2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
67 static int max_queued_requests = 1024;
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
71 static void lower_barrier(struct r1conf *conf);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
82 static void r1bio_pool_free(void *r1_bio, void *data)
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
97 struct pool_info *pi = data;
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
108 * Allocate bios : 1 for reading, n-1 for writing
110 for (j = pi->raid_disks ; j-- ; ) {
111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 r1_bio->bios[j] = bio;
117 * Allocate RESYNC_PAGES data pages and attach them to
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 need_pages = pi->raid_disks;
126 for (j = 0; j < need_pages; j++) {
127 bio = r1_bio->bios[j];
128 bio->bi_vcnt = RESYNC_PAGES;
130 if (bio_alloc_pages(bio, gfp_flags))
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 r1_bio->master_bio = NULL;
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
154 while (++j < pi->raid_disks)
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
160 static void r1buf_pool_free(void *__r1_bio, void *data)
162 struct pool_info *pi = data;
164 struct r1bio *r1bio = __r1_bio;
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
176 r1bio_pool_free(r1bio, data);
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
183 for (i = 0; i < conf->raid_disks * 2; i++) {
184 struct bio **bio = r1_bio->bios + i;
185 if (!BIO_SPECIAL(*bio))
191 static void free_r1bio(struct r1bio *r1_bio)
193 struct r1conf *conf = r1_bio->mddev->private;
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
199 static void put_buf(struct r1bio *r1_bio)
201 struct r1conf *conf = r1_bio->mddev->private;
204 for (i = 0; i < conf->raid_disks * 2; i++) {
205 struct bio *bio = r1_bio->bios[i];
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 mempool_free(r1_bio, conf->r1buf_pool);
215 static void reschedule_retry(struct r1bio *r1_bio)
218 struct mddev *mddev = r1_bio->mddev;
219 struct r1conf *conf = mddev->private;
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
224 spin_unlock_irqrestore(&conf->device_lock, flags);
226 wake_up(&conf->wait_barrier);
227 md_wakeup_thread(mddev->thread);
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
235 static void call_bio_endio(struct r1bio *r1_bio)
237 struct bio *bio = r1_bio->master_bio;
239 struct r1conf *conf = r1_bio->mddev->private;
240 sector_t start_next_window = r1_bio->start_next_window;
241 sector_t bi_sector = bio->bi_iter.bi_sector;
243 if (bio->bi_phys_segments) {
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
253 wake_up(&conf->wait_barrier);
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
262 * Wake up any possible resync thread that waits for the device
265 allow_barrier(conf, start_next_window, bi_sector);
269 static void raid_end_bio_io(struct r1bio *r1_bio)
271 struct bio *bio = r1_bio->master_bio;
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
280 call_bio_endio(r1_bio);
286 * Update disk head position estimator based on IRQ completion info.
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
290 struct r1conf *conf = r1_bio->mddev->private;
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
297 * Find the disk number which triggered given bio
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 if (r1_bio->bios[mirror] == bio)
309 BUG_ON(mirror == raid_disks * 2);
310 update_head_pos(mirror, r1_bio);
315 static void raid1_end_read_request(struct bio *bio, int error)
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 struct r1bio *r1_bio = bio->bi_private;
320 struct r1conf *conf = r1_bio->mddev->private;
322 mirror = r1_bio->read_disk;
324 * this branch is our 'one mirror IO has finished' event handler:
326 update_head_pos(mirror, r1_bio);
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
341 spin_unlock_irqrestore(&conf->device_lock, flags);
345 raid_end_bio_io(r1_bio);
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
351 char b[BDEVNAME_SIZE];
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
356 bdevname(conf->mirrors[mirror].rdev->bdev,
358 (unsigned long long)r1_bio->sector);
359 set_bit(R1BIO_ReadError, &r1_bio->state);
360 reschedule_retry(r1_bio);
361 /* don't drop the reference on read_disk yet */
365 static void close_write(struct r1bio *r1_bio)
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
384 static void r1_bio_write_done(struct r1bio *r1_bio)
386 if (!atomic_dec_and_test(&r1_bio->remaining))
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
396 raid_end_bio_io(r1_bio);
400 static void raid1_end_write_request(struct bio *bio, int error)
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 struct r1bio *r1_bio = bio->bi_private;
404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 struct r1conf *conf = r1_bio->mddev->private;
406 struct bio *to_put = NULL;
408 mirror = find_bio_disk(r1_bio, bio);
411 * 'one mirror IO has finished' event handler:
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
421 set_bit(R1BIO_WriteError, &r1_bio->state);
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
436 r1_bio->bios[mirror] = NULL;
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
475 pr_debug("raid1: behind end write sectors"
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
479 call_bio_endio(r1_bio);
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
488 * Let's see if all mirrored write operations have finished
491 r1_bio_write_done(r1_bio);
499 * This routine returns the disk from which the requested read should
500 * be done. There is a per-array 'next expected sequential IO' sector
501 * number - if this matches on the next IO then we use the last disk.
502 * There is also a per-disk 'last know head position' sector that is
503 * maintained from IRQ contexts, both the normal and the resync IO
504 * completion handlers update this position correctly. If there is no
505 * perfect sequential match then we pick the disk whose head is closest.
507 * If there are 2 mirrors in the same 2 devices, performance degrades
508 * because position is mirror, not device based.
510 * The rdev for the device selected will have nr_pending incremented.
512 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
514 const sector_t this_sector = r1_bio->sector;
516 int best_good_sectors;
517 int best_disk, best_dist_disk, best_pending_disk;
521 unsigned int min_pending;
522 struct md_rdev *rdev;
524 int choose_next_idle;
528 * Check if we can balance. We can balance on the whole
529 * device if no resync is going on, or below the resync window.
530 * We take the first readable disk when above the resync window.
533 sectors = r1_bio->sectors;
536 best_dist = MaxSector;
537 best_pending_disk = -1;
538 min_pending = UINT_MAX;
539 best_good_sectors = 0;
541 choose_next_idle = 0;
543 choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
545 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
549 unsigned int pending;
552 rdev = rcu_dereference(conf->mirrors[disk].rdev);
553 if (r1_bio->bios[disk] == IO_BLOCKED
555 || test_bit(Unmerged, &rdev->flags)
556 || test_bit(Faulty, &rdev->flags))
558 if (!test_bit(In_sync, &rdev->flags) &&
559 rdev->recovery_offset < this_sector + sectors)
561 if (test_bit(WriteMostly, &rdev->flags)) {
562 /* Don't balance among write-mostly, just
563 * use the first as a last resort */
565 if (is_badblock(rdev, this_sector, sectors,
566 &first_bad, &bad_sectors)) {
567 if (first_bad < this_sector)
568 /* Cannot use this */
570 best_good_sectors = first_bad - this_sector;
572 best_good_sectors = sectors;
577 /* This is a reasonable device to use. It might
580 if (is_badblock(rdev, this_sector, sectors,
581 &first_bad, &bad_sectors)) {
582 if (best_dist < MaxSector)
583 /* already have a better device */
585 if (first_bad <= this_sector) {
586 /* cannot read here. If this is the 'primary'
587 * device, then we must not read beyond
588 * bad_sectors from another device..
590 bad_sectors -= (this_sector - first_bad);
591 if (choose_first && sectors > bad_sectors)
592 sectors = bad_sectors;
593 if (best_good_sectors > sectors)
594 best_good_sectors = sectors;
597 sector_t good_sectors = first_bad - this_sector;
598 if (good_sectors > best_good_sectors) {
599 best_good_sectors = good_sectors;
607 best_good_sectors = sectors;
609 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
610 has_nonrot_disk |= nonrot;
611 pending = atomic_read(&rdev->nr_pending);
612 dist = abs(this_sector - conf->mirrors[disk].head_position);
617 /* Don't change to another disk for sequential reads */
618 if (conf->mirrors[disk].next_seq_sect == this_sector
620 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
621 struct raid1_info *mirror = &conf->mirrors[disk];
625 * If buffered sequential IO size exceeds optimal
626 * iosize, check if there is idle disk. If yes, choose
627 * the idle disk. read_balance could already choose an
628 * idle disk before noticing it's a sequential IO in
629 * this disk. This doesn't matter because this disk
630 * will idle, next time it will be utilized after the
631 * first disk has IO size exceeds optimal iosize. In
632 * this way, iosize of the first disk will be optimal
633 * iosize at least. iosize of the second disk might be
634 * small, but not a big deal since when the second disk
635 * starts IO, the first disk is likely still busy.
637 if (nonrot && opt_iosize > 0 &&
638 mirror->seq_start != MaxSector &&
639 mirror->next_seq_sect > opt_iosize &&
640 mirror->next_seq_sect - opt_iosize >=
642 choose_next_idle = 1;
647 /* If device is idle, use it */
653 if (choose_next_idle)
656 if (min_pending > pending) {
657 min_pending = pending;
658 best_pending_disk = disk;
661 if (dist < best_dist) {
663 best_dist_disk = disk;
668 * If all disks are rotational, choose the closest disk. If any disk is
669 * non-rotational, choose the disk with less pending request even the
670 * disk is rotational, which might/might not be optimal for raids with
671 * mixed ratation/non-rotational disks depending on workload.
673 if (best_disk == -1) {
675 best_disk = best_pending_disk;
677 best_disk = best_dist_disk;
680 if (best_disk >= 0) {
681 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
684 atomic_inc(&rdev->nr_pending);
685 if (test_bit(Faulty, &rdev->flags)) {
686 /* cannot risk returning a device that failed
687 * before we inc'ed nr_pending
689 rdev_dec_pending(rdev, conf->mddev);
692 sectors = best_good_sectors;
694 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
695 conf->mirrors[best_disk].seq_start = this_sector;
697 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
700 *max_sectors = sectors;
705 static int raid1_mergeable_bvec(struct request_queue *q,
706 struct bvec_merge_data *bvm,
707 struct bio_vec *biovec)
709 struct mddev *mddev = q->queuedata;
710 struct r1conf *conf = mddev->private;
711 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
712 int max = biovec->bv_len;
714 if (mddev->merge_check_needed) {
717 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
718 struct md_rdev *rdev = rcu_dereference(
719 conf->mirrors[disk].rdev);
720 if (rdev && !test_bit(Faulty, &rdev->flags)) {
721 struct request_queue *q =
722 bdev_get_queue(rdev->bdev);
723 if (q->merge_bvec_fn) {
724 bvm->bi_sector = sector +
726 bvm->bi_bdev = rdev->bdev;
727 max = min(max, q->merge_bvec_fn(
738 int md_raid1_congested(struct mddev *mddev, int bits)
740 struct r1conf *conf = mddev->private;
743 if ((bits & (1 << BDI_async_congested)) &&
744 conf->pending_count >= max_queued_requests)
748 for (i = 0; i < conf->raid_disks * 2; i++) {
749 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
750 if (rdev && !test_bit(Faulty, &rdev->flags)) {
751 struct request_queue *q = bdev_get_queue(rdev->bdev);
755 /* Note the '|| 1' - when read_balance prefers
756 * non-congested targets, it can be removed
758 if ((bits & (1<<BDI_async_congested)) || 1)
759 ret |= bdi_congested(&q->backing_dev_info, bits);
761 ret &= bdi_congested(&q->backing_dev_info, bits);
767 EXPORT_SYMBOL_GPL(md_raid1_congested);
769 static int raid1_congested(void *data, int bits)
771 struct mddev *mddev = data;
773 return mddev_congested(mddev, bits) ||
774 md_raid1_congested(mddev, bits);
777 static void flush_pending_writes(struct r1conf *conf)
779 /* Any writes that have been queued but are awaiting
780 * bitmap updates get flushed here.
782 spin_lock_irq(&conf->device_lock);
784 if (conf->pending_bio_list.head) {
786 bio = bio_list_get(&conf->pending_bio_list);
787 conf->pending_count = 0;
788 spin_unlock_irq(&conf->device_lock);
789 /* flush any pending bitmap writes to
790 * disk before proceeding w/ I/O */
791 bitmap_unplug(conf->mddev->bitmap);
792 wake_up(&conf->wait_barrier);
794 while (bio) { /* submit pending writes */
795 struct bio *next = bio->bi_next;
797 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
798 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
802 generic_make_request(bio);
806 spin_unlock_irq(&conf->device_lock);
810 * Sometimes we need to suspend IO while we do something else,
811 * either some resync/recovery, or reconfigure the array.
812 * To do this we raise a 'barrier'.
813 * The 'barrier' is a counter that can be raised multiple times
814 * to count how many activities are happening which preclude
816 * We can only raise the barrier if there is no pending IO.
817 * i.e. if nr_pending == 0.
818 * We choose only to raise the barrier if no-one is waiting for the
819 * barrier to go down. This means that as soon as an IO request
820 * is ready, no other operations which require a barrier will start
821 * until the IO request has had a chance.
823 * So: regular IO calls 'wait_barrier'. When that returns there
824 * is no backgroup IO happening, It must arrange to call
825 * allow_barrier when it has finished its IO.
826 * backgroup IO calls must call raise_barrier. Once that returns
827 * there is no normal IO happeing. It must arrange to call
828 * lower_barrier when the particular background IO completes.
830 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
832 spin_lock_irq(&conf->resync_lock);
834 /* Wait until no block IO is waiting */
835 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
838 /* block any new IO from starting */
840 conf->next_resync = sector_nr;
842 /* For these conditions we must wait:
843 * A: while the array is in frozen state
844 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
845 * the max count which allowed.
846 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
847 * next resync will reach to the window which normal bios are
849 * D: while there are any active requests in the current window.
851 wait_event_lock_irq(conf->wait_barrier,
852 !conf->array_frozen &&
853 conf->barrier < RESYNC_DEPTH &&
854 conf->current_window_requests == 0 &&
855 (conf->start_next_window >=
856 conf->next_resync + RESYNC_SECTORS),
860 spin_unlock_irq(&conf->resync_lock);
863 static void lower_barrier(struct r1conf *conf)
866 BUG_ON(conf->barrier <= 0);
867 spin_lock_irqsave(&conf->resync_lock, flags);
870 spin_unlock_irqrestore(&conf->resync_lock, flags);
871 wake_up(&conf->wait_barrier);
874 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
878 if (conf->array_frozen || !bio)
880 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
881 if ((conf->mddev->curr_resync_completed
882 >= bio_end_sector(bio)) ||
883 (conf->next_resync + NEXT_NORMALIO_DISTANCE
884 <= bio->bi_iter.bi_sector))
893 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
897 spin_lock_irq(&conf->resync_lock);
898 if (need_to_wait_for_sync(conf, bio)) {
900 /* Wait for the barrier to drop.
901 * However if there are already pending
902 * requests (preventing the barrier from
903 * rising completely), and the
904 * pre-process bio queue isn't empty,
905 * then don't wait, as we need to empty
906 * that queue to get the nr_pending
909 wait_event_lock_irq(conf->wait_barrier,
910 !conf->array_frozen &&
912 ((conf->start_next_window <
913 conf->next_resync + RESYNC_SECTORS) &&
915 !bio_list_empty(current->bio_list))),
920 if (bio && bio_data_dir(bio) == WRITE) {
921 if (bio->bi_iter.bi_sector >=
922 conf->mddev->curr_resync_completed) {
923 if (conf->start_next_window == MaxSector)
924 conf->start_next_window =
926 NEXT_NORMALIO_DISTANCE;
928 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
929 <= bio->bi_iter.bi_sector)
930 conf->next_window_requests++;
932 conf->current_window_requests++;
933 sector = conf->start_next_window;
938 spin_unlock_irq(&conf->resync_lock);
942 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
947 spin_lock_irqsave(&conf->resync_lock, flags);
949 if (start_next_window) {
950 if (start_next_window == conf->start_next_window) {
951 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
953 conf->next_window_requests--;
955 conf->current_window_requests--;
957 conf->current_window_requests--;
959 if (!conf->current_window_requests) {
960 if (conf->next_window_requests) {
961 conf->current_window_requests =
962 conf->next_window_requests;
963 conf->next_window_requests = 0;
964 conf->start_next_window +=
965 NEXT_NORMALIO_DISTANCE;
967 conf->start_next_window = MaxSector;
970 spin_unlock_irqrestore(&conf->resync_lock, flags);
971 wake_up(&conf->wait_barrier);
974 static void freeze_array(struct r1conf *conf, int extra)
976 /* stop syncio and normal IO and wait for everything to
978 * We wait until nr_pending match nr_queued+extra
979 * This is called in the context of one normal IO request
980 * that has failed. Thus any sync request that might be pending
981 * will be blocked by nr_pending, and we need to wait for
982 * pending IO requests to complete or be queued for re-try.
983 * Thus the number queued (nr_queued) plus this request (extra)
984 * must match the number of pending IOs (nr_pending) before
987 spin_lock_irq(&conf->resync_lock);
988 conf->array_frozen = 1;
989 wait_event_lock_irq_cmd(conf->wait_barrier,
990 conf->nr_pending == conf->nr_queued+extra,
992 flush_pending_writes(conf));
993 spin_unlock_irq(&conf->resync_lock);
995 static void unfreeze_array(struct r1conf *conf)
997 /* reverse the effect of the freeze */
998 spin_lock_irq(&conf->resync_lock);
999 conf->array_frozen = 0;
1000 wake_up(&conf->wait_barrier);
1001 spin_unlock_irq(&conf->resync_lock);
1005 /* duplicate the data pages for behind I/O
1007 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1010 struct bio_vec *bvec;
1011 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1013 if (unlikely(!bvecs))
1016 bio_for_each_segment_all(bvec, bio, i) {
1018 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1019 if (unlikely(!bvecs[i].bv_page))
1021 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1022 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1023 kunmap(bvecs[i].bv_page);
1024 kunmap(bvec->bv_page);
1026 r1_bio->behind_bvecs = bvecs;
1027 r1_bio->behind_page_count = bio->bi_vcnt;
1028 set_bit(R1BIO_BehindIO, &r1_bio->state);
1032 for (i = 0; i < bio->bi_vcnt; i++)
1033 if (bvecs[i].bv_page)
1034 put_page(bvecs[i].bv_page);
1036 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1037 bio->bi_iter.bi_size);
1040 struct raid1_plug_cb {
1041 struct blk_plug_cb cb;
1042 struct bio_list pending;
1046 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1048 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1050 struct mddev *mddev = plug->cb.data;
1051 struct r1conf *conf = mddev->private;
1054 if (from_schedule || current->bio_list) {
1055 spin_lock_irq(&conf->device_lock);
1056 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1057 conf->pending_count += plug->pending_cnt;
1058 spin_unlock_irq(&conf->device_lock);
1059 wake_up(&conf->wait_barrier);
1060 md_wakeup_thread(mddev->thread);
1065 /* we aren't scheduling, so we can do the write-out directly. */
1066 bio = bio_list_get(&plug->pending);
1067 bitmap_unplug(mddev->bitmap);
1068 wake_up(&conf->wait_barrier);
1070 while (bio) { /* submit pending writes */
1071 struct bio *next = bio->bi_next;
1072 bio->bi_next = NULL;
1073 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1074 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1075 /* Just ignore it */
1078 generic_make_request(bio);
1084 static void make_request(struct mddev *mddev, struct bio * bio)
1086 struct r1conf *conf = mddev->private;
1087 struct raid1_info *mirror;
1088 struct r1bio *r1_bio;
1089 struct bio *read_bio;
1091 struct bitmap *bitmap;
1092 unsigned long flags;
1093 const int rw = bio_data_dir(bio);
1094 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1095 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1096 const unsigned long do_discard = (bio->bi_rw
1097 & (REQ_DISCARD | REQ_SECURE));
1098 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1099 struct md_rdev *blocked_rdev;
1100 struct blk_plug_cb *cb;
1101 struct raid1_plug_cb *plug = NULL;
1103 int sectors_handled;
1105 sector_t start_next_window;
1108 * Register the new request and wait if the reconstruction
1109 * thread has put up a bar for new requests.
1110 * Continue immediately if no resync is active currently.
1113 md_write_start(mddev, bio); /* wait on superblock update early */
1115 if (bio_data_dir(bio) == WRITE &&
1116 bio_end_sector(bio) > mddev->suspend_lo &&
1117 bio->bi_iter.bi_sector < mddev->suspend_hi) {
1118 /* As the suspend_* range is controlled by
1119 * userspace, we want an interruptible
1124 flush_signals(current);
1125 prepare_to_wait(&conf->wait_barrier,
1126 &w, TASK_INTERRUPTIBLE);
1127 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1128 bio->bi_iter.bi_sector >= mddev->suspend_hi)
1132 finish_wait(&conf->wait_barrier, &w);
1135 start_next_window = wait_barrier(conf, bio);
1137 bitmap = mddev->bitmap;
1140 * make_request() can abort the operation when READA is being
1141 * used and no empty request is available.
1144 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1146 r1_bio->master_bio = bio;
1147 r1_bio->sectors = bio_sectors(bio);
1149 r1_bio->mddev = mddev;
1150 r1_bio->sector = bio->bi_iter.bi_sector;
1152 /* We might need to issue multiple reads to different
1153 * devices if there are bad blocks around, so we keep
1154 * track of the number of reads in bio->bi_phys_segments.
1155 * If this is 0, there is only one r1_bio and no locking
1156 * will be needed when requests complete. If it is
1157 * non-zero, then it is the number of not-completed requests.
1159 bio->bi_phys_segments = 0;
1160 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1164 * read balancing logic:
1169 rdisk = read_balance(conf, r1_bio, &max_sectors);
1172 /* couldn't find anywhere to read from */
1173 raid_end_bio_io(r1_bio);
1176 mirror = conf->mirrors + rdisk;
1178 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1180 /* Reading from a write-mostly device must
1181 * take care not to over-take any writes
1184 wait_event(bitmap->behind_wait,
1185 atomic_read(&bitmap->behind_writes) == 0);
1187 r1_bio->read_disk = rdisk;
1188 r1_bio->start_next_window = 0;
1190 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1191 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1194 r1_bio->bios[rdisk] = read_bio;
1196 read_bio->bi_iter.bi_sector = r1_bio->sector +
1197 mirror->rdev->data_offset;
1198 read_bio->bi_bdev = mirror->rdev->bdev;
1199 read_bio->bi_end_io = raid1_end_read_request;
1200 read_bio->bi_rw = READ | do_sync;
1201 read_bio->bi_private = r1_bio;
1203 if (max_sectors < r1_bio->sectors) {
1204 /* could not read all from this device, so we will
1205 * need another r1_bio.
1208 sectors_handled = (r1_bio->sector + max_sectors
1209 - bio->bi_iter.bi_sector);
1210 r1_bio->sectors = max_sectors;
1211 spin_lock_irq(&conf->device_lock);
1212 if (bio->bi_phys_segments == 0)
1213 bio->bi_phys_segments = 2;
1215 bio->bi_phys_segments++;
1216 spin_unlock_irq(&conf->device_lock);
1217 /* Cannot call generic_make_request directly
1218 * as that will be queued in __make_request
1219 * and subsequent mempool_alloc might block waiting
1220 * for it. So hand bio over to raid1d.
1222 reschedule_retry(r1_bio);
1224 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1226 r1_bio->master_bio = bio;
1227 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1229 r1_bio->mddev = mddev;
1230 r1_bio->sector = bio->bi_iter.bi_sector +
1234 generic_make_request(read_bio);
1241 if (conf->pending_count >= max_queued_requests) {
1242 md_wakeup_thread(mddev->thread);
1243 wait_event(conf->wait_barrier,
1244 conf->pending_count < max_queued_requests);
1246 /* first select target devices under rcu_lock and
1247 * inc refcount on their rdev. Record them by setting
1249 * If there are known/acknowledged bad blocks on any device on
1250 * which we have seen a write error, we want to avoid writing those
1252 * This potentially requires several writes to write around
1253 * the bad blocks. Each set of writes gets it's own r1bio
1254 * with a set of bios attached.
1257 disks = conf->raid_disks * 2;
1259 r1_bio->start_next_window = start_next_window;
1260 blocked_rdev = NULL;
1262 max_sectors = r1_bio->sectors;
1263 for (i = 0; i < disks; i++) {
1264 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1265 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1266 atomic_inc(&rdev->nr_pending);
1267 blocked_rdev = rdev;
1270 r1_bio->bios[i] = NULL;
1271 if (!rdev || test_bit(Faulty, &rdev->flags)
1272 || test_bit(Unmerged, &rdev->flags)) {
1273 if (i < conf->raid_disks)
1274 set_bit(R1BIO_Degraded, &r1_bio->state);
1278 atomic_inc(&rdev->nr_pending);
1279 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1284 is_bad = is_badblock(rdev, r1_bio->sector,
1286 &first_bad, &bad_sectors);
1288 /* mustn't write here until the bad block is
1290 set_bit(BlockedBadBlocks, &rdev->flags);
1291 blocked_rdev = rdev;
1294 if (is_bad && first_bad <= r1_bio->sector) {
1295 /* Cannot write here at all */
1296 bad_sectors -= (r1_bio->sector - first_bad);
1297 if (bad_sectors < max_sectors)
1298 /* mustn't write more than bad_sectors
1299 * to other devices yet
1301 max_sectors = bad_sectors;
1302 rdev_dec_pending(rdev, mddev);
1303 /* We don't set R1BIO_Degraded as that
1304 * only applies if the disk is
1305 * missing, so it might be re-added,
1306 * and we want to know to recover this
1308 * In this case the device is here,
1309 * and the fact that this chunk is not
1310 * in-sync is recorded in the bad
1316 int good_sectors = first_bad - r1_bio->sector;
1317 if (good_sectors < max_sectors)
1318 max_sectors = good_sectors;
1321 r1_bio->bios[i] = bio;
1325 if (unlikely(blocked_rdev)) {
1326 /* Wait for this device to become unblocked */
1328 sector_t old = start_next_window;
1330 for (j = 0; j < i; j++)
1331 if (r1_bio->bios[j])
1332 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1334 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1335 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1336 start_next_window = wait_barrier(conf, bio);
1338 * We must make sure the multi r1bios of bio have
1339 * the same value of bi_phys_segments
1341 if (bio->bi_phys_segments && old &&
1342 old != start_next_window)
1343 /* Wait for the former r1bio(s) to complete */
1344 wait_event(conf->wait_barrier,
1345 bio->bi_phys_segments == 1);
1349 if (max_sectors < r1_bio->sectors) {
1350 /* We are splitting this write into multiple parts, so
1351 * we need to prepare for allocating another r1_bio.
1353 r1_bio->sectors = max_sectors;
1354 spin_lock_irq(&conf->device_lock);
1355 if (bio->bi_phys_segments == 0)
1356 bio->bi_phys_segments = 2;
1358 bio->bi_phys_segments++;
1359 spin_unlock_irq(&conf->device_lock);
1361 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1363 atomic_set(&r1_bio->remaining, 1);
1364 atomic_set(&r1_bio->behind_remaining, 0);
1367 for (i = 0; i < disks; i++) {
1369 if (!r1_bio->bios[i])
1372 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1373 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1377 * Not if there are too many, or cannot
1378 * allocate memory, or a reader on WriteMostly
1379 * is waiting for behind writes to flush */
1381 (atomic_read(&bitmap->behind_writes)
1382 < mddev->bitmap_info.max_write_behind) &&
1383 !waitqueue_active(&bitmap->behind_wait))
1384 alloc_behind_pages(mbio, r1_bio);
1386 bitmap_startwrite(bitmap, r1_bio->sector,
1388 test_bit(R1BIO_BehindIO,
1392 if (r1_bio->behind_bvecs) {
1393 struct bio_vec *bvec;
1397 * We trimmed the bio, so _all is legit
1399 bio_for_each_segment_all(bvec, mbio, j)
1400 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1401 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1402 atomic_inc(&r1_bio->behind_remaining);
1405 r1_bio->bios[i] = mbio;
1407 mbio->bi_iter.bi_sector = (r1_bio->sector +
1408 conf->mirrors[i].rdev->data_offset);
1409 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1410 mbio->bi_end_io = raid1_end_write_request;
1412 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1413 mbio->bi_private = r1_bio;
1415 atomic_inc(&r1_bio->remaining);
1417 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1419 plug = container_of(cb, struct raid1_plug_cb, cb);
1422 spin_lock_irqsave(&conf->device_lock, flags);
1424 bio_list_add(&plug->pending, mbio);
1425 plug->pending_cnt++;
1427 bio_list_add(&conf->pending_bio_list, mbio);
1428 conf->pending_count++;
1430 spin_unlock_irqrestore(&conf->device_lock, flags);
1432 md_wakeup_thread(mddev->thread);
1434 /* Mustn't call r1_bio_write_done before this next test,
1435 * as it could result in the bio being freed.
1437 if (sectors_handled < bio_sectors(bio)) {
1438 r1_bio_write_done(r1_bio);
1439 /* We need another r1_bio. It has already been counted
1440 * in bio->bi_phys_segments
1442 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1443 r1_bio->master_bio = bio;
1444 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1446 r1_bio->mddev = mddev;
1447 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1451 r1_bio_write_done(r1_bio);
1453 /* In case raid1d snuck in to freeze_array */
1454 wake_up(&conf->wait_barrier);
1457 static void status(struct seq_file *seq, struct mddev *mddev)
1459 struct r1conf *conf = mddev->private;
1462 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1463 conf->raid_disks - mddev->degraded);
1465 for (i = 0; i < conf->raid_disks; i++) {
1466 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1467 seq_printf(seq, "%s",
1468 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1471 seq_printf(seq, "]");
1475 static void error(struct mddev *mddev, struct md_rdev *rdev)
1477 char b[BDEVNAME_SIZE];
1478 struct r1conf *conf = mddev->private;
1481 * If it is not operational, then we have already marked it as dead
1482 * else if it is the last working disks, ignore the error, let the
1483 * next level up know.
1484 * else mark the drive as failed
1486 if (test_bit(In_sync, &rdev->flags)
1487 && (conf->raid_disks - mddev->degraded) == 1) {
1489 * Don't fail the drive, act as though we were just a
1490 * normal single drive.
1491 * However don't try a recovery from this drive as
1492 * it is very likely to fail.
1494 conf->recovery_disabled = mddev->recovery_disabled;
1497 set_bit(Blocked, &rdev->flags);
1498 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1499 unsigned long flags;
1500 spin_lock_irqsave(&conf->device_lock, flags);
1502 set_bit(Faulty, &rdev->flags);
1503 spin_unlock_irqrestore(&conf->device_lock, flags);
1505 set_bit(Faulty, &rdev->flags);
1507 * if recovery is running, make sure it aborts.
1509 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1510 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1512 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1513 "md/raid1:%s: Operation continuing on %d devices.\n",
1514 mdname(mddev), bdevname(rdev->bdev, b),
1515 mdname(mddev), conf->raid_disks - mddev->degraded);
1518 static void print_conf(struct r1conf *conf)
1522 printk(KERN_DEBUG "RAID1 conf printout:\n");
1524 printk(KERN_DEBUG "(!conf)\n");
1527 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1531 for (i = 0; i < conf->raid_disks; i++) {
1532 char b[BDEVNAME_SIZE];
1533 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1535 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1536 i, !test_bit(In_sync, &rdev->flags),
1537 !test_bit(Faulty, &rdev->flags),
1538 bdevname(rdev->bdev,b));
1543 static void close_sync(struct r1conf *conf)
1545 wait_barrier(conf, NULL);
1546 allow_barrier(conf, 0, 0);
1548 mempool_destroy(conf->r1buf_pool);
1549 conf->r1buf_pool = NULL;
1551 spin_lock_irq(&conf->resync_lock);
1552 conf->next_resync = 0;
1553 conf->start_next_window = MaxSector;
1554 conf->current_window_requests +=
1555 conf->next_window_requests;
1556 conf->next_window_requests = 0;
1557 spin_unlock_irq(&conf->resync_lock);
1560 static int raid1_spare_active(struct mddev *mddev)
1563 struct r1conf *conf = mddev->private;
1565 unsigned long flags;
1568 * Find all failed disks within the RAID1 configuration
1569 * and mark them readable.
1570 * Called under mddev lock, so rcu protection not needed.
1572 for (i = 0; i < conf->raid_disks; i++) {
1573 struct md_rdev *rdev = conf->mirrors[i].rdev;
1574 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1576 && repl->recovery_offset == MaxSector
1577 && !test_bit(Faulty, &repl->flags)
1578 && !test_and_set_bit(In_sync, &repl->flags)) {
1579 /* replacement has just become active */
1581 !test_and_clear_bit(In_sync, &rdev->flags))
1584 /* Replaced device not technically
1585 * faulty, but we need to be sure
1586 * it gets removed and never re-added
1588 set_bit(Faulty, &rdev->flags);
1589 sysfs_notify_dirent_safe(
1594 && rdev->recovery_offset == MaxSector
1595 && !test_bit(Faulty, &rdev->flags)
1596 && !test_and_set_bit(In_sync, &rdev->flags)) {
1598 sysfs_notify_dirent_safe(rdev->sysfs_state);
1601 spin_lock_irqsave(&conf->device_lock, flags);
1602 mddev->degraded -= count;
1603 spin_unlock_irqrestore(&conf->device_lock, flags);
1610 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1612 struct r1conf *conf = mddev->private;
1615 struct raid1_info *p;
1617 int last = conf->raid_disks - 1;
1618 struct request_queue *q = bdev_get_queue(rdev->bdev);
1620 if (mddev->recovery_disabled == conf->recovery_disabled)
1623 if (rdev->raid_disk >= 0)
1624 first = last = rdev->raid_disk;
1626 if (q->merge_bvec_fn) {
1627 set_bit(Unmerged, &rdev->flags);
1628 mddev->merge_check_needed = 1;
1631 for (mirror = first; mirror <= last; mirror++) {
1632 p = conf->mirrors+mirror;
1636 disk_stack_limits(mddev->gendisk, rdev->bdev,
1637 rdev->data_offset << 9);
1639 p->head_position = 0;
1640 rdev->raid_disk = mirror;
1642 /* As all devices are equivalent, we don't need a full recovery
1643 * if this was recently any drive of the array
1645 if (rdev->saved_raid_disk < 0)
1647 rcu_assign_pointer(p->rdev, rdev);
1650 if (test_bit(WantReplacement, &p->rdev->flags) &&
1651 p[conf->raid_disks].rdev == NULL) {
1652 /* Add this device as a replacement */
1653 clear_bit(In_sync, &rdev->flags);
1654 set_bit(Replacement, &rdev->flags);
1655 rdev->raid_disk = mirror;
1658 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1662 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1663 /* Some requests might not have seen this new
1664 * merge_bvec_fn. We must wait for them to complete
1665 * before merging the device fully.
1666 * First we make sure any code which has tested
1667 * our function has submitted the request, then
1668 * we wait for all outstanding requests to complete.
1670 synchronize_sched();
1671 freeze_array(conf, 0);
1672 unfreeze_array(conf);
1673 clear_bit(Unmerged, &rdev->flags);
1675 md_integrity_add_rdev(rdev, mddev);
1676 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1677 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1682 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1684 struct r1conf *conf = mddev->private;
1686 int number = rdev->raid_disk;
1687 struct raid1_info *p = conf->mirrors + number;
1689 if (rdev != p->rdev)
1690 p = conf->mirrors + conf->raid_disks + number;
1693 if (rdev == p->rdev) {
1694 if (test_bit(In_sync, &rdev->flags) ||
1695 atomic_read(&rdev->nr_pending)) {
1699 /* Only remove non-faulty devices if recovery
1702 if (!test_bit(Faulty, &rdev->flags) &&
1703 mddev->recovery_disabled != conf->recovery_disabled &&
1704 mddev->degraded < conf->raid_disks) {
1710 if (atomic_read(&rdev->nr_pending)) {
1711 /* lost the race, try later */
1715 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1716 /* We just removed a device that is being replaced.
1717 * Move down the replacement. We drain all IO before
1718 * doing this to avoid confusion.
1720 struct md_rdev *repl =
1721 conf->mirrors[conf->raid_disks + number].rdev;
1722 freeze_array(conf, 0);
1723 clear_bit(Replacement, &repl->flags);
1725 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1726 unfreeze_array(conf);
1727 clear_bit(WantReplacement, &rdev->flags);
1729 clear_bit(WantReplacement, &rdev->flags);
1730 err = md_integrity_register(mddev);
1739 static void end_sync_read(struct bio *bio, int error)
1741 struct r1bio *r1_bio = bio->bi_private;
1743 update_head_pos(r1_bio->read_disk, r1_bio);
1746 * we have read a block, now it needs to be re-written,
1747 * or re-read if the read failed.
1748 * We don't do much here, just schedule handling by raid1d
1750 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1751 set_bit(R1BIO_Uptodate, &r1_bio->state);
1753 if (atomic_dec_and_test(&r1_bio->remaining))
1754 reschedule_retry(r1_bio);
1757 static void end_sync_write(struct bio *bio, int error)
1759 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1760 struct r1bio *r1_bio = bio->bi_private;
1761 struct mddev *mddev = r1_bio->mddev;
1762 struct r1conf *conf = mddev->private;
1767 mirror = find_bio_disk(r1_bio, bio);
1770 sector_t sync_blocks = 0;
1771 sector_t s = r1_bio->sector;
1772 long sectors_to_go = r1_bio->sectors;
1773 /* make sure these bits doesn't get cleared. */
1775 bitmap_end_sync(mddev->bitmap, s,
1778 sectors_to_go -= sync_blocks;
1779 } while (sectors_to_go > 0);
1780 set_bit(WriteErrorSeen,
1781 &conf->mirrors[mirror].rdev->flags);
1782 if (!test_and_set_bit(WantReplacement,
1783 &conf->mirrors[mirror].rdev->flags))
1784 set_bit(MD_RECOVERY_NEEDED, &
1786 set_bit(R1BIO_WriteError, &r1_bio->state);
1787 } else if (is_badblock(conf->mirrors[mirror].rdev,
1790 &first_bad, &bad_sectors) &&
1791 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1794 &first_bad, &bad_sectors)
1796 set_bit(R1BIO_MadeGood, &r1_bio->state);
1798 if (atomic_dec_and_test(&r1_bio->remaining)) {
1799 int s = r1_bio->sectors;
1800 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1801 test_bit(R1BIO_WriteError, &r1_bio->state))
1802 reschedule_retry(r1_bio);
1805 md_done_sync(mddev, s, uptodate);
1810 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1811 int sectors, struct page *page, int rw)
1813 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1817 set_bit(WriteErrorSeen, &rdev->flags);
1818 if (!test_and_set_bit(WantReplacement,
1820 set_bit(MD_RECOVERY_NEEDED, &
1821 rdev->mddev->recovery);
1823 /* need to record an error - either for the block or the device */
1824 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1825 md_error(rdev->mddev, rdev);
1829 static int fix_sync_read_error(struct r1bio *r1_bio)
1831 /* Try some synchronous reads of other devices to get
1832 * good data, much like with normal read errors. Only
1833 * read into the pages we already have so we don't
1834 * need to re-issue the read request.
1835 * We don't need to freeze the array, because being in an
1836 * active sync request, there is no normal IO, and
1837 * no overlapping syncs.
1838 * We don't need to check is_badblock() again as we
1839 * made sure that anything with a bad block in range
1840 * will have bi_end_io clear.
1842 struct mddev *mddev = r1_bio->mddev;
1843 struct r1conf *conf = mddev->private;
1844 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1845 sector_t sect = r1_bio->sector;
1846 int sectors = r1_bio->sectors;
1851 int d = r1_bio->read_disk;
1853 struct md_rdev *rdev;
1856 if (s > (PAGE_SIZE>>9))
1859 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1860 /* No rcu protection needed here devices
1861 * can only be removed when no resync is
1862 * active, and resync is currently active
1864 rdev = conf->mirrors[d].rdev;
1865 if (sync_page_io(rdev, sect, s<<9,
1866 bio->bi_io_vec[idx].bv_page,
1873 if (d == conf->raid_disks * 2)
1875 } while (!success && d != r1_bio->read_disk);
1878 char b[BDEVNAME_SIZE];
1880 /* Cannot read from anywhere, this block is lost.
1881 * Record a bad block on each device. If that doesn't
1882 * work just disable and interrupt the recovery.
1883 * Don't fail devices as that won't really help.
1885 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1886 " for block %llu\n",
1888 bdevname(bio->bi_bdev, b),
1889 (unsigned long long)r1_bio->sector);
1890 for (d = 0; d < conf->raid_disks * 2; d++) {
1891 rdev = conf->mirrors[d].rdev;
1892 if (!rdev || test_bit(Faulty, &rdev->flags))
1894 if (!rdev_set_badblocks(rdev, sect, s, 0))
1898 conf->recovery_disabled =
1899 mddev->recovery_disabled;
1900 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1901 md_done_sync(mddev, r1_bio->sectors, 0);
1913 /* write it back and re-read */
1914 while (d != r1_bio->read_disk) {
1916 d = conf->raid_disks * 2;
1918 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1920 rdev = conf->mirrors[d].rdev;
1921 if (r1_sync_page_io(rdev, sect, s,
1922 bio->bi_io_vec[idx].bv_page,
1924 r1_bio->bios[d]->bi_end_io = NULL;
1925 rdev_dec_pending(rdev, mddev);
1929 while (d != r1_bio->read_disk) {
1931 d = conf->raid_disks * 2;
1933 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1935 rdev = conf->mirrors[d].rdev;
1936 if (r1_sync_page_io(rdev, sect, s,
1937 bio->bi_io_vec[idx].bv_page,
1939 atomic_add(s, &rdev->corrected_errors);
1945 set_bit(R1BIO_Uptodate, &r1_bio->state);
1946 set_bit(BIO_UPTODATE, &bio->bi_flags);
1950 static int process_checks(struct r1bio *r1_bio)
1952 /* We have read all readable devices. If we haven't
1953 * got the block, then there is no hope left.
1954 * If we have, then we want to do a comparison
1955 * and skip the write if everything is the same.
1956 * If any blocks failed to read, then we need to
1957 * attempt an over-write
1959 struct mddev *mddev = r1_bio->mddev;
1960 struct r1conf *conf = mddev->private;
1965 /* Fix variable parts of all bios */
1966 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1967 for (i = 0; i < conf->raid_disks * 2; i++) {
1971 struct bio *b = r1_bio->bios[i];
1972 if (b->bi_end_io != end_sync_read)
1974 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1975 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1978 clear_bit(BIO_UPTODATE, &b->bi_flags);
1980 b->bi_iter.bi_size = r1_bio->sectors << 9;
1981 b->bi_iter.bi_sector = r1_bio->sector +
1982 conf->mirrors[i].rdev->data_offset;
1983 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1984 b->bi_end_io = end_sync_read;
1985 b->bi_private = r1_bio;
1987 size = b->bi_iter.bi_size;
1988 for (j = 0; j < vcnt ; j++) {
1990 bi = &b->bi_io_vec[j];
1992 if (size > PAGE_SIZE)
1993 bi->bv_len = PAGE_SIZE;
1999 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2000 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2001 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
2002 r1_bio->bios[primary]->bi_end_io = NULL;
2003 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2006 r1_bio->read_disk = primary;
2007 for (i = 0; i < conf->raid_disks * 2; i++) {
2009 struct bio *pbio = r1_bio->bios[primary];
2010 struct bio *sbio = r1_bio->bios[i];
2011 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2013 if (sbio->bi_end_io != end_sync_read)
2015 /* Now we can 'fixup' the BIO_UPTODATE flag */
2016 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2019 for (j = vcnt; j-- ; ) {
2021 p = pbio->bi_io_vec[j].bv_page;
2022 s = sbio->bi_io_vec[j].bv_page;
2023 if (memcmp(page_address(p),
2025 sbio->bi_io_vec[j].bv_len))
2031 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2032 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2034 /* No need to write to this device. */
2035 sbio->bi_end_io = NULL;
2036 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2040 bio_copy_data(sbio, pbio);
2045 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2047 struct r1conf *conf = mddev->private;
2049 int disks = conf->raid_disks * 2;
2050 struct bio *bio, *wbio;
2052 bio = r1_bio->bios[r1_bio->read_disk];
2054 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2055 /* ouch - failed to read all of that. */
2056 if (!fix_sync_read_error(r1_bio))
2059 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2060 if (process_checks(r1_bio) < 0)
2065 atomic_set(&r1_bio->remaining, 1);
2066 for (i = 0; i < disks ; i++) {
2067 wbio = r1_bio->bios[i];
2068 if (wbio->bi_end_io == NULL ||
2069 (wbio->bi_end_io == end_sync_read &&
2070 (i == r1_bio->read_disk ||
2071 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2074 wbio->bi_rw = WRITE;
2075 wbio->bi_end_io = end_sync_write;
2076 atomic_inc(&r1_bio->remaining);
2077 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2079 generic_make_request(wbio);
2082 if (atomic_dec_and_test(&r1_bio->remaining)) {
2083 /* if we're here, all write(s) have completed, so clean up */
2084 int s = r1_bio->sectors;
2085 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2086 test_bit(R1BIO_WriteError, &r1_bio->state))
2087 reschedule_retry(r1_bio);
2090 md_done_sync(mddev, s, 1);
2096 * This is a kernel thread which:
2098 * 1. Retries failed read operations on working mirrors.
2099 * 2. Updates the raid superblock when problems encounter.
2100 * 3. Performs writes following reads for array synchronising.
2103 static void fix_read_error(struct r1conf *conf, int read_disk,
2104 sector_t sect, int sectors)
2106 struct mddev *mddev = conf->mddev;
2112 struct md_rdev *rdev;
2114 if (s > (PAGE_SIZE>>9))
2118 /* Note: no rcu protection needed here
2119 * as this is synchronous in the raid1d thread
2120 * which is the thread that might remove
2121 * a device. If raid1d ever becomes multi-threaded....
2126 rdev = conf->mirrors[d].rdev;
2128 (test_bit(In_sync, &rdev->flags) ||
2129 (!test_bit(Faulty, &rdev->flags) &&
2130 rdev->recovery_offset >= sect + s)) &&
2131 is_badblock(rdev, sect, s,
2132 &first_bad, &bad_sectors) == 0 &&
2133 sync_page_io(rdev, sect, s<<9,
2134 conf->tmppage, READ, false))
2138 if (d == conf->raid_disks * 2)
2141 } while (!success && d != read_disk);
2144 /* Cannot read from anywhere - mark it bad */
2145 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2146 if (!rdev_set_badblocks(rdev, sect, s, 0))
2147 md_error(mddev, rdev);
2150 /* write it back and re-read */
2152 while (d != read_disk) {
2154 d = conf->raid_disks * 2;
2156 rdev = conf->mirrors[d].rdev;
2158 !test_bit(Faulty, &rdev->flags))
2159 r1_sync_page_io(rdev, sect, s,
2160 conf->tmppage, WRITE);
2163 while (d != read_disk) {
2164 char b[BDEVNAME_SIZE];
2166 d = conf->raid_disks * 2;
2168 rdev = conf->mirrors[d].rdev;
2170 !test_bit(Faulty, &rdev->flags)) {
2171 if (r1_sync_page_io(rdev, sect, s,
2172 conf->tmppage, READ)) {
2173 atomic_add(s, &rdev->corrected_errors);
2175 "md/raid1:%s: read error corrected "
2176 "(%d sectors at %llu on %s)\n",
2178 (unsigned long long)(sect +
2180 bdevname(rdev->bdev, b));
2189 static int narrow_write_error(struct r1bio *r1_bio, int i)
2191 struct mddev *mddev = r1_bio->mddev;
2192 struct r1conf *conf = mddev->private;
2193 struct md_rdev *rdev = conf->mirrors[i].rdev;
2195 /* bio has the data to be written to device 'i' where
2196 * we just recently had a write error.
2197 * We repeatedly clone the bio and trim down to one block,
2198 * then try the write. Where the write fails we record
2200 * It is conceivable that the bio doesn't exactly align with
2201 * blocks. We must handle this somehow.
2203 * We currently own a reference on the rdev.
2209 int sect_to_write = r1_bio->sectors;
2212 if (rdev->badblocks.shift < 0)
2215 block_sectors = 1 << rdev->badblocks.shift;
2216 sector = r1_bio->sector;
2217 sectors = ((sector + block_sectors)
2218 & ~(sector_t)(block_sectors - 1))
2221 while (sect_to_write) {
2223 if (sectors > sect_to_write)
2224 sectors = sect_to_write;
2225 /* Write at 'sector' for 'sectors'*/
2227 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2228 unsigned vcnt = r1_bio->behind_page_count;
2229 struct bio_vec *vec = r1_bio->behind_bvecs;
2231 while (!vec->bv_page) {
2236 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2237 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2239 wbio->bi_vcnt = vcnt;
2241 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2244 wbio->bi_rw = WRITE;
2245 wbio->bi_iter.bi_sector = r1_bio->sector;
2246 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2248 bio_trim(wbio, sector - r1_bio->sector, sectors);
2249 wbio->bi_iter.bi_sector += rdev->data_offset;
2250 wbio->bi_bdev = rdev->bdev;
2251 if (submit_bio_wait(WRITE, wbio) == 0)
2253 ok = rdev_set_badblocks(rdev, sector,
2258 sect_to_write -= sectors;
2260 sectors = block_sectors;
2265 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2268 int s = r1_bio->sectors;
2269 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2270 struct md_rdev *rdev = conf->mirrors[m].rdev;
2271 struct bio *bio = r1_bio->bios[m];
2272 if (bio->bi_end_io == NULL)
2274 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2275 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2276 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2278 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2279 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2280 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2281 md_error(conf->mddev, rdev);
2285 md_done_sync(conf->mddev, s, 1);
2288 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2291 for (m = 0; m < conf->raid_disks * 2 ; m++)
2292 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2293 struct md_rdev *rdev = conf->mirrors[m].rdev;
2294 rdev_clear_badblocks(rdev,
2296 r1_bio->sectors, 0);
2297 rdev_dec_pending(rdev, conf->mddev);
2298 } else if (r1_bio->bios[m] != NULL) {
2299 /* This drive got a write error. We need to
2300 * narrow down and record precise write
2303 if (!narrow_write_error(r1_bio, m)) {
2304 md_error(conf->mddev,
2305 conf->mirrors[m].rdev);
2306 /* an I/O failed, we can't clear the bitmap */
2307 set_bit(R1BIO_Degraded, &r1_bio->state);
2309 rdev_dec_pending(conf->mirrors[m].rdev,
2312 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2313 close_write(r1_bio);
2314 raid_end_bio_io(r1_bio);
2317 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2321 struct mddev *mddev = conf->mddev;
2323 char b[BDEVNAME_SIZE];
2324 struct md_rdev *rdev;
2326 clear_bit(R1BIO_ReadError, &r1_bio->state);
2327 /* we got a read error. Maybe the drive is bad. Maybe just
2328 * the block and we can fix it.
2329 * We freeze all other IO, and try reading the block from
2330 * other devices. When we find one, we re-write
2331 * and check it that fixes the read error.
2332 * This is all done synchronously while the array is
2335 if (mddev->ro == 0) {
2336 freeze_array(conf, 1);
2337 fix_read_error(conf, r1_bio->read_disk,
2338 r1_bio->sector, r1_bio->sectors);
2339 unfreeze_array(conf);
2341 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2342 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2344 bio = r1_bio->bios[r1_bio->read_disk];
2345 bdevname(bio->bi_bdev, b);
2347 disk = read_balance(conf, r1_bio, &max_sectors);
2349 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2350 " read error for block %llu\n",
2351 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2352 raid_end_bio_io(r1_bio);
2354 const unsigned long do_sync
2355 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2357 r1_bio->bios[r1_bio->read_disk] =
2358 mddev->ro ? IO_BLOCKED : NULL;
2361 r1_bio->read_disk = disk;
2362 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2363 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2365 r1_bio->bios[r1_bio->read_disk] = bio;
2366 rdev = conf->mirrors[disk].rdev;
2367 printk_ratelimited(KERN_ERR
2368 "md/raid1:%s: redirecting sector %llu"
2369 " to other mirror: %s\n",
2371 (unsigned long long)r1_bio->sector,
2372 bdevname(rdev->bdev, b));
2373 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2374 bio->bi_bdev = rdev->bdev;
2375 bio->bi_end_io = raid1_end_read_request;
2376 bio->bi_rw = READ | do_sync;
2377 bio->bi_private = r1_bio;
2378 if (max_sectors < r1_bio->sectors) {
2379 /* Drat - have to split this up more */
2380 struct bio *mbio = r1_bio->master_bio;
2381 int sectors_handled = (r1_bio->sector + max_sectors
2382 - mbio->bi_iter.bi_sector);
2383 r1_bio->sectors = max_sectors;
2384 spin_lock_irq(&conf->device_lock);
2385 if (mbio->bi_phys_segments == 0)
2386 mbio->bi_phys_segments = 2;
2388 mbio->bi_phys_segments++;
2389 spin_unlock_irq(&conf->device_lock);
2390 generic_make_request(bio);
2393 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2395 r1_bio->master_bio = mbio;
2396 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2398 set_bit(R1BIO_ReadError, &r1_bio->state);
2399 r1_bio->mddev = mddev;
2400 r1_bio->sector = mbio->bi_iter.bi_sector +
2405 generic_make_request(bio);
2409 static void raid1d(struct md_thread *thread)
2411 struct mddev *mddev = thread->mddev;
2412 struct r1bio *r1_bio;
2413 unsigned long flags;
2414 struct r1conf *conf = mddev->private;
2415 struct list_head *head = &conf->retry_list;
2416 struct blk_plug plug;
2418 md_check_recovery(mddev);
2420 blk_start_plug(&plug);
2423 flush_pending_writes(conf);
2425 spin_lock_irqsave(&conf->device_lock, flags);
2426 if (list_empty(head)) {
2427 spin_unlock_irqrestore(&conf->device_lock, flags);
2430 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2431 list_del(head->prev);
2433 spin_unlock_irqrestore(&conf->device_lock, flags);
2435 mddev = r1_bio->mddev;
2436 conf = mddev->private;
2437 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2438 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2439 test_bit(R1BIO_WriteError, &r1_bio->state))
2440 handle_sync_write_finished(conf, r1_bio);
2442 sync_request_write(mddev, r1_bio);
2443 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2444 test_bit(R1BIO_WriteError, &r1_bio->state))
2445 handle_write_finished(conf, r1_bio);
2446 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2447 handle_read_error(conf, r1_bio);
2449 /* just a partial read to be scheduled from separate
2452 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2455 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2456 md_check_recovery(mddev);
2458 blk_finish_plug(&plug);
2462 static int init_resync(struct r1conf *conf)
2466 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2467 BUG_ON(conf->r1buf_pool);
2468 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2470 if (!conf->r1buf_pool)
2472 conf->next_resync = 0;
2477 * perform a "sync" on one "block"
2479 * We need to make sure that no normal I/O request - particularly write
2480 * requests - conflict with active sync requests.
2482 * This is achieved by tracking pending requests and a 'barrier' concept
2483 * that can be installed to exclude normal IO requests.
2486 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2488 struct r1conf *conf = mddev->private;
2489 struct r1bio *r1_bio;
2491 sector_t max_sector, nr_sectors;
2495 int write_targets = 0, read_targets = 0;
2496 sector_t sync_blocks;
2497 int still_degraded = 0;
2498 int good_sectors = RESYNC_SECTORS;
2499 int min_bad = 0; /* number of sectors that are bad in all devices */
2501 if (!conf->r1buf_pool)
2502 if (init_resync(conf))
2505 max_sector = mddev->dev_sectors;
2506 if (sector_nr >= max_sector) {
2507 /* If we aborted, we need to abort the
2508 * sync on the 'current' bitmap chunk (there will
2509 * only be one in raid1 resync.
2510 * We can find the current addess in mddev->curr_resync
2512 if (mddev->curr_resync < max_sector) /* aborted */
2513 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2515 else /* completed sync */
2518 bitmap_close_sync(mddev->bitmap);
2523 if (mddev->bitmap == NULL &&
2524 mddev->recovery_cp == MaxSector &&
2525 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2526 conf->fullsync == 0) {
2528 return max_sector - sector_nr;
2530 /* before building a request, check if we can skip these blocks..
2531 * This call the bitmap_start_sync doesn't actually record anything
2533 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2534 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2535 /* We can skip this block, and probably several more */
2540 * If there is non-resync activity waiting for a turn,
2541 * and resync is going fast enough,
2542 * then let it though before starting on this new sync request.
2544 if (!go_faster && conf->nr_waiting)
2545 msleep_interruptible(1000);
2547 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2548 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2550 raise_barrier(conf, sector_nr);
2554 * If we get a correctably read error during resync or recovery,
2555 * we might want to read from a different device. So we
2556 * flag all drives that could conceivably be read from for READ,
2557 * and any others (which will be non-In_sync devices) for WRITE.
2558 * If a read fails, we try reading from something else for which READ
2562 r1_bio->mddev = mddev;
2563 r1_bio->sector = sector_nr;
2565 set_bit(R1BIO_IsSync, &r1_bio->state);
2567 for (i = 0; i < conf->raid_disks * 2; i++) {
2568 struct md_rdev *rdev;
2569 bio = r1_bio->bios[i];
2572 rdev = rcu_dereference(conf->mirrors[i].rdev);
2574 test_bit(Faulty, &rdev->flags)) {
2575 if (i < conf->raid_disks)
2577 } else if (!test_bit(In_sync, &rdev->flags)) {
2579 bio->bi_end_io = end_sync_write;
2582 /* may need to read from here */
2583 sector_t first_bad = MaxSector;
2586 if (is_badblock(rdev, sector_nr, good_sectors,
2587 &first_bad, &bad_sectors)) {
2588 if (first_bad > sector_nr)
2589 good_sectors = first_bad - sector_nr;
2591 bad_sectors -= (sector_nr - first_bad);
2593 min_bad > bad_sectors)
2594 min_bad = bad_sectors;
2597 if (sector_nr < first_bad) {
2598 if (test_bit(WriteMostly, &rdev->flags)) {
2606 bio->bi_end_io = end_sync_read;
2608 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2609 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2610 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2612 * The device is suitable for reading (InSync),
2613 * but has bad block(s) here. Let's try to correct them,
2614 * if we are doing resync or repair. Otherwise, leave
2615 * this device alone for this sync request.
2618 bio->bi_end_io = end_sync_write;
2622 if (bio->bi_end_io) {
2623 atomic_inc(&rdev->nr_pending);
2624 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2625 bio->bi_bdev = rdev->bdev;
2626 bio->bi_private = r1_bio;
2632 r1_bio->read_disk = disk;
2634 if (read_targets == 0 && min_bad > 0) {
2635 /* These sectors are bad on all InSync devices, so we
2636 * need to mark them bad on all write targets
2639 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2640 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2641 struct md_rdev *rdev = conf->mirrors[i].rdev;
2642 ok = rdev_set_badblocks(rdev, sector_nr,
2646 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2651 /* Cannot record the badblocks, so need to
2653 * If there are multiple read targets, could just
2654 * fail the really bad ones ???
2656 conf->recovery_disabled = mddev->recovery_disabled;
2657 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2663 if (min_bad > 0 && min_bad < good_sectors) {
2664 /* only resync enough to reach the next bad->good
2666 good_sectors = min_bad;
2669 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2670 /* extra read targets are also write targets */
2671 write_targets += read_targets-1;
2673 if (write_targets == 0 || read_targets == 0) {
2674 /* There is nowhere to write, so all non-sync
2675 * drives must be failed - so we are finished
2679 max_sector = sector_nr + min_bad;
2680 rv = max_sector - sector_nr;
2686 if (max_sector > mddev->resync_max)
2687 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2688 if (max_sector > sector_nr + good_sectors)
2689 max_sector = sector_nr + good_sectors;
2694 int len = PAGE_SIZE;
2695 if (sector_nr + (len>>9) > max_sector)
2696 len = (max_sector - sector_nr) << 9;
2699 if (sync_blocks == 0) {
2700 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2701 &sync_blocks, still_degraded) &&
2703 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2705 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2706 if ((len >> 9) > sync_blocks)
2707 len = sync_blocks<<9;
2710 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2711 bio = r1_bio->bios[i];
2712 if (bio->bi_end_io) {
2713 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2714 if (bio_add_page(bio, page, len, 0) == 0) {
2716 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2719 bio = r1_bio->bios[i];
2720 if (bio->bi_end_io==NULL)
2722 /* remove last page from this bio */
2724 bio->bi_iter.bi_size -= len;
2725 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2731 nr_sectors += len>>9;
2732 sector_nr += len>>9;
2733 sync_blocks -= (len>>9);
2734 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2736 r1_bio->sectors = nr_sectors;
2738 /* For a user-requested sync, we read all readable devices and do a
2741 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2742 atomic_set(&r1_bio->remaining, read_targets);
2743 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2744 bio = r1_bio->bios[i];
2745 if (bio->bi_end_io == end_sync_read) {
2747 md_sync_acct(bio->bi_bdev, nr_sectors);
2748 generic_make_request(bio);
2752 atomic_set(&r1_bio->remaining, 1);
2753 bio = r1_bio->bios[r1_bio->read_disk];
2754 md_sync_acct(bio->bi_bdev, nr_sectors);
2755 generic_make_request(bio);
2761 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2766 return mddev->dev_sectors;
2769 static struct r1conf *setup_conf(struct mddev *mddev)
2771 struct r1conf *conf;
2773 struct raid1_info *disk;
2774 struct md_rdev *rdev;
2777 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2781 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2782 * mddev->raid_disks * 2,
2787 conf->tmppage = alloc_page(GFP_KERNEL);
2791 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2792 if (!conf->poolinfo)
2794 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2795 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2798 if (!conf->r1bio_pool)
2801 conf->poolinfo->mddev = mddev;
2804 spin_lock_init(&conf->device_lock);
2805 rdev_for_each(rdev, mddev) {
2806 struct request_queue *q;
2807 int disk_idx = rdev->raid_disk;
2808 if (disk_idx >= mddev->raid_disks
2811 if (test_bit(Replacement, &rdev->flags))
2812 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2814 disk = conf->mirrors + disk_idx;
2819 q = bdev_get_queue(rdev->bdev);
2820 if (q->merge_bvec_fn)
2821 mddev->merge_check_needed = 1;
2823 disk->head_position = 0;
2824 disk->seq_start = MaxSector;
2826 conf->raid_disks = mddev->raid_disks;
2827 conf->mddev = mddev;
2828 INIT_LIST_HEAD(&conf->retry_list);
2830 spin_lock_init(&conf->resync_lock);
2831 init_waitqueue_head(&conf->wait_barrier);
2833 bio_list_init(&conf->pending_bio_list);
2834 conf->pending_count = 0;
2835 conf->recovery_disabled = mddev->recovery_disabled - 1;
2837 conf->start_next_window = MaxSector;
2838 conf->current_window_requests = conf->next_window_requests = 0;
2841 for (i = 0; i < conf->raid_disks * 2; i++) {
2843 disk = conf->mirrors + i;
2845 if (i < conf->raid_disks &&
2846 disk[conf->raid_disks].rdev) {
2847 /* This slot has a replacement. */
2849 /* No original, just make the replacement
2850 * a recovering spare
2853 disk[conf->raid_disks].rdev;
2854 disk[conf->raid_disks].rdev = NULL;
2855 } else if (!test_bit(In_sync, &disk->rdev->flags))
2856 /* Original is not in_sync - bad */
2861 !test_bit(In_sync, &disk->rdev->flags)) {
2862 disk->head_position = 0;
2864 (disk->rdev->saved_raid_disk < 0))
2870 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2871 if (!conf->thread) {
2873 "md/raid1:%s: couldn't allocate thread\n",
2882 if (conf->r1bio_pool)
2883 mempool_destroy(conf->r1bio_pool);
2884 kfree(conf->mirrors);
2885 safe_put_page(conf->tmppage);
2886 kfree(conf->poolinfo);
2889 return ERR_PTR(err);
2892 static int stop(struct mddev *mddev);
2893 static int run(struct mddev *mddev)
2895 struct r1conf *conf;
2897 struct md_rdev *rdev;
2899 bool discard_supported = false;
2901 if (mddev->level != 1) {
2902 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2903 mdname(mddev), mddev->level);
2906 if (mddev->reshape_position != MaxSector) {
2907 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2912 * copy the already verified devices into our private RAID1
2913 * bookkeeping area. [whatever we allocate in run(),
2914 * should be freed in stop()]
2916 if (mddev->private == NULL)
2917 conf = setup_conf(mddev);
2919 conf = mddev->private;
2922 return PTR_ERR(conf);
2925 blk_queue_max_write_same_sectors(mddev->queue, 0);
2927 rdev_for_each(rdev, mddev) {
2928 if (!mddev->gendisk)
2930 disk_stack_limits(mddev->gendisk, rdev->bdev,
2931 rdev->data_offset << 9);
2932 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2933 discard_supported = true;
2936 mddev->degraded = 0;
2937 for (i=0; i < conf->raid_disks; i++)
2938 if (conf->mirrors[i].rdev == NULL ||
2939 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2940 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2943 if (conf->raid_disks - mddev->degraded == 1)
2944 mddev->recovery_cp = MaxSector;
2946 if (mddev->recovery_cp != MaxSector)
2947 printk(KERN_NOTICE "md/raid1:%s: not clean"
2948 " -- starting background reconstruction\n",
2951 "md/raid1:%s: active with %d out of %d mirrors\n",
2952 mdname(mddev), mddev->raid_disks - mddev->degraded,
2956 * Ok, everything is just fine now
2958 mddev->thread = conf->thread;
2959 conf->thread = NULL;
2960 mddev->private = conf;
2962 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2965 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2966 mddev->queue->backing_dev_info.congested_data = mddev;
2967 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2969 if (discard_supported)
2970 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2973 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2977 ret = md_integrity_register(mddev);
2983 static int stop(struct mddev *mddev)
2985 struct r1conf *conf = mddev->private;
2986 struct bitmap *bitmap = mddev->bitmap;
2988 /* wait for behind writes to complete */
2989 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2990 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2992 /* need to kick something here to make sure I/O goes? */
2993 wait_event(bitmap->behind_wait,
2994 atomic_read(&bitmap->behind_writes) == 0);
2997 freeze_array(conf, 0);
2998 unfreeze_array(conf);
3000 md_unregister_thread(&mddev->thread);
3001 if (conf->r1bio_pool)
3002 mempool_destroy(conf->r1bio_pool);
3003 kfree(conf->mirrors);
3004 safe_put_page(conf->tmppage);
3005 kfree(conf->poolinfo);
3007 mddev->private = NULL;
3011 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3013 /* no resync is happening, and there is enough space
3014 * on all devices, so we can resize.
3015 * We need to make sure resync covers any new space.
3016 * If the array is shrinking we should possibly wait until
3017 * any io in the removed space completes, but it hardly seems
3020 sector_t newsize = raid1_size(mddev, sectors, 0);
3021 if (mddev->external_size &&
3022 mddev->array_sectors > newsize)
3024 if (mddev->bitmap) {
3025 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3029 md_set_array_sectors(mddev, newsize);
3030 set_capacity(mddev->gendisk, mddev->array_sectors);
3031 revalidate_disk(mddev->gendisk);
3032 if (sectors > mddev->dev_sectors &&
3033 mddev->recovery_cp > mddev->dev_sectors) {
3034 mddev->recovery_cp = mddev->dev_sectors;
3035 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3037 mddev->dev_sectors = sectors;
3038 mddev->resync_max_sectors = sectors;
3042 static int raid1_reshape(struct mddev *mddev)
3045 * 1/ resize the r1bio_pool
3046 * 2/ resize conf->mirrors
3048 * We allocate a new r1bio_pool if we can.
3049 * Then raise a device barrier and wait until all IO stops.
3050 * Then resize conf->mirrors and swap in the new r1bio pool.
3052 * At the same time, we "pack" the devices so that all the missing
3053 * devices have the higher raid_disk numbers.
3055 mempool_t *newpool, *oldpool;
3056 struct pool_info *newpoolinfo;
3057 struct raid1_info *newmirrors;
3058 struct r1conf *conf = mddev->private;
3059 int cnt, raid_disks;
3060 unsigned long flags;
3063 /* Cannot change chunk_size, layout, or level */
3064 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3065 mddev->layout != mddev->new_layout ||
3066 mddev->level != mddev->new_level) {
3067 mddev->new_chunk_sectors = mddev->chunk_sectors;
3068 mddev->new_layout = mddev->layout;
3069 mddev->new_level = mddev->level;
3073 err = md_allow_write(mddev);
3077 raid_disks = mddev->raid_disks + mddev->delta_disks;
3079 if (raid_disks < conf->raid_disks) {
3081 for (d= 0; d < conf->raid_disks; d++)
3082 if (conf->mirrors[d].rdev)
3084 if (cnt > raid_disks)
3088 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3091 newpoolinfo->mddev = mddev;
3092 newpoolinfo->raid_disks = raid_disks * 2;
3094 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3095 r1bio_pool_free, newpoolinfo);
3100 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3104 mempool_destroy(newpool);
3108 freeze_array(conf, 0);
3110 /* ok, everything is stopped */
3111 oldpool = conf->r1bio_pool;
3112 conf->r1bio_pool = newpool;
3114 for (d = d2 = 0; d < conf->raid_disks; d++) {
3115 struct md_rdev *rdev = conf->mirrors[d].rdev;
3116 if (rdev && rdev->raid_disk != d2) {
3117 sysfs_unlink_rdev(mddev, rdev);
3118 rdev->raid_disk = d2;
3119 sysfs_unlink_rdev(mddev, rdev);
3120 if (sysfs_link_rdev(mddev, rdev))
3122 "md/raid1:%s: cannot register rd%d\n",
3123 mdname(mddev), rdev->raid_disk);
3126 newmirrors[d2++].rdev = rdev;
3128 kfree(conf->mirrors);
3129 conf->mirrors = newmirrors;
3130 kfree(conf->poolinfo);
3131 conf->poolinfo = newpoolinfo;
3133 spin_lock_irqsave(&conf->device_lock, flags);
3134 mddev->degraded += (raid_disks - conf->raid_disks);
3135 spin_unlock_irqrestore(&conf->device_lock, flags);
3136 conf->raid_disks = mddev->raid_disks = raid_disks;
3137 mddev->delta_disks = 0;
3139 unfreeze_array(conf);
3141 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3142 md_wakeup_thread(mddev->thread);
3144 mempool_destroy(oldpool);
3148 static void raid1_quiesce(struct mddev *mddev, int state)
3150 struct r1conf *conf = mddev->private;
3153 case 2: /* wake for suspend */
3154 wake_up(&conf->wait_barrier);
3157 freeze_array(conf, 0);
3160 unfreeze_array(conf);
3165 static void *raid1_takeover(struct mddev *mddev)
3167 /* raid1 can take over:
3168 * raid5 with 2 devices, any layout or chunk size
3170 if (mddev->level == 5 && mddev->raid_disks == 2) {
3171 struct r1conf *conf;
3172 mddev->new_level = 1;
3173 mddev->new_layout = 0;
3174 mddev->new_chunk_sectors = 0;
3175 conf = setup_conf(mddev);
3177 /* Array must appear to be quiesced */
3178 conf->array_frozen = 1;
3181 return ERR_PTR(-EINVAL);
3184 static struct md_personality raid1_personality =
3188 .owner = THIS_MODULE,
3189 .make_request = make_request,
3193 .error_handler = error,
3194 .hot_add_disk = raid1_add_disk,
3195 .hot_remove_disk= raid1_remove_disk,
3196 .spare_active = raid1_spare_active,
3197 .sync_request = sync_request,
3198 .resize = raid1_resize,
3200 .check_reshape = raid1_reshape,
3201 .quiesce = raid1_quiesce,
3202 .takeover = raid1_takeover,
3205 static int __init raid_init(void)
3207 return register_md_personality(&raid1_personality);
3210 static void raid_exit(void)
3212 unregister_md_personality(&raid1_personality);
3215 module_init(raid_init);
3216 module_exit(raid_exit);
3217 MODULE_LICENSE("GPL");
3218 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3219 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3220 MODULE_ALIAS("md-raid1");
3221 MODULE_ALIAS("md-level-1");
3223 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);