1 // SPDX-License-Identifier: GPL-2.0-only
3 * "splice": joining two ropes together by interweaving their strands.
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
21 #include <linux/bvec.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/net.h>
37 #include <linux/socket.h>
38 #include <linux/sched/signal.h>
43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44 * indicate they support non-blocking reads or writes, we must clear it
45 * here if set to avoid blocking other users of this pipe if splice is
48 static noinline void noinline pipe_clear_nowait(struct file *file)
50 fmode_t fmode = READ_ONCE(file->f_mode);
53 if (!(fmode & FMODE_NOWAIT))
55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
59 * Attempt to steal a page from a pipe buffer. This should perhaps go into
60 * a vm helper function, it's already simplified quite a bit by the
61 * addition of remove_mapping(). If success is returned, the caller may
62 * attempt to reuse this page for another destination.
64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 struct pipe_buffer *buf)
67 struct folio *folio = page_folio(buf->page);
68 struct address_space *mapping;
72 mapping = folio_mapping(folio);
74 WARN_ON(!folio_test_uptodate(folio));
77 * At least for ext2 with nobh option, we need to wait on
78 * writeback completing on this folio, since we'll remove it
79 * from the pagecache. Otherwise truncate wont wait on the
80 * folio, allowing the disk blocks to be reused by someone else
81 * before we actually wrote our data to them. fs corruption
84 folio_wait_writeback(folio);
86 if (!filemap_release_folio(folio, GFP_KERNEL))
90 * If we succeeded in removing the mapping, set LRU flag
93 if (remove_mapping(mapping, folio)) {
94 buf->flags |= PIPE_BUF_FLAG_LRU;
100 * Raced with truncate or failed to remove folio from current
101 * address space, unlock and return failure.
108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109 struct pipe_buffer *buf)
112 buf->flags &= ~PIPE_BUF_FLAG_LRU;
116 * Check whether the contents of buf is OK to access. Since the content
117 * is a page cache page, IO may be in flight.
119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120 struct pipe_buffer *buf)
122 struct page *page = buf->page;
125 if (!PageUptodate(page)) {
129 * Page got truncated/unhashed. This will cause a 0-byte
130 * splice, if this is the first page.
132 if (!page->mapping) {
138 * Uh oh, read-error from disk.
140 if (!PageUptodate(page)) {
146 * Page is ok afterall, we are done.
157 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
158 .confirm = page_cache_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .try_steal = page_cache_pipe_buf_try_steal,
161 .get = generic_pipe_buf_get,
164 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
165 struct pipe_buffer *buf)
167 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
170 buf->flags |= PIPE_BUF_FLAG_LRU;
171 return generic_pipe_buf_try_steal(pipe, buf);
174 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
175 .release = page_cache_pipe_buf_release,
176 .try_steal = user_page_pipe_buf_try_steal,
177 .get = generic_pipe_buf_get,
180 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
183 if (waitqueue_active(&pipe->rd_wait))
184 wake_up_interruptible(&pipe->rd_wait);
185 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
189 * splice_to_pipe - fill passed data into a pipe
190 * @pipe: pipe to fill
194 * @spd contains a map of pages and len/offset tuples, along with
195 * the struct pipe_buf_operations associated with these pages. This
196 * function will link that data to the pipe.
199 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
200 struct splice_pipe_desc *spd)
202 unsigned int spd_pages = spd->nr_pages;
203 unsigned int tail = pipe->tail;
204 unsigned int head = pipe->head;
205 unsigned int mask = pipe->ring_size - 1;
206 int ret = 0, page_nr = 0;
211 if (unlikely(!pipe->readers)) {
212 send_sig(SIGPIPE, current, 0);
217 while (!pipe_full(head, tail, pipe->max_usage)) {
218 struct pipe_buffer *buf = &pipe->bufs[head & mask];
220 buf->page = spd->pages[page_nr];
221 buf->offset = spd->partial[page_nr].offset;
222 buf->len = spd->partial[page_nr].len;
223 buf->private = spd->partial[page_nr].private;
232 if (!--spd->nr_pages)
240 while (page_nr < spd_pages)
241 spd->spd_release(spd, page_nr++);
245 EXPORT_SYMBOL_GPL(splice_to_pipe);
247 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
249 unsigned int head = pipe->head;
250 unsigned int tail = pipe->tail;
251 unsigned int mask = pipe->ring_size - 1;
254 if (unlikely(!pipe->readers)) {
255 send_sig(SIGPIPE, current, 0);
257 } else if (pipe_full(head, tail, pipe->max_usage)) {
260 pipe->bufs[head & mask] = *buf;
261 pipe->head = head + 1;
264 pipe_buf_release(pipe, buf);
267 EXPORT_SYMBOL(add_to_pipe);
270 * Check if we need to grow the arrays holding pages and partial page
273 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
275 unsigned int max_usage = READ_ONCE(pipe->max_usage);
277 spd->nr_pages_max = max_usage;
278 if (max_usage <= PIPE_DEF_BUFFERS)
281 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
282 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
285 if (spd->pages && spd->partial)
293 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
303 * copy_splice_read - Copy data from a file and splice the copy into a pipe
304 * @in: The file to read from
305 * @ppos: Pointer to the file position to read from
306 * @pipe: The pipe to splice into
307 * @len: The amount to splice
308 * @flags: The SPLICE_F_* flags
310 * This function allocates a bunch of pages sufficient to hold the requested
311 * amount of data (but limited by the remaining pipe capacity), passes it to
312 * the file's ->read_iter() to read into and then splices the used pages into
315 * Return: On success, the number of bytes read will be returned and *@ppos
316 * will be updated if appropriate; 0 will be returned if there is no more data
317 * to be read; -EAGAIN will be returned if the pipe had no space, and some
318 * other negative error code will be returned on error. A short read may occur
319 * if the pipe has insufficient space, we reach the end of the data or we hit a
322 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
323 struct pipe_inode_info *pipe,
324 size_t len, unsigned int flags)
331 size_t used, npages, chunk, remain, keep = 0;
334 /* Work out how much data we can actually add into the pipe */
335 used = pipe_occupancy(pipe->head, pipe->tail);
336 npages = max_t(ssize_t, pipe->max_usage - used, 0);
337 len = min_t(size_t, len, npages * PAGE_SIZE);
338 npages = DIV_ROUND_UP(len, PAGE_SIZE);
340 bv = kzalloc(array_size(npages, sizeof(bv[0])) +
341 array_size(npages, sizeof(struct page *)), GFP_KERNEL);
345 pages = (struct page **)(bv + npages);
346 npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
352 remain = len = min_t(size_t, len, npages * PAGE_SIZE);
354 for (i = 0; i < npages; i++) {
355 chunk = min_t(size_t, PAGE_SIZE, remain);
356 bv[i].bv_page = pages[i];
358 bv[i].bv_len = chunk;
363 iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
364 init_sync_kiocb(&kiocb, in);
365 kiocb.ki_pos = *ppos;
366 ret = call_read_iter(in, &kiocb, &to);
369 keep = DIV_ROUND_UP(ret, PAGE_SIZE);
370 *ppos = kiocb.ki_pos;
374 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
375 * there", rather than -EFAULT.
380 /* Free any pages that didn't get touched at all. */
382 release_pages(pages + keep, npages - keep);
384 /* Push the remaining pages into the pipe. */
386 for (i = 0; i < keep; i++) {
387 struct pipe_buffer *buf = pipe_head_buf(pipe);
389 chunk = min_t(size_t, remain, PAGE_SIZE);
390 *buf = (struct pipe_buffer) {
391 .ops = &default_pipe_buf_ops,
392 .page = bv[i].bv_page,
403 EXPORT_SYMBOL(copy_splice_read);
405 const struct pipe_buf_operations default_pipe_buf_ops = {
406 .release = generic_pipe_buf_release,
407 .try_steal = generic_pipe_buf_try_steal,
408 .get = generic_pipe_buf_get,
411 /* Pipe buffer operations for a socket and similar. */
412 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
413 .release = generic_pipe_buf_release,
414 .get = generic_pipe_buf_get,
416 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
418 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
421 if (waitqueue_active(&pipe->wr_wait))
422 wake_up_interruptible(&pipe->wr_wait);
423 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
427 * splice_from_pipe_feed - feed available data from a pipe to a file
428 * @pipe: pipe to splice from
429 * @sd: information to @actor
430 * @actor: handler that splices the data
433 * This function loops over the pipe and calls @actor to do the
434 * actual moving of a single struct pipe_buffer to the desired
435 * destination. It returns when there's no more buffers left in
436 * the pipe or if the requested number of bytes (@sd->total_len)
437 * have been copied. It returns a positive number (one) if the
438 * pipe needs to be filled with more data, zero if the required
439 * number of bytes have been copied and -errno on error.
441 * This, together with splice_from_pipe_{begin,end,next}, may be
442 * used to implement the functionality of __splice_from_pipe() when
443 * locking is required around copying the pipe buffers to the
446 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
449 unsigned int head = pipe->head;
450 unsigned int tail = pipe->tail;
451 unsigned int mask = pipe->ring_size - 1;
454 while (!pipe_empty(head, tail)) {
455 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
458 if (sd->len > sd->total_len)
459 sd->len = sd->total_len;
461 ret = pipe_buf_confirm(pipe, buf);
468 ret = actor(pipe, buf, sd);
475 sd->num_spliced += ret;
478 sd->total_len -= ret;
481 pipe_buf_release(pipe, buf);
485 sd->need_wakeup = true;
495 /* We know we have a pipe buffer, but maybe it's empty? */
496 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
498 unsigned int tail = pipe->tail;
499 unsigned int mask = pipe->ring_size - 1;
500 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
502 if (unlikely(!buf->len)) {
503 pipe_buf_release(pipe, buf);
512 * splice_from_pipe_next - wait for some data to splice from
513 * @pipe: pipe to splice from
514 * @sd: information about the splice operation
517 * This function will wait for some data and return a positive
518 * value (one) if pipe buffers are available. It will return zero
519 * or -errno if no more data needs to be spliced.
521 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
524 * Check for signal early to make process killable when there are
525 * always buffers available
527 if (signal_pending(current))
531 while (pipe_empty(pipe->head, pipe->tail)) {
538 if (sd->flags & SPLICE_F_NONBLOCK)
541 if (signal_pending(current))
544 if (sd->need_wakeup) {
545 wakeup_pipe_writers(pipe);
546 sd->need_wakeup = false;
549 pipe_wait_readable(pipe);
552 if (eat_empty_buffer(pipe))
559 * splice_from_pipe_begin - start splicing from pipe
560 * @sd: information about the splice operation
563 * This function should be called before a loop containing
564 * splice_from_pipe_next() and splice_from_pipe_feed() to
565 * initialize the necessary fields of @sd.
567 static void splice_from_pipe_begin(struct splice_desc *sd)
570 sd->need_wakeup = false;
574 * splice_from_pipe_end - finish splicing from pipe
575 * @pipe: pipe to splice from
576 * @sd: information about the splice operation
579 * This function will wake up pipe writers if necessary. It should
580 * be called after a loop containing splice_from_pipe_next() and
581 * splice_from_pipe_feed().
583 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
586 wakeup_pipe_writers(pipe);
590 * __splice_from_pipe - splice data from a pipe to given actor
591 * @pipe: pipe to splice from
592 * @sd: information to @actor
593 * @actor: handler that splices the data
596 * This function does little more than loop over the pipe and call
597 * @actor to do the actual moving of a single struct pipe_buffer to
598 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or
602 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
607 splice_from_pipe_begin(sd);
610 ret = splice_from_pipe_next(pipe, sd);
612 ret = splice_from_pipe_feed(pipe, sd, actor);
614 splice_from_pipe_end(pipe, sd);
616 return sd->num_spliced ? sd->num_spliced : ret;
618 EXPORT_SYMBOL(__splice_from_pipe);
621 * splice_from_pipe - splice data from a pipe to a file
622 * @pipe: pipe to splice from
623 * @out: file to splice to
624 * @ppos: position in @out
625 * @len: how many bytes to splice
626 * @flags: splice modifier flags
627 * @actor: handler that splices the data
630 * See __splice_from_pipe. This function locks the pipe inode,
631 * otherwise it's identical to __splice_from_pipe().
634 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
635 loff_t *ppos, size_t len, unsigned int flags,
639 struct splice_desc sd = {
647 ret = __splice_from_pipe(pipe, &sd, actor);
654 * iter_file_splice_write - splice data from a pipe to a file
656 * @out: file to write to
657 * @ppos: position in @out
658 * @len: number of bytes to splice
659 * @flags: splice modifier flags
662 * Will either move or copy pages (determined by @flags options) from
663 * the given pipe inode to the given file.
664 * This one is ->write_iter-based.
668 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
669 loff_t *ppos, size_t len, unsigned int flags)
671 struct splice_desc sd = {
677 int nbufs = pipe->max_usage;
678 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
682 if (unlikely(!array))
687 splice_from_pipe_begin(&sd);
688 while (sd.total_len) {
689 struct iov_iter from;
690 unsigned int head, tail, mask;
694 ret = splice_from_pipe_next(pipe, &sd);
698 if (unlikely(nbufs < pipe->max_usage)) {
700 nbufs = pipe->max_usage;
701 array = kcalloc(nbufs, sizeof(struct bio_vec),
711 mask = pipe->ring_size - 1;
713 /* build the vector */
715 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
716 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
717 size_t this_len = buf->len;
719 /* zero-length bvecs are not supported, skip them */
722 this_len = min(this_len, left);
724 ret = pipe_buf_confirm(pipe, buf);
731 bvec_set_page(&array[n], buf->page, this_len,
737 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
738 ret = vfs_iter_write(out, &from, &sd.pos, 0);
742 sd.num_spliced += ret;
746 /* dismiss the fully eaten buffers, adjust the partial one */
749 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
750 if (ret >= buf->len) {
753 pipe_buf_release(pipe, buf);
757 sd.need_wakeup = true;
767 splice_from_pipe_end(pipe, &sd);
772 ret = sd.num_spliced;
777 EXPORT_SYMBOL(iter_file_splice_write);
781 * splice_to_socket - splice data from a pipe to a socket
782 * @pipe: pipe to splice from
783 * @out: socket to write to
784 * @ppos: position in @out
785 * @len: number of bytes to splice
786 * @flags: splice modifier flags
789 * Will send @len bytes from the pipe to a network socket. No data copying
793 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
794 loff_t *ppos, size_t len, unsigned int flags)
796 struct socket *sock = sock_from_file(out);
797 struct bio_vec bvec[16];
798 struct msghdr msg = {};
801 bool need_wakeup = false;
806 unsigned int head, tail, mask, bc = 0;
810 * Check for signal early to make process killable when there
811 * are always buffers available
814 if (signal_pending(current))
817 while (pipe_empty(pipe->head, pipe->tail)) {
826 if (flags & SPLICE_F_NONBLOCK)
830 if (signal_pending(current))
834 wakeup_pipe_writers(pipe);
838 pipe_wait_readable(pipe);
843 mask = pipe->ring_size - 1;
845 while (!pipe_empty(head, tail)) {
846 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
854 seg = min_t(size_t, remain, buf->len);
856 ret = pipe_buf_confirm(pipe, buf);
863 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
865 if (remain == 0 || bc >= ARRAY_SIZE(bvec))
873 msg.msg_flags = MSG_SPLICE_PAGES;
874 if (flags & SPLICE_F_MORE)
875 msg.msg_flags |= MSG_MORE;
876 if (remain && pipe_occupancy(pipe->head, tail) > 0)
877 msg.msg_flags |= MSG_MORE;
878 if (out->f_flags & O_NONBLOCK)
879 msg.msg_flags |= MSG_DONTWAIT;
881 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
883 ret = sock_sendmsg(sock, &msg);
891 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
892 size_t seg = min_t(size_t, ret, buf->len);
899 pipe_buf_release(pipe, buf);
904 if (tail != pipe->tail) {
914 wakeup_pipe_writers(pipe);
915 return spliced ?: ret;
919 static int warn_unsupported(struct file *file, const char *op)
921 pr_debug_ratelimited(
922 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
923 op, file, current->pid, current->comm);
928 * Attempt to initiate a splice from pipe to file.
930 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
931 loff_t *ppos, size_t len, unsigned int flags)
933 if (unlikely(!out->f_op->splice_write))
934 return warn_unsupported(out, "write");
935 return out->f_op->splice_write(pipe, out, ppos, len, flags);
939 * Indicate to the caller that there was a premature EOF when reading from the
940 * source and the caller didn't indicate they would be sending more data after
943 static void do_splice_eof(struct splice_desc *sd)
950 * vfs_splice_read - Read data from a file and splice it into a pipe
951 * @in: File to splice from
952 * @ppos: Input file offset
953 * @pipe: Pipe to splice to
954 * @len: Number of bytes to splice
955 * @flags: Splice modifier flags (SPLICE_F_*)
957 * Splice the requested amount of data from the input file to the pipe. This
958 * is synchronous as the caller must hold the pipe lock across the entire
961 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
962 * a hole and a negative error code otherwise.
964 long vfs_splice_read(struct file *in, loff_t *ppos,
965 struct pipe_inode_info *pipe, size_t len,
968 unsigned int p_space;
971 if (unlikely(!(in->f_mode & FMODE_READ)))
976 /* Don't try to read more the pipe has space for. */
977 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
978 len = min_t(size_t, len, p_space << PAGE_SHIFT);
980 ret = rw_verify_area(READ, in, ppos, len);
981 if (unlikely(ret < 0))
984 if (unlikely(len > MAX_RW_COUNT))
987 if (unlikely(!in->f_op->splice_read))
988 return warn_unsupported(in, "read");
990 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
991 * buffer, copy into it and splice that into the pipe.
993 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
994 return copy_splice_read(in, ppos, pipe, len, flags);
995 return in->f_op->splice_read(in, ppos, pipe, len, flags);
997 EXPORT_SYMBOL_GPL(vfs_splice_read);
1000 * splice_direct_to_actor - splices data directly between two non-pipes
1001 * @in: file to splice from
1002 * @sd: actor information on where to splice to
1003 * @actor: handles the data splicing
1006 * This is a special case helper to splice directly between two
1007 * points, without requiring an explicit pipe. Internally an allocated
1008 * pipe is cached in the process, and reused during the lifetime of
1012 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1013 splice_direct_actor *actor)
1015 struct pipe_inode_info *pipe;
1021 * We require the input to be seekable, as we don't want to randomly
1022 * drop data for eg socket -> socket splicing. Use the piped splicing
1025 if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1029 * neither in nor out is a pipe, setup an internal pipe attached to
1030 * 'out' and transfer the wanted data from 'in' to 'out' through that
1032 pipe = current->splice_pipe;
1033 if (unlikely(!pipe)) {
1034 pipe = alloc_pipe_info();
1039 * We don't have an immediate reader, but we'll read the stuff
1040 * out of the pipe right after the splice_to_pipe(). So set
1041 * PIPE_READERS appropriately.
1045 current->splice_pipe = pipe;
1052 len = sd->total_len;
1054 /* Don't block on output, we have to drain the direct pipe. */
1056 sd->flags &= ~SPLICE_F_NONBLOCK;
1059 * We signal MORE until we've read sufficient data to fulfill the
1060 * request and we keep signalling it if the caller set it.
1062 more = sd->flags & SPLICE_F_MORE;
1063 sd->flags |= SPLICE_F_MORE;
1065 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1069 loff_t pos = sd->pos, prev_pos = pos;
1071 ret = vfs_splice_read(in, &pos, pipe, len, flags);
1072 if (unlikely(ret <= 0))
1076 sd->total_len = read_len;
1079 * If we now have sufficient data to fulfill the request then
1080 * we clear SPLICE_F_MORE if it was not set initially.
1082 if (read_len >= len && !more)
1083 sd->flags &= ~SPLICE_F_MORE;
1086 * NOTE: nonblocking mode only applies to the input. We
1087 * must not do the output in nonblocking mode as then we
1088 * could get stuck data in the internal pipe:
1090 ret = actor(pipe, sd);
1091 if (unlikely(ret <= 0)) {
1100 if (ret < read_len) {
1101 sd->pos = prev_pos + ret;
1107 pipe->tail = pipe->head = 0;
1113 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1114 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1115 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1116 * least 1 byte *then* we will also do the ->splice_eof() call.
1118 if (ret == 0 && !more && len > 0 && bytes)
1122 * If we did an incomplete transfer we must release
1123 * the pipe buffers in question:
1125 for (i = 0; i < pipe->ring_size; i++) {
1126 struct pipe_buffer *buf = &pipe->bufs[i];
1129 pipe_buf_release(pipe, buf);
1137 EXPORT_SYMBOL(splice_direct_to_actor);
1139 static int direct_splice_actor(struct pipe_inode_info *pipe,
1140 struct splice_desc *sd)
1142 struct file *file = sd->u.file;
1144 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1148 static void direct_file_splice_eof(struct splice_desc *sd)
1150 struct file *file = sd->u.file;
1152 if (file->f_op->splice_eof)
1153 file->f_op->splice_eof(file);
1157 * do_splice_direct - splices data directly between two files
1158 * @in: file to splice from
1159 * @ppos: input file offset
1160 * @out: file to splice to
1161 * @opos: output file offset
1162 * @len: number of bytes to splice
1163 * @flags: splice modifier flags
1166 * For use by do_sendfile(). splice can easily emulate sendfile, but
1167 * doing it in the application would incur an extra system call
1168 * (splice in + splice out, as compared to just sendfile()). So this helper
1169 * can splice directly through a process-private pipe.
1172 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1173 loff_t *opos, size_t len, unsigned int flags)
1175 struct splice_desc sd = {
1181 .splice_eof = direct_file_splice_eof,
1186 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1189 if (unlikely(out->f_flags & O_APPEND))
1192 ret = rw_verify_area(WRITE, out, opos, len);
1193 if (unlikely(ret < 0))
1196 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1202 EXPORT_SYMBOL(do_splice_direct);
1204 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1207 if (unlikely(!pipe->readers)) {
1208 send_sig(SIGPIPE, current, 0);
1211 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1213 if (flags & SPLICE_F_NONBLOCK)
1215 if (signal_pending(current))
1216 return -ERESTARTSYS;
1217 pipe_wait_writable(pipe);
1221 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1222 struct pipe_inode_info *opipe,
1223 size_t len, unsigned int flags);
1225 long splice_file_to_pipe(struct file *in,
1226 struct pipe_inode_info *opipe,
1228 size_t len, unsigned int flags)
1233 ret = wait_for_space(opipe, flags);
1235 ret = vfs_splice_read(in, offset, opipe, len, flags);
1238 wakeup_pipe_readers(opipe);
1243 * Determine where to splice to/from.
1245 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1246 loff_t *off_out, size_t len, unsigned int flags)
1248 struct pipe_inode_info *ipipe;
1249 struct pipe_inode_info *opipe;
1253 if (unlikely(!(in->f_mode & FMODE_READ) ||
1254 !(out->f_mode & FMODE_WRITE)))
1257 ipipe = get_pipe_info(in, true);
1258 opipe = get_pipe_info(out, true);
1260 if (ipipe && opipe) {
1261 if (off_in || off_out)
1264 /* Splicing to self would be fun, but... */
1268 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1269 flags |= SPLICE_F_NONBLOCK;
1271 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1278 if (!(out->f_mode & FMODE_PWRITE))
1282 offset = out->f_pos;
1285 if (unlikely(out->f_flags & O_APPEND))
1288 ret = rw_verify_area(WRITE, out, &offset, len);
1289 if (unlikely(ret < 0))
1292 if (in->f_flags & O_NONBLOCK)
1293 flags |= SPLICE_F_NONBLOCK;
1295 file_start_write(out);
1296 ret = do_splice_from(ipipe, out, &offset, len, flags);
1297 file_end_write(out);
1300 fsnotify_modify(out);
1303 out->f_pos = offset;
1314 if (!(in->f_mode & FMODE_PREAD))
1321 if (out->f_flags & O_NONBLOCK)
1322 flags |= SPLICE_F_NONBLOCK;
1324 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1327 fsnotify_access(in);
1340 static long __do_splice(struct file *in, loff_t __user *off_in,
1341 struct file *out, loff_t __user *off_out,
1342 size_t len, unsigned int flags)
1344 struct pipe_inode_info *ipipe;
1345 struct pipe_inode_info *opipe;
1346 loff_t offset, *__off_in = NULL, *__off_out = NULL;
1349 ipipe = get_pipe_info(in, true);
1350 opipe = get_pipe_info(out, true);
1355 pipe_clear_nowait(in);
1360 pipe_clear_nowait(out);
1364 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1366 __off_out = &offset;
1369 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1374 ret = do_splice(in, __off_in, out, __off_out, len, flags);
1378 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1380 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1386 static int iter_to_pipe(struct iov_iter *from,
1387 struct pipe_inode_info *pipe,
1390 struct pipe_buffer buf = {
1391 .ops = &user_page_pipe_buf_ops,
1397 while (iov_iter_count(from)) {
1398 struct page *pages[16];
1403 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1409 n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1410 for (i = 0; i < n; i++) {
1411 int size = min_t(int, left, PAGE_SIZE - start);
1413 buf.page = pages[i];
1416 ret = add_to_pipe(pipe, &buf);
1417 if (unlikely(ret < 0)) {
1418 iov_iter_revert(from, left);
1419 // this one got dropped by add_to_pipe()
1430 return total ? total : ret;
1433 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1434 struct splice_desc *sd)
1436 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1437 return n == sd->len ? n : -EFAULT;
1441 * For lack of a better implementation, implement vmsplice() to userspace
1442 * as a simple copy of the pipes pages to the user iov.
1444 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1447 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1448 struct splice_desc sd = {
1449 .total_len = iov_iter_count(iter),
1458 pipe_clear_nowait(file);
1462 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1470 * vmsplice splices a user address range into a pipe. It can be thought of
1471 * as splice-from-memory, where the regular splice is splice-from-file (or
1472 * to file). In both cases the output is a pipe, naturally.
1474 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1477 struct pipe_inode_info *pipe;
1479 unsigned buf_flag = 0;
1481 if (flags & SPLICE_F_GIFT)
1482 buf_flag = PIPE_BUF_FLAG_GIFT;
1484 pipe = get_pipe_info(file, true);
1488 pipe_clear_nowait(file);
1491 ret = wait_for_space(pipe, flags);
1493 ret = iter_to_pipe(iter, pipe, buf_flag);
1496 wakeup_pipe_readers(pipe);
1500 static int vmsplice_type(struct fd f, int *type)
1504 if (f.file->f_mode & FMODE_WRITE) {
1505 *type = ITER_SOURCE;
1506 } else if (f.file->f_mode & FMODE_READ) {
1516 * Note that vmsplice only really supports true splicing _from_ user memory
1517 * to a pipe, not the other way around. Splicing from user memory is a simple
1518 * operation that can be supported without any funky alignment restrictions
1519 * or nasty vm tricks. We simply map in the user memory and fill them into
1520 * a pipe. The reverse isn't quite as easy, though. There are two possible
1521 * solutions for that:
1523 * - memcpy() the data internally, at which point we might as well just
1524 * do a regular read() on the buffer anyway.
1525 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1526 * has restriction limitations on both ends of the pipe).
1528 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1531 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1532 unsigned long, nr_segs, unsigned int, flags)
1534 struct iovec iovstack[UIO_FASTIOV];
1535 struct iovec *iov = iovstack;
1536 struct iov_iter iter;
1541 if (unlikely(flags & ~SPLICE_F_ALL))
1545 error = vmsplice_type(f, &type);
1549 error = import_iovec(type, uiov, nr_segs,
1550 ARRAY_SIZE(iovstack), &iov, &iter);
1554 if (!iov_iter_count(&iter))
1556 else if (type == ITER_SOURCE)
1557 error = vmsplice_to_pipe(f.file, &iter, flags);
1559 error = vmsplice_to_user(f.file, &iter, flags);
1567 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1568 int, fd_out, loff_t __user *, off_out,
1569 size_t, len, unsigned int, flags)
1577 if (unlikely(flags & ~SPLICE_F_ALL))
1583 out = fdget(fd_out);
1585 error = __do_splice(in.file, off_in, out.file, off_out,
1595 * Make sure there's data to read. Wait for input if we can, otherwise
1596 * return an appropriate error.
1598 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1603 * Check the pipe occupancy without the inode lock first. This function
1604 * is speculative anyways, so missing one is ok.
1606 if (!pipe_empty(pipe->head, pipe->tail))
1612 while (pipe_empty(pipe->head, pipe->tail)) {
1613 if (signal_pending(current)) {
1619 if (flags & SPLICE_F_NONBLOCK) {
1623 pipe_wait_readable(pipe);
1631 * Make sure there's writeable room. Wait for room if we can, otherwise
1632 * return an appropriate error.
1634 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1639 * Check pipe occupancy without the inode lock first. This function
1640 * is speculative anyways, so missing one is ok.
1642 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1648 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1649 if (!pipe->readers) {
1650 send_sig(SIGPIPE, current, 0);
1654 if (flags & SPLICE_F_NONBLOCK) {
1658 if (signal_pending(current)) {
1662 pipe_wait_writable(pipe);
1670 * Splice contents of ipipe to opipe.
1672 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1673 struct pipe_inode_info *opipe,
1674 size_t len, unsigned int flags)
1676 struct pipe_buffer *ibuf, *obuf;
1677 unsigned int i_head, o_head;
1678 unsigned int i_tail, o_tail;
1679 unsigned int i_mask, o_mask;
1681 bool input_wakeup = false;
1685 ret = ipipe_prep(ipipe, flags);
1689 ret = opipe_prep(opipe, flags);
1694 * Potential ABBA deadlock, work around it by ordering lock
1695 * grabbing by pipe info address. Otherwise two different processes
1696 * could deadlock (one doing tee from A -> B, the other from B -> A).
1698 pipe_double_lock(ipipe, opipe);
1700 i_tail = ipipe->tail;
1701 i_mask = ipipe->ring_size - 1;
1702 o_head = opipe->head;
1703 o_mask = opipe->ring_size - 1;
1708 if (!opipe->readers) {
1709 send_sig(SIGPIPE, current, 0);
1715 i_head = ipipe->head;
1716 o_tail = opipe->tail;
1718 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1722 * Cannot make any progress, because either the input
1723 * pipe is empty or the output pipe is full.
1725 if (pipe_empty(i_head, i_tail) ||
1726 pipe_full(o_head, o_tail, opipe->max_usage)) {
1727 /* Already processed some buffers, break */
1731 if (flags & SPLICE_F_NONBLOCK) {
1737 * We raced with another reader/writer and haven't
1738 * managed to process any buffers. A zero return
1739 * value means EOF, so retry instead.
1746 ibuf = &ipipe->bufs[i_tail & i_mask];
1747 obuf = &opipe->bufs[o_head & o_mask];
1749 if (len >= ibuf->len) {
1751 * Simply move the whole buffer from ipipe to opipe
1756 ipipe->tail = i_tail;
1757 input_wakeup = true;
1760 opipe->head = o_head;
1763 * Get a reference to this pipe buffer,
1764 * so we can copy the contents over.
1766 if (!pipe_buf_get(ipipe, ibuf)) {
1774 * Don't inherit the gift and merge flags, we need to
1775 * prevent multiple steals of this page.
1777 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1778 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1781 ibuf->offset += len;
1785 opipe->head = o_head;
1795 * If we put data in the output pipe, wakeup any potential readers.
1798 wakeup_pipe_readers(opipe);
1801 wakeup_pipe_writers(ipipe);
1807 * Link contents of ipipe to opipe.
1809 static int link_pipe(struct pipe_inode_info *ipipe,
1810 struct pipe_inode_info *opipe,
1811 size_t len, unsigned int flags)
1813 struct pipe_buffer *ibuf, *obuf;
1814 unsigned int i_head, o_head;
1815 unsigned int i_tail, o_tail;
1816 unsigned int i_mask, o_mask;
1820 * Potential ABBA deadlock, work around it by ordering lock
1821 * grabbing by pipe info address. Otherwise two different processes
1822 * could deadlock (one doing tee from A -> B, the other from B -> A).
1824 pipe_double_lock(ipipe, opipe);
1826 i_tail = ipipe->tail;
1827 i_mask = ipipe->ring_size - 1;
1828 o_head = opipe->head;
1829 o_mask = opipe->ring_size - 1;
1832 if (!opipe->readers) {
1833 send_sig(SIGPIPE, current, 0);
1839 i_head = ipipe->head;
1840 o_tail = opipe->tail;
1843 * If we have iterated all input buffers or run out of
1844 * output room, break.
1846 if (pipe_empty(i_head, i_tail) ||
1847 pipe_full(o_head, o_tail, opipe->max_usage))
1850 ibuf = &ipipe->bufs[i_tail & i_mask];
1851 obuf = &opipe->bufs[o_head & o_mask];
1854 * Get a reference to this pipe buffer,
1855 * so we can copy the contents over.
1857 if (!pipe_buf_get(ipipe, ibuf)) {
1866 * Don't inherit the gift and merge flag, we need to prevent
1867 * multiple steals of this page.
1869 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1870 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1872 if (obuf->len > len)
1878 opipe->head = o_head;
1886 * If we put data in the output pipe, wakeup any potential readers.
1889 wakeup_pipe_readers(opipe);
1895 * This is a tee(1) implementation that works on pipes. It doesn't copy
1896 * any data, it simply references the 'in' pages on the 'out' pipe.
1897 * The 'flags' used are the SPLICE_F_* variants, currently the only
1898 * applicable one is SPLICE_F_NONBLOCK.
1900 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1902 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1903 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1906 if (unlikely(!(in->f_mode & FMODE_READ) ||
1907 !(out->f_mode & FMODE_WRITE)))
1911 * Duplicate the contents of ipipe to opipe without actually
1914 if (ipipe && opipe && ipipe != opipe) {
1915 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1916 flags |= SPLICE_F_NONBLOCK;
1919 * Keep going, unless we encounter an error. The ipipe/opipe
1920 * ordering doesn't really matter.
1922 ret = ipipe_prep(ipipe, flags);
1924 ret = opipe_prep(opipe, flags);
1926 ret = link_pipe(ipipe, opipe, len, flags);
1933 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1938 if (unlikely(flags & ~SPLICE_F_ALL))
1949 error = do_tee(in.file, out.file, len, flags);