1 // SPDX-License-Identifier: GPL-2.0
3 * Block driver for media (i.e., flash cards)
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
18 * Author: Andrew Christian
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
25 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
50 #include <linux/uaccess.h>
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
67 #define MODULE_PARAM_PREFIX "mmcblk."
70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72 * second software timer to timeout the whole request, so 10 seconds should be
75 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
79 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
80 (rq_data_dir(req) == WRITE))
81 static DEFINE_MUTEX(block_mutex);
84 * The defaults come from config options but can be overriden by module
87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
90 * We've only got one major, so number of mmcblk devices is
91 * limited to (1 << 20) / number of minors per device. It is also
92 * limited by the MAX_DEVICES below.
94 static int max_devices;
96 #define MAX_DEVICES 256
98 static DEFINE_IDA(mmc_blk_ida);
99 static DEFINE_IDA(mmc_rpmb_ida);
101 struct mmc_blk_busy_data {
102 struct mmc_card *card;
107 * There is one mmc_blk_data per slot.
109 struct mmc_blk_data {
110 struct device *parent;
111 struct gendisk *disk;
112 struct mmc_queue queue;
113 struct list_head part;
114 struct list_head rpmbs;
117 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
118 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
121 unsigned int read_only;
122 unsigned int part_type;
123 unsigned int reset_done;
124 #define MMC_BLK_READ BIT(0)
125 #define MMC_BLK_WRITE BIT(1)
126 #define MMC_BLK_DISCARD BIT(2)
127 #define MMC_BLK_SECDISCARD BIT(3)
128 #define MMC_BLK_CQE_RECOVERY BIT(4)
129 #define MMC_BLK_TRIM BIT(5)
132 * Only set in main mmc_blk_data associated
133 * with mmc_card with dev_set_drvdata, and keeps
134 * track of the current selected device partition.
136 unsigned int part_curr;
139 /* debugfs files (only in main mmc_blk_data) */
140 struct dentry *status_dentry;
141 struct dentry *ext_csd_dentry;
144 /* Device type for RPMB character devices */
145 static dev_t mmc_rpmb_devt;
147 /* Bus type for RPMB character devices */
148 static struct bus_type mmc_rpmb_bus_type = {
153 * struct mmc_rpmb_data - special RPMB device type for these areas
154 * @dev: the device for the RPMB area
155 * @chrdev: character device for the RPMB area
156 * @id: unique device ID number
157 * @part_index: partition index (0 on first)
158 * @md: parent MMC block device
159 * @node: list item, so we can put this device on a list
161 struct mmc_rpmb_data {
165 unsigned int part_index;
166 struct mmc_blk_data *md;
167 struct list_head node;
170 static DEFINE_MUTEX(open_lock);
172 module_param(perdev_minors, int, 0444);
173 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
175 static inline int mmc_blk_part_switch(struct mmc_card *card,
176 unsigned int part_type);
177 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
178 struct mmc_card *card,
180 struct mmc_queue *mq);
181 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
183 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
185 struct mmc_blk_data *md;
187 mutex_lock(&open_lock);
188 md = disk->private_data;
189 if (md && !kref_get_unless_zero(&md->kref))
191 mutex_unlock(&open_lock);
196 static inline int mmc_get_devidx(struct gendisk *disk)
198 int devidx = disk->first_minor / perdev_minors;
202 static void mmc_blk_kref_release(struct kref *ref)
204 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
207 devidx = mmc_get_devidx(md->disk);
208 ida_simple_remove(&mmc_blk_ida, devidx);
210 mutex_lock(&open_lock);
211 md->disk->private_data = NULL;
212 mutex_unlock(&open_lock);
218 static void mmc_blk_put(struct mmc_blk_data *md)
220 kref_put(&md->kref, mmc_blk_kref_release);
223 static ssize_t power_ro_lock_show(struct device *dev,
224 struct device_attribute *attr, char *buf)
227 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
228 struct mmc_card *card = md->queue.card;
231 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
233 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
236 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
243 static ssize_t power_ro_lock_store(struct device *dev,
244 struct device_attribute *attr, const char *buf, size_t count)
247 struct mmc_blk_data *md, *part_md;
248 struct mmc_queue *mq;
252 if (kstrtoul(buf, 0, &set))
258 md = mmc_blk_get(dev_to_disk(dev));
261 /* Dispatch locking to the block layer */
262 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
264 count = PTR_ERR(req);
267 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
268 blk_execute_rq(req, false);
269 ret = req_to_mmc_queue_req(req)->drv_op_result;
270 blk_mq_free_request(req);
273 pr_info("%s: Locking boot partition ro until next power on\n",
274 md->disk->disk_name);
275 set_disk_ro(md->disk, 1);
277 list_for_each_entry(part_md, &md->part, part)
278 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
279 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
280 set_disk_ro(part_md->disk, 1);
288 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
289 power_ro_lock_show, power_ro_lock_store);
291 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
295 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
297 ret = snprintf(buf, PAGE_SIZE, "%d\n",
298 get_disk_ro(dev_to_disk(dev)) ^
304 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
305 const char *buf, size_t count)
309 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
310 unsigned long set = simple_strtoul(buf, &end, 0);
316 set_disk_ro(dev_to_disk(dev), set || md->read_only);
323 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
325 static struct attribute *mmc_disk_attrs[] = {
326 &dev_attr_force_ro.attr,
327 &dev_attr_ro_lock_until_next_power_on.attr,
331 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
332 struct attribute *a, int n)
334 struct device *dev = kobj_to_dev(kobj);
335 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
336 umode_t mode = a->mode;
338 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
339 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
340 md->queue.card->ext_csd.boot_ro_lockable) {
342 if (!(md->queue.card->ext_csd.boot_ro_lock &
343 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
351 static const struct attribute_group mmc_disk_attr_group = {
352 .is_visible = mmc_disk_attrs_is_visible,
353 .attrs = mmc_disk_attrs,
356 static const struct attribute_group *mmc_disk_attr_groups[] = {
357 &mmc_disk_attr_group,
361 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
363 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
366 mutex_lock(&block_mutex);
369 if ((mode & FMODE_WRITE) && md->read_only) {
374 mutex_unlock(&block_mutex);
379 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
381 struct mmc_blk_data *md = disk->private_data;
383 mutex_lock(&block_mutex);
385 mutex_unlock(&block_mutex);
389 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
391 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
397 struct mmc_blk_ioc_data {
398 struct mmc_ioc_cmd ic;
401 struct mmc_rpmb_data *rpmb;
404 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
405 struct mmc_ioc_cmd __user *user)
407 struct mmc_blk_ioc_data *idata;
410 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
416 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
421 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
422 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
427 if (!idata->buf_bytes) {
432 idata->buf = memdup_user((void __user *)(unsigned long)
433 idata->ic.data_ptr, idata->buf_bytes);
434 if (IS_ERR(idata->buf)) {
435 err = PTR_ERR(idata->buf);
447 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
448 struct mmc_blk_ioc_data *idata)
450 struct mmc_ioc_cmd *ic = &idata->ic;
452 if (copy_to_user(&(ic_ptr->response), ic->response,
453 sizeof(ic->response)))
456 if (!idata->ic.write_flag) {
457 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
458 idata->buf, idata->buf_bytes))
465 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
466 struct mmc_blk_ioc_data *idata)
468 struct mmc_command cmd = {}, sbc = {};
469 struct mmc_data data = {};
470 struct mmc_request mrq = {};
471 struct scatterlist sg;
473 unsigned int target_part;
475 if (!card || !md || !idata)
479 * The RPMB accesses comes in from the character device, so we
480 * need to target these explicitly. Else we just target the
481 * partition type for the block device the ioctl() was issued
485 /* Support multiple RPMB partitions */
486 target_part = idata->rpmb->part_index;
487 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
489 target_part = md->part_type;
492 cmd.opcode = idata->ic.opcode;
493 cmd.arg = idata->ic.arg;
494 cmd.flags = idata->ic.flags;
496 if (idata->buf_bytes) {
499 data.blksz = idata->ic.blksz;
500 data.blocks = idata->ic.blocks;
502 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
504 if (idata->ic.write_flag)
505 data.flags = MMC_DATA_WRITE;
507 data.flags = MMC_DATA_READ;
509 /* data.flags must already be set before doing this. */
510 mmc_set_data_timeout(&data, card);
512 /* Allow overriding the timeout_ns for empirical tuning. */
513 if (idata->ic.data_timeout_ns)
514 data.timeout_ns = idata->ic.data_timeout_ns;
516 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
518 * Pretend this is a data transfer and rely on the
519 * host driver to compute timeout. When all host
520 * drivers support cmd.cmd_timeout for R1B, this
524 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
526 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
534 err = mmc_blk_part_switch(card, target_part);
538 if (idata->ic.is_acmd) {
539 err = mmc_app_cmd(card->host, card);
545 sbc.opcode = MMC_SET_BLOCK_COUNT;
547 * We don't do any blockcount validation because the max size
548 * may be increased by a future standard. We just copy the
549 * 'Reliable Write' bit here.
551 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
552 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
556 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
557 (cmd.opcode == MMC_SWITCH))
558 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
560 mmc_wait_for_req(card->host, &mrq);
561 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
564 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
565 __func__, cmd.error);
569 dev_err(mmc_dev(card->host), "%s: data error %d\n",
570 __func__, data.error);
575 * Make sure the cache of the PARTITION_CONFIG register and
576 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
577 * changed it successfully.
579 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
580 (cmd.opcode == MMC_SWITCH)) {
581 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
582 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
585 * Update cache so the next mmc_blk_part_switch call operates
586 * on up-to-date data.
588 card->ext_csd.part_config = value;
589 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
593 * Make sure to update CACHE_CTRL in case it was changed. The cache
594 * will get turned back on if the card is re-initialized, e.g.
595 * suspend/resume or hw reset in recovery.
597 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
598 (cmd.opcode == MMC_SWITCH)) {
599 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
601 card->ext_csd.cache_ctrl = value;
605 * According to the SD specs, some commands require a delay after
606 * issuing the command.
608 if (idata->ic.postsleep_min_us)
609 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
611 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
613 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we
614 * allow to override the default timeout value if a custom timeout is specified.
616 err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS,
623 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
624 struct mmc_ioc_cmd __user *ic_ptr,
625 struct mmc_rpmb_data *rpmb)
627 struct mmc_blk_ioc_data *idata;
628 struct mmc_blk_ioc_data *idatas[1];
629 struct mmc_queue *mq;
630 struct mmc_card *card;
631 int err = 0, ioc_err = 0;
634 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
636 return PTR_ERR(idata);
637 /* This will be NULL on non-RPMB ioctl():s */
640 card = md->queue.card;
647 * Dispatch the ioctl() into the block request queue.
650 req = blk_mq_alloc_request(mq->queue,
651 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
657 req_to_mmc_queue_req(req)->drv_op =
658 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
659 req_to_mmc_queue_req(req)->drv_op_data = idatas;
660 req_to_mmc_queue_req(req)->ioc_count = 1;
661 blk_execute_rq(req, false);
662 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
663 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
664 blk_mq_free_request(req);
669 return ioc_err ? ioc_err : err;
672 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
673 struct mmc_ioc_multi_cmd __user *user,
674 struct mmc_rpmb_data *rpmb)
676 struct mmc_blk_ioc_data **idata = NULL;
677 struct mmc_ioc_cmd __user *cmds = user->cmds;
678 struct mmc_card *card;
679 struct mmc_queue *mq;
680 int err = 0, ioc_err = 0;
685 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
686 sizeof(num_of_cmds)))
692 if (num_of_cmds > MMC_IOC_MAX_CMDS)
696 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
700 for (i = 0; i < n; i++) {
701 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
702 if (IS_ERR(idata[i])) {
703 err = PTR_ERR(idata[i]);
707 /* This will be NULL on non-RPMB ioctl():s */
708 idata[i]->rpmb = rpmb;
711 card = md->queue.card;
719 * Dispatch the ioctl()s into the block request queue.
722 req = blk_mq_alloc_request(mq->queue,
723 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
728 req_to_mmc_queue_req(req)->drv_op =
729 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
730 req_to_mmc_queue_req(req)->drv_op_data = idata;
731 req_to_mmc_queue_req(req)->ioc_count = n;
732 blk_execute_rq(req, false);
733 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
735 /* copy to user if data and response */
736 for (i = 0; i < n && !err; i++)
737 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
739 blk_mq_free_request(req);
742 for (i = 0; i < n; i++) {
743 kfree(idata[i]->buf);
747 return ioc_err ? ioc_err : err;
750 static int mmc_blk_check_blkdev(struct block_device *bdev)
753 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
754 * whole block device, not on a partition. This prevents overspray
755 * between sibling partitions.
757 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
762 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
763 unsigned int cmd, unsigned long arg)
765 struct mmc_blk_data *md;
770 ret = mmc_blk_check_blkdev(bdev);
773 md = mmc_blk_get(bdev->bd_disk);
776 ret = mmc_blk_ioctl_cmd(md,
777 (struct mmc_ioc_cmd __user *)arg,
781 case MMC_IOC_MULTI_CMD:
782 ret = mmc_blk_check_blkdev(bdev);
785 md = mmc_blk_get(bdev->bd_disk);
788 ret = mmc_blk_ioctl_multi_cmd(md,
789 (struct mmc_ioc_multi_cmd __user *)arg,
799 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
800 unsigned int cmd, unsigned long arg)
802 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
806 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
809 struct mmc_blk_data *md;
812 md = mmc_blk_get(disk);
817 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
826 static const struct block_device_operations mmc_bdops = {
827 .open = mmc_blk_open,
828 .release = mmc_blk_release,
829 .getgeo = mmc_blk_getgeo,
830 .owner = THIS_MODULE,
831 .ioctl = mmc_blk_ioctl,
833 .compat_ioctl = mmc_blk_compat_ioctl,
835 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
838 static int mmc_blk_part_switch_pre(struct mmc_card *card,
839 unsigned int part_type)
843 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
844 if (card->ext_csd.cmdq_en) {
845 ret = mmc_cmdq_disable(card);
849 mmc_retune_pause(card->host);
855 static int mmc_blk_part_switch_post(struct mmc_card *card,
856 unsigned int part_type)
860 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
861 mmc_retune_unpause(card->host);
862 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
863 ret = mmc_cmdq_enable(card);
869 static inline int mmc_blk_part_switch(struct mmc_card *card,
870 unsigned int part_type)
873 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
875 if (main_md->part_curr == part_type)
878 if (mmc_card_mmc(card)) {
879 u8 part_config = card->ext_csd.part_config;
881 ret = mmc_blk_part_switch_pre(card, part_type);
885 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
886 part_config |= part_type;
888 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
889 EXT_CSD_PART_CONFIG, part_config,
890 card->ext_csd.part_time);
892 mmc_blk_part_switch_post(card, part_type);
896 card->ext_csd.part_config = part_config;
898 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
901 main_md->part_curr = part_type;
905 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
911 struct mmc_request mrq = {};
912 struct mmc_command cmd = {};
913 struct mmc_data data = {};
915 struct scatterlist sg;
917 cmd.opcode = MMC_APP_CMD;
918 cmd.arg = card->rca << 16;
919 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
921 err = mmc_wait_for_cmd(card->host, &cmd, 0);
924 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
927 memset(&cmd, 0, sizeof(struct mmc_command));
929 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
931 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
935 data.flags = MMC_DATA_READ;
938 mmc_set_data_timeout(&data, card);
943 blocks = kmalloc(4, GFP_KERNEL);
947 sg_init_one(&sg, blocks, 4);
949 mmc_wait_for_req(card->host, &mrq);
951 result = ntohl(*blocks);
954 if (cmd.error || data.error)
957 *written_blocks = result;
962 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
964 if (host->actual_clock)
965 return host->actual_clock / 1000;
967 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
969 return host->ios.clock / 2000;
971 /* How can there be no clock */
973 return 100; /* 100 kHz is minimum possible value */
976 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
977 struct mmc_data *data)
979 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
982 if (data->timeout_clks) {
983 khz = mmc_blk_clock_khz(host);
984 ms += DIV_ROUND_UP(data->timeout_clks, khz);
990 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
995 if (md->reset_done & type)
998 md->reset_done |= type;
999 err = mmc_hw_reset(host->card);
1000 /* Ensure we switch back to the correct partition */
1002 struct mmc_blk_data *main_md =
1003 dev_get_drvdata(&host->card->dev);
1006 main_md->part_curr = main_md->part_type;
1007 part_err = mmc_blk_part_switch(host->card, md->part_type);
1010 * We have failed to get back into the correct
1011 * partition, so we need to abort the whole request.
1019 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1021 md->reset_done &= ~type;
1025 * The non-block commands come back from the block layer after it queued it and
1026 * processed it with all other requests and then they get issued in this
1029 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1031 struct mmc_queue_req *mq_rq;
1032 struct mmc_card *card = mq->card;
1033 struct mmc_blk_data *md = mq->blkdata;
1034 struct mmc_blk_ioc_data **idata;
1041 mq_rq = req_to_mmc_queue_req(req);
1042 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1044 switch (mq_rq->drv_op) {
1045 case MMC_DRV_OP_IOCTL:
1046 if (card->ext_csd.cmdq_en) {
1047 ret = mmc_cmdq_disable(card);
1052 case MMC_DRV_OP_IOCTL_RPMB:
1053 idata = mq_rq->drv_op_data;
1054 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1055 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1059 /* Always switch back to main area after RPMB access */
1061 mmc_blk_part_switch(card, 0);
1062 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1063 mmc_cmdq_enable(card);
1065 case MMC_DRV_OP_BOOT_WP:
1066 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1067 card->ext_csd.boot_ro_lock |
1068 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1069 card->ext_csd.part_time);
1071 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1072 md->disk->disk_name, ret);
1074 card->ext_csd.boot_ro_lock |=
1075 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1077 case MMC_DRV_OP_GET_CARD_STATUS:
1078 ret = mmc_send_status(card, &status);
1082 case MMC_DRV_OP_GET_EXT_CSD:
1083 ext_csd = mq_rq->drv_op_data;
1084 ret = mmc_get_ext_csd(card, ext_csd);
1087 pr_err("%s: unknown driver specific operation\n",
1088 md->disk->disk_name);
1092 mq_rq->drv_op_result = ret;
1093 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1096 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1097 int type, unsigned int erase_arg)
1099 struct mmc_blk_data *md = mq->blkdata;
1100 struct mmc_card *card = md->queue.card;
1101 unsigned int from, nr;
1103 blk_status_t status = BLK_STS_OK;
1105 if (!mmc_can_erase(card)) {
1106 status = BLK_STS_NOTSUPP;
1110 from = blk_rq_pos(req);
1111 nr = blk_rq_sectors(req);
1115 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1116 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1117 INAND_CMD38_ARG_EXT_CSD,
1118 erase_arg == MMC_TRIM_ARG ?
1119 INAND_CMD38_ARG_TRIM :
1120 INAND_CMD38_ARG_ERASE,
1121 card->ext_csd.generic_cmd6_time);
1124 err = mmc_erase(card, from, nr, erase_arg);
1125 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1127 status = BLK_STS_IOERR;
1129 mmc_blk_reset_success(md, type);
1131 blk_mq_end_request(req, status);
1134 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1136 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1139 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1141 struct mmc_blk_data *md = mq->blkdata;
1142 struct mmc_card *card = md->queue.card;
1143 unsigned int arg = card->erase_arg;
1145 if (mmc_card_broken_sd_discard(card))
1148 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1151 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1152 struct request *req)
1154 struct mmc_blk_data *md = mq->blkdata;
1155 struct mmc_card *card = md->queue.card;
1156 unsigned int from, nr, arg;
1157 int err = 0, type = MMC_BLK_SECDISCARD;
1158 blk_status_t status = BLK_STS_OK;
1160 if (!(mmc_can_secure_erase_trim(card))) {
1161 status = BLK_STS_NOTSUPP;
1165 from = blk_rq_pos(req);
1166 nr = blk_rq_sectors(req);
1168 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1169 arg = MMC_SECURE_TRIM1_ARG;
1171 arg = MMC_SECURE_ERASE_ARG;
1174 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1175 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1176 INAND_CMD38_ARG_EXT_CSD,
1177 arg == MMC_SECURE_TRIM1_ARG ?
1178 INAND_CMD38_ARG_SECTRIM1 :
1179 INAND_CMD38_ARG_SECERASE,
1180 card->ext_csd.generic_cmd6_time);
1185 err = mmc_erase(card, from, nr, arg);
1189 status = BLK_STS_IOERR;
1193 if (arg == MMC_SECURE_TRIM1_ARG) {
1194 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1195 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1196 INAND_CMD38_ARG_EXT_CSD,
1197 INAND_CMD38_ARG_SECTRIM2,
1198 card->ext_csd.generic_cmd6_time);
1203 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1207 status = BLK_STS_IOERR;
1213 if (err && !mmc_blk_reset(md, card->host, type))
1216 mmc_blk_reset_success(md, type);
1218 blk_mq_end_request(req, status);
1221 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1223 struct mmc_blk_data *md = mq->blkdata;
1224 struct mmc_card *card = md->queue.card;
1227 ret = mmc_flush_cache(card->host);
1228 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1232 * Reformat current write as a reliable write, supporting
1233 * both legacy and the enhanced reliable write MMC cards.
1234 * In each transfer we'll handle only as much as a single
1235 * reliable write can handle, thus finish the request in
1236 * partial completions.
1238 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1239 struct mmc_card *card,
1240 struct request *req)
1242 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1243 /* Legacy mode imposes restrictions on transfers. */
1244 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1245 brq->data.blocks = 1;
1247 if (brq->data.blocks > card->ext_csd.rel_sectors)
1248 brq->data.blocks = card->ext_csd.rel_sectors;
1249 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1250 brq->data.blocks = 1;
1254 #define CMD_ERRORS_EXCL_OOR \
1255 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1256 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1257 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1258 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1259 R1_CC_ERROR | /* Card controller error */ \
1260 R1_ERROR) /* General/unknown error */
1262 #define CMD_ERRORS \
1263 (CMD_ERRORS_EXCL_OOR | \
1264 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1266 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1271 * Per the SD specification(physical layer version 4.10)[1],
1272 * section 4.3.3, it explicitly states that "When the last
1273 * block of user area is read using CMD18, the host should
1274 * ignore OUT_OF_RANGE error that may occur even the sequence
1275 * is correct". And JESD84-B51 for eMMC also has a similar
1276 * statement on section 6.8.3.
1278 * Multiple block read/write could be done by either predefined
1279 * method, namely CMD23, or open-ending mode. For open-ending mode,
1280 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1282 * However the spec[1] doesn't tell us whether we should also
1283 * ignore that for predefined method. But per the spec[1], section
1284 * 4.15 Set Block Count Command, it says"If illegal block count
1285 * is set, out of range error will be indicated during read/write
1286 * operation (For example, data transfer is stopped at user area
1287 * boundary)." In another word, we could expect a out of range error
1288 * in the response for the following CMD18/25. And if argument of
1289 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1290 * we could also expect to get a -ETIMEDOUT or any error number from
1291 * the host drivers due to missing data response(for write)/data(for
1292 * read), as the cards will stop the data transfer by itself per the
1293 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1296 if (!brq->stop.error) {
1297 bool oor_with_open_end;
1298 /* If there is no error yet, check R1 response */
1300 val = brq->stop.resp[0] & CMD_ERRORS;
1301 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1303 if (val && !oor_with_open_end)
1304 brq->stop.error = -EIO;
1308 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1309 int recovery_mode, bool *do_rel_wr_p,
1310 bool *do_data_tag_p)
1312 struct mmc_blk_data *md = mq->blkdata;
1313 struct mmc_card *card = md->queue.card;
1314 struct mmc_blk_request *brq = &mqrq->brq;
1315 struct request *req = mmc_queue_req_to_req(mqrq);
1316 bool do_rel_wr, do_data_tag;
1319 * Reliable writes are used to implement Forced Unit Access and
1320 * are supported only on MMCs.
1322 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1323 rq_data_dir(req) == WRITE &&
1324 (md->flags & MMC_BLK_REL_WR);
1326 memset(brq, 0, sizeof(struct mmc_blk_request));
1328 mmc_crypto_prepare_req(mqrq);
1330 brq->mrq.data = &brq->data;
1331 brq->mrq.tag = req->tag;
1333 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1336 if (rq_data_dir(req) == READ) {
1337 brq->data.flags = MMC_DATA_READ;
1338 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1340 brq->data.flags = MMC_DATA_WRITE;
1341 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1344 brq->data.blksz = 512;
1345 brq->data.blocks = blk_rq_sectors(req);
1346 brq->data.blk_addr = blk_rq_pos(req);
1349 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1350 * The eMMC will give "high" priority tasks priority over "simple"
1351 * priority tasks. Here we always set "simple" priority by not setting
1356 * The block layer doesn't support all sector count
1357 * restrictions, so we need to be prepared for too big
1360 if (brq->data.blocks > card->host->max_blk_count)
1361 brq->data.blocks = card->host->max_blk_count;
1363 if (brq->data.blocks > 1) {
1365 * Some SD cards in SPI mode return a CRC error or even lock up
1366 * completely when trying to read the last block using a
1367 * multiblock read command.
1369 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1370 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1371 get_capacity(md->disk)))
1375 * After a read error, we redo the request one (native) sector
1376 * at a time in order to accurately determine which
1377 * sectors can be read successfully.
1380 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1383 * Some controllers have HW issues while operating
1384 * in multiple I/O mode
1386 if (card->host->ops->multi_io_quirk)
1387 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1388 (rq_data_dir(req) == READ) ?
1389 MMC_DATA_READ : MMC_DATA_WRITE,
1394 mmc_apply_rel_rw(brq, card, req);
1395 brq->data.flags |= MMC_DATA_REL_WR;
1399 * Data tag is used only during writing meta data to speed
1400 * up write and any subsequent read of this meta data
1402 do_data_tag = card->ext_csd.data_tag_unit_size &&
1403 (req->cmd_flags & REQ_META) &&
1404 (rq_data_dir(req) == WRITE) &&
1405 ((brq->data.blocks * brq->data.blksz) >=
1406 card->ext_csd.data_tag_unit_size);
1409 brq->data.flags |= MMC_DATA_DAT_TAG;
1411 mmc_set_data_timeout(&brq->data, card);
1413 brq->data.sg = mqrq->sg;
1414 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1417 * Adjust the sg list so it is the same size as the
1420 if (brq->data.blocks != blk_rq_sectors(req)) {
1421 int i, data_size = brq->data.blocks << 9;
1422 struct scatterlist *sg;
1424 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1425 data_size -= sg->length;
1426 if (data_size <= 0) {
1427 sg->length += data_size;
1432 brq->data.sg_len = i;
1436 *do_rel_wr_p = do_rel_wr;
1439 *do_data_tag_p = do_data_tag;
1442 #define MMC_CQE_RETRIES 2
1444 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1446 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1447 struct mmc_request *mrq = &mqrq->brq.mrq;
1448 struct request_queue *q = req->q;
1449 struct mmc_host *host = mq->card->host;
1450 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1451 unsigned long flags;
1455 mmc_cqe_post_req(host, mrq);
1457 if (mrq->cmd && mrq->cmd->error)
1458 err = mrq->cmd->error;
1459 else if (mrq->data && mrq->data->error)
1460 err = mrq->data->error;
1465 if (mqrq->retries++ < MMC_CQE_RETRIES)
1466 blk_mq_requeue_request(req, true);
1468 blk_mq_end_request(req, BLK_STS_IOERR);
1469 } else if (mrq->data) {
1470 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1471 blk_mq_requeue_request(req, true);
1473 __blk_mq_end_request(req, BLK_STS_OK);
1475 blk_mq_end_request(req, BLK_STS_OK);
1478 spin_lock_irqsave(&mq->lock, flags);
1480 mq->in_flight[issue_type] -= 1;
1482 put_card = (mmc_tot_in_flight(mq) == 0);
1484 mmc_cqe_check_busy(mq);
1486 spin_unlock_irqrestore(&mq->lock, flags);
1489 blk_mq_run_hw_queues(q, true);
1492 mmc_put_card(mq->card, &mq->ctx);
1495 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1497 struct mmc_card *card = mq->card;
1498 struct mmc_host *host = card->host;
1501 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1503 err = mmc_cqe_recovery(host);
1505 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1506 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1508 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1511 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1513 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1515 struct request *req = mmc_queue_req_to_req(mqrq);
1516 struct request_queue *q = req->q;
1517 struct mmc_queue *mq = q->queuedata;
1520 * Block layer timeouts race with completions which means the normal
1521 * completion path cannot be used during recovery.
1523 if (mq->in_recovery)
1524 mmc_blk_cqe_complete_rq(mq, req);
1525 else if (likely(!blk_should_fake_timeout(req->q)))
1526 blk_mq_complete_request(req);
1529 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1531 mrq->done = mmc_blk_cqe_req_done;
1532 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1534 return mmc_cqe_start_req(host, mrq);
1537 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1538 struct request *req)
1540 struct mmc_blk_request *brq = &mqrq->brq;
1542 memset(brq, 0, sizeof(*brq));
1544 brq->mrq.cmd = &brq->cmd;
1545 brq->mrq.tag = req->tag;
1550 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1552 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1553 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1555 mrq->cmd->opcode = MMC_SWITCH;
1556 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1557 (EXT_CSD_FLUSH_CACHE << 16) |
1559 EXT_CSD_CMD_SET_NORMAL;
1560 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1562 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1565 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1567 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1568 struct mmc_host *host = mq->card->host;
1571 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1572 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1573 mmc_pre_req(host, &mqrq->brq.mrq);
1575 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1577 mmc_post_req(host, &mqrq->brq.mrq, err);
1582 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1584 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1585 struct mmc_host *host = mq->card->host;
1587 if (host->hsq_enabled)
1588 return mmc_blk_hsq_issue_rw_rq(mq, req);
1590 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1592 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1595 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1596 struct mmc_card *card,
1598 struct mmc_queue *mq)
1600 u32 readcmd, writecmd;
1601 struct mmc_blk_request *brq = &mqrq->brq;
1602 struct request *req = mmc_queue_req_to_req(mqrq);
1603 struct mmc_blk_data *md = mq->blkdata;
1604 bool do_rel_wr, do_data_tag;
1606 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1608 brq->mrq.cmd = &brq->cmd;
1610 brq->cmd.arg = blk_rq_pos(req);
1611 if (!mmc_card_blockaddr(card))
1613 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1615 if (brq->data.blocks > 1 || do_rel_wr) {
1616 /* SPI multiblock writes terminate using a special
1617 * token, not a STOP_TRANSMISSION request.
1619 if (!mmc_host_is_spi(card->host) ||
1620 rq_data_dir(req) == READ)
1621 brq->mrq.stop = &brq->stop;
1622 readcmd = MMC_READ_MULTIPLE_BLOCK;
1623 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1625 brq->mrq.stop = NULL;
1626 readcmd = MMC_READ_SINGLE_BLOCK;
1627 writecmd = MMC_WRITE_BLOCK;
1629 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1632 * Pre-defined multi-block transfers are preferable to
1633 * open ended-ones (and necessary for reliable writes).
1634 * However, it is not sufficient to just send CMD23,
1635 * and avoid the final CMD12, as on an error condition
1636 * CMD12 (stop) needs to be sent anyway. This, coupled
1637 * with Auto-CMD23 enhancements provided by some
1638 * hosts, means that the complexity of dealing
1639 * with this is best left to the host. If CMD23 is
1640 * supported by card and host, we'll fill sbc in and let
1641 * the host deal with handling it correctly. This means
1642 * that for hosts that don't expose MMC_CAP_CMD23, no
1643 * change of behavior will be observed.
1645 * N.B: Some MMC cards experience perf degradation.
1646 * We'll avoid using CMD23-bounded multiblock writes for
1647 * these, while retaining features like reliable writes.
1649 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1650 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1652 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1653 brq->sbc.arg = brq->data.blocks |
1654 (do_rel_wr ? (1 << 31) : 0) |
1655 (do_data_tag ? (1 << 29) : 0);
1656 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1657 brq->mrq.sbc = &brq->sbc;
1661 #define MMC_MAX_RETRIES 5
1662 #define MMC_DATA_RETRIES 2
1663 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1665 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1667 struct mmc_command cmd = {
1668 .opcode = MMC_STOP_TRANSMISSION,
1669 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1670 /* Some hosts wait for busy anyway, so provide a busy timeout */
1671 .busy_timeout = timeout,
1674 return mmc_wait_for_cmd(card->host, &cmd, 5);
1677 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1679 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1680 struct mmc_blk_request *brq = &mqrq->brq;
1681 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1684 mmc_retune_hold_now(card->host);
1686 mmc_blk_send_stop(card, timeout);
1688 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1690 mmc_retune_release(card->host);
1695 #define MMC_READ_SINGLE_RETRIES 2
1697 /* Single (native) sector read during recovery */
1698 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1700 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1701 struct mmc_request *mrq = &mqrq->brq.mrq;
1702 struct mmc_card *card = mq->card;
1703 struct mmc_host *host = card->host;
1704 blk_status_t error = BLK_STS_OK;
1705 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1712 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1713 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1715 mmc_wait_for_req(host, mrq);
1717 err = mmc_send_status(card, &status);
1721 if (!mmc_host_is_spi(host) &&
1722 !mmc_ready_for_data(status)) {
1723 err = mmc_blk_fix_state(card, req);
1728 if (!mrq->cmd->error)
1732 if (mrq->cmd->error ||
1734 (!mmc_host_is_spi(host) &&
1735 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1736 error = BLK_STS_IOERR;
1740 } while (blk_update_request(req, error, bytes_per_read));
1745 mrq->data->bytes_xfered = 0;
1746 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1747 /* Let it try the remaining request again */
1748 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1749 mqrq->retries = MMC_MAX_RETRIES - 1;
1752 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1754 return !!brq->mrq.sbc;
1757 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1759 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1763 * Check for errors the host controller driver might not have seen such as
1764 * response mode errors or invalid card state.
1766 static bool mmc_blk_status_error(struct request *req, u32 status)
1768 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1769 struct mmc_blk_request *brq = &mqrq->brq;
1770 struct mmc_queue *mq = req->q->queuedata;
1773 if (mmc_host_is_spi(mq->card->host))
1776 stop_err_bits = mmc_blk_stop_err_bits(brq);
1778 return brq->cmd.resp[0] & CMD_ERRORS ||
1779 brq->stop.resp[0] & stop_err_bits ||
1780 status & stop_err_bits ||
1781 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1784 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1786 return !brq->sbc.error && !brq->cmd.error &&
1787 !(brq->cmd.resp[0] & CMD_ERRORS);
1791 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1793 * 1. A request that has transferred at least some data is considered
1794 * successful and will be requeued if there is remaining data to
1796 * 2. Otherwise the number of retries is incremented and the request
1797 * will be requeued if there are remaining retries.
1798 * 3. Otherwise the request will be errored out.
1799 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1800 * mqrq->retries. So there are only 4 possible actions here:
1801 * 1. do not accept the bytes_xfered value i.e. set it to zero
1802 * 2. change mqrq->retries to determine the number of retries
1803 * 3. try to reset the card
1804 * 4. read one sector at a time
1806 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1808 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1809 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1810 struct mmc_blk_request *brq = &mqrq->brq;
1811 struct mmc_blk_data *md = mq->blkdata;
1812 struct mmc_card *card = mq->card;
1818 * Some errors the host driver might not have seen. Set the number of
1819 * bytes transferred to zero in that case.
1821 err = __mmc_send_status(card, &status, 0);
1822 if (err || mmc_blk_status_error(req, status))
1823 brq->data.bytes_xfered = 0;
1825 mmc_retune_release(card->host);
1828 * Try again to get the status. This also provides an opportunity for
1832 err = __mmc_send_status(card, &status, 0);
1835 * Nothing more to do after the number of bytes transferred has been
1836 * updated and there is no card.
1838 if (err && mmc_detect_card_removed(card->host))
1841 /* Try to get back to "tran" state */
1842 if (!mmc_host_is_spi(mq->card->host) &&
1843 (err || !mmc_ready_for_data(status)))
1844 err = mmc_blk_fix_state(mq->card, req);
1847 * Special case for SD cards where the card might record the number of
1850 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1851 rq_data_dir(req) == WRITE) {
1852 if (mmc_sd_num_wr_blocks(card, &blocks))
1853 brq->data.bytes_xfered = 0;
1855 brq->data.bytes_xfered = blocks << 9;
1858 /* Reset if the card is in a bad state */
1859 if (!mmc_host_is_spi(mq->card->host) &&
1860 err && mmc_blk_reset(md, card->host, type)) {
1861 pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1862 mqrq->retries = MMC_NO_RETRIES;
1867 * If anything was done, just return and if there is anything remaining
1868 * on the request it will get requeued.
1870 if (brq->data.bytes_xfered)
1873 /* Reset before last retry */
1874 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1875 mmc_blk_reset(md, card->host, type);
1877 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1878 if (brq->sbc.error || brq->cmd.error)
1881 /* Reduce the remaining retries for data errors */
1882 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1883 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1887 if (rq_data_dir(req) == READ && brq->data.blocks >
1888 queue_physical_block_size(mq->queue) >> 9) {
1889 /* Read one (native) sector at a time */
1890 mmc_blk_read_single(mq, req);
1895 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1897 mmc_blk_eval_resp_error(brq);
1899 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1900 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1903 static int mmc_spi_err_check(struct mmc_card *card)
1909 * SPI does not have a TRAN state we have to wait on, instead the
1910 * card is ready again when it no longer holds the line LOW.
1911 * We still have to ensure two things here before we know the write
1913 * 1. The card has not disconnected during busy and we actually read our
1914 * own pull-up, thinking it was still connected, so ensure it
1916 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1917 * just reconnected card after being disconnected during busy.
1919 err = __mmc_send_status(card, &status, 0);
1922 /* All R1 and R2 bits of SPI are errors in our case */
1928 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1930 struct mmc_blk_busy_data *data = cb_data;
1934 err = mmc_send_status(data->card, &status);
1938 /* Accumulate response error bits. */
1939 data->status |= status;
1941 *busy = !mmc_ready_for_data(status);
1945 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1947 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1948 struct mmc_blk_busy_data cb_data;
1951 if (rq_data_dir(req) == READ)
1954 if (mmc_host_is_spi(card->host)) {
1955 err = mmc_spi_err_check(card);
1957 mqrq->brq.data.bytes_xfered = 0;
1961 cb_data.card = card;
1963 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1964 &mmc_blk_busy_cb, &cb_data);
1967 * Do not assume data transferred correctly if there are any error bits
1970 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1971 mqrq->brq.data.bytes_xfered = 0;
1972 err = err ? err : -EIO;
1975 /* Copy the exception bit so it will be seen later on */
1976 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1977 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1982 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1983 struct request *req)
1985 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1987 mmc_blk_reset_success(mq->blkdata, type);
1990 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1992 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1993 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1996 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1997 blk_mq_requeue_request(req, true);
1999 __blk_mq_end_request(req, BLK_STS_OK);
2000 } else if (!blk_rq_bytes(req)) {
2001 __blk_mq_end_request(req, BLK_STS_IOERR);
2002 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2003 blk_mq_requeue_request(req, true);
2005 if (mmc_card_removed(mq->card))
2006 req->rq_flags |= RQF_QUIET;
2007 blk_mq_end_request(req, BLK_STS_IOERR);
2011 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2012 struct mmc_queue_req *mqrq)
2014 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2015 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2016 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2019 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2020 struct mmc_queue_req *mqrq)
2022 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2023 mmc_run_bkops(mq->card);
2026 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2028 struct mmc_queue_req *mqrq =
2029 container_of(mrq, struct mmc_queue_req, brq.mrq);
2030 struct request *req = mmc_queue_req_to_req(mqrq);
2031 struct request_queue *q = req->q;
2032 struct mmc_queue *mq = q->queuedata;
2033 struct mmc_host *host = mq->card->host;
2034 unsigned long flags;
2036 if (mmc_blk_rq_error(&mqrq->brq) ||
2037 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2038 spin_lock_irqsave(&mq->lock, flags);
2039 mq->recovery_needed = true;
2040 mq->recovery_req = req;
2041 spin_unlock_irqrestore(&mq->lock, flags);
2043 host->cqe_ops->cqe_recovery_start(host);
2045 schedule_work(&mq->recovery_work);
2049 mmc_blk_rw_reset_success(mq, req);
2052 * Block layer timeouts race with completions which means the normal
2053 * completion path cannot be used during recovery.
2055 if (mq->in_recovery)
2056 mmc_blk_cqe_complete_rq(mq, req);
2057 else if (likely(!blk_should_fake_timeout(req->q)))
2058 blk_mq_complete_request(req);
2061 void mmc_blk_mq_complete(struct request *req)
2063 struct mmc_queue *mq = req->q->queuedata;
2064 struct mmc_host *host = mq->card->host;
2066 if (host->cqe_enabled)
2067 mmc_blk_cqe_complete_rq(mq, req);
2068 else if (likely(!blk_should_fake_timeout(req->q)))
2069 mmc_blk_mq_complete_rq(mq, req);
2072 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2073 struct request *req)
2075 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2076 struct mmc_host *host = mq->card->host;
2078 if (mmc_blk_rq_error(&mqrq->brq) ||
2079 mmc_blk_card_busy(mq->card, req)) {
2080 mmc_blk_mq_rw_recovery(mq, req);
2082 mmc_blk_rw_reset_success(mq, req);
2083 mmc_retune_release(host);
2086 mmc_blk_urgent_bkops(mq, mqrq);
2089 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
2091 unsigned long flags;
2094 spin_lock_irqsave(&mq->lock, flags);
2096 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2098 put_card = (mmc_tot_in_flight(mq) == 0);
2100 spin_unlock_irqrestore(&mq->lock, flags);
2103 mmc_put_card(mq->card, &mq->ctx);
2106 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2109 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2110 struct mmc_request *mrq = &mqrq->brq.mrq;
2111 struct mmc_host *host = mq->card->host;
2113 mmc_post_req(host, mrq, 0);
2116 * Block layer timeouts race with completions which means the normal
2117 * completion path cannot be used during recovery.
2119 if (mq->in_recovery) {
2120 mmc_blk_mq_complete_rq(mq, req);
2121 } else if (likely(!blk_should_fake_timeout(req->q))) {
2123 blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2125 blk_mq_complete_request(req);
2128 mmc_blk_mq_dec_in_flight(mq, req);
2131 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2133 struct request *req = mq->recovery_req;
2134 struct mmc_host *host = mq->card->host;
2135 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2137 mq->recovery_req = NULL;
2138 mq->rw_wait = false;
2140 if (mmc_blk_rq_error(&mqrq->brq)) {
2141 mmc_retune_hold_now(host);
2142 mmc_blk_mq_rw_recovery(mq, req);
2145 mmc_blk_urgent_bkops(mq, mqrq);
2147 mmc_blk_mq_post_req(mq, req, true);
2150 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2151 struct request **prev_req)
2153 if (mmc_host_done_complete(mq->card->host))
2156 mutex_lock(&mq->complete_lock);
2158 if (!mq->complete_req)
2161 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2164 *prev_req = mq->complete_req;
2166 mmc_blk_mq_post_req(mq, mq->complete_req, true);
2168 mq->complete_req = NULL;
2171 mutex_unlock(&mq->complete_lock);
2174 void mmc_blk_mq_complete_work(struct work_struct *work)
2176 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2179 mmc_blk_mq_complete_prev_req(mq, NULL);
2182 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2184 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2186 struct request *req = mmc_queue_req_to_req(mqrq);
2187 struct request_queue *q = req->q;
2188 struct mmc_queue *mq = q->queuedata;
2189 struct mmc_host *host = mq->card->host;
2190 unsigned long flags;
2192 if (!mmc_host_done_complete(host)) {
2196 * We cannot complete the request in this context, so record
2197 * that there is a request to complete, and that a following
2198 * request does not need to wait (although it does need to
2199 * complete complete_req first).
2201 spin_lock_irqsave(&mq->lock, flags);
2202 mq->complete_req = req;
2203 mq->rw_wait = false;
2204 waiting = mq->waiting;
2205 spin_unlock_irqrestore(&mq->lock, flags);
2208 * If 'waiting' then the waiting task will complete this
2209 * request, otherwise queue a work to do it. Note that
2210 * complete_work may still race with the dispatch of a following
2216 queue_work(mq->card->complete_wq, &mq->complete_work);
2221 /* Take the recovery path for errors or urgent background operations */
2222 if (mmc_blk_rq_error(&mqrq->brq) ||
2223 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2224 spin_lock_irqsave(&mq->lock, flags);
2225 mq->recovery_needed = true;
2226 mq->recovery_req = req;
2227 spin_unlock_irqrestore(&mq->lock, flags);
2229 schedule_work(&mq->recovery_work);
2233 mmc_blk_rw_reset_success(mq, req);
2235 mq->rw_wait = false;
2238 /* context unknown */
2239 mmc_blk_mq_post_req(mq, req, false);
2242 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2244 unsigned long flags;
2248 * Wait while there is another request in progress, but not if recovery
2249 * is needed. Also indicate whether there is a request waiting to start.
2251 spin_lock_irqsave(&mq->lock, flags);
2252 if (mq->recovery_needed) {
2256 done = !mq->rw_wait;
2258 mq->waiting = !done;
2259 spin_unlock_irqrestore(&mq->lock, flags);
2264 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2268 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2270 /* Always complete the previous request if there is one */
2271 mmc_blk_mq_complete_prev_req(mq, prev_req);
2276 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2277 struct request *req)
2279 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2280 struct mmc_host *host = mq->card->host;
2281 struct request *prev_req = NULL;
2284 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2286 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2288 mmc_pre_req(host, &mqrq->brq.mrq);
2290 err = mmc_blk_rw_wait(mq, &prev_req);
2296 err = mmc_start_request(host, &mqrq->brq.mrq);
2299 mmc_blk_mq_post_req(mq, prev_req, true);
2302 mq->rw_wait = false;
2304 /* Release re-tuning here where there is no synchronization required */
2305 if (err || mmc_host_done_complete(host))
2306 mmc_retune_release(host);
2310 mmc_post_req(host, &mqrq->brq.mrq, err);
2315 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2317 if (host->cqe_enabled)
2318 return host->cqe_ops->cqe_wait_for_idle(host);
2320 return mmc_blk_rw_wait(mq, NULL);
2323 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2325 struct mmc_blk_data *md = mq->blkdata;
2326 struct mmc_card *card = md->queue.card;
2327 struct mmc_host *host = card->host;
2330 ret = mmc_blk_part_switch(card, md->part_type);
2332 return MMC_REQ_FAILED_TO_START;
2334 switch (mmc_issue_type(mq, req)) {
2335 case MMC_ISSUE_SYNC:
2336 ret = mmc_blk_wait_for_idle(mq, host);
2338 return MMC_REQ_BUSY;
2339 switch (req_op(req)) {
2341 case REQ_OP_DRV_OUT:
2342 mmc_blk_issue_drv_op(mq, req);
2344 case REQ_OP_DISCARD:
2345 mmc_blk_issue_discard_rq(mq, req);
2347 case REQ_OP_SECURE_ERASE:
2348 mmc_blk_issue_secdiscard_rq(mq, req);
2350 case REQ_OP_WRITE_ZEROES:
2351 mmc_blk_issue_trim_rq(mq, req);
2354 mmc_blk_issue_flush(mq, req);
2358 return MMC_REQ_FAILED_TO_START;
2360 return MMC_REQ_FINISHED;
2361 case MMC_ISSUE_DCMD:
2362 case MMC_ISSUE_ASYNC:
2363 switch (req_op(req)) {
2365 if (!mmc_cache_enabled(host)) {
2366 blk_mq_end_request(req, BLK_STS_OK);
2367 return MMC_REQ_FINISHED;
2369 ret = mmc_blk_cqe_issue_flush(mq, req);
2373 if (host->cqe_enabled)
2374 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2376 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2383 return MMC_REQ_STARTED;
2384 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2387 return MMC_REQ_FAILED_TO_START;
2391 static inline int mmc_blk_readonly(struct mmc_card *card)
2393 return mmc_card_readonly(card) ||
2394 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2397 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2398 struct device *parent,
2401 const char *subname,
2403 unsigned int part_type)
2405 struct mmc_blk_data *md;
2408 bool cache_enabled = false;
2409 bool fua_enabled = false;
2411 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2414 * We get -ENOSPC because there are no more any available
2415 * devidx. The reason may be that, either userspace haven't yet
2416 * unmounted the partitions, which postpones mmc_blk_release()
2417 * from being called, or the device has more partitions than
2420 if (devidx == -ENOSPC)
2421 dev_err(mmc_dev(card->host),
2422 "no more device IDs available\n");
2424 return ERR_PTR(devidx);
2427 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2433 md->area_type = area_type;
2436 * Set the read-only status based on the supported commands
2437 * and the write protect switch.
2439 md->read_only = mmc_blk_readonly(card);
2441 md->disk = mmc_init_queue(&md->queue, card);
2442 if (IS_ERR(md->disk)) {
2443 ret = PTR_ERR(md->disk);
2447 INIT_LIST_HEAD(&md->part);
2448 INIT_LIST_HEAD(&md->rpmbs);
2449 kref_init(&md->kref);
2451 md->queue.blkdata = md;
2452 md->part_type = part_type;
2454 md->disk->major = MMC_BLOCK_MAJOR;
2455 md->disk->minors = perdev_minors;
2456 md->disk->first_minor = devidx * perdev_minors;
2457 md->disk->fops = &mmc_bdops;
2458 md->disk->private_data = md;
2459 md->parent = parent;
2460 set_disk_ro(md->disk, md->read_only || default_ro);
2461 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2462 md->disk->flags |= GENHD_FL_NO_PART;
2465 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2467 * - be set for removable media with permanent block devices
2468 * - be unset for removable block devices with permanent media
2470 * Since MMC block devices clearly fall under the second
2471 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2472 * should use the block device creation/destruction hotplug
2473 * messages to tell when the card is present.
2476 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2477 "mmcblk%u%s", card->host->index, subname ? subname : "");
2479 set_capacity(md->disk, size);
2481 if (mmc_host_cmd23(card->host)) {
2482 if ((mmc_card_mmc(card) &&
2483 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2484 (mmc_card_sd(card) &&
2485 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2486 md->flags |= MMC_BLK_CMD23;
2489 if (md->flags & MMC_BLK_CMD23 &&
2490 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2491 card->ext_csd.rel_sectors)) {
2492 md->flags |= MMC_BLK_REL_WR;
2494 cache_enabled = true;
2496 if (mmc_cache_enabled(card->host))
2497 cache_enabled = true;
2499 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2501 string_get_size((u64)size, 512, STRING_UNITS_2,
2502 cap_str, sizeof(cap_str));
2503 pr_info("%s: %s %s %s %s\n",
2504 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2505 cap_str, md->read_only ? "(ro)" : "");
2507 /* used in ->open, must be set before add_disk: */
2508 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2509 dev_set_drvdata(&card->dev, md);
2510 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2517 blk_mq_free_tag_set(&md->queue.tag_set);
2521 ida_simple_remove(&mmc_blk_ida, devidx);
2522 return ERR_PTR(ret);
2525 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2529 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2531 * The EXT_CSD sector count is in number or 512 byte
2534 size = card->ext_csd.sectors;
2537 * The CSD capacity field is in units of read_blkbits.
2538 * set_capacity takes units of 512 bytes.
2540 size = (typeof(sector_t))card->csd.capacity
2541 << (card->csd.read_blkbits - 9);
2544 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2545 MMC_BLK_DATA_AREA_MAIN, 0);
2548 static int mmc_blk_alloc_part(struct mmc_card *card,
2549 struct mmc_blk_data *md,
2550 unsigned int part_type,
2553 const char *subname,
2556 struct mmc_blk_data *part_md;
2558 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2559 subname, area_type, part_type);
2560 if (IS_ERR(part_md))
2561 return PTR_ERR(part_md);
2562 list_add(&part_md->part, &md->part);
2568 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2569 * @filp: the character device file
2570 * @cmd: the ioctl() command
2571 * @arg: the argument from userspace
2573 * This will essentially just redirect the ioctl()s coming in over to
2574 * the main block device spawning the RPMB character device.
2576 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2579 struct mmc_rpmb_data *rpmb = filp->private_data;
2584 ret = mmc_blk_ioctl_cmd(rpmb->md,
2585 (struct mmc_ioc_cmd __user *)arg,
2588 case MMC_IOC_MULTI_CMD:
2589 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2590 (struct mmc_ioc_multi_cmd __user *)arg,
2601 #ifdef CONFIG_COMPAT
2602 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2605 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2609 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2611 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2612 struct mmc_rpmb_data, chrdev);
2614 get_device(&rpmb->dev);
2615 filp->private_data = rpmb;
2616 mmc_blk_get(rpmb->md->disk);
2618 return nonseekable_open(inode, filp);
2621 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2623 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2624 struct mmc_rpmb_data, chrdev);
2626 mmc_blk_put(rpmb->md);
2627 put_device(&rpmb->dev);
2632 static const struct file_operations mmc_rpmb_fileops = {
2633 .release = mmc_rpmb_chrdev_release,
2634 .open = mmc_rpmb_chrdev_open,
2635 .owner = THIS_MODULE,
2636 .llseek = no_llseek,
2637 .unlocked_ioctl = mmc_rpmb_ioctl,
2638 #ifdef CONFIG_COMPAT
2639 .compat_ioctl = mmc_rpmb_ioctl_compat,
2643 static void mmc_blk_rpmb_device_release(struct device *dev)
2645 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2647 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2651 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2652 struct mmc_blk_data *md,
2653 unsigned int part_index,
2655 const char *subname)
2658 char rpmb_name[DISK_NAME_LEN];
2660 struct mmc_rpmb_data *rpmb;
2662 /* This creates the minor number for the RPMB char device */
2663 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2667 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2669 ida_simple_remove(&mmc_rpmb_ida, devidx);
2673 snprintf(rpmb_name, sizeof(rpmb_name),
2674 "mmcblk%u%s", card->host->index, subname ? subname : "");
2677 rpmb->part_index = part_index;
2678 rpmb->dev.init_name = rpmb_name;
2679 rpmb->dev.bus = &mmc_rpmb_bus_type;
2680 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2681 rpmb->dev.parent = &card->dev;
2682 rpmb->dev.release = mmc_blk_rpmb_device_release;
2683 device_initialize(&rpmb->dev);
2684 dev_set_drvdata(&rpmb->dev, rpmb);
2687 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2688 rpmb->chrdev.owner = THIS_MODULE;
2689 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2691 pr_err("%s: could not add character device\n", rpmb_name);
2692 goto out_put_device;
2695 list_add(&rpmb->node, &md->rpmbs);
2697 string_get_size((u64)size, 512, STRING_UNITS_2,
2698 cap_str, sizeof(cap_str));
2700 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2701 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2702 MAJOR(mmc_rpmb_devt), rpmb->id);
2707 put_device(&rpmb->dev);
2711 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2714 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2715 put_device(&rpmb->dev);
2718 /* MMC Physical partitions consist of two boot partitions and
2719 * up to four general purpose partitions.
2720 * For each partition enabled in EXT_CSD a block device will be allocatedi
2721 * to provide access to the partition.
2724 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2728 if (!mmc_card_mmc(card))
2731 for (idx = 0; idx < card->nr_parts; idx++) {
2732 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2734 * RPMB partitions does not provide block access, they
2735 * are only accessed using ioctl():s. Thus create
2736 * special RPMB block devices that do not have a
2737 * backing block queue for these.
2739 ret = mmc_blk_alloc_rpmb_part(card, md,
2740 card->part[idx].part_cfg,
2741 card->part[idx].size >> 9,
2742 card->part[idx].name);
2745 } else if (card->part[idx].size) {
2746 ret = mmc_blk_alloc_part(card, md,
2747 card->part[idx].part_cfg,
2748 card->part[idx].size >> 9,
2749 card->part[idx].force_ro,
2750 card->part[idx].name,
2751 card->part[idx].area_type);
2760 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2763 * Flush remaining requests and free queues. It is freeing the queue
2764 * that stops new requests from being accepted.
2766 del_gendisk(md->disk);
2767 mmc_cleanup_queue(&md->queue);
2771 static void mmc_blk_remove_parts(struct mmc_card *card,
2772 struct mmc_blk_data *md)
2774 struct list_head *pos, *q;
2775 struct mmc_blk_data *part_md;
2776 struct mmc_rpmb_data *rpmb;
2778 /* Remove RPMB partitions */
2779 list_for_each_safe(pos, q, &md->rpmbs) {
2780 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2782 mmc_blk_remove_rpmb_part(rpmb);
2784 /* Remove block partitions */
2785 list_for_each_safe(pos, q, &md->part) {
2786 part_md = list_entry(pos, struct mmc_blk_data, part);
2788 mmc_blk_remove_req(part_md);
2792 #ifdef CONFIG_DEBUG_FS
2794 static int mmc_dbg_card_status_get(void *data, u64 *val)
2796 struct mmc_card *card = data;
2797 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2798 struct mmc_queue *mq = &md->queue;
2799 struct request *req;
2802 /* Ask the block layer about the card status */
2803 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2805 return PTR_ERR(req);
2806 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2807 blk_execute_rq(req, false);
2808 ret = req_to_mmc_queue_req(req)->drv_op_result;
2813 blk_mq_free_request(req);
2817 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2820 /* That is two digits * 512 + 1 for newline */
2821 #define EXT_CSD_STR_LEN 1025
2823 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2825 struct mmc_card *card = inode->i_private;
2826 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2827 struct mmc_queue *mq = &md->queue;
2828 struct request *req;
2834 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2838 /* Ask the block layer for the EXT CSD */
2839 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2844 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2845 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2846 blk_execute_rq(req, false);
2847 err = req_to_mmc_queue_req(req)->drv_op_result;
2848 blk_mq_free_request(req);
2850 pr_err("FAILED %d\n", err);
2854 for (i = 0; i < 512; i++)
2855 n += sprintf(buf + n, "%02x", ext_csd[i]);
2856 n += sprintf(buf + n, "\n");
2858 if (n != EXT_CSD_STR_LEN) {
2864 filp->private_data = buf;
2873 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2874 size_t cnt, loff_t *ppos)
2876 char *buf = filp->private_data;
2878 return simple_read_from_buffer(ubuf, cnt, ppos,
2879 buf, EXT_CSD_STR_LEN);
2882 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2884 kfree(file->private_data);
2888 static const struct file_operations mmc_dbg_ext_csd_fops = {
2889 .open = mmc_ext_csd_open,
2890 .read = mmc_ext_csd_read,
2891 .release = mmc_ext_csd_release,
2892 .llseek = default_llseek,
2895 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2897 struct dentry *root;
2899 if (!card->debugfs_root)
2902 root = card->debugfs_root;
2904 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2906 debugfs_create_file_unsafe("status", 0400, root,
2908 &mmc_dbg_card_status_fops);
2909 if (!md->status_dentry)
2913 if (mmc_card_mmc(card)) {
2914 md->ext_csd_dentry =
2915 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2916 &mmc_dbg_ext_csd_fops);
2917 if (!md->ext_csd_dentry)
2924 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2925 struct mmc_blk_data *md)
2927 if (!card->debugfs_root)
2930 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2931 debugfs_remove(md->status_dentry);
2932 md->status_dentry = NULL;
2935 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2936 debugfs_remove(md->ext_csd_dentry);
2937 md->ext_csd_dentry = NULL;
2943 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2948 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2949 struct mmc_blk_data *md)
2953 #endif /* CONFIG_DEBUG_FS */
2955 static int mmc_blk_probe(struct mmc_card *card)
2957 struct mmc_blk_data *md;
2961 * Check that the card supports the command class(es) we need.
2963 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2966 mmc_fixup_device(card, mmc_blk_fixups);
2968 card->complete_wq = alloc_workqueue("mmc_complete",
2969 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2970 if (!card->complete_wq) {
2971 pr_err("Failed to create mmc completion workqueue");
2975 md = mmc_blk_alloc(card);
2981 ret = mmc_blk_alloc_parts(card, md);
2985 /* Add two debugfs entries */
2986 mmc_blk_add_debugfs(card, md);
2988 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2989 pm_runtime_use_autosuspend(&card->dev);
2992 * Don't enable runtime PM for SD-combo cards here. Leave that
2993 * decision to be taken during the SDIO init sequence instead.
2995 if (!mmc_card_sd_combo(card)) {
2996 pm_runtime_set_active(&card->dev);
2997 pm_runtime_enable(&card->dev);
3003 mmc_blk_remove_parts(card, md);
3004 mmc_blk_remove_req(md);
3006 destroy_workqueue(card->complete_wq);
3010 static void mmc_blk_remove(struct mmc_card *card)
3012 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3014 mmc_blk_remove_debugfs(card, md);
3015 mmc_blk_remove_parts(card, md);
3016 pm_runtime_get_sync(&card->dev);
3017 if (md->part_curr != md->part_type) {
3018 mmc_claim_host(card->host);
3019 mmc_blk_part_switch(card, md->part_type);
3020 mmc_release_host(card->host);
3022 if (!mmc_card_sd_combo(card))
3023 pm_runtime_disable(&card->dev);
3024 pm_runtime_put_noidle(&card->dev);
3025 mmc_blk_remove_req(md);
3026 dev_set_drvdata(&card->dev, NULL);
3027 destroy_workqueue(card->complete_wq);
3030 static int _mmc_blk_suspend(struct mmc_card *card)
3032 struct mmc_blk_data *part_md;
3033 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3036 mmc_queue_suspend(&md->queue);
3037 list_for_each_entry(part_md, &md->part, part) {
3038 mmc_queue_suspend(&part_md->queue);
3044 static void mmc_blk_shutdown(struct mmc_card *card)
3046 _mmc_blk_suspend(card);
3049 #ifdef CONFIG_PM_SLEEP
3050 static int mmc_blk_suspend(struct device *dev)
3052 struct mmc_card *card = mmc_dev_to_card(dev);
3054 return _mmc_blk_suspend(card);
3057 static int mmc_blk_resume(struct device *dev)
3059 struct mmc_blk_data *part_md;
3060 struct mmc_blk_data *md = dev_get_drvdata(dev);
3064 * Resume involves the card going into idle state,
3065 * so current partition is always the main one.
3067 md->part_curr = md->part_type;
3068 mmc_queue_resume(&md->queue);
3069 list_for_each_entry(part_md, &md->part, part) {
3070 mmc_queue_resume(&part_md->queue);
3077 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3079 static struct mmc_driver mmc_driver = {
3082 .pm = &mmc_blk_pm_ops,
3084 .probe = mmc_blk_probe,
3085 .remove = mmc_blk_remove,
3086 .shutdown = mmc_blk_shutdown,
3089 static int __init mmc_blk_init(void)
3093 res = bus_register(&mmc_rpmb_bus_type);
3095 pr_err("mmcblk: could not register RPMB bus type\n");
3098 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3100 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3104 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3105 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3107 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3109 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3111 goto out_chrdev_unreg;
3113 res = mmc_register_driver(&mmc_driver);
3115 goto out_blkdev_unreg;
3120 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3122 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3124 bus_unregister(&mmc_rpmb_bus_type);
3128 static void __exit mmc_blk_exit(void)
3130 mmc_unregister_driver(&mmc_driver);
3131 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3132 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3133 bus_unregister(&mmc_rpmb_bus_type);
3136 module_init(mmc_blk_init);
3137 module_exit(mmc_blk_exit);
3139 MODULE_LICENSE("GPL");
3140 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");