2 * Routines having to do with the 'struct sk_buff' memory handlers.
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
68 #include <net/protocol.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
87 * skb_panic - private function for out-of-line support
91 * @msg: skb_over_panic or skb_under_panic
93 * Out-of-line support for skb_put() and skb_push().
94 * Called via the wrapper skb_over_panic() or skb_under_panic().
95 * Keep out of line to prevent kernel bloat.
96 * __builtin_return_address is not used because it is not always reliable.
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 msg, addr, skb->len, sz, skb->head, skb->data,
103 (unsigned long)skb->tail, (unsigned long)skb->end,
104 skb->dev ? skb->dev->name : "<NULL>");
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
110 skb_panic(skb, sz, addr, __func__);
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
115 skb_panic(skb, sz, addr, __func__);
119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120 * the caller if emergency pfmemalloc reserves are being used. If it is and
121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122 * may be used. Otherwise, the packet data may be discarded until enough
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 unsigned long ip, bool *pfmemalloc)
132 bool ret_pfmemalloc = false;
135 * Try a regular allocation, when that fails and we're not entitled
136 * to the reserves, fail.
138 obj = kmalloc_node_track_caller(size,
139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
141 if (obj || !(gfp_pfmemalloc_allowed(flags)))
144 /* Try again but now we are using pfmemalloc reserves */
145 ret_pfmemalloc = true;
146 obj = kmalloc_node_track_caller(size, flags, node);
150 *pfmemalloc = ret_pfmemalloc;
155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
156 * 'private' fields and also do memory statistics to find all the
161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
166 skb = kmem_cache_alloc_node(skbuff_head_cache,
167 gfp_mask & ~__GFP_DMA, node);
172 * Only clear those fields we need to clear, not those that we will
173 * actually initialise below. Hence, don't put any more fields after
174 * the tail pointer in struct sk_buff!
176 memset(skb, 0, offsetof(struct sk_buff, tail));
178 skb->truesize = sizeof(struct sk_buff);
179 atomic_set(&skb->users, 1);
181 skb->mac_header = (typeof(skb->mac_header))~0U;
187 * __alloc_skb - allocate a network buffer
188 * @size: size to allocate
189 * @gfp_mask: allocation mask
190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191 * instead of head cache and allocate a cloned (child) skb.
192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193 * allocations in case the data is required for writeback
194 * @node: numa node to allocate memory on
196 * Allocate a new &sk_buff. The returned buffer has no headroom and a
197 * tail room of at least size bytes. The object has a reference count
198 * of one. The return is the buffer. On a failure the return is %NULL.
200 * Buffers may only be allocated from interrupts using a @gfp_mask of
203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
206 struct kmem_cache *cache;
207 struct skb_shared_info *shinfo;
212 cache = (flags & SKB_ALLOC_FCLONE)
213 ? skbuff_fclone_cache : skbuff_head_cache;
215 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
216 gfp_mask |= __GFP_MEMALLOC;
219 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
224 /* We do our best to align skb_shared_info on a separate cache
225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 * Both skb->head and skb_shared_info are cache line aligned.
229 size = SKB_DATA_ALIGN(size);
230 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
231 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
234 /* kmalloc(size) might give us more room than requested.
235 * Put skb_shared_info exactly at the end of allocated zone,
236 * to allow max possible filling before reallocation.
238 size = SKB_WITH_OVERHEAD(ksize(data));
239 prefetchw(data + size);
242 * Only clear those fields we need to clear, not those that we will
243 * actually initialise below. Hence, don't put any more fields after
244 * the tail pointer in struct sk_buff!
246 memset(skb, 0, offsetof(struct sk_buff, tail));
247 /* Account for allocated memory : skb + skb->head */
248 skb->truesize = SKB_TRUESIZE(size);
249 skb->pfmemalloc = pfmemalloc;
250 atomic_set(&skb->users, 1);
253 skb_reset_tail_pointer(skb);
254 skb->end = skb->tail + size;
255 skb->mac_header = (typeof(skb->mac_header))~0U;
256 skb->transport_header = (typeof(skb->transport_header))~0U;
258 /* make sure we initialize shinfo sequentially */
259 shinfo = skb_shinfo(skb);
260 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
261 atomic_set(&shinfo->dataref, 1);
262 kmemcheck_annotate_variable(shinfo->destructor_arg);
264 if (flags & SKB_ALLOC_FCLONE) {
265 struct sk_buff_fclones *fclones;
267 fclones = container_of(skb, struct sk_buff_fclones, skb1);
269 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
270 skb->fclone = SKB_FCLONE_ORIG;
271 atomic_set(&fclones->fclone_ref, 1);
273 fclones->skb2.fclone = SKB_FCLONE_CLONE;
274 fclones->skb2.pfmemalloc = pfmemalloc;
279 kmem_cache_free(cache, skb);
283 EXPORT_SYMBOL(__alloc_skb);
286 * __build_skb - build a network buffer
287 * @data: data buffer provided by caller
288 * @frag_size: size of data, or 0 if head was kmalloced
290 * Allocate a new &sk_buff. Caller provides space holding head and
291 * skb_shared_info. @data must have been allocated by kmalloc() only if
292 * @frag_size is 0, otherwise data should come from the page allocator
294 * The return is the new skb buffer.
295 * On a failure the return is %NULL, and @data is not freed.
297 * Before IO, driver allocates only data buffer where NIC put incoming frame
298 * Driver should add room at head (NET_SKB_PAD) and
299 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
300 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
301 * before giving packet to stack.
302 * RX rings only contains data buffers, not full skbs.
304 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
306 struct skb_shared_info *shinfo;
308 unsigned int size = frag_size ? : ksize(data);
310 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
314 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
316 memset(skb, 0, offsetof(struct sk_buff, tail));
317 skb->truesize = SKB_TRUESIZE(size);
318 atomic_set(&skb->users, 1);
321 skb_reset_tail_pointer(skb);
322 skb->end = skb->tail + size;
323 skb->mac_header = (typeof(skb->mac_header))~0U;
324 skb->transport_header = (typeof(skb->transport_header))~0U;
326 /* make sure we initialize shinfo sequentially */
327 shinfo = skb_shinfo(skb);
328 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
329 atomic_set(&shinfo->dataref, 1);
330 kmemcheck_annotate_variable(shinfo->destructor_arg);
335 /* build_skb() is wrapper over __build_skb(), that specifically
336 * takes care of skb->head and skb->pfmemalloc
337 * This means that if @frag_size is not zero, then @data must be backed
338 * by a page fragment, not kmalloc() or vmalloc()
340 struct sk_buff *build_skb(void *data, unsigned int frag_size)
342 struct sk_buff *skb = __build_skb(data, frag_size);
344 if (skb && frag_size) {
346 if (page_is_pfmemalloc(virt_to_head_page(data)))
351 EXPORT_SYMBOL(build_skb);
353 #define NAPI_SKB_CACHE_SIZE 64
355 struct napi_alloc_cache {
356 struct page_frag_cache page;
357 unsigned int skb_count;
358 void *skb_cache[NAPI_SKB_CACHE_SIZE];
361 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
362 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
364 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
366 struct page_frag_cache *nc;
370 local_irq_save(flags);
371 nc = this_cpu_ptr(&netdev_alloc_cache);
372 data = __alloc_page_frag(nc, fragsz, gfp_mask);
373 local_irq_restore(flags);
378 * netdev_alloc_frag - allocate a page fragment
379 * @fragsz: fragment size
381 * Allocates a frag from a page for receive buffer.
382 * Uses GFP_ATOMIC allocations.
384 void *netdev_alloc_frag(unsigned int fragsz)
386 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
388 EXPORT_SYMBOL(netdev_alloc_frag);
390 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
392 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
394 return __alloc_page_frag(&nc->page, fragsz, gfp_mask);
397 void *napi_alloc_frag(unsigned int fragsz)
399 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
401 EXPORT_SYMBOL(napi_alloc_frag);
404 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
405 * @dev: network device to receive on
406 * @len: length to allocate
407 * @gfp_mask: get_free_pages mask, passed to alloc_skb
409 * Allocate a new &sk_buff and assign it a usage count of one. The
410 * buffer has NET_SKB_PAD headroom built in. Users should allocate
411 * the headroom they think they need without accounting for the
412 * built in space. The built in space is used for optimisations.
414 * %NULL is returned if there is no free memory.
416 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
419 struct page_frag_cache *nc;
427 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
428 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
429 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
435 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
436 len = SKB_DATA_ALIGN(len);
438 if (sk_memalloc_socks())
439 gfp_mask |= __GFP_MEMALLOC;
441 local_irq_save(flags);
443 nc = this_cpu_ptr(&netdev_alloc_cache);
444 data = __alloc_page_frag(nc, len, gfp_mask);
445 pfmemalloc = nc->pfmemalloc;
447 local_irq_restore(flags);
452 skb = __build_skb(data, len);
453 if (unlikely(!skb)) {
458 /* use OR instead of assignment to avoid clearing of bits in mask */
464 skb_reserve(skb, NET_SKB_PAD);
470 EXPORT_SYMBOL(__netdev_alloc_skb);
473 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
474 * @napi: napi instance this buffer was allocated for
475 * @len: length to allocate
476 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
478 * Allocate a new sk_buff for use in NAPI receive. This buffer will
479 * attempt to allocate the head from a special reserved region used
480 * only for NAPI Rx allocation. By doing this we can save several
481 * CPU cycles by avoiding having to disable and re-enable IRQs.
483 * %NULL is returned if there is no free memory.
485 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
488 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
492 len += NET_SKB_PAD + NET_IP_ALIGN;
494 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
495 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
496 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
502 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
503 len = SKB_DATA_ALIGN(len);
505 if (sk_memalloc_socks())
506 gfp_mask |= __GFP_MEMALLOC;
508 data = __alloc_page_frag(&nc->page, len, gfp_mask);
512 skb = __build_skb(data, len);
513 if (unlikely(!skb)) {
518 /* use OR instead of assignment to avoid clearing of bits in mask */
519 if (nc->page.pfmemalloc)
524 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
525 skb->dev = napi->dev;
530 EXPORT_SYMBOL(__napi_alloc_skb);
532 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
533 int size, unsigned int truesize)
535 skb_fill_page_desc(skb, i, page, off, size);
537 skb->data_len += size;
538 skb->truesize += truesize;
540 EXPORT_SYMBOL(skb_add_rx_frag);
542 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
543 unsigned int truesize)
545 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
547 skb_frag_size_add(frag, size);
549 skb->data_len += size;
550 skb->truesize += truesize;
552 EXPORT_SYMBOL(skb_coalesce_rx_frag);
554 static void skb_drop_list(struct sk_buff **listp)
556 kfree_skb_list(*listp);
560 static inline void skb_drop_fraglist(struct sk_buff *skb)
562 skb_drop_list(&skb_shinfo(skb)->frag_list);
565 static void skb_clone_fraglist(struct sk_buff *skb)
567 struct sk_buff *list;
569 skb_walk_frags(skb, list)
573 static void skb_free_head(struct sk_buff *skb)
575 unsigned char *head = skb->head;
583 static void skb_release_data(struct sk_buff *skb)
585 struct skb_shared_info *shinfo = skb_shinfo(skb);
589 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
593 for (i = 0; i < shinfo->nr_frags; i++)
594 __skb_frag_unref(&shinfo->frags[i]);
597 * If skb buf is from userspace, we need to notify the caller
598 * the lower device DMA has done;
600 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
601 struct ubuf_info *uarg;
603 uarg = shinfo->destructor_arg;
605 uarg->callback(uarg, true);
608 if (shinfo->frag_list)
609 kfree_skb_list(shinfo->frag_list);
615 * Free an skbuff by memory without cleaning the state.
617 static void kfree_skbmem(struct sk_buff *skb)
619 struct sk_buff_fclones *fclones;
621 switch (skb->fclone) {
622 case SKB_FCLONE_UNAVAILABLE:
623 kmem_cache_free(skbuff_head_cache, skb);
626 case SKB_FCLONE_ORIG:
627 fclones = container_of(skb, struct sk_buff_fclones, skb1);
629 /* We usually free the clone (TX completion) before original skb
630 * This test would have no chance to be true for the clone,
631 * while here, branch prediction will be good.
633 if (atomic_read(&fclones->fclone_ref) == 1)
637 default: /* SKB_FCLONE_CLONE */
638 fclones = container_of(skb, struct sk_buff_fclones, skb2);
641 if (!atomic_dec_and_test(&fclones->fclone_ref))
644 kmem_cache_free(skbuff_fclone_cache, fclones);
647 static void skb_release_head_state(struct sk_buff *skb)
651 secpath_put(skb->sp);
653 if (skb->destructor) {
655 skb->destructor(skb);
657 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
658 nf_conntrack_put(skb->nfct);
660 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
661 nf_bridge_put(skb->nf_bridge);
665 /* Free everything but the sk_buff shell. */
666 static void skb_release_all(struct sk_buff *skb)
668 skb_release_head_state(skb);
669 if (likely(skb->head))
670 skb_release_data(skb);
674 * __kfree_skb - private function
677 * Free an sk_buff. Release anything attached to the buffer.
678 * Clean the state. This is an internal helper function. Users should
679 * always call kfree_skb
682 void __kfree_skb(struct sk_buff *skb)
684 skb_release_all(skb);
687 EXPORT_SYMBOL(__kfree_skb);
690 * kfree_skb - free an sk_buff
691 * @skb: buffer to free
693 * Drop a reference to the buffer and free it if the usage count has
696 void kfree_skb(struct sk_buff *skb)
700 if (likely(atomic_read(&skb->users) == 1))
702 else if (likely(!atomic_dec_and_test(&skb->users)))
704 trace_kfree_skb(skb, __builtin_return_address(0));
707 EXPORT_SYMBOL(kfree_skb);
709 void kfree_skb_list(struct sk_buff *segs)
712 struct sk_buff *next = segs->next;
718 EXPORT_SYMBOL(kfree_skb_list);
721 * skb_tx_error - report an sk_buff xmit error
722 * @skb: buffer that triggered an error
724 * Report xmit error if a device callback is tracking this skb.
725 * skb must be freed afterwards.
727 void skb_tx_error(struct sk_buff *skb)
729 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
730 struct ubuf_info *uarg;
732 uarg = skb_shinfo(skb)->destructor_arg;
734 uarg->callback(uarg, false);
735 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
738 EXPORT_SYMBOL(skb_tx_error);
741 * consume_skb - free an skbuff
742 * @skb: buffer to free
744 * Drop a ref to the buffer and free it if the usage count has hit zero
745 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
746 * is being dropped after a failure and notes that
748 void consume_skb(struct sk_buff *skb)
752 if (likely(atomic_read(&skb->users) == 1))
754 else if (likely(!atomic_dec_and_test(&skb->users)))
756 trace_consume_skb(skb);
759 EXPORT_SYMBOL(consume_skb);
761 void __kfree_skb_flush(void)
763 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
765 /* flush skb_cache if containing objects */
767 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
773 static inline void _kfree_skb_defer(struct sk_buff *skb)
775 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
777 /* drop skb->head and call any destructors for packet */
778 skb_release_all(skb);
780 /* record skb to CPU local list */
781 nc->skb_cache[nc->skb_count++] = skb;
784 /* SLUB writes into objects when freeing */
788 /* flush skb_cache if it is filled */
789 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
790 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
795 void __kfree_skb_defer(struct sk_buff *skb)
797 _kfree_skb_defer(skb);
800 void napi_consume_skb(struct sk_buff *skb, int budget)
805 /* Zero budget indicate non-NAPI context called us, like netpoll */
806 if (unlikely(!budget)) {
807 dev_consume_skb_any(skb);
811 if (likely(atomic_read(&skb->users) == 1))
813 else if (likely(!atomic_dec_and_test(&skb->users)))
815 /* if reaching here SKB is ready to free */
816 trace_consume_skb(skb);
818 /* if SKB is a clone, don't handle this case */
819 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
824 _kfree_skb_defer(skb);
826 EXPORT_SYMBOL(napi_consume_skb);
828 /* Make sure a field is enclosed inside headers_start/headers_end section */
829 #define CHECK_SKB_FIELD(field) \
830 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
831 offsetof(struct sk_buff, headers_start)); \
832 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
833 offsetof(struct sk_buff, headers_end)); \
835 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
837 new->tstamp = old->tstamp;
838 /* We do not copy old->sk */
840 memcpy(new->cb, old->cb, sizeof(old->cb));
841 skb_dst_copy(new, old);
843 new->sp = secpath_get(old->sp);
845 __nf_copy(new, old, false);
847 /* Note : this field could be in headers_start/headers_end section
848 * It is not yet because we do not want to have a 16 bit hole
850 new->queue_mapping = old->queue_mapping;
852 memcpy(&new->headers_start, &old->headers_start,
853 offsetof(struct sk_buff, headers_end) -
854 offsetof(struct sk_buff, headers_start));
855 CHECK_SKB_FIELD(protocol);
856 CHECK_SKB_FIELD(csum);
857 CHECK_SKB_FIELD(hash);
858 CHECK_SKB_FIELD(priority);
859 CHECK_SKB_FIELD(skb_iif);
860 CHECK_SKB_FIELD(vlan_proto);
861 CHECK_SKB_FIELD(vlan_tci);
862 CHECK_SKB_FIELD(transport_header);
863 CHECK_SKB_FIELD(network_header);
864 CHECK_SKB_FIELD(mac_header);
865 CHECK_SKB_FIELD(inner_protocol);
866 CHECK_SKB_FIELD(inner_transport_header);
867 CHECK_SKB_FIELD(inner_network_header);
868 CHECK_SKB_FIELD(inner_mac_header);
869 CHECK_SKB_FIELD(mark);
870 #ifdef CONFIG_NETWORK_SECMARK
871 CHECK_SKB_FIELD(secmark);
873 #ifdef CONFIG_NET_RX_BUSY_POLL
874 CHECK_SKB_FIELD(napi_id);
877 CHECK_SKB_FIELD(sender_cpu);
879 #ifdef CONFIG_NET_SCHED
880 CHECK_SKB_FIELD(tc_index);
886 * You should not add any new code to this function. Add it to
887 * __copy_skb_header above instead.
889 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
891 #define C(x) n->x = skb->x
893 n->next = n->prev = NULL;
895 __copy_skb_header(n, skb);
900 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
903 n->destructor = NULL;
910 atomic_set(&n->users, 1);
912 atomic_inc(&(skb_shinfo(skb)->dataref));
920 * skb_morph - morph one skb into another
921 * @dst: the skb to receive the contents
922 * @src: the skb to supply the contents
924 * This is identical to skb_clone except that the target skb is
925 * supplied by the user.
927 * The target skb is returned upon exit.
929 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
931 skb_release_all(dst);
932 return __skb_clone(dst, src);
934 EXPORT_SYMBOL_GPL(skb_morph);
937 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
938 * @skb: the skb to modify
939 * @gfp_mask: allocation priority
941 * This must be called on SKBTX_DEV_ZEROCOPY skb.
942 * It will copy all frags into kernel and drop the reference
943 * to userspace pages.
945 * If this function is called from an interrupt gfp_mask() must be
948 * Returns 0 on success or a negative error code on failure
949 * to allocate kernel memory to copy to.
951 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
954 int num_frags = skb_shinfo(skb)->nr_frags;
955 struct page *page, *head = NULL;
956 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
958 for (i = 0; i < num_frags; i++) {
960 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
962 page = alloc_page(gfp_mask);
965 struct page *next = (struct page *)page_private(head);
971 vaddr = kmap_atomic(skb_frag_page(f));
972 memcpy(page_address(page),
973 vaddr + f->page_offset, skb_frag_size(f));
974 kunmap_atomic(vaddr);
975 set_page_private(page, (unsigned long)head);
979 /* skb frags release userspace buffers */
980 for (i = 0; i < num_frags; i++)
981 skb_frag_unref(skb, i);
983 uarg->callback(uarg, false);
985 /* skb frags point to kernel buffers */
986 for (i = num_frags - 1; i >= 0; i--) {
987 __skb_fill_page_desc(skb, i, head, 0,
988 skb_shinfo(skb)->frags[i].size);
989 head = (struct page *)page_private(head);
992 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
995 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
998 * skb_clone - duplicate an sk_buff
999 * @skb: buffer to clone
1000 * @gfp_mask: allocation priority
1002 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1003 * copies share the same packet data but not structure. The new
1004 * buffer has a reference count of 1. If the allocation fails the
1005 * function returns %NULL otherwise the new buffer is returned.
1007 * If this function is called from an interrupt gfp_mask() must be
1011 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1013 struct sk_buff_fclones *fclones = container_of(skb,
1014 struct sk_buff_fclones,
1018 if (skb_orphan_frags(skb, gfp_mask))
1021 if (skb->fclone == SKB_FCLONE_ORIG &&
1022 atomic_read(&fclones->fclone_ref) == 1) {
1024 atomic_set(&fclones->fclone_ref, 2);
1026 if (skb_pfmemalloc(skb))
1027 gfp_mask |= __GFP_MEMALLOC;
1029 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1033 kmemcheck_annotate_bitfield(n, flags1);
1034 n->fclone = SKB_FCLONE_UNAVAILABLE;
1037 return __skb_clone(n, skb);
1039 EXPORT_SYMBOL(skb_clone);
1041 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1043 /* Only adjust this if it actually is csum_start rather than csum */
1044 if (skb->ip_summed == CHECKSUM_PARTIAL)
1045 skb->csum_start += off;
1046 /* {transport,network,mac}_header and tail are relative to skb->head */
1047 skb->transport_header += off;
1048 skb->network_header += off;
1049 if (skb_mac_header_was_set(skb))
1050 skb->mac_header += off;
1051 skb->inner_transport_header += off;
1052 skb->inner_network_header += off;
1053 skb->inner_mac_header += off;
1056 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1058 __copy_skb_header(new, old);
1060 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1061 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1062 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1065 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1067 if (skb_pfmemalloc(skb))
1068 return SKB_ALLOC_RX;
1073 * skb_copy - create private copy of an sk_buff
1074 * @skb: buffer to copy
1075 * @gfp_mask: allocation priority
1077 * Make a copy of both an &sk_buff and its data. This is used when the
1078 * caller wishes to modify the data and needs a private copy of the
1079 * data to alter. Returns %NULL on failure or the pointer to the buffer
1080 * on success. The returned buffer has a reference count of 1.
1082 * As by-product this function converts non-linear &sk_buff to linear
1083 * one, so that &sk_buff becomes completely private and caller is allowed
1084 * to modify all the data of returned buffer. This means that this
1085 * function is not recommended for use in circumstances when only
1086 * header is going to be modified. Use pskb_copy() instead.
1089 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1091 int headerlen = skb_headroom(skb);
1092 unsigned int size = skb_end_offset(skb) + skb->data_len;
1093 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1094 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1099 /* Set the data pointer */
1100 skb_reserve(n, headerlen);
1101 /* Set the tail pointer and length */
1102 skb_put(n, skb->len);
1104 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1107 copy_skb_header(n, skb);
1110 EXPORT_SYMBOL(skb_copy);
1113 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1114 * @skb: buffer to copy
1115 * @headroom: headroom of new skb
1116 * @gfp_mask: allocation priority
1117 * @fclone: if true allocate the copy of the skb from the fclone
1118 * cache instead of the head cache; it is recommended to set this
1119 * to true for the cases where the copy will likely be cloned
1121 * Make a copy of both an &sk_buff and part of its data, located
1122 * in header. Fragmented data remain shared. This is used when
1123 * the caller wishes to modify only header of &sk_buff and needs
1124 * private copy of the header to alter. Returns %NULL on failure
1125 * or the pointer to the buffer on success.
1126 * The returned buffer has a reference count of 1.
1129 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1130 gfp_t gfp_mask, bool fclone)
1132 unsigned int size = skb_headlen(skb) + headroom;
1133 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1134 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1139 /* Set the data pointer */
1140 skb_reserve(n, headroom);
1141 /* Set the tail pointer and length */
1142 skb_put(n, skb_headlen(skb));
1143 /* Copy the bytes */
1144 skb_copy_from_linear_data(skb, n->data, n->len);
1146 n->truesize += skb->data_len;
1147 n->data_len = skb->data_len;
1150 if (skb_shinfo(skb)->nr_frags) {
1153 if (skb_orphan_frags(skb, gfp_mask)) {
1158 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1159 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1160 skb_frag_ref(skb, i);
1162 skb_shinfo(n)->nr_frags = i;
1165 if (skb_has_frag_list(skb)) {
1166 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1167 skb_clone_fraglist(n);
1170 copy_skb_header(n, skb);
1174 EXPORT_SYMBOL(__pskb_copy_fclone);
1177 * pskb_expand_head - reallocate header of &sk_buff
1178 * @skb: buffer to reallocate
1179 * @nhead: room to add at head
1180 * @ntail: room to add at tail
1181 * @gfp_mask: allocation priority
1183 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1184 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1185 * reference count of 1. Returns zero in the case of success or error,
1186 * if expansion failed. In the last case, &sk_buff is not changed.
1188 * All the pointers pointing into skb header may change and must be
1189 * reloaded after call to this function.
1192 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1197 int size = nhead + skb_end_offset(skb) + ntail;
1202 if (skb_shared(skb))
1205 size = SKB_DATA_ALIGN(size);
1207 if (skb_pfmemalloc(skb))
1208 gfp_mask |= __GFP_MEMALLOC;
1209 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1210 gfp_mask, NUMA_NO_NODE, NULL);
1213 size = SKB_WITH_OVERHEAD(ksize(data));
1215 /* Copy only real data... and, alas, header. This should be
1216 * optimized for the cases when header is void.
1218 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1220 memcpy((struct skb_shared_info *)(data + size),
1222 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1225 * if shinfo is shared we must drop the old head gracefully, but if it
1226 * is not we can just drop the old head and let the existing refcount
1227 * be since all we did is relocate the values
1229 if (skb_cloned(skb)) {
1230 /* copy this zero copy skb frags */
1231 if (skb_orphan_frags(skb, gfp_mask))
1233 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1234 skb_frag_ref(skb, i);
1236 if (skb_has_frag_list(skb))
1237 skb_clone_fraglist(skb);
1239 skb_release_data(skb);
1243 off = (data + nhead) - skb->head;
1248 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1252 skb->end = skb->head + size;
1255 skb_headers_offset_update(skb, nhead);
1259 atomic_set(&skb_shinfo(skb)->dataref, 1);
1267 EXPORT_SYMBOL(pskb_expand_head);
1269 /* Make private copy of skb with writable head and some headroom */
1271 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1273 struct sk_buff *skb2;
1274 int delta = headroom - skb_headroom(skb);
1277 skb2 = pskb_copy(skb, GFP_ATOMIC);
1279 skb2 = skb_clone(skb, GFP_ATOMIC);
1280 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1288 EXPORT_SYMBOL(skb_realloc_headroom);
1291 * skb_copy_expand - copy and expand sk_buff
1292 * @skb: buffer to copy
1293 * @newheadroom: new free bytes at head
1294 * @newtailroom: new free bytes at tail
1295 * @gfp_mask: allocation priority
1297 * Make a copy of both an &sk_buff and its data and while doing so
1298 * allocate additional space.
1300 * This is used when the caller wishes to modify the data and needs a
1301 * private copy of the data to alter as well as more space for new fields.
1302 * Returns %NULL on failure or the pointer to the buffer
1303 * on success. The returned buffer has a reference count of 1.
1305 * You must pass %GFP_ATOMIC as the allocation priority if this function
1306 * is called from an interrupt.
1308 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1309 int newheadroom, int newtailroom,
1313 * Allocate the copy buffer
1315 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1316 gfp_mask, skb_alloc_rx_flag(skb),
1318 int oldheadroom = skb_headroom(skb);
1319 int head_copy_len, head_copy_off;
1324 skb_reserve(n, newheadroom);
1326 /* Set the tail pointer and length */
1327 skb_put(n, skb->len);
1329 head_copy_len = oldheadroom;
1331 if (newheadroom <= head_copy_len)
1332 head_copy_len = newheadroom;
1334 head_copy_off = newheadroom - head_copy_len;
1336 /* Copy the linear header and data. */
1337 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1338 skb->len + head_copy_len))
1341 copy_skb_header(n, skb);
1343 skb_headers_offset_update(n, newheadroom - oldheadroom);
1347 EXPORT_SYMBOL(skb_copy_expand);
1350 * skb_pad - zero pad the tail of an skb
1351 * @skb: buffer to pad
1352 * @pad: space to pad
1354 * Ensure that a buffer is followed by a padding area that is zero
1355 * filled. Used by network drivers which may DMA or transfer data
1356 * beyond the buffer end onto the wire.
1358 * May return error in out of memory cases. The skb is freed on error.
1361 int skb_pad(struct sk_buff *skb, int pad)
1366 /* If the skbuff is non linear tailroom is always zero.. */
1367 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1368 memset(skb->data+skb->len, 0, pad);
1372 ntail = skb->data_len + pad - (skb->end - skb->tail);
1373 if (likely(skb_cloned(skb) || ntail > 0)) {
1374 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1379 /* FIXME: The use of this function with non-linear skb's really needs
1382 err = skb_linearize(skb);
1386 memset(skb->data + skb->len, 0, pad);
1393 EXPORT_SYMBOL(skb_pad);
1396 * pskb_put - add data to the tail of a potentially fragmented buffer
1397 * @skb: start of the buffer to use
1398 * @tail: tail fragment of the buffer to use
1399 * @len: amount of data to add
1401 * This function extends the used data area of the potentially
1402 * fragmented buffer. @tail must be the last fragment of @skb -- or
1403 * @skb itself. If this would exceed the total buffer size the kernel
1404 * will panic. A pointer to the first byte of the extra data is
1408 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1411 skb->data_len += len;
1414 return skb_put(tail, len);
1416 EXPORT_SYMBOL_GPL(pskb_put);
1419 * skb_put - add data to a buffer
1420 * @skb: buffer to use
1421 * @len: amount of data to add
1423 * This function extends the used data area of the buffer. If this would
1424 * exceed the total buffer size the kernel will panic. A pointer to the
1425 * first byte of the extra data is returned.
1427 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1429 unsigned char *tmp = skb_tail_pointer(skb);
1430 SKB_LINEAR_ASSERT(skb);
1433 if (unlikely(skb->tail > skb->end))
1434 skb_over_panic(skb, len, __builtin_return_address(0));
1437 EXPORT_SYMBOL(skb_put);
1440 * skb_push - add data to the start of a buffer
1441 * @skb: buffer to use
1442 * @len: amount of data to add
1444 * This function extends the used data area of the buffer at the buffer
1445 * start. If this would exceed the total buffer headroom the kernel will
1446 * panic. A pointer to the first byte of the extra data is returned.
1448 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1452 if (unlikely(skb->data<skb->head))
1453 skb_under_panic(skb, len, __builtin_return_address(0));
1456 EXPORT_SYMBOL(skb_push);
1459 * skb_pull - remove data from the start of a buffer
1460 * @skb: buffer to use
1461 * @len: amount of data to remove
1463 * This function removes data from the start of a buffer, returning
1464 * the memory to the headroom. A pointer to the next data in the buffer
1465 * is returned. Once the data has been pulled future pushes will overwrite
1468 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1470 return skb_pull_inline(skb, len);
1472 EXPORT_SYMBOL(skb_pull);
1475 * skb_trim - remove end from a buffer
1476 * @skb: buffer to alter
1479 * Cut the length of a buffer down by removing data from the tail. If
1480 * the buffer is already under the length specified it is not modified.
1481 * The skb must be linear.
1483 void skb_trim(struct sk_buff *skb, unsigned int len)
1486 __skb_trim(skb, len);
1488 EXPORT_SYMBOL(skb_trim);
1490 /* Trims skb to length len. It can change skb pointers.
1493 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1495 struct sk_buff **fragp;
1496 struct sk_buff *frag;
1497 int offset = skb_headlen(skb);
1498 int nfrags = skb_shinfo(skb)->nr_frags;
1502 if (skb_cloned(skb) &&
1503 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1510 for (; i < nfrags; i++) {
1511 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1518 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1521 skb_shinfo(skb)->nr_frags = i;
1523 for (; i < nfrags; i++)
1524 skb_frag_unref(skb, i);
1526 if (skb_has_frag_list(skb))
1527 skb_drop_fraglist(skb);
1531 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1532 fragp = &frag->next) {
1533 int end = offset + frag->len;
1535 if (skb_shared(frag)) {
1536 struct sk_buff *nfrag;
1538 nfrag = skb_clone(frag, GFP_ATOMIC);
1539 if (unlikely(!nfrag))
1542 nfrag->next = frag->next;
1554 unlikely((err = pskb_trim(frag, len - offset))))
1558 skb_drop_list(&frag->next);
1563 if (len > skb_headlen(skb)) {
1564 skb->data_len -= skb->len - len;
1569 skb_set_tail_pointer(skb, len);
1574 EXPORT_SYMBOL(___pskb_trim);
1577 * __pskb_pull_tail - advance tail of skb header
1578 * @skb: buffer to reallocate
1579 * @delta: number of bytes to advance tail
1581 * The function makes a sense only on a fragmented &sk_buff,
1582 * it expands header moving its tail forward and copying necessary
1583 * data from fragmented part.
1585 * &sk_buff MUST have reference count of 1.
1587 * Returns %NULL (and &sk_buff does not change) if pull failed
1588 * or value of new tail of skb in the case of success.
1590 * All the pointers pointing into skb header may change and must be
1591 * reloaded after call to this function.
1594 /* Moves tail of skb head forward, copying data from fragmented part,
1595 * when it is necessary.
1596 * 1. It may fail due to malloc failure.
1597 * 2. It may change skb pointers.
1599 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1601 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1603 /* If skb has not enough free space at tail, get new one
1604 * plus 128 bytes for future expansions. If we have enough
1605 * room at tail, reallocate without expansion only if skb is cloned.
1607 int i, k, eat = (skb->tail + delta) - skb->end;
1609 if (eat > 0 || skb_cloned(skb)) {
1610 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1615 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1618 /* Optimization: no fragments, no reasons to preestimate
1619 * size of pulled pages. Superb.
1621 if (!skb_has_frag_list(skb))
1624 /* Estimate size of pulled pages. */
1626 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1627 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1634 /* If we need update frag list, we are in troubles.
1635 * Certainly, it possible to add an offset to skb data,
1636 * but taking into account that pulling is expected to
1637 * be very rare operation, it is worth to fight against
1638 * further bloating skb head and crucify ourselves here instead.
1639 * Pure masohism, indeed. 8)8)
1642 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1643 struct sk_buff *clone = NULL;
1644 struct sk_buff *insp = NULL;
1649 if (list->len <= eat) {
1650 /* Eaten as whole. */
1655 /* Eaten partially. */
1657 if (skb_shared(list)) {
1658 /* Sucks! We need to fork list. :-( */
1659 clone = skb_clone(list, GFP_ATOMIC);
1665 /* This may be pulled without
1669 if (!pskb_pull(list, eat)) {
1677 /* Free pulled out fragments. */
1678 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1679 skb_shinfo(skb)->frag_list = list->next;
1682 /* And insert new clone at head. */
1685 skb_shinfo(skb)->frag_list = clone;
1688 /* Success! Now we may commit changes to skb data. */
1693 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1694 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1697 skb_frag_unref(skb, i);
1700 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1702 skb_shinfo(skb)->frags[k].page_offset += eat;
1703 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1709 skb_shinfo(skb)->nr_frags = k;
1712 skb->data_len -= delta;
1714 return skb_tail_pointer(skb);
1716 EXPORT_SYMBOL(__pskb_pull_tail);
1719 * skb_copy_bits - copy bits from skb to kernel buffer
1721 * @offset: offset in source
1722 * @to: destination buffer
1723 * @len: number of bytes to copy
1725 * Copy the specified number of bytes from the source skb to the
1726 * destination buffer.
1729 * If its prototype is ever changed,
1730 * check arch/{*}/net/{*}.S files,
1731 * since it is called from BPF assembly code.
1733 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1735 int start = skb_headlen(skb);
1736 struct sk_buff *frag_iter;
1739 if (offset > (int)skb->len - len)
1743 if ((copy = start - offset) > 0) {
1746 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1747 if ((len -= copy) == 0)
1753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1755 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1757 WARN_ON(start > offset + len);
1759 end = start + skb_frag_size(f);
1760 if ((copy = end - offset) > 0) {
1766 vaddr = kmap_atomic(skb_frag_page(f));
1768 vaddr + f->page_offset + offset - start,
1770 kunmap_atomic(vaddr);
1772 if ((len -= copy) == 0)
1780 skb_walk_frags(skb, frag_iter) {
1783 WARN_ON(start > offset + len);
1785 end = start + frag_iter->len;
1786 if ((copy = end - offset) > 0) {
1789 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1791 if ((len -= copy) == 0)
1805 EXPORT_SYMBOL(skb_copy_bits);
1808 * Callback from splice_to_pipe(), if we need to release some pages
1809 * at the end of the spd in case we error'ed out in filling the pipe.
1811 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1813 put_page(spd->pages[i]);
1816 static struct page *linear_to_page(struct page *page, unsigned int *len,
1817 unsigned int *offset,
1820 struct page_frag *pfrag = sk_page_frag(sk);
1822 if (!sk_page_frag_refill(sk, pfrag))
1825 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1827 memcpy(page_address(pfrag->page) + pfrag->offset,
1828 page_address(page) + *offset, *len);
1829 *offset = pfrag->offset;
1830 pfrag->offset += *len;
1835 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1837 unsigned int offset)
1839 return spd->nr_pages &&
1840 spd->pages[spd->nr_pages - 1] == page &&
1841 (spd->partial[spd->nr_pages - 1].offset +
1842 spd->partial[spd->nr_pages - 1].len == offset);
1846 * Fill page/offset/length into spd, if it can hold more pages.
1848 static bool spd_fill_page(struct splice_pipe_desc *spd,
1849 struct pipe_inode_info *pipe, struct page *page,
1850 unsigned int *len, unsigned int offset,
1854 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1858 page = linear_to_page(page, len, &offset, sk);
1862 if (spd_can_coalesce(spd, page, offset)) {
1863 spd->partial[spd->nr_pages - 1].len += *len;
1867 spd->pages[spd->nr_pages] = page;
1868 spd->partial[spd->nr_pages].len = *len;
1869 spd->partial[spd->nr_pages].offset = offset;
1875 static bool __splice_segment(struct page *page, unsigned int poff,
1876 unsigned int plen, unsigned int *off,
1878 struct splice_pipe_desc *spd, bool linear,
1880 struct pipe_inode_info *pipe)
1885 /* skip this segment if already processed */
1891 /* ignore any bits we already processed */
1897 unsigned int flen = min(*len, plen);
1899 if (spd_fill_page(spd, pipe, page, &flen, poff,
1905 } while (*len && plen);
1911 * Map linear and fragment data from the skb to spd. It reports true if the
1912 * pipe is full or if we already spliced the requested length.
1914 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1915 unsigned int *offset, unsigned int *len,
1916 struct splice_pipe_desc *spd, struct sock *sk)
1919 struct sk_buff *iter;
1921 /* map the linear part :
1922 * If skb->head_frag is set, this 'linear' part is backed by a
1923 * fragment, and if the head is not shared with any clones then
1924 * we can avoid a copy since we own the head portion of this page.
1926 if (__splice_segment(virt_to_page(skb->data),
1927 (unsigned long) skb->data & (PAGE_SIZE - 1),
1930 skb_head_is_locked(skb),
1935 * then map the fragments
1937 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1938 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1940 if (__splice_segment(skb_frag_page(f),
1941 f->page_offset, skb_frag_size(f),
1942 offset, len, spd, false, sk, pipe))
1946 skb_walk_frags(skb, iter) {
1947 if (*offset >= iter->len) {
1948 *offset -= iter->len;
1951 /* __skb_splice_bits() only fails if the output has no room
1952 * left, so no point in going over the frag_list for the error
1955 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1963 * Map data from the skb to a pipe. Should handle both the linear part,
1964 * the fragments, and the frag list.
1966 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1967 struct pipe_inode_info *pipe, unsigned int tlen,
1970 struct partial_page partial[MAX_SKB_FRAGS];
1971 struct page *pages[MAX_SKB_FRAGS];
1972 struct splice_pipe_desc spd = {
1975 .nr_pages_max = MAX_SKB_FRAGS,
1977 .ops = &nosteal_pipe_buf_ops,
1978 .spd_release = sock_spd_release,
1982 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
1985 ret = splice_to_pipe(pipe, &spd);
1989 EXPORT_SYMBOL_GPL(skb_splice_bits);
1992 * skb_store_bits - store bits from kernel buffer to skb
1993 * @skb: destination buffer
1994 * @offset: offset in destination
1995 * @from: source buffer
1996 * @len: number of bytes to copy
1998 * Copy the specified number of bytes from the source buffer to the
1999 * destination skb. This function handles all the messy bits of
2000 * traversing fragment lists and such.
2003 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2005 int start = skb_headlen(skb);
2006 struct sk_buff *frag_iter;
2009 if (offset > (int)skb->len - len)
2012 if ((copy = start - offset) > 0) {
2015 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2016 if ((len -= copy) == 0)
2022 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2023 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2026 WARN_ON(start > offset + len);
2028 end = start + skb_frag_size(frag);
2029 if ((copy = end - offset) > 0) {
2035 vaddr = kmap_atomic(skb_frag_page(frag));
2036 memcpy(vaddr + frag->page_offset + offset - start,
2038 kunmap_atomic(vaddr);
2040 if ((len -= copy) == 0)
2048 skb_walk_frags(skb, frag_iter) {
2051 WARN_ON(start > offset + len);
2053 end = start + frag_iter->len;
2054 if ((copy = end - offset) > 0) {
2057 if (skb_store_bits(frag_iter, offset - start,
2060 if ((len -= copy) == 0)
2073 EXPORT_SYMBOL(skb_store_bits);
2075 /* Checksum skb data. */
2076 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2077 __wsum csum, const struct skb_checksum_ops *ops)
2079 int start = skb_headlen(skb);
2080 int i, copy = start - offset;
2081 struct sk_buff *frag_iter;
2084 /* Checksum header. */
2088 csum = ops->update(skb->data + offset, copy, csum);
2089 if ((len -= copy) == 0)
2095 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2097 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2099 WARN_ON(start > offset + len);
2101 end = start + skb_frag_size(frag);
2102 if ((copy = end - offset) > 0) {
2108 vaddr = kmap_atomic(skb_frag_page(frag));
2109 csum2 = ops->update(vaddr + frag->page_offset +
2110 offset - start, copy, 0);
2111 kunmap_atomic(vaddr);
2112 csum = ops->combine(csum, csum2, pos, copy);
2121 skb_walk_frags(skb, frag_iter) {
2124 WARN_ON(start > offset + len);
2126 end = start + frag_iter->len;
2127 if ((copy = end - offset) > 0) {
2131 csum2 = __skb_checksum(frag_iter, offset - start,
2133 csum = ops->combine(csum, csum2, pos, copy);
2134 if ((len -= copy) == 0)
2145 EXPORT_SYMBOL(__skb_checksum);
2147 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2148 int len, __wsum csum)
2150 const struct skb_checksum_ops ops = {
2151 .update = csum_partial_ext,
2152 .combine = csum_block_add_ext,
2155 return __skb_checksum(skb, offset, len, csum, &ops);
2157 EXPORT_SYMBOL(skb_checksum);
2159 /* Both of above in one bottle. */
2161 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2162 u8 *to, int len, __wsum csum)
2164 int start = skb_headlen(skb);
2165 int i, copy = start - offset;
2166 struct sk_buff *frag_iter;
2173 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2175 if ((len -= copy) == 0)
2182 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2185 WARN_ON(start > offset + len);
2187 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2188 if ((copy = end - offset) > 0) {
2191 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2195 vaddr = kmap_atomic(skb_frag_page(frag));
2196 csum2 = csum_partial_copy_nocheck(vaddr +
2200 kunmap_atomic(vaddr);
2201 csum = csum_block_add(csum, csum2, pos);
2211 skb_walk_frags(skb, frag_iter) {
2215 WARN_ON(start > offset + len);
2217 end = start + frag_iter->len;
2218 if ((copy = end - offset) > 0) {
2221 csum2 = skb_copy_and_csum_bits(frag_iter,
2224 csum = csum_block_add(csum, csum2, pos);
2225 if ((len -= copy) == 0)
2236 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2239 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2240 * @from: source buffer
2242 * Calculates the amount of linear headroom needed in the 'to' skb passed
2243 * into skb_zerocopy().
2246 skb_zerocopy_headlen(const struct sk_buff *from)
2248 unsigned int hlen = 0;
2250 if (!from->head_frag ||
2251 skb_headlen(from) < L1_CACHE_BYTES ||
2252 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2253 hlen = skb_headlen(from);
2255 if (skb_has_frag_list(from))
2260 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2263 * skb_zerocopy - Zero copy skb to skb
2264 * @to: destination buffer
2265 * @from: source buffer
2266 * @len: number of bytes to copy from source buffer
2267 * @hlen: size of linear headroom in destination buffer
2269 * Copies up to `len` bytes from `from` to `to` by creating references
2270 * to the frags in the source buffer.
2272 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2273 * headroom in the `to` buffer.
2276 * 0: everything is OK
2277 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2278 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2281 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2284 int plen = 0; /* length of skb->head fragment */
2287 unsigned int offset;
2289 BUG_ON(!from->head_frag && !hlen);
2291 /* dont bother with small payloads */
2292 if (len <= skb_tailroom(to))
2293 return skb_copy_bits(from, 0, skb_put(to, len), len);
2296 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2301 plen = min_t(int, skb_headlen(from), len);
2303 page = virt_to_head_page(from->head);
2304 offset = from->data - (unsigned char *)page_address(page);
2305 __skb_fill_page_desc(to, 0, page, offset, plen);
2312 to->truesize += len + plen;
2313 to->len += len + plen;
2314 to->data_len += len + plen;
2316 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2321 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2324 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2325 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2326 len -= skb_shinfo(to)->frags[j].size;
2327 skb_frag_ref(to, j);
2330 skb_shinfo(to)->nr_frags = j;
2334 EXPORT_SYMBOL_GPL(skb_zerocopy);
2336 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2341 if (skb->ip_summed == CHECKSUM_PARTIAL)
2342 csstart = skb_checksum_start_offset(skb);
2344 csstart = skb_headlen(skb);
2346 BUG_ON(csstart > skb_headlen(skb));
2348 skb_copy_from_linear_data(skb, to, csstart);
2351 if (csstart != skb->len)
2352 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2353 skb->len - csstart, 0);
2355 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2356 long csstuff = csstart + skb->csum_offset;
2358 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2361 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2364 * skb_dequeue - remove from the head of the queue
2365 * @list: list to dequeue from
2367 * Remove the head of the list. The list lock is taken so the function
2368 * may be used safely with other locking list functions. The head item is
2369 * returned or %NULL if the list is empty.
2372 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2374 unsigned long flags;
2375 struct sk_buff *result;
2377 spin_lock_irqsave(&list->lock, flags);
2378 result = __skb_dequeue(list);
2379 spin_unlock_irqrestore(&list->lock, flags);
2382 EXPORT_SYMBOL(skb_dequeue);
2385 * skb_dequeue_tail - remove from the tail of the queue
2386 * @list: list to dequeue from
2388 * Remove the tail of the list. The list lock is taken so the function
2389 * may be used safely with other locking list functions. The tail item is
2390 * returned or %NULL if the list is empty.
2392 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2394 unsigned long flags;
2395 struct sk_buff *result;
2397 spin_lock_irqsave(&list->lock, flags);
2398 result = __skb_dequeue_tail(list);
2399 spin_unlock_irqrestore(&list->lock, flags);
2402 EXPORT_SYMBOL(skb_dequeue_tail);
2405 * skb_queue_purge - empty a list
2406 * @list: list to empty
2408 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2409 * the list and one reference dropped. This function takes the list
2410 * lock and is atomic with respect to other list locking functions.
2412 void skb_queue_purge(struct sk_buff_head *list)
2414 struct sk_buff *skb;
2415 while ((skb = skb_dequeue(list)) != NULL)
2418 EXPORT_SYMBOL(skb_queue_purge);
2421 * skb_rbtree_purge - empty a skb rbtree
2422 * @root: root of the rbtree to empty
2424 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2425 * the list and one reference dropped. This function does not take
2426 * any lock. Synchronization should be handled by the caller (e.g., TCP
2427 * out-of-order queue is protected by the socket lock).
2429 void skb_rbtree_purge(struct rb_root *root)
2431 struct sk_buff *skb, *next;
2433 rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2440 * skb_queue_head - queue a buffer at the list head
2441 * @list: list to use
2442 * @newsk: buffer to queue
2444 * Queue a buffer at the start of the list. This function takes the
2445 * list lock and can be used safely with other locking &sk_buff functions
2448 * A buffer cannot be placed on two lists at the same time.
2450 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2452 unsigned long flags;
2454 spin_lock_irqsave(&list->lock, flags);
2455 __skb_queue_head(list, newsk);
2456 spin_unlock_irqrestore(&list->lock, flags);
2458 EXPORT_SYMBOL(skb_queue_head);
2461 * skb_queue_tail - queue a buffer at the list tail
2462 * @list: list to use
2463 * @newsk: buffer to queue
2465 * Queue a buffer at the tail of the list. This function takes the
2466 * list lock and can be used safely with other locking &sk_buff functions
2469 * A buffer cannot be placed on two lists at the same time.
2471 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2473 unsigned long flags;
2475 spin_lock_irqsave(&list->lock, flags);
2476 __skb_queue_tail(list, newsk);
2477 spin_unlock_irqrestore(&list->lock, flags);
2479 EXPORT_SYMBOL(skb_queue_tail);
2482 * skb_unlink - remove a buffer from a list
2483 * @skb: buffer to remove
2484 * @list: list to use
2486 * Remove a packet from a list. The list locks are taken and this
2487 * function is atomic with respect to other list locked calls
2489 * You must know what list the SKB is on.
2491 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2493 unsigned long flags;
2495 spin_lock_irqsave(&list->lock, flags);
2496 __skb_unlink(skb, list);
2497 spin_unlock_irqrestore(&list->lock, flags);
2499 EXPORT_SYMBOL(skb_unlink);
2502 * skb_append - append a buffer
2503 * @old: buffer to insert after
2504 * @newsk: buffer to insert
2505 * @list: list to use
2507 * Place a packet after a given packet in a list. The list locks are taken
2508 * and this function is atomic with respect to other list locked calls.
2509 * A buffer cannot be placed on two lists at the same time.
2511 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2513 unsigned long flags;
2515 spin_lock_irqsave(&list->lock, flags);
2516 __skb_queue_after(list, old, newsk);
2517 spin_unlock_irqrestore(&list->lock, flags);
2519 EXPORT_SYMBOL(skb_append);
2522 * skb_insert - insert a buffer
2523 * @old: buffer to insert before
2524 * @newsk: buffer to insert
2525 * @list: list to use
2527 * Place a packet before a given packet in a list. The list locks are
2528 * taken and this function is atomic with respect to other list locked
2531 * A buffer cannot be placed on two lists at the same time.
2533 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2535 unsigned long flags;
2537 spin_lock_irqsave(&list->lock, flags);
2538 __skb_insert(newsk, old->prev, old, list);
2539 spin_unlock_irqrestore(&list->lock, flags);
2541 EXPORT_SYMBOL(skb_insert);
2543 static inline void skb_split_inside_header(struct sk_buff *skb,
2544 struct sk_buff* skb1,
2545 const u32 len, const int pos)
2549 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2551 /* And move data appendix as is. */
2552 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2553 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2555 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2556 skb_shinfo(skb)->nr_frags = 0;
2557 skb1->data_len = skb->data_len;
2558 skb1->len += skb1->data_len;
2561 skb_set_tail_pointer(skb, len);
2564 static inline void skb_split_no_header(struct sk_buff *skb,
2565 struct sk_buff* skb1,
2566 const u32 len, int pos)
2569 const int nfrags = skb_shinfo(skb)->nr_frags;
2571 skb_shinfo(skb)->nr_frags = 0;
2572 skb1->len = skb1->data_len = skb->len - len;
2574 skb->data_len = len - pos;
2576 for (i = 0; i < nfrags; i++) {
2577 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2579 if (pos + size > len) {
2580 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2584 * We have two variants in this case:
2585 * 1. Move all the frag to the second
2586 * part, if it is possible. F.e.
2587 * this approach is mandatory for TUX,
2588 * where splitting is expensive.
2589 * 2. Split is accurately. We make this.
2591 skb_frag_ref(skb, i);
2592 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2593 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2594 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2595 skb_shinfo(skb)->nr_frags++;
2599 skb_shinfo(skb)->nr_frags++;
2602 skb_shinfo(skb1)->nr_frags = k;
2606 * skb_split - Split fragmented skb to two parts at length len.
2607 * @skb: the buffer to split
2608 * @skb1: the buffer to receive the second part
2609 * @len: new length for skb
2611 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2613 int pos = skb_headlen(skb);
2615 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2616 if (len < pos) /* Split line is inside header. */
2617 skb_split_inside_header(skb, skb1, len, pos);
2618 else /* Second chunk has no header, nothing to copy. */
2619 skb_split_no_header(skb, skb1, len, pos);
2621 EXPORT_SYMBOL(skb_split);
2623 /* Shifting from/to a cloned skb is a no-go.
2625 * Caller cannot keep skb_shinfo related pointers past calling here!
2627 static int skb_prepare_for_shift(struct sk_buff *skb)
2629 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2633 * skb_shift - Shifts paged data partially from skb to another
2634 * @tgt: buffer into which tail data gets added
2635 * @skb: buffer from which the paged data comes from
2636 * @shiftlen: shift up to this many bytes
2638 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2639 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2640 * It's up to caller to free skb if everything was shifted.
2642 * If @tgt runs out of frags, the whole operation is aborted.
2644 * Skb cannot include anything else but paged data while tgt is allowed
2645 * to have non-paged data as well.
2647 * TODO: full sized shift could be optimized but that would need
2648 * specialized skb free'er to handle frags without up-to-date nr_frags.
2650 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2652 int from, to, merge, todo;
2653 struct skb_frag_struct *fragfrom, *fragto;
2655 BUG_ON(shiftlen > skb->len);
2657 if (skb_headlen(skb))
2662 to = skb_shinfo(tgt)->nr_frags;
2663 fragfrom = &skb_shinfo(skb)->frags[from];
2665 /* Actual merge is delayed until the point when we know we can
2666 * commit all, so that we don't have to undo partial changes
2669 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2670 fragfrom->page_offset)) {
2675 todo -= skb_frag_size(fragfrom);
2677 if (skb_prepare_for_shift(skb) ||
2678 skb_prepare_for_shift(tgt))
2681 /* All previous frag pointers might be stale! */
2682 fragfrom = &skb_shinfo(skb)->frags[from];
2683 fragto = &skb_shinfo(tgt)->frags[merge];
2685 skb_frag_size_add(fragto, shiftlen);
2686 skb_frag_size_sub(fragfrom, shiftlen);
2687 fragfrom->page_offset += shiftlen;
2695 /* Skip full, not-fitting skb to avoid expensive operations */
2696 if ((shiftlen == skb->len) &&
2697 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2700 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2703 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2704 if (to == MAX_SKB_FRAGS)
2707 fragfrom = &skb_shinfo(skb)->frags[from];
2708 fragto = &skb_shinfo(tgt)->frags[to];
2710 if (todo >= skb_frag_size(fragfrom)) {
2711 *fragto = *fragfrom;
2712 todo -= skb_frag_size(fragfrom);
2717 __skb_frag_ref(fragfrom);
2718 fragto->page = fragfrom->page;
2719 fragto->page_offset = fragfrom->page_offset;
2720 skb_frag_size_set(fragto, todo);
2722 fragfrom->page_offset += todo;
2723 skb_frag_size_sub(fragfrom, todo);
2731 /* Ready to "commit" this state change to tgt */
2732 skb_shinfo(tgt)->nr_frags = to;
2735 fragfrom = &skb_shinfo(skb)->frags[0];
2736 fragto = &skb_shinfo(tgt)->frags[merge];
2738 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2739 __skb_frag_unref(fragfrom);
2742 /* Reposition in the original skb */
2744 while (from < skb_shinfo(skb)->nr_frags)
2745 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2746 skb_shinfo(skb)->nr_frags = to;
2748 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2751 /* Most likely the tgt won't ever need its checksum anymore, skb on
2752 * the other hand might need it if it needs to be resent
2754 tgt->ip_summed = CHECKSUM_PARTIAL;
2755 skb->ip_summed = CHECKSUM_PARTIAL;
2757 /* Yak, is it really working this way? Some helper please? */
2758 skb->len -= shiftlen;
2759 skb->data_len -= shiftlen;
2760 skb->truesize -= shiftlen;
2761 tgt->len += shiftlen;
2762 tgt->data_len += shiftlen;
2763 tgt->truesize += shiftlen;
2769 * skb_prepare_seq_read - Prepare a sequential read of skb data
2770 * @skb: the buffer to read
2771 * @from: lower offset of data to be read
2772 * @to: upper offset of data to be read
2773 * @st: state variable
2775 * Initializes the specified state variable. Must be called before
2776 * invoking skb_seq_read() for the first time.
2778 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2779 unsigned int to, struct skb_seq_state *st)
2781 st->lower_offset = from;
2782 st->upper_offset = to;
2783 st->root_skb = st->cur_skb = skb;
2784 st->frag_idx = st->stepped_offset = 0;
2785 st->frag_data = NULL;
2787 EXPORT_SYMBOL(skb_prepare_seq_read);
2790 * skb_seq_read - Sequentially read skb data
2791 * @consumed: number of bytes consumed by the caller so far
2792 * @data: destination pointer for data to be returned
2793 * @st: state variable
2795 * Reads a block of skb data at @consumed relative to the
2796 * lower offset specified to skb_prepare_seq_read(). Assigns
2797 * the head of the data block to @data and returns the length
2798 * of the block or 0 if the end of the skb data or the upper
2799 * offset has been reached.
2801 * The caller is not required to consume all of the data
2802 * returned, i.e. @consumed is typically set to the number
2803 * of bytes already consumed and the next call to
2804 * skb_seq_read() will return the remaining part of the block.
2806 * Note 1: The size of each block of data returned can be arbitrary,
2807 * this limitation is the cost for zerocopy sequential
2808 * reads of potentially non linear data.
2810 * Note 2: Fragment lists within fragments are not implemented
2811 * at the moment, state->root_skb could be replaced with
2812 * a stack for this purpose.
2814 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2815 struct skb_seq_state *st)
2817 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2820 if (unlikely(abs_offset >= st->upper_offset)) {
2821 if (st->frag_data) {
2822 kunmap_atomic(st->frag_data);
2823 st->frag_data = NULL;
2829 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2831 if (abs_offset < block_limit && !st->frag_data) {
2832 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2833 return block_limit - abs_offset;
2836 if (st->frag_idx == 0 && !st->frag_data)
2837 st->stepped_offset += skb_headlen(st->cur_skb);
2839 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2840 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2841 block_limit = skb_frag_size(frag) + st->stepped_offset;
2843 if (abs_offset < block_limit) {
2845 st->frag_data = kmap_atomic(skb_frag_page(frag));
2847 *data = (u8 *) st->frag_data + frag->page_offset +
2848 (abs_offset - st->stepped_offset);
2850 return block_limit - abs_offset;
2853 if (st->frag_data) {
2854 kunmap_atomic(st->frag_data);
2855 st->frag_data = NULL;
2859 st->stepped_offset += skb_frag_size(frag);
2862 if (st->frag_data) {
2863 kunmap_atomic(st->frag_data);
2864 st->frag_data = NULL;
2867 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2868 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2871 } else if (st->cur_skb->next) {
2872 st->cur_skb = st->cur_skb->next;
2879 EXPORT_SYMBOL(skb_seq_read);
2882 * skb_abort_seq_read - Abort a sequential read of skb data
2883 * @st: state variable
2885 * Must be called if skb_seq_read() was not called until it
2888 void skb_abort_seq_read(struct skb_seq_state *st)
2891 kunmap_atomic(st->frag_data);
2893 EXPORT_SYMBOL(skb_abort_seq_read);
2895 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2897 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2898 struct ts_config *conf,
2899 struct ts_state *state)
2901 return skb_seq_read(offset, text, TS_SKB_CB(state));
2904 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2906 skb_abort_seq_read(TS_SKB_CB(state));
2910 * skb_find_text - Find a text pattern in skb data
2911 * @skb: the buffer to look in
2912 * @from: search offset
2914 * @config: textsearch configuration
2916 * Finds a pattern in the skb data according to the specified
2917 * textsearch configuration. Use textsearch_next() to retrieve
2918 * subsequent occurrences of the pattern. Returns the offset
2919 * to the first occurrence or UINT_MAX if no match was found.
2921 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2922 unsigned int to, struct ts_config *config)
2924 struct ts_state state;
2927 config->get_next_block = skb_ts_get_next_block;
2928 config->finish = skb_ts_finish;
2930 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2932 ret = textsearch_find(config, &state);
2933 return (ret <= to - from ? ret : UINT_MAX);
2935 EXPORT_SYMBOL(skb_find_text);
2938 * skb_append_datato_frags - append the user data to a skb
2939 * @sk: sock structure
2940 * @skb: skb structure to be appended with user data.
2941 * @getfrag: call back function to be used for getting the user data
2942 * @from: pointer to user message iov
2943 * @length: length of the iov message
2945 * Description: This procedure append the user data in the fragment part
2946 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2948 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2949 int (*getfrag)(void *from, char *to, int offset,
2950 int len, int odd, struct sk_buff *skb),
2951 void *from, int length)
2953 int frg_cnt = skb_shinfo(skb)->nr_frags;
2957 struct page_frag *pfrag = ¤t->task_frag;
2960 /* Return error if we don't have space for new frag */
2961 if (frg_cnt >= MAX_SKB_FRAGS)
2964 if (!sk_page_frag_refill(sk, pfrag))
2967 /* copy the user data to page */
2968 copy = min_t(int, length, pfrag->size - pfrag->offset);
2970 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2971 offset, copy, 0, skb);
2975 /* copy was successful so update the size parameters */
2976 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2979 pfrag->offset += copy;
2980 get_page(pfrag->page);
2982 skb->truesize += copy;
2983 atomic_add(copy, &sk->sk_wmem_alloc);
2985 skb->data_len += copy;
2989 } while (length > 0);
2993 EXPORT_SYMBOL(skb_append_datato_frags);
2995 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
2996 int offset, size_t size)
2998 int i = skb_shinfo(skb)->nr_frags;
3000 if (skb_can_coalesce(skb, i, page, offset)) {
3001 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3002 } else if (i < MAX_SKB_FRAGS) {
3004 skb_fill_page_desc(skb, i, page, offset, size);
3011 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3014 * skb_pull_rcsum - pull skb and update receive checksum
3015 * @skb: buffer to update
3016 * @len: length of data pulled
3018 * This function performs an skb_pull on the packet and updates
3019 * the CHECKSUM_COMPLETE checksum. It should be used on
3020 * receive path processing instead of skb_pull unless you know
3021 * that the checksum difference is zero (e.g., a valid IP header)
3022 * or you are setting ip_summed to CHECKSUM_NONE.
3024 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3026 unsigned char *data = skb->data;
3028 BUG_ON(len > skb->len);
3029 __skb_pull(skb, len);
3030 skb_postpull_rcsum(skb, data, len);
3033 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3036 * skb_segment - Perform protocol segmentation on skb.
3037 * @head_skb: buffer to segment
3038 * @features: features for the output path (see dev->features)
3040 * This function performs segmentation on the given skb. It returns
3041 * a pointer to the first in a list of new skbs for the segments.
3042 * In case of error it returns ERR_PTR(err).
3044 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3045 netdev_features_t features)
3047 struct sk_buff *segs = NULL;
3048 struct sk_buff *tail = NULL;
3049 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3050 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3051 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3052 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3053 struct sk_buff *frag_skb = head_skb;
3054 unsigned int offset = doffset;
3055 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3056 unsigned int partial_segs = 0;
3057 unsigned int headroom;
3058 unsigned int len = head_skb->len;
3061 int nfrags = skb_shinfo(head_skb)->nr_frags;
3067 __skb_push(head_skb, doffset);
3068 proto = skb_network_protocol(head_skb, &dummy);
3069 if (unlikely(!proto))
3070 return ERR_PTR(-EINVAL);
3072 sg = !!(features & NETIF_F_SG);
3073 csum = !!can_checksum_protocol(features, proto);
3075 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3076 if (!(features & NETIF_F_GSO_PARTIAL)) {
3077 struct sk_buff *iter;
3080 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3083 /* Split the buffer at the frag_list pointer.
3084 * This is based on the assumption that all
3085 * buffers in the chain excluding the last
3086 * containing the same amount of data.
3088 skb_walk_frags(head_skb, iter) {
3089 if (skb_headlen(iter))
3096 /* GSO partial only requires that we trim off any excess that
3097 * doesn't fit into an MSS sized block, so take care of that
3100 partial_segs = len / mss;
3101 if (partial_segs > 1)
3102 mss *= partial_segs;
3108 headroom = skb_headroom(head_skb);
3109 pos = skb_headlen(head_skb);
3112 struct sk_buff *nskb;
3113 skb_frag_t *nskb_frag;
3117 if (unlikely(mss == GSO_BY_FRAGS)) {
3118 len = list_skb->len;
3120 len = head_skb->len - offset;
3125 hsize = skb_headlen(head_skb) - offset;
3128 if (hsize > len || !sg)
3131 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3132 (skb_headlen(list_skb) == len || sg)) {
3133 BUG_ON(skb_headlen(list_skb) > len);
3136 nfrags = skb_shinfo(list_skb)->nr_frags;
3137 frag = skb_shinfo(list_skb)->frags;
3138 frag_skb = list_skb;
3139 pos += skb_headlen(list_skb);
3141 while (pos < offset + len) {
3142 BUG_ON(i >= nfrags);
3144 size = skb_frag_size(frag);
3145 if (pos + size > offset + len)
3153 nskb = skb_clone(list_skb, GFP_ATOMIC);
3154 list_skb = list_skb->next;
3156 if (unlikely(!nskb))
3159 if (unlikely(pskb_trim(nskb, len))) {
3164 hsize = skb_end_offset(nskb);
3165 if (skb_cow_head(nskb, doffset + headroom)) {
3170 nskb->truesize += skb_end_offset(nskb) - hsize;
3171 skb_release_head_state(nskb);
3172 __skb_push(nskb, doffset);
3174 nskb = __alloc_skb(hsize + doffset + headroom,
3175 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3178 if (unlikely(!nskb))
3181 skb_reserve(nskb, headroom);
3182 __skb_put(nskb, doffset);
3191 __copy_skb_header(nskb, head_skb);
3193 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3194 skb_reset_mac_len(nskb);
3196 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3197 nskb->data - tnl_hlen,
3198 doffset + tnl_hlen);
3200 if (nskb->len == len + doffset)
3201 goto perform_csum_check;
3204 if (!nskb->remcsum_offload)
3205 nskb->ip_summed = CHECKSUM_NONE;
3206 SKB_GSO_CB(nskb)->csum =
3207 skb_copy_and_csum_bits(head_skb, offset,
3210 SKB_GSO_CB(nskb)->csum_start =
3211 skb_headroom(nskb) + doffset;
3215 nskb_frag = skb_shinfo(nskb)->frags;
3217 skb_copy_from_linear_data_offset(head_skb, offset,
3218 skb_put(nskb, hsize), hsize);
3220 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3223 while (pos < offset + len) {
3225 BUG_ON(skb_headlen(list_skb));
3228 nfrags = skb_shinfo(list_skb)->nr_frags;
3229 frag = skb_shinfo(list_skb)->frags;
3230 frag_skb = list_skb;
3234 list_skb = list_skb->next;
3237 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3239 net_warn_ratelimited(
3240 "skb_segment: too many frags: %u %u\n",
3245 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3249 __skb_frag_ref(nskb_frag);
3250 size = skb_frag_size(nskb_frag);
3253 nskb_frag->page_offset += offset - pos;
3254 skb_frag_size_sub(nskb_frag, offset - pos);
3257 skb_shinfo(nskb)->nr_frags++;
3259 if (pos + size <= offset + len) {
3264 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3272 nskb->data_len = len - hsize;
3273 nskb->len += nskb->data_len;
3274 nskb->truesize += nskb->data_len;
3278 if (skb_has_shared_frag(nskb)) {
3279 err = __skb_linearize(nskb);
3283 if (!nskb->remcsum_offload)
3284 nskb->ip_summed = CHECKSUM_NONE;
3285 SKB_GSO_CB(nskb)->csum =
3286 skb_checksum(nskb, doffset,
3287 nskb->len - doffset, 0);
3288 SKB_GSO_CB(nskb)->csum_start =
3289 skb_headroom(nskb) + doffset;
3291 } while ((offset += len) < head_skb->len);
3293 /* Some callers want to get the end of the list.
3294 * Put it in segs->prev to avoid walking the list.
3295 * (see validate_xmit_skb_list() for example)
3300 struct sk_buff *iter;
3301 int type = skb_shinfo(head_skb)->gso_type;
3302 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3304 /* Update type to add partial and then remove dodgy if set */
3305 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3306 type &= ~SKB_GSO_DODGY;
3308 /* Update GSO info and prepare to start updating headers on
3309 * our way back down the stack of protocols.
3311 for (iter = segs; iter; iter = iter->next) {
3312 skb_shinfo(iter)->gso_size = gso_size;
3313 skb_shinfo(iter)->gso_segs = partial_segs;
3314 skb_shinfo(iter)->gso_type = type;
3315 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3318 if (tail->len - doffset <= gso_size)
3319 skb_shinfo(tail)->gso_size = 0;
3320 else if (tail != segs)
3321 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3324 /* Following permits correct backpressure, for protocols
3325 * using skb_set_owner_w().
3326 * Idea is to tranfert ownership from head_skb to last segment.
3328 if (head_skb->destructor == sock_wfree) {
3329 swap(tail->truesize, head_skb->truesize);
3330 swap(tail->destructor, head_skb->destructor);
3331 swap(tail->sk, head_skb->sk);
3336 kfree_skb_list(segs);
3337 return ERR_PTR(err);
3339 EXPORT_SYMBOL_GPL(skb_segment);
3341 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3343 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3344 unsigned int offset = skb_gro_offset(skb);
3345 unsigned int headlen = skb_headlen(skb);
3346 unsigned int len = skb_gro_len(skb);
3347 struct sk_buff *lp, *p = *head;
3348 unsigned int delta_truesize;
3350 if (unlikely(p->len + len >= 65536))
3353 lp = NAPI_GRO_CB(p)->last;
3354 pinfo = skb_shinfo(lp);
3356 if (headlen <= offset) {
3359 int i = skbinfo->nr_frags;
3360 int nr_frags = pinfo->nr_frags + i;
3362 if (nr_frags > MAX_SKB_FRAGS)
3366 pinfo->nr_frags = nr_frags;
3367 skbinfo->nr_frags = 0;
3369 frag = pinfo->frags + nr_frags;
3370 frag2 = skbinfo->frags + i;
3375 frag->page_offset += offset;
3376 skb_frag_size_sub(frag, offset);
3378 /* all fragments truesize : remove (head size + sk_buff) */
3379 delta_truesize = skb->truesize -
3380 SKB_TRUESIZE(skb_end_offset(skb));
3382 skb->truesize -= skb->data_len;
3383 skb->len -= skb->data_len;
3386 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3388 } else if (skb->head_frag) {
3389 int nr_frags = pinfo->nr_frags;
3390 skb_frag_t *frag = pinfo->frags + nr_frags;
3391 struct page *page = virt_to_head_page(skb->head);
3392 unsigned int first_size = headlen - offset;
3393 unsigned int first_offset;
3395 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3398 first_offset = skb->data -
3399 (unsigned char *)page_address(page) +
3402 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3404 frag->page.p = page;
3405 frag->page_offset = first_offset;
3406 skb_frag_size_set(frag, first_size);
3408 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3409 /* We dont need to clear skbinfo->nr_frags here */
3411 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3412 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3417 delta_truesize = skb->truesize;
3418 if (offset > headlen) {
3419 unsigned int eat = offset - headlen;
3421 skbinfo->frags[0].page_offset += eat;
3422 skb_frag_size_sub(&skbinfo->frags[0], eat);
3423 skb->data_len -= eat;
3428 __skb_pull(skb, offset);
3430 if (NAPI_GRO_CB(p)->last == p)
3431 skb_shinfo(p)->frag_list = skb;
3433 NAPI_GRO_CB(p)->last->next = skb;
3434 NAPI_GRO_CB(p)->last = skb;
3435 __skb_header_release(skb);
3439 NAPI_GRO_CB(p)->count++;
3441 p->truesize += delta_truesize;
3444 lp->data_len += len;
3445 lp->truesize += delta_truesize;
3448 NAPI_GRO_CB(skb)->same_flow = 1;
3451 EXPORT_SYMBOL_GPL(skb_gro_receive);
3453 void __init skb_init(void)
3455 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3456 sizeof(struct sk_buff),
3458 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3460 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3461 sizeof(struct sk_buff_fclones),
3463 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3468 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3469 * @skb: Socket buffer containing the buffers to be mapped
3470 * @sg: The scatter-gather list to map into
3471 * @offset: The offset into the buffer's contents to start mapping
3472 * @len: Length of buffer space to be mapped
3474 * Fill the specified scatter-gather list with mappings/pointers into a
3475 * region of the buffer space attached to a socket buffer.
3478 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3480 int start = skb_headlen(skb);
3481 int i, copy = start - offset;
3482 struct sk_buff *frag_iter;
3488 sg_set_buf(sg, skb->data + offset, copy);
3490 if ((len -= copy) == 0)
3495 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3498 WARN_ON(start > offset + len);
3500 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3501 if ((copy = end - offset) > 0) {
3502 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3506 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3507 frag->page_offset+offset-start);
3516 skb_walk_frags(skb, frag_iter) {
3519 WARN_ON(start > offset + len);
3521 end = start + frag_iter->len;
3522 if ((copy = end - offset) > 0) {
3525 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3527 if ((len -= copy) == 0)
3537 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3538 * sglist without mark the sg which contain last skb data as the end.
3539 * So the caller can mannipulate sg list as will when padding new data after
3540 * the first call without calling sg_unmark_end to expend sg list.
3542 * Scenario to use skb_to_sgvec_nomark:
3544 * 2. skb_to_sgvec_nomark(payload1)
3545 * 3. skb_to_sgvec_nomark(payload2)
3547 * This is equivalent to:
3549 * 2. skb_to_sgvec(payload1)
3551 * 4. skb_to_sgvec(payload2)
3553 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3554 * is more preferable.
3556 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3557 int offset, int len)
3559 return __skb_to_sgvec(skb, sg, offset, len);
3561 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3563 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3565 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3567 sg_mark_end(&sg[nsg - 1]);
3571 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3574 * skb_cow_data - Check that a socket buffer's data buffers are writable
3575 * @skb: The socket buffer to check.
3576 * @tailbits: Amount of trailing space to be added
3577 * @trailer: Returned pointer to the skb where the @tailbits space begins
3579 * Make sure that the data buffers attached to a socket buffer are
3580 * writable. If they are not, private copies are made of the data buffers
3581 * and the socket buffer is set to use these instead.
3583 * If @tailbits is given, make sure that there is space to write @tailbits
3584 * bytes of data beyond current end of socket buffer. @trailer will be
3585 * set to point to the skb in which this space begins.
3587 * The number of scatterlist elements required to completely map the
3588 * COW'd and extended socket buffer will be returned.
3590 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3594 struct sk_buff *skb1, **skb_p;
3596 /* If skb is cloned or its head is paged, reallocate
3597 * head pulling out all the pages (pages are considered not writable
3598 * at the moment even if they are anonymous).
3600 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3601 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3604 /* Easy case. Most of packets will go this way. */
3605 if (!skb_has_frag_list(skb)) {
3606 /* A little of trouble, not enough of space for trailer.
3607 * This should not happen, when stack is tuned to generate
3608 * good frames. OK, on miss we reallocate and reserve even more
3609 * space, 128 bytes is fair. */
3611 if (skb_tailroom(skb) < tailbits &&
3612 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3620 /* Misery. We are in troubles, going to mincer fragments... */
3623 skb_p = &skb_shinfo(skb)->frag_list;
3626 while ((skb1 = *skb_p) != NULL) {
3629 /* The fragment is partially pulled by someone,
3630 * this can happen on input. Copy it and everything
3633 if (skb_shared(skb1))
3636 /* If the skb is the last, worry about trailer. */
3638 if (skb1->next == NULL && tailbits) {
3639 if (skb_shinfo(skb1)->nr_frags ||
3640 skb_has_frag_list(skb1) ||
3641 skb_tailroom(skb1) < tailbits)
3642 ntail = tailbits + 128;
3648 skb_shinfo(skb1)->nr_frags ||
3649 skb_has_frag_list(skb1)) {
3650 struct sk_buff *skb2;
3652 /* Fuck, we are miserable poor guys... */
3654 skb2 = skb_copy(skb1, GFP_ATOMIC);
3656 skb2 = skb_copy_expand(skb1,
3660 if (unlikely(skb2 == NULL))
3664 skb_set_owner_w(skb2, skb1->sk);
3666 /* Looking around. Are we still alive?
3667 * OK, link new skb, drop old one */
3669 skb2->next = skb1->next;
3676 skb_p = &skb1->next;
3681 EXPORT_SYMBOL_GPL(skb_cow_data);
3683 static void sock_rmem_free(struct sk_buff *skb)
3685 struct sock *sk = skb->sk;
3687 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3691 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3693 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3695 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3696 (unsigned int)sk->sk_rcvbuf)
3701 skb->destructor = sock_rmem_free;
3702 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3704 /* before exiting rcu section, make sure dst is refcounted */
3707 skb_queue_tail(&sk->sk_error_queue, skb);
3708 if (!sock_flag(sk, SOCK_DEAD))
3709 sk->sk_data_ready(sk);
3712 EXPORT_SYMBOL(sock_queue_err_skb);
3714 static bool is_icmp_err_skb(const struct sk_buff *skb)
3716 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
3717 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
3720 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3722 struct sk_buff_head *q = &sk->sk_error_queue;
3723 struct sk_buff *skb, *skb_next = NULL;
3724 bool icmp_next = false;
3725 unsigned long flags;
3727 spin_lock_irqsave(&q->lock, flags);
3728 skb = __skb_dequeue(q);
3729 if (skb && (skb_next = skb_peek(q)))
3730 icmp_next = is_icmp_err_skb(skb_next);
3731 spin_unlock_irqrestore(&q->lock, flags);
3733 if (is_icmp_err_skb(skb) && !icmp_next)
3737 sk->sk_error_report(sk);
3741 EXPORT_SYMBOL(sock_dequeue_err_skb);
3744 * skb_clone_sk - create clone of skb, and take reference to socket
3745 * @skb: the skb to clone
3747 * This function creates a clone of a buffer that holds a reference on
3748 * sk_refcnt. Buffers created via this function are meant to be
3749 * returned using sock_queue_err_skb, or free via kfree_skb.
3751 * When passing buffers allocated with this function to sock_queue_err_skb
3752 * it is necessary to wrap the call with sock_hold/sock_put in order to
3753 * prevent the socket from being released prior to being enqueued on
3754 * the sk_error_queue.
3756 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3758 struct sock *sk = skb->sk;
3759 struct sk_buff *clone;
3761 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3764 clone = skb_clone(skb, GFP_ATOMIC);
3771 clone->destructor = sock_efree;
3775 EXPORT_SYMBOL(skb_clone_sk);
3777 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3781 struct sock_exterr_skb *serr;
3784 serr = SKB_EXT_ERR(skb);
3785 memset(serr, 0, sizeof(*serr));
3786 serr->ee.ee_errno = ENOMSG;
3787 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3788 serr->ee.ee_info = tstype;
3789 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3790 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3791 if (sk->sk_protocol == IPPROTO_TCP &&
3792 sk->sk_type == SOCK_STREAM)
3793 serr->ee.ee_data -= sk->sk_tskey;
3796 err = sock_queue_err_skb(sk, skb);
3802 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3806 if (likely(sysctl_tstamp_allow_data || tsonly))
3809 read_lock_bh(&sk->sk_callback_lock);
3810 ret = sk->sk_socket && sk->sk_socket->file &&
3811 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3812 read_unlock_bh(&sk->sk_callback_lock);
3816 void skb_complete_tx_timestamp(struct sk_buff *skb,
3817 struct skb_shared_hwtstamps *hwtstamps)
3819 struct sock *sk = skb->sk;
3821 if (!skb_may_tx_timestamp(sk, false))
3824 /* take a reference to prevent skb_orphan() from freeing the socket */
3827 *skb_hwtstamps(skb) = *hwtstamps;
3828 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3832 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3834 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3835 struct skb_shared_hwtstamps *hwtstamps,
3836 struct sock *sk, int tstype)
3838 struct sk_buff *skb;
3844 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3845 if (!skb_may_tx_timestamp(sk, tsonly))
3850 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
3851 sk->sk_protocol == IPPROTO_TCP &&
3852 sk->sk_type == SOCK_STREAM)
3853 skb = tcp_get_timestamping_opt_stats(sk);
3856 skb = alloc_skb(0, GFP_ATOMIC);
3858 skb = skb_clone(orig_skb, GFP_ATOMIC);
3864 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3865 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3869 *skb_hwtstamps(skb) = *hwtstamps;
3871 skb->tstamp = ktime_get_real();
3873 __skb_complete_tx_timestamp(skb, sk, tstype);
3875 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3877 void skb_tstamp_tx(struct sk_buff *orig_skb,
3878 struct skb_shared_hwtstamps *hwtstamps)
3880 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3883 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3885 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3887 struct sock *sk = skb->sk;
3888 struct sock_exterr_skb *serr;
3891 skb->wifi_acked_valid = 1;
3892 skb->wifi_acked = acked;
3894 serr = SKB_EXT_ERR(skb);
3895 memset(serr, 0, sizeof(*serr));
3896 serr->ee.ee_errno = ENOMSG;
3897 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3899 /* take a reference to prevent skb_orphan() from freeing the socket */
3902 err = sock_queue_err_skb(sk, skb);
3908 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3911 * skb_partial_csum_set - set up and verify partial csum values for packet
3912 * @skb: the skb to set
3913 * @start: the number of bytes after skb->data to start checksumming.
3914 * @off: the offset from start to place the checksum.
3916 * For untrusted partially-checksummed packets, we need to make sure the values
3917 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3919 * This function checks and sets those values and skb->ip_summed: if this
3920 * returns false you should drop the packet.
3922 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3924 if (unlikely(start > skb_headlen(skb)) ||
3925 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3926 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3927 start, off, skb_headlen(skb));
3930 skb->ip_summed = CHECKSUM_PARTIAL;
3931 skb->csum_start = skb_headroom(skb) + start;
3932 skb->csum_offset = off;
3933 skb_set_transport_header(skb, start);
3936 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3938 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3941 if (skb_headlen(skb) >= len)
3944 /* If we need to pullup then pullup to the max, so we
3945 * won't need to do it again.
3950 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3953 if (skb_headlen(skb) < len)
3959 #define MAX_TCP_HDR_LEN (15 * 4)
3961 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3962 typeof(IPPROTO_IP) proto,
3969 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3970 off + MAX_TCP_HDR_LEN);
3971 if (!err && !skb_partial_csum_set(skb, off,
3972 offsetof(struct tcphdr,
3975 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3978 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3979 off + sizeof(struct udphdr));
3980 if (!err && !skb_partial_csum_set(skb, off,
3981 offsetof(struct udphdr,
3984 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3987 return ERR_PTR(-EPROTO);
3990 /* This value should be large enough to cover a tagged ethernet header plus
3991 * maximally sized IP and TCP or UDP headers.
3993 #define MAX_IP_HDR_LEN 128
3995 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4004 err = skb_maybe_pull_tail(skb,
4005 sizeof(struct iphdr),
4010 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4013 off = ip_hdrlen(skb);
4020 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4022 return PTR_ERR(csum);
4025 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4028 ip_hdr(skb)->protocol, 0);
4035 /* This value should be large enough to cover a tagged ethernet header plus
4036 * an IPv6 header, all options, and a maximal TCP or UDP header.
4038 #define MAX_IPV6_HDR_LEN 256
4040 #define OPT_HDR(type, skb, off) \
4041 (type *)(skb_network_header(skb) + (off))
4043 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4056 off = sizeof(struct ipv6hdr);
4058 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4062 nexthdr = ipv6_hdr(skb)->nexthdr;
4064 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4065 while (off <= len && !done) {
4067 case IPPROTO_DSTOPTS:
4068 case IPPROTO_HOPOPTS:
4069 case IPPROTO_ROUTING: {
4070 struct ipv6_opt_hdr *hp;
4072 err = skb_maybe_pull_tail(skb,
4074 sizeof(struct ipv6_opt_hdr),
4079 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4080 nexthdr = hp->nexthdr;
4081 off += ipv6_optlen(hp);
4085 struct ip_auth_hdr *hp;
4087 err = skb_maybe_pull_tail(skb,
4089 sizeof(struct ip_auth_hdr),
4094 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4095 nexthdr = hp->nexthdr;
4096 off += ipv6_authlen(hp);
4099 case IPPROTO_FRAGMENT: {
4100 struct frag_hdr *hp;
4102 err = skb_maybe_pull_tail(skb,
4104 sizeof(struct frag_hdr),
4109 hp = OPT_HDR(struct frag_hdr, skb, off);
4111 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4114 nexthdr = hp->nexthdr;
4115 off += sizeof(struct frag_hdr);
4126 if (!done || fragment)
4129 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4131 return PTR_ERR(csum);
4134 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4135 &ipv6_hdr(skb)->daddr,
4136 skb->len - off, nexthdr, 0);
4144 * skb_checksum_setup - set up partial checksum offset
4145 * @skb: the skb to set up
4146 * @recalculate: if true the pseudo-header checksum will be recalculated
4148 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4152 switch (skb->protocol) {
4153 case htons(ETH_P_IP):
4154 err = skb_checksum_setup_ipv4(skb, recalculate);
4157 case htons(ETH_P_IPV6):
4158 err = skb_checksum_setup_ipv6(skb, recalculate);
4168 EXPORT_SYMBOL(skb_checksum_setup);
4171 * skb_checksum_maybe_trim - maybe trims the given skb
4172 * @skb: the skb to check
4173 * @transport_len: the data length beyond the network header
4175 * Checks whether the given skb has data beyond the given transport length.
4176 * If so, returns a cloned skb trimmed to this transport length.
4177 * Otherwise returns the provided skb. Returns NULL in error cases
4178 * (e.g. transport_len exceeds skb length or out-of-memory).
4180 * Caller needs to set the skb transport header and free any returned skb if it
4181 * differs from the provided skb.
4183 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4184 unsigned int transport_len)
4186 struct sk_buff *skb_chk;
4187 unsigned int len = skb_transport_offset(skb) + transport_len;
4192 else if (skb->len == len)
4195 skb_chk = skb_clone(skb, GFP_ATOMIC);
4199 ret = pskb_trim_rcsum(skb_chk, len);
4209 * skb_checksum_trimmed - validate checksum of an skb
4210 * @skb: the skb to check
4211 * @transport_len: the data length beyond the network header
4212 * @skb_chkf: checksum function to use
4214 * Applies the given checksum function skb_chkf to the provided skb.
4215 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4217 * If the skb has data beyond the given transport length, then a
4218 * trimmed & cloned skb is checked and returned.
4220 * Caller needs to set the skb transport header and free any returned skb if it
4221 * differs from the provided skb.
4223 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4224 unsigned int transport_len,
4225 __sum16(*skb_chkf)(struct sk_buff *skb))
4227 struct sk_buff *skb_chk;
4228 unsigned int offset = skb_transport_offset(skb);
4231 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4235 if (!pskb_may_pull(skb_chk, offset))
4238 skb_pull_rcsum(skb_chk, offset);
4239 ret = skb_chkf(skb_chk);
4240 skb_push_rcsum(skb_chk, offset);
4248 if (skb_chk && skb_chk != skb)
4254 EXPORT_SYMBOL(skb_checksum_trimmed);
4256 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4258 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4261 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4263 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4266 skb_release_head_state(skb);
4267 kmem_cache_free(skbuff_head_cache, skb);
4272 EXPORT_SYMBOL(kfree_skb_partial);
4275 * skb_try_coalesce - try to merge skb to prior one
4277 * @from: buffer to add
4278 * @fragstolen: pointer to boolean
4279 * @delta_truesize: how much more was allocated than was requested
4281 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4282 bool *fragstolen, int *delta_truesize)
4284 int i, delta, len = from->len;
4286 *fragstolen = false;
4291 if (len <= skb_tailroom(to)) {
4293 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4294 *delta_truesize = 0;
4298 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4301 if (skb_headlen(from) != 0) {
4303 unsigned int offset;
4305 if (skb_shinfo(to)->nr_frags +
4306 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4309 if (skb_head_is_locked(from))
4312 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4314 page = virt_to_head_page(from->head);
4315 offset = from->data - (unsigned char *)page_address(page);
4317 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4318 page, offset, skb_headlen(from));
4321 if (skb_shinfo(to)->nr_frags +
4322 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4325 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4328 WARN_ON_ONCE(delta < len);
4330 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4331 skb_shinfo(from)->frags,
4332 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4333 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4335 if (!skb_cloned(from))
4336 skb_shinfo(from)->nr_frags = 0;
4338 /* if the skb is not cloned this does nothing
4339 * since we set nr_frags to 0.
4341 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4342 skb_frag_ref(from, i);
4344 to->truesize += delta;
4346 to->data_len += len;
4348 *delta_truesize = delta;
4351 EXPORT_SYMBOL(skb_try_coalesce);
4354 * skb_scrub_packet - scrub an skb
4356 * @skb: buffer to clean
4357 * @xnet: packet is crossing netns
4359 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4360 * into/from a tunnel. Some information have to be cleared during these
4362 * skb_scrub_packet can also be used to clean a skb before injecting it in
4363 * another namespace (@xnet == true). We have to clear all information in the
4364 * skb that could impact namespace isolation.
4366 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4369 skb->pkt_type = PACKET_HOST;
4375 nf_reset_trace(skb);
4383 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4386 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4390 * skb_gso_transport_seglen is used to determine the real size of the
4391 * individual segments, including Layer4 headers (TCP/UDP).
4393 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4395 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4397 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4398 unsigned int thlen = 0;
4400 if (skb->encapsulation) {
4401 thlen = skb_inner_transport_header(skb) -
4402 skb_transport_header(skb);
4404 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4405 thlen += inner_tcp_hdrlen(skb);
4406 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4407 thlen = tcp_hdrlen(skb);
4408 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4409 thlen = sizeof(struct sctphdr);
4411 /* UFO sets gso_size to the size of the fragmentation
4412 * payload, i.e. the size of the L4 (UDP) header is already
4415 return thlen + shinfo->gso_size;
4417 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4420 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4423 * @mtu: MTU to validate against
4425 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4428 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4430 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4431 const struct sk_buff *iter;
4434 hlen = skb_gso_network_seglen(skb);
4436 if (shinfo->gso_size != GSO_BY_FRAGS)
4439 /* Undo this so we can re-use header sizes */
4440 hlen -= GSO_BY_FRAGS;
4442 skb_walk_frags(skb, iter) {
4443 if (hlen + skb_headlen(iter) > mtu)
4449 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4451 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4453 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4458 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4460 skb->mac_header += VLAN_HLEN;
4464 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4466 struct vlan_hdr *vhdr;
4469 if (unlikely(skb_vlan_tag_present(skb))) {
4470 /* vlan_tci is already set-up so leave this for another time */
4474 skb = skb_share_check(skb, GFP_ATOMIC);
4478 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4481 vhdr = (struct vlan_hdr *)skb->data;
4482 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4483 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4485 skb_pull_rcsum(skb, VLAN_HLEN);
4486 vlan_set_encap_proto(skb, vhdr);
4488 skb = skb_reorder_vlan_header(skb);
4492 skb_reset_network_header(skb);
4493 skb_reset_transport_header(skb);
4494 skb_reset_mac_len(skb);
4502 EXPORT_SYMBOL(skb_vlan_untag);
4504 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4506 if (!pskb_may_pull(skb, write_len))
4509 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4512 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4514 EXPORT_SYMBOL(skb_ensure_writable);
4516 /* remove VLAN header from packet and update csum accordingly.
4517 * expects a non skb_vlan_tag_present skb with a vlan tag payload
4519 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4521 struct vlan_hdr *vhdr;
4522 int offset = skb->data - skb_mac_header(skb);
4525 if (WARN_ONCE(offset,
4526 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4531 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4535 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4537 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4538 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4540 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4541 __skb_pull(skb, VLAN_HLEN);
4543 vlan_set_encap_proto(skb, vhdr);
4544 skb->mac_header += VLAN_HLEN;
4546 if (skb_network_offset(skb) < ETH_HLEN)
4547 skb_set_network_header(skb, ETH_HLEN);
4549 skb_reset_mac_len(skb);
4553 EXPORT_SYMBOL(__skb_vlan_pop);
4555 /* Pop a vlan tag either from hwaccel or from payload.
4556 * Expects skb->data at mac header.
4558 int skb_vlan_pop(struct sk_buff *skb)
4564 if (likely(skb_vlan_tag_present(skb))) {
4567 if (unlikely(!eth_type_vlan(skb->protocol)))
4570 err = __skb_vlan_pop(skb, &vlan_tci);
4574 /* move next vlan tag to hw accel tag */
4575 if (likely(!eth_type_vlan(skb->protocol)))
4578 vlan_proto = skb->protocol;
4579 err = __skb_vlan_pop(skb, &vlan_tci);
4583 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4586 EXPORT_SYMBOL(skb_vlan_pop);
4588 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4589 * Expects skb->data at mac header.
4591 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4593 if (skb_vlan_tag_present(skb)) {
4594 int offset = skb->data - skb_mac_header(skb);
4597 if (WARN_ONCE(offset,
4598 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4603 err = __vlan_insert_tag(skb, skb->vlan_proto,
4604 skb_vlan_tag_get(skb));
4608 skb->protocol = skb->vlan_proto;
4609 skb->mac_len += VLAN_HLEN;
4611 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4613 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4616 EXPORT_SYMBOL(skb_vlan_push);
4619 * alloc_skb_with_frags - allocate skb with page frags
4621 * @header_len: size of linear part
4622 * @data_len: needed length in frags
4623 * @max_page_order: max page order desired.
4624 * @errcode: pointer to error code if any
4625 * @gfp_mask: allocation mask
4627 * This can be used to allocate a paged skb, given a maximal order for frags.
4629 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4630 unsigned long data_len,
4635 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4636 unsigned long chunk;
4637 struct sk_buff *skb;
4642 *errcode = -EMSGSIZE;
4643 /* Note this test could be relaxed, if we succeed to allocate
4644 * high order pages...
4646 if (npages > MAX_SKB_FRAGS)
4649 gfp_head = gfp_mask;
4650 if (gfp_head & __GFP_DIRECT_RECLAIM)
4651 gfp_head |= __GFP_REPEAT;
4653 *errcode = -ENOBUFS;
4654 skb = alloc_skb(header_len, gfp_head);
4658 skb->truesize += npages << PAGE_SHIFT;
4660 for (i = 0; npages > 0; i++) {
4661 int order = max_page_order;
4664 if (npages >= 1 << order) {
4665 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4672 /* Do not retry other high order allocations */
4678 page = alloc_page(gfp_mask);
4682 chunk = min_t(unsigned long, data_len,
4683 PAGE_SIZE << order);
4684 skb_fill_page_desc(skb, i, page, 0, chunk);
4686 npages -= 1 << order;
4694 EXPORT_SYMBOL(alloc_skb_with_frags);
4696 /* carve out the first off bytes from skb when off < headlen */
4697 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4698 const int headlen, gfp_t gfp_mask)
4701 int size = skb_end_offset(skb);
4702 int new_hlen = headlen - off;
4705 size = SKB_DATA_ALIGN(size);
4707 if (skb_pfmemalloc(skb))
4708 gfp_mask |= __GFP_MEMALLOC;
4709 data = kmalloc_reserve(size +
4710 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4711 gfp_mask, NUMA_NO_NODE, NULL);
4715 size = SKB_WITH_OVERHEAD(ksize(data));
4717 /* Copy real data, and all frags */
4718 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4721 memcpy((struct skb_shared_info *)(data + size),
4723 offsetof(struct skb_shared_info,
4724 frags[skb_shinfo(skb)->nr_frags]));
4725 if (skb_cloned(skb)) {
4726 /* drop the old head gracefully */
4727 if (skb_orphan_frags(skb, gfp_mask)) {
4731 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4732 skb_frag_ref(skb, i);
4733 if (skb_has_frag_list(skb))
4734 skb_clone_fraglist(skb);
4735 skb_release_data(skb);
4737 /* we can reuse existing recount- all we did was
4746 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4749 skb->end = skb->head + size;
4751 skb_set_tail_pointer(skb, skb_headlen(skb));
4752 skb_headers_offset_update(skb, 0);
4756 atomic_set(&skb_shinfo(skb)->dataref, 1);
4761 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4763 /* carve out the first eat bytes from skb's frag_list. May recurse into
4766 static int pskb_carve_frag_list(struct sk_buff *skb,
4767 struct skb_shared_info *shinfo, int eat,
4770 struct sk_buff *list = shinfo->frag_list;
4771 struct sk_buff *clone = NULL;
4772 struct sk_buff *insp = NULL;
4776 pr_err("Not enough bytes to eat. Want %d\n", eat);
4779 if (list->len <= eat) {
4780 /* Eaten as whole. */
4785 /* Eaten partially. */
4786 if (skb_shared(list)) {
4787 clone = skb_clone(list, gfp_mask);
4793 /* This may be pulled without problems. */
4796 if (pskb_carve(list, eat, gfp_mask) < 0) {
4804 /* Free pulled out fragments. */
4805 while ((list = shinfo->frag_list) != insp) {
4806 shinfo->frag_list = list->next;
4809 /* And insert new clone at head. */
4812 shinfo->frag_list = clone;
4817 /* carve off first len bytes from skb. Split line (off) is in the
4818 * non-linear part of skb
4820 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4821 int pos, gfp_t gfp_mask)
4824 int size = skb_end_offset(skb);
4826 const int nfrags = skb_shinfo(skb)->nr_frags;
4827 struct skb_shared_info *shinfo;
4829 size = SKB_DATA_ALIGN(size);
4831 if (skb_pfmemalloc(skb))
4832 gfp_mask |= __GFP_MEMALLOC;
4833 data = kmalloc_reserve(size +
4834 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4835 gfp_mask, NUMA_NO_NODE, NULL);
4839 size = SKB_WITH_OVERHEAD(ksize(data));
4841 memcpy((struct skb_shared_info *)(data + size),
4842 skb_shinfo(skb), offsetof(struct skb_shared_info,
4843 frags[skb_shinfo(skb)->nr_frags]));
4844 if (skb_orphan_frags(skb, gfp_mask)) {
4848 shinfo = (struct skb_shared_info *)(data + size);
4849 for (i = 0; i < nfrags; i++) {
4850 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4852 if (pos + fsize > off) {
4853 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4857 * We have two variants in this case:
4858 * 1. Move all the frag to the second
4859 * part, if it is possible. F.e.
4860 * this approach is mandatory for TUX,
4861 * where splitting is expensive.
4862 * 2. Split is accurately. We make this.
4864 shinfo->frags[0].page_offset += off - pos;
4865 skb_frag_size_sub(&shinfo->frags[0], off - pos);
4867 skb_frag_ref(skb, i);
4872 shinfo->nr_frags = k;
4873 if (skb_has_frag_list(skb))
4874 skb_clone_fraglist(skb);
4877 /* split line is in frag list */
4878 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4880 skb_release_data(skb);
4885 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4888 skb->end = skb->head + size;
4890 skb_reset_tail_pointer(skb);
4891 skb_headers_offset_update(skb, 0);
4896 skb->data_len = skb->len;
4897 atomic_set(&skb_shinfo(skb)->dataref, 1);
4901 /* remove len bytes from the beginning of the skb */
4902 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
4904 int headlen = skb_headlen(skb);
4907 return pskb_carve_inside_header(skb, len, headlen, gfp);
4909 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
4912 /* Extract to_copy bytes starting at off from skb, and return this in
4915 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
4916 int to_copy, gfp_t gfp)
4918 struct sk_buff *clone = skb_clone(skb, gfp);
4923 if (pskb_carve(clone, off, gfp) < 0 ||
4924 pskb_trim(clone, to_copy)) {
4930 EXPORT_SYMBOL(pskb_extract);
4933 * skb_condense - try to get rid of fragments/frag_list if possible
4936 * Can be used to save memory before skb is added to a busy queue.
4937 * If packet has bytes in frags and enough tail room in skb->head,
4938 * pull all of them, so that we can free the frags right now and adjust
4941 * We do not reallocate skb->head thus can not fail.
4942 * Caller must re-evaluate skb->truesize if needed.
4944 void skb_condense(struct sk_buff *skb)
4946 if (skb->data_len) {
4947 if (skb->data_len > skb->end - skb->tail ||
4951 /* Nice, we can free page frag(s) right now */
4952 __pskb_pull_tail(skb, skb->data_len);
4954 /* At this point, skb->truesize might be over estimated,
4955 * because skb had a fragment, and fragments do not tell
4957 * When we pulled its content into skb->head, fragment
4958 * was freed, but __pskb_pull_tail() could not possibly
4959 * adjust skb->truesize, not knowing the frag truesize.
4961 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));