_size;
4463         sit_i->dirty_sentries = 0;
4464         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4465         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4466         sit_i->mounted_time = ktime_get_boottime_seconds();
4467         init_rwsem(&sit_i->sentry_lock);
4468         return 0;
4469 }
4470
4471 static int build_free_segmap(struct f2fs_sb_info *sbi)
4472 {
4473         struct free_segmap_info *free_i;
4474         unsigned int bitmap_size, sec_bitmap_size;
4475
4476         /* allocate memory for free segmap information */
4477         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4478         if (!free_i)
4479                 return -ENOMEM;
4480
4481         SM_I(sbi)->free_info = free_i;
4482
4483         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4484         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4485         if (!free_i->free_segmap)
4486                 return -ENOMEM;
4487
4488         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4489         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4490         if (!free_i->free_secmap)
4491                 return -ENOMEM;
4492
4493         /* set all segments as dirty temporarily */
4494         memset(free_i->free_segmap, 0xff, bitmap_size);
4495         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4496
4497         /* init free segmap information */
4498         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4499         free_i->free_segments = 0;
4500         free_i->free_sections = 0;
4501         spin_lock_init(&free_i->segmap_lock);
4502         return 0;
4503 }
4504
4505 static int build_curseg(struct f2fs_sb_info *sbi)
4506 {
4507         struct curseg_info *array;
4508         int i;
4509
4510         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4511                                         sizeof(*array)), GFP_KERNEL);
4512         if (!array)
4513                 return -ENOMEM;
4514
4515         SM_I(sbi)->curseg_array = array;
4516
4517         for (i = 0; i < NO_CHECK_TYPE; i++) {
4518                 mutex_init(&array[i].curseg_mutex);
4519                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4520                 if (!array[i].sum_blk)
4521                         return -ENOMEM;
4522                 init_rwsem(&array[i].journal_rwsem);
4523                 array[i].journal = f2fs_kzalloc(sbi,
4524                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4525                 if (!array[i].journal)
4526                         return -ENOMEM;
4527                 if (i < NR_PERSISTENT_LOG)
4528                         array[i].seg_type = CURSEG_HOT_DATA + i;
4529                 else if (i == CURSEG_COLD_DATA_PINNED)
4530                         array[i].seg_type = CURSEG_COLD_DATA;
4531                 else if (i == CURSEG_ALL_DATA_ATGC)
4532                         array[i].seg_type = CURSEG_COLD_DATA;
4533                 array[i].segno = NULL_SEGNO;
4534                 array[i].next_blkoff = 0;
4535                 array[i].inited = false;
4536         }
4537         return restore_curseg_summaries(sbi);
4538 }
4539
4540 static int build_sit_entries(struct f2fs_sb_info *sbi)
4541 {
4542         struct sit_info *sit_i = SIT_I(sbi);
4543         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4544         struct f2fs_journal *journal = curseg->journal;
4545         struct seg_entry *se;
4546         struct f2fs_sit_entry sit;
4547         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4548         unsigned int i, start, end;
4549         unsigned int readed, start_blk = 0;
4550         int err = 0;
4551         block_t total_node_blocks = 0;
4552
4553         do {
4554                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4555                                                         META_SIT, true);
4556
4557                 start = start_blk * sit_i->sents_per_block;
4558                 end = (start_blk + readed) * sit_i->sents_per_block;
4559
4560                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4561                         struct f2fs_sit_block *sit_blk;
4562                         struct page *page;
4563
4564                         se = &sit_i->sentries[start];
4565                         page = get_current_sit_page(sbi, start);
4566                         if (IS_ERR(page))
4567                                 return PTR_ERR(page);
4568                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4569                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4570                         f2fs_put_page(page, 1);
4571
4572                         err = check_block_count(sbi, start, &sit);
4573                         if (err)
4574                                 return err;
4575                         seg_info_from_raw_sit(se, &sit);
4576                         if (IS_NODESEG(se->type))
4577                                 total_node_blocks += se->valid_blocks;
4578
4579                         if (f2fs_block_unit_discard(sbi)) {
4580                                 /* build discard map only one time */
4581                                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4582                                         memset(se->discard_map, 0xff,
4583                                                 SIT_VBLOCK_MAP_SIZE);
4584                                 } else {
4585                                         memcpy(se->discard_map,
4586                                                 se->cur_valid_map,
4587                                                 SIT_VBLOCK_MAP_SIZE);
4588                                         sbi->discard_blks +=
4589                                                 sbi->blocks_per_seg -
4590                                                 se->valid_blocks;
4591                                 }
4592                         }
4593
4594                         if (__is_large_section(sbi))
4595                                 get_sec_entry(sbi, start)->valid_blocks +=
4596                                                         se->valid_blocks;
4597                 }
4598                 start_blk += readed;
4599         } while (start_blk < sit_blk_cnt);
4600
4601         down_read(&curseg->journal_rwsem);
4602         for (i = 0; i < sits_in_cursum(journal); i++) {
4603                 unsigned int old_valid_blocks;
4604
4605                 start = le32_to_cpu(segno_in_journal(journal, i));
4606                 if (start >= MAIN_SEGS(sbi)) {
4607                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4608                                  start);
4609                         err = -EFSCORRUPTED;
4610                         break;
4611                 }
4612
4613                 se = &sit_i->sentries[start];
4614                 sit = sit_in_journal(journal, i);
4615
4616                 old_valid_blocks = se->valid_blocks;
4617                 if (IS_NODESEG(se->type))
4618                         total_node_blocks -= old_valid_blocks;
4619
4620                 err = check_block_count(sbi, start, &sit);
4621                 if (err)
4622                         break;
4623                 seg_info_from_raw_sit(se, &sit);
4624                 if (IS_NODESEG(se->type))
4625                         total_node_blocks += se->valid_blocks;
4626
4627                 if (f2fs_block_unit_discard(sbi)) {
4628                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4629                                 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4630                         } else {
4631                                 memcpy(se->discard_map, se->cur_valid_map,
4632                                                         SIT_VBLOCK_MAP_SIZE);
4633                                 sbi->discard_blks += old_valid_blocks;
4634                                 sbi->discard_blks -= se->valid_blocks;
4635                         }
4636                 }
4637
4638                 if (__is_large_section(sbi)) {
4639                         get_sec_entry(sbi, start)->valid_blocks +=
4640                                                         se->valid_blocks;
4641                         get_sec_entry(sbi, start)->valid_blocks -=
4642                                                         old_valid_blocks;
4643                 }
4644         }
4645         up_read(&curseg->journal_rwsem);
4646
4647         if (!err && total_node_blocks != valid_node_count(sbi)) {
4648                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4649                          total_node_blocks, valid_node_count(sbi));
4650                 err = -EFSCORRUPTED;
4651         }
4652
4653         return err;
4654 }
4655
4656 static void init_free_segmap(struct f2fs_sb_info *sbi)
4657 {
4658         unsigned int start;
4659         int type;
4660         struct seg_entry *sentry;
4661
4662         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4663                 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4664                         continue;
4665                 sentry = get_seg_entry(sbi, start);
4666                 if (!sentry->valid_blocks)
4667                         __set_free(sbi, start);
4668                 else
4669                         SIT_I(sbi)->written_valid_blocks +=
4670                                                 sentry->valid_blocks;
4671         }
4672
4673         /* set use the current segments */
4674         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4675                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4676
4677                 __set_test_and_inuse(sbi, curseg_t->segno);
4678         }
4679 }
4680
4681 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4682 {
4683         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4684         struct free_segmap_info *free_i = FREE_I(sbi);
4685         unsigned int segno = 0, offset = 0, secno;
4686         block_t valid_blocks, usable_blks_in_seg;
4687         block_t blks_per_sec = BLKS_PER_SEC(sbi);
4688
4689         while (1) {
4690                 /* find dirty segment based on free segmap */
4691                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4692                 if (segno >= MAIN_SEGS(sbi))
4693                         break;
4694                 offset = segno + 1;
4695                 valid_blocks = get_valid_blocks(sbi, segno, false);
4696                 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4697                 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4698                         continue;
4699                 if (valid_blocks > usable_blks_in_seg) {
4700                         f2fs_bug_on(sbi, 1);
4701                         continue;
4702                 }
4703                 mutex_lock(&dirty_i->seglist_lock);
4704                 __locate_dirty_segment(sbi, segno, DIRTY);
4705                 mutex_unlock(&dirty_i->seglist_lock);
4706         }
4707
4708         if (!__is_large_section(sbi))
4709                 return;
4710
4711         mutex_lock(&dirty_i->seglist_lock);
4712         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4713                 valid_blocks = get_valid_blocks(sbi, segno, true);
4714                 secno = GET_SEC_FROM_SEG(sbi, segno);
4715
4716                 if (!valid_blocks || valid_blocks == blks_per_sec)
4717                         continue;
4718                 if (IS_CURSEC(sbi, secno))
4719                         continue;
4720                 set_bit(secno, dirty_i->dirty_secmap);
4721         }
4722         mutex_unlock(&dirty_i->seglist_lock);
4723 }
4724
4725 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4726 {
4727         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4728         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4729
4730         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4731         if (!dirty_i->victim_secmap)
4732                 return -ENOMEM;
4733         return 0;
4734 }
4735
4736 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4737 {
4738         struct dirty_seglist_info *dirty_i;
4739         unsigned int bitmap_size, i;
4740
4741         /* allocate memory for dirty segments list information */
4742         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4743                                                                 GFP_KERNEL);
4744         if (!dirty_i)
4745                 return -ENOMEM;
4746
4747         SM_I(sbi)->dirty_info = dirty_i;
4748         mutex_init(&dirty_i->seglist_lock);
4749
4750         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4751
4752         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4753                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4754                                                                 GFP_KERNEL);
4755                 if (!dirty_i->dirty_segmap[i])
4756                         return -ENOMEM;
4757         }
4758
4759         if (__is_large_section(sbi)) {
4760                 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4761                 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4762                                                 bitmap_size, GFP_KERNEL);
4763                 if (!dirty_i->dirty_secmap)
4764                         return -ENOMEM;
4765         }
4766
4767         init_dirty_segmap(sbi);
4768         return init_victim_secmap(sbi);
4769 }
4770
4771 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4772 {
4773         int i;
4774
4775         /*
4776          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4777          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4778          */
4779         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4780                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4781                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4782                 unsigned int blkofs = curseg->next_blkoff;
4783
4784                 if (f2fs_sb_has_readonly(sbi) &&
4785                         i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4786                         continue;
4787
4788                 sanity_check_seg_type(sbi, curseg->seg_type);
4789
4790                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4791                         goto out;
4792
4793                 if (curseg->alloc_type == SSR)
4794                         continue;
4795
4796                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4797                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4798                                 continue;
4799 out:
4800                         f2fs_err(sbi,
4801                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4802                                  i, curseg->segno, curseg->alloc_type,
4803                                  curseg->next_blkoff, blkofs);
4804                         return -EFSCORRUPTED;
4805                 }
4806         }
4807         return 0;
4808 }
4809
4810 #ifdef CONFIG_BLK_DEV_ZONED
4811
4812 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4813                                     struct f2fs_dev_info *fdev,
4814                                     struct blk_zone *zone)
4815 {
4816         unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4817         block_t zone_block, wp_block, last_valid_block;
4818         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4819         int i, s, b, ret;
4820         struct seg_entry *se;
4821
4822         if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4823                 return 0;
4824
4825         wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4826         wp_segno = GET_SEGNO(sbi, wp_block);
4827         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4828         zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4829         zone_segno = GET_SEGNO(sbi, zone_block);
4830         zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4831
4832         if (zone_segno >= MAIN_SEGS(sbi))
4833                 return 0;
4834
4835         /*
4836          * Skip check of zones cursegs point to, since
4837          * fix_curseg_write_pointer() checks them.
4838          */
4839         for (i = 0; i < NO_CHECK_TYPE; i++)
4840                 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4841                                                    CURSEG_I(sbi, i)->segno))
4842                         return 0;
4843
4844         /*
4845          * Get last valid block of the zone.
4846          */
4847         last_valid_block = zone_block - 1;
4848         for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4849                 segno = zone_segno + s;
4850                 se = get_seg_entry(sbi, segno);
4851                 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4852                         if (f2fs_test_bit(b, se->cur_valid_map)) {
4853                                 last_valid_block = START_BLOCK(sbi, segno) + b;
4854                                 break;
4855                         }
4856                 if (last_valid_block >= zone_block)
4857                         break;
4858         }
4859
4860         /*
4861          * If last valid block is beyond the write pointer, report the
4862          * inconsistency. This inconsistency does not cause write error
4863          * because the zone will not be selected for write operation until
4864          * it get discarded. Just report it.
4865          */
4866         if (last_valid_block >= wp_block) {
4867                 f2fs_notice(sbi, "Valid block beyond write pointer: "
4868                             "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4869                             GET_SEGNO(sbi, last_valid_block),
4870                             GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4871                             wp_segno, wp_blkoff);
4872                 return 0;
4873         }
4874
4875         /*
4876          * If there is no valid block in the zone and if write pointer is
4877          * not at zone start, reset the write pointer.
4878          */
4879         if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4880                 f2fs_notice(sbi,
4881                             "Zone without valid block has non-zero write "
4882                             "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4883                             wp_segno, wp_blkoff);
4884                 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4885                                         zone->len >> log_sectors_per_block);
4886                 if (ret) {
4887                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4888                                  fdev->path, ret);
4889                         return ret;
4890                 }
4891         }
4892
4893         return 0;
4894 }
4895
4896 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4897                                                   block_t zone_blkaddr)
4898 {
4899         int i;
4900
4901         for (i = 0; i < sbi->s_ndevs; i++) {
4902                 if (!bdev_is_zoned(FDEV(i).bdev))
4903                         continue;
4904                 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4905                                 zone_blkaddr <= FDEV(i).end_blk))
4906                         return &FDEV(i);
4907         }
4908
4909         return NULL;
4910 }
4911
4912 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4913                               void *data)
4914 {
4915         memcpy(data, zone, sizeof(struct blk_zone));
4916         return 0;
4917 }
4918
4919 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4920 {
4921         struct curseg_info *cs = CURSEG_I(sbi, type);
4922         struct f2fs_dev_info *zbd;
4923         struct blk_zone zone;
4924         unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4925         block_t cs_zone_block, wp_block;
4926         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4927         sector_t zone_sector;
4928         int err;
4929
4930         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4931         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4932
4933         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4934         if (!zbd)
4935                 return 0;
4936
4937         /* report zone for the sector the curseg points to */
4938         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4939                 << log_sectors_per_block;
4940         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4941                                   report_one_zone_cb, &zone);
4942         if (err != 1) {
4943                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4944                          zbd->path, err);
4945                 return err;
4946         }
4947
4948         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4949                 return 0;
4950
4951         wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4952         wp_segno = GET_SEGNO(sbi, wp_block);
4953         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4954         wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4955
4956         if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4957                 wp_sector_off == 0)
4958                 return 0;
4959
4960         f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4961                     "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4962                     type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4963
4964         f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4965                     "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4966
4967         f2fs_allocate_new_section(sbi, type, true);
4968
4969         /* check consistency of the zone curseg pointed to */
4970         if (check_zone_write_pointer(sbi, zbd, &zone))
4971                 return -EIO;
4972
4973         /* check newly assigned zone */
4974         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4975         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4976
4977         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4978         if (!zbd)
4979                 return 0;
4980
4981         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4982                 << log_sectors_per_block;
4983         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4984                                   report_one_zone_cb, &zone);
4985         if (err != 1) {
4986                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4987                          zbd->path, err);
4988                 return err;
4989         }
4990
4991         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4992                 return 0;
4993
4994         if (zone.wp != zone.start) {
4995                 f2fs_notice(sbi,
4996                             "New zone for curseg[%d] is not yet discarded. "
4997                             "Reset the zone: curseg[0x%x,0x%x]",
4998                             type, cs->segno, cs->next_blkoff);
4999                 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
5000                                 zone_sector >> log_sectors_per_block,
5001                                 zone.len >> log_sectors_per_block);
5002                 if (err) {
5003                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5004                                  zbd->path, err);
5005                         return err;
5006                 }
5007         }
5008
5009         return 0;
5010 }
5011
5012 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5013 {
5014         int i, ret;
5015
5016         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5017                 ret = fix_curseg_write_pointer(sbi, i);
5018                 if (ret)
5019                         return ret;
5020         }
5021
5022         return 0;
5023 }
5024
5025 struct check_zone_write_pointer_args {
5026         struct f2fs_sb_info *sbi;
5027         struct f2fs_dev_info *fdev;
5028 };
5029
5030 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5031                                       void *data)
5032 {
5033         struct check_zone_write_pointer_args *args;
5034
5035         args = (struct check_zone_write_pointer_args *)data;
5036
5037         return check_zone_write_pointer(args->sbi, args->fdev, zone);
5038 }
5039
5040 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5041 {
5042         int i, ret;
5043         struct check_zone_write_pointer_args args;
5044
5045         for (i = 0; i < sbi->s_ndevs; i++) {
5046                 if (!bdev_is_zoned(FDEV(i).bdev))
5047                         continue;
5048
5049                 args.sbi = sbi;
5050                 args.fdev = &FDEV(i);
5051                 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5052                                           check_zone_write_pointer_cb, &args);
5053                 if (ret < 0)
5054                         return ret;
5055         }
5056
5057         return 0;
5058 }
5059
5060 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
5061                                                 unsigned int dev_idx)
5062 {
5063         if (!bdev_is_zoned(FDEV(dev_idx).bdev))
5064                 return true;
5065         return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
5066 }
5067
5068 /* Return the zone index in the given device */
5069 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
5070                                         int dev_idx)
5071 {
5072         block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5073
5074         return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
5075                                                 sbi->log_blocks_per_blkz;
5076 }
5077
5078 /*
5079  * Return the usable segments in a section based on the zone's
5080  * corresponding zone capacity. Zone is equal to a section.
5081  */
5082 static inline unsigned int f2fs_usable_zone_segs_in_sec(
5083                 struct f2fs_sb_info *sbi, unsigned int segno)
5084 {
5085         unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
5086
5087         dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
5088         zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
5089
5090         /* Conventional zone's capacity is always equal to zone size */
5091         if (is_conv_zone(sbi, zone_idx, dev_idx))
5092                 return sbi->segs_per_sec;
5093
5094         /*
5095          * If the zone_capacity_blocks array is NULL, then zone capacity
5096          * is equal to the zone size for all zones
5097          */
5098         if (!FDEV(dev_idx).zone_capacity_blocks)
5099                 return sbi->segs_per_sec;
5100
5101         /* Get the segment count beyond zone capacity block */
5102         unusable_segs_in_sec = (sbi->blocks_per_blkz -
5103                                 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5104                                 sbi->log_blocks_per_seg;
5105         return sbi->segs_per_sec - unusable_segs_in_sec;
5106 }
5107
5108 /*
5109  * Return the number of usable blocks in a segment. The number of blocks
5110  * returned is always equal to the number of blocks in a segment for
5111  * segments fully contained within a sequential zone capacity or a
5112  * conventional zone. For segments partially contained in a sequential
5113  * zone capacity, the number of usable blocks up to the zone capacity
5114  * is returned. 0 is returned in all other cases.
5115  */
5116 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5117                         struct f2fs_sb_info *sbi, unsigned int segno)
5118 {
5119         block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5120         unsigned int zone_idx, dev_idx, secno;
5121
5122         secno = GET_SEC_FROM_SEG(sbi, segno);
5123         seg_start = START_BLOCK(sbi, segno);
5124         dev_idx = f2fs_target_device_index(sbi, seg_start);
5125         zone_idx = get_zone_idx(sbi, secno, dev_idx);
5126
5127         /*
5128          * Conventional zone's capacity is always equal to zone size,
5129          * so, blocks per segment is unchanged.
5130          */
5131         if (is_conv_zone(sbi, zone_idx, dev_idx))
5132                 return sbi->blocks_per_seg;
5133
5134         if (!FDEV(dev_idx).zone_capacity_blocks)
5135                 return sbi->blocks_per_seg;
5136
5137         sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5138         sec_cap_blkaddr = sec_start_blkaddr +
5139                                 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5140
5141         /*
5142          * If segment starts before zone capacity and spans beyond
5143          * zone capacity, then usable blocks are from seg start to
5144          * zone capacity. If the segment starts after the zone capacity,
5145          * then there are no usable blocks.
5146          */
5147         if (seg_start >= sec_cap_blkaddr)
5148                 return 0;
5149         if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5150                 return sec_cap_blkaddr - seg_start;
5151
5152         return sbi->blocks_per_seg;
5153 }
5154 #else
5155 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5156 {
5157         return 0;
5158 }
5159
5160 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5161 {
5162         return 0;
5163 }
5164
5165 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5166                                                         unsigned int segno)
5167 {
5168         return 0;
5169 }
5170
5171 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5172                                                         unsigned int segno)
5173 {
5174         return 0;
5175 }
5176 #endif
5177 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5178                                         unsigned int segno)
5179 {
5180         if (f2fs_sb_has_blkzoned(sbi))
5181                 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5182
5183         return sbi->blocks_per_seg;
5184 }
5185
5186 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5187                                         unsigned int segno)
5188 {
5189         if (f2fs_sb_has_blkzoned(sbi))
5190                 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5191
5192         return sbi->segs_per_sec;
5193 }
5194
5195 /*
5196  * Update min, max modified time for cost-benefit GC algorithm
5197  */
5198 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5199 {
5200         struct sit_info *sit_i = SIT_I(sbi);
5201         unsigned int segno;
5202
5203         down_write(&sit_i->sentry_lock);
5204
5205         sit_i->min_mtime = ULLONG_MAX;
5206
5207         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5208                 unsigned int i;
5209                 unsigned long long mtime = 0;
5210
5211                 for (i = 0; i < sbi->segs_per_sec; i++)
5212                         mtime += get_seg_entry(sbi, segno + i)->mtime;
5213
5214                 mtime = div_u64(mtime, sbi->segs_per_sec);
5215
5216                 if (sit_i->min_mtime > mtime)
5217                         sit_i->min_mtime = mtime;
5218         }
5219         sit_i->max_mtime = get_mtime(sbi, false);
5220         sit_i->dirty_max_mtime = 0;
5221         up_write(&sit_i->sentry_lock);
5222 }
5223
5224 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5225 {
5226         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5227         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5228         struct f2fs_sm_info *sm_info;
5229         int err;
5230
5231         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5232         if (!sm_info)
5233                 return -ENOMEM;
5234
5235         /* init sm info */
5236         sbi->sm_info = sm_info;
5237         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5238         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5239         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5240         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5241         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5242         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5243         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5244         sm_info->rec_prefree_segments = sm_info->main_segments *
5245                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5246         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5247                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5248
5249         if (!f2fs_lfs_mode(sbi))
5250                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5251         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5252         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5253         sm_info->min_seq_blocks = sbi->blocks_per_seg;
5254         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5255         sm_info->min_ssr_sections = reserved_sections(sbi);
5256
5257         INIT_LIST_HEAD(&sm_info->sit_entry_set);
5258
5259         init_rwsem(&sm_info->curseg_lock);
5260
5261         if (!f2fs_readonly(sbi->sb)) {
5262                 err = f2fs_create_flush_cmd_control(sbi);
5263                 if (err)
5264                         return err;
5265         }
5266
5267         err = create_discard_cmd_control(sbi);
5268         if (err)
5269                 return err;
5270
5271         err = build_sit_info(sbi);
5272         if (err)
5273                 return err;
5274         err = build_free_segmap(sbi);
5275         if (err)
5276                 return err;
5277         err = build_curseg(sbi);
5278         if (err)
5279                 return err;
5280
5281         /* reinit free segmap based on SIT */
5282         err = build_sit_entries(sbi);
5283         if (err)
5284                 return err;
5285
5286         init_free_segmap(sbi);
5287         err = build_dirty_segmap(sbi);
5288         if (err)
5289                 return err;
5290
5291         err = sanity_check_curseg(sbi);
5292         if (err)
5293                 return err;
5294
5295         init_min_max_mtime(sbi);
5296         return 0;
5297 }
5298
5299 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5300                 enum dirty_type dirty_type)
5301 {
5302         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5303
5304         mutex_lock(&dirty_i->seglist_lock);
5305         kvfree(dirty_i->dirty_segmap[dirty_type]);
5306         dirty_i->nr_dirty[dirty_type] = 0;
5307         mutex_unlock(&dirty_i->seglist_lock);
5308 }
5309
5310 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5311 {
5312         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5313
5314         kvfree(dirty_i->victim_secmap);
5315 }
5316
5317 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5318 {
5319         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5320         int i;
5321
5322         if (!dirty_i)
5323                 return;
5324
5325         /* discard pre-free/dirty segments list */
5326         for (i = 0; i < NR_DIRTY_TYPE; i++)
5327                 discard_dirty_segmap(sbi, i);
5328
5329         if (__is_large_section(sbi)) {
5330                 mutex_lock(&dirty_i->seglist_lock);
5331                 kvfree(dirty_i->dirty_secmap);
5332                 mutex_unlock(&dirty_i->seglist_lock);
5333         }
5334
5335         destroy_victim_secmap(sbi);
5336         SM_I(sbi)->dirty_info = NULL;
5337         kfree(dirty_i);
5338 }
5339
5340 static void destroy_curseg(struct f2fs_sb_info *sbi)
5341 {
5342         struct curseg_info *array = SM_I(sbi)->curseg_array;
5343         int i;
5344
5345         if (!array)
5346                 return;
5347         SM_I(sbi)->curseg_array = NULL;
5348         for (i = 0; i < NR_CURSEG_TYPE; i++) {
5349                 kfree(array[i].sum_blk);
5350                 kfree(array[i].journal);
5351         }
5352         kfree(array);
5353 }
5354
5355 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5356 {
5357         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5358
5359         if (!free_i)
5360                 return;
5361         SM_I(sbi)->free_info = NULL;
5362         kvfree(free_i->free_segmap);
5363         kvfree(free_i->free_secmap);
5364         kfree(free_i);
5365 }
5366
5367 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5368 {
5369         struct sit_info *sit_i = SIT_I(sbi);
5370
5371         if (!sit_i)
5372                 return;
5373
5374         if (sit_i->sentries)
5375                 kvfree(sit_i->bitmap);
5376         kfree(sit_i->tmp_map);
5377
5378         kvfree(sit_i->sentries);
5379         kvfree(sit_i->sec_entries);
5380         kvfree(sit_i->dirty_sentries_bitmap);
5381
5382         SM_I(sbi)->sit_info = NULL;
5383         kvfree(sit_i->sit_bitmap);
5384 #ifdef CONFIG_F2FS_CHECK_FS
5385         kvfree(sit_i->sit_bitmap_mir);
5386         kvfree(sit_i->invalid_segmap);
5387 #endif
5388         kfree(sit_i);
5389 }
5390
5391 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5392 {
5393         struct f2fs_sm_info *sm_info = SM_I(sbi);
5394
5395         if (!sm_info)
5396                 return;
5397         f2fs_destroy_flush_cmd_control(sbi, true);
5398         destroy_discard_cmd_control(sbi);
5399         destroy_dirty_segmap(sbi);
5400         destroy_curseg(sbi);
5401         destroy_free_segmap(sbi);
5402         destroy_sit_info(sbi);
5403         sbi->sm_info = NULL;
5404         kfree(sm_info);
5405 }
5406
5407 int __init f2fs_create_segment_manager_caches(void)
5408 {
5409         discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5410                         sizeof(struct discard_entry));
5411         if (!discard_entry_slab)
5412                 goto fail;
5413
5414         discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5415                         sizeof(struct discard_cmd));
5416         if (!discard_cmd_slab)
5417                 goto destroy_discard_entry;
5418
5419         sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5420                         sizeof(struct sit_entry_set));
5421         if (!sit_entry_set_slab)
5422                 goto destroy_discard_cmd;
5423
5424         inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5425                         sizeof(struct inmem_pages));
5426         if (!inmem_entry_slab)
5427                 goto destroy_sit_entry_set;
5428         return 0;
5429
5430 destroy_sit_entry_set:
5431         kmem_cache_destroy(sit_entry_set_slab);
5432 destroy_discard_cmd:
5433         kmem_cache_destroy(discard_cmd_slab);
5434 destroy_discard_entry:
5435         kmem_cache_destroy(discard_entry_slab);
5436 fail:
5437         return -ENOMEM;
5438 }
5439
5440 void f2fs_destroy_segment_manager_caches(void)
5441 {
5442         kmem_cache_destroy(sit_entry_set_slab);
5443         kmem_cache_destroy(discard_cmd_slab);
5444         kmem_cache_destroy(discard_entry_slab);
5445         kmem_cache_destroy(inmem_entry_slab);
5446 }
This page took 0.340801 seconds and 4 git commands to generate.