2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
44 static struct vfsmount *shm_mnt;
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
84 #include <linux/uaccess.h>
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
110 struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
127 static unsigned long shmem_default_max_blocks(void)
129 return totalram_pages() / 2;
132 static unsigned long shmem_default_max_inodes(void)
134 unsigned long nr_pages = totalram_pages();
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 struct page **pagep, enum sgp_type sgp,
149 gfp_t gfp, struct vm_area_struct *vma,
150 struct vm_fault *vmf, vm_fault_t *fault_type);
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 struct page **pagep, enum sgp_type sgp)
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
161 return sb->s_fs_info;
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
172 return (flags & VM_NORESERVE) ?
173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
178 if (!(flags & VM_NORESERVE))
179 vm_unacct_memory(VM_ACCT(size));
182 static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
196 * ... whereas tmpfs objects are accounted incrementally as
197 * pages are allocated, in order to allow large sparse files.
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
201 static inline int shmem_acct_block(unsigned long flags, long pages)
203 if (!(flags & VM_NORESERVE))
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221 if (shmem_acct_block(info->flags, pages))
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
228 percpu_counter_add(&sbinfo->used_blocks, pages);
234 shmem_unacct_blocks(info->flags, pages);
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
257 bool vma_is_shmem(struct vm_area_struct *vma)
259 return vma->vm_ops == &shmem_vm_ops;
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
281 spin_lock(&sbinfo->stat_lock);
282 if (sbinfo->max_inodes) {
283 if (!sbinfo->free_inodes) {
284 spin_unlock(&sbinfo->stat_lock);
287 sbinfo->free_inodes--;
290 ino = sbinfo->next_ino++;
291 if (unlikely(is_zero_ino(ino)))
292 ino = sbinfo->next_ino++;
293 if (unlikely(!sbinfo->full_inums &&
296 * Emulate get_next_ino uint wraparound for
299 if (IS_ENABLED(CONFIG_64BIT))
300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 __func__, MINOR(sb->s_dev));
302 sbinfo->next_ino = 1;
303 ino = sbinfo->next_ino++;
307 spin_unlock(&sbinfo->stat_lock);
310 * __shmem_file_setup, one of our callers, is lock-free: it
311 * doesn't hold stat_lock in shmem_reserve_inode since
312 * max_inodes is always 0, and is called from potentially
313 * unknown contexts. As such, use a per-cpu batched allocator
314 * which doesn't require the per-sb stat_lock unless we are at
315 * the batch boundary.
317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 * shmem mounts are not exposed to userspace, so we don't need
319 * to worry about things like glibc compatibility.
322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 spin_lock(&sbinfo->stat_lock);
326 ino = sbinfo->next_ino;
327 sbinfo->next_ino += SHMEM_INO_BATCH;
328 spin_unlock(&sbinfo->stat_lock);
329 if (unlikely(is_zero_ino(ino)))
340 static void shmem_free_inode(struct super_block *sb)
342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 if (sbinfo->max_inodes) {
344 spin_lock(&sbinfo->stat_lock);
345 sbinfo->free_inodes++;
346 spin_unlock(&sbinfo->stat_lock);
351 * shmem_recalc_inode - recalculate the block usage of an inode
352 * @inode: inode to recalc
354 * We have to calculate the free blocks since the mm can drop
355 * undirtied hole pages behind our back.
357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
360 * It has to be called with the spinlock held.
362 static void shmem_recalc_inode(struct inode *inode)
364 struct shmem_inode_info *info = SHMEM_I(inode);
367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
369 info->alloced -= freed;
370 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 shmem_inode_unacct_blocks(inode, freed);
375 bool shmem_charge(struct inode *inode, long pages)
377 struct shmem_inode_info *info = SHMEM_I(inode);
380 if (!shmem_inode_acct_block(inode, pages))
383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 inode->i_mapping->nrpages += pages;
386 spin_lock_irqsave(&info->lock, flags);
387 info->alloced += pages;
388 inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 shmem_recalc_inode(inode);
390 spin_unlock_irqrestore(&info->lock, flags);
395 void shmem_uncharge(struct inode *inode, long pages)
397 struct shmem_inode_info *info = SHMEM_I(inode);
400 /* nrpages adjustment done by __delete_from_page_cache() or caller */
402 spin_lock_irqsave(&info->lock, flags);
403 info->alloced -= pages;
404 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 shmem_recalc_inode(inode);
406 spin_unlock_irqrestore(&info->lock, flags);
408 shmem_inode_unacct_blocks(inode, pages);
412 * Replace item expected in xarray by a new item, while holding xa_lock.
414 static int shmem_replace_entry(struct address_space *mapping,
415 pgoff_t index, void *expected, void *replacement)
417 XA_STATE(xas, &mapping->i_pages, index);
420 VM_BUG_ON(!expected);
421 VM_BUG_ON(!replacement);
422 item = xas_load(&xas);
423 if (item != expected)
425 xas_store(&xas, replacement);
430 * Sometimes, before we decide whether to proceed or to fail, we must check
431 * that an entry was not already brought back from swap by a racing thread.
433 * Checking page is not enough: by the time a SwapCache page is locked, it
434 * might be reused, and again be SwapCache, using the same swap as before.
436 static bool shmem_confirm_swap(struct address_space *mapping,
437 pgoff_t index, swp_entry_t swap)
439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
446 * disables huge pages for the mount;
448 * enables huge pages for the mount;
449 * SHMEM_HUGE_WITHIN_SIZE:
450 * only allocate huge pages if the page will be fully within i_size,
451 * also respect fadvise()/madvise() hints;
453 * only allocate huge pages if requested with fadvise()/madvise();
456 #define SHMEM_HUGE_NEVER 0
457 #define SHMEM_HUGE_ALWAYS 1
458 #define SHMEM_HUGE_WITHIN_SIZE 2
459 #define SHMEM_HUGE_ADVISE 3
463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
466 * disables huge on shm_mnt and all mounts, for emergency use;
468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
471 #define SHMEM_HUGE_DENY (-1)
472 #define SHMEM_HUGE_FORCE (-2)
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
477 static int shmem_huge __read_mostly;
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
482 if (!strcmp(str, "never"))
483 return SHMEM_HUGE_NEVER;
484 if (!strcmp(str, "always"))
485 return SHMEM_HUGE_ALWAYS;
486 if (!strcmp(str, "within_size"))
487 return SHMEM_HUGE_WITHIN_SIZE;
488 if (!strcmp(str, "advise"))
489 return SHMEM_HUGE_ADVISE;
490 if (!strcmp(str, "deny"))
491 return SHMEM_HUGE_DENY;
492 if (!strcmp(str, "force"))
493 return SHMEM_HUGE_FORCE;
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
502 case SHMEM_HUGE_NEVER:
504 case SHMEM_HUGE_ALWAYS:
506 case SHMEM_HUGE_WITHIN_SIZE:
507 return "within_size";
508 case SHMEM_HUGE_ADVISE:
510 case SHMEM_HUGE_DENY:
512 case SHMEM_HUGE_FORCE:
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
524 LIST_HEAD(list), *pos, *next;
525 LIST_HEAD(to_remove);
527 struct shmem_inode_info *info;
529 unsigned long batch = sc ? sc->nr_to_scan : 128;
530 int removed = 0, split = 0;
532 if (list_empty(&sbinfo->shrinklist))
535 spin_lock(&sbinfo->shrinklist_lock);
536 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 info = list_entry(pos, struct shmem_inode_info, shrinklist);
540 inode = igrab(&info->vfs_inode);
542 /* inode is about to be evicted */
544 list_del_init(&info->shrinklist);
549 /* Check if there's anything to gain */
550 if (round_up(inode->i_size, PAGE_SIZE) ==
551 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552 list_move(&info->shrinklist, &to_remove);
557 list_move(&info->shrinklist, &list);
562 spin_unlock(&sbinfo->shrinklist_lock);
564 list_for_each_safe(pos, next, &to_remove) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 inode = &info->vfs_inode;
567 list_del_init(&info->shrinklist);
571 list_for_each_safe(pos, next, &list) {
574 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 inode = &info->vfs_inode;
577 if (nr_to_split && split >= nr_to_split)
580 page = find_get_page(inode->i_mapping,
581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
585 /* No huge page at the end of the file: nothing to split */
586 if (!PageTransHuge(page)) {
592 * Leave the inode on the list if we failed to lock
593 * the page at this time.
595 * Waiting for the lock may lead to deadlock in the
598 if (!trylock_page(page)) {
603 ret = split_huge_page(page);
607 /* If split failed leave the inode on the list */
613 list_del_init(&info->shrinklist);
619 spin_lock(&sbinfo->shrinklist_lock);
620 list_splice_tail(&list, &sbinfo->shrinklist);
621 sbinfo->shrinklist_len -= removed;
622 spin_unlock(&sbinfo->shrinklist_lock);
627 static long shmem_unused_huge_scan(struct super_block *sb,
628 struct shrink_control *sc)
630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
632 if (!READ_ONCE(sbinfo->shrinklist_len))
635 return shmem_unused_huge_shrink(sbinfo, sc, 0);
638 static long shmem_unused_huge_count(struct super_block *sb,
639 struct shrink_control *sc)
641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 return READ_ONCE(sbinfo->shrinklist_len);
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
646 #define shmem_huge SHMEM_HUGE_DENY
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 struct shrink_control *sc, unsigned long nr_to_split)
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 shmem_huge != SHMEM_HUGE_DENY)
665 * Like add_to_page_cache_locked, but error if expected item has gone.
667 static int shmem_add_to_page_cache(struct page *page,
668 struct address_space *mapping,
669 pgoff_t index, void *expected, gfp_t gfp,
670 struct mm_struct *charge_mm)
672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
674 unsigned long nr = compound_nr(page);
677 VM_BUG_ON_PAGE(PageTail(page), page);
678 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679 VM_BUG_ON_PAGE(!PageLocked(page), page);
680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681 VM_BUG_ON(expected && PageTransHuge(page));
683 page_ref_add(page, nr);
684 page->mapping = mapping;
687 if (!PageSwapCache(page)) {
688 error = mem_cgroup_charge(page, charge_mm, gfp);
690 if (PageTransHuge(page)) {
691 count_vm_event(THP_FILE_FALLBACK);
692 count_vm_event(THP_FILE_FALLBACK_CHARGE);
697 cgroup_throttle_swaprate(page, gfp);
702 entry = xas_find_conflict(&xas);
703 if (entry != expected)
704 xas_set_err(&xas, -EEXIST);
705 xas_create_range(&xas);
709 xas_store(&xas, page);
714 if (PageTransHuge(page)) {
715 count_vm_event(THP_FILE_ALLOC);
716 __inc_node_page_state(page, NR_SHMEM_THPS);
718 mapping->nrpages += nr;
719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 __mod_lruvec_page_state(page, NR_SHMEM, nr);
722 xas_unlock_irq(&xas);
723 } while (xas_nomem(&xas, gfp));
725 if (xas_error(&xas)) {
726 error = xas_error(&xas);
732 page->mapping = NULL;
733 page_ref_sub(page, nr);
738 * Like delete_from_page_cache, but substitutes swap for page.
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
742 struct address_space *mapping = page->mapping;
745 VM_BUG_ON_PAGE(PageCompound(page), page);
747 xa_lock_irq(&mapping->i_pages);
748 error = shmem_replace_entry(mapping, page->index, page, radswap);
749 page->mapping = NULL;
751 __dec_lruvec_page_state(page, NR_FILE_PAGES);
752 __dec_lruvec_page_state(page, NR_SHMEM);
753 xa_unlock_irq(&mapping->i_pages);
759 * Remove swap entry from page cache, free the swap and its page cache.
761 static int shmem_free_swap(struct address_space *mapping,
762 pgoff_t index, void *radswap)
766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
769 free_swap_and_cache(radix_to_swp_entry(radswap));
774 * Determine (in bytes) how many of the shmem object's pages mapped by the
775 * given offsets are swapped out.
777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778 * as long as the inode doesn't go away and racy results are not a problem.
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 pgoff_t start, pgoff_t end)
783 XA_STATE(xas, &mapping->i_pages, start);
785 unsigned long swapped = 0;
788 xas_for_each(&xas, page, end - 1) {
789 if (xas_retry(&xas, page))
791 if (xa_is_value(page))
794 if (need_resched()) {
802 return swapped << PAGE_SHIFT;
806 * Determine (in bytes) how many of the shmem object's pages mapped by the
807 * given vma is swapped out.
809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810 * as long as the inode doesn't go away and racy results are not a problem.
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
814 struct inode *inode = file_inode(vma->vm_file);
815 struct shmem_inode_info *info = SHMEM_I(inode);
816 struct address_space *mapping = inode->i_mapping;
817 unsigned long swapped;
819 /* Be careful as we don't hold info->lock */
820 swapped = READ_ONCE(info->swapped);
823 * The easier cases are when the shmem object has nothing in swap, or
824 * the vma maps it whole. Then we can simply use the stats that we
830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 return swapped << PAGE_SHIFT;
833 /* Here comes the more involved part */
834 return shmem_partial_swap_usage(mapping,
835 linear_page_index(vma, vma->vm_start),
836 linear_page_index(vma, vma->vm_end));
840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
842 void shmem_unlock_mapping(struct address_space *mapping)
845 pgoff_t indices[PAGEVEC_SIZE];
850 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
852 while (!mapping_unevictable(mapping)) {
854 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
855 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
857 pvec.nr = find_get_entries(mapping, index,
858 PAGEVEC_SIZE, pvec.pages, indices);
861 index = indices[pvec.nr - 1] + 1;
862 pagevec_remove_exceptionals(&pvec);
863 check_move_unevictable_pages(&pvec);
864 pagevec_release(&pvec);
870 * Check whether a hole-punch or truncation needs to split a huge page,
871 * returning true if no split was required, or the split has been successful.
873 * Eviction (or truncation to 0 size) should never need to split a huge page;
874 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
875 * head, and then succeeded to trylock on tail.
877 * A split can only succeed when there are no additional references on the
878 * huge page: so the split below relies upon find_get_entries() having stopped
879 * when it found a subpage of the huge page, without getting further references.
881 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
883 if (!PageTransCompound(page))
886 /* Just proceed to delete a huge page wholly within the range punched */
887 if (PageHead(page) &&
888 page->index >= start && page->index + HPAGE_PMD_NR <= end)
891 /* Try to split huge page, so we can truly punch the hole or truncate */
892 return split_huge_page(page) >= 0;
896 * Remove range of pages and swap entries from page cache, and free them.
897 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
899 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
902 struct address_space *mapping = inode->i_mapping;
903 struct shmem_inode_info *info = SHMEM_I(inode);
904 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
905 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
906 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
907 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
909 pgoff_t indices[PAGEVEC_SIZE];
910 long nr_swaps_freed = 0;
915 end = -1; /* unsigned, so actually very big */
919 while (index < end) {
920 pvec.nr = find_get_entries(mapping, index,
921 min(end - index, (pgoff_t)PAGEVEC_SIZE),
922 pvec.pages, indices);
925 for (i = 0; i < pagevec_count(&pvec); i++) {
926 struct page *page = pvec.pages[i];
932 if (xa_is_value(page)) {
935 nr_swaps_freed += !shmem_free_swap(mapping,
940 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
942 if (!trylock_page(page))
945 if ((!unfalloc || !PageUptodate(page)) &&
946 page_mapping(page) == mapping) {
947 VM_BUG_ON_PAGE(PageWriteback(page), page);
948 if (shmem_punch_compound(page, start, end))
949 truncate_inode_page(mapping, page);
953 pagevec_remove_exceptionals(&pvec);
954 pagevec_release(&pvec);
960 struct page *page = NULL;
961 shmem_getpage(inode, start - 1, &page, SGP_READ);
963 unsigned int top = PAGE_SIZE;
968 zero_user_segment(page, partial_start, top);
969 set_page_dirty(page);
975 struct page *page = NULL;
976 shmem_getpage(inode, end, &page, SGP_READ);
978 zero_user_segment(page, 0, partial_end);
979 set_page_dirty(page);
988 while (index < end) {
991 pvec.nr = find_get_entries(mapping, index,
992 min(end - index, (pgoff_t)PAGEVEC_SIZE),
993 pvec.pages, indices);
995 /* If all gone or hole-punch or unfalloc, we're done */
996 if (index == start || end != -1)
998 /* But if truncating, restart to make sure all gone */
1002 for (i = 0; i < pagevec_count(&pvec); i++) {
1003 struct page *page = pvec.pages[i];
1009 if (xa_is_value(page)) {
1012 if (shmem_free_swap(mapping, index, page)) {
1013 /* Swap was replaced by page: retry */
1023 if (!unfalloc || !PageUptodate(page)) {
1024 if (page_mapping(page) != mapping) {
1025 /* Page was replaced by swap: retry */
1030 VM_BUG_ON_PAGE(PageWriteback(page), page);
1031 if (shmem_punch_compound(page, start, end))
1032 truncate_inode_page(mapping, page);
1033 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1034 /* Wipe the page and don't get stuck */
1035 clear_highpage(page);
1036 flush_dcache_page(page);
1037 set_page_dirty(page);
1039 round_up(start, HPAGE_PMD_NR))
1045 pagevec_remove_exceptionals(&pvec);
1046 pagevec_release(&pvec);
1050 spin_lock_irq(&info->lock);
1051 info->swapped -= nr_swaps_freed;
1052 shmem_recalc_inode(inode);
1053 spin_unlock_irq(&info->lock);
1056 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1058 shmem_undo_range(inode, lstart, lend, false);
1059 inode->i_ctime = inode->i_mtime = current_time(inode);
1061 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1063 static int shmem_getattr(const struct path *path, struct kstat *stat,
1064 u32 request_mask, unsigned int query_flags)
1066 struct inode *inode = path->dentry->d_inode;
1067 struct shmem_inode_info *info = SHMEM_I(inode);
1068 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1070 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1071 spin_lock_irq(&info->lock);
1072 shmem_recalc_inode(inode);
1073 spin_unlock_irq(&info->lock);
1075 generic_fillattr(inode, stat);
1077 if (is_huge_enabled(sb_info))
1078 stat->blksize = HPAGE_PMD_SIZE;
1083 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1085 struct inode *inode = d_inode(dentry);
1086 struct shmem_inode_info *info = SHMEM_I(inode);
1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1090 error = setattr_prepare(dentry, attr);
1094 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1095 loff_t oldsize = inode->i_size;
1096 loff_t newsize = attr->ia_size;
1098 /* protected by i_mutex */
1099 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1100 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1103 if (newsize != oldsize) {
1104 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1108 i_size_write(inode, newsize);
1109 inode->i_ctime = inode->i_mtime = current_time(inode);
1111 if (newsize <= oldsize) {
1112 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1113 if (oldsize > holebegin)
1114 unmap_mapping_range(inode->i_mapping,
1117 shmem_truncate_range(inode,
1118 newsize, (loff_t)-1);
1119 /* unmap again to remove racily COWed private pages */
1120 if (oldsize > holebegin)
1121 unmap_mapping_range(inode->i_mapping,
1125 * Part of the huge page can be beyond i_size: subject
1126 * to shrink under memory pressure.
1128 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1129 spin_lock(&sbinfo->shrinklist_lock);
1131 * _careful to defend against unlocked access to
1132 * ->shrink_list in shmem_unused_huge_shrink()
1134 if (list_empty_careful(&info->shrinklist)) {
1135 list_add_tail(&info->shrinklist,
1136 &sbinfo->shrinklist);
1137 sbinfo->shrinklist_len++;
1139 spin_unlock(&sbinfo->shrinklist_lock);
1144 setattr_copy(inode, attr);
1145 if (attr->ia_valid & ATTR_MODE)
1146 error = posix_acl_chmod(inode, inode->i_mode);
1150 static void shmem_evict_inode(struct inode *inode)
1152 struct shmem_inode_info *info = SHMEM_I(inode);
1153 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1155 if (inode->i_mapping->a_ops == &shmem_aops) {
1156 shmem_unacct_size(info->flags, inode->i_size);
1158 shmem_truncate_range(inode, 0, (loff_t)-1);
1159 if (!list_empty(&info->shrinklist)) {
1160 spin_lock(&sbinfo->shrinklist_lock);
1161 if (!list_empty(&info->shrinklist)) {
1162 list_del_init(&info->shrinklist);
1163 sbinfo->shrinklist_len--;
1165 spin_unlock(&sbinfo->shrinklist_lock);
1167 while (!list_empty(&info->swaplist)) {
1168 /* Wait while shmem_unuse() is scanning this inode... */
1169 wait_var_event(&info->stop_eviction,
1170 !atomic_read(&info->stop_eviction));
1171 mutex_lock(&shmem_swaplist_mutex);
1172 /* ...but beware of the race if we peeked too early */
1173 if (!atomic_read(&info->stop_eviction))
1174 list_del_init(&info->swaplist);
1175 mutex_unlock(&shmem_swaplist_mutex);
1179 simple_xattrs_free(&info->xattrs);
1180 WARN_ON(inode->i_blocks);
1181 shmem_free_inode(inode->i_sb);
1185 extern struct swap_info_struct *swap_info[];
1187 static int shmem_find_swap_entries(struct address_space *mapping,
1188 pgoff_t start, unsigned int nr_entries,
1189 struct page **entries, pgoff_t *indices,
1190 unsigned int type, bool frontswap)
1192 XA_STATE(xas, &mapping->i_pages, start);
1195 unsigned int ret = 0;
1201 xas_for_each(&xas, page, ULONG_MAX) {
1202 if (xas_retry(&xas, page))
1205 if (!xa_is_value(page))
1208 entry = radix_to_swp_entry(page);
1209 if (swp_type(entry) != type)
1212 !frontswap_test(swap_info[type], swp_offset(entry)))
1215 indices[ret] = xas.xa_index;
1216 entries[ret] = page;
1218 if (need_resched()) {
1222 if (++ret == nr_entries)
1231 * Move the swapped pages for an inode to page cache. Returns the count
1232 * of pages swapped in, or the error in case of failure.
1234 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1240 struct address_space *mapping = inode->i_mapping;
1242 for (i = 0; i < pvec.nr; i++) {
1243 struct page *page = pvec.pages[i];
1245 if (!xa_is_value(page))
1247 error = shmem_swapin_page(inode, indices[i],
1249 mapping_gfp_mask(mapping),
1256 if (error == -ENOMEM)
1260 return error ? error : ret;
1264 * If swap found in inode, free it and move page from swapcache to filecache.
1266 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1267 bool frontswap, unsigned long *fs_pages_to_unuse)
1269 struct address_space *mapping = inode->i_mapping;
1271 struct pagevec pvec;
1272 pgoff_t indices[PAGEVEC_SIZE];
1273 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1276 pagevec_init(&pvec);
1278 unsigned int nr_entries = PAGEVEC_SIZE;
1280 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1281 nr_entries = *fs_pages_to_unuse;
1283 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1284 pvec.pages, indices,
1291 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1295 if (frontswap_partial) {
1296 *fs_pages_to_unuse -= ret;
1297 if (*fs_pages_to_unuse == 0) {
1298 ret = FRONTSWAP_PAGES_UNUSED;
1303 start = indices[pvec.nr - 1];
1310 * Read all the shared memory data that resides in the swap
1311 * device 'type' back into memory, so the swap device can be
1314 int shmem_unuse(unsigned int type, bool frontswap,
1315 unsigned long *fs_pages_to_unuse)
1317 struct shmem_inode_info *info, *next;
1320 if (list_empty(&shmem_swaplist))
1323 mutex_lock(&shmem_swaplist_mutex);
1324 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1325 if (!info->swapped) {
1326 list_del_init(&info->swaplist);
1330 * Drop the swaplist mutex while searching the inode for swap;
1331 * but before doing so, make sure shmem_evict_inode() will not
1332 * remove placeholder inode from swaplist, nor let it be freed
1333 * (igrab() would protect from unlink, but not from unmount).
1335 atomic_inc(&info->stop_eviction);
1336 mutex_unlock(&shmem_swaplist_mutex);
1338 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1342 mutex_lock(&shmem_swaplist_mutex);
1343 next = list_next_entry(info, swaplist);
1345 list_del_init(&info->swaplist);
1346 if (atomic_dec_and_test(&info->stop_eviction))
1347 wake_up_var(&info->stop_eviction);
1351 mutex_unlock(&shmem_swaplist_mutex);
1357 * Move the page from the page cache to the swap cache.
1359 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1361 struct shmem_inode_info *info;
1362 struct address_space *mapping;
1363 struct inode *inode;
1367 VM_BUG_ON_PAGE(PageCompound(page), page);
1368 BUG_ON(!PageLocked(page));
1369 mapping = page->mapping;
1370 index = page->index;
1371 inode = mapping->host;
1372 info = SHMEM_I(inode);
1373 if (info->flags & VM_LOCKED)
1375 if (!total_swap_pages)
1379 * Our capabilities prevent regular writeback or sync from ever calling
1380 * shmem_writepage; but a stacking filesystem might use ->writepage of
1381 * its underlying filesystem, in which case tmpfs should write out to
1382 * swap only in response to memory pressure, and not for the writeback
1385 if (!wbc->for_reclaim) {
1386 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1391 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1392 * value into swapfile.c, the only way we can correctly account for a
1393 * fallocated page arriving here is now to initialize it and write it.
1395 * That's okay for a page already fallocated earlier, but if we have
1396 * not yet completed the fallocation, then (a) we want to keep track
1397 * of this page in case we have to undo it, and (b) it may not be a
1398 * good idea to continue anyway, once we're pushing into swap. So
1399 * reactivate the page, and let shmem_fallocate() quit when too many.
1401 if (!PageUptodate(page)) {
1402 if (inode->i_private) {
1403 struct shmem_falloc *shmem_falloc;
1404 spin_lock(&inode->i_lock);
1405 shmem_falloc = inode->i_private;
1407 !shmem_falloc->waitq &&
1408 index >= shmem_falloc->start &&
1409 index < shmem_falloc->next)
1410 shmem_falloc->nr_unswapped++;
1412 shmem_falloc = NULL;
1413 spin_unlock(&inode->i_lock);
1417 clear_highpage(page);
1418 flush_dcache_page(page);
1419 SetPageUptodate(page);
1422 swap = get_swap_page(page);
1427 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1428 * if it's not already there. Do it now before the page is
1429 * moved to swap cache, when its pagelock no longer protects
1430 * the inode from eviction. But don't unlock the mutex until
1431 * we've incremented swapped, because shmem_unuse_inode() will
1432 * prune a !swapped inode from the swaplist under this mutex.
1434 mutex_lock(&shmem_swaplist_mutex);
1435 if (list_empty(&info->swaplist))
1436 list_add(&info->swaplist, &shmem_swaplist);
1438 if (add_to_swap_cache(page, swap,
1439 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1441 spin_lock_irq(&info->lock);
1442 shmem_recalc_inode(inode);
1444 spin_unlock_irq(&info->lock);
1446 swap_shmem_alloc(swap);
1447 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1449 mutex_unlock(&shmem_swaplist_mutex);
1450 BUG_ON(page_mapped(page));
1451 swap_writepage(page, wbc);
1455 mutex_unlock(&shmem_swaplist_mutex);
1456 put_swap_page(page, swap);
1458 set_page_dirty(page);
1459 if (wbc->for_reclaim)
1460 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1465 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1466 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1470 if (!mpol || mpol->mode == MPOL_DEFAULT)
1471 return; /* show nothing */
1473 mpol_to_str(buffer, sizeof(buffer), mpol);
1475 seq_printf(seq, ",mpol=%s", buffer);
1478 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1480 struct mempolicy *mpol = NULL;
1482 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1483 mpol = sbinfo->mpol;
1485 spin_unlock(&sbinfo->stat_lock);
1489 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1490 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1493 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1497 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1499 #define vm_policy vm_private_data
1502 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1503 struct shmem_inode_info *info, pgoff_t index)
1505 /* Create a pseudo vma that just contains the policy */
1506 vma_init(vma, NULL);
1507 /* Bias interleave by inode number to distribute better across nodes */
1508 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1509 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1512 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1514 /* Drop reference taken by mpol_shared_policy_lookup() */
1515 mpol_cond_put(vma->vm_policy);
1518 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1519 struct shmem_inode_info *info, pgoff_t index)
1521 struct vm_area_struct pvma;
1523 struct vm_fault vmf;
1525 shmem_pseudo_vma_init(&pvma, info, index);
1528 page = swap_cluster_readahead(swap, gfp, &vmf);
1529 shmem_pseudo_vma_destroy(&pvma);
1534 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1535 struct shmem_inode_info *info, pgoff_t index)
1537 struct vm_area_struct pvma;
1538 struct address_space *mapping = info->vfs_inode.i_mapping;
1542 hindex = round_down(index, HPAGE_PMD_NR);
1543 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1547 shmem_pseudo_vma_init(&pvma, info, hindex);
1548 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1549 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1550 shmem_pseudo_vma_destroy(&pvma);
1552 prep_transhuge_page(page);
1554 count_vm_event(THP_FILE_FALLBACK);
1558 static struct page *shmem_alloc_page(gfp_t gfp,
1559 struct shmem_inode_info *info, pgoff_t index)
1561 struct vm_area_struct pvma;
1564 shmem_pseudo_vma_init(&pvma, info, index);
1565 page = alloc_page_vma(gfp, &pvma, 0);
1566 shmem_pseudo_vma_destroy(&pvma);
1571 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1572 struct inode *inode,
1573 pgoff_t index, bool huge)
1575 struct shmem_inode_info *info = SHMEM_I(inode);
1580 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1582 nr = huge ? HPAGE_PMD_NR : 1;
1584 if (!shmem_inode_acct_block(inode, nr))
1588 page = shmem_alloc_hugepage(gfp, info, index);
1590 page = shmem_alloc_page(gfp, info, index);
1592 __SetPageLocked(page);
1593 __SetPageSwapBacked(page);
1598 shmem_inode_unacct_blocks(inode, nr);
1600 return ERR_PTR(err);
1604 * When a page is moved from swapcache to shmem filecache (either by the
1605 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1606 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1607 * ignorance of the mapping it belongs to. If that mapping has special
1608 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1609 * we may need to copy to a suitable page before moving to filecache.
1611 * In a future release, this may well be extended to respect cpuset and
1612 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1613 * but for now it is a simple matter of zone.
1615 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1617 return page_zonenum(page) > gfp_zone(gfp);
1620 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1621 struct shmem_inode_info *info, pgoff_t index)
1623 struct page *oldpage, *newpage;
1624 struct address_space *swap_mapping;
1630 entry.val = page_private(oldpage);
1631 swap_index = swp_offset(entry);
1632 swap_mapping = page_mapping(oldpage);
1635 * We have arrived here because our zones are constrained, so don't
1636 * limit chance of success by further cpuset and node constraints.
1638 gfp &= ~GFP_CONSTRAINT_MASK;
1639 newpage = shmem_alloc_page(gfp, info, index);
1644 copy_highpage(newpage, oldpage);
1645 flush_dcache_page(newpage);
1647 __SetPageLocked(newpage);
1648 __SetPageSwapBacked(newpage);
1649 SetPageUptodate(newpage);
1650 set_page_private(newpage, entry.val);
1651 SetPageSwapCache(newpage);
1654 * Our caller will very soon move newpage out of swapcache, but it's
1655 * a nice clean interface for us to replace oldpage by newpage there.
1657 xa_lock_irq(&swap_mapping->i_pages);
1658 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1660 mem_cgroup_migrate(oldpage, newpage);
1661 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1662 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1664 xa_unlock_irq(&swap_mapping->i_pages);
1666 if (unlikely(error)) {
1668 * Is this possible? I think not, now that our callers check
1669 * both PageSwapCache and page_private after getting page lock;
1670 * but be defensive. Reverse old to newpage for clear and free.
1674 lru_cache_add(newpage);
1678 ClearPageSwapCache(oldpage);
1679 set_page_private(oldpage, 0);
1681 unlock_page(oldpage);
1688 * Swap in the page pointed to by *pagep.
1689 * Caller has to make sure that *pagep contains a valid swapped page.
1690 * Returns 0 and the page in pagep if success. On failure, returns the
1691 * error code and NULL in *pagep.
1693 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1694 struct page **pagep, enum sgp_type sgp,
1695 gfp_t gfp, struct vm_area_struct *vma,
1696 vm_fault_t *fault_type)
1698 struct address_space *mapping = inode->i_mapping;
1699 struct shmem_inode_info *info = SHMEM_I(inode);
1700 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1705 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1706 swap = radix_to_swp_entry(*pagep);
1709 /* Look it up and read it in.. */
1710 page = lookup_swap_cache(swap, NULL, 0);
1712 /* Or update major stats only when swapin succeeds?? */
1714 *fault_type |= VM_FAULT_MAJOR;
1715 count_vm_event(PGMAJFAULT);
1716 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1718 /* Here we actually start the io */
1719 page = shmem_swapin(swap, gfp, info, index);
1726 /* We have to do this with page locked to prevent races */
1728 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1729 !shmem_confirm_swap(mapping, index, swap)) {
1733 if (!PageUptodate(page)) {
1737 wait_on_page_writeback(page);
1740 * Some architectures may have to restore extra metadata to the
1741 * physical page after reading from swap.
1743 arch_swap_restore(swap, page);
1745 if (shmem_should_replace_page(page, gfp)) {
1746 error = shmem_replace_page(&page, gfp, info, index);
1751 error = shmem_add_to_page_cache(page, mapping, index,
1752 swp_to_radix_entry(swap), gfp,
1757 spin_lock_irq(&info->lock);
1759 shmem_recalc_inode(inode);
1760 spin_unlock_irq(&info->lock);
1762 if (sgp == SGP_WRITE)
1763 mark_page_accessed(page);
1765 delete_from_swap_cache(page);
1766 set_page_dirty(page);
1772 if (!shmem_confirm_swap(mapping, index, swap))
1784 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1786 * If we allocate a new one we do not mark it dirty. That's up to the
1787 * vm. If we swap it in we mark it dirty since we also free the swap
1788 * entry since a page cannot live in both the swap and page cache.
1790 * vmf and fault_type are only supplied by shmem_fault:
1791 * otherwise they are NULL.
1793 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1794 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1795 struct vm_area_struct *vma, struct vm_fault *vmf,
1796 vm_fault_t *fault_type)
1798 struct address_space *mapping = inode->i_mapping;
1799 struct shmem_inode_info *info = SHMEM_I(inode);
1800 struct shmem_sb_info *sbinfo;
1801 struct mm_struct *charge_mm;
1803 enum sgp_type sgp_huge = sgp;
1804 pgoff_t hindex = index;
1809 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1811 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1814 if (sgp <= SGP_CACHE &&
1815 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1819 sbinfo = SHMEM_SB(inode->i_sb);
1820 charge_mm = vma ? vma->vm_mm : current->mm;
1822 page = find_lock_entry(mapping, index);
1823 if (xa_is_value(page)) {
1824 error = shmem_swapin_page(inode, index, &page,
1825 sgp, gfp, vma, fault_type);
1826 if (error == -EEXIST)
1833 if (page && sgp == SGP_WRITE)
1834 mark_page_accessed(page);
1836 /* fallocated page? */
1837 if (page && !PageUptodate(page)) {
1838 if (sgp != SGP_READ)
1844 if (page || sgp == SGP_READ) {
1850 * Fast cache lookup did not find it:
1851 * bring it back from swap or allocate.
1854 if (vma && userfaultfd_missing(vma)) {
1855 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1859 /* shmem_symlink() */
1860 if (mapping->a_ops != &shmem_aops)
1862 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1864 if (shmem_huge == SHMEM_HUGE_FORCE)
1866 switch (sbinfo->huge) {
1867 case SHMEM_HUGE_NEVER:
1869 case SHMEM_HUGE_WITHIN_SIZE: {
1873 off = round_up(index, HPAGE_PMD_NR);
1874 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1875 if (i_size >= HPAGE_PMD_SIZE &&
1876 i_size >> PAGE_SHIFT >= off)
1881 case SHMEM_HUGE_ADVISE:
1882 if (sgp_huge == SGP_HUGE)
1884 /* TODO: implement fadvise() hints */
1889 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1892 page = shmem_alloc_and_acct_page(gfp, inode,
1898 error = PTR_ERR(page);
1900 if (error != -ENOSPC)
1903 * Try to reclaim some space by splitting a huge page
1904 * beyond i_size on the filesystem.
1909 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1910 if (ret == SHRINK_STOP)
1918 if (PageTransHuge(page))
1919 hindex = round_down(index, HPAGE_PMD_NR);
1923 if (sgp == SGP_WRITE)
1924 __SetPageReferenced(page);
1926 error = shmem_add_to_page_cache(page, mapping, hindex,
1927 NULL, gfp & GFP_RECLAIM_MASK,
1931 lru_cache_add(page);
1933 spin_lock_irq(&info->lock);
1934 info->alloced += compound_nr(page);
1935 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1936 shmem_recalc_inode(inode);
1937 spin_unlock_irq(&info->lock);
1940 if (PageTransHuge(page) &&
1941 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1942 hindex + HPAGE_PMD_NR - 1) {
1944 * Part of the huge page is beyond i_size: subject
1945 * to shrink under memory pressure.
1947 spin_lock(&sbinfo->shrinklist_lock);
1949 * _careful to defend against unlocked access to
1950 * ->shrink_list in shmem_unused_huge_shrink()
1952 if (list_empty_careful(&info->shrinklist)) {
1953 list_add_tail(&info->shrinklist,
1954 &sbinfo->shrinklist);
1955 sbinfo->shrinklist_len++;
1957 spin_unlock(&sbinfo->shrinklist_lock);
1961 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1963 if (sgp == SGP_FALLOC)
1967 * Let SGP_WRITE caller clear ends if write does not fill page;
1968 * but SGP_FALLOC on a page fallocated earlier must initialize
1969 * it now, lest undo on failure cancel our earlier guarantee.
1971 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1972 struct page *head = compound_head(page);
1975 for (i = 0; i < compound_nr(head); i++) {
1976 clear_highpage(head + i);
1977 flush_dcache_page(head + i);
1979 SetPageUptodate(head);
1982 /* Perhaps the file has been truncated since we checked */
1983 if (sgp <= SGP_CACHE &&
1984 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1986 ClearPageDirty(page);
1987 delete_from_page_cache(page);
1988 spin_lock_irq(&info->lock);
1989 shmem_recalc_inode(inode);
1990 spin_unlock_irq(&info->lock);
1995 *pagep = page + index - hindex;
2002 shmem_inode_unacct_blocks(inode, compound_nr(page));
2004 if (PageTransHuge(page)) {
2014 if (error == -ENOSPC && !once++) {
2015 spin_lock_irq(&info->lock);
2016 shmem_recalc_inode(inode);
2017 spin_unlock_irq(&info->lock);
2020 if (error == -EEXIST)
2026 * This is like autoremove_wake_function, but it removes the wait queue
2027 * entry unconditionally - even if something else had already woken the
2030 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2032 int ret = default_wake_function(wait, mode, sync, key);
2033 list_del_init(&wait->entry);
2037 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2039 struct vm_area_struct *vma = vmf->vma;
2040 struct inode *inode = file_inode(vma->vm_file);
2041 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2044 vm_fault_t ret = VM_FAULT_LOCKED;
2047 * Trinity finds that probing a hole which tmpfs is punching can
2048 * prevent the hole-punch from ever completing: which in turn
2049 * locks writers out with its hold on i_mutex. So refrain from
2050 * faulting pages into the hole while it's being punched. Although
2051 * shmem_undo_range() does remove the additions, it may be unable to
2052 * keep up, as each new page needs its own unmap_mapping_range() call,
2053 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2055 * It does not matter if we sometimes reach this check just before the
2056 * hole-punch begins, so that one fault then races with the punch:
2057 * we just need to make racing faults a rare case.
2059 * The implementation below would be much simpler if we just used a
2060 * standard mutex or completion: but we cannot take i_mutex in fault,
2061 * and bloating every shmem inode for this unlikely case would be sad.
2063 if (unlikely(inode->i_private)) {
2064 struct shmem_falloc *shmem_falloc;
2066 spin_lock(&inode->i_lock);
2067 shmem_falloc = inode->i_private;
2069 shmem_falloc->waitq &&
2070 vmf->pgoff >= shmem_falloc->start &&
2071 vmf->pgoff < shmem_falloc->next) {
2073 wait_queue_head_t *shmem_falloc_waitq;
2074 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2076 ret = VM_FAULT_NOPAGE;
2077 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2079 ret = VM_FAULT_RETRY;
2081 shmem_falloc_waitq = shmem_falloc->waitq;
2082 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2083 TASK_UNINTERRUPTIBLE);
2084 spin_unlock(&inode->i_lock);
2088 * shmem_falloc_waitq points into the shmem_fallocate()
2089 * stack of the hole-punching task: shmem_falloc_waitq
2090 * is usually invalid by the time we reach here, but
2091 * finish_wait() does not dereference it in that case;
2092 * though i_lock needed lest racing with wake_up_all().
2094 spin_lock(&inode->i_lock);
2095 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2096 spin_unlock(&inode->i_lock);
2102 spin_unlock(&inode->i_lock);
2107 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2108 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2110 else if (vma->vm_flags & VM_HUGEPAGE)
2113 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2114 gfp, vma, vmf, &ret);
2116 return vmf_error(err);
2120 unsigned long shmem_get_unmapped_area(struct file *file,
2121 unsigned long uaddr, unsigned long len,
2122 unsigned long pgoff, unsigned long flags)
2124 unsigned long (*get_area)(struct file *,
2125 unsigned long, unsigned long, unsigned long, unsigned long);
2127 unsigned long offset;
2128 unsigned long inflated_len;
2129 unsigned long inflated_addr;
2130 unsigned long inflated_offset;
2132 if (len > TASK_SIZE)
2135 get_area = current->mm->get_unmapped_area;
2136 addr = get_area(file, uaddr, len, pgoff, flags);
2138 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2140 if (IS_ERR_VALUE(addr))
2142 if (addr & ~PAGE_MASK)
2144 if (addr > TASK_SIZE - len)
2147 if (shmem_huge == SHMEM_HUGE_DENY)
2149 if (len < HPAGE_PMD_SIZE)
2151 if (flags & MAP_FIXED)
2154 * Our priority is to support MAP_SHARED mapped hugely;
2155 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2156 * But if caller specified an address hint and we allocated area there
2157 * successfully, respect that as before.
2162 if (shmem_huge != SHMEM_HUGE_FORCE) {
2163 struct super_block *sb;
2166 VM_BUG_ON(file->f_op != &shmem_file_operations);
2167 sb = file_inode(file)->i_sb;
2170 * Called directly from mm/mmap.c, or drivers/char/mem.c
2171 * for "/dev/zero", to create a shared anonymous object.
2173 if (IS_ERR(shm_mnt))
2175 sb = shm_mnt->mnt_sb;
2177 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2181 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2182 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2184 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2187 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2188 if (inflated_len > TASK_SIZE)
2190 if (inflated_len < len)
2193 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2194 if (IS_ERR_VALUE(inflated_addr))
2196 if (inflated_addr & ~PAGE_MASK)
2199 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2200 inflated_addr += offset - inflated_offset;
2201 if (inflated_offset > offset)
2202 inflated_addr += HPAGE_PMD_SIZE;
2204 if (inflated_addr > TASK_SIZE - len)
2206 return inflated_addr;
2210 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2212 struct inode *inode = file_inode(vma->vm_file);
2213 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2216 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2219 struct inode *inode = file_inode(vma->vm_file);
2222 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2223 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2227 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2229 struct inode *inode = file_inode(file);
2230 struct shmem_inode_info *info = SHMEM_I(inode);
2231 int retval = -ENOMEM;
2234 * What serializes the accesses to info->flags?
2235 * ipc_lock_object() when called from shmctl_do_lock(),
2236 * no serialization needed when called from shm_destroy().
2238 if (lock && !(info->flags & VM_LOCKED)) {
2239 if (!user_shm_lock(inode->i_size, user))
2241 info->flags |= VM_LOCKED;
2242 mapping_set_unevictable(file->f_mapping);
2244 if (!lock && (info->flags & VM_LOCKED) && user) {
2245 user_shm_unlock(inode->i_size, user);
2246 info->flags &= ~VM_LOCKED;
2247 mapping_clear_unevictable(file->f_mapping);
2255 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2257 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2259 if (info->seals & F_SEAL_FUTURE_WRITE) {
2261 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2262 * "future write" seal active.
2264 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2268 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2269 * MAP_SHARED and read-only, take care to not allow mprotect to
2270 * revert protections on such mappings. Do this only for shared
2271 * mappings. For private mappings, don't need to mask
2272 * VM_MAYWRITE as we still want them to be COW-writable.
2274 if (vma->vm_flags & VM_SHARED)
2275 vma->vm_flags &= ~(VM_MAYWRITE);
2278 /* arm64 - allow memory tagging on RAM-based files */
2279 vma->vm_flags |= VM_MTE_ALLOWED;
2281 file_accessed(file);
2282 vma->vm_ops = &shmem_vm_ops;
2283 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2284 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2285 (vma->vm_end & HPAGE_PMD_MASK)) {
2286 khugepaged_enter(vma, vma->vm_flags);
2291 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2292 umode_t mode, dev_t dev, unsigned long flags)
2294 struct inode *inode;
2295 struct shmem_inode_info *info;
2296 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2299 if (shmem_reserve_inode(sb, &ino))
2302 inode = new_inode(sb);
2305 inode_init_owner(inode, dir, mode);
2306 inode->i_blocks = 0;
2307 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2308 inode->i_generation = prandom_u32();
2309 info = SHMEM_I(inode);
2310 memset(info, 0, (char *)inode - (char *)info);
2311 spin_lock_init(&info->lock);
2312 atomic_set(&info->stop_eviction, 0);
2313 info->seals = F_SEAL_SEAL;
2314 info->flags = flags & VM_NORESERVE;
2315 INIT_LIST_HEAD(&info->shrinklist);
2316 INIT_LIST_HEAD(&info->swaplist);
2317 simple_xattrs_init(&info->xattrs);
2318 cache_no_acl(inode);
2320 switch (mode & S_IFMT) {
2322 inode->i_op = &shmem_special_inode_operations;
2323 init_special_inode(inode, mode, dev);
2326 inode->i_mapping->a_ops = &shmem_aops;
2327 inode->i_op = &shmem_inode_operations;
2328 inode->i_fop = &shmem_file_operations;
2329 mpol_shared_policy_init(&info->policy,
2330 shmem_get_sbmpol(sbinfo));
2334 /* Some things misbehave if size == 0 on a directory */
2335 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2336 inode->i_op = &shmem_dir_inode_operations;
2337 inode->i_fop = &simple_dir_operations;
2341 * Must not load anything in the rbtree,
2342 * mpol_free_shared_policy will not be called.
2344 mpol_shared_policy_init(&info->policy, NULL);
2348 lockdep_annotate_inode_mutex_key(inode);
2350 shmem_free_inode(sb);
2354 bool shmem_mapping(struct address_space *mapping)
2356 return mapping->a_ops == &shmem_aops;
2359 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2361 struct vm_area_struct *dst_vma,
2362 unsigned long dst_addr,
2363 unsigned long src_addr,
2365 struct page **pagep)
2367 struct inode *inode = file_inode(dst_vma->vm_file);
2368 struct shmem_inode_info *info = SHMEM_I(inode);
2369 struct address_space *mapping = inode->i_mapping;
2370 gfp_t gfp = mapping_gfp_mask(mapping);
2371 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2375 pte_t _dst_pte, *dst_pte;
2377 pgoff_t offset, max_off;
2380 if (!shmem_inode_acct_block(inode, 1))
2384 page = shmem_alloc_page(gfp, info, pgoff);
2386 goto out_unacct_blocks;
2388 if (!zeropage) { /* mcopy_atomic */
2389 page_kaddr = kmap_atomic(page);
2390 ret = copy_from_user(page_kaddr,
2391 (const void __user *)src_addr,
2393 kunmap_atomic(page_kaddr);
2395 /* fallback to copy_from_user outside mmap_lock */
2396 if (unlikely(ret)) {
2398 shmem_inode_unacct_blocks(inode, 1);
2399 /* don't free the page */
2402 } else { /* mfill_zeropage_atomic */
2403 clear_highpage(page);
2410 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2411 __SetPageLocked(page);
2412 __SetPageSwapBacked(page);
2413 __SetPageUptodate(page);
2416 offset = linear_page_index(dst_vma, dst_addr);
2417 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2418 if (unlikely(offset >= max_off))
2421 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2422 gfp & GFP_RECLAIM_MASK, dst_mm);
2426 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2427 if (dst_vma->vm_flags & VM_WRITE)
2428 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2431 * We don't set the pte dirty if the vma has no
2432 * VM_WRITE permission, so mark the page dirty or it
2433 * could be freed from under us. We could do it
2434 * unconditionally before unlock_page(), but doing it
2435 * only if VM_WRITE is not set is faster.
2437 set_page_dirty(page);
2440 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2443 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2444 if (unlikely(offset >= max_off))
2445 goto out_release_unlock;
2448 if (!pte_none(*dst_pte))
2449 goto out_release_unlock;
2451 lru_cache_add(page);
2453 spin_lock_irq(&info->lock);
2455 inode->i_blocks += BLOCKS_PER_PAGE;
2456 shmem_recalc_inode(inode);
2457 spin_unlock_irq(&info->lock);
2459 inc_mm_counter(dst_mm, mm_counter_file(page));
2460 page_add_file_rmap(page, false);
2461 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2463 /* No need to invalidate - it was non-present before */
2464 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2465 pte_unmap_unlock(dst_pte, ptl);
2471 pte_unmap_unlock(dst_pte, ptl);
2472 ClearPageDirty(page);
2473 delete_from_page_cache(page);
2478 shmem_inode_unacct_blocks(inode, 1);
2482 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2484 struct vm_area_struct *dst_vma,
2485 unsigned long dst_addr,
2486 unsigned long src_addr,
2487 struct page **pagep)
2489 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2490 dst_addr, src_addr, false, pagep);
2493 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2495 struct vm_area_struct *dst_vma,
2496 unsigned long dst_addr)
2498 struct page *page = NULL;
2500 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2501 dst_addr, 0, true, &page);
2505 static const struct inode_operations shmem_symlink_inode_operations;
2506 static const struct inode_operations shmem_short_symlink_operations;
2508 #ifdef CONFIG_TMPFS_XATTR
2509 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2511 #define shmem_initxattrs NULL
2515 shmem_write_begin(struct file *file, struct address_space *mapping,
2516 loff_t pos, unsigned len, unsigned flags,
2517 struct page **pagep, void **fsdata)
2519 struct inode *inode = mapping->host;
2520 struct shmem_inode_info *info = SHMEM_I(inode);
2521 pgoff_t index = pos >> PAGE_SHIFT;
2523 /* i_mutex is held by caller */
2524 if (unlikely(info->seals & (F_SEAL_GROW |
2525 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2526 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2528 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2532 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2536 shmem_write_end(struct file *file, struct address_space *mapping,
2537 loff_t pos, unsigned len, unsigned copied,
2538 struct page *page, void *fsdata)
2540 struct inode *inode = mapping->host;
2542 if (pos + copied > inode->i_size)
2543 i_size_write(inode, pos + copied);
2545 if (!PageUptodate(page)) {
2546 struct page *head = compound_head(page);
2547 if (PageTransCompound(page)) {
2550 for (i = 0; i < HPAGE_PMD_NR; i++) {
2551 if (head + i == page)
2553 clear_highpage(head + i);
2554 flush_dcache_page(head + i);
2557 if (copied < PAGE_SIZE) {
2558 unsigned from = pos & (PAGE_SIZE - 1);
2559 zero_user_segments(page, 0, from,
2560 from + copied, PAGE_SIZE);
2562 SetPageUptodate(head);
2564 set_page_dirty(page);
2571 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2573 struct file *file = iocb->ki_filp;
2574 struct inode *inode = file_inode(file);
2575 struct address_space *mapping = inode->i_mapping;
2577 unsigned long offset;
2578 enum sgp_type sgp = SGP_READ;
2581 loff_t *ppos = &iocb->ki_pos;
2584 * Might this read be for a stacking filesystem? Then when reading
2585 * holes of a sparse file, we actually need to allocate those pages,
2586 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2588 if (!iter_is_iovec(to))
2591 index = *ppos >> PAGE_SHIFT;
2592 offset = *ppos & ~PAGE_MASK;
2595 struct page *page = NULL;
2597 unsigned long nr, ret;
2598 loff_t i_size = i_size_read(inode);
2600 end_index = i_size >> PAGE_SHIFT;
2601 if (index > end_index)
2603 if (index == end_index) {
2604 nr = i_size & ~PAGE_MASK;
2609 error = shmem_getpage(inode, index, &page, sgp);
2611 if (error == -EINVAL)
2616 if (sgp == SGP_CACHE)
2617 set_page_dirty(page);
2622 * We must evaluate after, since reads (unlike writes)
2623 * are called without i_mutex protection against truncate
2626 i_size = i_size_read(inode);
2627 end_index = i_size >> PAGE_SHIFT;
2628 if (index == end_index) {
2629 nr = i_size & ~PAGE_MASK;
2640 * If users can be writing to this page using arbitrary
2641 * virtual addresses, take care about potential aliasing
2642 * before reading the page on the kernel side.
2644 if (mapping_writably_mapped(mapping))
2645 flush_dcache_page(page);
2647 * Mark the page accessed if we read the beginning.
2650 mark_page_accessed(page);
2652 page = ZERO_PAGE(0);
2657 * Ok, we have the page, and it's up-to-date, so
2658 * now we can copy it to user space...
2660 ret = copy_page_to_iter(page, offset, nr, to);
2663 index += offset >> PAGE_SHIFT;
2664 offset &= ~PAGE_MASK;
2667 if (!iov_iter_count(to))
2676 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2677 file_accessed(file);
2678 return retval ? retval : error;
2682 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2684 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2685 pgoff_t index, pgoff_t end, int whence)
2688 struct pagevec pvec;
2689 pgoff_t indices[PAGEVEC_SIZE];
2693 pagevec_init(&pvec);
2694 pvec.nr = 1; /* start small: we may be there already */
2696 pvec.nr = find_get_entries(mapping, index,
2697 pvec.nr, pvec.pages, indices);
2699 if (whence == SEEK_DATA)
2703 for (i = 0; i < pvec.nr; i++, index++) {
2704 if (index < indices[i]) {
2705 if (whence == SEEK_HOLE) {
2711 page = pvec.pages[i];
2712 if (page && !xa_is_value(page)) {
2713 if (!PageUptodate(page))
2717 (page && whence == SEEK_DATA) ||
2718 (!page && whence == SEEK_HOLE)) {
2723 pagevec_remove_exceptionals(&pvec);
2724 pagevec_release(&pvec);
2725 pvec.nr = PAGEVEC_SIZE;
2731 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2733 struct address_space *mapping = file->f_mapping;
2734 struct inode *inode = mapping->host;
2738 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2739 return generic_file_llseek_size(file, offset, whence,
2740 MAX_LFS_FILESIZE, i_size_read(inode));
2742 /* We're holding i_mutex so we can access i_size directly */
2744 if (offset < 0 || offset >= inode->i_size)
2747 start = offset >> PAGE_SHIFT;
2748 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2749 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2750 new_offset <<= PAGE_SHIFT;
2751 if (new_offset > offset) {
2752 if (new_offset < inode->i_size)
2753 offset = new_offset;
2754 else if (whence == SEEK_DATA)
2757 offset = inode->i_size;
2762 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2763 inode_unlock(inode);
2767 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2770 struct inode *inode = file_inode(file);
2771 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2772 struct shmem_inode_info *info = SHMEM_I(inode);
2773 struct shmem_falloc shmem_falloc;
2774 pgoff_t start, index, end;
2777 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2782 if (mode & FALLOC_FL_PUNCH_HOLE) {
2783 struct address_space *mapping = file->f_mapping;
2784 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2785 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2786 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2788 /* protected by i_mutex */
2789 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2794 shmem_falloc.waitq = &shmem_falloc_waitq;
2795 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2796 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2797 spin_lock(&inode->i_lock);
2798 inode->i_private = &shmem_falloc;
2799 spin_unlock(&inode->i_lock);
2801 if ((u64)unmap_end > (u64)unmap_start)
2802 unmap_mapping_range(mapping, unmap_start,
2803 1 + unmap_end - unmap_start, 0);
2804 shmem_truncate_range(inode, offset, offset + len - 1);
2805 /* No need to unmap again: hole-punching leaves COWed pages */
2807 spin_lock(&inode->i_lock);
2808 inode->i_private = NULL;
2809 wake_up_all(&shmem_falloc_waitq);
2810 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2811 spin_unlock(&inode->i_lock);
2816 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2817 error = inode_newsize_ok(inode, offset + len);
2821 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2826 start = offset >> PAGE_SHIFT;
2827 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2828 /* Try to avoid a swapstorm if len is impossible to satisfy */
2829 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2834 shmem_falloc.waitq = NULL;
2835 shmem_falloc.start = start;
2836 shmem_falloc.next = start;
2837 shmem_falloc.nr_falloced = 0;
2838 shmem_falloc.nr_unswapped = 0;
2839 spin_lock(&inode->i_lock);
2840 inode->i_private = &shmem_falloc;
2841 spin_unlock(&inode->i_lock);
2843 for (index = start; index < end; index++) {
2847 * Good, the fallocate(2) manpage permits EINTR: we may have
2848 * been interrupted because we are using up too much memory.
2850 if (signal_pending(current))
2852 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2855 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2857 /* Remove the !PageUptodate pages we added */
2858 if (index > start) {
2859 shmem_undo_range(inode,
2860 (loff_t)start << PAGE_SHIFT,
2861 ((loff_t)index << PAGE_SHIFT) - 1, true);
2867 * Inform shmem_writepage() how far we have reached.
2868 * No need for lock or barrier: we have the page lock.
2870 shmem_falloc.next++;
2871 if (!PageUptodate(page))
2872 shmem_falloc.nr_falloced++;
2875 * If !PageUptodate, leave it that way so that freeable pages
2876 * can be recognized if we need to rollback on error later.
2877 * But set_page_dirty so that memory pressure will swap rather
2878 * than free the pages we are allocating (and SGP_CACHE pages
2879 * might still be clean: we now need to mark those dirty too).
2881 set_page_dirty(page);
2887 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2888 i_size_write(inode, offset + len);
2889 inode->i_ctime = current_time(inode);
2891 spin_lock(&inode->i_lock);
2892 inode->i_private = NULL;
2893 spin_unlock(&inode->i_lock);
2895 inode_unlock(inode);
2899 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2901 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2903 buf->f_type = TMPFS_MAGIC;
2904 buf->f_bsize = PAGE_SIZE;
2905 buf->f_namelen = NAME_MAX;
2906 if (sbinfo->max_blocks) {
2907 buf->f_blocks = sbinfo->max_blocks;
2909 buf->f_bfree = sbinfo->max_blocks -
2910 percpu_counter_sum(&sbinfo->used_blocks);
2912 if (sbinfo->max_inodes) {
2913 buf->f_files = sbinfo->max_inodes;
2914 buf->f_ffree = sbinfo->free_inodes;
2916 /* else leave those fields 0 like simple_statfs */
2921 * File creation. Allocate an inode, and we're done..
2924 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2926 struct inode *inode;
2927 int error = -ENOSPC;
2929 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2931 error = simple_acl_create(dir, inode);
2934 error = security_inode_init_security(inode, dir,
2936 shmem_initxattrs, NULL);
2937 if (error && error != -EOPNOTSUPP)
2941 dir->i_size += BOGO_DIRENT_SIZE;
2942 dir->i_ctime = dir->i_mtime = current_time(dir);
2943 d_instantiate(dentry, inode);
2944 dget(dentry); /* Extra count - pin the dentry in core */
2953 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2955 struct inode *inode;
2956 int error = -ENOSPC;
2958 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2960 error = security_inode_init_security(inode, dir,
2962 shmem_initxattrs, NULL);
2963 if (error && error != -EOPNOTSUPP)
2965 error = simple_acl_create(dir, inode);
2968 d_tmpfile(dentry, inode);
2976 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2980 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2986 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2989 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2995 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2997 struct inode *inode = d_inode(old_dentry);
3001 * No ordinary (disk based) filesystem counts links as inodes;
3002 * but each new link needs a new dentry, pinning lowmem, and
3003 * tmpfs dentries cannot be pruned until they are unlinked.
3004 * But if an O_TMPFILE file is linked into the tmpfs, the
3005 * first link must skip that, to get the accounting right.
3007 if (inode->i_nlink) {
3008 ret = shmem_reserve_inode(inode->i_sb, NULL);
3013 dir->i_size += BOGO_DIRENT_SIZE;
3014 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3016 ihold(inode); /* New dentry reference */
3017 dget(dentry); /* Extra pinning count for the created dentry */
3018 d_instantiate(dentry, inode);
3023 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3025 struct inode *inode = d_inode(dentry);
3027 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3028 shmem_free_inode(inode->i_sb);
3030 dir->i_size -= BOGO_DIRENT_SIZE;
3031 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3033 dput(dentry); /* Undo the count from "create" - this does all the work */
3037 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3039 if (!simple_empty(dentry))
3042 drop_nlink(d_inode(dentry));
3044 return shmem_unlink(dir, dentry);
3047 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3049 bool old_is_dir = d_is_dir(old_dentry);
3050 bool new_is_dir = d_is_dir(new_dentry);
3052 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3054 drop_nlink(old_dir);
3057 drop_nlink(new_dir);
3061 old_dir->i_ctime = old_dir->i_mtime =
3062 new_dir->i_ctime = new_dir->i_mtime =
3063 d_inode(old_dentry)->i_ctime =
3064 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3069 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3071 struct dentry *whiteout;
3074 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3078 error = shmem_mknod(old_dir, whiteout,
3079 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3085 * Cheat and hash the whiteout while the old dentry is still in
3086 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3088 * d_lookup() will consistently find one of them at this point,
3089 * not sure which one, but that isn't even important.
3096 * The VFS layer already does all the dentry stuff for rename,
3097 * we just have to decrement the usage count for the target if
3098 * it exists so that the VFS layer correctly free's it when it
3101 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3103 struct inode *inode = d_inode(old_dentry);
3104 int they_are_dirs = S_ISDIR(inode->i_mode);
3106 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3109 if (flags & RENAME_EXCHANGE)
3110 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3112 if (!simple_empty(new_dentry))
3115 if (flags & RENAME_WHITEOUT) {
3118 error = shmem_whiteout(old_dir, old_dentry);
3123 if (d_really_is_positive(new_dentry)) {
3124 (void) shmem_unlink(new_dir, new_dentry);
3125 if (they_are_dirs) {
3126 drop_nlink(d_inode(new_dentry));
3127 drop_nlink(old_dir);
3129 } else if (they_are_dirs) {
3130 drop_nlink(old_dir);
3134 old_dir->i_size -= BOGO_DIRENT_SIZE;
3135 new_dir->i_size += BOGO_DIRENT_SIZE;
3136 old_dir->i_ctime = old_dir->i_mtime =
3137 new_dir->i_ctime = new_dir->i_mtime =
3138 inode->i_ctime = current_time(old_dir);
3142 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3146 struct inode *inode;
3149 len = strlen(symname) + 1;
3150 if (len > PAGE_SIZE)
3151 return -ENAMETOOLONG;
3153 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3158 error = security_inode_init_security(inode, dir, &dentry->d_name,
3159 shmem_initxattrs, NULL);
3160 if (error && error != -EOPNOTSUPP) {
3165 inode->i_size = len-1;
3166 if (len <= SHORT_SYMLINK_LEN) {
3167 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3168 if (!inode->i_link) {
3172 inode->i_op = &shmem_short_symlink_operations;
3174 inode_nohighmem(inode);
3175 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3180 inode->i_mapping->a_ops = &shmem_aops;
3181 inode->i_op = &shmem_symlink_inode_operations;
3182 memcpy(page_address(page), symname, len);
3183 SetPageUptodate(page);
3184 set_page_dirty(page);
3188 dir->i_size += BOGO_DIRENT_SIZE;
3189 dir->i_ctime = dir->i_mtime = current_time(dir);
3190 d_instantiate(dentry, inode);
3195 static void shmem_put_link(void *arg)
3197 mark_page_accessed(arg);
3201 static const char *shmem_get_link(struct dentry *dentry,
3202 struct inode *inode,
3203 struct delayed_call *done)
3205 struct page *page = NULL;
3208 page = find_get_page(inode->i_mapping, 0);
3210 return ERR_PTR(-ECHILD);
3211 if (!PageUptodate(page)) {
3213 return ERR_PTR(-ECHILD);
3216 error = shmem_getpage(inode, 0, &page, SGP_READ);
3218 return ERR_PTR(error);
3221 set_delayed_call(done, shmem_put_link, page);
3222 return page_address(page);
3225 #ifdef CONFIG_TMPFS_XATTR
3227 * Superblocks without xattr inode operations may get some security.* xattr
3228 * support from the LSM "for free". As soon as we have any other xattrs
3229 * like ACLs, we also need to implement the security.* handlers at
3230 * filesystem level, though.
3234 * Callback for security_inode_init_security() for acquiring xattrs.
3236 static int shmem_initxattrs(struct inode *inode,
3237 const struct xattr *xattr_array,
3240 struct shmem_inode_info *info = SHMEM_I(inode);
3241 const struct xattr *xattr;
3242 struct simple_xattr *new_xattr;
3245 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3246 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3250 len = strlen(xattr->name) + 1;
3251 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3253 if (!new_xattr->name) {
3258 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3259 XATTR_SECURITY_PREFIX_LEN);
3260 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3263 simple_xattr_list_add(&info->xattrs, new_xattr);
3269 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3270 struct dentry *unused, struct inode *inode,
3271 const char *name, void *buffer, size_t size)
3273 struct shmem_inode_info *info = SHMEM_I(inode);
3275 name = xattr_full_name(handler, name);
3276 return simple_xattr_get(&info->xattrs, name, buffer, size);
3279 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3280 struct dentry *unused, struct inode *inode,
3281 const char *name, const void *value,
3282 size_t size, int flags)
3284 struct shmem_inode_info *info = SHMEM_I(inode);
3286 name = xattr_full_name(handler, name);
3287 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3290 static const struct xattr_handler shmem_security_xattr_handler = {
3291 .prefix = XATTR_SECURITY_PREFIX,
3292 .get = shmem_xattr_handler_get,
3293 .set = shmem_xattr_handler_set,
3296 static const struct xattr_handler shmem_trusted_xattr_handler = {
3297 .prefix = XATTR_TRUSTED_PREFIX,
3298 .get = shmem_xattr_handler_get,
3299 .set = shmem_xattr_handler_set,
3302 static const struct xattr_handler *shmem_xattr_handlers[] = {
3303 #ifdef CONFIG_TMPFS_POSIX_ACL
3304 &posix_acl_access_xattr_handler,
3305 &posix_acl_default_xattr_handler,
3307 &shmem_security_xattr_handler,
3308 &shmem_trusted_xattr_handler,
3312 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3314 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3315 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3317 #endif /* CONFIG_TMPFS_XATTR */
3319 static const struct inode_operations shmem_short_symlink_operations = {
3320 .get_link = simple_get_link,
3321 #ifdef CONFIG_TMPFS_XATTR
3322 .listxattr = shmem_listxattr,
3326 static const struct inode_operations shmem_symlink_inode_operations = {
3327 .get_link = shmem_get_link,
3328 #ifdef CONFIG_TMPFS_XATTR
3329 .listxattr = shmem_listxattr,
3333 static struct dentry *shmem_get_parent(struct dentry *child)
3335 return ERR_PTR(-ESTALE);
3338 static int shmem_match(struct inode *ino, void *vfh)
3342 inum = (inum << 32) | fh[1];
3343 return ino->i_ino == inum && fh[0] == ino->i_generation;
3346 /* Find any alias of inode, but prefer a hashed alias */
3347 static struct dentry *shmem_find_alias(struct inode *inode)
3349 struct dentry *alias = d_find_alias(inode);
3351 return alias ?: d_find_any_alias(inode);
3355 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3356 struct fid *fid, int fh_len, int fh_type)
3358 struct inode *inode;
3359 struct dentry *dentry = NULL;
3366 inum = (inum << 32) | fid->raw[1];
3368 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3369 shmem_match, fid->raw);
3371 dentry = shmem_find_alias(inode);
3378 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3379 struct inode *parent)
3383 return FILEID_INVALID;
3386 if (inode_unhashed(inode)) {
3387 /* Unfortunately insert_inode_hash is not idempotent,
3388 * so as we hash inodes here rather than at creation
3389 * time, we need a lock to ensure we only try
3392 static DEFINE_SPINLOCK(lock);
3394 if (inode_unhashed(inode))
3395 __insert_inode_hash(inode,
3396 inode->i_ino + inode->i_generation);
3400 fh[0] = inode->i_generation;
3401 fh[1] = inode->i_ino;
3402 fh[2] = ((__u64)inode->i_ino) >> 32;
3408 static const struct export_operations shmem_export_ops = {
3409 .get_parent = shmem_get_parent,
3410 .encode_fh = shmem_encode_fh,
3411 .fh_to_dentry = shmem_fh_to_dentry,
3427 static const struct constant_table shmem_param_enums_huge[] = {
3428 {"never", SHMEM_HUGE_NEVER },
3429 {"always", SHMEM_HUGE_ALWAYS },
3430 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3431 {"advise", SHMEM_HUGE_ADVISE },
3435 const struct fs_parameter_spec shmem_fs_parameters[] = {
3436 fsparam_u32 ("gid", Opt_gid),
3437 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3438 fsparam_u32oct("mode", Opt_mode),
3439 fsparam_string("mpol", Opt_mpol),
3440 fsparam_string("nr_blocks", Opt_nr_blocks),
3441 fsparam_string("nr_inodes", Opt_nr_inodes),
3442 fsparam_string("size", Opt_size),
3443 fsparam_u32 ("uid", Opt_uid),
3444 fsparam_flag ("inode32", Opt_inode32),
3445 fsparam_flag ("inode64", Opt_inode64),
3449 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3451 struct shmem_options *ctx = fc->fs_private;
3452 struct fs_parse_result result;
3453 unsigned long long size;
3457 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3463 size = memparse(param->string, &rest);
3465 size <<= PAGE_SHIFT;
3466 size *= totalram_pages();
3472 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3473 ctx->seen |= SHMEM_SEEN_BLOCKS;
3476 ctx->blocks = memparse(param->string, &rest);
3479 ctx->seen |= SHMEM_SEEN_BLOCKS;
3482 ctx->inodes = memparse(param->string, &rest);
3485 ctx->seen |= SHMEM_SEEN_INODES;
3488 ctx->mode = result.uint_32 & 07777;
3491 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3492 if (!uid_valid(ctx->uid))
3496 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3497 if (!gid_valid(ctx->gid))
3501 ctx->huge = result.uint_32;
3502 if (ctx->huge != SHMEM_HUGE_NEVER &&
3503 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3504 has_transparent_hugepage()))
3505 goto unsupported_parameter;
3506 ctx->seen |= SHMEM_SEEN_HUGE;
3509 if (IS_ENABLED(CONFIG_NUMA)) {
3510 mpol_put(ctx->mpol);
3512 if (mpol_parse_str(param->string, &ctx->mpol))
3516 goto unsupported_parameter;
3518 ctx->full_inums = false;
3519 ctx->seen |= SHMEM_SEEN_INUMS;
3522 if (sizeof(ino_t) < 8) {
3524 "Cannot use inode64 with <64bit inums in kernel\n");
3526 ctx->full_inums = true;
3527 ctx->seen |= SHMEM_SEEN_INUMS;
3532 unsupported_parameter:
3533 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3535 return invalfc(fc, "Bad value for '%s'", param->key);
3538 static int shmem_parse_options(struct fs_context *fc, void *data)
3540 char *options = data;
3543 int err = security_sb_eat_lsm_opts(options, &fc->security);
3548 while (options != NULL) {
3549 char *this_char = options;
3552 * NUL-terminate this option: unfortunately,
3553 * mount options form a comma-separated list,
3554 * but mpol's nodelist may also contain commas.
3556 options = strchr(options, ',');
3557 if (options == NULL)
3560 if (!isdigit(*options)) {
3566 char *value = strchr(this_char,'=');
3572 len = strlen(value);
3574 err = vfs_parse_fs_string(fc, this_char, value, len);
3583 * Reconfigure a shmem filesystem.
3585 * Note that we disallow change from limited->unlimited blocks/inodes while any
3586 * are in use; but we must separately disallow unlimited->limited, because in
3587 * that case we have no record of how much is already in use.
3589 static int shmem_reconfigure(struct fs_context *fc)
3591 struct shmem_options *ctx = fc->fs_private;
3592 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3593 unsigned long inodes;
3596 spin_lock(&sbinfo->stat_lock);
3597 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3598 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3599 if (!sbinfo->max_blocks) {
3600 err = "Cannot retroactively limit size";
3603 if (percpu_counter_compare(&sbinfo->used_blocks,
3605 err = "Too small a size for current use";
3609 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3610 if (!sbinfo->max_inodes) {
3611 err = "Cannot retroactively limit inodes";
3614 if (ctx->inodes < inodes) {
3615 err = "Too few inodes for current use";
3620 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3621 sbinfo->next_ino > UINT_MAX) {
3622 err = "Current inum too high to switch to 32-bit inums";
3626 if (ctx->seen & SHMEM_SEEN_HUGE)
3627 sbinfo->huge = ctx->huge;
3628 if (ctx->seen & SHMEM_SEEN_INUMS)
3629 sbinfo->full_inums = ctx->full_inums;
3630 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3631 sbinfo->max_blocks = ctx->blocks;
3632 if (ctx->seen & SHMEM_SEEN_INODES) {
3633 sbinfo->max_inodes = ctx->inodes;
3634 sbinfo->free_inodes = ctx->inodes - inodes;
3638 * Preserve previous mempolicy unless mpol remount option was specified.
3641 mpol_put(sbinfo->mpol);
3642 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3645 spin_unlock(&sbinfo->stat_lock);
3648 spin_unlock(&sbinfo->stat_lock);
3649 return invalfc(fc, "%s", err);
3652 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3654 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3656 if (sbinfo->max_blocks != shmem_default_max_blocks())
3657 seq_printf(seq, ",size=%luk",
3658 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3659 if (sbinfo->max_inodes != shmem_default_max_inodes())
3660 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3661 if (sbinfo->mode != (0777 | S_ISVTX))
3662 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3663 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3664 seq_printf(seq, ",uid=%u",
3665 from_kuid_munged(&init_user_ns, sbinfo->uid));
3666 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3667 seq_printf(seq, ",gid=%u",
3668 from_kgid_munged(&init_user_ns, sbinfo->gid));
3671 * Showing inode{64,32} might be useful even if it's the system default,
3672 * since then people don't have to resort to checking both here and
3673 * /proc/config.gz to confirm 64-bit inums were successfully applied
3674 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3676 * We hide it when inode64 isn't the default and we are using 32-bit
3677 * inodes, since that probably just means the feature isn't even under
3682 * +-----------------+-----------------+
3683 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3684 * +------------------+-----------------+-----------------+
3685 * | full_inums=true | show | show |
3686 * | full_inums=false | show | hide |
3687 * +------------------+-----------------+-----------------+
3690 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3691 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3692 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3693 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3695 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3697 shmem_show_mpol(seq, sbinfo->mpol);
3701 #endif /* CONFIG_TMPFS */
3703 static void shmem_put_super(struct super_block *sb)
3705 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3707 free_percpu(sbinfo->ino_batch);
3708 percpu_counter_destroy(&sbinfo->used_blocks);
3709 mpol_put(sbinfo->mpol);
3711 sb->s_fs_info = NULL;
3714 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3716 struct shmem_options *ctx = fc->fs_private;
3717 struct inode *inode;
3718 struct shmem_sb_info *sbinfo;
3721 /* Round up to L1_CACHE_BYTES to resist false sharing */
3722 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3723 L1_CACHE_BYTES), GFP_KERNEL);
3727 sb->s_fs_info = sbinfo;
3731 * Per default we only allow half of the physical ram per
3732 * tmpfs instance, limiting inodes to one per page of lowmem;
3733 * but the internal instance is left unlimited.
3735 if (!(sb->s_flags & SB_KERNMOUNT)) {
3736 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3737 ctx->blocks = shmem_default_max_blocks();
3738 if (!(ctx->seen & SHMEM_SEEN_INODES))
3739 ctx->inodes = shmem_default_max_inodes();
3740 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3741 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3743 sb->s_flags |= SB_NOUSER;
3745 sb->s_export_op = &shmem_export_ops;
3746 sb->s_flags |= SB_NOSEC;
3748 sb->s_flags |= SB_NOUSER;
3750 sbinfo->max_blocks = ctx->blocks;
3751 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3752 if (sb->s_flags & SB_KERNMOUNT) {
3753 sbinfo->ino_batch = alloc_percpu(ino_t);
3754 if (!sbinfo->ino_batch)
3757 sbinfo->uid = ctx->uid;
3758 sbinfo->gid = ctx->gid;
3759 sbinfo->full_inums = ctx->full_inums;
3760 sbinfo->mode = ctx->mode;
3761 sbinfo->huge = ctx->huge;
3762 sbinfo->mpol = ctx->mpol;
3765 spin_lock_init(&sbinfo->stat_lock);
3766 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3768 spin_lock_init(&sbinfo->shrinklist_lock);
3769 INIT_LIST_HEAD(&sbinfo->shrinklist);
3771 sb->s_maxbytes = MAX_LFS_FILESIZE;
3772 sb->s_blocksize = PAGE_SIZE;
3773 sb->s_blocksize_bits = PAGE_SHIFT;
3774 sb->s_magic = TMPFS_MAGIC;
3775 sb->s_op = &shmem_ops;
3776 sb->s_time_gran = 1;
3777 #ifdef CONFIG_TMPFS_XATTR
3778 sb->s_xattr = shmem_xattr_handlers;
3780 #ifdef CONFIG_TMPFS_POSIX_ACL
3781 sb->s_flags |= SB_POSIXACL;
3783 uuid_gen(&sb->s_uuid);
3785 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3788 inode->i_uid = sbinfo->uid;
3789 inode->i_gid = sbinfo->gid;
3790 sb->s_root = d_make_root(inode);
3796 shmem_put_super(sb);
3800 static int shmem_get_tree(struct fs_context *fc)
3802 return get_tree_nodev(fc, shmem_fill_super);
3805 static void shmem_free_fc(struct fs_context *fc)
3807 struct shmem_options *ctx = fc->fs_private;
3810 mpol_put(ctx->mpol);
3815 static const struct fs_context_operations shmem_fs_context_ops = {
3816 .free = shmem_free_fc,
3817 .get_tree = shmem_get_tree,
3819 .parse_monolithic = shmem_parse_options,
3820 .parse_param = shmem_parse_one,
3821 .reconfigure = shmem_reconfigure,
3825 static struct kmem_cache *shmem_inode_cachep;
3827 static struct inode *shmem_alloc_inode(struct super_block *sb)
3829 struct shmem_inode_info *info;
3830 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3833 return &info->vfs_inode;
3836 static void shmem_free_in_core_inode(struct inode *inode)
3838 if (S_ISLNK(inode->i_mode))
3839 kfree(inode->i_link);
3840 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3843 static void shmem_destroy_inode(struct inode *inode)
3845 if (S_ISREG(inode->i_mode))
3846 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3849 static void shmem_init_inode(void *foo)
3851 struct shmem_inode_info *info = foo;
3852 inode_init_once(&info->vfs_inode);
3855 static void shmem_init_inodecache(void)
3857 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3858 sizeof(struct shmem_inode_info),
3859 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3862 static void shmem_destroy_inodecache(void)
3864 kmem_cache_destroy(shmem_inode_cachep);
3867 static const struct address_space_operations shmem_aops = {
3868 .writepage = shmem_writepage,
3869 .set_page_dirty = __set_page_dirty_no_writeback,
3871 .write_begin = shmem_write_begin,
3872 .write_end = shmem_write_end,
3874 #ifdef CONFIG_MIGRATION
3875 .migratepage = migrate_page,
3877 .error_remove_page = generic_error_remove_page,
3880 static const struct file_operations shmem_file_operations = {
3882 .get_unmapped_area = shmem_get_unmapped_area,
3884 .llseek = shmem_file_llseek,
3885 .read_iter = shmem_file_read_iter,
3886 .write_iter = generic_file_write_iter,
3887 .fsync = noop_fsync,
3888 .splice_read = generic_file_splice_read,
3889 .splice_write = iter_file_splice_write,
3890 .fallocate = shmem_fallocate,
3894 static const struct inode_operations shmem_inode_operations = {
3895 .getattr = shmem_getattr,
3896 .setattr = shmem_setattr,
3897 #ifdef CONFIG_TMPFS_XATTR
3898 .listxattr = shmem_listxattr,
3899 .set_acl = simple_set_acl,
3903 static const struct inode_operations shmem_dir_inode_operations = {
3905 .create = shmem_create,
3906 .lookup = simple_lookup,
3908 .unlink = shmem_unlink,
3909 .symlink = shmem_symlink,
3910 .mkdir = shmem_mkdir,
3911 .rmdir = shmem_rmdir,
3912 .mknod = shmem_mknod,
3913 .rename = shmem_rename2,
3914 .tmpfile = shmem_tmpfile,
3916 #ifdef CONFIG_TMPFS_XATTR
3917 .listxattr = shmem_listxattr,
3919 #ifdef CONFIG_TMPFS_POSIX_ACL
3920 .setattr = shmem_setattr,
3921 .set_acl = simple_set_acl,
3925 static const struct inode_operations shmem_special_inode_operations = {
3926 #ifdef CONFIG_TMPFS_XATTR
3927 .listxattr = shmem_listxattr,
3929 #ifdef CONFIG_TMPFS_POSIX_ACL
3930 .setattr = shmem_setattr,
3931 .set_acl = simple_set_acl,
3935 static const struct super_operations shmem_ops = {
3936 .alloc_inode = shmem_alloc_inode,
3937 .free_inode = shmem_free_in_core_inode,
3938 .destroy_inode = shmem_destroy_inode,
3940 .statfs = shmem_statfs,
3941 .show_options = shmem_show_options,
3943 .evict_inode = shmem_evict_inode,
3944 .drop_inode = generic_delete_inode,
3945 .put_super = shmem_put_super,
3946 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3947 .nr_cached_objects = shmem_unused_huge_count,
3948 .free_cached_objects = shmem_unused_huge_scan,
3952 static const struct vm_operations_struct shmem_vm_ops = {
3953 .fault = shmem_fault,
3954 .map_pages = filemap_map_pages,
3956 .set_policy = shmem_set_policy,
3957 .get_policy = shmem_get_policy,
3961 int shmem_init_fs_context(struct fs_context *fc)
3963 struct shmem_options *ctx;
3965 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3969 ctx->mode = 0777 | S_ISVTX;
3970 ctx->uid = current_fsuid();
3971 ctx->gid = current_fsgid();
3973 fc->fs_private = ctx;
3974 fc->ops = &shmem_fs_context_ops;
3978 static struct file_system_type shmem_fs_type = {
3979 .owner = THIS_MODULE,
3981 .init_fs_context = shmem_init_fs_context,
3983 .parameters = shmem_fs_parameters,
3985 .kill_sb = kill_litter_super,
3986 .fs_flags = FS_USERNS_MOUNT,
3989 int __init shmem_init(void)
3993 shmem_init_inodecache();
3995 error = register_filesystem(&shmem_fs_type);
3997 pr_err("Could not register tmpfs\n");
4001 shm_mnt = kern_mount(&shmem_fs_type);
4002 if (IS_ERR(shm_mnt)) {
4003 error = PTR_ERR(shm_mnt);
4004 pr_err("Could not kern_mount tmpfs\n");
4008 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4009 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4010 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4012 shmem_huge = 0; /* just in case it was patched */
4017 unregister_filesystem(&shmem_fs_type);
4019 shmem_destroy_inodecache();
4020 shm_mnt = ERR_PTR(error);
4024 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4025 static ssize_t shmem_enabled_show(struct kobject *kobj,
4026 struct kobj_attribute *attr, char *buf)
4028 static const int values[] = {
4030 SHMEM_HUGE_WITHIN_SIZE,
4038 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4039 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4041 count += sprintf(buf + count, fmt,
4042 shmem_format_huge(values[i]));
4044 buf[count - 1] = '\n';
4048 static ssize_t shmem_enabled_store(struct kobject *kobj,
4049 struct kobj_attribute *attr, const char *buf, size_t count)
4054 if (count + 1 > sizeof(tmp))
4056 memcpy(tmp, buf, count);
4058 if (count && tmp[count - 1] == '\n')
4059 tmp[count - 1] = '\0';
4061 huge = shmem_parse_huge(tmp);
4062 if (huge == -EINVAL)
4064 if (!has_transparent_hugepage() &&
4065 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4069 if (shmem_huge > SHMEM_HUGE_DENY)
4070 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4074 struct kobj_attribute shmem_enabled_attr =
4075 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4076 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4078 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4079 bool shmem_huge_enabled(struct vm_area_struct *vma)
4081 struct inode *inode = file_inode(vma->vm_file);
4082 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4086 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4087 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4089 if (shmem_huge == SHMEM_HUGE_FORCE)
4091 if (shmem_huge == SHMEM_HUGE_DENY)
4093 switch (sbinfo->huge) {
4094 case SHMEM_HUGE_NEVER:
4096 case SHMEM_HUGE_ALWAYS:
4098 case SHMEM_HUGE_WITHIN_SIZE:
4099 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4100 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4101 if (i_size >= HPAGE_PMD_SIZE &&
4102 i_size >> PAGE_SHIFT >= off)
4105 case SHMEM_HUGE_ADVISE:
4106 /* TODO: implement fadvise() hints */
4107 return (vma->vm_flags & VM_HUGEPAGE);
4113 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4115 #else /* !CONFIG_SHMEM */
4118 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4120 * This is intended for small system where the benefits of the full
4121 * shmem code (swap-backed and resource-limited) are outweighed by
4122 * their complexity. On systems without swap this code should be
4123 * effectively equivalent, but much lighter weight.
4126 static struct file_system_type shmem_fs_type = {
4128 .init_fs_context = ramfs_init_fs_context,
4129 .parameters = ramfs_fs_parameters,
4130 .kill_sb = kill_litter_super,
4131 .fs_flags = FS_USERNS_MOUNT,
4134 int __init shmem_init(void)
4136 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4138 shm_mnt = kern_mount(&shmem_fs_type);
4139 BUG_ON(IS_ERR(shm_mnt));
4144 int shmem_unuse(unsigned int type, bool frontswap,
4145 unsigned long *fs_pages_to_unuse)
4150 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4155 void shmem_unlock_mapping(struct address_space *mapping)
4160 unsigned long shmem_get_unmapped_area(struct file *file,
4161 unsigned long addr, unsigned long len,
4162 unsigned long pgoff, unsigned long flags)
4164 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4168 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4170 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4172 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4174 #define shmem_vm_ops generic_file_vm_ops
4175 #define shmem_file_operations ramfs_file_operations
4176 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4177 #define shmem_acct_size(flags, size) 0
4178 #define shmem_unacct_size(flags, size) do {} while (0)
4180 #endif /* CONFIG_SHMEM */
4184 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4185 unsigned long flags, unsigned int i_flags)
4187 struct inode *inode;
4191 return ERR_CAST(mnt);
4193 if (size < 0 || size > MAX_LFS_FILESIZE)
4194 return ERR_PTR(-EINVAL);
4196 if (shmem_acct_size(flags, size))
4197 return ERR_PTR(-ENOMEM);
4199 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4201 if (unlikely(!inode)) {
4202 shmem_unacct_size(flags, size);
4203 return ERR_PTR(-ENOSPC);
4205 inode->i_flags |= i_flags;
4206 inode->i_size = size;
4207 clear_nlink(inode); /* It is unlinked */
4208 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4210 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4211 &shmem_file_operations);
4218 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4219 * kernel internal. There will be NO LSM permission checks against the
4220 * underlying inode. So users of this interface must do LSM checks at a
4221 * higher layer. The users are the big_key and shm implementations. LSM
4222 * checks are provided at the key or shm level rather than the inode.
4223 * @name: name for dentry (to be seen in /proc/<pid>/maps
4224 * @size: size to be set for the file
4225 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4227 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4229 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4233 * shmem_file_setup - get an unlinked file living in tmpfs
4234 * @name: name for dentry (to be seen in /proc/<pid>/maps
4235 * @size: size to be set for the file
4236 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4238 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4240 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4242 EXPORT_SYMBOL_GPL(shmem_file_setup);
4245 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4246 * @mnt: the tmpfs mount where the file will be created
4247 * @name: name for dentry (to be seen in /proc/<pid>/maps
4248 * @size: size to be set for the file
4249 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4251 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4252 loff_t size, unsigned long flags)
4254 return __shmem_file_setup(mnt, name, size, flags, 0);
4256 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4259 * shmem_zero_setup - setup a shared anonymous mapping
4260 * @vma: the vma to be mmapped is prepared by do_mmap
4262 int shmem_zero_setup(struct vm_area_struct *vma)
4265 loff_t size = vma->vm_end - vma->vm_start;
4268 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4269 * between XFS directory reading and selinux: since this file is only
4270 * accessible to the user through its mapping, use S_PRIVATE flag to
4271 * bypass file security, in the same way as shmem_kernel_file_setup().
4273 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4275 return PTR_ERR(file);
4279 vma->vm_file = file;
4280 vma->vm_ops = &shmem_vm_ops;
4282 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4283 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4284 (vma->vm_end & HPAGE_PMD_MASK)) {
4285 khugepaged_enter(vma, vma->vm_flags);
4292 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4293 * @mapping: the page's address_space
4294 * @index: the page index
4295 * @gfp: the page allocator flags to use if allocating
4297 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4298 * with any new page allocations done using the specified allocation flags.
4299 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4300 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4301 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4303 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4304 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4306 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4307 pgoff_t index, gfp_t gfp)
4310 struct inode *inode = mapping->host;
4314 BUG_ON(mapping->a_ops != &shmem_aops);
4315 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4316 gfp, NULL, NULL, NULL);
4318 page = ERR_PTR(error);
4324 * The tiny !SHMEM case uses ramfs without swap
4326 return read_cache_page_gfp(mapping, index, gfp);
4329 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);