1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
14 if (msg->sg.end > msg->sg.start &&
15 elem_first_coalesce < msg->sg.end)
18 if (msg->sg.end < msg->sg.start &&
19 (elem_first_coalesce > msg->sg.start ||
20 elem_first_coalesce < msg->sg.end))
26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
27 int elem_first_coalesce)
29 struct page_frag *pfrag = sk_page_frag(sk);
30 u32 osize = msg->sg.size;
35 struct scatterlist *sge;
39 if (!sk_page_frag_refill(sk, pfrag)) {
44 orig_offset = pfrag->offset;
45 use = min_t(int, len, pfrag->size - orig_offset);
46 if (!sk_wmem_schedule(sk, use)) {
52 sk_msg_iter_var_prev(i);
53 sge = &msg->sg.data[i];
55 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
56 sg_page(sge) == pfrag->page &&
57 sge->offset + sge->length == orig_offset) {
60 if (sk_msg_full(msg)) {
65 sge = &msg->sg.data[msg->sg.end];
67 sg_set_page(sge, pfrag->page, use, orig_offset);
68 get_page(pfrag->page);
69 sk_msg_iter_next(msg, end);
72 sk_mem_charge(sk, use);
81 sk_msg_trim(sk, msg, osize);
84 EXPORT_SYMBOL_GPL(sk_msg_alloc);
86 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
89 int i = src->sg.start;
90 struct scatterlist *sge = sk_msg_elem(src, i);
91 struct scatterlist *sgd = NULL;
95 if (sge->length > off)
98 sk_msg_iter_var_next(i);
99 if (i == src->sg.end && off)
101 sge = sk_msg_elem(src, i);
105 sge_len = sge->length - off;
110 sgd = sk_msg_elem(dst, dst->sg.end - 1);
113 (sg_page(sge) == sg_page(sgd)) &&
114 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
115 sgd->length += sge_len;
116 dst->sg.size += sge_len;
117 } else if (!sk_msg_full(dst)) {
118 sge_off = sge->offset + off;
119 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
126 sk_mem_charge(sk, sge_len);
127 sk_msg_iter_var_next(i);
128 if (i == src->sg.end && len)
130 sge = sk_msg_elem(src, i);
135 EXPORT_SYMBOL_GPL(sk_msg_clone);
137 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
139 int i = msg->sg.start;
142 struct scatterlist *sge = sk_msg_elem(msg, i);
144 if (bytes < sge->length) {
145 sge->length -= bytes;
146 sge->offset += bytes;
147 sk_mem_uncharge(sk, bytes);
151 sk_mem_uncharge(sk, sge->length);
152 bytes -= sge->length;
155 sk_msg_iter_var_next(i);
156 } while (bytes && i != msg->sg.end);
159 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
161 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
163 int i = msg->sg.start;
166 struct scatterlist *sge = &msg->sg.data[i];
167 int uncharge = (bytes < sge->length) ? bytes : sge->length;
169 sk_mem_uncharge(sk, uncharge);
171 sk_msg_iter_var_next(i);
172 } while (i != msg->sg.end);
174 EXPORT_SYMBOL_GPL(sk_msg_return);
176 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
179 struct scatterlist *sge = sk_msg_elem(msg, i);
180 u32 len = sge->length;
182 /* When the skb owns the memory we free it from consume_skb path. */
185 sk_mem_uncharge(sk, len);
186 put_page(sg_page(sge));
188 memset(sge, 0, sizeof(*sge));
192 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
195 struct scatterlist *sge = sk_msg_elem(msg, i);
198 while (msg->sg.size) {
199 msg->sg.size -= sge->length;
200 freed += sk_msg_free_elem(sk, msg, i, charge);
201 sk_msg_iter_var_next(i);
202 sk_msg_check_to_free(msg, i, msg->sg.size);
203 sge = sk_msg_elem(msg, i);
205 consume_skb(msg->skb);
210 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
212 return __sk_msg_free(sk, msg, msg->sg.start, false);
214 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
216 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
218 return __sk_msg_free(sk, msg, msg->sg.start, true);
220 EXPORT_SYMBOL_GPL(sk_msg_free);
222 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
223 u32 bytes, bool charge)
225 struct scatterlist *sge;
226 u32 i = msg->sg.start;
229 sge = sk_msg_elem(msg, i);
232 if (bytes < sge->length) {
234 sk_mem_uncharge(sk, bytes);
235 sge->length -= bytes;
236 sge->offset += bytes;
237 msg->sg.size -= bytes;
241 msg->sg.size -= sge->length;
242 bytes -= sge->length;
243 sk_msg_free_elem(sk, msg, i, charge);
244 sk_msg_iter_var_next(i);
245 sk_msg_check_to_free(msg, i, bytes);
250 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
252 __sk_msg_free_partial(sk, msg, bytes, true);
254 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
256 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
259 __sk_msg_free_partial(sk, msg, bytes, false);
262 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
264 int trim = msg->sg.size - len;
272 sk_msg_iter_var_prev(i);
274 while (msg->sg.data[i].length &&
275 trim >= msg->sg.data[i].length) {
276 trim -= msg->sg.data[i].length;
277 sk_msg_free_elem(sk, msg, i, true);
278 sk_msg_iter_var_prev(i);
283 msg->sg.data[i].length -= trim;
284 sk_mem_uncharge(sk, trim);
285 /* Adjust copybreak if it falls into the trimmed part of last buf */
286 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
287 msg->sg.copybreak = msg->sg.data[i].length;
289 sk_msg_iter_var_next(i);
292 /* If we trim data a full sg elem before curr pointer update
293 * copybreak and current so that any future copy operations
294 * start at new copy location.
295 * However trimed data that has not yet been used in a copy op
296 * does not require an update.
299 msg->sg.curr = msg->sg.start;
300 msg->sg.copybreak = 0;
301 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
302 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
303 sk_msg_iter_var_prev(i);
305 msg->sg.copybreak = msg->sg.data[i].length;
308 EXPORT_SYMBOL_GPL(sk_msg_trim);
310 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
311 struct sk_msg *msg, u32 bytes)
313 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
314 const int to_max_pages = MAX_MSG_FRAGS;
315 struct page *pages[MAX_MSG_FRAGS];
316 ssize_t orig, copied, use, offset;
321 maxpages = to_max_pages - num_elems;
327 copied = iov_iter_get_pages2(from, pages, bytes, maxpages,
335 msg->sg.size += copied;
338 use = min_t(int, copied, PAGE_SIZE - offset);
339 sg_set_page(&msg->sg.data[msg->sg.end],
340 pages[i], use, offset);
341 sg_unmark_end(&msg->sg.data[msg->sg.end]);
342 sk_mem_charge(sk, use);
346 sk_msg_iter_next(msg, end);
350 /* When zerocopy is mixed with sk_msg_*copy* operations we
351 * may have a copybreak set in this case clear and prefer
352 * zerocopy remainder when possible.
354 msg->sg.copybreak = 0;
355 msg->sg.curr = msg->sg.end;
358 /* Revert iov_iter updates, msg will need to use 'trim' later if it
359 * also needs to be cleared.
362 iov_iter_revert(from, msg->sg.size - orig);
365 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
367 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
368 struct sk_msg *msg, u32 bytes)
370 int ret = -ENOSPC, i = msg->sg.curr;
371 struct scatterlist *sge;
376 sge = sk_msg_elem(msg, i);
377 /* This is possible if a trim operation shrunk the buffer */
378 if (msg->sg.copybreak >= sge->length) {
379 msg->sg.copybreak = 0;
380 sk_msg_iter_var_next(i);
381 if (i == msg->sg.end)
383 sge = sk_msg_elem(msg, i);
386 buf_size = sge->length - msg->sg.copybreak;
387 copy = (buf_size > bytes) ? bytes : buf_size;
388 to = sg_virt(sge) + msg->sg.copybreak;
389 msg->sg.copybreak += copy;
390 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
391 ret = copy_from_iter_nocache(to, copy, from);
393 ret = copy_from_iter(to, copy, from);
401 msg->sg.copybreak = 0;
402 sk_msg_iter_var_next(i);
403 } while (i != msg->sg.end);
408 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
410 /* Receive sk_msg from psock->ingress_msg to @msg. */
411 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
414 struct iov_iter *iter = &msg->msg_iter;
415 int peek = flags & MSG_PEEK;
416 struct sk_msg *msg_rx;
419 msg_rx = sk_psock_peek_msg(psock);
420 while (copied != len) {
421 struct scatterlist *sge;
423 if (unlikely(!msg_rx))
426 i = msg_rx->sg.start;
431 sge = sk_msg_elem(msg_rx, i);
434 if (copied + copy > len)
436 copy = copy_page_to_iter(page, sge->offset, copy, iter);
438 copied = copied ? copied : -EFAULT;
447 sk_mem_uncharge(sk, copy);
448 msg_rx->sg.size -= copy;
451 sk_msg_iter_var_next(i);
456 /* Lets not optimize peek case if copy_page_to_iter
457 * didn't copy the entire length lets just break.
459 if (copy != sge->length)
461 sk_msg_iter_var_next(i);
466 } while ((i != msg_rx->sg.end) && !sg_is_last(sge));
468 if (unlikely(peek)) {
469 msg_rx = sk_psock_next_msg(psock, msg_rx);
475 msg_rx->sg.start = i;
476 if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) {
477 msg_rx = sk_psock_dequeue_msg(psock);
478 kfree_sk_msg(msg_rx);
480 msg_rx = sk_psock_peek_msg(psock);
483 if (psock->work_state.skb && copied > 0)
484 schedule_work(&psock->work);
487 EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
489 bool sk_msg_is_readable(struct sock *sk)
491 struct sk_psock *psock;
495 psock = sk_psock(sk);
497 empty = list_empty(&psock->ingress_msg);
501 EXPORT_SYMBOL_GPL(sk_msg_is_readable);
503 static struct sk_msg *alloc_sk_msg(gfp_t gfp)
507 msg = kzalloc(sizeof(*msg), gfp | __GFP_NOWARN);
510 sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS);
514 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
517 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
520 if (!sk_rmem_schedule(sk, skb, skb->truesize))
523 return alloc_sk_msg(GFP_KERNEL);
526 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
528 struct sk_psock *psock,
534 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
536 /* skb linearize may fail with ENOMEM, but lets simply try again
537 * later if this happens. Under memory pressure we don't want to
538 * drop the skb. We need to linearize the skb so that the mapping
539 * in skb_to_sgvec can not error.
541 if (skb_linearize(skb))
544 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
545 if (unlikely(num_sge < 0))
551 msg->sg.size = copied;
552 msg->sg.end = num_sge;
555 sk_psock_queue_msg(psock, msg);
556 sk_psock_data_ready(sk, psock);
560 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
563 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb,
566 struct sock *sk = psock->sk;
570 /* If we are receiving on the same sock skb->sk is already assigned,
571 * skip memory accounting and owner transition seeing it already set
574 if (unlikely(skb->sk == sk))
575 return sk_psock_skb_ingress_self(psock, skb, off, len);
576 msg = sk_psock_create_ingress_msg(sk, skb);
580 /* This will transition ownership of the data from the socket where
581 * the BPF program was run initiating the redirect to the socket
582 * we will eventually receive this data on. The data will be released
583 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
586 skb_set_owner_r(skb, sk);
587 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
593 /* Puts an skb on the ingress queue of the socket already assigned to the
594 * skb. In this case we do not need to check memory limits or skb_set_owner_r
595 * because the skb is already accounted for here.
597 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
600 struct sk_msg *msg = alloc_sk_msg(GFP_ATOMIC);
601 struct sock *sk = psock->sk;
606 skb_set_owner_r(skb, sk);
607 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
613 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
614 u32 off, u32 len, bool ingress)
617 if (!sock_writeable(psock->sk))
619 return skb_send_sock(psock->sk, skb, off, len);
621 return sk_psock_skb_ingress(psock, skb, off, len);
624 static void sk_psock_skb_state(struct sk_psock *psock,
625 struct sk_psock_work_state *state,
629 spin_lock_bh(&psock->ingress_lock);
630 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
635 sock_drop(psock->sk, skb);
637 spin_unlock_bh(&psock->ingress_lock);
640 static void sk_psock_backlog(struct work_struct *work)
642 struct sk_psock *psock = container_of(work, struct sk_psock, work);
643 struct sk_psock_work_state *state = &psock->work_state;
644 struct sk_buff *skb = NULL;
649 mutex_lock(&psock->work_mutex);
650 if (unlikely(state->skb)) {
651 spin_lock_bh(&psock->ingress_lock);
656 spin_unlock_bh(&psock->ingress_lock);
661 while ((skb = skb_dequeue(&psock->ingress_skb))) {
664 if (skb_bpf_strparser(skb)) {
665 struct strp_msg *stm = strp_msg(skb);
671 ingress = skb_bpf_ingress(skb);
672 skb_bpf_redirect_clear(skb);
675 if (!sock_flag(psock->sk, SOCK_DEAD))
676 ret = sk_psock_handle_skb(psock, skb, off,
679 if (ret == -EAGAIN) {
680 sk_psock_skb_state(psock, state, skb,
684 /* Hard errors break pipe and stop xmit. */
685 sk_psock_report_error(psock, ret ? -ret : EPIPE);
686 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
687 sock_drop(psock->sk, skb);
698 mutex_unlock(&psock->work_mutex);
701 struct sk_psock *sk_psock_init(struct sock *sk, int node)
703 struct sk_psock *psock;
706 write_lock_bh(&sk->sk_callback_lock);
708 if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) {
709 psock = ERR_PTR(-EINVAL);
713 if (sk->sk_user_data) {
714 psock = ERR_PTR(-EBUSY);
718 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
720 psock = ERR_PTR(-ENOMEM);
724 prot = READ_ONCE(sk->sk_prot);
726 psock->eval = __SK_NONE;
727 psock->sk_proto = prot;
728 psock->saved_unhash = prot->unhash;
729 psock->saved_destroy = prot->destroy;
730 psock->saved_close = prot->close;
731 psock->saved_write_space = sk->sk_write_space;
733 INIT_LIST_HEAD(&psock->link);
734 spin_lock_init(&psock->link_lock);
736 INIT_WORK(&psock->work, sk_psock_backlog);
737 mutex_init(&psock->work_mutex);
738 INIT_LIST_HEAD(&psock->ingress_msg);
739 spin_lock_init(&psock->ingress_lock);
740 skb_queue_head_init(&psock->ingress_skb);
742 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
743 refcount_set(&psock->refcnt, 1);
745 __rcu_assign_sk_user_data_with_flags(sk, psock,
746 SK_USER_DATA_NOCOPY |
751 write_unlock_bh(&sk->sk_callback_lock);
754 EXPORT_SYMBOL_GPL(sk_psock_init);
756 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
758 struct sk_psock_link *link;
760 spin_lock_bh(&psock->link_lock);
761 link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
764 list_del(&link->list);
765 spin_unlock_bh(&psock->link_lock);
769 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
771 struct sk_msg *msg, *tmp;
773 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
774 list_del(&msg->list);
775 sk_msg_free(psock->sk, msg);
780 static void __sk_psock_zap_ingress(struct sk_psock *psock)
784 while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
785 skb_bpf_redirect_clear(skb);
786 sock_drop(psock->sk, skb);
788 kfree_skb(psock->work_state.skb);
789 /* We null the skb here to ensure that calls to sk_psock_backlog
790 * do not pick up the free'd skb.
792 psock->work_state.skb = NULL;
793 __sk_psock_purge_ingress_msg(psock);
796 static void sk_psock_link_destroy(struct sk_psock *psock)
798 struct sk_psock_link *link, *tmp;
800 list_for_each_entry_safe(link, tmp, &psock->link, list) {
801 list_del(&link->list);
802 sk_psock_free_link(link);
806 void sk_psock_stop(struct sk_psock *psock, bool wait)
808 spin_lock_bh(&psock->ingress_lock);
809 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
810 sk_psock_cork_free(psock);
811 __sk_psock_zap_ingress(psock);
812 spin_unlock_bh(&psock->ingress_lock);
815 cancel_work_sync(&psock->work);
818 static void sk_psock_done_strp(struct sk_psock *psock);
820 static void sk_psock_destroy(struct work_struct *work)
822 struct sk_psock *psock = container_of(to_rcu_work(work),
823 struct sk_psock, rwork);
824 /* No sk_callback_lock since already detached. */
826 sk_psock_done_strp(psock);
828 cancel_work_sync(&psock->work);
829 mutex_destroy(&psock->work_mutex);
831 psock_progs_drop(&psock->progs);
833 sk_psock_link_destroy(psock);
834 sk_psock_cork_free(psock);
837 sock_put(psock->sk_redir);
842 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
844 write_lock_bh(&sk->sk_callback_lock);
845 sk_psock_restore_proto(sk, psock);
846 rcu_assign_sk_user_data(sk, NULL);
847 if (psock->progs.stream_parser)
848 sk_psock_stop_strp(sk, psock);
849 else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
850 sk_psock_stop_verdict(sk, psock);
851 write_unlock_bh(&sk->sk_callback_lock);
853 sk_psock_stop(psock, false);
855 INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
856 queue_rcu_work(system_wq, &psock->rwork);
858 EXPORT_SYMBOL_GPL(sk_psock_drop);
860 static int sk_psock_map_verd(int verdict, bool redir)
864 return redir ? __SK_REDIRECT : __SK_PASS;
873 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
876 struct bpf_prog *prog;
880 prog = READ_ONCE(psock->progs.msg_parser);
881 if (unlikely(!prog)) {
886 sk_msg_compute_data_pointers(msg);
888 ret = bpf_prog_run_pin_on_cpu(prog, msg);
889 ret = sk_psock_map_verd(ret, msg->sk_redir);
890 psock->apply_bytes = msg->apply_bytes;
891 if (ret == __SK_REDIRECT) {
893 sock_put(psock->sk_redir);
894 psock->sk_redir = msg->sk_redir;
895 if (!psock->sk_redir) {
899 sock_hold(psock->sk_redir);
905 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
907 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
909 struct sk_psock *psock_other;
910 struct sock *sk_other;
912 sk_other = skb_bpf_redirect_fetch(skb);
913 /* This error is a buggy BPF program, it returned a redirect
914 * return code, but then didn't set a redirect interface.
916 if (unlikely(!sk_other)) {
917 skb_bpf_redirect_clear(skb);
918 sock_drop(from->sk, skb);
921 psock_other = sk_psock(sk_other);
922 /* This error indicates the socket is being torn down or had another
923 * error that caused the pipe to break. We can't send a packet on
924 * a socket that is in this state so we drop the skb.
926 if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
927 skb_bpf_redirect_clear(skb);
928 sock_drop(from->sk, skb);
931 spin_lock_bh(&psock_other->ingress_lock);
932 if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
933 spin_unlock_bh(&psock_other->ingress_lock);
934 skb_bpf_redirect_clear(skb);
935 sock_drop(from->sk, skb);
939 skb_queue_tail(&psock_other->ingress_skb, skb);
940 schedule_work(&psock_other->work);
941 spin_unlock_bh(&psock_other->ingress_lock);
945 static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
946 struct sk_psock *from, int verdict)
950 sk_psock_skb_redirect(from, skb);
959 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
961 struct bpf_prog *prog;
965 prog = READ_ONCE(psock->progs.stream_verdict);
969 skb_bpf_redirect_clear(skb);
970 ret = bpf_prog_run_pin_on_cpu(prog, skb);
971 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
974 sk_psock_tls_verdict_apply(skb, psock, ret);
978 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
980 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
983 struct sock *sk_other;
990 sk_other = psock->sk;
991 if (sock_flag(sk_other, SOCK_DEAD) ||
992 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
993 skb_bpf_redirect_clear(skb);
997 skb_bpf_set_ingress(skb);
999 /* If the queue is empty then we can submit directly
1000 * into the msg queue. If its not empty we have to
1001 * queue work otherwise we may get OOO data. Otherwise,
1002 * if sk_psock_skb_ingress errors will be handled by
1003 * retrying later from workqueue.
1005 if (skb_queue_empty(&psock->ingress_skb)) {
1008 if (skb_bpf_strparser(skb)) {
1009 struct strp_msg *stm = strp_msg(skb);
1012 len = stm->full_len;
1014 err = sk_psock_skb_ingress_self(psock, skb, off, len);
1017 spin_lock_bh(&psock->ingress_lock);
1018 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
1019 skb_queue_tail(&psock->ingress_skb, skb);
1020 schedule_work(&psock->work);
1023 spin_unlock_bh(&psock->ingress_lock);
1025 skb_bpf_redirect_clear(skb);
1031 err = sk_psock_skb_redirect(psock, skb);
1036 sock_drop(psock->sk, skb);
1042 static void sk_psock_write_space(struct sock *sk)
1044 struct sk_psock *psock;
1045 void (*write_space)(struct sock *sk) = NULL;
1048 psock = sk_psock(sk);
1049 if (likely(psock)) {
1050 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
1051 schedule_work(&psock->work);
1052 write_space = psock->saved_write_space;
1059 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
1060 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
1062 struct sk_psock *psock;
1063 struct bpf_prog *prog;
1064 int ret = __SK_DROP;
1069 psock = sk_psock(sk);
1070 if (unlikely(!psock)) {
1074 prog = READ_ONCE(psock->progs.stream_verdict);
1078 skb_bpf_redirect_clear(skb);
1079 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1081 skb_bpf_set_strparser(skb);
1082 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1085 sk_psock_verdict_apply(psock, skb, ret);
1090 static int sk_psock_strp_read_done(struct strparser *strp, int err)
1095 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
1097 struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
1098 struct bpf_prog *prog;
1102 prog = READ_ONCE(psock->progs.stream_parser);
1104 skb->sk = psock->sk;
1105 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1112 /* Called with socket lock held. */
1113 static void sk_psock_strp_data_ready(struct sock *sk)
1115 struct sk_psock *psock;
1118 psock = sk_psock(sk);
1119 if (likely(psock)) {
1120 if (tls_sw_has_ctx_rx(sk)) {
1121 psock->saved_data_ready(sk);
1123 write_lock_bh(&sk->sk_callback_lock);
1124 strp_data_ready(&psock->strp);
1125 write_unlock_bh(&sk->sk_callback_lock);
1131 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1133 static const struct strp_callbacks cb = {
1134 .rcv_msg = sk_psock_strp_read,
1135 .read_sock_done = sk_psock_strp_read_done,
1136 .parse_msg = sk_psock_strp_parse,
1139 return strp_init(&psock->strp, sk, &cb);
1142 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1144 if (psock->saved_data_ready)
1147 psock->saved_data_ready = sk->sk_data_ready;
1148 sk->sk_data_ready = sk_psock_strp_data_ready;
1149 sk->sk_write_space = sk_psock_write_space;
1152 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1154 psock_set_prog(&psock->progs.stream_parser, NULL);
1156 if (!psock->saved_data_ready)
1159 sk->sk_data_ready = psock->saved_data_ready;
1160 psock->saved_data_ready = NULL;
1161 strp_stop(&psock->strp);
1164 static void sk_psock_done_strp(struct sk_psock *psock)
1166 /* Parser has been stopped */
1167 if (psock->progs.stream_parser)
1168 strp_done(&psock->strp);
1171 static void sk_psock_done_strp(struct sk_psock *psock)
1174 #endif /* CONFIG_BPF_STREAM_PARSER */
1176 static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb)
1178 struct sk_psock *psock;
1179 struct bpf_prog *prog;
1180 int ret = __SK_DROP;
1186 psock = sk_psock(sk);
1187 if (unlikely(!psock)) {
1192 prog = READ_ONCE(psock->progs.stream_verdict);
1194 prog = READ_ONCE(psock->progs.skb_verdict);
1197 skb_bpf_redirect_clear(skb);
1198 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1199 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1201 ret = sk_psock_verdict_apply(psock, skb, ret);
1209 static void sk_psock_verdict_data_ready(struct sock *sk)
1211 struct socket *sock = sk->sk_socket;
1213 if (unlikely(!sock || !sock->ops || !sock->ops->read_skb))
1215 sock->ops->read_skb(sk, sk_psock_verdict_recv);
1218 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1220 if (psock->saved_data_ready)
1223 psock->saved_data_ready = sk->sk_data_ready;
1224 sk->sk_data_ready = sk_psock_verdict_data_ready;
1225 sk->sk_write_space = sk_psock_write_space;
1228 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1230 psock_set_prog(&psock->progs.stream_verdict, NULL);
1231 psock_set_prog(&psock->progs.skb_verdict, NULL);
1233 if (!psock->saved_data_ready)
1236 sk->sk_data_ready = psock->saved_data_ready;
1237 psock->saved_data_ready = NULL;