2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
48 static struct extent_io_ops btree_extent_io_ops;
49 static void end_workqueue_fn(struct btrfs_work *work);
50 static void free_fs_root(struct btrfs_root *root);
51 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_root *root);
57 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 struct extent_io_tree *dirty_pages,
62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 struct extent_io_tree *pinned_extents);
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
74 struct btrfs_fs_info *info;
77 struct list_head list;
78 struct btrfs_work work;
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
86 struct async_submit_bio {
89 struct list_head list;
90 extent_submit_bio_hook_t *submit_bio_start;
91 extent_submit_bio_hook_t *submit_bio_done;
94 unsigned long bio_flags;
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
100 struct btrfs_work work;
105 * Lockdep class keys for extent_buffer->lock's in this root. For a given
106 * eb, the lockdep key is determined by the btrfs_root it belongs to and
107 * the level the eb occupies in the tree.
109 * Different roots are used for different purposes and may nest inside each
110 * other and they require separate keysets. As lockdep keys should be
111 * static, assign keysets according to the purpose of the root as indicated
112 * by btrfs_root->objectid. This ensures that all special purpose roots
113 * have separate keysets.
115 * Lock-nesting across peer nodes is always done with the immediate parent
116 * node locked thus preventing deadlock. As lockdep doesn't know this, use
117 * subclass to avoid triggering lockdep warning in such cases.
119 * The key is set by the readpage_end_io_hook after the buffer has passed
120 * csum validation but before the pages are unlocked. It is also set by
121 * btrfs_init_new_buffer on freshly allocated blocks.
123 * We also add a check to make sure the highest level of the tree is the
124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
125 * needs update as well.
127 #ifdef CONFIG_DEBUG_LOCK_ALLOC
128 # if BTRFS_MAX_LEVEL != 8
132 static struct btrfs_lockdep_keyset {
133 u64 id; /* root objectid */
134 const char *name_stem; /* lock name stem */
135 char names[BTRFS_MAX_LEVEL + 1][20];
136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
137 } btrfs_lockdep_keysets[] = {
138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
148 { .id = 0, .name_stem = "tree" },
151 void __init btrfs_init_lockdep(void)
155 /* initialize lockdep class names */
156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 snprintf(ks->names[j], sizeof(ks->names[j]),
161 "btrfs-%s-%02d", ks->name_stem, j);
165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
168 struct btrfs_lockdep_keyset *ks;
170 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172 /* find the matching keyset, id 0 is the default entry */
173 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 if (ks->id == objectid)
177 lockdep_set_class_and_name(&eb->lock,
178 &ks->keys[level], ks->names[level]);
184 * extents on the btree inode are pretty simple, there's one extent
185 * that covers the entire device
187 static struct extent_map *btree_get_extent(struct inode *inode,
188 struct page *page, size_t pg_offset, u64 start, u64 len,
191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 struct extent_map *em;
195 read_lock(&em_tree->lock);
196 em = lookup_extent_mapping(em_tree, start, len);
199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
200 read_unlock(&em_tree->lock);
203 read_unlock(&em_tree->lock);
205 em = alloc_extent_map();
207 em = ERR_PTR(-ENOMEM);
212 em->block_len = (u64)-1;
214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216 write_lock(&em_tree->lock);
217 ret = add_extent_mapping(em_tree, em);
218 if (ret == -EEXIST) {
219 u64 failed_start = em->start;
220 u64 failed_len = em->len;
223 em = lookup_extent_mapping(em_tree, start, len);
227 em = lookup_extent_mapping(em_tree, failed_start,
235 write_unlock(&em_tree->lock);
243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245 return crc32c(seed, data, len);
248 void btrfs_csum_final(u32 crc, char *result)
250 put_unaligned_le32(~crc, result);
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
266 unsigned long map_start;
267 unsigned long map_len;
270 unsigned long inline_result;
272 len = buf->len - offset;
274 err = map_private_extent_buffer(buf, offset, 32,
275 &kaddr, &map_start, &map_len);
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
289 result = (char *)&inline_result;
292 btrfs_csum_final(crc, result);
295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298 memcpy(&found, result, csum_size);
300 read_extent_buffer(buf, &val, 0, csum_size);
301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302 "failed on %llu wanted %X found %X "
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
307 if (result != (char *)&inline_result)
312 write_extent_buffer(buf, result, 0, csum_size);
314 if (result != (char *)&inline_result)
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid,
329 struct extent_state *cached_state = NULL;
332 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
338 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 if (extent_buffer_uptodate(eb) &&
341 btrfs_header_generation(eb) == parent_transid) {
345 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 (unsigned long long)eb->start,
348 (unsigned long long)parent_transid,
349 (unsigned long long)btrfs_header_generation(eb));
351 clear_extent_buffer_uptodate(eb);
353 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
354 &cached_state, GFP_NOFS);
359 * helper to read a given tree block, doing retries as required when
360 * the checksums don't match and we have alternate mirrors to try.
362 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
363 struct extent_buffer *eb,
364 u64 start, u64 parent_transid)
366 struct extent_io_tree *io_tree;
371 int failed_mirror = 0;
373 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
374 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 ret = read_extent_buffer_pages(io_tree, eb, start,
378 btree_get_extent, mirror_num);
379 if (!ret && !verify_parent_transid(io_tree, eb,
384 * This buffer's crc is fine, but its contents are corrupted, so
385 * there is no reason to read the other copies, they won't be
388 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
391 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
396 if (!failed_mirror) {
398 failed_mirror = eb->read_mirror;
402 if (mirror_num == failed_mirror)
405 if (mirror_num > num_copies)
410 repair_eb_io_failure(root, eb, failed_mirror);
416 * checksum a dirty tree block before IO. This has extra checks to make sure
417 * we only fill in the checksum field in the first page of a multi-page block
420 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
422 struct extent_io_tree *tree;
423 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
425 struct extent_buffer *eb;
427 tree = &BTRFS_I(page->mapping->host)->io_tree;
429 eb = (struct extent_buffer *)page->private;
430 if (page != eb->pages[0])
432 found_start = btrfs_header_bytenr(eb);
433 if (found_start != start) {
437 if (eb->pages[0] != page) {
441 if (!PageUptodate(page)) {
445 csum_tree_block(root, eb, 0);
449 static int check_tree_block_fsid(struct btrfs_root *root,
450 struct extent_buffer *eb)
452 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
453 u8 fsid[BTRFS_UUID_SIZE];
456 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
459 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
463 fs_devices = fs_devices->seed;
468 #define CORRUPT(reason, eb, root, slot) \
469 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
470 "root=%llu, slot=%d\n", reason, \
471 (unsigned long long)btrfs_header_bytenr(eb), \
472 (unsigned long long)root->objectid, slot)
474 static noinline int check_leaf(struct btrfs_root *root,
475 struct extent_buffer *leaf)
477 struct btrfs_key key;
478 struct btrfs_key leaf_key;
479 u32 nritems = btrfs_header_nritems(leaf);
485 /* Check the 0 item */
486 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
487 BTRFS_LEAF_DATA_SIZE(root)) {
488 CORRUPT("invalid item offset size pair", leaf, root, 0);
493 * Check to make sure each items keys are in the correct order and their
494 * offsets make sense. We only have to loop through nritems-1 because
495 * we check the current slot against the next slot, which verifies the
496 * next slot's offset+size makes sense and that the current's slot
499 for (slot = 0; slot < nritems - 1; slot++) {
500 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
501 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503 /* Make sure the keys are in the right order */
504 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
505 CORRUPT("bad key order", leaf, root, slot);
510 * Make sure the offset and ends are right, remember that the
511 * item data starts at the end of the leaf and grows towards the
514 if (btrfs_item_offset_nr(leaf, slot) !=
515 btrfs_item_end_nr(leaf, slot + 1)) {
516 CORRUPT("slot offset bad", leaf, root, slot);
521 * Check to make sure that we don't point outside of the leaf,
522 * just incase all the items are consistent to eachother, but
523 * all point outside of the leaf.
525 if (btrfs_item_end_nr(leaf, slot) >
526 BTRFS_LEAF_DATA_SIZE(root)) {
527 CORRUPT("slot end outside of leaf", leaf, root, slot);
535 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
536 struct page *page, int max_walk)
538 struct extent_buffer *eb;
539 u64 start = page_offset(page);
543 if (start < max_walk)
546 min_start = start - max_walk;
548 while (start >= min_start) {
549 eb = find_extent_buffer(tree, start, 0);
552 * we found an extent buffer and it contains our page
555 if (eb->start <= target &&
556 eb->start + eb->len > target)
559 /* we found an extent buffer that wasn't for us */
560 free_extent_buffer(eb);
565 start -= PAGE_CACHE_SIZE;
570 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
571 struct extent_state *state, int mirror)
573 struct extent_io_tree *tree;
576 struct extent_buffer *eb;
577 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
584 tree = &BTRFS_I(page->mapping->host)->io_tree;
585 eb = (struct extent_buffer *)page->private;
587 /* the pending IO might have been the only thing that kept this buffer
588 * in memory. Make sure we have a ref for all this other checks
590 extent_buffer_get(eb);
592 reads_done = atomic_dec_and_test(&eb->io_pages);
596 eb->read_mirror = mirror;
597 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
602 found_start = btrfs_header_bytenr(eb);
603 if (found_start != eb->start) {
604 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
606 (unsigned long long)found_start,
607 (unsigned long long)eb->start);
611 if (check_tree_block_fsid(root, eb)) {
612 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
613 (unsigned long long)eb->start);
617 found_level = btrfs_header_level(eb);
619 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
622 ret = csum_tree_block(root, eb, 1);
629 * If this is a leaf block and it is corrupt, set the corrupt bit so
630 * that we don't try and read the other copies of this block, just
633 if (found_level == 0 && check_leaf(root, eb)) {
634 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
639 set_extent_buffer_uptodate(eb);
641 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
642 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
643 btree_readahead_hook(root, eb, eb->start, ret);
647 clear_extent_buffer_uptodate(eb);
648 free_extent_buffer(eb);
653 static int btree_io_failed_hook(struct page *page, int failed_mirror)
655 struct extent_buffer *eb;
656 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658 eb = (struct extent_buffer *)page->private;
659 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
660 eb->read_mirror = failed_mirror;
661 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
662 btree_readahead_hook(root, eb, eb->start, -EIO);
663 return -EIO; /* we fixed nothing */
666 static void end_workqueue_bio(struct bio *bio, int err)
668 struct end_io_wq *end_io_wq = bio->bi_private;
669 struct btrfs_fs_info *fs_info;
671 fs_info = end_io_wq->info;
672 end_io_wq->error = err;
673 end_io_wq->work.func = end_workqueue_fn;
674 end_io_wq->work.flags = 0;
676 if (bio->bi_rw & REQ_WRITE) {
677 if (end_io_wq->metadata == 1)
678 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680 else if (end_io_wq->metadata == 2)
681 btrfs_queue_worker(&fs_info->endio_freespace_worker,
684 btrfs_queue_worker(&fs_info->endio_write_workers,
687 if (end_io_wq->metadata)
688 btrfs_queue_worker(&fs_info->endio_meta_workers,
691 btrfs_queue_worker(&fs_info->endio_workers,
697 * For the metadata arg you want
700 * 1 - if normal metadta
701 * 2 - if writing to the free space cache area
703 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
706 struct end_io_wq *end_io_wq;
707 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
711 end_io_wq->private = bio->bi_private;
712 end_io_wq->end_io = bio->bi_end_io;
713 end_io_wq->info = info;
714 end_io_wq->error = 0;
715 end_io_wq->bio = bio;
716 end_io_wq->metadata = metadata;
718 bio->bi_private = end_io_wq;
719 bio->bi_end_io = end_workqueue_bio;
723 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
725 unsigned long limit = min_t(unsigned long,
726 info->workers.max_workers,
727 info->fs_devices->open_devices);
731 static void run_one_async_start(struct btrfs_work *work)
733 struct async_submit_bio *async;
736 async = container_of(work, struct async_submit_bio, work);
737 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
738 async->mirror_num, async->bio_flags,
744 static void run_one_async_done(struct btrfs_work *work)
746 struct btrfs_fs_info *fs_info;
747 struct async_submit_bio *async;
750 async = container_of(work, struct async_submit_bio, work);
751 fs_info = BTRFS_I(async->inode)->root->fs_info;
753 limit = btrfs_async_submit_limit(fs_info);
754 limit = limit * 2 / 3;
756 atomic_dec(&fs_info->nr_async_submits);
758 if (atomic_read(&fs_info->nr_async_submits) < limit &&
759 waitqueue_active(&fs_info->async_submit_wait))
760 wake_up(&fs_info->async_submit_wait);
762 /* If an error occured we just want to clean up the bio and move on */
764 bio_endio(async->bio, async->error);
768 async->submit_bio_done(async->inode, async->rw, async->bio,
769 async->mirror_num, async->bio_flags,
773 static void run_one_async_free(struct btrfs_work *work)
775 struct async_submit_bio *async;
777 async = container_of(work, struct async_submit_bio, work);
781 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
782 int rw, struct bio *bio, int mirror_num,
783 unsigned long bio_flags,
785 extent_submit_bio_hook_t *submit_bio_start,
786 extent_submit_bio_hook_t *submit_bio_done)
788 struct async_submit_bio *async;
790 async = kmalloc(sizeof(*async), GFP_NOFS);
794 async->inode = inode;
797 async->mirror_num = mirror_num;
798 async->submit_bio_start = submit_bio_start;
799 async->submit_bio_done = submit_bio_done;
801 async->work.func = run_one_async_start;
802 async->work.ordered_func = run_one_async_done;
803 async->work.ordered_free = run_one_async_free;
805 async->work.flags = 0;
806 async->bio_flags = bio_flags;
807 async->bio_offset = bio_offset;
811 atomic_inc(&fs_info->nr_async_submits);
814 btrfs_set_work_high_prio(&async->work);
816 btrfs_queue_worker(&fs_info->workers, &async->work);
818 while (atomic_read(&fs_info->async_submit_draining) &&
819 atomic_read(&fs_info->nr_async_submits)) {
820 wait_event(fs_info->async_submit_wait,
821 (atomic_read(&fs_info->nr_async_submits) == 0));
827 static int btree_csum_one_bio(struct bio *bio)
829 struct bio_vec *bvec = bio->bi_io_vec;
831 struct btrfs_root *root;
834 WARN_ON(bio->bi_vcnt <= 0);
835 while (bio_index < bio->bi_vcnt) {
836 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
837 ret = csum_dirty_buffer(root, bvec->bv_page);
846 static int __btree_submit_bio_start(struct inode *inode, int rw,
847 struct bio *bio, int mirror_num,
848 unsigned long bio_flags,
852 * when we're called for a write, we're already in the async
853 * submission context. Just jump into btrfs_map_bio
855 return btree_csum_one_bio(bio);
858 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
859 int mirror_num, unsigned long bio_flags,
863 * when we're called for a write, we're already in the async
864 * submission context. Just jump into btrfs_map_bio
866 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
869 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
870 int mirror_num, unsigned long bio_flags,
875 if (!(rw & REQ_WRITE)) {
878 * called for a read, do the setup so that checksum validation
879 * can happen in the async kernel threads
881 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
885 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
890 * kthread helpers are used to submit writes so that checksumming
891 * can happen in parallel across all CPUs
893 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
894 inode, rw, bio, mirror_num, 0,
896 __btree_submit_bio_start,
897 __btree_submit_bio_done);
900 #ifdef CONFIG_MIGRATION
901 static int btree_migratepage(struct address_space *mapping,
902 struct page *newpage, struct page *page,
903 enum migrate_mode mode)
906 * we can't safely write a btree page from here,
907 * we haven't done the locking hook
912 * Buffers may be managed in a filesystem specific way.
913 * We must have no buffers or drop them.
915 if (page_has_private(page) &&
916 !try_to_release_page(page, GFP_KERNEL))
918 return migrate_page(mapping, newpage, page, mode);
923 static int btree_writepages(struct address_space *mapping,
924 struct writeback_control *wbc)
926 struct extent_io_tree *tree;
927 tree = &BTRFS_I(mapping->host)->io_tree;
928 if (wbc->sync_mode == WB_SYNC_NONE) {
929 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
931 unsigned long thresh = 32 * 1024 * 1024;
933 if (wbc->for_kupdate)
936 /* this is a bit racy, but that's ok */
937 num_dirty = root->fs_info->dirty_metadata_bytes;
938 if (num_dirty < thresh)
941 return btree_write_cache_pages(mapping, wbc);
944 static int btree_readpage(struct file *file, struct page *page)
946 struct extent_io_tree *tree;
947 tree = &BTRFS_I(page->mapping->host)->io_tree;
948 return extent_read_full_page(tree, page, btree_get_extent, 0);
951 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
953 if (PageWriteback(page) || PageDirty(page))
956 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
957 * slab allocation from alloc_extent_state down the callchain where
958 * it'd hit a BUG_ON as those flags are not allowed.
960 gfp_flags &= ~GFP_SLAB_BUG_MASK;
962 return try_release_extent_buffer(page, gfp_flags);
965 static void btree_invalidatepage(struct page *page, unsigned long offset)
967 struct extent_io_tree *tree;
968 tree = &BTRFS_I(page->mapping->host)->io_tree;
969 extent_invalidatepage(tree, page, offset);
970 btree_releasepage(page, GFP_NOFS);
971 if (PagePrivate(page)) {
972 printk(KERN_WARNING "btrfs warning page private not zero "
973 "on page %llu\n", (unsigned long long)page_offset(page));
974 ClearPagePrivate(page);
975 set_page_private(page, 0);
976 page_cache_release(page);
980 static int btree_set_page_dirty(struct page *page)
982 struct extent_buffer *eb;
984 BUG_ON(!PagePrivate(page));
985 eb = (struct extent_buffer *)page->private;
987 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
988 BUG_ON(!atomic_read(&eb->refs));
989 btrfs_assert_tree_locked(eb);
990 return __set_page_dirty_nobuffers(page);
993 static const struct address_space_operations btree_aops = {
994 .readpage = btree_readpage,
995 .writepages = btree_writepages,
996 .releasepage = btree_releasepage,
997 .invalidatepage = btree_invalidatepage,
998 #ifdef CONFIG_MIGRATION
999 .migratepage = btree_migratepage,
1001 .set_page_dirty = btree_set_page_dirty,
1004 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1007 struct extent_buffer *buf = NULL;
1008 struct inode *btree_inode = root->fs_info->btree_inode;
1011 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1014 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1015 buf, 0, WAIT_NONE, btree_get_extent, 0);
1016 free_extent_buffer(buf);
1020 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1021 int mirror_num, struct extent_buffer **eb)
1023 struct extent_buffer *buf = NULL;
1024 struct inode *btree_inode = root->fs_info->btree_inode;
1025 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1028 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1032 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1035 btree_get_extent, mirror_num);
1037 free_extent_buffer(buf);
1041 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1042 free_extent_buffer(buf);
1044 } else if (extent_buffer_uptodate(buf)) {
1047 free_extent_buffer(buf);
1052 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1053 u64 bytenr, u32 blocksize)
1055 struct inode *btree_inode = root->fs_info->btree_inode;
1056 struct extent_buffer *eb;
1057 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1062 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1063 u64 bytenr, u32 blocksize)
1065 struct inode *btree_inode = root->fs_info->btree_inode;
1066 struct extent_buffer *eb;
1068 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1074 int btrfs_write_tree_block(struct extent_buffer *buf)
1076 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1077 buf->start + buf->len - 1);
1080 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082 return filemap_fdatawait_range(buf->pages[0]->mapping,
1083 buf->start, buf->start + buf->len - 1);
1086 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1087 u32 blocksize, u64 parent_transid)
1089 struct extent_buffer *buf = NULL;
1092 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1096 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1101 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1102 struct extent_buffer *buf)
1104 if (btrfs_header_generation(buf) ==
1105 root->fs_info->running_transaction->transid) {
1106 btrfs_assert_tree_locked(buf);
1108 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1109 spin_lock(&root->fs_info->delalloc_lock);
1110 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1111 root->fs_info->dirty_metadata_bytes -= buf->len;
1113 spin_unlock(&root->fs_info->delalloc_lock);
1114 btrfs_panic(root->fs_info, -EOVERFLOW,
1115 "Can't clear %lu bytes from "
1116 " dirty_mdatadata_bytes (%lu)",
1118 root->fs_info->dirty_metadata_bytes);
1120 spin_unlock(&root->fs_info->delalloc_lock);
1123 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1124 btrfs_set_lock_blocking(buf);
1125 clear_extent_buffer_dirty(buf);
1129 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1130 u32 stripesize, struct btrfs_root *root,
1131 struct btrfs_fs_info *fs_info,
1135 root->commit_root = NULL;
1136 root->sectorsize = sectorsize;
1137 root->nodesize = nodesize;
1138 root->leafsize = leafsize;
1139 root->stripesize = stripesize;
1141 root->track_dirty = 0;
1143 root->orphan_item_inserted = 0;
1144 root->orphan_cleanup_state = 0;
1146 root->objectid = objectid;
1147 root->last_trans = 0;
1148 root->highest_objectid = 0;
1150 root->inode_tree = RB_ROOT;
1151 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1152 root->block_rsv = NULL;
1153 root->orphan_block_rsv = NULL;
1155 INIT_LIST_HEAD(&root->dirty_list);
1156 INIT_LIST_HEAD(&root->root_list);
1157 spin_lock_init(&root->orphan_lock);
1158 spin_lock_init(&root->inode_lock);
1159 spin_lock_init(&root->accounting_lock);
1160 mutex_init(&root->objectid_mutex);
1161 mutex_init(&root->log_mutex);
1162 init_waitqueue_head(&root->log_writer_wait);
1163 init_waitqueue_head(&root->log_commit_wait[0]);
1164 init_waitqueue_head(&root->log_commit_wait[1]);
1165 atomic_set(&root->log_commit[0], 0);
1166 atomic_set(&root->log_commit[1], 0);
1167 atomic_set(&root->log_writers, 0);
1168 atomic_set(&root->orphan_inodes, 0);
1169 root->log_batch = 0;
1170 root->log_transid = 0;
1171 root->last_log_commit = 0;
1172 extent_io_tree_init(&root->dirty_log_pages,
1173 fs_info->btree_inode->i_mapping);
1175 memset(&root->root_key, 0, sizeof(root->root_key));
1176 memset(&root->root_item, 0, sizeof(root->root_item));
1177 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1178 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1179 root->defrag_trans_start = fs_info->generation;
1180 init_completion(&root->kobj_unregister);
1181 root->defrag_running = 0;
1182 root->root_key.objectid = objectid;
1186 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1187 struct btrfs_fs_info *fs_info,
1189 struct btrfs_root *root)
1195 __setup_root(tree_root->nodesize, tree_root->leafsize,
1196 tree_root->sectorsize, tree_root->stripesize,
1197 root, fs_info, objectid);
1198 ret = btrfs_find_last_root(tree_root, objectid,
1199 &root->root_item, &root->root_key);
1205 generation = btrfs_root_generation(&root->root_item);
1206 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1207 root->commit_root = NULL;
1208 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1209 blocksize, generation);
1210 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1211 free_extent_buffer(root->node);
1215 root->commit_root = btrfs_root_node(root);
1219 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1221 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223 root->fs_info = fs_info;
1227 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1228 struct btrfs_fs_info *fs_info)
1230 struct btrfs_root *root;
1231 struct btrfs_root *tree_root = fs_info->tree_root;
1232 struct extent_buffer *leaf;
1234 root = btrfs_alloc_root(fs_info);
1236 return ERR_PTR(-ENOMEM);
1238 __setup_root(tree_root->nodesize, tree_root->leafsize,
1239 tree_root->sectorsize, tree_root->stripesize,
1240 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1242 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1243 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1244 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1246 * log trees do not get reference counted because they go away
1247 * before a real commit is actually done. They do store pointers
1248 * to file data extents, and those reference counts still get
1249 * updated (along with back refs to the log tree).
1253 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1254 BTRFS_TREE_LOG_OBJECTID, NULL,
1258 return ERR_CAST(leaf);
1261 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1262 btrfs_set_header_bytenr(leaf, leaf->start);
1263 btrfs_set_header_generation(leaf, trans->transid);
1264 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1265 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1268 write_extent_buffer(root->node, root->fs_info->fsid,
1269 (unsigned long)btrfs_header_fsid(root->node),
1271 btrfs_mark_buffer_dirty(root->node);
1272 btrfs_tree_unlock(root->node);
1276 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1277 struct btrfs_fs_info *fs_info)
1279 struct btrfs_root *log_root;
1281 log_root = alloc_log_tree(trans, fs_info);
1282 if (IS_ERR(log_root))
1283 return PTR_ERR(log_root);
1284 WARN_ON(fs_info->log_root_tree);
1285 fs_info->log_root_tree = log_root;
1289 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1290 struct btrfs_root *root)
1292 struct btrfs_root *log_root;
1293 struct btrfs_inode_item *inode_item;
1295 log_root = alloc_log_tree(trans, root->fs_info);
1296 if (IS_ERR(log_root))
1297 return PTR_ERR(log_root);
1299 log_root->last_trans = trans->transid;
1300 log_root->root_key.offset = root->root_key.objectid;
1302 inode_item = &log_root->root_item.inode;
1303 inode_item->generation = cpu_to_le64(1);
1304 inode_item->size = cpu_to_le64(3);
1305 inode_item->nlink = cpu_to_le32(1);
1306 inode_item->nbytes = cpu_to_le64(root->leafsize);
1307 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1309 btrfs_set_root_node(&log_root->root_item, log_root->node);
1311 WARN_ON(root->log_root);
1312 root->log_root = log_root;
1313 root->log_transid = 0;
1314 root->last_log_commit = 0;
1318 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1319 struct btrfs_key *location)
1321 struct btrfs_root *root;
1322 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1323 struct btrfs_path *path;
1324 struct extent_buffer *l;
1329 root = btrfs_alloc_root(fs_info);
1331 return ERR_PTR(-ENOMEM);
1332 if (location->offset == (u64)-1) {
1333 ret = find_and_setup_root(tree_root, fs_info,
1334 location->objectid, root);
1337 return ERR_PTR(ret);
1342 __setup_root(tree_root->nodesize, tree_root->leafsize,
1343 tree_root->sectorsize, tree_root->stripesize,
1344 root, fs_info, location->objectid);
1346 path = btrfs_alloc_path();
1349 return ERR_PTR(-ENOMEM);
1351 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1354 read_extent_buffer(l, &root->root_item,
1355 btrfs_item_ptr_offset(l, path->slots[0]),
1356 sizeof(root->root_item));
1357 memcpy(&root->root_key, location, sizeof(*location));
1359 btrfs_free_path(path);
1364 return ERR_PTR(ret);
1367 generation = btrfs_root_generation(&root->root_item);
1368 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1369 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1370 blocksize, generation);
1371 root->commit_root = btrfs_root_node(root);
1372 BUG_ON(!root->node); /* -ENOMEM */
1374 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1376 btrfs_check_and_init_root_item(&root->root_item);
1382 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1383 struct btrfs_key *location)
1385 struct btrfs_root *root;
1388 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1389 return fs_info->tree_root;
1390 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1391 return fs_info->extent_root;
1392 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1393 return fs_info->chunk_root;
1394 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1395 return fs_info->dev_root;
1396 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1397 return fs_info->csum_root;
1399 spin_lock(&fs_info->fs_roots_radix_lock);
1400 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1401 (unsigned long)location->objectid);
1402 spin_unlock(&fs_info->fs_roots_radix_lock);
1406 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1410 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1411 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1413 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1418 btrfs_init_free_ino_ctl(root);
1419 mutex_init(&root->fs_commit_mutex);
1420 spin_lock_init(&root->cache_lock);
1421 init_waitqueue_head(&root->cache_wait);
1423 ret = get_anon_bdev(&root->anon_dev);
1427 if (btrfs_root_refs(&root->root_item) == 0) {
1432 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1436 root->orphan_item_inserted = 1;
1438 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1442 spin_lock(&fs_info->fs_roots_radix_lock);
1443 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1444 (unsigned long)root->root_key.objectid,
1449 spin_unlock(&fs_info->fs_roots_radix_lock);
1450 radix_tree_preload_end();
1452 if (ret == -EEXIST) {
1459 ret = btrfs_find_dead_roots(fs_info->tree_root,
1460 root->root_key.objectid);
1465 return ERR_PTR(ret);
1468 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1470 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1472 struct btrfs_device *device;
1473 struct backing_dev_info *bdi;
1476 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1479 bdi = blk_get_backing_dev_info(device->bdev);
1480 if (bdi && bdi_congested(bdi, bdi_bits)) {
1490 * If this fails, caller must call bdi_destroy() to get rid of the
1493 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1497 bdi->capabilities = BDI_CAP_MAP_COPY;
1498 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1502 bdi->ra_pages = default_backing_dev_info.ra_pages;
1503 bdi->congested_fn = btrfs_congested_fn;
1504 bdi->congested_data = info;
1509 * called by the kthread helper functions to finally call the bio end_io
1510 * functions. This is where read checksum verification actually happens
1512 static void end_workqueue_fn(struct btrfs_work *work)
1515 struct end_io_wq *end_io_wq;
1516 struct btrfs_fs_info *fs_info;
1519 end_io_wq = container_of(work, struct end_io_wq, work);
1520 bio = end_io_wq->bio;
1521 fs_info = end_io_wq->info;
1523 error = end_io_wq->error;
1524 bio->bi_private = end_io_wq->private;
1525 bio->bi_end_io = end_io_wq->end_io;
1527 bio_endio(bio, error);
1530 static int cleaner_kthread(void *arg)
1532 struct btrfs_root *root = arg;
1535 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1537 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1538 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1539 btrfs_run_delayed_iputs(root);
1540 btrfs_clean_old_snapshots(root);
1541 mutex_unlock(&root->fs_info->cleaner_mutex);
1542 btrfs_run_defrag_inodes(root->fs_info);
1545 if (!try_to_freeze()) {
1546 set_current_state(TASK_INTERRUPTIBLE);
1547 if (!kthread_should_stop())
1549 __set_current_state(TASK_RUNNING);
1551 } while (!kthread_should_stop());
1555 static int transaction_kthread(void *arg)
1557 struct btrfs_root *root = arg;
1558 struct btrfs_trans_handle *trans;
1559 struct btrfs_transaction *cur;
1562 unsigned long delay;
1566 cannot_commit = false;
1568 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1569 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1571 spin_lock(&root->fs_info->trans_lock);
1572 cur = root->fs_info->running_transaction;
1574 spin_unlock(&root->fs_info->trans_lock);
1578 now = get_seconds();
1579 if (!cur->blocked &&
1580 (now < cur->start_time || now - cur->start_time < 30)) {
1581 spin_unlock(&root->fs_info->trans_lock);
1585 transid = cur->transid;
1586 spin_unlock(&root->fs_info->trans_lock);
1588 /* If the file system is aborted, this will always fail. */
1589 trans = btrfs_join_transaction(root);
1590 if (IS_ERR(trans)) {
1591 cannot_commit = true;
1594 if (transid == trans->transid) {
1595 btrfs_commit_transaction(trans, root);
1597 btrfs_end_transaction(trans, root);
1600 wake_up_process(root->fs_info->cleaner_kthread);
1601 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1603 if (!try_to_freeze()) {
1604 set_current_state(TASK_INTERRUPTIBLE);
1605 if (!kthread_should_stop() &&
1606 (!btrfs_transaction_blocked(root->fs_info) ||
1608 schedule_timeout(delay);
1609 __set_current_state(TASK_RUNNING);
1611 } while (!kthread_should_stop());
1616 * this will find the highest generation in the array of
1617 * root backups. The index of the highest array is returned,
1618 * or -1 if we can't find anything.
1620 * We check to make sure the array is valid by comparing the
1621 * generation of the latest root in the array with the generation
1622 * in the super block. If they don't match we pitch it.
1624 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1627 int newest_index = -1;
1628 struct btrfs_root_backup *root_backup;
1631 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1632 root_backup = info->super_copy->super_roots + i;
1633 cur = btrfs_backup_tree_root_gen(root_backup);
1634 if (cur == newest_gen)
1638 /* check to see if we actually wrapped around */
1639 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1640 root_backup = info->super_copy->super_roots;
1641 cur = btrfs_backup_tree_root_gen(root_backup);
1642 if (cur == newest_gen)
1645 return newest_index;
1650 * find the oldest backup so we know where to store new entries
1651 * in the backup array. This will set the backup_root_index
1652 * field in the fs_info struct
1654 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1657 int newest_index = -1;
1659 newest_index = find_newest_super_backup(info, newest_gen);
1660 /* if there was garbage in there, just move along */
1661 if (newest_index == -1) {
1662 info->backup_root_index = 0;
1664 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1669 * copy all the root pointers into the super backup array.
1670 * this will bump the backup pointer by one when it is
1673 static void backup_super_roots(struct btrfs_fs_info *info)
1676 struct btrfs_root_backup *root_backup;
1679 next_backup = info->backup_root_index;
1680 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1681 BTRFS_NUM_BACKUP_ROOTS;
1684 * just overwrite the last backup if we're at the same generation
1685 * this happens only at umount
1687 root_backup = info->super_for_commit->super_roots + last_backup;
1688 if (btrfs_backup_tree_root_gen(root_backup) ==
1689 btrfs_header_generation(info->tree_root->node))
1690 next_backup = last_backup;
1692 root_backup = info->super_for_commit->super_roots + next_backup;
1695 * make sure all of our padding and empty slots get zero filled
1696 * regardless of which ones we use today
1698 memset(root_backup, 0, sizeof(*root_backup));
1700 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1702 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1703 btrfs_set_backup_tree_root_gen(root_backup,
1704 btrfs_header_generation(info->tree_root->node));
1706 btrfs_set_backup_tree_root_level(root_backup,
1707 btrfs_header_level(info->tree_root->node));
1709 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1710 btrfs_set_backup_chunk_root_gen(root_backup,
1711 btrfs_header_generation(info->chunk_root->node));
1712 btrfs_set_backup_chunk_root_level(root_backup,
1713 btrfs_header_level(info->chunk_root->node));
1715 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1716 btrfs_set_backup_extent_root_gen(root_backup,
1717 btrfs_header_generation(info->extent_root->node));
1718 btrfs_set_backup_extent_root_level(root_backup,
1719 btrfs_header_level(info->extent_root->node));
1722 * we might commit during log recovery, which happens before we set
1723 * the fs_root. Make sure it is valid before we fill it in.
1725 if (info->fs_root && info->fs_root->node) {
1726 btrfs_set_backup_fs_root(root_backup,
1727 info->fs_root->node->start);
1728 btrfs_set_backup_fs_root_gen(root_backup,
1729 btrfs_header_generation(info->fs_root->node));
1730 btrfs_set_backup_fs_root_level(root_backup,
1731 btrfs_header_level(info->fs_root->node));
1734 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1735 btrfs_set_backup_dev_root_gen(root_backup,
1736 btrfs_header_generation(info->dev_root->node));
1737 btrfs_set_backup_dev_root_level(root_backup,
1738 btrfs_header_level(info->dev_root->node));
1740 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1741 btrfs_set_backup_csum_root_gen(root_backup,
1742 btrfs_header_generation(info->csum_root->node));
1743 btrfs_set_backup_csum_root_level(root_backup,
1744 btrfs_header_level(info->csum_root->node));
1746 btrfs_set_backup_total_bytes(root_backup,
1747 btrfs_super_total_bytes(info->super_copy));
1748 btrfs_set_backup_bytes_used(root_backup,
1749 btrfs_super_bytes_used(info->super_copy));
1750 btrfs_set_backup_num_devices(root_backup,
1751 btrfs_super_num_devices(info->super_copy));
1754 * if we don't copy this out to the super_copy, it won't get remembered
1755 * for the next commit
1757 memcpy(&info->super_copy->super_roots,
1758 &info->super_for_commit->super_roots,
1759 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1763 * this copies info out of the root backup array and back into
1764 * the in-memory super block. It is meant to help iterate through
1765 * the array, so you send it the number of backups you've already
1766 * tried and the last backup index you used.
1768 * this returns -1 when it has tried all the backups
1770 static noinline int next_root_backup(struct btrfs_fs_info *info,
1771 struct btrfs_super_block *super,
1772 int *num_backups_tried, int *backup_index)
1774 struct btrfs_root_backup *root_backup;
1775 int newest = *backup_index;
1777 if (*num_backups_tried == 0) {
1778 u64 gen = btrfs_super_generation(super);
1780 newest = find_newest_super_backup(info, gen);
1784 *backup_index = newest;
1785 *num_backups_tried = 1;
1786 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1787 /* we've tried all the backups, all done */
1790 /* jump to the next oldest backup */
1791 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1792 BTRFS_NUM_BACKUP_ROOTS;
1793 *backup_index = newest;
1794 *num_backups_tried += 1;
1796 root_backup = super->super_roots + newest;
1798 btrfs_set_super_generation(super,
1799 btrfs_backup_tree_root_gen(root_backup));
1800 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1801 btrfs_set_super_root_level(super,
1802 btrfs_backup_tree_root_level(root_backup));
1803 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1806 * fixme: the total bytes and num_devices need to match or we should
1809 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1810 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1814 /* helper to cleanup tree roots */
1815 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1817 free_extent_buffer(info->tree_root->node);
1818 free_extent_buffer(info->tree_root->commit_root);
1819 free_extent_buffer(info->dev_root->node);
1820 free_extent_buffer(info->dev_root->commit_root);
1821 free_extent_buffer(info->extent_root->node);
1822 free_extent_buffer(info->extent_root->commit_root);
1823 free_extent_buffer(info->csum_root->node);
1824 free_extent_buffer(info->csum_root->commit_root);
1826 info->tree_root->node = NULL;
1827 info->tree_root->commit_root = NULL;
1828 info->dev_root->node = NULL;
1829 info->dev_root->commit_root = NULL;
1830 info->extent_root->node = NULL;
1831 info->extent_root->commit_root = NULL;
1832 info->csum_root->node = NULL;
1833 info->csum_root->commit_root = NULL;
1836 free_extent_buffer(info->chunk_root->node);
1837 free_extent_buffer(info->chunk_root->commit_root);
1838 info->chunk_root->node = NULL;
1839 info->chunk_root->commit_root = NULL;
1844 int open_ctree(struct super_block *sb,
1845 struct btrfs_fs_devices *fs_devices,
1855 struct btrfs_key location;
1856 struct buffer_head *bh;
1857 struct btrfs_super_block *disk_super;
1858 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1859 struct btrfs_root *tree_root;
1860 struct btrfs_root *extent_root;
1861 struct btrfs_root *csum_root;
1862 struct btrfs_root *chunk_root;
1863 struct btrfs_root *dev_root;
1864 struct btrfs_root *log_tree_root;
1867 int num_backups_tried = 0;
1868 int backup_index = 0;
1870 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1871 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1872 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1873 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1874 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1876 if (!tree_root || !extent_root || !csum_root ||
1877 !chunk_root || !dev_root) {
1882 ret = init_srcu_struct(&fs_info->subvol_srcu);
1888 ret = setup_bdi(fs_info, &fs_info->bdi);
1894 fs_info->btree_inode = new_inode(sb);
1895 if (!fs_info->btree_inode) {
1900 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1902 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1903 INIT_LIST_HEAD(&fs_info->trans_list);
1904 INIT_LIST_HEAD(&fs_info->dead_roots);
1905 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1906 INIT_LIST_HEAD(&fs_info->hashers);
1907 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1908 INIT_LIST_HEAD(&fs_info->ordered_operations);
1909 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1910 spin_lock_init(&fs_info->delalloc_lock);
1911 spin_lock_init(&fs_info->trans_lock);
1912 spin_lock_init(&fs_info->ref_cache_lock);
1913 spin_lock_init(&fs_info->fs_roots_radix_lock);
1914 spin_lock_init(&fs_info->delayed_iput_lock);
1915 spin_lock_init(&fs_info->defrag_inodes_lock);
1916 spin_lock_init(&fs_info->free_chunk_lock);
1917 mutex_init(&fs_info->reloc_mutex);
1919 init_completion(&fs_info->kobj_unregister);
1920 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1921 INIT_LIST_HEAD(&fs_info->space_info);
1922 btrfs_mapping_init(&fs_info->mapping_tree);
1923 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1924 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1925 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1926 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1927 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1928 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1929 atomic_set(&fs_info->nr_async_submits, 0);
1930 atomic_set(&fs_info->async_delalloc_pages, 0);
1931 atomic_set(&fs_info->async_submit_draining, 0);
1932 atomic_set(&fs_info->nr_async_bios, 0);
1933 atomic_set(&fs_info->defrag_running, 0);
1935 fs_info->max_inline = 8192 * 1024;
1936 fs_info->metadata_ratio = 0;
1937 fs_info->defrag_inodes = RB_ROOT;
1938 fs_info->trans_no_join = 0;
1939 fs_info->free_chunk_space = 0;
1941 /* readahead state */
1942 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1943 spin_lock_init(&fs_info->reada_lock);
1945 fs_info->thread_pool_size = min_t(unsigned long,
1946 num_online_cpus() + 2, 8);
1948 INIT_LIST_HEAD(&fs_info->ordered_extents);
1949 spin_lock_init(&fs_info->ordered_extent_lock);
1950 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1952 if (!fs_info->delayed_root) {
1956 btrfs_init_delayed_root(fs_info->delayed_root);
1958 mutex_init(&fs_info->scrub_lock);
1959 atomic_set(&fs_info->scrubs_running, 0);
1960 atomic_set(&fs_info->scrub_pause_req, 0);
1961 atomic_set(&fs_info->scrubs_paused, 0);
1962 atomic_set(&fs_info->scrub_cancel_req, 0);
1963 init_waitqueue_head(&fs_info->scrub_pause_wait);
1964 init_rwsem(&fs_info->scrub_super_lock);
1965 fs_info->scrub_workers_refcnt = 0;
1966 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1967 fs_info->check_integrity_print_mask = 0;
1970 spin_lock_init(&fs_info->balance_lock);
1971 mutex_init(&fs_info->balance_mutex);
1972 atomic_set(&fs_info->balance_running, 0);
1973 atomic_set(&fs_info->balance_pause_req, 0);
1974 atomic_set(&fs_info->balance_cancel_req, 0);
1975 fs_info->balance_ctl = NULL;
1976 init_waitqueue_head(&fs_info->balance_wait_q);
1978 sb->s_blocksize = 4096;
1979 sb->s_blocksize_bits = blksize_bits(4096);
1980 sb->s_bdi = &fs_info->bdi;
1982 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1983 set_nlink(fs_info->btree_inode, 1);
1985 * we set the i_size on the btree inode to the max possible int.
1986 * the real end of the address space is determined by all of
1987 * the devices in the system
1989 fs_info->btree_inode->i_size = OFFSET_MAX;
1990 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1991 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1993 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1994 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1995 fs_info->btree_inode->i_mapping);
1996 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
1997 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
1999 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2001 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2002 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2003 sizeof(struct btrfs_key));
2004 set_bit(BTRFS_INODE_DUMMY,
2005 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2006 insert_inode_hash(fs_info->btree_inode);
2008 spin_lock_init(&fs_info->block_group_cache_lock);
2009 fs_info->block_group_cache_tree = RB_ROOT;
2011 extent_io_tree_init(&fs_info->freed_extents[0],
2012 fs_info->btree_inode->i_mapping);
2013 extent_io_tree_init(&fs_info->freed_extents[1],
2014 fs_info->btree_inode->i_mapping);
2015 fs_info->pinned_extents = &fs_info->freed_extents[0];
2016 fs_info->do_barriers = 1;
2019 mutex_init(&fs_info->ordered_operations_mutex);
2020 mutex_init(&fs_info->tree_log_mutex);
2021 mutex_init(&fs_info->chunk_mutex);
2022 mutex_init(&fs_info->transaction_kthread_mutex);
2023 mutex_init(&fs_info->cleaner_mutex);
2024 mutex_init(&fs_info->volume_mutex);
2025 init_rwsem(&fs_info->extent_commit_sem);
2026 init_rwsem(&fs_info->cleanup_work_sem);
2027 init_rwsem(&fs_info->subvol_sem);
2029 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2030 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2032 init_waitqueue_head(&fs_info->transaction_throttle);
2033 init_waitqueue_head(&fs_info->transaction_wait);
2034 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2035 init_waitqueue_head(&fs_info->async_submit_wait);
2037 __setup_root(4096, 4096, 4096, 4096, tree_root,
2038 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2040 invalidate_bdev(fs_devices->latest_bdev);
2041 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2047 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2048 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2049 sizeof(*fs_info->super_for_commit));
2052 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2054 disk_super = fs_info->super_copy;
2055 if (!btrfs_super_root(disk_super))
2058 /* check FS state, whether FS is broken. */
2059 fs_info->fs_state |= btrfs_super_flags(disk_super);
2061 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2063 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2069 * run through our array of backup supers and setup
2070 * our ring pointer to the oldest one
2072 generation = btrfs_super_generation(disk_super);
2073 find_oldest_super_backup(fs_info, generation);
2076 * In the long term, we'll store the compression type in the super
2077 * block, and it'll be used for per file compression control.
2079 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2081 ret = btrfs_parse_options(tree_root, options);
2087 features = btrfs_super_incompat_flags(disk_super) &
2088 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2090 printk(KERN_ERR "BTRFS: couldn't mount because of "
2091 "unsupported optional features (%Lx).\n",
2092 (unsigned long long)features);
2097 if (btrfs_super_leafsize(disk_super) !=
2098 btrfs_super_nodesize(disk_super)) {
2099 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2100 "blocksizes don't match. node %d leaf %d\n",
2101 btrfs_super_nodesize(disk_super),
2102 btrfs_super_leafsize(disk_super));
2106 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2107 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2108 "blocksize (%d) was too large\n",
2109 btrfs_super_leafsize(disk_super));
2114 features = btrfs_super_incompat_flags(disk_super);
2115 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2116 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2117 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2120 * flag our filesystem as having big metadata blocks if
2121 * they are bigger than the page size
2123 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2124 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2125 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2126 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2129 nodesize = btrfs_super_nodesize(disk_super);
2130 leafsize = btrfs_super_leafsize(disk_super);
2131 sectorsize = btrfs_super_sectorsize(disk_super);
2132 stripesize = btrfs_super_stripesize(disk_super);
2135 * mixed block groups end up with duplicate but slightly offset
2136 * extent buffers for the same range. It leads to corruptions
2138 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2139 (sectorsize != leafsize)) {
2140 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2141 "are not allowed for mixed block groups on %s\n",
2146 btrfs_set_super_incompat_flags(disk_super, features);
2148 features = btrfs_super_compat_ro_flags(disk_super) &
2149 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2150 if (!(sb->s_flags & MS_RDONLY) && features) {
2151 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2152 "unsupported option features (%Lx).\n",
2153 (unsigned long long)features);
2158 btrfs_init_workers(&fs_info->generic_worker,
2159 "genwork", 1, NULL);
2161 btrfs_init_workers(&fs_info->workers, "worker",
2162 fs_info->thread_pool_size,
2163 &fs_info->generic_worker);
2165 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2166 fs_info->thread_pool_size,
2167 &fs_info->generic_worker);
2169 btrfs_init_workers(&fs_info->submit_workers, "submit",
2170 min_t(u64, fs_devices->num_devices,
2171 fs_info->thread_pool_size),
2172 &fs_info->generic_worker);
2174 btrfs_init_workers(&fs_info->caching_workers, "cache",
2175 2, &fs_info->generic_worker);
2177 /* a higher idle thresh on the submit workers makes it much more
2178 * likely that bios will be send down in a sane order to the
2181 fs_info->submit_workers.idle_thresh = 64;
2183 fs_info->workers.idle_thresh = 16;
2184 fs_info->workers.ordered = 1;
2186 fs_info->delalloc_workers.idle_thresh = 2;
2187 fs_info->delalloc_workers.ordered = 1;
2189 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2190 &fs_info->generic_worker);
2191 btrfs_init_workers(&fs_info->endio_workers, "endio",
2192 fs_info->thread_pool_size,
2193 &fs_info->generic_worker);
2194 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2195 fs_info->thread_pool_size,
2196 &fs_info->generic_worker);
2197 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2198 "endio-meta-write", fs_info->thread_pool_size,
2199 &fs_info->generic_worker);
2200 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2201 fs_info->thread_pool_size,
2202 &fs_info->generic_worker);
2203 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2204 1, &fs_info->generic_worker);
2205 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2206 fs_info->thread_pool_size,
2207 &fs_info->generic_worker);
2208 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2209 fs_info->thread_pool_size,
2210 &fs_info->generic_worker);
2213 * endios are largely parallel and should have a very
2216 fs_info->endio_workers.idle_thresh = 4;
2217 fs_info->endio_meta_workers.idle_thresh = 4;
2219 fs_info->endio_write_workers.idle_thresh = 2;
2220 fs_info->endio_meta_write_workers.idle_thresh = 2;
2221 fs_info->readahead_workers.idle_thresh = 2;
2224 * btrfs_start_workers can really only fail because of ENOMEM so just
2225 * return -ENOMEM if any of these fail.
2227 ret = btrfs_start_workers(&fs_info->workers);
2228 ret |= btrfs_start_workers(&fs_info->generic_worker);
2229 ret |= btrfs_start_workers(&fs_info->submit_workers);
2230 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2231 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2232 ret |= btrfs_start_workers(&fs_info->endio_workers);
2233 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2234 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2235 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2236 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2237 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2238 ret |= btrfs_start_workers(&fs_info->caching_workers);
2239 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2242 goto fail_sb_buffer;
2245 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2246 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2247 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2249 tree_root->nodesize = nodesize;
2250 tree_root->leafsize = leafsize;
2251 tree_root->sectorsize = sectorsize;
2252 tree_root->stripesize = stripesize;
2254 sb->s_blocksize = sectorsize;
2255 sb->s_blocksize_bits = blksize_bits(sectorsize);
2257 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2258 sizeof(disk_super->magic))) {
2259 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2260 goto fail_sb_buffer;
2263 if (sectorsize != PAGE_SIZE) {
2264 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2265 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2266 goto fail_sb_buffer;
2269 mutex_lock(&fs_info->chunk_mutex);
2270 ret = btrfs_read_sys_array(tree_root);
2271 mutex_unlock(&fs_info->chunk_mutex);
2273 printk(KERN_WARNING "btrfs: failed to read the system "
2274 "array on %s\n", sb->s_id);
2275 goto fail_sb_buffer;
2278 blocksize = btrfs_level_size(tree_root,
2279 btrfs_super_chunk_root_level(disk_super));
2280 generation = btrfs_super_chunk_root_generation(disk_super);
2282 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2283 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2285 chunk_root->node = read_tree_block(chunk_root,
2286 btrfs_super_chunk_root(disk_super),
2287 blocksize, generation);
2288 BUG_ON(!chunk_root->node); /* -ENOMEM */
2289 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2290 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2292 goto fail_tree_roots;
2294 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2295 chunk_root->commit_root = btrfs_root_node(chunk_root);
2297 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2298 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2301 ret = btrfs_read_chunk_tree(chunk_root);
2303 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2305 goto fail_tree_roots;
2308 btrfs_close_extra_devices(fs_devices);
2310 if (!fs_devices->latest_bdev) {
2311 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2313 goto fail_tree_roots;
2317 blocksize = btrfs_level_size(tree_root,
2318 btrfs_super_root_level(disk_super));
2319 generation = btrfs_super_generation(disk_super);
2321 tree_root->node = read_tree_block(tree_root,
2322 btrfs_super_root(disk_super),
2323 blocksize, generation);
2324 if (!tree_root->node ||
2325 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2326 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2329 goto recovery_tree_root;
2332 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2333 tree_root->commit_root = btrfs_root_node(tree_root);
2335 ret = find_and_setup_root(tree_root, fs_info,
2336 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2338 goto recovery_tree_root;
2339 extent_root->track_dirty = 1;
2341 ret = find_and_setup_root(tree_root, fs_info,
2342 BTRFS_DEV_TREE_OBJECTID, dev_root);
2344 goto recovery_tree_root;
2345 dev_root->track_dirty = 1;
2347 ret = find_and_setup_root(tree_root, fs_info,
2348 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2350 goto recovery_tree_root;
2352 csum_root->track_dirty = 1;
2354 fs_info->generation = generation;
2355 fs_info->last_trans_committed = generation;
2357 ret = btrfs_init_space_info(fs_info);
2359 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2360 goto fail_block_groups;
2363 ret = btrfs_read_block_groups(extent_root);
2365 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2366 goto fail_block_groups;
2369 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2371 if (IS_ERR(fs_info->cleaner_kthread))
2372 goto fail_block_groups;
2374 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2376 "btrfs-transaction");
2377 if (IS_ERR(fs_info->transaction_kthread))
2380 if (!btrfs_test_opt(tree_root, SSD) &&
2381 !btrfs_test_opt(tree_root, NOSSD) &&
2382 !fs_info->fs_devices->rotating) {
2383 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2385 btrfs_set_opt(fs_info->mount_opt, SSD);
2388 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2389 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2390 ret = btrfsic_mount(tree_root, fs_devices,
2391 btrfs_test_opt(tree_root,
2392 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2394 fs_info->check_integrity_print_mask);
2396 printk(KERN_WARNING "btrfs: failed to initialize"
2397 " integrity check module %s\n", sb->s_id);
2401 /* do not make disk changes in broken FS */
2402 if (btrfs_super_log_root(disk_super) != 0 &&
2403 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2404 u64 bytenr = btrfs_super_log_root(disk_super);
2406 if (fs_devices->rw_devices == 0) {
2407 printk(KERN_WARNING "Btrfs log replay required "
2410 goto fail_trans_kthread;
2413 btrfs_level_size(tree_root,
2414 btrfs_super_log_root_level(disk_super));
2416 log_tree_root = btrfs_alloc_root(fs_info);
2417 if (!log_tree_root) {
2419 goto fail_trans_kthread;
2422 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2423 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2425 log_tree_root->node = read_tree_block(tree_root, bytenr,
2428 /* returns with log_tree_root freed on success */
2429 ret = btrfs_recover_log_trees(log_tree_root);
2431 btrfs_error(tree_root->fs_info, ret,
2432 "Failed to recover log tree");
2433 free_extent_buffer(log_tree_root->node);
2434 kfree(log_tree_root);
2435 goto fail_trans_kthread;
2438 if (sb->s_flags & MS_RDONLY) {
2439 ret = btrfs_commit_super(tree_root);
2441 goto fail_trans_kthread;
2445 ret = btrfs_find_orphan_roots(tree_root);
2447 goto fail_trans_kthread;
2449 if (!(sb->s_flags & MS_RDONLY)) {
2450 ret = btrfs_cleanup_fs_roots(fs_info);
2454 ret = btrfs_recover_relocation(tree_root);
2457 "btrfs: failed to recover relocation\n");
2459 goto fail_trans_kthread;
2463 location.objectid = BTRFS_FS_TREE_OBJECTID;
2464 location.type = BTRFS_ROOT_ITEM_KEY;
2465 location.offset = (u64)-1;
2467 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2468 if (!fs_info->fs_root)
2469 goto fail_trans_kthread;
2470 if (IS_ERR(fs_info->fs_root)) {
2471 err = PTR_ERR(fs_info->fs_root);
2472 goto fail_trans_kthread;
2475 if (!(sb->s_flags & MS_RDONLY)) {
2476 down_read(&fs_info->cleanup_work_sem);
2477 err = btrfs_orphan_cleanup(fs_info->fs_root);
2479 err = btrfs_orphan_cleanup(fs_info->tree_root);
2480 up_read(&fs_info->cleanup_work_sem);
2483 err = btrfs_recover_balance(fs_info->tree_root);
2486 close_ctree(tree_root);
2494 kthread_stop(fs_info->transaction_kthread);
2496 kthread_stop(fs_info->cleaner_kthread);
2499 * make sure we're done with the btree inode before we stop our
2502 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2503 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2506 btrfs_free_block_groups(fs_info);
2509 free_root_pointers(fs_info, 1);
2512 btrfs_stop_workers(&fs_info->generic_worker);
2513 btrfs_stop_workers(&fs_info->readahead_workers);
2514 btrfs_stop_workers(&fs_info->fixup_workers);
2515 btrfs_stop_workers(&fs_info->delalloc_workers);
2516 btrfs_stop_workers(&fs_info->workers);
2517 btrfs_stop_workers(&fs_info->endio_workers);
2518 btrfs_stop_workers(&fs_info->endio_meta_workers);
2519 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2520 btrfs_stop_workers(&fs_info->endio_write_workers);
2521 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2522 btrfs_stop_workers(&fs_info->submit_workers);
2523 btrfs_stop_workers(&fs_info->delayed_workers);
2524 btrfs_stop_workers(&fs_info->caching_workers);
2527 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2529 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2530 iput(fs_info->btree_inode);
2532 bdi_destroy(&fs_info->bdi);
2534 cleanup_srcu_struct(&fs_info->subvol_srcu);
2536 btrfs_close_devices(fs_info->fs_devices);
2540 if (!btrfs_test_opt(tree_root, RECOVERY))
2541 goto fail_tree_roots;
2543 free_root_pointers(fs_info, 0);
2545 /* don't use the log in recovery mode, it won't be valid */
2546 btrfs_set_super_log_root(disk_super, 0);
2548 /* we can't trust the free space cache either */
2549 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2551 ret = next_root_backup(fs_info, fs_info->super_copy,
2552 &num_backups_tried, &backup_index);
2554 goto fail_block_groups;
2555 goto retry_root_backup;
2558 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2560 char b[BDEVNAME_SIZE];
2563 set_buffer_uptodate(bh);
2565 printk_ratelimited(KERN_WARNING "lost page write due to "
2566 "I/O error on %s\n",
2567 bdevname(bh->b_bdev, b));
2568 /* note, we dont' set_buffer_write_io_error because we have
2569 * our own ways of dealing with the IO errors
2571 clear_buffer_uptodate(bh);
2577 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2579 struct buffer_head *bh;
2580 struct buffer_head *latest = NULL;
2581 struct btrfs_super_block *super;
2586 /* we would like to check all the supers, but that would make
2587 * a btrfs mount succeed after a mkfs from a different FS.
2588 * So, we need to add a special mount option to scan for
2589 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2591 for (i = 0; i < 1; i++) {
2592 bytenr = btrfs_sb_offset(i);
2593 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2595 bh = __bread(bdev, bytenr / 4096, 4096);
2599 super = (struct btrfs_super_block *)bh->b_data;
2600 if (btrfs_super_bytenr(super) != bytenr ||
2601 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2602 sizeof(super->magic))) {
2607 if (!latest || btrfs_super_generation(super) > transid) {
2610 transid = btrfs_super_generation(super);
2619 * this should be called twice, once with wait == 0 and
2620 * once with wait == 1. When wait == 0 is done, all the buffer heads
2621 * we write are pinned.
2623 * They are released when wait == 1 is done.
2624 * max_mirrors must be the same for both runs, and it indicates how
2625 * many supers on this one device should be written.
2627 * max_mirrors == 0 means to write them all.
2629 static int write_dev_supers(struct btrfs_device *device,
2630 struct btrfs_super_block *sb,
2631 int do_barriers, int wait, int max_mirrors)
2633 struct buffer_head *bh;
2640 if (max_mirrors == 0)
2641 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2643 for (i = 0; i < max_mirrors; i++) {
2644 bytenr = btrfs_sb_offset(i);
2645 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2649 bh = __find_get_block(device->bdev, bytenr / 4096,
2650 BTRFS_SUPER_INFO_SIZE);
2653 if (!buffer_uptodate(bh))
2656 /* drop our reference */
2659 /* drop the reference from the wait == 0 run */
2663 btrfs_set_super_bytenr(sb, bytenr);
2666 crc = btrfs_csum_data(NULL, (char *)sb +
2667 BTRFS_CSUM_SIZE, crc,
2668 BTRFS_SUPER_INFO_SIZE -
2670 btrfs_csum_final(crc, sb->csum);
2673 * one reference for us, and we leave it for the
2676 bh = __getblk(device->bdev, bytenr / 4096,
2677 BTRFS_SUPER_INFO_SIZE);
2678 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2680 /* one reference for submit_bh */
2683 set_buffer_uptodate(bh);
2685 bh->b_end_io = btrfs_end_buffer_write_sync;
2689 * we fua the first super. The others we allow
2692 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2696 return errors < i ? 0 : -1;
2700 * endio for the write_dev_flush, this will wake anyone waiting
2701 * for the barrier when it is done
2703 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2706 if (err == -EOPNOTSUPP)
2707 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2708 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2710 if (bio->bi_private)
2711 complete(bio->bi_private);
2716 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2717 * sent down. With wait == 1, it waits for the previous flush.
2719 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2722 static int write_dev_flush(struct btrfs_device *device, int wait)
2727 if (device->nobarriers)
2731 bio = device->flush_bio;
2735 wait_for_completion(&device->flush_wait);
2737 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2738 printk("btrfs: disabling barriers on dev %s\n",
2740 device->nobarriers = 1;
2742 if (!bio_flagged(bio, BIO_UPTODATE)) {
2746 /* drop the reference from the wait == 0 run */
2748 device->flush_bio = NULL;
2754 * one reference for us, and we leave it for the
2757 device->flush_bio = NULL;;
2758 bio = bio_alloc(GFP_NOFS, 0);
2762 bio->bi_end_io = btrfs_end_empty_barrier;
2763 bio->bi_bdev = device->bdev;
2764 init_completion(&device->flush_wait);
2765 bio->bi_private = &device->flush_wait;
2766 device->flush_bio = bio;
2769 btrfsic_submit_bio(WRITE_FLUSH, bio);
2775 * send an empty flush down to each device in parallel,
2776 * then wait for them
2778 static int barrier_all_devices(struct btrfs_fs_info *info)
2780 struct list_head *head;
2781 struct btrfs_device *dev;
2785 /* send down all the barriers */
2786 head = &info->fs_devices->devices;
2787 list_for_each_entry_rcu(dev, head, dev_list) {
2792 if (!dev->in_fs_metadata || !dev->writeable)
2795 ret = write_dev_flush(dev, 0);
2800 /* wait for all the barriers */
2801 list_for_each_entry_rcu(dev, head, dev_list) {
2806 if (!dev->in_fs_metadata || !dev->writeable)
2809 ret = write_dev_flush(dev, 1);
2818 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2820 struct list_head *head;
2821 struct btrfs_device *dev;
2822 struct btrfs_super_block *sb;
2823 struct btrfs_dev_item *dev_item;
2827 int total_errors = 0;
2830 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2831 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2832 backup_super_roots(root->fs_info);
2834 sb = root->fs_info->super_for_commit;
2835 dev_item = &sb->dev_item;
2837 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2838 head = &root->fs_info->fs_devices->devices;
2841 barrier_all_devices(root->fs_info);
2843 list_for_each_entry_rcu(dev, head, dev_list) {
2848 if (!dev->in_fs_metadata || !dev->writeable)
2851 btrfs_set_stack_device_generation(dev_item, 0);
2852 btrfs_set_stack_device_type(dev_item, dev->type);
2853 btrfs_set_stack_device_id(dev_item, dev->devid);
2854 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2855 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2856 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2857 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2858 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2859 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2860 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2862 flags = btrfs_super_flags(sb);
2863 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2865 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2869 if (total_errors > max_errors) {
2870 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2873 /* This shouldn't happen. FUA is masked off if unsupported */
2878 list_for_each_entry_rcu(dev, head, dev_list) {
2881 if (!dev->in_fs_metadata || !dev->writeable)
2884 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2888 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2889 if (total_errors > max_errors) {
2890 btrfs_error(root->fs_info, -EIO,
2891 "%d errors while writing supers", total_errors);
2897 int write_ctree_super(struct btrfs_trans_handle *trans,
2898 struct btrfs_root *root, int max_mirrors)
2902 ret = write_all_supers(root, max_mirrors);
2906 /* Kill all outstanding I/O */
2907 void btrfs_abort_devices(struct btrfs_root *root)
2909 struct list_head *head;
2910 struct btrfs_device *dev;
2911 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2912 head = &root->fs_info->fs_devices->devices;
2913 list_for_each_entry_rcu(dev, head, dev_list) {
2914 blk_abort_queue(dev->bdev->bd_disk->queue);
2916 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2919 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2921 spin_lock(&fs_info->fs_roots_radix_lock);
2922 radix_tree_delete(&fs_info->fs_roots_radix,
2923 (unsigned long)root->root_key.objectid);
2924 spin_unlock(&fs_info->fs_roots_radix_lock);
2926 if (btrfs_root_refs(&root->root_item) == 0)
2927 synchronize_srcu(&fs_info->subvol_srcu);
2929 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2930 __btrfs_remove_free_space_cache(root->free_ino_ctl);
2934 static void free_fs_root(struct btrfs_root *root)
2936 iput(root->cache_inode);
2937 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2939 free_anon_bdev(root->anon_dev);
2940 free_extent_buffer(root->node);
2941 free_extent_buffer(root->commit_root);
2942 kfree(root->free_ino_ctl);
2943 kfree(root->free_ino_pinned);
2948 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2951 struct btrfs_root *gang[8];
2954 while (!list_empty(&fs_info->dead_roots)) {
2955 gang[0] = list_entry(fs_info->dead_roots.next,
2956 struct btrfs_root, root_list);
2957 list_del(&gang[0]->root_list);
2959 if (gang[0]->in_radix) {
2960 btrfs_free_fs_root(fs_info, gang[0]);
2962 free_extent_buffer(gang[0]->node);
2963 free_extent_buffer(gang[0]->commit_root);
2969 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2974 for (i = 0; i < ret; i++)
2975 btrfs_free_fs_root(fs_info, gang[i]);
2979 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2981 u64 root_objectid = 0;
2982 struct btrfs_root *gang[8];
2987 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2988 (void **)gang, root_objectid,
2993 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2994 for (i = 0; i < ret; i++) {
2997 root_objectid = gang[i]->root_key.objectid;
2998 err = btrfs_orphan_cleanup(gang[i]);
3007 int btrfs_commit_super(struct btrfs_root *root)
3009 struct btrfs_trans_handle *trans;
3012 mutex_lock(&root->fs_info->cleaner_mutex);
3013 btrfs_run_delayed_iputs(root);
3014 btrfs_clean_old_snapshots(root);
3015 mutex_unlock(&root->fs_info->cleaner_mutex);
3017 /* wait until ongoing cleanup work done */
3018 down_write(&root->fs_info->cleanup_work_sem);
3019 up_write(&root->fs_info->cleanup_work_sem);
3021 trans = btrfs_join_transaction(root);
3023 return PTR_ERR(trans);
3024 ret = btrfs_commit_transaction(trans, root);
3027 /* run commit again to drop the original snapshot */
3028 trans = btrfs_join_transaction(root);
3030 return PTR_ERR(trans);
3031 ret = btrfs_commit_transaction(trans, root);
3034 ret = btrfs_write_and_wait_transaction(NULL, root);
3036 btrfs_error(root->fs_info, ret,
3037 "Failed to sync btree inode to disk.");
3041 ret = write_ctree_super(NULL, root, 0);
3045 int close_ctree(struct btrfs_root *root)
3047 struct btrfs_fs_info *fs_info = root->fs_info;
3050 fs_info->closing = 1;
3053 /* pause restriper - we want to resume on mount */
3054 btrfs_pause_balance(root->fs_info);
3056 btrfs_scrub_cancel(root);
3058 /* wait for any defraggers to finish */
3059 wait_event(fs_info->transaction_wait,
3060 (atomic_read(&fs_info->defrag_running) == 0));
3062 /* clear out the rbtree of defraggable inodes */
3063 btrfs_run_defrag_inodes(fs_info);
3066 * Here come 2 situations when btrfs is broken to flip readonly:
3068 * 1. when btrfs flips readonly somewhere else before
3069 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3070 * and btrfs will skip to write sb directly to keep
3071 * ERROR state on disk.
3073 * 2. when btrfs flips readonly just in btrfs_commit_super,
3074 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3075 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3076 * btrfs will cleanup all FS resources first and write sb then.
3078 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3079 ret = btrfs_commit_super(root);
3081 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3084 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3085 ret = btrfs_error_commit_super(root);
3087 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3090 btrfs_put_block_group_cache(fs_info);
3092 kthread_stop(fs_info->transaction_kthread);
3093 kthread_stop(fs_info->cleaner_kthread);
3095 fs_info->closing = 2;
3098 if (fs_info->delalloc_bytes) {
3099 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3100 (unsigned long long)fs_info->delalloc_bytes);
3102 if (fs_info->total_ref_cache_size) {
3103 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3104 (unsigned long long)fs_info->total_ref_cache_size);
3107 free_extent_buffer(fs_info->extent_root->node);
3108 free_extent_buffer(fs_info->extent_root->commit_root);
3109 free_extent_buffer(fs_info->tree_root->node);
3110 free_extent_buffer(fs_info->tree_root->commit_root);
3111 free_extent_buffer(fs_info->chunk_root->node);
3112 free_extent_buffer(fs_info->chunk_root->commit_root);
3113 free_extent_buffer(fs_info->dev_root->node);
3114 free_extent_buffer(fs_info->dev_root->commit_root);
3115 free_extent_buffer(fs_info->csum_root->node);
3116 free_extent_buffer(fs_info->csum_root->commit_root);
3118 btrfs_free_block_groups(fs_info);
3120 del_fs_roots(fs_info);
3122 iput(fs_info->btree_inode);
3124 btrfs_stop_workers(&fs_info->generic_worker);
3125 btrfs_stop_workers(&fs_info->fixup_workers);
3126 btrfs_stop_workers(&fs_info->delalloc_workers);
3127 btrfs_stop_workers(&fs_info->workers);
3128 btrfs_stop_workers(&fs_info->endio_workers);
3129 btrfs_stop_workers(&fs_info->endio_meta_workers);
3130 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3131 btrfs_stop_workers(&fs_info->endio_write_workers);
3132 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3133 btrfs_stop_workers(&fs_info->submit_workers);
3134 btrfs_stop_workers(&fs_info->delayed_workers);
3135 btrfs_stop_workers(&fs_info->caching_workers);
3136 btrfs_stop_workers(&fs_info->readahead_workers);
3138 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3139 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3140 btrfsic_unmount(root, fs_info->fs_devices);
3143 btrfs_close_devices(fs_info->fs_devices);
3144 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3146 bdi_destroy(&fs_info->bdi);
3147 cleanup_srcu_struct(&fs_info->subvol_srcu);
3152 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3156 struct inode *btree_inode = buf->pages[0]->mapping->host;
3158 ret = extent_buffer_uptodate(buf);
3162 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3163 parent_transid, atomic);
3169 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3171 return set_extent_buffer_uptodate(buf);
3174 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3176 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3177 u64 transid = btrfs_header_generation(buf);
3180 btrfs_assert_tree_locked(buf);
3181 if (transid != root->fs_info->generation) {
3182 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3183 "found %llu running %llu\n",
3184 (unsigned long long)buf->start,
3185 (unsigned long long)transid,
3186 (unsigned long long)root->fs_info->generation);
3189 was_dirty = set_extent_buffer_dirty(buf);
3191 spin_lock(&root->fs_info->delalloc_lock);
3192 root->fs_info->dirty_metadata_bytes += buf->len;
3193 spin_unlock(&root->fs_info->delalloc_lock);
3197 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3200 * looks as though older kernels can get into trouble with
3201 * this code, they end up stuck in balance_dirty_pages forever
3204 unsigned long thresh = 32 * 1024 * 1024;
3206 if (current->flags & PF_MEMALLOC)
3209 btrfs_balance_delayed_items(root);
3211 num_dirty = root->fs_info->dirty_metadata_bytes;
3213 if (num_dirty > thresh) {
3214 balance_dirty_pages_ratelimited_nr(
3215 root->fs_info->btree_inode->i_mapping, 1);
3220 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3223 * looks as though older kernels can get into trouble with
3224 * this code, they end up stuck in balance_dirty_pages forever
3227 unsigned long thresh = 32 * 1024 * 1024;
3229 if (current->flags & PF_MEMALLOC)
3232 num_dirty = root->fs_info->dirty_metadata_bytes;
3234 if (num_dirty > thresh) {
3235 balance_dirty_pages_ratelimited_nr(
3236 root->fs_info->btree_inode->i_mapping, 1);
3241 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3243 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3244 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3247 static int btree_lock_page_hook(struct page *page, void *data,
3248 void (*flush_fn)(void *))
3250 struct inode *inode = page->mapping->host;
3251 struct btrfs_root *root = BTRFS_I(inode)->root;
3252 struct extent_buffer *eb;
3255 * We culled this eb but the page is still hanging out on the mapping,
3258 if (!PagePrivate(page))
3261 eb = (struct extent_buffer *)page->private;
3266 if (page != eb->pages[0])
3269 if (!btrfs_try_tree_write_lock(eb)) {
3271 btrfs_tree_lock(eb);
3273 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3275 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3276 spin_lock(&root->fs_info->delalloc_lock);
3277 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3278 root->fs_info->dirty_metadata_bytes -= eb->len;
3281 spin_unlock(&root->fs_info->delalloc_lock);
3284 btrfs_tree_unlock(eb);
3286 if (!trylock_page(page)) {
3293 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3296 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3297 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3304 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3305 printk(KERN_WARNING "warning: mount fs with errors, "
3306 "running btrfsck is recommended\n");
3312 int btrfs_error_commit_super(struct btrfs_root *root)
3316 mutex_lock(&root->fs_info->cleaner_mutex);
3317 btrfs_run_delayed_iputs(root);
3318 mutex_unlock(&root->fs_info->cleaner_mutex);
3320 down_write(&root->fs_info->cleanup_work_sem);
3321 up_write(&root->fs_info->cleanup_work_sem);
3323 /* cleanup FS via transaction */
3324 btrfs_cleanup_transaction(root);
3326 ret = write_ctree_super(NULL, root, 0);
3331 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3333 struct btrfs_inode *btrfs_inode;
3334 struct list_head splice;
3336 INIT_LIST_HEAD(&splice);
3338 mutex_lock(&root->fs_info->ordered_operations_mutex);
3339 spin_lock(&root->fs_info->ordered_extent_lock);
3341 list_splice_init(&root->fs_info->ordered_operations, &splice);
3342 while (!list_empty(&splice)) {
3343 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3344 ordered_operations);
3346 list_del_init(&btrfs_inode->ordered_operations);
3348 btrfs_invalidate_inodes(btrfs_inode->root);
3351 spin_unlock(&root->fs_info->ordered_extent_lock);
3352 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3355 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3357 struct list_head splice;
3358 struct btrfs_ordered_extent *ordered;
3359 struct inode *inode;
3361 INIT_LIST_HEAD(&splice);
3363 spin_lock(&root->fs_info->ordered_extent_lock);
3365 list_splice_init(&root->fs_info->ordered_extents, &splice);
3366 while (!list_empty(&splice)) {
3367 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3370 list_del_init(&ordered->root_extent_list);
3371 atomic_inc(&ordered->refs);
3373 /* the inode may be getting freed (in sys_unlink path). */
3374 inode = igrab(ordered->inode);
3376 spin_unlock(&root->fs_info->ordered_extent_lock);
3380 atomic_set(&ordered->refs, 1);
3381 btrfs_put_ordered_extent(ordered);
3383 spin_lock(&root->fs_info->ordered_extent_lock);
3386 spin_unlock(&root->fs_info->ordered_extent_lock);
3389 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3390 struct btrfs_root *root)
3392 struct rb_node *node;
3393 struct btrfs_delayed_ref_root *delayed_refs;
3394 struct btrfs_delayed_ref_node *ref;
3397 delayed_refs = &trans->delayed_refs;
3400 spin_lock(&delayed_refs->lock);
3401 if (delayed_refs->num_entries == 0) {
3402 spin_unlock(&delayed_refs->lock);
3403 printk(KERN_INFO "delayed_refs has NO entry\n");
3407 node = rb_first(&delayed_refs->root);
3409 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3410 node = rb_next(node);
3413 rb_erase(&ref->rb_node, &delayed_refs->root);
3414 delayed_refs->num_entries--;
3416 atomic_set(&ref->refs, 1);
3417 if (btrfs_delayed_ref_is_head(ref)) {
3418 struct btrfs_delayed_ref_head *head;
3420 head = btrfs_delayed_node_to_head(ref);
3421 spin_unlock(&delayed_refs->lock);
3422 mutex_lock(&head->mutex);
3423 kfree(head->extent_op);
3424 delayed_refs->num_heads--;
3425 if (list_empty(&head->cluster))
3426 delayed_refs->num_heads_ready--;
3427 list_del_init(&head->cluster);
3428 mutex_unlock(&head->mutex);
3429 btrfs_put_delayed_ref(ref);
3432 spin_unlock(&delayed_refs->lock);
3433 btrfs_put_delayed_ref(ref);
3436 spin_lock(&delayed_refs->lock);
3439 spin_unlock(&delayed_refs->lock);
3444 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3446 struct btrfs_pending_snapshot *snapshot;
3447 struct list_head splice;
3449 INIT_LIST_HEAD(&splice);
3451 list_splice_init(&t->pending_snapshots, &splice);
3453 while (!list_empty(&splice)) {
3454 snapshot = list_entry(splice.next,
3455 struct btrfs_pending_snapshot,
3458 list_del_init(&snapshot->list);
3464 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3466 struct btrfs_inode *btrfs_inode;
3467 struct list_head splice;
3469 INIT_LIST_HEAD(&splice);
3471 spin_lock(&root->fs_info->delalloc_lock);
3472 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3474 while (!list_empty(&splice)) {
3475 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3478 list_del_init(&btrfs_inode->delalloc_inodes);
3480 btrfs_invalidate_inodes(btrfs_inode->root);
3483 spin_unlock(&root->fs_info->delalloc_lock);
3486 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3487 struct extent_io_tree *dirty_pages,
3492 struct inode *btree_inode = root->fs_info->btree_inode;
3493 struct extent_buffer *eb;
3497 unsigned long index;
3500 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3505 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3506 while (start <= end) {
3507 index = start >> PAGE_CACHE_SHIFT;
3508 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3509 page = find_get_page(btree_inode->i_mapping, index);
3512 offset = page_offset(page);
3514 spin_lock(&dirty_pages->buffer_lock);
3515 eb = radix_tree_lookup(
3516 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3517 offset >> PAGE_CACHE_SHIFT);
3518 spin_unlock(&dirty_pages->buffer_lock);
3520 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3522 atomic_set(&eb->refs, 1);
3524 if (PageWriteback(page))
3525 end_page_writeback(page);
3528 if (PageDirty(page)) {
3529 clear_page_dirty_for_io(page);
3530 spin_lock_irq(&page->mapping->tree_lock);
3531 radix_tree_tag_clear(&page->mapping->page_tree,
3533 PAGECACHE_TAG_DIRTY);
3534 spin_unlock_irq(&page->mapping->tree_lock);
3537 page->mapping->a_ops->invalidatepage(page, 0);
3545 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3546 struct extent_io_tree *pinned_extents)
3548 struct extent_io_tree *unpin;
3553 unpin = pinned_extents;
3555 ret = find_first_extent_bit(unpin, 0, &start, &end,
3561 if (btrfs_test_opt(root, DISCARD))
3562 ret = btrfs_error_discard_extent(root, start,
3566 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3567 btrfs_error_unpin_extent_range(root, start, end);
3574 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3575 struct btrfs_root *root)
3577 btrfs_destroy_delayed_refs(cur_trans, root);
3578 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3579 cur_trans->dirty_pages.dirty_bytes);
3581 /* FIXME: cleanup wait for commit */
3582 cur_trans->in_commit = 1;
3583 cur_trans->blocked = 1;
3584 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3585 wake_up(&root->fs_info->transaction_blocked_wait);
3587 cur_trans->blocked = 0;
3588 if (waitqueue_active(&root->fs_info->transaction_wait))
3589 wake_up(&root->fs_info->transaction_wait);
3591 cur_trans->commit_done = 1;
3592 if (waitqueue_active(&cur_trans->commit_wait))
3593 wake_up(&cur_trans->commit_wait);
3595 btrfs_destroy_pending_snapshots(cur_trans);
3597 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3601 memset(cur_trans, 0, sizeof(*cur_trans));
3602 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3606 int btrfs_cleanup_transaction(struct btrfs_root *root)
3608 struct btrfs_transaction *t;
3611 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3613 spin_lock(&root->fs_info->trans_lock);
3614 list_splice_init(&root->fs_info->trans_list, &list);
3615 root->fs_info->trans_no_join = 1;
3616 spin_unlock(&root->fs_info->trans_lock);
3618 while (!list_empty(&list)) {
3619 t = list_entry(list.next, struct btrfs_transaction, list);
3623 btrfs_destroy_ordered_operations(root);
3625 btrfs_destroy_ordered_extents(root);
3627 btrfs_destroy_delayed_refs(t, root);
3629 btrfs_block_rsv_release(root,
3630 &root->fs_info->trans_block_rsv,
3631 t->dirty_pages.dirty_bytes);
3633 /* FIXME: cleanup wait for commit */
3636 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3637 wake_up(&root->fs_info->transaction_blocked_wait);
3640 if (waitqueue_active(&root->fs_info->transaction_wait))
3641 wake_up(&root->fs_info->transaction_wait);
3644 if (waitqueue_active(&t->commit_wait))
3645 wake_up(&t->commit_wait);
3647 btrfs_destroy_pending_snapshots(t);
3649 btrfs_destroy_delalloc_inodes(root);
3651 spin_lock(&root->fs_info->trans_lock);
3652 root->fs_info->running_transaction = NULL;
3653 spin_unlock(&root->fs_info->trans_lock);
3655 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3658 btrfs_destroy_pinned_extent(root,
3659 root->fs_info->pinned_extents);
3661 atomic_set(&t->use_count, 0);
3662 list_del_init(&t->list);
3663 memset(t, 0, sizeof(*t));
3664 kmem_cache_free(btrfs_transaction_cachep, t);
3667 spin_lock(&root->fs_info->trans_lock);
3668 root->fs_info->trans_no_join = 0;
3669 spin_unlock(&root->fs_info->trans_lock);
3670 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3675 static struct extent_io_ops btree_extent_io_ops = {
3676 .write_cache_pages_lock_hook = btree_lock_page_hook,
3677 .readpage_end_io_hook = btree_readpage_end_io_hook,
3678 .readpage_io_failed_hook = btree_io_failed_hook,
3679 .submit_bio_hook = btree_submit_bio_hook,
3680 /* note we're sharing with inode.c for the merge bio hook */
3681 .merge_bio_hook = btrfs_merge_bio_hook,