4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/file.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * ext4 fs regular file handling primitives
17 * 64-bit file support on 64-bit platforms by Jakub Jelinek
21 #include <linux/time.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
30 #include "ext4_jbd2.h"
35 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
37 struct inode *inode = file_inode(iocb->ki_filp);
40 inode_lock_shared(inode);
42 * Recheck under inode lock - at this point we are sure it cannot
46 inode_unlock_shared(inode);
47 /* Fallback to buffered IO in case we cannot support DAX */
48 return generic_file_read_iter(iocb, to);
50 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
51 inode_unlock_shared(inode);
53 file_accessed(iocb->ki_filp);
58 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
60 if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
63 if (!iov_iter_count(to))
64 return 0; /* skip atime */
67 if (IS_DAX(file_inode(iocb->ki_filp)))
68 return ext4_dax_read_iter(iocb, to);
70 return generic_file_read_iter(iocb, to);
74 * Called when an inode is released. Note that this is different
75 * from ext4_file_open: open gets called at every open, but release
76 * gets called only when /all/ the files are closed.
78 static int ext4_release_file(struct inode *inode, struct file *filp)
80 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
81 ext4_alloc_da_blocks(inode);
82 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
84 /* if we are the last writer on the inode, drop the block reservation */
85 if ((filp->f_mode & FMODE_WRITE) &&
86 (atomic_read(&inode->i_writecount) == 1) &&
87 !EXT4_I(inode)->i_reserved_data_blocks)
89 down_write(&EXT4_I(inode)->i_data_sem);
90 ext4_discard_preallocations(inode);
91 up_write(&EXT4_I(inode)->i_data_sem);
93 if (is_dx(inode) && filp->private_data)
94 ext4_htree_free_dir_info(filp->private_data);
99 static void ext4_unwritten_wait(struct inode *inode)
101 wait_queue_head_t *wq = ext4_ioend_wq(inode);
103 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
107 * This tests whether the IO in question is block-aligned or not.
108 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
109 * are converted to written only after the IO is complete. Until they are
110 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
111 * it needs to zero out portions of the start and/or end block. If 2 AIO
112 * threads are at work on the same unwritten block, they must be synchronized
113 * or one thread will zero the other's data, causing corruption.
116 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
118 struct super_block *sb = inode->i_sb;
119 int blockmask = sb->s_blocksize - 1;
121 if (pos >= i_size_read(inode))
124 if ((pos | iov_iter_alignment(from)) & blockmask)
130 /* Is IO overwriting allocated and initialized blocks? */
131 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
133 struct ext4_map_blocks map;
134 unsigned int blkbits = inode->i_blkbits;
137 if (pos + len > i_size_read(inode))
140 map.m_lblk = pos >> blkbits;
141 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
144 err = ext4_map_blocks(NULL, inode, &map, 0);
146 * 'err==len' means that all of the blocks have been preallocated,
147 * regardless of whether they have been initialized or not. To exclude
148 * unwritten extents, we need to check m_flags.
150 return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
153 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
155 struct inode *inode = file_inode(iocb->ki_filp);
158 ret = generic_write_checks(iocb, from);
162 * If we have encountered a bitmap-format file, the size limit
163 * is smaller than s_maxbytes, which is for extent-mapped files.
165 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
166 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
168 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
170 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
172 return iov_iter_count(from);
177 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
179 struct inode *inode = file_inode(iocb->ki_filp);
183 ret = ext4_write_checks(iocb, from);
186 ret = file_remove_privs(iocb->ki_filp);
189 ret = file_update_time(iocb->ki_filp);
193 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
197 ret = generic_write_sync(iocb, ret);
203 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
205 struct inode *inode = file_inode(iocb->ki_filp);
206 int o_direct = iocb->ki_flags & IOCB_DIRECT;
207 int unaligned_aio = 0;
211 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
216 return ext4_dax_write_iter(iocb, from);
220 ret = ext4_write_checks(iocb, from);
225 * Unaligned direct AIO must be serialized among each other as zeroing
226 * of partial blocks of two competing unaligned AIOs can result in data
229 if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
230 !is_sync_kiocb(iocb) &&
231 ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
233 ext4_unwritten_wait(inode);
236 iocb->private = &overwrite;
237 /* Check whether we do a DIO overwrite or not */
238 if (o_direct && ext4_should_dioread_nolock(inode) && !unaligned_aio &&
239 ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from)))
242 ret = __generic_file_write_iter(iocb, from);
246 ret = generic_write_sync(iocb, ret);
256 static int ext4_dax_huge_fault(struct vm_fault *vmf,
257 enum page_entry_size pe_size)
260 struct inode *inode = file_inode(vmf->vma->vm_file);
261 struct super_block *sb = inode->i_sb;
262 bool write = vmf->flags & FAULT_FLAG_WRITE;
265 sb_start_pagefault(sb);
266 file_update_time(vmf->vma->vm_file);
268 down_read(&EXT4_I(inode)->i_mmap_sem);
269 result = dax_iomap_fault(vmf, pe_size, &ext4_iomap_ops);
270 up_read(&EXT4_I(inode)->i_mmap_sem);
272 sb_end_pagefault(sb);
277 static int ext4_dax_fault(struct vm_fault *vmf)
279 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
283 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
284 * handler we check for races agaist truncate. Note that since we cycle through
285 * i_mmap_sem, we are sure that also any hole punching that began before we
286 * were called is finished by now and so if it included part of the file we
287 * are working on, our pte will get unmapped and the check for pte_same() in
288 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
291 static int ext4_dax_pfn_mkwrite(struct vm_fault *vmf)
293 struct inode *inode = file_inode(vmf->vma->vm_file);
294 struct super_block *sb = inode->i_sb;
298 sb_start_pagefault(sb);
299 file_update_time(vmf->vma->vm_file);
300 down_read(&EXT4_I(inode)->i_mmap_sem);
301 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
302 if (vmf->pgoff >= size)
303 ret = VM_FAULT_SIGBUS;
305 ret = dax_pfn_mkwrite(vmf);
306 up_read(&EXT4_I(inode)->i_mmap_sem);
307 sb_end_pagefault(sb);
312 static const struct vm_operations_struct ext4_dax_vm_ops = {
313 .fault = ext4_dax_fault,
314 .huge_fault = ext4_dax_huge_fault,
315 .page_mkwrite = ext4_dax_fault,
316 .pfn_mkwrite = ext4_dax_pfn_mkwrite,
319 #define ext4_dax_vm_ops ext4_file_vm_ops
322 static const struct vm_operations_struct ext4_file_vm_ops = {
323 .fault = ext4_filemap_fault,
324 .map_pages = filemap_map_pages,
325 .page_mkwrite = ext4_page_mkwrite,
328 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
330 struct inode *inode = file->f_mapping->host;
332 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
335 if (ext4_encrypted_inode(inode)) {
336 int err = fscrypt_get_encryption_info(inode);
339 if (!fscrypt_has_encryption_key(inode))
343 if (IS_DAX(file_inode(file))) {
344 vma->vm_ops = &ext4_dax_vm_ops;
345 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
347 vma->vm_ops = &ext4_file_vm_ops;
352 static int ext4_file_open(struct inode * inode, struct file * filp)
354 struct super_block *sb = inode->i_sb;
355 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
356 struct vfsmount *mnt = filp->f_path.mnt;
362 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
365 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
366 !(sb->s_flags & MS_RDONLY))) {
367 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
369 * Sample where the filesystem has been mounted and
370 * store it in the superblock for sysadmin convenience
371 * when trying to sort through large numbers of block
372 * devices or filesystem images.
374 memset(buf, 0, sizeof(buf));
376 path.dentry = mnt->mnt_root;
377 cp = d_path(&path, buf, sizeof(buf));
382 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
384 return PTR_ERR(handle);
385 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
386 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
388 ext4_journal_stop(handle);
391 strlcpy(sbi->s_es->s_last_mounted, cp,
392 sizeof(sbi->s_es->s_last_mounted));
393 ext4_handle_dirty_super(handle, sb);
394 ext4_journal_stop(handle);
397 if (ext4_encrypted_inode(inode)) {
398 ret = fscrypt_get_encryption_info(inode);
401 if (!fscrypt_has_encryption_key(inode))
405 dir = dget_parent(file_dentry(filp));
406 if (ext4_encrypted_inode(d_inode(dir)) &&
407 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
408 ext4_warning(inode->i_sb,
409 "Inconsistent encryption contexts: %lu/%lu",
410 (unsigned long) d_inode(dir)->i_ino,
411 (unsigned long) inode->i_ino);
417 * Set up the jbd2_inode if we are opening the inode for
418 * writing and the journal is present
420 if (filp->f_mode & FMODE_WRITE) {
421 ret = ext4_inode_attach_jinode(inode);
425 return dquot_file_open(inode, filp);
429 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
430 * file rather than ext4_ext_walk_space() because we can introduce
431 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
432 * function. When extent status tree has been fully implemented, it will
433 * track all extent status for a file and we can directly use it to
434 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
438 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
439 * lookup page cache to check whether or not there has some data between
440 * [startoff, endoff] because, if this range contains an unwritten extent,
441 * we determine this extent as a data or a hole according to whether the
442 * page cache has data or not.
444 static int ext4_find_unwritten_pgoff(struct inode *inode,
450 unsigned int blkbits;
458 blkbits = inode->i_sb->s_blocksize_bits;
461 endoff = (loff_t)end_blk << blkbits;
463 index = startoff >> PAGE_SHIFT;
464 end = endoff >> PAGE_SHIFT;
466 pagevec_init(&pvec, 0);
469 unsigned long nr_pages;
471 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
472 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
475 if (whence == SEEK_DATA)
478 BUG_ON(whence != SEEK_HOLE);
480 * If this is the first time to go into the loop and
481 * offset is not beyond the end offset, it will be a
482 * hole at this offset
484 if (lastoff == startoff || lastoff < endoff)
490 * If this is the first time to go into the loop and
491 * offset is smaller than the first page offset, it will be a
492 * hole at this offset.
494 if (lastoff == startoff && whence == SEEK_HOLE &&
495 lastoff < page_offset(pvec.pages[0])) {
500 for (i = 0; i < nr_pages; i++) {
501 struct page *page = pvec.pages[i];
502 struct buffer_head *bh, *head;
505 * If the current offset is not beyond the end of given
506 * range, it will be a hole.
508 if (lastoff < endoff && whence == SEEK_HOLE &&
517 if (unlikely(page->mapping != inode->i_mapping)) {
522 if (!page_has_buffers(page)) {
527 if (page_has_buffers(page)) {
528 lastoff = page_offset(page);
529 bh = head = page_buffers(page);
531 if (buffer_uptodate(bh) ||
532 buffer_unwritten(bh)) {
533 if (whence == SEEK_DATA)
536 if (whence == SEEK_HOLE)
540 *offset = max_t(loff_t,
545 lastoff += bh->b_size;
546 bh = bh->b_this_page;
547 } while (bh != head);
550 lastoff = page_offset(page) + PAGE_SIZE;
555 * The no. of pages is less than our desired, that would be a
558 if (nr_pages < num && whence == SEEK_HOLE) {
564 index = pvec.pages[i - 1]->index + 1;
565 pagevec_release(&pvec);
566 } while (index <= end);
569 pagevec_release(&pvec);
574 * ext4_seek_data() retrieves the offset for SEEK_DATA.
576 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
578 struct inode *inode = file->f_mapping->host;
579 struct extent_status es;
580 ext4_lblk_t start, last, end;
581 loff_t dataoff, isize;
587 isize = i_size_read(inode);
588 if (offset >= isize) {
593 blkbits = inode->i_sb->s_blocksize_bits;
594 start = offset >> blkbits;
596 end = isize >> blkbits;
600 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
602 /* No extent found -> no data */
611 dataoff = (loff_t)last << blkbits;
612 if (!ext4_es_is_unwritten(&es))
616 * If there is a unwritten extent at this offset,
617 * it will be as a data or a hole according to page
618 * cache that has data or not.
620 if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
621 es.es_lblk + es.es_len, &dataoff))
624 dataoff = (loff_t)last << blkbits;
626 } while (last <= end);
633 return vfs_setpos(file, dataoff, maxsize);
637 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
639 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
641 struct inode *inode = file->f_mapping->host;
642 struct extent_status es;
643 ext4_lblk_t start, last, end;
644 loff_t holeoff, isize;
650 isize = i_size_read(inode);
651 if (offset >= isize) {
656 blkbits = inode->i_sb->s_blocksize_bits;
657 start = offset >> blkbits;
659 end = isize >> blkbits;
663 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
669 if (ret == 0 || es.es_lblk > last) {
671 holeoff = (loff_t)last << blkbits;
675 * If there is a unwritten extent at this offset,
676 * it will be as a data or a hole according to page
677 * cache that has data or not.
679 if (ext4_es_is_unwritten(&es) &&
680 ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
681 last + es.es_len, &holeoff))
685 holeoff = (loff_t)last << blkbits;
687 } while (last <= end);
694 return vfs_setpos(file, holeoff, maxsize);
698 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
699 * by calling generic_file_llseek_size() with the appropriate maxbytes
702 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
704 struct inode *inode = file->f_mapping->host;
707 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
708 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
710 maxbytes = inode->i_sb->s_maxbytes;
716 return generic_file_llseek_size(file, offset, whence,
717 maxbytes, i_size_read(inode));
719 return ext4_seek_data(file, offset, maxbytes);
721 return ext4_seek_hole(file, offset, maxbytes);
727 const struct file_operations ext4_file_operations = {
728 .llseek = ext4_llseek,
729 .read_iter = ext4_file_read_iter,
730 .write_iter = ext4_file_write_iter,
731 .unlocked_ioctl = ext4_ioctl,
733 .compat_ioctl = ext4_compat_ioctl,
735 .mmap = ext4_file_mmap,
736 .open = ext4_file_open,
737 .release = ext4_release_file,
738 .fsync = ext4_sync_file,
739 .get_unmapped_area = thp_get_unmapped_area,
740 .splice_read = generic_file_splice_read,
741 .splice_write = iter_file_splice_write,
742 .fallocate = ext4_fallocate,
745 const struct inode_operations ext4_file_inode_operations = {
746 .setattr = ext4_setattr,
747 .getattr = ext4_file_getattr,
748 .listxattr = ext4_listxattr,
749 .get_acl = ext4_get_acl,
750 .set_acl = ext4_set_acl,
751 .fiemap = ext4_fiemap,