2 * Simple synchronous userspace interface to SPI devices
4 * Copyright (C) 2006 SWAPP
6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ioctl.h>
27 #include <linux/device.h>
28 #include <linux/err.h>
29 #include <linux/list.h>
30 #include <linux/errno.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/compat.h>
35 #include <linux/of_device.h>
37 #include <linux/spi/spi.h>
38 #include <linux/spi/spidev.h>
40 #include <linux/uaccess.h>
44 * This supports access to SPI devices using normal userspace I/O calls.
45 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
46 * and often mask message boundaries, full SPI support requires full duplex
47 * transfers. There are several kinds of internal message boundaries to
48 * handle chipselect management and other protocol options.
50 * SPI has a character major number assigned. We allocate minor numbers
51 * dynamically using a bitmask. You must use hotplug tools, such as udev
52 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
53 * nodes, since there is no fixed association of minor numbers with any
54 * particular SPI bus or device.
56 #define SPIDEV_MAJOR 153 /* assigned */
57 #define N_SPI_MINORS 32 /* ... up to 256 */
59 static DECLARE_BITMAP(minors, N_SPI_MINORS);
62 /* Bit masks for spi_device.mode management. Note that incorrect
63 * settings for some settings can cause *lots* of trouble for other
64 * devices on a shared bus:
66 * - CS_HIGH ... this device will be active when it shouldn't be
67 * - 3WIRE ... when active, it won't behave as it should
68 * - NO_CS ... there will be no explicit message boundaries; this
69 * is completely incompatible with the shared bus model
70 * - READY ... transfers may proceed when they shouldn't.
72 * REVISIT should changing those flags be privileged?
74 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
75 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
76 | SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
77 | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
82 struct spi_device *spi;
83 struct list_head device_entry;
85 /* TX/RX buffers are NULL unless this device is open (users > 0) */
86 struct mutex buf_lock;
92 static LIST_HEAD(device_list);
93 static DEFINE_MUTEX(device_list_lock);
95 static unsigned bufsiz = 4096;
96 module_param(bufsiz, uint, S_IRUGO);
97 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
99 /*-------------------------------------------------------------------------*/
102 * We can't use the standard synchronous wrappers for file I/O; we
103 * need to protect against async removal of the underlying spi_device.
105 static void spidev_complete(void *arg)
111 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
113 DECLARE_COMPLETION_ONSTACK(done);
116 message->complete = spidev_complete;
117 message->context = &done;
119 spin_lock_irq(&spidev->spi_lock);
120 if (spidev->spi == NULL)
123 status = spi_async(spidev->spi, message);
124 spin_unlock_irq(&spidev->spi_lock);
127 wait_for_completion(&done);
128 status = message->status;
130 status = message->actual_length;
135 static inline ssize_t
136 spidev_sync_write(struct spidev_data *spidev, size_t len)
138 struct spi_transfer t = {
139 .tx_buf = spidev->tx_buffer,
142 struct spi_message m;
144 spi_message_init(&m);
145 spi_message_add_tail(&t, &m);
146 return spidev_sync(spidev, &m);
149 static inline ssize_t
150 spidev_sync_read(struct spidev_data *spidev, size_t len)
152 struct spi_transfer t = {
153 .rx_buf = spidev->rx_buffer,
156 struct spi_message m;
158 spi_message_init(&m);
159 spi_message_add_tail(&t, &m);
160 return spidev_sync(spidev, &m);
163 /*-------------------------------------------------------------------------*/
165 /* Read-only message with current device setup */
167 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
169 struct spidev_data *spidev;
172 /* chipselect only toggles at start or end of operation */
176 spidev = filp->private_data;
178 mutex_lock(&spidev->buf_lock);
179 status = spidev_sync_read(spidev, count);
181 unsigned long missing;
183 missing = copy_to_user(buf, spidev->rx_buffer, status);
184 if (missing == status)
187 status = status - missing;
189 mutex_unlock(&spidev->buf_lock);
194 /* Write-only message with current device setup */
196 spidev_write(struct file *filp, const char __user *buf,
197 size_t count, loff_t *f_pos)
199 struct spidev_data *spidev;
201 unsigned long missing;
203 /* chipselect only toggles at start or end of operation */
207 spidev = filp->private_data;
209 mutex_lock(&spidev->buf_lock);
210 missing = copy_from_user(spidev->tx_buffer, buf, count);
212 status = spidev_sync_write(spidev, count);
215 mutex_unlock(&spidev->buf_lock);
220 static int spidev_message(struct spidev_data *spidev,
221 struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
223 struct spi_message msg;
224 struct spi_transfer *k_xfers;
225 struct spi_transfer *k_tmp;
226 struct spi_ioc_transfer *u_tmp;
229 int status = -EFAULT;
231 spi_message_init(&msg);
232 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
236 /* Construct spi_message, copying any tx data to bounce buffer.
237 * We walk the array of user-provided transfers, using each one
238 * to initialize a kernel version of the same transfer.
240 tx_buf = spidev->tx_buffer;
241 rx_buf = spidev->rx_buffer;
243 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
245 n--, k_tmp++, u_tmp++) {
246 k_tmp->len = u_tmp->len;
249 if (total > bufsiz) {
255 k_tmp->rx_buf = rx_buf;
256 if (!access_ok(VERIFY_WRITE, (u8 __user *)
257 (uintptr_t) u_tmp->rx_buf,
262 k_tmp->tx_buf = tx_buf;
263 if (copy_from_user(tx_buf, (const u8 __user *)
264 (uintptr_t) u_tmp->tx_buf,
268 tx_buf += k_tmp->len;
269 rx_buf += k_tmp->len;
271 k_tmp->cs_change = !!u_tmp->cs_change;
272 k_tmp->tx_nbits = u_tmp->tx_nbits;
273 k_tmp->rx_nbits = u_tmp->rx_nbits;
274 k_tmp->bits_per_word = u_tmp->bits_per_word;
275 k_tmp->delay_usecs = u_tmp->delay_usecs;
276 k_tmp->speed_hz = u_tmp->speed_hz;
278 dev_dbg(&spidev->spi->dev,
279 " xfer len %zd %s%s%s%dbits %u usec %uHz\n",
281 u_tmp->rx_buf ? "rx " : "",
282 u_tmp->tx_buf ? "tx " : "",
283 u_tmp->cs_change ? "cs " : "",
284 u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
286 u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
288 spi_message_add_tail(k_tmp, &msg);
291 status = spidev_sync(spidev, &msg);
295 /* copy any rx data out of bounce buffer */
296 rx_buf = spidev->rx_buffer;
297 for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
299 if (__copy_to_user((u8 __user *)
300 (uintptr_t) u_tmp->rx_buf, rx_buf,
306 rx_buf += u_tmp->len;
316 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
320 struct spidev_data *spidev;
321 struct spi_device *spi;
324 struct spi_ioc_transfer *ioc;
326 /* Check type and command number */
327 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
330 /* Check access direction once here; don't repeat below.
331 * IOC_DIR is from the user perspective, while access_ok is
332 * from the kernel perspective; so they look reversed.
334 if (_IOC_DIR(cmd) & _IOC_READ)
335 err = !access_ok(VERIFY_WRITE,
336 (void __user *)arg, _IOC_SIZE(cmd));
337 if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
338 err = !access_ok(VERIFY_READ,
339 (void __user *)arg, _IOC_SIZE(cmd));
343 /* guard against device removal before, or while,
344 * we issue this ioctl.
346 spidev = filp->private_data;
347 spin_lock_irq(&spidev->spi_lock);
348 spi = spi_dev_get(spidev->spi);
349 spin_unlock_irq(&spidev->spi_lock);
354 /* use the buffer lock here for triple duty:
355 * - prevent I/O (from us) so calling spi_setup() is safe;
356 * - prevent concurrent SPI_IOC_WR_* from morphing
357 * data fields while SPI_IOC_RD_* reads them;
358 * - SPI_IOC_MESSAGE needs the buffer locked "normally".
360 mutex_lock(&spidev->buf_lock);
364 case SPI_IOC_RD_MODE:
365 retval = __put_user(spi->mode & SPI_MODE_MASK,
368 case SPI_IOC_RD_MODE32:
369 retval = __put_user(spi->mode & SPI_MODE_MASK,
370 (__u32 __user *)arg);
372 case SPI_IOC_RD_LSB_FIRST:
373 retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
376 case SPI_IOC_RD_BITS_PER_WORD:
377 retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
379 case SPI_IOC_RD_MAX_SPEED_HZ:
380 retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
384 case SPI_IOC_WR_MODE:
385 case SPI_IOC_WR_MODE32:
386 if (cmd == SPI_IOC_WR_MODE)
387 retval = __get_user(tmp, (u8 __user *)arg);
389 retval = __get_user(tmp, (u32 __user *)arg);
391 u32 save = spi->mode;
393 if (tmp & ~SPI_MODE_MASK) {
398 tmp |= spi->mode & ~SPI_MODE_MASK;
399 spi->mode = (u16)tmp;
400 retval = spi_setup(spi);
404 dev_dbg(&spi->dev, "spi mode %x\n", tmp);
407 case SPI_IOC_WR_LSB_FIRST:
408 retval = __get_user(tmp, (__u8 __user *)arg);
410 u32 save = spi->mode;
413 spi->mode |= SPI_LSB_FIRST;
415 spi->mode &= ~SPI_LSB_FIRST;
416 retval = spi_setup(spi);
420 dev_dbg(&spi->dev, "%csb first\n",
424 case SPI_IOC_WR_BITS_PER_WORD:
425 retval = __get_user(tmp, (__u8 __user *)arg);
427 u8 save = spi->bits_per_word;
429 spi->bits_per_word = tmp;
430 retval = spi_setup(spi);
432 spi->bits_per_word = save;
434 dev_dbg(&spi->dev, "%d bits per word\n", tmp);
437 case SPI_IOC_WR_MAX_SPEED_HZ:
438 retval = __get_user(tmp, (__u32 __user *)arg);
440 u32 save = spi->max_speed_hz;
442 spi->max_speed_hz = tmp;
443 retval = spi_setup(spi);
445 spi->max_speed_hz = save;
447 dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
452 /* segmented and/or full-duplex I/O request */
453 if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
454 || _IOC_DIR(cmd) != _IOC_WRITE) {
459 tmp = _IOC_SIZE(cmd);
460 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
464 n_ioc = tmp / sizeof(struct spi_ioc_transfer);
468 /* copy into scratch area */
469 ioc = kmalloc(tmp, GFP_KERNEL);
474 if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
480 /* translate to spi_message, execute */
481 retval = spidev_message(spidev, ioc, n_ioc);
486 mutex_unlock(&spidev->buf_lock);
493 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
495 return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
498 #define spidev_compat_ioctl NULL
499 #endif /* CONFIG_COMPAT */
501 static int spidev_open(struct inode *inode, struct file *filp)
503 struct spidev_data *spidev;
506 mutex_lock(&device_list_lock);
508 list_for_each_entry(spidev, &device_list, device_entry) {
509 if (spidev->devt == inode->i_rdev) {
516 pr_debug("spidev: nothing for minor %d\n", iminor(inode));
520 if (!spidev->tx_buffer) {
521 spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
522 if (!spidev->tx_buffer) {
523 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
529 if (!spidev->rx_buffer) {
530 spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
531 if (!spidev->rx_buffer) {
532 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
534 goto err_alloc_rx_buf;
539 filp->private_data = spidev;
540 nonseekable_open(inode, filp);
542 mutex_unlock(&device_list_lock);
546 kfree(spidev->tx_buffer);
547 spidev->tx_buffer = NULL;
549 mutex_unlock(&device_list_lock);
553 static int spidev_release(struct inode *inode, struct file *filp)
555 struct spidev_data *spidev;
558 mutex_lock(&device_list_lock);
559 spidev = filp->private_data;
560 filp->private_data = NULL;
564 if (!spidev->users) {
567 kfree(spidev->tx_buffer);
568 spidev->tx_buffer = NULL;
570 kfree(spidev->rx_buffer);
571 spidev->rx_buffer = NULL;
573 /* ... after we unbound from the underlying device? */
574 spin_lock_irq(&spidev->spi_lock);
575 dofree = (spidev->spi == NULL);
576 spin_unlock_irq(&spidev->spi_lock);
581 mutex_unlock(&device_list_lock);
586 static const struct file_operations spidev_fops = {
587 .owner = THIS_MODULE,
588 /* REVISIT switch to aio primitives, so that userspace
589 * gets more complete API coverage. It'll simplify things
590 * too, except for the locking.
592 .write = spidev_write,
594 .unlocked_ioctl = spidev_ioctl,
595 .compat_ioctl = spidev_compat_ioctl,
597 .release = spidev_release,
601 /*-------------------------------------------------------------------------*/
603 /* The main reason to have this class is to make mdev/udev create the
604 * /dev/spidevB.C character device nodes exposing our userspace API.
605 * It also simplifies memory management.
608 static struct class *spidev_class;
610 /*-------------------------------------------------------------------------*/
612 static int spidev_probe(struct spi_device *spi)
614 struct spidev_data *spidev;
618 /* Allocate driver data */
619 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
623 /* Initialize the driver data */
625 spin_lock_init(&spidev->spi_lock);
626 mutex_init(&spidev->buf_lock);
628 INIT_LIST_HEAD(&spidev->device_entry);
630 /* If we can allocate a minor number, hook up this device.
631 * Reusing minors is fine so long as udev or mdev is working.
633 mutex_lock(&device_list_lock);
634 minor = find_first_zero_bit(minors, N_SPI_MINORS);
635 if (minor < N_SPI_MINORS) {
638 spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
639 dev = device_create(spidev_class, &spi->dev, spidev->devt,
640 spidev, "spidev%d.%d",
641 spi->master->bus_num, spi->chip_select);
642 status = PTR_ERR_OR_ZERO(dev);
644 dev_dbg(&spi->dev, "no minor number available!\n");
648 set_bit(minor, minors);
649 list_add(&spidev->device_entry, &device_list);
651 mutex_unlock(&device_list_lock);
654 spi_set_drvdata(spi, spidev);
661 static int spidev_remove(struct spi_device *spi)
663 struct spidev_data *spidev = spi_get_drvdata(spi);
665 /* make sure ops on existing fds can abort cleanly */
666 spin_lock_irq(&spidev->spi_lock);
668 spin_unlock_irq(&spidev->spi_lock);
670 /* prevent new opens */
671 mutex_lock(&device_list_lock);
672 list_del(&spidev->device_entry);
673 device_destroy(spidev_class, spidev->devt);
674 clear_bit(MINOR(spidev->devt), minors);
675 if (spidev->users == 0)
677 mutex_unlock(&device_list_lock);
682 static const struct of_device_id spidev_dt_ids[] = {
683 { .compatible = "rohm,dh2228fv" },
687 MODULE_DEVICE_TABLE(of, spidev_dt_ids);
689 static struct spi_driver spidev_spi_driver = {
692 .owner = THIS_MODULE,
693 .of_match_table = of_match_ptr(spidev_dt_ids),
695 .probe = spidev_probe,
696 .remove = spidev_remove,
698 /* NOTE: suspend/resume methods are not necessary here.
699 * We don't do anything except pass the requests to/from
700 * the underlying controller. The refrigerator handles
701 * most issues; the controller driver handles the rest.
705 /*-------------------------------------------------------------------------*/
707 static int __init spidev_init(void)
711 /* Claim our 256 reserved device numbers. Then register a class
712 * that will key udev/mdev to add/remove /dev nodes. Last, register
713 * the driver which manages those device numbers.
715 BUILD_BUG_ON(N_SPI_MINORS > 256);
716 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
720 spidev_class = class_create(THIS_MODULE, "spidev");
721 if (IS_ERR(spidev_class)) {
722 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
723 return PTR_ERR(spidev_class);
726 status = spi_register_driver(&spidev_spi_driver);
728 class_destroy(spidev_class);
729 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
733 module_init(spidev_init);
735 static void __exit spidev_exit(void)
737 spi_unregister_driver(&spidev_spi_driver);
738 class_destroy(spidev_class);
739 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
741 module_exit(spidev_exit);
744 MODULE_DESCRIPTION("User mode SPI device interface");
745 MODULE_LICENSE("GPL");
746 MODULE_ALIAS("spi:spidev");