1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/kthread.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sched/mm.h>
20 #include <linux/log2.h>
21 #include <crypto/hash.h>
25 #include "transaction.h"
26 #include "btrfs_inode.h"
28 #include "ordered-data.h"
29 #include "compression.h"
30 #include "extent_io.h"
31 #include "extent_map.h"
35 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
37 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
40 case BTRFS_COMPRESS_ZLIB:
41 case BTRFS_COMPRESS_LZO:
42 case BTRFS_COMPRESS_ZSTD:
43 case BTRFS_COMPRESS_NONE:
44 return btrfs_compress_types[type];
52 bool btrfs_compress_is_valid_type(const char *str, size_t len)
56 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
57 size_t comp_len = strlen(btrfs_compress_types[i]);
62 if (!strncmp(btrfs_compress_types[i], str, comp_len))
68 static int compression_compress_pages(int type, struct list_head *ws,
69 struct address_space *mapping, u64 start, struct page **pages,
70 unsigned long *out_pages, unsigned long *total_in,
71 unsigned long *total_out)
74 case BTRFS_COMPRESS_ZLIB:
75 return zlib_compress_pages(ws, mapping, start, pages,
76 out_pages, total_in, total_out);
77 case BTRFS_COMPRESS_LZO:
78 return lzo_compress_pages(ws, mapping, start, pages,
79 out_pages, total_in, total_out);
80 case BTRFS_COMPRESS_ZSTD:
81 return zstd_compress_pages(ws, mapping, start, pages,
82 out_pages, total_in, total_out);
83 case BTRFS_COMPRESS_NONE:
86 * This can happen when compression races with remount setting
87 * it to 'no compress', while caller doesn't call
88 * inode_need_compress() to check if we really need to
91 * Not a big deal, just need to inform caller that we
92 * haven't allocated any pages yet.
99 static int compression_decompress_bio(struct list_head *ws,
100 struct compressed_bio *cb)
102 switch (cb->compress_type) {
103 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
104 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
105 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
106 case BTRFS_COMPRESS_NONE:
109 * This can't happen, the type is validated several times
110 * before we get here.
116 static int compression_decompress(int type, struct list_head *ws,
117 unsigned char *data_in, struct page *dest_page,
118 unsigned long start_byte, size_t srclen, size_t destlen)
121 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
122 start_byte, srclen, destlen);
123 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
124 start_byte, srclen, destlen);
125 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
126 start_byte, srclen, destlen);
127 case BTRFS_COMPRESS_NONE:
130 * This can't happen, the type is validated several times
131 * before we get here.
137 static int btrfs_decompress_bio(struct compressed_bio *cb);
139 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
140 unsigned long disk_size)
142 return sizeof(struct compressed_bio) +
143 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
146 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
149 struct btrfs_fs_info *fs_info = inode->root->fs_info;
150 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
151 const u32 csum_size = fs_info->csum_size;
152 const u32 sectorsize = fs_info->sectorsize;
156 u8 csum[BTRFS_CSUM_SIZE];
157 struct compressed_bio *cb = bio->bi_private;
158 u8 *cb_sum = cb->sums;
160 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
161 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
164 shash->tfm = fs_info->csum_shash;
166 for (i = 0; i < cb->nr_pages; i++) {
168 u32 bytes_left = PAGE_SIZE;
169 page = cb->compressed_pages[i];
171 /* Determine the remaining bytes inside the page first */
172 if (i == cb->nr_pages - 1)
173 bytes_left = cb->compressed_len - i * PAGE_SIZE;
175 /* Hash through the page sector by sector */
176 for (pg_offset = 0; pg_offset < bytes_left;
177 pg_offset += sectorsize) {
178 kaddr = kmap_atomic(page);
179 crypto_shash_digest(shash, kaddr + pg_offset,
181 kunmap_atomic(kaddr);
183 if (memcmp(&csum, cb_sum, csum_size) != 0) {
184 btrfs_print_data_csum_error(inode, disk_start,
185 csum, cb_sum, cb->mirror_num);
186 if (btrfs_bio(bio)->device)
187 btrfs_dev_stat_inc_and_print(
188 btrfs_bio(bio)->device,
189 BTRFS_DEV_STAT_CORRUPTION_ERRS);
193 disk_start += sectorsize;
200 * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
202 * Return true if there is no pending bio nor io.
203 * Return false otherwise.
205 static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
207 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
208 unsigned int bi_size = 0;
209 bool last_io = false;
210 struct bio_vec *bvec;
211 struct bvec_iter_all iter_all;
214 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
215 * Thus here we have to iterate through all segments to grab correct
218 bio_for_each_segment_all(bvec, bio, iter_all)
219 bi_size += bvec->bv_len;
224 ASSERT(bi_size && bi_size <= cb->compressed_len);
225 last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
226 &cb->pending_sectors);
228 * Here we must wake up the possible error handler after all other
229 * operations on @cb finished, or we can race with
230 * finish_compressed_bio_*() which may free @cb.
237 static void finish_compressed_bio_read(struct compressed_bio *cb, struct bio *bio)
242 /* Release the compressed pages */
243 for (index = 0; index < cb->nr_pages; index++) {
244 page = cb->compressed_pages[index];
245 page->mapping = NULL;
249 /* Do io completion on the original bio */
251 bio_io_error(cb->orig_bio);
253 struct bio_vec *bvec;
254 struct bvec_iter_all iter_all;
257 ASSERT(!bio->bi_status);
259 * We have verified the checksum already, set page checked so
260 * the end_io handlers know about it
262 ASSERT(!bio_flagged(bio, BIO_CLONED));
263 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
264 u64 bvec_start = page_offset(bvec->bv_page) +
267 btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
268 bvec->bv_page, bvec_start,
272 bio_endio(cb->orig_bio);
275 /* Finally free the cb struct */
276 kfree(cb->compressed_pages);
280 /* when we finish reading compressed pages from the disk, we
281 * decompress them and then run the bio end_io routines on the
282 * decompressed pages (in the inode address space).
284 * This allows the checksumming and other IO error handling routines
287 * The compressed pages are freed here, and it must be run
290 static void end_compressed_bio_read(struct bio *bio)
292 struct compressed_bio *cb = bio->bi_private;
294 unsigned int mirror = btrfs_bio(bio)->mirror_num;
297 if (!dec_and_test_compressed_bio(cb, bio))
301 * Record the correct mirror_num in cb->orig_bio so that
302 * read-repair can work properly.
304 btrfs_bio(cb->orig_bio)->mirror_num = mirror;
305 cb->mirror_num = mirror;
308 * Some IO in this cb have failed, just skip checksum as there
309 * is no way it could be correct.
315 ret = check_compressed_csum(BTRFS_I(inode), bio,
316 bio->bi_iter.bi_sector << 9);
320 /* ok, we're the last bio for this extent, lets start
323 ret = btrfs_decompress_bio(cb);
328 finish_compressed_bio_read(cb, bio);
334 * Clear the writeback bits on all of the file
335 * pages for a compressed write
337 static noinline void end_compressed_writeback(struct inode *inode,
338 const struct compressed_bio *cb)
340 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
341 unsigned long index = cb->start >> PAGE_SHIFT;
342 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
343 struct page *pages[16];
344 unsigned long nr_pages = end_index - index + 1;
349 mapping_set_error(inode->i_mapping, -EIO);
351 while (nr_pages > 0) {
352 ret = find_get_pages_contig(inode->i_mapping, index,
354 nr_pages, ARRAY_SIZE(pages)), pages);
360 for (i = 0; i < ret; i++) {
362 SetPageError(pages[i]);
363 btrfs_page_clamp_clear_writeback(fs_info, pages[i],
370 /* the inode may be gone now */
373 static void finish_compressed_bio_write(struct compressed_bio *cb)
375 struct inode *inode = cb->inode;
379 * Ok, we're the last bio for this extent, step one is to call back
380 * into the FS and do all the end_io operations.
382 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
383 cb->start, cb->start + cb->len - 1,
386 end_compressed_writeback(inode, cb);
387 /* Note, our inode could be gone now */
390 * Release the compressed pages, these came from alloc_page and
391 * are not attached to the inode at all
393 for (index = 0; index < cb->nr_pages; index++) {
394 struct page *page = cb->compressed_pages[index];
396 page->mapping = NULL;
400 /* Finally free the cb struct */
401 kfree(cb->compressed_pages);
406 * Do the cleanup once all the compressed pages hit the disk. This will clear
407 * writeback on the file pages and free the compressed pages.
409 * This also calls the writeback end hooks for the file pages so that metadata
410 * and checksums can be updated in the file.
412 static void end_compressed_bio_write(struct bio *bio)
414 struct compressed_bio *cb = bio->bi_private;
416 if (!dec_and_test_compressed_bio(cb, bio))
419 btrfs_record_physical_zoned(cb->inode, cb->start, bio);
421 finish_compressed_bio_write(cb);
426 static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info,
427 struct compressed_bio *cb,
428 struct bio *bio, int mirror_num)
432 ASSERT(bio->bi_iter.bi_size);
433 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
436 ret = btrfs_map_bio(fs_info, bio, mirror_num);
441 * Allocate a compressed_bio, which will be used to read/write on-disk
442 * (aka, compressed) * data.
444 * @cb: The compressed_bio structure, which records all the needed
445 * information to bind the compressed data to the uncompressed
447 * @disk_byten: The logical bytenr where the compressed data will be read
448 * from or written to.
449 * @endio_func: The endio function to call after the IO for compressed data
451 * @next_stripe_start: Return value of logical bytenr of where next stripe starts.
452 * Let the caller know to only fill the bio up to the stripe
457 static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
458 unsigned int opf, bio_end_io_t endio_func,
459 u64 *next_stripe_start)
461 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
462 struct btrfs_io_geometry geom;
463 struct extent_map *em;
467 bio = btrfs_bio_alloc(BIO_MAX_VECS);
469 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
471 bio->bi_private = cb;
472 bio->bi_end_io = endio_func;
474 em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
480 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
481 bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
483 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
489 *next_stripe_start = disk_bytenr + geom.len;
495 * worker function to build and submit bios for previously compressed pages.
496 * The corresponding pages in the inode should be marked for writeback
497 * and the compressed pages should have a reference on them for dropping
498 * when the IO is complete.
500 * This also checksums the file bytes and gets things ready for
503 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
504 unsigned int len, u64 disk_start,
505 unsigned int compressed_len,
506 struct page **compressed_pages,
507 unsigned int nr_pages,
508 unsigned int write_flags,
509 struct cgroup_subsys_state *blkcg_css)
511 struct btrfs_fs_info *fs_info = inode->root->fs_info;
512 struct bio *bio = NULL;
513 struct compressed_bio *cb;
514 u64 cur_disk_bytenr = disk_start;
515 u64 next_stripe_start;
517 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
518 const bool use_append = btrfs_use_zone_append(inode, disk_start);
519 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
521 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
522 IS_ALIGNED(len, fs_info->sectorsize));
523 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
525 return BLK_STS_RESOURCE;
526 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
528 cb->inode = &inode->vfs_inode;
532 cb->compressed_pages = compressed_pages;
533 cb->compressed_len = compressed_len;
535 cb->nr_pages = nr_pages;
537 while (cur_disk_bytenr < disk_start + compressed_len) {
538 u64 offset = cur_disk_bytenr - disk_start;
539 unsigned int index = offset >> PAGE_SHIFT;
540 unsigned int real_size;
542 struct page *page = compressed_pages[index];
545 /* Allocate new bio if submitted or not yet allocated */
547 bio = alloc_compressed_bio(cb, cur_disk_bytenr,
548 bio_op | write_flags, end_compressed_bio_write,
551 ret = errno_to_blk_status(PTR_ERR(bio));
557 * We should never reach next_stripe_start start as we will
558 * submit comp_bio when reach the boundary immediately.
560 ASSERT(cur_disk_bytenr != next_stripe_start);
563 * We have various limits on the real read size:
566 * - compressed length boundary
568 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
569 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
570 real_size = min_t(u64, real_size, compressed_len - offset);
571 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
574 added = bio_add_zone_append_page(bio, page, real_size,
575 offset_in_page(offset));
577 added = bio_add_page(bio, page, real_size,
578 offset_in_page(offset));
579 /* Reached zoned boundary */
583 cur_disk_bytenr += added;
584 /* Reached stripe boundary */
585 if (cur_disk_bytenr == next_stripe_start)
588 /* Finished the range */
589 if (cur_disk_bytenr == disk_start + compressed_len)
594 ret = btrfs_csum_one_bio(inode, bio, start, 1);
599 ret = submit_compressed_bio(fs_info, cb, bio, 0);
607 kthread_associate_blkcg(NULL);
613 bio->bi_status = ret;
616 /* Last byte of @cb is submitted, endio will free @cb */
617 if (cur_disk_bytenr == disk_start + compressed_len)
620 wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
621 (disk_start + compressed_len - cur_disk_bytenr) >>
622 fs_info->sectorsize_bits);
624 * Even with previous bio ended, we should still have io not yet
625 * submitted, thus need to finish manually.
627 ASSERT(refcount_read(&cb->pending_sectors));
628 /* Now we are the only one referring @cb, can finish it safely. */
629 finish_compressed_bio_write(cb);
633 static u64 bio_end_offset(struct bio *bio)
635 struct bio_vec *last = bio_last_bvec_all(bio);
637 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
641 * Add extra pages in the same compressed file extent so that we don't need to
642 * re-read the same extent again and again.
644 * NOTE: this won't work well for subpage, as for subpage read, we lock the
645 * full page then submit bio for each compressed/regular extents.
647 * This means, if we have several sectors in the same page points to the same
648 * on-disk compressed data, we will re-read the same extent many times and
649 * this function can only help for the next page.
651 static noinline int add_ra_bio_pages(struct inode *inode,
653 struct compressed_bio *cb)
655 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
656 unsigned long end_index;
657 u64 cur = bio_end_offset(cb->orig_bio);
658 u64 isize = i_size_read(inode);
661 struct extent_map *em;
662 struct address_space *mapping = inode->i_mapping;
663 struct extent_map_tree *em_tree;
664 struct extent_io_tree *tree;
665 int sectors_missed = 0;
667 em_tree = &BTRFS_I(inode)->extent_tree;
668 tree = &BTRFS_I(inode)->io_tree;
674 * For current subpage support, we only support 64K page size,
675 * which means maximum compressed extent size (128K) is just 2x page
677 * This makes readahead less effective, so here disable readahead for
678 * subpage for now, until full compressed write is supported.
680 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
683 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
685 while (cur < compressed_end) {
687 u64 pg_index = cur >> PAGE_SHIFT;
690 if (pg_index > end_index)
693 page = xa_load(&mapping->i_pages, pg_index);
694 if (page && !xa_is_value(page)) {
695 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
696 fs_info->sectorsize_bits;
698 /* Beyond threshold, no need to continue */
699 if (sectors_missed > 4)
703 * Jump to next page start as we already have page for
706 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
710 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
715 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
717 /* There is already a page, skip to page end */
718 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
722 ret = set_page_extent_mapped(page);
729 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
730 lock_extent(tree, cur, page_end);
731 read_lock(&em_tree->lock);
732 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
733 read_unlock(&em_tree->lock);
736 * At this point, we have a locked page in the page cache for
737 * these bytes in the file. But, we have to make sure they map
738 * to this compressed extent on disk.
740 if (!em || cur < em->start ||
741 (cur + fs_info->sectorsize > extent_map_end(em)) ||
742 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
744 unlock_extent(tree, cur, page_end);
751 if (page->index == end_index) {
752 size_t zero_offset = offset_in_page(isize);
756 zeros = PAGE_SIZE - zero_offset;
757 memzero_page(page, zero_offset, zeros);
758 flush_dcache_page(page);
762 add_size = min(em->start + em->len, page_end + 1) - cur;
763 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
764 if (ret != add_size) {
765 unlock_extent(tree, cur, page_end);
771 * If it's subpage, we also need to increase its
772 * subpage::readers number, as at endio we will decrease
773 * subpage::readers and to unlock the page.
775 if (fs_info->sectorsize < PAGE_SIZE)
776 btrfs_subpage_start_reader(fs_info, page, cur, add_size);
784 * for a compressed read, the bio we get passed has all the inode pages
785 * in it. We don't actually do IO on those pages but allocate new ones
786 * to hold the compressed pages on disk.
788 * bio->bi_iter.bi_sector points to the compressed extent on disk
789 * bio->bi_io_vec points to all of the inode pages
791 * After the compressed pages are read, we copy the bytes into the
792 * bio we were passed and then call the bio end_io calls
794 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
795 int mirror_num, unsigned long bio_flags)
797 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
798 struct extent_map_tree *em_tree;
799 struct compressed_bio *cb;
800 unsigned int compressed_len;
801 unsigned int nr_pages;
802 unsigned int pg_index;
803 struct bio *comp_bio = NULL;
804 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
805 u64 cur_disk_byte = disk_bytenr;
806 u64 next_stripe_start;
810 struct extent_map *em;
811 blk_status_t ret = BLK_STS_RESOURCE;
815 em_tree = &BTRFS_I(inode)->extent_tree;
817 file_offset = bio_first_bvec_all(bio)->bv_offset +
818 page_offset(bio_first_page_all(bio));
820 /* we need the actual starting offset of this extent in the file */
821 read_lock(&em_tree->lock);
822 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
823 read_unlock(&em_tree->lock);
825 return BLK_STS_IOERR;
827 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
828 compressed_len = em->block_len;
829 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
833 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
836 cb->mirror_num = mirror_num;
839 cb->start = em->orig_start;
841 em_start = em->start;
846 cb->len = bio->bi_iter.bi_size;
847 cb->compressed_len = compressed_len;
848 cb->compress_type = extent_compress_type(bio_flags);
851 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
852 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
854 if (!cb->compressed_pages)
857 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
858 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
859 if (!cb->compressed_pages[pg_index]) {
860 faili = pg_index - 1;
861 ret = BLK_STS_RESOURCE;
865 faili = nr_pages - 1;
866 cb->nr_pages = nr_pages;
868 add_ra_bio_pages(inode, em_start + em_len, cb);
870 /* include any pages we added in add_ra-bio_pages */
871 cb->len = bio->bi_iter.bi_size;
873 while (cur_disk_byte < disk_bytenr + compressed_len) {
874 u64 offset = cur_disk_byte - disk_bytenr;
875 unsigned int index = offset >> PAGE_SHIFT;
876 unsigned int real_size;
878 struct page *page = cb->compressed_pages[index];
881 /* Allocate new bio if submitted or not yet allocated */
883 comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
884 REQ_OP_READ, end_compressed_bio_read,
886 if (IS_ERR(comp_bio)) {
887 ret = errno_to_blk_status(PTR_ERR(comp_bio));
893 * We should never reach next_stripe_start start as we will
894 * submit comp_bio when reach the boundary immediately.
896 ASSERT(cur_disk_byte != next_stripe_start);
898 * We have various limit on the real read size:
901 * - compressed length boundary
903 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
904 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
905 real_size = min_t(u64, real_size, compressed_len - offset);
906 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
908 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
910 * Maximum compressed extent is smaller than bio size limit,
911 * thus bio_add_page() should always success.
913 ASSERT(added == real_size);
914 cur_disk_byte += added;
916 /* Reached stripe boundary, need to submit */
917 if (cur_disk_byte == next_stripe_start)
920 /* Has finished the range, need to submit */
921 if (cur_disk_byte == disk_bytenr + compressed_len)
925 unsigned int nr_sectors;
927 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
931 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
932 fs_info->sectorsize);
933 sums += fs_info->csum_size * nr_sectors;
935 ret = submit_compressed_bio(fs_info, cb, comp_bio, mirror_num);
945 __free_page(cb->compressed_pages[faili]);
949 kfree(cb->compressed_pages);
957 comp_bio->bi_status = ret;
960 /* All bytes of @cb is submitted, endio will free @cb */
961 if (cur_disk_byte == disk_bytenr + compressed_len)
964 wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
965 (disk_bytenr + compressed_len - cur_disk_byte) >>
966 fs_info->sectorsize_bits);
968 * Even with previous bio ended, we should still have io not yet
969 * submitted, thus need to finish @cb manually.
971 ASSERT(refcount_read(&cb->pending_sectors));
972 /* Now we are the only one referring @cb, can finish it safely. */
973 finish_compressed_bio_read(cb, NULL);
978 * Heuristic uses systematic sampling to collect data from the input data
979 * range, the logic can be tuned by the following constants:
981 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
982 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
984 #define SAMPLING_READ_SIZE (16)
985 #define SAMPLING_INTERVAL (256)
988 * For statistical analysis of the input data we consider bytes that form a
989 * Galois Field of 256 objects. Each object has an attribute count, ie. how
990 * many times the object appeared in the sample.
992 #define BUCKET_SIZE (256)
995 * The size of the sample is based on a statistical sampling rule of thumb.
996 * The common way is to perform sampling tests as long as the number of
997 * elements in each cell is at least 5.
999 * Instead of 5, we choose 32 to obtain more accurate results.
1000 * If the data contain the maximum number of symbols, which is 256, we obtain a
1001 * sample size bound by 8192.
1003 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
1004 * from up to 512 locations.
1006 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
1007 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
1009 struct bucket_item {
1013 struct heuristic_ws {
1014 /* Partial copy of input data */
1017 /* Buckets store counters for each byte value */
1018 struct bucket_item *bucket;
1019 /* Sorting buffer */
1020 struct bucket_item *bucket_b;
1021 struct list_head list;
1024 static struct workspace_manager heuristic_wsm;
1026 static void free_heuristic_ws(struct list_head *ws)
1028 struct heuristic_ws *workspace;
1030 workspace = list_entry(ws, struct heuristic_ws, list);
1032 kvfree(workspace->sample);
1033 kfree(workspace->bucket);
1034 kfree(workspace->bucket_b);
1038 static struct list_head *alloc_heuristic_ws(unsigned int level)
1040 struct heuristic_ws *ws;
1042 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
1044 return ERR_PTR(-ENOMEM);
1046 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
1050 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
1054 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
1058 INIT_LIST_HEAD(&ws->list);
1061 free_heuristic_ws(&ws->list);
1062 return ERR_PTR(-ENOMEM);
1065 const struct btrfs_compress_op btrfs_heuristic_compress = {
1066 .workspace_manager = &heuristic_wsm,
1069 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1070 /* The heuristic is represented as compression type 0 */
1071 &btrfs_heuristic_compress,
1072 &btrfs_zlib_compress,
1073 &btrfs_lzo_compress,
1074 &btrfs_zstd_compress,
1077 static struct list_head *alloc_workspace(int type, unsigned int level)
1080 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
1081 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
1082 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
1083 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
1086 * This can't happen, the type is validated several times
1087 * before we get here.
1093 static void free_workspace(int type, struct list_head *ws)
1096 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
1097 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
1098 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
1099 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
1102 * This can't happen, the type is validated several times
1103 * before we get here.
1109 static void btrfs_init_workspace_manager(int type)
1111 struct workspace_manager *wsm;
1112 struct list_head *workspace;
1114 wsm = btrfs_compress_op[type]->workspace_manager;
1115 INIT_LIST_HEAD(&wsm->idle_ws);
1116 spin_lock_init(&wsm->ws_lock);
1117 atomic_set(&wsm->total_ws, 0);
1118 init_waitqueue_head(&wsm->ws_wait);
1121 * Preallocate one workspace for each compression type so we can
1122 * guarantee forward progress in the worst case
1124 workspace = alloc_workspace(type, 0);
1125 if (IS_ERR(workspace)) {
1127 "BTRFS: cannot preallocate compression workspace, will try later\n");
1129 atomic_set(&wsm->total_ws, 1);
1131 list_add(workspace, &wsm->idle_ws);
1135 static void btrfs_cleanup_workspace_manager(int type)
1137 struct workspace_manager *wsman;
1138 struct list_head *ws;
1140 wsman = btrfs_compress_op[type]->workspace_manager;
1141 while (!list_empty(&wsman->idle_ws)) {
1142 ws = wsman->idle_ws.next;
1144 free_workspace(type, ws);
1145 atomic_dec(&wsman->total_ws);
1150 * This finds an available workspace or allocates a new one.
1151 * If it's not possible to allocate a new one, waits until there's one.
1152 * Preallocation makes a forward progress guarantees and we do not return
1155 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1157 struct workspace_manager *wsm;
1158 struct list_head *workspace;
1159 int cpus = num_online_cpus();
1161 struct list_head *idle_ws;
1162 spinlock_t *ws_lock;
1164 wait_queue_head_t *ws_wait;
1167 wsm = btrfs_compress_op[type]->workspace_manager;
1168 idle_ws = &wsm->idle_ws;
1169 ws_lock = &wsm->ws_lock;
1170 total_ws = &wsm->total_ws;
1171 ws_wait = &wsm->ws_wait;
1172 free_ws = &wsm->free_ws;
1176 if (!list_empty(idle_ws)) {
1177 workspace = idle_ws->next;
1178 list_del(workspace);
1180 spin_unlock(ws_lock);
1184 if (atomic_read(total_ws) > cpus) {
1187 spin_unlock(ws_lock);
1188 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1189 if (atomic_read(total_ws) > cpus && !*free_ws)
1191 finish_wait(ws_wait, &wait);
1194 atomic_inc(total_ws);
1195 spin_unlock(ws_lock);
1198 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1199 * to turn it off here because we might get called from the restricted
1200 * context of btrfs_compress_bio/btrfs_compress_pages
1202 nofs_flag = memalloc_nofs_save();
1203 workspace = alloc_workspace(type, level);
1204 memalloc_nofs_restore(nofs_flag);
1206 if (IS_ERR(workspace)) {
1207 atomic_dec(total_ws);
1211 * Do not return the error but go back to waiting. There's a
1212 * workspace preallocated for each type and the compression
1213 * time is bounded so we get to a workspace eventually. This
1214 * makes our caller's life easier.
1216 * To prevent silent and low-probability deadlocks (when the
1217 * initial preallocation fails), check if there are any
1218 * workspaces at all.
1220 if (atomic_read(total_ws) == 0) {
1221 static DEFINE_RATELIMIT_STATE(_rs,
1222 /* once per minute */ 60 * HZ,
1225 if (__ratelimit(&_rs)) {
1226 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1234 static struct list_head *get_workspace(int type, int level)
1237 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1238 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1239 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
1240 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1243 * This can't happen, the type is validated several times
1244 * before we get here.
1251 * put a workspace struct back on the list or free it if we have enough
1252 * idle ones sitting around
1254 void btrfs_put_workspace(int type, struct list_head *ws)
1256 struct workspace_manager *wsm;
1257 struct list_head *idle_ws;
1258 spinlock_t *ws_lock;
1260 wait_queue_head_t *ws_wait;
1263 wsm = btrfs_compress_op[type]->workspace_manager;
1264 idle_ws = &wsm->idle_ws;
1265 ws_lock = &wsm->ws_lock;
1266 total_ws = &wsm->total_ws;
1267 ws_wait = &wsm->ws_wait;
1268 free_ws = &wsm->free_ws;
1271 if (*free_ws <= num_online_cpus()) {
1272 list_add(ws, idle_ws);
1274 spin_unlock(ws_lock);
1277 spin_unlock(ws_lock);
1279 free_workspace(type, ws);
1280 atomic_dec(total_ws);
1282 cond_wake_up(ws_wait);
1285 static void put_workspace(int type, struct list_head *ws)
1288 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1289 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1290 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
1291 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1294 * This can't happen, the type is validated several times
1295 * before we get here.
1302 * Adjust @level according to the limits of the compression algorithm or
1303 * fallback to default
1305 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1307 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1310 level = ops->default_level;
1312 level = min(level, ops->max_level);
1318 * Given an address space and start and length, compress the bytes into @pages
1319 * that are allocated on demand.
1321 * @type_level is encoded algorithm and level, where level 0 means whatever
1322 * default the algorithm chooses and is opaque here;
1323 * - compression algo are 0-3
1324 * - the level are bits 4-7
1326 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1327 * and returns number of actually allocated pages
1329 * @total_in is used to return the number of bytes actually read. It
1330 * may be smaller than the input length if we had to exit early because we
1331 * ran out of room in the pages array or because we cross the
1332 * max_out threshold.
1334 * @total_out is an in/out parameter, must be set to the input length and will
1335 * be also used to return the total number of compressed bytes
1337 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1338 u64 start, struct page **pages,
1339 unsigned long *out_pages,
1340 unsigned long *total_in,
1341 unsigned long *total_out)
1343 int type = btrfs_compress_type(type_level);
1344 int level = btrfs_compress_level(type_level);
1345 struct list_head *workspace;
1348 level = btrfs_compress_set_level(type, level);
1349 workspace = get_workspace(type, level);
1350 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1351 out_pages, total_in, total_out);
1352 put_workspace(type, workspace);
1356 static int btrfs_decompress_bio(struct compressed_bio *cb)
1358 struct list_head *workspace;
1360 int type = cb->compress_type;
1362 workspace = get_workspace(type, 0);
1363 ret = compression_decompress_bio(workspace, cb);
1364 put_workspace(type, workspace);
1370 * a less complex decompression routine. Our compressed data fits in a
1371 * single page, and we want to read a single page out of it.
1372 * start_byte tells us the offset into the compressed data we're interested in
1374 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1375 unsigned long start_byte, size_t srclen, size_t destlen)
1377 struct list_head *workspace;
1380 workspace = get_workspace(type, 0);
1381 ret = compression_decompress(type, workspace, data_in, dest_page,
1382 start_byte, srclen, destlen);
1383 put_workspace(type, workspace);
1388 void __init btrfs_init_compress(void)
1390 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1391 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1392 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1393 zstd_init_workspace_manager();
1396 void __cold btrfs_exit_compress(void)
1398 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1399 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1400 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1401 zstd_cleanup_workspace_manager();
1405 * Copy decompressed data from working buffer to pages.
1407 * @buf: The decompressed data buffer
1408 * @buf_len: The decompressed data length
1409 * @decompressed: Number of bytes that are already decompressed inside the
1411 * @cb: The compressed extent descriptor
1412 * @orig_bio: The original bio that the caller wants to read for
1414 * An easier to understand graph is like below:
1416 * |<- orig_bio ->| |<- orig_bio->|
1417 * |<------- full decompressed extent ----->|
1418 * |<----------- @cb range ---->|
1419 * | |<-- @buf_len -->|
1420 * |<--- @decompressed --->|
1422 * Note that, @cb can be a subpage of the full decompressed extent, but
1423 * @cb->start always has the same as the orig_file_offset value of the full
1424 * decompressed extent.
1426 * When reading compressed extent, we have to read the full compressed extent,
1427 * while @orig_bio may only want part of the range.
1428 * Thus this function will ensure only data covered by @orig_bio will be copied
1431 * Return 0 if we have copied all needed contents for @orig_bio.
1432 * Return >0 if we need continue decompress.
1434 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1435 struct compressed_bio *cb, u32 decompressed)
1437 struct bio *orig_bio = cb->orig_bio;
1438 /* Offset inside the full decompressed extent */
1441 cur_offset = decompressed;
1442 /* The main loop to do the copy */
1443 while (cur_offset < decompressed + buf_len) {
1444 struct bio_vec bvec;
1447 /* Offset inside the full decompressed extent */
1450 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1452 * cb->start may underflow, but subtracting that value can still
1453 * give us correct offset inside the full decompressed extent.
1455 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1457 /* Haven't reached the bvec range, exit */
1458 if (decompressed + buf_len <= bvec_offset)
1461 copy_start = max(cur_offset, bvec_offset);
1462 copy_len = min(bvec_offset + bvec.bv_len,
1463 decompressed + buf_len) - copy_start;
1467 * Extra range check to ensure we didn't go beyond
1470 ASSERT(copy_start - decompressed < buf_len);
1471 memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1472 buf + copy_start - decompressed, copy_len);
1473 flush_dcache_page(bvec.bv_page);
1474 cur_offset += copy_len;
1476 bio_advance(orig_bio, copy_len);
1477 /* Finished the bio */
1478 if (!orig_bio->bi_iter.bi_size)
1485 * Shannon Entropy calculation
1487 * Pure byte distribution analysis fails to determine compressibility of data.
1488 * Try calculating entropy to estimate the average minimum number of bits
1489 * needed to encode the sampled data.
1491 * For convenience, return the percentage of needed bits, instead of amount of
1494 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1495 * and can be compressible with high probability
1497 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1499 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1501 #define ENTROPY_LVL_ACEPTABLE (65)
1502 #define ENTROPY_LVL_HIGH (80)
1505 * For increasead precision in shannon_entropy calculation,
1506 * let's do pow(n, M) to save more digits after comma:
1508 * - maximum int bit length is 64
1509 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1510 * - 13 * 4 = 52 < 64 -> M = 4
1514 static inline u32 ilog2_w(u64 n)
1516 return ilog2(n * n * n * n);
1519 static u32 shannon_entropy(struct heuristic_ws *ws)
1521 const u32 entropy_max = 8 * ilog2_w(2);
1522 u32 entropy_sum = 0;
1523 u32 p, p_base, sz_base;
1526 sz_base = ilog2_w(ws->sample_size);
1527 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1528 p = ws->bucket[i].count;
1529 p_base = ilog2_w(p);
1530 entropy_sum += p * (sz_base - p_base);
1533 entropy_sum /= ws->sample_size;
1534 return entropy_sum * 100 / entropy_max;
1537 #define RADIX_BASE 4U
1538 #define COUNTERS_SIZE (1U << RADIX_BASE)
1540 static u8 get4bits(u64 num, int shift) {
1545 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1550 * Use 4 bits as radix base
1551 * Use 16 u32 counters for calculating new position in buf array
1553 * @array - array that will be sorted
1554 * @array_buf - buffer array to store sorting results
1555 * must be equal in size to @array
1558 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1563 u32 counters[COUNTERS_SIZE];
1571 * Try avoid useless loop iterations for small numbers stored in big
1572 * counters. Example: 48 33 4 ... in 64bit array
1574 max_num = array[0].count;
1575 for (i = 1; i < num; i++) {
1576 buf_num = array[i].count;
1577 if (buf_num > max_num)
1581 buf_num = ilog2(max_num);
1582 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1585 while (shift < bitlen) {
1586 memset(counters, 0, sizeof(counters));
1588 for (i = 0; i < num; i++) {
1589 buf_num = array[i].count;
1590 addr = get4bits(buf_num, shift);
1594 for (i = 1; i < COUNTERS_SIZE; i++)
1595 counters[i] += counters[i - 1];
1597 for (i = num - 1; i >= 0; i--) {
1598 buf_num = array[i].count;
1599 addr = get4bits(buf_num, shift);
1601 new_addr = counters[addr];
1602 array_buf[new_addr] = array[i];
1605 shift += RADIX_BASE;
1608 * Normal radix expects to move data from a temporary array, to
1609 * the main one. But that requires some CPU time. Avoid that
1610 * by doing another sort iteration to original array instead of
1613 memset(counters, 0, sizeof(counters));
1615 for (i = 0; i < num; i ++) {
1616 buf_num = array_buf[i].count;
1617 addr = get4bits(buf_num, shift);
1621 for (i = 1; i < COUNTERS_SIZE; i++)
1622 counters[i] += counters[i - 1];
1624 for (i = num - 1; i >= 0; i--) {
1625 buf_num = array_buf[i].count;
1626 addr = get4bits(buf_num, shift);
1628 new_addr = counters[addr];
1629 array[new_addr] = array_buf[i];
1632 shift += RADIX_BASE;
1637 * Size of the core byte set - how many bytes cover 90% of the sample
1639 * There are several types of structured binary data that use nearly all byte
1640 * values. The distribution can be uniform and counts in all buckets will be
1641 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1643 * Other possibility is normal (Gaussian) distribution, where the data could
1644 * be potentially compressible, but we have to take a few more steps to decide
1647 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1648 * compression algo can easy fix that
1649 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1650 * probability is not compressible
1652 #define BYTE_CORE_SET_LOW (64)
1653 #define BYTE_CORE_SET_HIGH (200)
1655 static int byte_core_set_size(struct heuristic_ws *ws)
1658 u32 coreset_sum = 0;
1659 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1660 struct bucket_item *bucket = ws->bucket;
1662 /* Sort in reverse order */
1663 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1665 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1666 coreset_sum += bucket[i].count;
1668 if (coreset_sum > core_set_threshold)
1671 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1672 coreset_sum += bucket[i].count;
1673 if (coreset_sum > core_set_threshold)
1681 * Count byte values in buckets.
1682 * This heuristic can detect textual data (configs, xml, json, html, etc).
1683 * Because in most text-like data byte set is restricted to limited number of
1684 * possible characters, and that restriction in most cases makes data easy to
1687 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1688 * less - compressible
1689 * more - need additional analysis
1691 #define BYTE_SET_THRESHOLD (64)
1693 static u32 byte_set_size(const struct heuristic_ws *ws)
1696 u32 byte_set_size = 0;
1698 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1699 if (ws->bucket[i].count > 0)
1704 * Continue collecting count of byte values in buckets. If the byte
1705 * set size is bigger then the threshold, it's pointless to continue,
1706 * the detection technique would fail for this type of data.
1708 for (; i < BUCKET_SIZE; i++) {
1709 if (ws->bucket[i].count > 0) {
1711 if (byte_set_size > BYTE_SET_THRESHOLD)
1712 return byte_set_size;
1716 return byte_set_size;
1719 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1721 const u32 half_of_sample = ws->sample_size / 2;
1722 const u8 *data = ws->sample;
1724 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1727 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1728 struct heuristic_ws *ws)
1731 u64 index, index_end;
1732 u32 i, curr_sample_pos;
1736 * Compression handles the input data by chunks of 128KiB
1737 * (defined by BTRFS_MAX_UNCOMPRESSED)
1739 * We do the same for the heuristic and loop over the whole range.
1741 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1742 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1744 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1745 end = start + BTRFS_MAX_UNCOMPRESSED;
1747 index = start >> PAGE_SHIFT;
1748 index_end = end >> PAGE_SHIFT;
1750 /* Don't miss unaligned end */
1751 if (!IS_ALIGNED(end, PAGE_SIZE))
1754 curr_sample_pos = 0;
1755 while (index < index_end) {
1756 page = find_get_page(inode->i_mapping, index);
1757 in_data = kmap_local_page(page);
1758 /* Handle case where the start is not aligned to PAGE_SIZE */
1759 i = start % PAGE_SIZE;
1760 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1761 /* Don't sample any garbage from the last page */
1762 if (start > end - SAMPLING_READ_SIZE)
1764 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1765 SAMPLING_READ_SIZE);
1766 i += SAMPLING_INTERVAL;
1767 start += SAMPLING_INTERVAL;
1768 curr_sample_pos += SAMPLING_READ_SIZE;
1770 kunmap_local(in_data);
1776 ws->sample_size = curr_sample_pos;
1780 * Compression heuristic.
1782 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1783 * quickly (compared to direct compression) detect data characteristics
1784 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1787 * The following types of analysis can be performed:
1788 * - detect mostly zero data
1789 * - detect data with low "byte set" size (text, etc)
1790 * - detect data with low/high "core byte" set
1792 * Return non-zero if the compression should be done, 0 otherwise.
1794 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1796 struct list_head *ws_list = get_workspace(0, 0);
1797 struct heuristic_ws *ws;
1802 ws = list_entry(ws_list, struct heuristic_ws, list);
1804 heuristic_collect_sample(inode, start, end, ws);
1806 if (sample_repeated_patterns(ws)) {
1811 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1813 for (i = 0; i < ws->sample_size; i++) {
1814 byte = ws->sample[i];
1815 ws->bucket[byte].count++;
1818 i = byte_set_size(ws);
1819 if (i < BYTE_SET_THRESHOLD) {
1824 i = byte_core_set_size(ws);
1825 if (i <= BYTE_CORE_SET_LOW) {
1830 if (i >= BYTE_CORE_SET_HIGH) {
1835 i = shannon_entropy(ws);
1836 if (i <= ENTROPY_LVL_ACEPTABLE) {
1842 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1843 * needed to give green light to compression.
1845 * For now just assume that compression at that level is not worth the
1846 * resources because:
1848 * 1. it is possible to defrag the data later
1850 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1851 * values, every bucket has counter at level ~54. The heuristic would
1852 * be confused. This can happen when data have some internal repeated
1853 * patterns like "abbacbbc...". This can be detected by analyzing
1854 * pairs of bytes, which is too costly.
1856 if (i < ENTROPY_LVL_HIGH) {
1865 put_workspace(0, ws_list);
1870 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1871 * level, unrecognized string will set the default level
1873 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1875 unsigned int level = 0;
1881 if (str[0] == ':') {
1882 ret = kstrtouint(str + 1, 10, &level);
1887 level = btrfs_compress_set_level(type, level);