]> Git Repo - linux.git/blob - fs/btrfs/file-item.c
mm/page_alloc: free pages in a single pass during bulk free
[linux.git] / fs / btrfs / file-item.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "misc.h"
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "print-tree.h"
18 #include "compression.h"
19
20 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
21                                    sizeof(struct btrfs_item) * 2) / \
22                                   size) - 1))
23
24 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
25                                        PAGE_SIZE))
26
27 /**
28  * Set inode's size according to filesystem options
29  *
30  * @inode:      inode we want to update the disk_i_size for
31  * @new_i_size: i_size we want to set to, 0 if we use i_size
32  *
33  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
34  * returns as it is perfectly fine with a file that has holes without hole file
35  * extent items.
36  *
37  * However without NO_HOLES we need to only return the area that is contiguous
38  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
39  * to an extent that has a gap in between.
40  *
41  * Finally new_i_size should only be set in the case of truncate where we're not
42  * ready to use i_size_read() as the limiter yet.
43  */
44 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
45 {
46         struct btrfs_fs_info *fs_info = inode->root->fs_info;
47         u64 start, end, i_size;
48         int ret;
49
50         i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
51         if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
52                 inode->disk_i_size = i_size;
53                 return;
54         }
55
56         spin_lock(&inode->lock);
57         ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
58                                          &end, EXTENT_DIRTY);
59         if (!ret && start == 0)
60                 i_size = min(i_size, end + 1);
61         else
62                 i_size = 0;
63         inode->disk_i_size = i_size;
64         spin_unlock(&inode->lock);
65 }
66
67 /**
68  * Mark range within a file as having a new extent inserted
69  *
70  * @inode: inode being modified
71  * @start: start file offset of the file extent we've inserted
72  * @len:   logical length of the file extent item
73  *
74  * Call when we are inserting a new file extent where there was none before.
75  * Does not need to call this in the case where we're replacing an existing file
76  * extent, however if not sure it's fine to call this multiple times.
77  *
78  * The start and len must match the file extent item, so thus must be sectorsize
79  * aligned.
80  */
81 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
82                                       u64 len)
83 {
84         if (len == 0)
85                 return 0;
86
87         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
88
89         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
90                 return 0;
91         return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
92                                EXTENT_DIRTY);
93 }
94
95 /**
96  * Marks an inode range as not having a backing extent
97  *
98  * @inode: inode being modified
99  * @start: start file offset of the file extent we've inserted
100  * @len:   logical length of the file extent item
101  *
102  * Called when we drop a file extent, for example when we truncate.  Doesn't
103  * need to be called for cases where we're replacing a file extent, like when
104  * we've COWed a file extent.
105  *
106  * The start and len must match the file extent item, so thus must be sectorsize
107  * aligned.
108  */
109 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
110                                         u64 len)
111 {
112         if (len == 0)
113                 return 0;
114
115         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
116                len == (u64)-1);
117
118         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
119                 return 0;
120         return clear_extent_bit(&inode->file_extent_tree, start,
121                                 start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
122 }
123
124 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
125                                         u16 csum_size)
126 {
127         u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
128
129         return ncsums * fs_info->sectorsize;
130 }
131
132 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
133                              struct btrfs_root *root,
134                              u64 objectid, u64 pos,
135                              u64 disk_offset, u64 disk_num_bytes,
136                              u64 num_bytes, u64 offset, u64 ram_bytes,
137                              u8 compression, u8 encryption, u16 other_encoding)
138 {
139         int ret = 0;
140         struct btrfs_file_extent_item *item;
141         struct btrfs_key file_key;
142         struct btrfs_path *path;
143         struct extent_buffer *leaf;
144
145         path = btrfs_alloc_path();
146         if (!path)
147                 return -ENOMEM;
148         file_key.objectid = objectid;
149         file_key.offset = pos;
150         file_key.type = BTRFS_EXTENT_DATA_KEY;
151
152         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
153                                       sizeof(*item));
154         if (ret < 0)
155                 goto out;
156         BUG_ON(ret); /* Can't happen */
157         leaf = path->nodes[0];
158         item = btrfs_item_ptr(leaf, path->slots[0],
159                               struct btrfs_file_extent_item);
160         btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
161         btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
162         btrfs_set_file_extent_offset(leaf, item, offset);
163         btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
164         btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
165         btrfs_set_file_extent_generation(leaf, item, trans->transid);
166         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
167         btrfs_set_file_extent_compression(leaf, item, compression);
168         btrfs_set_file_extent_encryption(leaf, item, encryption);
169         btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
170
171         btrfs_mark_buffer_dirty(leaf);
172 out:
173         btrfs_free_path(path);
174         return ret;
175 }
176
177 static struct btrfs_csum_item *
178 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
179                   struct btrfs_root *root,
180                   struct btrfs_path *path,
181                   u64 bytenr, int cow)
182 {
183         struct btrfs_fs_info *fs_info = root->fs_info;
184         int ret;
185         struct btrfs_key file_key;
186         struct btrfs_key found_key;
187         struct btrfs_csum_item *item;
188         struct extent_buffer *leaf;
189         u64 csum_offset = 0;
190         const u32 csum_size = fs_info->csum_size;
191         int csums_in_item;
192
193         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
194         file_key.offset = bytenr;
195         file_key.type = BTRFS_EXTENT_CSUM_KEY;
196         ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
197         if (ret < 0)
198                 goto fail;
199         leaf = path->nodes[0];
200         if (ret > 0) {
201                 ret = 1;
202                 if (path->slots[0] == 0)
203                         goto fail;
204                 path->slots[0]--;
205                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
206                 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
207                         goto fail;
208
209                 csum_offset = (bytenr - found_key.offset) >>
210                                 fs_info->sectorsize_bits;
211                 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
212                 csums_in_item /= csum_size;
213
214                 if (csum_offset == csums_in_item) {
215                         ret = -EFBIG;
216                         goto fail;
217                 } else if (csum_offset > csums_in_item) {
218                         goto fail;
219                 }
220         }
221         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
222         item = (struct btrfs_csum_item *)((unsigned char *)item +
223                                           csum_offset * csum_size);
224         return item;
225 fail:
226         if (ret > 0)
227                 ret = -ENOENT;
228         return ERR_PTR(ret);
229 }
230
231 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
232                              struct btrfs_root *root,
233                              struct btrfs_path *path, u64 objectid,
234                              u64 offset, int mod)
235 {
236         struct btrfs_key file_key;
237         int ins_len = mod < 0 ? -1 : 0;
238         int cow = mod != 0;
239
240         file_key.objectid = objectid;
241         file_key.offset = offset;
242         file_key.type = BTRFS_EXTENT_DATA_KEY;
243
244         return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
245 }
246
247 /*
248  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
249  * estore the result to @dst.
250  *
251  * Return >0 for the number of sectors we found.
252  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
253  * for it. Caller may want to try next sector until one range is hit.
254  * Return <0 for fatal error.
255  */
256 static int search_csum_tree(struct btrfs_fs_info *fs_info,
257                             struct btrfs_path *path, u64 disk_bytenr,
258                             u64 len, u8 *dst)
259 {
260         struct btrfs_root *csum_root;
261         struct btrfs_csum_item *item = NULL;
262         struct btrfs_key key;
263         const u32 sectorsize = fs_info->sectorsize;
264         const u32 csum_size = fs_info->csum_size;
265         u32 itemsize;
266         int ret;
267         u64 csum_start;
268         u64 csum_len;
269
270         ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
271                IS_ALIGNED(len, sectorsize));
272
273         /* Check if the current csum item covers disk_bytenr */
274         if (path->nodes[0]) {
275                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
276                                       struct btrfs_csum_item);
277                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
278                 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
279
280                 csum_start = key.offset;
281                 csum_len = (itemsize / csum_size) * sectorsize;
282
283                 if (in_range(disk_bytenr, csum_start, csum_len))
284                         goto found;
285         }
286
287         /* Current item doesn't contain the desired range, search again */
288         btrfs_release_path(path);
289         csum_root = btrfs_csum_root(fs_info, disk_bytenr);
290         item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
291         if (IS_ERR(item)) {
292                 ret = PTR_ERR(item);
293                 goto out;
294         }
295         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
296         itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
297
298         csum_start = key.offset;
299         csum_len = (itemsize / csum_size) * sectorsize;
300         ASSERT(in_range(disk_bytenr, csum_start, csum_len));
301
302 found:
303         ret = (min(csum_start + csum_len, disk_bytenr + len) -
304                    disk_bytenr) >> fs_info->sectorsize_bits;
305         read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
306                         ret * csum_size);
307 out:
308         if (ret == -ENOENT)
309                 ret = 0;
310         return ret;
311 }
312
313 /*
314  * Locate the file_offset of @cur_disk_bytenr of a @bio.
315  *
316  * Bio of btrfs represents read range of
317  * [bi_sector << 9, bi_sector << 9 + bi_size).
318  * Knowing this, we can iterate through each bvec to locate the page belong to
319  * @cur_disk_bytenr and get the file offset.
320  *
321  * @inode is used to determine if the bvec page really belongs to @inode.
322  *
323  * Return 0 if we can't find the file offset
324  * Return >0 if we find the file offset and restore it to @file_offset_ret
325  */
326 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
327                                      u64 disk_bytenr, u64 *file_offset_ret)
328 {
329         struct bvec_iter iter;
330         struct bio_vec bvec;
331         u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
332         int ret = 0;
333
334         bio_for_each_segment(bvec, bio, iter) {
335                 struct page *page = bvec.bv_page;
336
337                 if (cur > disk_bytenr)
338                         break;
339                 if (cur + bvec.bv_len <= disk_bytenr) {
340                         cur += bvec.bv_len;
341                         continue;
342                 }
343                 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
344                 if (page->mapping && page->mapping->host &&
345                     page->mapping->host == inode) {
346                         ret = 1;
347                         *file_offset_ret = page_offset(page) + bvec.bv_offset +
348                                            disk_bytenr - cur;
349                         break;
350                 }
351         }
352         return ret;
353 }
354
355 /**
356  * Lookup the checksum for the read bio in csum tree.
357  *
358  * @inode: inode that the bio is for.
359  * @bio: bio to look up.
360  * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
361  *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
362  *       NULL, the checksum buffer is allocated and returned in
363  *       btrfs_bio(bio)->csum instead.
364  *
365  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
366  */
367 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
368 {
369         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
370         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
371         struct btrfs_path *path;
372         const u32 sectorsize = fs_info->sectorsize;
373         const u32 csum_size = fs_info->csum_size;
374         u32 orig_len = bio->bi_iter.bi_size;
375         u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
376         u64 cur_disk_bytenr;
377         u8 *csum;
378         const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
379         int count = 0;
380
381         if ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
382             test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
383                 return BLK_STS_OK;
384
385         /*
386          * This function is only called for read bio.
387          *
388          * This means two things:
389          * - All our csums should only be in csum tree
390          *   No ordered extents csums, as ordered extents are only for write
391          *   path.
392          * - No need to bother any other info from bvec
393          *   Since we're looking up csums, the only important info is the
394          *   disk_bytenr and the length, which can be extracted from bi_iter
395          *   directly.
396          */
397         ASSERT(bio_op(bio) == REQ_OP_READ);
398         path = btrfs_alloc_path();
399         if (!path)
400                 return BLK_STS_RESOURCE;
401
402         if (!dst) {
403                 struct btrfs_bio *bbio = btrfs_bio(bio);
404
405                 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
406                         bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
407                         if (!bbio->csum) {
408                                 btrfs_free_path(path);
409                                 return BLK_STS_RESOURCE;
410                         }
411                 } else {
412                         bbio->csum = bbio->csum_inline;
413                 }
414                 csum = bbio->csum;
415         } else {
416                 csum = dst;
417         }
418
419         /*
420          * If requested number of sectors is larger than one leaf can contain,
421          * kick the readahead for csum tree.
422          */
423         if (nblocks > fs_info->csums_per_leaf)
424                 path->reada = READA_FORWARD;
425
426         /*
427          * the free space stuff is only read when it hasn't been
428          * updated in the current transaction.  So, we can safely
429          * read from the commit root and sidestep a nasty deadlock
430          * between reading the free space cache and updating the csum tree.
431          */
432         if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
433                 path->search_commit_root = 1;
434                 path->skip_locking = 1;
435         }
436
437         for (cur_disk_bytenr = orig_disk_bytenr;
438              cur_disk_bytenr < orig_disk_bytenr + orig_len;
439              cur_disk_bytenr += (count * sectorsize)) {
440                 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
441                 unsigned int sector_offset;
442                 u8 *csum_dst;
443
444                 /*
445                  * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
446                  * we're calculating the offset to the bio start.
447                  *
448                  * Bio size is limited to UINT_MAX, thus unsigned int is large
449                  * enough to contain the raw result, not to mention the right
450                  * shifted result.
451                  */
452                 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
453                 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
454                                 fs_info->sectorsize_bits;
455                 csum_dst = csum + sector_offset * csum_size;
456
457                 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
458                                          search_len, csum_dst);
459                 if (count <= 0) {
460                         /*
461                          * Either we hit a critical error or we didn't find
462                          * the csum.
463                          * Either way, we put zero into the csums dst, and skip
464                          * to the next sector.
465                          */
466                         memset(csum_dst, 0, csum_size);
467                         count = 1;
468
469                         /*
470                          * For data reloc inode, we need to mark the range
471                          * NODATASUM so that balance won't report false csum
472                          * error.
473                          */
474                         if (BTRFS_I(inode)->root->root_key.objectid ==
475                             BTRFS_DATA_RELOC_TREE_OBJECTID) {
476                                 u64 file_offset;
477                                 int ret;
478
479                                 ret = search_file_offset_in_bio(bio, inode,
480                                                 cur_disk_bytenr, &file_offset);
481                                 if (ret)
482                                         set_extent_bits(io_tree, file_offset,
483                                                 file_offset + sectorsize - 1,
484                                                 EXTENT_NODATASUM);
485                         } else {
486                                 btrfs_warn_rl(fs_info,
487                         "csum hole found for disk bytenr range [%llu, %llu)",
488                                 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
489                         }
490                 }
491         }
492
493         btrfs_free_path(path);
494         return BLK_STS_OK;
495 }
496
497 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
498                              struct list_head *list, int search_commit)
499 {
500         struct btrfs_fs_info *fs_info = root->fs_info;
501         struct btrfs_key key;
502         struct btrfs_path *path;
503         struct extent_buffer *leaf;
504         struct btrfs_ordered_sum *sums;
505         struct btrfs_csum_item *item;
506         LIST_HEAD(tmplist);
507         unsigned long offset;
508         int ret;
509         size_t size;
510         u64 csum_end;
511         const u32 csum_size = fs_info->csum_size;
512
513         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
514                IS_ALIGNED(end + 1, fs_info->sectorsize));
515
516         path = btrfs_alloc_path();
517         if (!path)
518                 return -ENOMEM;
519
520         if (search_commit) {
521                 path->skip_locking = 1;
522                 path->reada = READA_FORWARD;
523                 path->search_commit_root = 1;
524         }
525
526         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
527         key.offset = start;
528         key.type = BTRFS_EXTENT_CSUM_KEY;
529
530         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
531         if (ret < 0)
532                 goto fail;
533         if (ret > 0 && path->slots[0] > 0) {
534                 leaf = path->nodes[0];
535                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
536                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
537                     key.type == BTRFS_EXTENT_CSUM_KEY) {
538                         offset = (start - key.offset) >> fs_info->sectorsize_bits;
539                         if (offset * csum_size <
540                             btrfs_item_size(leaf, path->slots[0] - 1))
541                                 path->slots[0]--;
542                 }
543         }
544
545         while (start <= end) {
546                 leaf = path->nodes[0];
547                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
548                         ret = btrfs_next_leaf(root, path);
549                         if (ret < 0)
550                                 goto fail;
551                         if (ret > 0)
552                                 break;
553                         leaf = path->nodes[0];
554                 }
555
556                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
557                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
558                     key.type != BTRFS_EXTENT_CSUM_KEY ||
559                     key.offset > end)
560                         break;
561
562                 if (key.offset > start)
563                         start = key.offset;
564
565                 size = btrfs_item_size(leaf, path->slots[0]);
566                 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
567                 if (csum_end <= start) {
568                         path->slots[0]++;
569                         continue;
570                 }
571
572                 csum_end = min(csum_end, end + 1);
573                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
574                                       struct btrfs_csum_item);
575                 while (start < csum_end) {
576                         size = min_t(size_t, csum_end - start,
577                                      max_ordered_sum_bytes(fs_info, csum_size));
578                         sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
579                                        GFP_NOFS);
580                         if (!sums) {
581                                 ret = -ENOMEM;
582                                 goto fail;
583                         }
584
585                         sums->bytenr = start;
586                         sums->len = (int)size;
587
588                         offset = (start - key.offset) >> fs_info->sectorsize_bits;
589                         offset *= csum_size;
590                         size >>= fs_info->sectorsize_bits;
591
592                         read_extent_buffer(path->nodes[0],
593                                            sums->sums,
594                                            ((unsigned long)item) + offset,
595                                            csum_size * size);
596
597                         start += fs_info->sectorsize * size;
598                         list_add_tail(&sums->list, &tmplist);
599                 }
600                 path->slots[0]++;
601         }
602         ret = 0;
603 fail:
604         while (ret < 0 && !list_empty(&tmplist)) {
605                 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
606                 list_del(&sums->list);
607                 kfree(sums);
608         }
609         list_splice_tail(&tmplist, list);
610
611         btrfs_free_path(path);
612         return ret;
613 }
614
615 /*
616  * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
617  * @inode:       Owner of the data inside the bio
618  * @bio:         Contains the data to be checksummed
619  * @file_start:  offset in file this bio begins to describe
620  * @contig:      Boolean. If true/1 means all bio vecs in this bio are
621  *               contiguous and they begin at @file_start in the file. False/0
622  *               means this bio can contain potentially discontiguous bio vecs
623  *               so the logical offset of each should be calculated separately.
624  */
625 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
626                        u64 file_start, int contig)
627 {
628         struct btrfs_fs_info *fs_info = inode->root->fs_info;
629         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
630         struct btrfs_ordered_sum *sums;
631         struct btrfs_ordered_extent *ordered = NULL;
632         char *data;
633         struct bvec_iter iter;
634         struct bio_vec bvec;
635         int index;
636         int nr_sectors;
637         unsigned long total_bytes = 0;
638         unsigned long this_sum_bytes = 0;
639         int i;
640         u64 offset;
641         unsigned nofs_flag;
642
643         nofs_flag = memalloc_nofs_save();
644         sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
645                        GFP_KERNEL);
646         memalloc_nofs_restore(nofs_flag);
647
648         if (!sums)
649                 return BLK_STS_RESOURCE;
650
651         sums->len = bio->bi_iter.bi_size;
652         INIT_LIST_HEAD(&sums->list);
653
654         if (contig)
655                 offset = file_start;
656         else
657                 offset = 0; /* shut up gcc */
658
659         sums->bytenr = bio->bi_iter.bi_sector << 9;
660         index = 0;
661
662         shash->tfm = fs_info->csum_shash;
663
664         bio_for_each_segment(bvec, bio, iter) {
665                 if (!contig)
666                         offset = page_offset(bvec.bv_page) + bvec.bv_offset;
667
668                 if (!ordered) {
669                         ordered = btrfs_lookup_ordered_extent(inode, offset);
670                         /*
671                          * The bio range is not covered by any ordered extent,
672                          * must be a code logic error.
673                          */
674                         if (unlikely(!ordered)) {
675                                 WARN(1, KERN_WARNING
676                         "no ordered extent for root %llu ino %llu offset %llu\n",
677                                      inode->root->root_key.objectid,
678                                      btrfs_ino(inode), offset);
679                                 kvfree(sums);
680                                 return BLK_STS_IOERR;
681                         }
682                 }
683
684                 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
685                                                  bvec.bv_len + fs_info->sectorsize
686                                                  - 1);
687
688                 for (i = 0; i < nr_sectors; i++) {
689                         if (offset >= ordered->file_offset + ordered->num_bytes ||
690                             offset < ordered->file_offset) {
691                                 unsigned long bytes_left;
692
693                                 sums->len = this_sum_bytes;
694                                 this_sum_bytes = 0;
695                                 btrfs_add_ordered_sum(ordered, sums);
696                                 btrfs_put_ordered_extent(ordered);
697
698                                 bytes_left = bio->bi_iter.bi_size - total_bytes;
699
700                                 nofs_flag = memalloc_nofs_save();
701                                 sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
702                                                       bytes_left), GFP_KERNEL);
703                                 memalloc_nofs_restore(nofs_flag);
704                                 BUG_ON(!sums); /* -ENOMEM */
705                                 sums->len = bytes_left;
706                                 ordered = btrfs_lookup_ordered_extent(inode,
707                                                                 offset);
708                                 ASSERT(ordered); /* Logic error */
709                                 sums->bytenr = (bio->bi_iter.bi_sector << 9)
710                                         + total_bytes;
711                                 index = 0;
712                         }
713
714                         data = bvec_kmap_local(&bvec);
715                         crypto_shash_digest(shash,
716                                             data + (i * fs_info->sectorsize),
717                                             fs_info->sectorsize,
718                                             sums->sums + index);
719                         kunmap_local(data);
720                         index += fs_info->csum_size;
721                         offset += fs_info->sectorsize;
722                         this_sum_bytes += fs_info->sectorsize;
723                         total_bytes += fs_info->sectorsize;
724                 }
725
726         }
727         this_sum_bytes = 0;
728         btrfs_add_ordered_sum(ordered, sums);
729         btrfs_put_ordered_extent(ordered);
730         return 0;
731 }
732
733 /*
734  * helper function for csum removal, this expects the
735  * key to describe the csum pointed to by the path, and it expects
736  * the csum to overlap the range [bytenr, len]
737  *
738  * The csum should not be entirely contained in the range and the
739  * range should not be entirely contained in the csum.
740  *
741  * This calls btrfs_truncate_item with the correct args based on the
742  * overlap, and fixes up the key as required.
743  */
744 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
745                                        struct btrfs_path *path,
746                                        struct btrfs_key *key,
747                                        u64 bytenr, u64 len)
748 {
749         struct extent_buffer *leaf;
750         const u32 csum_size = fs_info->csum_size;
751         u64 csum_end;
752         u64 end_byte = bytenr + len;
753         u32 blocksize_bits = fs_info->sectorsize_bits;
754
755         leaf = path->nodes[0];
756         csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
757         csum_end <<= blocksize_bits;
758         csum_end += key->offset;
759
760         if (key->offset < bytenr && csum_end <= end_byte) {
761                 /*
762                  *         [ bytenr - len ]
763                  *         [   ]
764                  *   [csum     ]
765                  *   A simple truncate off the end of the item
766                  */
767                 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
768                 new_size *= csum_size;
769                 btrfs_truncate_item(path, new_size, 1);
770         } else if (key->offset >= bytenr && csum_end > end_byte &&
771                    end_byte > key->offset) {
772                 /*
773                  *         [ bytenr - len ]
774                  *                 [ ]
775                  *                 [csum     ]
776                  * we need to truncate from the beginning of the csum
777                  */
778                 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
779                 new_size *= csum_size;
780
781                 btrfs_truncate_item(path, new_size, 0);
782
783                 key->offset = end_byte;
784                 btrfs_set_item_key_safe(fs_info, path, key);
785         } else {
786                 BUG();
787         }
788 }
789
790 /*
791  * deletes the csum items from the csum tree for a given
792  * range of bytes.
793  */
794 int btrfs_del_csums(struct btrfs_trans_handle *trans,
795                     struct btrfs_root *root, u64 bytenr, u64 len)
796 {
797         struct btrfs_fs_info *fs_info = trans->fs_info;
798         struct btrfs_path *path;
799         struct btrfs_key key;
800         u64 end_byte = bytenr + len;
801         u64 csum_end;
802         struct extent_buffer *leaf;
803         int ret = 0;
804         const u32 csum_size = fs_info->csum_size;
805         u32 blocksize_bits = fs_info->sectorsize_bits;
806
807         ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
808                root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
809
810         path = btrfs_alloc_path();
811         if (!path)
812                 return -ENOMEM;
813
814         while (1) {
815                 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
816                 key.offset = end_byte - 1;
817                 key.type = BTRFS_EXTENT_CSUM_KEY;
818
819                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
820                 if (ret > 0) {
821                         ret = 0;
822                         if (path->slots[0] == 0)
823                                 break;
824                         path->slots[0]--;
825                 } else if (ret < 0) {
826                         break;
827                 }
828
829                 leaf = path->nodes[0];
830                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
831
832                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
833                     key.type != BTRFS_EXTENT_CSUM_KEY) {
834                         break;
835                 }
836
837                 if (key.offset >= end_byte)
838                         break;
839
840                 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
841                 csum_end <<= blocksize_bits;
842                 csum_end += key.offset;
843
844                 /* this csum ends before we start, we're done */
845                 if (csum_end <= bytenr)
846                         break;
847
848                 /* delete the entire item, it is inside our range */
849                 if (key.offset >= bytenr && csum_end <= end_byte) {
850                         int del_nr = 1;
851
852                         /*
853                          * Check how many csum items preceding this one in this
854                          * leaf correspond to our range and then delete them all
855                          * at once.
856                          */
857                         if (key.offset > bytenr && path->slots[0] > 0) {
858                                 int slot = path->slots[0] - 1;
859
860                                 while (slot >= 0) {
861                                         struct btrfs_key pk;
862
863                                         btrfs_item_key_to_cpu(leaf, &pk, slot);
864                                         if (pk.offset < bytenr ||
865                                             pk.type != BTRFS_EXTENT_CSUM_KEY ||
866                                             pk.objectid !=
867                                             BTRFS_EXTENT_CSUM_OBJECTID)
868                                                 break;
869                                         path->slots[0] = slot;
870                                         del_nr++;
871                                         key.offset = pk.offset;
872                                         slot--;
873                                 }
874                         }
875                         ret = btrfs_del_items(trans, root, path,
876                                               path->slots[0], del_nr);
877                         if (ret)
878                                 break;
879                         if (key.offset == bytenr)
880                                 break;
881                 } else if (key.offset < bytenr && csum_end > end_byte) {
882                         unsigned long offset;
883                         unsigned long shift_len;
884                         unsigned long item_offset;
885                         /*
886                          *        [ bytenr - len ]
887                          *     [csum                ]
888                          *
889                          * Our bytes are in the middle of the csum,
890                          * we need to split this item and insert a new one.
891                          *
892                          * But we can't drop the path because the
893                          * csum could change, get removed, extended etc.
894                          *
895                          * The trick here is the max size of a csum item leaves
896                          * enough room in the tree block for a single
897                          * item header.  So, we split the item in place,
898                          * adding a new header pointing to the existing
899                          * bytes.  Then we loop around again and we have
900                          * a nicely formed csum item that we can neatly
901                          * truncate.
902                          */
903                         offset = (bytenr - key.offset) >> blocksize_bits;
904                         offset *= csum_size;
905
906                         shift_len = (len >> blocksize_bits) * csum_size;
907
908                         item_offset = btrfs_item_ptr_offset(leaf,
909                                                             path->slots[0]);
910
911                         memzero_extent_buffer(leaf, item_offset + offset,
912                                              shift_len);
913                         key.offset = bytenr;
914
915                         /*
916                          * btrfs_split_item returns -EAGAIN when the
917                          * item changed size or key
918                          */
919                         ret = btrfs_split_item(trans, root, path, &key, offset);
920                         if (ret && ret != -EAGAIN) {
921                                 btrfs_abort_transaction(trans, ret);
922                                 break;
923                         }
924                         ret = 0;
925
926                         key.offset = end_byte - 1;
927                 } else {
928                         truncate_one_csum(fs_info, path, &key, bytenr, len);
929                         if (key.offset < bytenr)
930                                 break;
931                 }
932                 btrfs_release_path(path);
933         }
934         btrfs_free_path(path);
935         return ret;
936 }
937
938 static int find_next_csum_offset(struct btrfs_root *root,
939                                  struct btrfs_path *path,
940                                  u64 *next_offset)
941 {
942         const u32 nritems = btrfs_header_nritems(path->nodes[0]);
943         struct btrfs_key found_key;
944         int slot = path->slots[0] + 1;
945         int ret;
946
947         if (nritems == 0 || slot >= nritems) {
948                 ret = btrfs_next_leaf(root, path);
949                 if (ret < 0) {
950                         return ret;
951                 } else if (ret > 0) {
952                         *next_offset = (u64)-1;
953                         return 0;
954                 }
955                 slot = path->slots[0];
956         }
957
958         btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
959
960         if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
961             found_key.type != BTRFS_EXTENT_CSUM_KEY)
962                 *next_offset = (u64)-1;
963         else
964                 *next_offset = found_key.offset;
965
966         return 0;
967 }
968
969 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
970                            struct btrfs_root *root,
971                            struct btrfs_ordered_sum *sums)
972 {
973         struct btrfs_fs_info *fs_info = root->fs_info;
974         struct btrfs_key file_key;
975         struct btrfs_key found_key;
976         struct btrfs_path *path;
977         struct btrfs_csum_item *item;
978         struct btrfs_csum_item *item_end;
979         struct extent_buffer *leaf = NULL;
980         u64 next_offset;
981         u64 total_bytes = 0;
982         u64 csum_offset;
983         u64 bytenr;
984         u32 ins_size;
985         int index = 0;
986         int found_next;
987         int ret;
988         const u32 csum_size = fs_info->csum_size;
989
990         path = btrfs_alloc_path();
991         if (!path)
992                 return -ENOMEM;
993 again:
994         next_offset = (u64)-1;
995         found_next = 0;
996         bytenr = sums->bytenr + total_bytes;
997         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
998         file_key.offset = bytenr;
999         file_key.type = BTRFS_EXTENT_CSUM_KEY;
1000
1001         item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1002         if (!IS_ERR(item)) {
1003                 ret = 0;
1004                 leaf = path->nodes[0];
1005                 item_end = btrfs_item_ptr(leaf, path->slots[0],
1006                                           struct btrfs_csum_item);
1007                 item_end = (struct btrfs_csum_item *)((char *)item_end +
1008                            btrfs_item_size(leaf, path->slots[0]));
1009                 goto found;
1010         }
1011         ret = PTR_ERR(item);
1012         if (ret != -EFBIG && ret != -ENOENT)
1013                 goto out;
1014
1015         if (ret == -EFBIG) {
1016                 u32 item_size;
1017                 /* we found one, but it isn't big enough yet */
1018                 leaf = path->nodes[0];
1019                 item_size = btrfs_item_size(leaf, path->slots[0]);
1020                 if ((item_size / csum_size) >=
1021                     MAX_CSUM_ITEMS(fs_info, csum_size)) {
1022                         /* already at max size, make a new one */
1023                         goto insert;
1024                 }
1025         } else {
1026                 /* We didn't find a csum item, insert one. */
1027                 ret = find_next_csum_offset(root, path, &next_offset);
1028                 if (ret < 0)
1029                         goto out;
1030                 found_next = 1;
1031                 goto insert;
1032         }
1033
1034         /*
1035          * At this point, we know the tree has a checksum item that ends at an
1036          * offset matching the start of the checksum range we want to insert.
1037          * We try to extend that item as much as possible and then add as many
1038          * checksums to it as they fit.
1039          *
1040          * First check if the leaf has enough free space for at least one
1041          * checksum. If it has go directly to the item extension code, otherwise
1042          * release the path and do a search for insertion before the extension.
1043          */
1044         if (btrfs_leaf_free_space(leaf) >= csum_size) {
1045                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1046                 csum_offset = (bytenr - found_key.offset) >>
1047                         fs_info->sectorsize_bits;
1048                 goto extend_csum;
1049         }
1050
1051         btrfs_release_path(path);
1052         path->search_for_extension = 1;
1053         ret = btrfs_search_slot(trans, root, &file_key, path,
1054                                 csum_size, 1);
1055         path->search_for_extension = 0;
1056         if (ret < 0)
1057                 goto out;
1058
1059         if (ret > 0) {
1060                 if (path->slots[0] == 0)
1061                         goto insert;
1062                 path->slots[0]--;
1063         }
1064
1065         leaf = path->nodes[0];
1066         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1067         csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1068
1069         if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1070             found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1071             csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1072                 goto insert;
1073         }
1074
1075 extend_csum:
1076         if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1077             csum_size) {
1078                 int extend_nr;
1079                 u64 tmp;
1080                 u32 diff;
1081
1082                 tmp = sums->len - total_bytes;
1083                 tmp >>= fs_info->sectorsize_bits;
1084                 WARN_ON(tmp < 1);
1085                 extend_nr = max_t(int, 1, tmp);
1086
1087                 /*
1088                  * A log tree can already have checksum items with a subset of
1089                  * the checksums we are trying to log. This can happen after
1090                  * doing a sequence of partial writes into prealloc extents and
1091                  * fsyncs in between, with a full fsync logging a larger subrange
1092                  * of an extent for which a previous fast fsync logged a smaller
1093                  * subrange. And this happens in particular due to merging file
1094                  * extent items when we complete an ordered extent for a range
1095                  * covered by a prealloc extent - this is done at
1096                  * btrfs_mark_extent_written().
1097                  *
1098                  * So if we try to extend the previous checksum item, which has
1099                  * a range that ends at the start of the range we want to insert,
1100                  * make sure we don't extend beyond the start offset of the next
1101                  * checksum item. If we are at the last item in the leaf, then
1102                  * forget the optimization of extending and add a new checksum
1103                  * item - it is not worth the complexity of releasing the path,
1104                  * getting the first key for the next leaf, repeat the btree
1105                  * search, etc, because log trees are temporary anyway and it
1106                  * would only save a few bytes of leaf space.
1107                  */
1108                 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1109                         if (path->slots[0] + 1 >=
1110                             btrfs_header_nritems(path->nodes[0])) {
1111                                 ret = find_next_csum_offset(root, path, &next_offset);
1112                                 if (ret < 0)
1113                                         goto out;
1114                                 found_next = 1;
1115                                 goto insert;
1116                         }
1117
1118                         ret = find_next_csum_offset(root, path, &next_offset);
1119                         if (ret < 0)
1120                                 goto out;
1121
1122                         tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1123                         if (tmp <= INT_MAX)
1124                                 extend_nr = min_t(int, extend_nr, tmp);
1125                 }
1126
1127                 diff = (csum_offset + extend_nr) * csum_size;
1128                 diff = min(diff,
1129                            MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1130
1131                 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1132                 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1133                 diff /= csum_size;
1134                 diff *= csum_size;
1135
1136                 btrfs_extend_item(path, diff);
1137                 ret = 0;
1138                 goto csum;
1139         }
1140
1141 insert:
1142         btrfs_release_path(path);
1143         csum_offset = 0;
1144         if (found_next) {
1145                 u64 tmp;
1146
1147                 tmp = sums->len - total_bytes;
1148                 tmp >>= fs_info->sectorsize_bits;
1149                 tmp = min(tmp, (next_offset - file_key.offset) >>
1150                                          fs_info->sectorsize_bits);
1151
1152                 tmp = max_t(u64, 1, tmp);
1153                 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1154                 ins_size = csum_size * tmp;
1155         } else {
1156                 ins_size = csum_size;
1157         }
1158         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1159                                       ins_size);
1160         if (ret < 0)
1161                 goto out;
1162         if (WARN_ON(ret != 0))
1163                 goto out;
1164         leaf = path->nodes[0];
1165 csum:
1166         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1167         item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1168                                       btrfs_item_size(leaf, path->slots[0]));
1169         item = (struct btrfs_csum_item *)((unsigned char *)item +
1170                                           csum_offset * csum_size);
1171 found:
1172         ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1173         ins_size *= csum_size;
1174         ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1175                               ins_size);
1176         write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1177                             ins_size);
1178
1179         index += ins_size;
1180         ins_size /= csum_size;
1181         total_bytes += ins_size * fs_info->sectorsize;
1182
1183         btrfs_mark_buffer_dirty(path->nodes[0]);
1184         if (total_bytes < sums->len) {
1185                 btrfs_release_path(path);
1186                 cond_resched();
1187                 goto again;
1188         }
1189 out:
1190         btrfs_free_path(path);
1191         return ret;
1192 }
1193
1194 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1195                                      const struct btrfs_path *path,
1196                                      struct btrfs_file_extent_item *fi,
1197                                      const bool new_inline,
1198                                      struct extent_map *em)
1199 {
1200         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1201         struct btrfs_root *root = inode->root;
1202         struct extent_buffer *leaf = path->nodes[0];
1203         const int slot = path->slots[0];
1204         struct btrfs_key key;
1205         u64 extent_start, extent_end;
1206         u64 bytenr;
1207         u8 type = btrfs_file_extent_type(leaf, fi);
1208         int compress_type = btrfs_file_extent_compression(leaf, fi);
1209
1210         btrfs_item_key_to_cpu(leaf, &key, slot);
1211         extent_start = key.offset;
1212         extent_end = btrfs_file_extent_end(path);
1213         em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1214         if (type == BTRFS_FILE_EXTENT_REG ||
1215             type == BTRFS_FILE_EXTENT_PREALLOC) {
1216                 em->start = extent_start;
1217                 em->len = extent_end - extent_start;
1218                 em->orig_start = extent_start -
1219                         btrfs_file_extent_offset(leaf, fi);
1220                 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1221                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1222                 if (bytenr == 0) {
1223                         em->block_start = EXTENT_MAP_HOLE;
1224                         return;
1225                 }
1226                 if (compress_type != BTRFS_COMPRESS_NONE) {
1227                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1228                         em->compress_type = compress_type;
1229                         em->block_start = bytenr;
1230                         em->block_len = em->orig_block_len;
1231                 } else {
1232                         bytenr += btrfs_file_extent_offset(leaf, fi);
1233                         em->block_start = bytenr;
1234                         em->block_len = em->len;
1235                         if (type == BTRFS_FILE_EXTENT_PREALLOC)
1236                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1237                 }
1238         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1239                 em->block_start = EXTENT_MAP_INLINE;
1240                 em->start = extent_start;
1241                 em->len = extent_end - extent_start;
1242                 /*
1243                  * Initialize orig_start and block_len with the same values
1244                  * as in inode.c:btrfs_get_extent().
1245                  */
1246                 em->orig_start = EXTENT_MAP_HOLE;
1247                 em->block_len = (u64)-1;
1248                 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1249                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1250                         em->compress_type = compress_type;
1251                 }
1252         } else {
1253                 btrfs_err(fs_info,
1254                           "unknown file extent item type %d, inode %llu, offset %llu, "
1255                           "root %llu", type, btrfs_ino(inode), extent_start,
1256                           root->root_key.objectid);
1257         }
1258 }
1259
1260 /*
1261  * Returns the end offset (non inclusive) of the file extent item the given path
1262  * points to. If it points to an inline extent, the returned offset is rounded
1263  * up to the sector size.
1264  */
1265 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1266 {
1267         const struct extent_buffer *leaf = path->nodes[0];
1268         const int slot = path->slots[0];
1269         struct btrfs_file_extent_item *fi;
1270         struct btrfs_key key;
1271         u64 end;
1272
1273         btrfs_item_key_to_cpu(leaf, &key, slot);
1274         ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1275         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1276
1277         if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1278                 end = btrfs_file_extent_ram_bytes(leaf, fi);
1279                 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1280         } else {
1281                 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1282         }
1283
1284         return end;
1285 }
This page took 0.102757 seconds and 4 git commands to generate.