]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v7.c
Merge tag 'kgdb-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/danielt...
[linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v7.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/mmu_context.h>
24
25 #include "amdgpu.h"
26 #include "amdgpu_amdkfd.h"
27 #include "cikd.h"
28 #include "cik_sdma.h"
29 #include "gfx_v7_0.h"
30 #include "gca/gfx_7_2_d.h"
31 #include "gca/gfx_7_2_enum.h"
32 #include "gca/gfx_7_2_sh_mask.h"
33 #include "oss/oss_2_0_d.h"
34 #include "oss/oss_2_0_sh_mask.h"
35 #include "gmc/gmc_7_1_d.h"
36 #include "gmc/gmc_7_1_sh_mask.h"
37 #include "cik_structs.h"
38
39 enum hqd_dequeue_request_type {
40         NO_ACTION = 0,
41         DRAIN_PIPE,
42         RESET_WAVES
43 };
44
45 enum {
46         MAX_TRAPID = 8,         /* 3 bits in the bitfield. */
47         MAX_WATCH_ADDRESSES = 4
48 };
49
50 enum {
51         ADDRESS_WATCH_REG_ADDR_HI = 0,
52         ADDRESS_WATCH_REG_ADDR_LO,
53         ADDRESS_WATCH_REG_CNTL,
54         ADDRESS_WATCH_REG_MAX
55 };
56
57 /*  not defined in the CI/KV reg file  */
58 enum {
59         ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
60         ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
61         ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
62         /* extend the mask to 26 bits to match the low address field */
63         ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
64         ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
65 };
66
67 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
68         mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
69         mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
70         mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
71         mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
72 };
73
74 union TCP_WATCH_CNTL_BITS {
75         struct {
76                 uint32_t mask:24;
77                 uint32_t vmid:4;
78                 uint32_t atc:1;
79                 uint32_t mode:2;
80                 uint32_t valid:1;
81         } bitfields, bits;
82         uint32_t u32All;
83         signed int i32All;
84         float f32All;
85 };
86
87 /* Because of REG_GET_FIELD() being used, we put this function in the
88  * asic specific file.
89  */
90 static int get_tile_config(struct kgd_dev *kgd,
91                 struct tile_config *config)
92 {
93         struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
94
95         config->gb_addr_config = adev->gfx.config.gb_addr_config;
96         config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
97                                 MC_ARB_RAMCFG, NOOFBANK);
98         config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
99                                 MC_ARB_RAMCFG, NOOFRANKS);
100
101         config->tile_config_ptr = adev->gfx.config.tile_mode_array;
102         config->num_tile_configs =
103                         ARRAY_SIZE(adev->gfx.config.tile_mode_array);
104         config->macro_tile_config_ptr =
105                         adev->gfx.config.macrotile_mode_array;
106         config->num_macro_tile_configs =
107                         ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
108
109         return 0;
110 }
111
112 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
113 {
114         return (struct amdgpu_device *)kgd;
115 }
116
117 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
118                         uint32_t queue, uint32_t vmid)
119 {
120         struct amdgpu_device *adev = get_amdgpu_device(kgd);
121         uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
122
123         mutex_lock(&adev->srbm_mutex);
124         WREG32(mmSRBM_GFX_CNTL, value);
125 }
126
127 static void unlock_srbm(struct kgd_dev *kgd)
128 {
129         struct amdgpu_device *adev = get_amdgpu_device(kgd);
130
131         WREG32(mmSRBM_GFX_CNTL, 0);
132         mutex_unlock(&adev->srbm_mutex);
133 }
134
135 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
136                                 uint32_t queue_id)
137 {
138         struct amdgpu_device *adev = get_amdgpu_device(kgd);
139
140         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
141         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
142
143         lock_srbm(kgd, mec, pipe, queue_id, 0);
144 }
145
146 static void release_queue(struct kgd_dev *kgd)
147 {
148         unlock_srbm(kgd);
149 }
150
151 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
152                                         uint32_t sh_mem_config,
153                                         uint32_t sh_mem_ape1_base,
154                                         uint32_t sh_mem_ape1_limit,
155                                         uint32_t sh_mem_bases)
156 {
157         struct amdgpu_device *adev = get_amdgpu_device(kgd);
158
159         lock_srbm(kgd, 0, 0, 0, vmid);
160
161         WREG32(mmSH_MEM_CONFIG, sh_mem_config);
162         WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
163         WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
164         WREG32(mmSH_MEM_BASES, sh_mem_bases);
165
166         unlock_srbm(kgd);
167 }
168
169 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
170                                         unsigned int vmid)
171 {
172         struct amdgpu_device *adev = get_amdgpu_device(kgd);
173
174         /*
175          * We have to assume that there is no outstanding mapping.
176          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
177          * a mapping is in progress or because a mapping finished and the
178          * SW cleared it. So the protocol is to always wait & clear.
179          */
180         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
181                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
182
183         WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
184
185         while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
186                 cpu_relax();
187         WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
188
189         /* Mapping vmid to pasid also for IH block */
190         WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
191
192         return 0;
193 }
194
195 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
196 {
197         struct amdgpu_device *adev = get_amdgpu_device(kgd);
198         uint32_t mec;
199         uint32_t pipe;
200
201         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
202         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
203
204         lock_srbm(kgd, mec, pipe, 0, 0);
205
206         WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
207                         CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
208
209         unlock_srbm(kgd);
210
211         return 0;
212 }
213
214 static inline uint32_t get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers *m)
215 {
216         uint32_t retval;
217
218         retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
219                         m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
220
221         pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
222                         m->sdma_engine_id, m->sdma_queue_id, retval);
223
224         return retval;
225 }
226
227 static inline struct cik_mqd *get_mqd(void *mqd)
228 {
229         return (struct cik_mqd *)mqd;
230 }
231
232 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
233 {
234         return (struct cik_sdma_rlc_registers *)mqd;
235 }
236
237 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
238                         uint32_t queue_id, uint32_t __user *wptr,
239                         uint32_t wptr_shift, uint32_t wptr_mask,
240                         struct mm_struct *mm)
241 {
242         struct amdgpu_device *adev = get_amdgpu_device(kgd);
243         struct cik_mqd *m;
244         uint32_t *mqd_hqd;
245         uint32_t reg, wptr_val, data;
246         bool valid_wptr = false;
247
248         m = get_mqd(mqd);
249
250         acquire_queue(kgd, pipe_id, queue_id);
251
252         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
253         mqd_hqd = &m->cp_mqd_base_addr_lo;
254
255         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
256                 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
257
258         /* Copy userspace write pointer value to register.
259          * Activate doorbell logic to monitor subsequent changes.
260          */
261         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
262                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
263         WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
264
265         /* read_user_ptr may take the mm->mmap_sem.
266          * release srbm_mutex to avoid circular dependency between
267          * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
268          */
269         release_queue(kgd);
270         valid_wptr = read_user_wptr(mm, wptr, wptr_val);
271         acquire_queue(kgd, pipe_id, queue_id);
272         if (valid_wptr)
273                 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
274
275         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
276         WREG32(mmCP_HQD_ACTIVE, data);
277
278         release_queue(kgd);
279
280         return 0;
281 }
282
283 static int kgd_hqd_dump(struct kgd_dev *kgd,
284                         uint32_t pipe_id, uint32_t queue_id,
285                         uint32_t (**dump)[2], uint32_t *n_regs)
286 {
287         struct amdgpu_device *adev = get_amdgpu_device(kgd);
288         uint32_t i = 0, reg;
289 #define HQD_N_REGS (35+4)
290 #define DUMP_REG(addr) do {                             \
291                 if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
292                         break;                          \
293                 (*dump)[i][0] = (addr) << 2;            \
294                 (*dump)[i++][1] = RREG32(addr);         \
295         } while (0)
296
297         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
298         if (*dump == NULL)
299                 return -ENOMEM;
300
301         acquire_queue(kgd, pipe_id, queue_id);
302
303         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
304         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
305         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
306         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
307
308         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
309                 DUMP_REG(reg);
310
311         release_queue(kgd);
312
313         WARN_ON_ONCE(i != HQD_N_REGS);
314         *n_regs = i;
315
316         return 0;
317 }
318
319 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
320                              uint32_t __user *wptr, struct mm_struct *mm)
321 {
322         struct amdgpu_device *adev = get_amdgpu_device(kgd);
323         struct cik_sdma_rlc_registers *m;
324         unsigned long end_jiffies;
325         uint32_t sdma_rlc_reg_offset;
326         uint32_t data;
327
328         m = get_sdma_mqd(mqd);
329         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
330
331         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
332                 m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
333
334         end_jiffies = msecs_to_jiffies(2000) + jiffies;
335         while (true) {
336                 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
337                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
338                         break;
339                 if (time_after(jiffies, end_jiffies)) {
340                         pr_err("SDMA RLC not idle in %s\n", __func__);
341                         return -ETIME;
342                 }
343                 usleep_range(500, 1000);
344         }
345
346         data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
347                              ENABLE, 1);
348         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
349         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
350                                 m->sdma_rlc_rb_rptr);
351
352         if (read_user_wptr(mm, wptr, data))
353                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
354         else
355                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
356                        m->sdma_rlc_rb_rptr);
357
358         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
359                                 m->sdma_rlc_virtual_addr);
360         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
361         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
362                         m->sdma_rlc_rb_base_hi);
363         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
364                         m->sdma_rlc_rb_rptr_addr_lo);
365         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
366                         m->sdma_rlc_rb_rptr_addr_hi);
367
368         data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
369                              RB_ENABLE, 1);
370         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
371
372         return 0;
373 }
374
375 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
376                              uint32_t engine_id, uint32_t queue_id,
377                              uint32_t (**dump)[2], uint32_t *n_regs)
378 {
379         struct amdgpu_device *adev = get_amdgpu_device(kgd);
380         uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
381                 queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
382         uint32_t i = 0, reg;
383 #undef HQD_N_REGS
384 #define HQD_N_REGS (19+4)
385
386         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
387         if (*dump == NULL)
388                 return -ENOMEM;
389
390         for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
391                 DUMP_REG(sdma_offset + reg);
392         for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
393              reg++)
394                 DUMP_REG(sdma_offset + reg);
395
396         WARN_ON_ONCE(i != HQD_N_REGS);
397         *n_regs = i;
398
399         return 0;
400 }
401
402 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
403                                 uint32_t pipe_id, uint32_t queue_id)
404 {
405         struct amdgpu_device *adev = get_amdgpu_device(kgd);
406         uint32_t act;
407         bool retval = false;
408         uint32_t low, high;
409
410         acquire_queue(kgd, pipe_id, queue_id);
411         act = RREG32(mmCP_HQD_ACTIVE);
412         if (act) {
413                 low = lower_32_bits(queue_address >> 8);
414                 high = upper_32_bits(queue_address >> 8);
415
416                 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
417                                 high == RREG32(mmCP_HQD_PQ_BASE_HI))
418                         retval = true;
419         }
420         release_queue(kgd);
421         return retval;
422 }
423
424 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
425 {
426         struct amdgpu_device *adev = get_amdgpu_device(kgd);
427         struct cik_sdma_rlc_registers *m;
428         uint32_t sdma_rlc_reg_offset;
429         uint32_t sdma_rlc_rb_cntl;
430
431         m = get_sdma_mqd(mqd);
432         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
433
434         sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
435
436         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
437                 return true;
438
439         return false;
440 }
441
442 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
443                                 enum kfd_preempt_type reset_type,
444                                 unsigned int utimeout, uint32_t pipe_id,
445                                 uint32_t queue_id)
446 {
447         struct amdgpu_device *adev = get_amdgpu_device(kgd);
448         uint32_t temp;
449         enum hqd_dequeue_request_type type;
450         unsigned long flags, end_jiffies;
451         int retry;
452
453         if (adev->in_gpu_reset)
454                 return -EIO;
455
456         acquire_queue(kgd, pipe_id, queue_id);
457         WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
458
459         switch (reset_type) {
460         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
461                 type = DRAIN_PIPE;
462                 break;
463         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
464                 type = RESET_WAVES;
465                 break;
466         default:
467                 type = DRAIN_PIPE;
468                 break;
469         }
470
471         /* Workaround: If IQ timer is active and the wait time is close to or
472          * equal to 0, dequeueing is not safe. Wait until either the wait time
473          * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
474          * cleared before continuing. Also, ensure wait times are set to at
475          * least 0x3.
476          */
477         local_irq_save(flags);
478         preempt_disable();
479         retry = 5000; /* wait for 500 usecs at maximum */
480         while (true) {
481                 temp = RREG32(mmCP_HQD_IQ_TIMER);
482                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
483                         pr_debug("HW is processing IQ\n");
484                         goto loop;
485                 }
486                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
487                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
488                                         == 3) /* SEM-rearm is safe */
489                                 break;
490                         /* Wait time 3 is safe for CP, but our MMIO read/write
491                          * time is close to 1 microsecond, so check for 10 to
492                          * leave more buffer room
493                          */
494                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
495                                         >= 10)
496                                 break;
497                         pr_debug("IQ timer is active\n");
498                 } else
499                         break;
500 loop:
501                 if (!retry) {
502                         pr_err("CP HQD IQ timer status time out\n");
503                         break;
504                 }
505                 ndelay(100);
506                 --retry;
507         }
508         retry = 1000;
509         while (true) {
510                 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
511                 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
512                         break;
513                 pr_debug("Dequeue request is pending\n");
514
515                 if (!retry) {
516                         pr_err("CP HQD dequeue request time out\n");
517                         break;
518                 }
519                 ndelay(100);
520                 --retry;
521         }
522         local_irq_restore(flags);
523         preempt_enable();
524
525         WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
526
527         end_jiffies = (utimeout * HZ / 1000) + jiffies;
528         while (true) {
529                 temp = RREG32(mmCP_HQD_ACTIVE);
530                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
531                         break;
532                 if (time_after(jiffies, end_jiffies)) {
533                         pr_err("cp queue preemption time out\n");
534                         release_queue(kgd);
535                         return -ETIME;
536                 }
537                 usleep_range(500, 1000);
538         }
539
540         release_queue(kgd);
541         return 0;
542 }
543
544 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
545                                 unsigned int utimeout)
546 {
547         struct amdgpu_device *adev = get_amdgpu_device(kgd);
548         struct cik_sdma_rlc_registers *m;
549         uint32_t sdma_rlc_reg_offset;
550         uint32_t temp;
551         unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
552
553         m = get_sdma_mqd(mqd);
554         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
555
556         temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
557         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
558         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
559
560         while (true) {
561                 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
562                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
563                         break;
564                 if (time_after(jiffies, end_jiffies)) {
565                         pr_err("SDMA RLC not idle in %s\n", __func__);
566                         return -ETIME;
567                 }
568                 usleep_range(500, 1000);
569         }
570
571         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
572         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
573                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
574                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
575
576         m->sdma_rlc_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
577
578         return 0;
579 }
580
581 static int kgd_address_watch_disable(struct kgd_dev *kgd)
582 {
583         struct amdgpu_device *adev = get_amdgpu_device(kgd);
584         union TCP_WATCH_CNTL_BITS cntl;
585         unsigned int i;
586
587         cntl.u32All = 0;
588
589         cntl.bitfields.valid = 0;
590         cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
591         cntl.bitfields.atc = 1;
592
593         /* Turning off this address until we set all the registers */
594         for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
595                 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
596                         ADDRESS_WATCH_REG_CNTL], cntl.u32All);
597
598         return 0;
599 }
600
601 static int kgd_address_watch_execute(struct kgd_dev *kgd,
602                                         unsigned int watch_point_id,
603                                         uint32_t cntl_val,
604                                         uint32_t addr_hi,
605                                         uint32_t addr_lo)
606 {
607         struct amdgpu_device *adev = get_amdgpu_device(kgd);
608         union TCP_WATCH_CNTL_BITS cntl;
609
610         cntl.u32All = cntl_val;
611
612         /* Turning off this watch point until we set all the registers */
613         cntl.bitfields.valid = 0;
614         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
615                 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
616
617         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
618                 ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
619
620         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
621                 ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
622
623         /* Enable the watch point */
624         cntl.bitfields.valid = 1;
625
626         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
627                 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
628
629         return 0;
630 }
631
632 static int kgd_wave_control_execute(struct kgd_dev *kgd,
633                                         uint32_t gfx_index_val,
634                                         uint32_t sq_cmd)
635 {
636         struct amdgpu_device *adev = get_amdgpu_device(kgd);
637         uint32_t data;
638
639         mutex_lock(&adev->grbm_idx_mutex);
640
641         WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
642         WREG32(mmSQ_CMD, sq_cmd);
643
644         /*  Restore the GRBM_GFX_INDEX register  */
645
646         data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
647                 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
648                 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
649
650         WREG32(mmGRBM_GFX_INDEX, data);
651
652         mutex_unlock(&adev->grbm_idx_mutex);
653
654         return 0;
655 }
656
657 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
658                                         unsigned int watch_point_id,
659                                         unsigned int reg_offset)
660 {
661         return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
662 }
663
664 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
665                                         uint8_t vmid, uint16_t *p_pasid)
666 {
667         uint32_t value;
668         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
669
670         value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
671         *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
672
673         return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
674 }
675
676 static void set_scratch_backing_va(struct kgd_dev *kgd,
677                                         uint64_t va, uint32_t vmid)
678 {
679         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
680
681         lock_srbm(kgd, 0, 0, 0, vmid);
682         WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
683         unlock_srbm(kgd);
684 }
685
686 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
687                         uint64_t page_table_base)
688 {
689         struct amdgpu_device *adev = get_amdgpu_device(kgd);
690
691         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
692                 pr_err("trying to set page table base for wrong VMID\n");
693                 return;
694         }
695         WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
696                 lower_32_bits(page_table_base));
697 }
698
699 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
700 {
701         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
702         int vmid;
703         unsigned int tmp;
704
705         if (adev->in_gpu_reset)
706                 return -EIO;
707
708         for (vmid = 0; vmid < 16; vmid++) {
709                 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
710                         continue;
711
712                 tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
713                 if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
714                         (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
715                         WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
716                         RREG32(mmVM_INVALIDATE_RESPONSE);
717                         break;
718                 }
719         }
720
721         return 0;
722 }
723
724 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
725 {
726         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
727
728         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
729                 pr_err("non kfd vmid\n");
730                 return 0;
731         }
732
733         WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
734         RREG32(mmVM_INVALIDATE_RESPONSE);
735         return 0;
736 }
737
738  /**
739   * read_vmid_from_vmfault_reg - read vmid from register
740   *
741   * adev: amdgpu_device pointer
742   * @vmid: vmid pointer
743   * read vmid from register (CIK).
744   */
745 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
746 {
747         struct amdgpu_device *adev = get_amdgpu_device(kgd);
748
749         uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
750
751         return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
752 }
753
754 const struct kfd2kgd_calls gfx_v7_kfd2kgd = {
755         .program_sh_mem_settings = kgd_program_sh_mem_settings,
756         .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
757         .init_interrupts = kgd_init_interrupts,
758         .hqd_load = kgd_hqd_load,
759         .hqd_sdma_load = kgd_hqd_sdma_load,
760         .hqd_dump = kgd_hqd_dump,
761         .hqd_sdma_dump = kgd_hqd_sdma_dump,
762         .hqd_is_occupied = kgd_hqd_is_occupied,
763         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
764         .hqd_destroy = kgd_hqd_destroy,
765         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
766         .address_watch_disable = kgd_address_watch_disable,
767         .address_watch_execute = kgd_address_watch_execute,
768         .wave_control_execute = kgd_wave_control_execute,
769         .address_watch_get_offset = kgd_address_watch_get_offset,
770         .get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info,
771         .set_scratch_backing_va = set_scratch_backing_va,
772         .get_tile_config = get_tile_config,
773         .set_vm_context_page_table_base = set_vm_context_page_table_base,
774         .invalidate_tlbs = invalidate_tlbs,
775         .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
776         .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
777 };
This page took 0.079597 seconds and 4 git commands to generate.