]> Git Repo - linux.git/blob - kernel/bpf/btf.c
Merge tag 'exfat-for-5.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/linki...
[linux.git] / kernel / bpf / btf.c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/kobject.h>
26 #include <linux/sysfs.h>
27 #include <net/sock.h>
28 #include "../tools/lib/bpf/relo_core.h"
29
30 /* BTF (BPF Type Format) is the meta data format which describes
31  * the data types of BPF program/map.  Hence, it basically focus
32  * on the C programming language which the modern BPF is primary
33  * using.
34  *
35  * ELF Section:
36  * ~~~~~~~~~~~
37  * The BTF data is stored under the ".BTF" ELF section
38  *
39  * struct btf_type:
40  * ~~~~~~~~~~~~~~~
41  * Each 'struct btf_type' object describes a C data type.
42  * Depending on the type it is describing, a 'struct btf_type'
43  * object may be followed by more data.  F.e.
44  * To describe an array, 'struct btf_type' is followed by
45  * 'struct btf_array'.
46  *
47  * 'struct btf_type' and any extra data following it are
48  * 4 bytes aligned.
49  *
50  * Type section:
51  * ~~~~~~~~~~~~~
52  * The BTF type section contains a list of 'struct btf_type' objects.
53  * Each one describes a C type.  Recall from the above section
54  * that a 'struct btf_type' object could be immediately followed by extra
55  * data in order to describe some particular C types.
56  *
57  * type_id:
58  * ~~~~~~~
59  * Each btf_type object is identified by a type_id.  The type_id
60  * is implicitly implied by the location of the btf_type object in
61  * the BTF type section.  The first one has type_id 1.  The second
62  * one has type_id 2...etc.  Hence, an earlier btf_type has
63  * a smaller type_id.
64  *
65  * A btf_type object may refer to another btf_type object by using
66  * type_id (i.e. the "type" in the "struct btf_type").
67  *
68  * NOTE that we cannot assume any reference-order.
69  * A btf_type object can refer to an earlier btf_type object
70  * but it can also refer to a later btf_type object.
71  *
72  * For example, to describe "const void *".  A btf_type
73  * object describing "const" may refer to another btf_type
74  * object describing "void *".  This type-reference is done
75  * by specifying type_id:
76  *
77  * [1] CONST (anon) type_id=2
78  * [2] PTR (anon) type_id=0
79  *
80  * The above is the btf_verifier debug log:
81  *   - Each line started with "[?]" is a btf_type object
82  *   - [?] is the type_id of the btf_type object.
83  *   - CONST/PTR is the BTF_KIND_XXX
84  *   - "(anon)" is the name of the type.  It just
85  *     happens that CONST and PTR has no name.
86  *   - type_id=XXX is the 'u32 type' in btf_type
87  *
88  * NOTE: "void" has type_id 0
89  *
90  * String section:
91  * ~~~~~~~~~~~~~~
92  * The BTF string section contains the names used by the type section.
93  * Each string is referred by an "offset" from the beginning of the
94  * string section.
95  *
96  * Each string is '\0' terminated.
97  *
98  * The first character in the string section must be '\0'
99  * which is used to mean 'anonymous'. Some btf_type may not
100  * have a name.
101  */
102
103 /* BTF verification:
104  *
105  * To verify BTF data, two passes are needed.
106  *
107  * Pass #1
108  * ~~~~~~~
109  * The first pass is to collect all btf_type objects to
110  * an array: "btf->types".
111  *
112  * Depending on the C type that a btf_type is describing,
113  * a btf_type may be followed by extra data.  We don't know
114  * how many btf_type is there, and more importantly we don't
115  * know where each btf_type is located in the type section.
116  *
117  * Without knowing the location of each type_id, most verifications
118  * cannot be done.  e.g. an earlier btf_type may refer to a later
119  * btf_type (recall the "const void *" above), so we cannot
120  * check this type-reference in the first pass.
121  *
122  * In the first pass, it still does some verifications (e.g.
123  * checking the name is a valid offset to the string section).
124  *
125  * Pass #2
126  * ~~~~~~~
127  * The main focus is to resolve a btf_type that is referring
128  * to another type.
129  *
130  * We have to ensure the referring type:
131  * 1) does exist in the BTF (i.e. in btf->types[])
132  * 2) does not cause a loop:
133  *      struct A {
134  *              struct B b;
135  *      };
136  *
137  *      struct B {
138  *              struct A a;
139  *      };
140  *
141  * btf_type_needs_resolve() decides if a btf_type needs
142  * to be resolved.
143  *
144  * The needs_resolve type implements the "resolve()" ops which
145  * essentially does a DFS and detects backedge.
146  *
147  * During resolve (or DFS), different C types have different
148  * "RESOLVED" conditions.
149  *
150  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
151  * members because a member is always referring to another
152  * type.  A struct's member can be treated as "RESOLVED" if
153  * it is referring to a BTF_KIND_PTR.  Otherwise, the
154  * following valid C struct would be rejected:
155  *
156  *      struct A {
157  *              int m;
158  *              struct A *a;
159  *      };
160  *
161  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
162  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
163  * detect a pointer loop, e.g.:
164  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
165  *                        ^                                         |
166  *                        +-----------------------------------------+
167  *
168  */
169
170 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
171 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
172 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
173 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
174 #define BITS_ROUNDUP_BYTES(bits) \
175         (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
176
177 #define BTF_INFO_MASK 0x9f00ffff
178 #define BTF_INT_MASK 0x0fffffff
179 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
180 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
181
182 /* 16MB for 64k structs and each has 16 members and
183  * a few MB spaces for the string section.
184  * The hard limit is S32_MAX.
185  */
186 #define BTF_MAX_SIZE (16 * 1024 * 1024)
187
188 #define for_each_member_from(i, from, struct_type, member)              \
189         for (i = from, member = btf_type_member(struct_type) + from;    \
190              i < btf_type_vlen(struct_type);                            \
191              i++, member++)
192
193 #define for_each_vsi_from(i, from, struct_type, member)                         \
194         for (i = from, member = btf_type_var_secinfo(struct_type) + from;       \
195              i < btf_type_vlen(struct_type);                                    \
196              i++, member++)
197
198 DEFINE_IDR(btf_idr);
199 DEFINE_SPINLOCK(btf_idr_lock);
200
201 struct btf {
202         void *data;
203         struct btf_type **types;
204         u32 *resolved_ids;
205         u32 *resolved_sizes;
206         const char *strings;
207         void *nohdr_data;
208         struct btf_header hdr;
209         u32 nr_types; /* includes VOID for base BTF */
210         u32 types_size;
211         u32 data_size;
212         refcount_t refcnt;
213         u32 id;
214         struct rcu_head rcu;
215
216         /* split BTF support */
217         struct btf *base_btf;
218         u32 start_id; /* first type ID in this BTF (0 for base BTF) */
219         u32 start_str_off; /* first string offset (0 for base BTF) */
220         char name[MODULE_NAME_LEN];
221         bool kernel_btf;
222 };
223
224 enum verifier_phase {
225         CHECK_META,
226         CHECK_TYPE,
227 };
228
229 struct resolve_vertex {
230         const struct btf_type *t;
231         u32 type_id;
232         u16 next_member;
233 };
234
235 enum visit_state {
236         NOT_VISITED,
237         VISITED,
238         RESOLVED,
239 };
240
241 enum resolve_mode {
242         RESOLVE_TBD,    /* To Be Determined */
243         RESOLVE_PTR,    /* Resolving for Pointer */
244         RESOLVE_STRUCT_OR_ARRAY,        /* Resolving for struct/union
245                                          * or array
246                                          */
247 };
248
249 #define MAX_RESOLVE_DEPTH 32
250
251 struct btf_sec_info {
252         u32 off;
253         u32 len;
254 };
255
256 struct btf_verifier_env {
257         struct btf *btf;
258         u8 *visit_states;
259         struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
260         struct bpf_verifier_log log;
261         u32 log_type_id;
262         u32 top_stack;
263         enum verifier_phase phase;
264         enum resolve_mode resolve_mode;
265 };
266
267 static const char * const btf_kind_str[NR_BTF_KINDS] = {
268         [BTF_KIND_UNKN]         = "UNKNOWN",
269         [BTF_KIND_INT]          = "INT",
270         [BTF_KIND_PTR]          = "PTR",
271         [BTF_KIND_ARRAY]        = "ARRAY",
272         [BTF_KIND_STRUCT]       = "STRUCT",
273         [BTF_KIND_UNION]        = "UNION",
274         [BTF_KIND_ENUM]         = "ENUM",
275         [BTF_KIND_FWD]          = "FWD",
276         [BTF_KIND_TYPEDEF]      = "TYPEDEF",
277         [BTF_KIND_VOLATILE]     = "VOLATILE",
278         [BTF_KIND_CONST]        = "CONST",
279         [BTF_KIND_RESTRICT]     = "RESTRICT",
280         [BTF_KIND_FUNC]         = "FUNC",
281         [BTF_KIND_FUNC_PROTO]   = "FUNC_PROTO",
282         [BTF_KIND_VAR]          = "VAR",
283         [BTF_KIND_DATASEC]      = "DATASEC",
284         [BTF_KIND_FLOAT]        = "FLOAT",
285         [BTF_KIND_DECL_TAG]     = "DECL_TAG",
286         [BTF_KIND_TYPE_TAG]     = "TYPE_TAG",
287 };
288
289 const char *btf_type_str(const struct btf_type *t)
290 {
291         return btf_kind_str[BTF_INFO_KIND(t->info)];
292 }
293
294 /* Chunk size we use in safe copy of data to be shown. */
295 #define BTF_SHOW_OBJ_SAFE_SIZE          32
296
297 /*
298  * This is the maximum size of a base type value (equivalent to a
299  * 128-bit int); if we are at the end of our safe buffer and have
300  * less than 16 bytes space we can't be assured of being able
301  * to copy the next type safely, so in such cases we will initiate
302  * a new copy.
303  */
304 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE     16
305
306 /* Type name size */
307 #define BTF_SHOW_NAME_SIZE              80
308
309 /*
310  * Common data to all BTF show operations. Private show functions can add
311  * their own data to a structure containing a struct btf_show and consult it
312  * in the show callback.  See btf_type_show() below.
313  *
314  * One challenge with showing nested data is we want to skip 0-valued
315  * data, but in order to figure out whether a nested object is all zeros
316  * we need to walk through it.  As a result, we need to make two passes
317  * when handling structs, unions and arrays; the first path simply looks
318  * for nonzero data, while the second actually does the display.  The first
319  * pass is signalled by show->state.depth_check being set, and if we
320  * encounter a non-zero value we set show->state.depth_to_show to
321  * the depth at which we encountered it.  When we have completed the
322  * first pass, we will know if anything needs to be displayed if
323  * depth_to_show > depth.  See btf_[struct,array]_show() for the
324  * implementation of this.
325  *
326  * Another problem is we want to ensure the data for display is safe to
327  * access.  To support this, the anonymous "struct {} obj" tracks the data
328  * object and our safe copy of it.  We copy portions of the data needed
329  * to the object "copy" buffer, but because its size is limited to
330  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
331  * traverse larger objects for display.
332  *
333  * The various data type show functions all start with a call to
334  * btf_show_start_type() which returns a pointer to the safe copy
335  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
336  * raw data itself).  btf_show_obj_safe() is responsible for
337  * using copy_from_kernel_nofault() to update the safe data if necessary
338  * as we traverse the object's data.  skbuff-like semantics are
339  * used:
340  *
341  * - obj.head points to the start of the toplevel object for display
342  * - obj.size is the size of the toplevel object
343  * - obj.data points to the current point in the original data at
344  *   which our safe data starts.  obj.data will advance as we copy
345  *   portions of the data.
346  *
347  * In most cases a single copy will suffice, but larger data structures
348  * such as "struct task_struct" will require many copies.  The logic in
349  * btf_show_obj_safe() handles the logic that determines if a new
350  * copy_from_kernel_nofault() is needed.
351  */
352 struct btf_show {
353         u64 flags;
354         void *target;   /* target of show operation (seq file, buffer) */
355         void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
356         const struct btf *btf;
357         /* below are used during iteration */
358         struct {
359                 u8 depth;
360                 u8 depth_to_show;
361                 u8 depth_check;
362                 u8 array_member:1,
363                    array_terminated:1;
364                 u16 array_encoding;
365                 u32 type_id;
366                 int status;                     /* non-zero for error */
367                 const struct btf_type *type;
368                 const struct btf_member *member;
369                 char name[BTF_SHOW_NAME_SIZE];  /* space for member name/type */
370         } state;
371         struct {
372                 u32 size;
373                 void *head;
374                 void *data;
375                 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
376         } obj;
377 };
378
379 struct btf_kind_operations {
380         s32 (*check_meta)(struct btf_verifier_env *env,
381                           const struct btf_type *t,
382                           u32 meta_left);
383         int (*resolve)(struct btf_verifier_env *env,
384                        const struct resolve_vertex *v);
385         int (*check_member)(struct btf_verifier_env *env,
386                             const struct btf_type *struct_type,
387                             const struct btf_member *member,
388                             const struct btf_type *member_type);
389         int (*check_kflag_member)(struct btf_verifier_env *env,
390                                   const struct btf_type *struct_type,
391                                   const struct btf_member *member,
392                                   const struct btf_type *member_type);
393         void (*log_details)(struct btf_verifier_env *env,
394                             const struct btf_type *t);
395         void (*show)(const struct btf *btf, const struct btf_type *t,
396                          u32 type_id, void *data, u8 bits_offsets,
397                          struct btf_show *show);
398 };
399
400 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
401 static struct btf_type btf_void;
402
403 static int btf_resolve(struct btf_verifier_env *env,
404                        const struct btf_type *t, u32 type_id);
405
406 static bool btf_type_is_modifier(const struct btf_type *t)
407 {
408         /* Some of them is not strictly a C modifier
409          * but they are grouped into the same bucket
410          * for BTF concern:
411          *   A type (t) that refers to another
412          *   type through t->type AND its size cannot
413          *   be determined without following the t->type.
414          *
415          * ptr does not fall into this bucket
416          * because its size is always sizeof(void *).
417          */
418         switch (BTF_INFO_KIND(t->info)) {
419         case BTF_KIND_TYPEDEF:
420         case BTF_KIND_VOLATILE:
421         case BTF_KIND_CONST:
422         case BTF_KIND_RESTRICT:
423         case BTF_KIND_TYPE_TAG:
424                 return true;
425         }
426
427         return false;
428 }
429
430 bool btf_type_is_void(const struct btf_type *t)
431 {
432         return t == &btf_void;
433 }
434
435 static bool btf_type_is_fwd(const struct btf_type *t)
436 {
437         return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
438 }
439
440 static bool btf_type_nosize(const struct btf_type *t)
441 {
442         return btf_type_is_void(t) || btf_type_is_fwd(t) ||
443                btf_type_is_func(t) || btf_type_is_func_proto(t);
444 }
445
446 static bool btf_type_nosize_or_null(const struct btf_type *t)
447 {
448         return !t || btf_type_nosize(t);
449 }
450
451 static bool __btf_type_is_struct(const struct btf_type *t)
452 {
453         return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
454 }
455
456 static bool btf_type_is_array(const struct btf_type *t)
457 {
458         return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
459 }
460
461 static bool btf_type_is_datasec(const struct btf_type *t)
462 {
463         return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
464 }
465
466 static bool btf_type_is_decl_tag(const struct btf_type *t)
467 {
468         return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
469 }
470
471 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
472 {
473         return btf_type_is_func(t) || btf_type_is_struct(t) ||
474                btf_type_is_var(t) || btf_type_is_typedef(t);
475 }
476
477 u32 btf_nr_types(const struct btf *btf)
478 {
479         u32 total = 0;
480
481         while (btf) {
482                 total += btf->nr_types;
483                 btf = btf->base_btf;
484         }
485
486         return total;
487 }
488
489 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
490 {
491         const struct btf_type *t;
492         const char *tname;
493         u32 i, total;
494
495         total = btf_nr_types(btf);
496         for (i = 1; i < total; i++) {
497                 t = btf_type_by_id(btf, i);
498                 if (BTF_INFO_KIND(t->info) != kind)
499                         continue;
500
501                 tname = btf_name_by_offset(btf, t->name_off);
502                 if (!strcmp(tname, name))
503                         return i;
504         }
505
506         return -ENOENT;
507 }
508
509 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
510                                                u32 id, u32 *res_id)
511 {
512         const struct btf_type *t = btf_type_by_id(btf, id);
513
514         while (btf_type_is_modifier(t)) {
515                 id = t->type;
516                 t = btf_type_by_id(btf, t->type);
517         }
518
519         if (res_id)
520                 *res_id = id;
521
522         return t;
523 }
524
525 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
526                                             u32 id, u32 *res_id)
527 {
528         const struct btf_type *t;
529
530         t = btf_type_skip_modifiers(btf, id, NULL);
531         if (!btf_type_is_ptr(t))
532                 return NULL;
533
534         return btf_type_skip_modifiers(btf, t->type, res_id);
535 }
536
537 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
538                                                  u32 id, u32 *res_id)
539 {
540         const struct btf_type *ptype;
541
542         ptype = btf_type_resolve_ptr(btf, id, res_id);
543         if (ptype && btf_type_is_func_proto(ptype))
544                 return ptype;
545
546         return NULL;
547 }
548
549 /* Types that act only as a source, not sink or intermediate
550  * type when resolving.
551  */
552 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
553 {
554         return btf_type_is_var(t) ||
555                btf_type_is_decl_tag(t) ||
556                btf_type_is_datasec(t);
557 }
558
559 /* What types need to be resolved?
560  *
561  * btf_type_is_modifier() is an obvious one.
562  *
563  * btf_type_is_struct() because its member refers to
564  * another type (through member->type).
565  *
566  * btf_type_is_var() because the variable refers to
567  * another type. btf_type_is_datasec() holds multiple
568  * btf_type_is_var() types that need resolving.
569  *
570  * btf_type_is_array() because its element (array->type)
571  * refers to another type.  Array can be thought of a
572  * special case of struct while array just has the same
573  * member-type repeated by array->nelems of times.
574  */
575 static bool btf_type_needs_resolve(const struct btf_type *t)
576 {
577         return btf_type_is_modifier(t) ||
578                btf_type_is_ptr(t) ||
579                btf_type_is_struct(t) ||
580                btf_type_is_array(t) ||
581                btf_type_is_var(t) ||
582                btf_type_is_decl_tag(t) ||
583                btf_type_is_datasec(t);
584 }
585
586 /* t->size can be used */
587 static bool btf_type_has_size(const struct btf_type *t)
588 {
589         switch (BTF_INFO_KIND(t->info)) {
590         case BTF_KIND_INT:
591         case BTF_KIND_STRUCT:
592         case BTF_KIND_UNION:
593         case BTF_KIND_ENUM:
594         case BTF_KIND_DATASEC:
595         case BTF_KIND_FLOAT:
596                 return true;
597         }
598
599         return false;
600 }
601
602 static const char *btf_int_encoding_str(u8 encoding)
603 {
604         if (encoding == 0)
605                 return "(none)";
606         else if (encoding == BTF_INT_SIGNED)
607                 return "SIGNED";
608         else if (encoding == BTF_INT_CHAR)
609                 return "CHAR";
610         else if (encoding == BTF_INT_BOOL)
611                 return "BOOL";
612         else
613                 return "UNKN";
614 }
615
616 static u32 btf_type_int(const struct btf_type *t)
617 {
618         return *(u32 *)(t + 1);
619 }
620
621 static const struct btf_array *btf_type_array(const struct btf_type *t)
622 {
623         return (const struct btf_array *)(t + 1);
624 }
625
626 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
627 {
628         return (const struct btf_enum *)(t + 1);
629 }
630
631 static const struct btf_var *btf_type_var(const struct btf_type *t)
632 {
633         return (const struct btf_var *)(t + 1);
634 }
635
636 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
637 {
638         return (const struct btf_decl_tag *)(t + 1);
639 }
640
641 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
642 {
643         return kind_ops[BTF_INFO_KIND(t->info)];
644 }
645
646 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
647 {
648         if (!BTF_STR_OFFSET_VALID(offset))
649                 return false;
650
651         while (offset < btf->start_str_off)
652                 btf = btf->base_btf;
653
654         offset -= btf->start_str_off;
655         return offset < btf->hdr.str_len;
656 }
657
658 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
659 {
660         if ((first ? !isalpha(c) :
661                      !isalnum(c)) &&
662             c != '_' &&
663             ((c == '.' && !dot_ok) ||
664               c != '.'))
665                 return false;
666         return true;
667 }
668
669 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
670 {
671         while (offset < btf->start_str_off)
672                 btf = btf->base_btf;
673
674         offset -= btf->start_str_off;
675         if (offset < btf->hdr.str_len)
676                 return &btf->strings[offset];
677
678         return NULL;
679 }
680
681 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
682 {
683         /* offset must be valid */
684         const char *src = btf_str_by_offset(btf, offset);
685         const char *src_limit;
686
687         if (!__btf_name_char_ok(*src, true, dot_ok))
688                 return false;
689
690         /* set a limit on identifier length */
691         src_limit = src + KSYM_NAME_LEN;
692         src++;
693         while (*src && src < src_limit) {
694                 if (!__btf_name_char_ok(*src, false, dot_ok))
695                         return false;
696                 src++;
697         }
698
699         return !*src;
700 }
701
702 /* Only C-style identifier is permitted. This can be relaxed if
703  * necessary.
704  */
705 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
706 {
707         return __btf_name_valid(btf, offset, false);
708 }
709
710 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
711 {
712         return __btf_name_valid(btf, offset, true);
713 }
714
715 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
716 {
717         const char *name;
718
719         if (!offset)
720                 return "(anon)";
721
722         name = btf_str_by_offset(btf, offset);
723         return name ?: "(invalid-name-offset)";
724 }
725
726 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
727 {
728         return btf_str_by_offset(btf, offset);
729 }
730
731 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
732 {
733         while (type_id < btf->start_id)
734                 btf = btf->base_btf;
735
736         type_id -= btf->start_id;
737         if (type_id >= btf->nr_types)
738                 return NULL;
739         return btf->types[type_id];
740 }
741
742 /*
743  * Regular int is not a bit field and it must be either
744  * u8/u16/u32/u64 or __int128.
745  */
746 static bool btf_type_int_is_regular(const struct btf_type *t)
747 {
748         u8 nr_bits, nr_bytes;
749         u32 int_data;
750
751         int_data = btf_type_int(t);
752         nr_bits = BTF_INT_BITS(int_data);
753         nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
754         if (BITS_PER_BYTE_MASKED(nr_bits) ||
755             BTF_INT_OFFSET(int_data) ||
756             (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
757              nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
758              nr_bytes != (2 * sizeof(u64)))) {
759                 return false;
760         }
761
762         return true;
763 }
764
765 /*
766  * Check that given struct member is a regular int with expected
767  * offset and size.
768  */
769 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
770                            const struct btf_member *m,
771                            u32 expected_offset, u32 expected_size)
772 {
773         const struct btf_type *t;
774         u32 id, int_data;
775         u8 nr_bits;
776
777         id = m->type;
778         t = btf_type_id_size(btf, &id, NULL);
779         if (!t || !btf_type_is_int(t))
780                 return false;
781
782         int_data = btf_type_int(t);
783         nr_bits = BTF_INT_BITS(int_data);
784         if (btf_type_kflag(s)) {
785                 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
786                 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
787
788                 /* if kflag set, int should be a regular int and
789                  * bit offset should be at byte boundary.
790                  */
791                 return !bitfield_size &&
792                        BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
793                        BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
794         }
795
796         if (BTF_INT_OFFSET(int_data) ||
797             BITS_PER_BYTE_MASKED(m->offset) ||
798             BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
799             BITS_PER_BYTE_MASKED(nr_bits) ||
800             BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
801                 return false;
802
803         return true;
804 }
805
806 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
807 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
808                                                        u32 id)
809 {
810         const struct btf_type *t = btf_type_by_id(btf, id);
811
812         while (btf_type_is_modifier(t) &&
813                BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
814                 t = btf_type_by_id(btf, t->type);
815         }
816
817         return t;
818 }
819
820 #define BTF_SHOW_MAX_ITER       10
821
822 #define BTF_KIND_BIT(kind)      (1ULL << kind)
823
824 /*
825  * Populate show->state.name with type name information.
826  * Format of type name is
827  *
828  * [.member_name = ] (type_name)
829  */
830 static const char *btf_show_name(struct btf_show *show)
831 {
832         /* BTF_MAX_ITER array suffixes "[]" */
833         const char *array_suffixes = "[][][][][][][][][][]";
834         const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
835         /* BTF_MAX_ITER pointer suffixes "*" */
836         const char *ptr_suffixes = "**********";
837         const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
838         const char *name = NULL, *prefix = "", *parens = "";
839         const struct btf_member *m = show->state.member;
840         const struct btf_type *t;
841         const struct btf_array *array;
842         u32 id = show->state.type_id;
843         const char *member = NULL;
844         bool show_member = false;
845         u64 kinds = 0;
846         int i;
847
848         show->state.name[0] = '\0';
849
850         /*
851          * Don't show type name if we're showing an array member;
852          * in that case we show the array type so don't need to repeat
853          * ourselves for each member.
854          */
855         if (show->state.array_member)
856                 return "";
857
858         /* Retrieve member name, if any. */
859         if (m) {
860                 member = btf_name_by_offset(show->btf, m->name_off);
861                 show_member = strlen(member) > 0;
862                 id = m->type;
863         }
864
865         /*
866          * Start with type_id, as we have resolved the struct btf_type *
867          * via btf_modifier_show() past the parent typedef to the child
868          * struct, int etc it is defined as.  In such cases, the type_id
869          * still represents the starting type while the struct btf_type *
870          * in our show->state points at the resolved type of the typedef.
871          */
872         t = btf_type_by_id(show->btf, id);
873         if (!t)
874                 return "";
875
876         /*
877          * The goal here is to build up the right number of pointer and
878          * array suffixes while ensuring the type name for a typedef
879          * is represented.  Along the way we accumulate a list of
880          * BTF kinds we have encountered, since these will inform later
881          * display; for example, pointer types will not require an
882          * opening "{" for struct, we will just display the pointer value.
883          *
884          * We also want to accumulate the right number of pointer or array
885          * indices in the format string while iterating until we get to
886          * the typedef/pointee/array member target type.
887          *
888          * We start by pointing at the end of pointer and array suffix
889          * strings; as we accumulate pointers and arrays we move the pointer
890          * or array string backwards so it will show the expected number of
891          * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
892          * and/or arrays and typedefs are supported as a precaution.
893          *
894          * We also want to get typedef name while proceeding to resolve
895          * type it points to so that we can add parentheses if it is a
896          * "typedef struct" etc.
897          */
898         for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
899
900                 switch (BTF_INFO_KIND(t->info)) {
901                 case BTF_KIND_TYPEDEF:
902                         if (!name)
903                                 name = btf_name_by_offset(show->btf,
904                                                                t->name_off);
905                         kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
906                         id = t->type;
907                         break;
908                 case BTF_KIND_ARRAY:
909                         kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
910                         parens = "[";
911                         if (!t)
912                                 return "";
913                         array = btf_type_array(t);
914                         if (array_suffix > array_suffixes)
915                                 array_suffix -= 2;
916                         id = array->type;
917                         break;
918                 case BTF_KIND_PTR:
919                         kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
920                         if (ptr_suffix > ptr_suffixes)
921                                 ptr_suffix -= 1;
922                         id = t->type;
923                         break;
924                 default:
925                         id = 0;
926                         break;
927                 }
928                 if (!id)
929                         break;
930                 t = btf_type_skip_qualifiers(show->btf, id);
931         }
932         /* We may not be able to represent this type; bail to be safe */
933         if (i == BTF_SHOW_MAX_ITER)
934                 return "";
935
936         if (!name)
937                 name = btf_name_by_offset(show->btf, t->name_off);
938
939         switch (BTF_INFO_KIND(t->info)) {
940         case BTF_KIND_STRUCT:
941         case BTF_KIND_UNION:
942                 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
943                          "struct" : "union";
944                 /* if it's an array of struct/union, parens is already set */
945                 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
946                         parens = "{";
947                 break;
948         case BTF_KIND_ENUM:
949                 prefix = "enum";
950                 break;
951         default:
952                 break;
953         }
954
955         /* pointer does not require parens */
956         if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
957                 parens = "";
958         /* typedef does not require struct/union/enum prefix */
959         if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
960                 prefix = "";
961
962         if (!name)
963                 name = "";
964
965         /* Even if we don't want type name info, we want parentheses etc */
966         if (show->flags & BTF_SHOW_NONAME)
967                 snprintf(show->state.name, sizeof(show->state.name), "%s",
968                          parens);
969         else
970                 snprintf(show->state.name, sizeof(show->state.name),
971                          "%s%s%s(%s%s%s%s%s%s)%s",
972                          /* first 3 strings comprise ".member = " */
973                          show_member ? "." : "",
974                          show_member ? member : "",
975                          show_member ? " = " : "",
976                          /* ...next is our prefix (struct, enum, etc) */
977                          prefix,
978                          strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
979                          /* ...this is the type name itself */
980                          name,
981                          /* ...suffixed by the appropriate '*', '[]' suffixes */
982                          strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
983                          array_suffix, parens);
984
985         return show->state.name;
986 }
987
988 static const char *__btf_show_indent(struct btf_show *show)
989 {
990         const char *indents = "                                ";
991         const char *indent = &indents[strlen(indents)];
992
993         if ((indent - show->state.depth) >= indents)
994                 return indent - show->state.depth;
995         return indents;
996 }
997
998 static const char *btf_show_indent(struct btf_show *show)
999 {
1000         return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1001 }
1002
1003 static const char *btf_show_newline(struct btf_show *show)
1004 {
1005         return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1006 }
1007
1008 static const char *btf_show_delim(struct btf_show *show)
1009 {
1010         if (show->state.depth == 0)
1011                 return "";
1012
1013         if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1014                 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1015                 return "|";
1016
1017         return ",";
1018 }
1019
1020 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1021 {
1022         va_list args;
1023
1024         if (!show->state.depth_check) {
1025                 va_start(args, fmt);
1026                 show->showfn(show, fmt, args);
1027                 va_end(args);
1028         }
1029 }
1030
1031 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1032  * format specifiers to the format specifier passed in; these do the work of
1033  * adding indentation, delimiters etc while the caller simply has to specify
1034  * the type value(s) in the format specifier + value(s).
1035  */
1036 #define btf_show_type_value(show, fmt, value)                                  \
1037         do {                                                                   \
1038                 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||           \
1039                     show->state.depth == 0) {                                  \
1040                         btf_show(show, "%s%s" fmt "%s%s",                      \
1041                                  btf_show_indent(show),                        \
1042                                  btf_show_name(show),                          \
1043                                  value, btf_show_delim(show),                  \
1044                                  btf_show_newline(show));                      \
1045                         if (show->state.depth > show->state.depth_to_show)     \
1046                                 show->state.depth_to_show = show->state.depth; \
1047                 }                                                              \
1048         } while (0)
1049
1050 #define btf_show_type_values(show, fmt, ...)                                   \
1051         do {                                                                   \
1052                 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1053                          btf_show_name(show),                                  \
1054                          __VA_ARGS__, btf_show_delim(show),                    \
1055                          btf_show_newline(show));                              \
1056                 if (show->state.depth > show->state.depth_to_show)             \
1057                         show->state.depth_to_show = show->state.depth;         \
1058         } while (0)
1059
1060 /* How much is left to copy to safe buffer after @data? */
1061 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1062 {
1063         return show->obj.head + show->obj.size - data;
1064 }
1065
1066 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1067 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1068 {
1069         return data >= show->obj.data &&
1070                (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1071 }
1072
1073 /*
1074  * If object pointed to by @data of @size falls within our safe buffer, return
1075  * the equivalent pointer to the same safe data.  Assumes
1076  * copy_from_kernel_nofault() has already happened and our safe buffer is
1077  * populated.
1078  */
1079 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1080 {
1081         if (btf_show_obj_is_safe(show, data, size))
1082                 return show->obj.safe + (data - show->obj.data);
1083         return NULL;
1084 }
1085
1086 /*
1087  * Return a safe-to-access version of data pointed to by @data.
1088  * We do this by copying the relevant amount of information
1089  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1090  *
1091  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1092  * safe copy is needed.
1093  *
1094  * Otherwise we need to determine if we have the required amount
1095  * of data (determined by the @data pointer and the size of the
1096  * largest base type we can encounter (represented by
1097  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1098  * that we will be able to print some of the current object,
1099  * and if more is needed a copy will be triggered.
1100  * Some objects such as structs will not fit into the buffer;
1101  * in such cases additional copies when we iterate over their
1102  * members may be needed.
1103  *
1104  * btf_show_obj_safe() is used to return a safe buffer for
1105  * btf_show_start_type(); this ensures that as we recurse into
1106  * nested types we always have safe data for the given type.
1107  * This approach is somewhat wasteful; it's possible for example
1108  * that when iterating over a large union we'll end up copying the
1109  * same data repeatedly, but the goal is safety not performance.
1110  * We use stack data as opposed to per-CPU buffers because the
1111  * iteration over a type can take some time, and preemption handling
1112  * would greatly complicate use of the safe buffer.
1113  */
1114 static void *btf_show_obj_safe(struct btf_show *show,
1115                                const struct btf_type *t,
1116                                void *data)
1117 {
1118         const struct btf_type *rt;
1119         int size_left, size;
1120         void *safe = NULL;
1121
1122         if (show->flags & BTF_SHOW_UNSAFE)
1123                 return data;
1124
1125         rt = btf_resolve_size(show->btf, t, &size);
1126         if (IS_ERR(rt)) {
1127                 show->state.status = PTR_ERR(rt);
1128                 return NULL;
1129         }
1130
1131         /*
1132          * Is this toplevel object? If so, set total object size and
1133          * initialize pointers.  Otherwise check if we still fall within
1134          * our safe object data.
1135          */
1136         if (show->state.depth == 0) {
1137                 show->obj.size = size;
1138                 show->obj.head = data;
1139         } else {
1140                 /*
1141                  * If the size of the current object is > our remaining
1142                  * safe buffer we _may_ need to do a new copy.  However
1143                  * consider the case of a nested struct; it's size pushes
1144                  * us over the safe buffer limit, but showing any individual
1145                  * struct members does not.  In such cases, we don't need
1146                  * to initiate a fresh copy yet; however we definitely need
1147                  * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1148                  * in our buffer, regardless of the current object size.
1149                  * The logic here is that as we resolve types we will
1150                  * hit a base type at some point, and we need to be sure
1151                  * the next chunk of data is safely available to display
1152                  * that type info safely.  We cannot rely on the size of
1153                  * the current object here because it may be much larger
1154                  * than our current buffer (e.g. task_struct is 8k).
1155                  * All we want to do here is ensure that we can print the
1156                  * next basic type, which we can if either
1157                  * - the current type size is within the safe buffer; or
1158                  * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1159                  *   the safe buffer.
1160                  */
1161                 safe = __btf_show_obj_safe(show, data,
1162                                            min(size,
1163                                                BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1164         }
1165
1166         /*
1167          * We need a new copy to our safe object, either because we haven't
1168          * yet copied and are initializing safe data, or because the data
1169          * we want falls outside the boundaries of the safe object.
1170          */
1171         if (!safe) {
1172                 size_left = btf_show_obj_size_left(show, data);
1173                 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1174                         size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1175                 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1176                                                               data, size_left);
1177                 if (!show->state.status) {
1178                         show->obj.data = data;
1179                         safe = show->obj.safe;
1180                 }
1181         }
1182
1183         return safe;
1184 }
1185
1186 /*
1187  * Set the type we are starting to show and return a safe data pointer
1188  * to be used for showing the associated data.
1189  */
1190 static void *btf_show_start_type(struct btf_show *show,
1191                                  const struct btf_type *t,
1192                                  u32 type_id, void *data)
1193 {
1194         show->state.type = t;
1195         show->state.type_id = type_id;
1196         show->state.name[0] = '\0';
1197
1198         return btf_show_obj_safe(show, t, data);
1199 }
1200
1201 static void btf_show_end_type(struct btf_show *show)
1202 {
1203         show->state.type = NULL;
1204         show->state.type_id = 0;
1205         show->state.name[0] = '\0';
1206 }
1207
1208 static void *btf_show_start_aggr_type(struct btf_show *show,
1209                                       const struct btf_type *t,
1210                                       u32 type_id, void *data)
1211 {
1212         void *safe_data = btf_show_start_type(show, t, type_id, data);
1213
1214         if (!safe_data)
1215                 return safe_data;
1216
1217         btf_show(show, "%s%s%s", btf_show_indent(show),
1218                  btf_show_name(show),
1219                  btf_show_newline(show));
1220         show->state.depth++;
1221         return safe_data;
1222 }
1223
1224 static void btf_show_end_aggr_type(struct btf_show *show,
1225                                    const char *suffix)
1226 {
1227         show->state.depth--;
1228         btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1229                  btf_show_delim(show), btf_show_newline(show));
1230         btf_show_end_type(show);
1231 }
1232
1233 static void btf_show_start_member(struct btf_show *show,
1234                                   const struct btf_member *m)
1235 {
1236         show->state.member = m;
1237 }
1238
1239 static void btf_show_start_array_member(struct btf_show *show)
1240 {
1241         show->state.array_member = 1;
1242         btf_show_start_member(show, NULL);
1243 }
1244
1245 static void btf_show_end_member(struct btf_show *show)
1246 {
1247         show->state.member = NULL;
1248 }
1249
1250 static void btf_show_end_array_member(struct btf_show *show)
1251 {
1252         show->state.array_member = 0;
1253         btf_show_end_member(show);
1254 }
1255
1256 static void *btf_show_start_array_type(struct btf_show *show,
1257                                        const struct btf_type *t,
1258                                        u32 type_id,
1259                                        u16 array_encoding,
1260                                        void *data)
1261 {
1262         show->state.array_encoding = array_encoding;
1263         show->state.array_terminated = 0;
1264         return btf_show_start_aggr_type(show, t, type_id, data);
1265 }
1266
1267 static void btf_show_end_array_type(struct btf_show *show)
1268 {
1269         show->state.array_encoding = 0;
1270         show->state.array_terminated = 0;
1271         btf_show_end_aggr_type(show, "]");
1272 }
1273
1274 static void *btf_show_start_struct_type(struct btf_show *show,
1275                                         const struct btf_type *t,
1276                                         u32 type_id,
1277                                         void *data)
1278 {
1279         return btf_show_start_aggr_type(show, t, type_id, data);
1280 }
1281
1282 static void btf_show_end_struct_type(struct btf_show *show)
1283 {
1284         btf_show_end_aggr_type(show, "}");
1285 }
1286
1287 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1288                                               const char *fmt, ...)
1289 {
1290         va_list args;
1291
1292         va_start(args, fmt);
1293         bpf_verifier_vlog(log, fmt, args);
1294         va_end(args);
1295 }
1296
1297 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1298                                             const char *fmt, ...)
1299 {
1300         struct bpf_verifier_log *log = &env->log;
1301         va_list args;
1302
1303         if (!bpf_verifier_log_needed(log))
1304                 return;
1305
1306         va_start(args, fmt);
1307         bpf_verifier_vlog(log, fmt, args);
1308         va_end(args);
1309 }
1310
1311 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1312                                                    const struct btf_type *t,
1313                                                    bool log_details,
1314                                                    const char *fmt, ...)
1315 {
1316         struct bpf_verifier_log *log = &env->log;
1317         u8 kind = BTF_INFO_KIND(t->info);
1318         struct btf *btf = env->btf;
1319         va_list args;
1320
1321         if (!bpf_verifier_log_needed(log))
1322                 return;
1323
1324         /* btf verifier prints all types it is processing via
1325          * btf_verifier_log_type(..., fmt = NULL).
1326          * Skip those prints for in-kernel BTF verification.
1327          */
1328         if (log->level == BPF_LOG_KERNEL && !fmt)
1329                 return;
1330
1331         __btf_verifier_log(log, "[%u] %s %s%s",
1332                            env->log_type_id,
1333                            btf_kind_str[kind],
1334                            __btf_name_by_offset(btf, t->name_off),
1335                            log_details ? " " : "");
1336
1337         if (log_details)
1338                 btf_type_ops(t)->log_details(env, t);
1339
1340         if (fmt && *fmt) {
1341                 __btf_verifier_log(log, " ");
1342                 va_start(args, fmt);
1343                 bpf_verifier_vlog(log, fmt, args);
1344                 va_end(args);
1345         }
1346
1347         __btf_verifier_log(log, "\n");
1348 }
1349
1350 #define btf_verifier_log_type(env, t, ...) \
1351         __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1352 #define btf_verifier_log_basic(env, t, ...) \
1353         __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1354
1355 __printf(4, 5)
1356 static void btf_verifier_log_member(struct btf_verifier_env *env,
1357                                     const struct btf_type *struct_type,
1358                                     const struct btf_member *member,
1359                                     const char *fmt, ...)
1360 {
1361         struct bpf_verifier_log *log = &env->log;
1362         struct btf *btf = env->btf;
1363         va_list args;
1364
1365         if (!bpf_verifier_log_needed(log))
1366                 return;
1367
1368         if (log->level == BPF_LOG_KERNEL && !fmt)
1369                 return;
1370         /* The CHECK_META phase already did a btf dump.
1371          *
1372          * If member is logged again, it must hit an error in
1373          * parsing this member.  It is useful to print out which
1374          * struct this member belongs to.
1375          */
1376         if (env->phase != CHECK_META)
1377                 btf_verifier_log_type(env, struct_type, NULL);
1378
1379         if (btf_type_kflag(struct_type))
1380                 __btf_verifier_log(log,
1381                                    "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1382                                    __btf_name_by_offset(btf, member->name_off),
1383                                    member->type,
1384                                    BTF_MEMBER_BITFIELD_SIZE(member->offset),
1385                                    BTF_MEMBER_BIT_OFFSET(member->offset));
1386         else
1387                 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1388                                    __btf_name_by_offset(btf, member->name_off),
1389                                    member->type, member->offset);
1390
1391         if (fmt && *fmt) {
1392                 __btf_verifier_log(log, " ");
1393                 va_start(args, fmt);
1394                 bpf_verifier_vlog(log, fmt, args);
1395                 va_end(args);
1396         }
1397
1398         __btf_verifier_log(log, "\n");
1399 }
1400
1401 __printf(4, 5)
1402 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1403                                  const struct btf_type *datasec_type,
1404                                  const struct btf_var_secinfo *vsi,
1405                                  const char *fmt, ...)
1406 {
1407         struct bpf_verifier_log *log = &env->log;
1408         va_list args;
1409
1410         if (!bpf_verifier_log_needed(log))
1411                 return;
1412         if (log->level == BPF_LOG_KERNEL && !fmt)
1413                 return;
1414         if (env->phase != CHECK_META)
1415                 btf_verifier_log_type(env, datasec_type, NULL);
1416
1417         __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1418                            vsi->type, vsi->offset, vsi->size);
1419         if (fmt && *fmt) {
1420                 __btf_verifier_log(log, " ");
1421                 va_start(args, fmt);
1422                 bpf_verifier_vlog(log, fmt, args);
1423                 va_end(args);
1424         }
1425
1426         __btf_verifier_log(log, "\n");
1427 }
1428
1429 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1430                                  u32 btf_data_size)
1431 {
1432         struct bpf_verifier_log *log = &env->log;
1433         const struct btf *btf = env->btf;
1434         const struct btf_header *hdr;
1435
1436         if (!bpf_verifier_log_needed(log))
1437                 return;
1438
1439         if (log->level == BPF_LOG_KERNEL)
1440                 return;
1441         hdr = &btf->hdr;
1442         __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1443         __btf_verifier_log(log, "version: %u\n", hdr->version);
1444         __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1445         __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1446         __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1447         __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1448         __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1449         __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1450         __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1451 }
1452
1453 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1454 {
1455         struct btf *btf = env->btf;
1456
1457         if (btf->types_size == btf->nr_types) {
1458                 /* Expand 'types' array */
1459
1460                 struct btf_type **new_types;
1461                 u32 expand_by, new_size;
1462
1463                 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1464                         btf_verifier_log(env, "Exceeded max num of types");
1465                         return -E2BIG;
1466                 }
1467
1468                 expand_by = max_t(u32, btf->types_size >> 2, 16);
1469                 new_size = min_t(u32, BTF_MAX_TYPE,
1470                                  btf->types_size + expand_by);
1471
1472                 new_types = kvcalloc(new_size, sizeof(*new_types),
1473                                      GFP_KERNEL | __GFP_NOWARN);
1474                 if (!new_types)
1475                         return -ENOMEM;
1476
1477                 if (btf->nr_types == 0) {
1478                         if (!btf->base_btf) {
1479                                 /* lazily init VOID type */
1480                                 new_types[0] = &btf_void;
1481                                 btf->nr_types++;
1482                         }
1483                 } else {
1484                         memcpy(new_types, btf->types,
1485                                sizeof(*btf->types) * btf->nr_types);
1486                 }
1487
1488                 kvfree(btf->types);
1489                 btf->types = new_types;
1490                 btf->types_size = new_size;
1491         }
1492
1493         btf->types[btf->nr_types++] = t;
1494
1495         return 0;
1496 }
1497
1498 static int btf_alloc_id(struct btf *btf)
1499 {
1500         int id;
1501
1502         idr_preload(GFP_KERNEL);
1503         spin_lock_bh(&btf_idr_lock);
1504         id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1505         if (id > 0)
1506                 btf->id = id;
1507         spin_unlock_bh(&btf_idr_lock);
1508         idr_preload_end();
1509
1510         if (WARN_ON_ONCE(!id))
1511                 return -ENOSPC;
1512
1513         return id > 0 ? 0 : id;
1514 }
1515
1516 static void btf_free_id(struct btf *btf)
1517 {
1518         unsigned long flags;
1519
1520         /*
1521          * In map-in-map, calling map_delete_elem() on outer
1522          * map will call bpf_map_put on the inner map.
1523          * It will then eventually call btf_free_id()
1524          * on the inner map.  Some of the map_delete_elem()
1525          * implementation may have irq disabled, so
1526          * we need to use the _irqsave() version instead
1527          * of the _bh() version.
1528          */
1529         spin_lock_irqsave(&btf_idr_lock, flags);
1530         idr_remove(&btf_idr, btf->id);
1531         spin_unlock_irqrestore(&btf_idr_lock, flags);
1532 }
1533
1534 static void btf_free(struct btf *btf)
1535 {
1536         kvfree(btf->types);
1537         kvfree(btf->resolved_sizes);
1538         kvfree(btf->resolved_ids);
1539         kvfree(btf->data);
1540         kfree(btf);
1541 }
1542
1543 static void btf_free_rcu(struct rcu_head *rcu)
1544 {
1545         struct btf *btf = container_of(rcu, struct btf, rcu);
1546
1547         btf_free(btf);
1548 }
1549
1550 void btf_get(struct btf *btf)
1551 {
1552         refcount_inc(&btf->refcnt);
1553 }
1554
1555 void btf_put(struct btf *btf)
1556 {
1557         if (btf && refcount_dec_and_test(&btf->refcnt)) {
1558                 btf_free_id(btf);
1559                 call_rcu(&btf->rcu, btf_free_rcu);
1560         }
1561 }
1562
1563 static int env_resolve_init(struct btf_verifier_env *env)
1564 {
1565         struct btf *btf = env->btf;
1566         u32 nr_types = btf->nr_types;
1567         u32 *resolved_sizes = NULL;
1568         u32 *resolved_ids = NULL;
1569         u8 *visit_states = NULL;
1570
1571         resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1572                                   GFP_KERNEL | __GFP_NOWARN);
1573         if (!resolved_sizes)
1574                 goto nomem;
1575
1576         resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1577                                 GFP_KERNEL | __GFP_NOWARN);
1578         if (!resolved_ids)
1579                 goto nomem;
1580
1581         visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1582                                 GFP_KERNEL | __GFP_NOWARN);
1583         if (!visit_states)
1584                 goto nomem;
1585
1586         btf->resolved_sizes = resolved_sizes;
1587         btf->resolved_ids = resolved_ids;
1588         env->visit_states = visit_states;
1589
1590         return 0;
1591
1592 nomem:
1593         kvfree(resolved_sizes);
1594         kvfree(resolved_ids);
1595         kvfree(visit_states);
1596         return -ENOMEM;
1597 }
1598
1599 static void btf_verifier_env_free(struct btf_verifier_env *env)
1600 {
1601         kvfree(env->visit_states);
1602         kfree(env);
1603 }
1604
1605 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1606                                      const struct btf_type *next_type)
1607 {
1608         switch (env->resolve_mode) {
1609         case RESOLVE_TBD:
1610                 /* int, enum or void is a sink */
1611                 return !btf_type_needs_resolve(next_type);
1612         case RESOLVE_PTR:
1613                 /* int, enum, void, struct, array, func or func_proto is a sink
1614                  * for ptr
1615                  */
1616                 return !btf_type_is_modifier(next_type) &&
1617                         !btf_type_is_ptr(next_type);
1618         case RESOLVE_STRUCT_OR_ARRAY:
1619                 /* int, enum, void, ptr, func or func_proto is a sink
1620                  * for struct and array
1621                  */
1622                 return !btf_type_is_modifier(next_type) &&
1623                         !btf_type_is_array(next_type) &&
1624                         !btf_type_is_struct(next_type);
1625         default:
1626                 BUG();
1627         }
1628 }
1629
1630 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1631                                  u32 type_id)
1632 {
1633         /* base BTF types should be resolved by now */
1634         if (type_id < env->btf->start_id)
1635                 return true;
1636
1637         return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1638 }
1639
1640 static int env_stack_push(struct btf_verifier_env *env,
1641                           const struct btf_type *t, u32 type_id)
1642 {
1643         const struct btf *btf = env->btf;
1644         struct resolve_vertex *v;
1645
1646         if (env->top_stack == MAX_RESOLVE_DEPTH)
1647                 return -E2BIG;
1648
1649         if (type_id < btf->start_id
1650             || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1651                 return -EEXIST;
1652
1653         env->visit_states[type_id - btf->start_id] = VISITED;
1654
1655         v = &env->stack[env->top_stack++];
1656         v->t = t;
1657         v->type_id = type_id;
1658         v->next_member = 0;
1659
1660         if (env->resolve_mode == RESOLVE_TBD) {
1661                 if (btf_type_is_ptr(t))
1662                         env->resolve_mode = RESOLVE_PTR;
1663                 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1664                         env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1665         }
1666
1667         return 0;
1668 }
1669
1670 static void env_stack_set_next_member(struct btf_verifier_env *env,
1671                                       u16 next_member)
1672 {
1673         env->stack[env->top_stack - 1].next_member = next_member;
1674 }
1675
1676 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1677                                    u32 resolved_type_id,
1678                                    u32 resolved_size)
1679 {
1680         u32 type_id = env->stack[--(env->top_stack)].type_id;
1681         struct btf *btf = env->btf;
1682
1683         type_id -= btf->start_id; /* adjust to local type id */
1684         btf->resolved_sizes[type_id] = resolved_size;
1685         btf->resolved_ids[type_id] = resolved_type_id;
1686         env->visit_states[type_id] = RESOLVED;
1687 }
1688
1689 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1690 {
1691         return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1692 }
1693
1694 /* Resolve the size of a passed-in "type"
1695  *
1696  * type: is an array (e.g. u32 array[x][y])
1697  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1698  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1699  *             corresponds to the return type.
1700  * *elem_type: u32
1701  * *elem_id: id of u32
1702  * *total_nelems: (x * y).  Hence, individual elem size is
1703  *                (*type_size / *total_nelems)
1704  * *type_id: id of type if it's changed within the function, 0 if not
1705  *
1706  * type: is not an array (e.g. const struct X)
1707  * return type: type "struct X"
1708  * *type_size: sizeof(struct X)
1709  * *elem_type: same as return type ("struct X")
1710  * *elem_id: 0
1711  * *total_nelems: 1
1712  * *type_id: id of type if it's changed within the function, 0 if not
1713  */
1714 static const struct btf_type *
1715 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1716                    u32 *type_size, const struct btf_type **elem_type,
1717                    u32 *elem_id, u32 *total_nelems, u32 *type_id)
1718 {
1719         const struct btf_type *array_type = NULL;
1720         const struct btf_array *array = NULL;
1721         u32 i, size, nelems = 1, id = 0;
1722
1723         for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1724                 switch (BTF_INFO_KIND(type->info)) {
1725                 /* type->size can be used */
1726                 case BTF_KIND_INT:
1727                 case BTF_KIND_STRUCT:
1728                 case BTF_KIND_UNION:
1729                 case BTF_KIND_ENUM:
1730                 case BTF_KIND_FLOAT:
1731                         size = type->size;
1732                         goto resolved;
1733
1734                 case BTF_KIND_PTR:
1735                         size = sizeof(void *);
1736                         goto resolved;
1737
1738                 /* Modifiers */
1739                 case BTF_KIND_TYPEDEF:
1740                 case BTF_KIND_VOLATILE:
1741                 case BTF_KIND_CONST:
1742                 case BTF_KIND_RESTRICT:
1743                 case BTF_KIND_TYPE_TAG:
1744                         id = type->type;
1745                         type = btf_type_by_id(btf, type->type);
1746                         break;
1747
1748                 case BTF_KIND_ARRAY:
1749                         if (!array_type)
1750                                 array_type = type;
1751                         array = btf_type_array(type);
1752                         if (nelems && array->nelems > U32_MAX / nelems)
1753                                 return ERR_PTR(-EINVAL);
1754                         nelems *= array->nelems;
1755                         type = btf_type_by_id(btf, array->type);
1756                         break;
1757
1758                 /* type without size */
1759                 default:
1760                         return ERR_PTR(-EINVAL);
1761                 }
1762         }
1763
1764         return ERR_PTR(-EINVAL);
1765
1766 resolved:
1767         if (nelems && size > U32_MAX / nelems)
1768                 return ERR_PTR(-EINVAL);
1769
1770         *type_size = nelems * size;
1771         if (total_nelems)
1772                 *total_nelems = nelems;
1773         if (elem_type)
1774                 *elem_type = type;
1775         if (elem_id)
1776                 *elem_id = array ? array->type : 0;
1777         if (type_id && id)
1778                 *type_id = id;
1779
1780         return array_type ? : type;
1781 }
1782
1783 const struct btf_type *
1784 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1785                  u32 *type_size)
1786 {
1787         return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1788 }
1789
1790 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1791 {
1792         while (type_id < btf->start_id)
1793                 btf = btf->base_btf;
1794
1795         return btf->resolved_ids[type_id - btf->start_id];
1796 }
1797
1798 /* The input param "type_id" must point to a needs_resolve type */
1799 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1800                                                   u32 *type_id)
1801 {
1802         *type_id = btf_resolved_type_id(btf, *type_id);
1803         return btf_type_by_id(btf, *type_id);
1804 }
1805
1806 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1807 {
1808         while (type_id < btf->start_id)
1809                 btf = btf->base_btf;
1810
1811         return btf->resolved_sizes[type_id - btf->start_id];
1812 }
1813
1814 const struct btf_type *btf_type_id_size(const struct btf *btf,
1815                                         u32 *type_id, u32 *ret_size)
1816 {
1817         const struct btf_type *size_type;
1818         u32 size_type_id = *type_id;
1819         u32 size = 0;
1820
1821         size_type = btf_type_by_id(btf, size_type_id);
1822         if (btf_type_nosize_or_null(size_type))
1823                 return NULL;
1824
1825         if (btf_type_has_size(size_type)) {
1826                 size = size_type->size;
1827         } else if (btf_type_is_array(size_type)) {
1828                 size = btf_resolved_type_size(btf, size_type_id);
1829         } else if (btf_type_is_ptr(size_type)) {
1830                 size = sizeof(void *);
1831         } else {
1832                 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1833                                  !btf_type_is_var(size_type)))
1834                         return NULL;
1835
1836                 size_type_id = btf_resolved_type_id(btf, size_type_id);
1837                 size_type = btf_type_by_id(btf, size_type_id);
1838                 if (btf_type_nosize_or_null(size_type))
1839                         return NULL;
1840                 else if (btf_type_has_size(size_type))
1841                         size = size_type->size;
1842                 else if (btf_type_is_array(size_type))
1843                         size = btf_resolved_type_size(btf, size_type_id);
1844                 else if (btf_type_is_ptr(size_type))
1845                         size = sizeof(void *);
1846                 else
1847                         return NULL;
1848         }
1849
1850         *type_id = size_type_id;
1851         if (ret_size)
1852                 *ret_size = size;
1853
1854         return size_type;
1855 }
1856
1857 static int btf_df_check_member(struct btf_verifier_env *env,
1858                                const struct btf_type *struct_type,
1859                                const struct btf_member *member,
1860                                const struct btf_type *member_type)
1861 {
1862         btf_verifier_log_basic(env, struct_type,
1863                                "Unsupported check_member");
1864         return -EINVAL;
1865 }
1866
1867 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1868                                      const struct btf_type *struct_type,
1869                                      const struct btf_member *member,
1870                                      const struct btf_type *member_type)
1871 {
1872         btf_verifier_log_basic(env, struct_type,
1873                                "Unsupported check_kflag_member");
1874         return -EINVAL;
1875 }
1876
1877 /* Used for ptr, array struct/union and float type members.
1878  * int, enum and modifier types have their specific callback functions.
1879  */
1880 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1881                                           const struct btf_type *struct_type,
1882                                           const struct btf_member *member,
1883                                           const struct btf_type *member_type)
1884 {
1885         if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1886                 btf_verifier_log_member(env, struct_type, member,
1887                                         "Invalid member bitfield_size");
1888                 return -EINVAL;
1889         }
1890
1891         /* bitfield size is 0, so member->offset represents bit offset only.
1892          * It is safe to call non kflag check_member variants.
1893          */
1894         return btf_type_ops(member_type)->check_member(env, struct_type,
1895                                                        member,
1896                                                        member_type);
1897 }
1898
1899 static int btf_df_resolve(struct btf_verifier_env *env,
1900                           const struct resolve_vertex *v)
1901 {
1902         btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1903         return -EINVAL;
1904 }
1905
1906 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1907                         u32 type_id, void *data, u8 bits_offsets,
1908                         struct btf_show *show)
1909 {
1910         btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1911 }
1912
1913 static int btf_int_check_member(struct btf_verifier_env *env,
1914                                 const struct btf_type *struct_type,
1915                                 const struct btf_member *member,
1916                                 const struct btf_type *member_type)
1917 {
1918         u32 int_data = btf_type_int(member_type);
1919         u32 struct_bits_off = member->offset;
1920         u32 struct_size = struct_type->size;
1921         u32 nr_copy_bits;
1922         u32 bytes_offset;
1923
1924         if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1925                 btf_verifier_log_member(env, struct_type, member,
1926                                         "bits_offset exceeds U32_MAX");
1927                 return -EINVAL;
1928         }
1929
1930         struct_bits_off += BTF_INT_OFFSET(int_data);
1931         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1932         nr_copy_bits = BTF_INT_BITS(int_data) +
1933                 BITS_PER_BYTE_MASKED(struct_bits_off);
1934
1935         if (nr_copy_bits > BITS_PER_U128) {
1936                 btf_verifier_log_member(env, struct_type, member,
1937                                         "nr_copy_bits exceeds 128");
1938                 return -EINVAL;
1939         }
1940
1941         if (struct_size < bytes_offset ||
1942             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1943                 btf_verifier_log_member(env, struct_type, member,
1944                                         "Member exceeds struct_size");
1945                 return -EINVAL;
1946         }
1947
1948         return 0;
1949 }
1950
1951 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1952                                       const struct btf_type *struct_type,
1953                                       const struct btf_member *member,
1954                                       const struct btf_type *member_type)
1955 {
1956         u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1957         u32 int_data = btf_type_int(member_type);
1958         u32 struct_size = struct_type->size;
1959         u32 nr_copy_bits;
1960
1961         /* a regular int type is required for the kflag int member */
1962         if (!btf_type_int_is_regular(member_type)) {
1963                 btf_verifier_log_member(env, struct_type, member,
1964                                         "Invalid member base type");
1965                 return -EINVAL;
1966         }
1967
1968         /* check sanity of bitfield size */
1969         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1970         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1971         nr_int_data_bits = BTF_INT_BITS(int_data);
1972         if (!nr_bits) {
1973                 /* Not a bitfield member, member offset must be at byte
1974                  * boundary.
1975                  */
1976                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1977                         btf_verifier_log_member(env, struct_type, member,
1978                                                 "Invalid member offset");
1979                         return -EINVAL;
1980                 }
1981
1982                 nr_bits = nr_int_data_bits;
1983         } else if (nr_bits > nr_int_data_bits) {
1984                 btf_verifier_log_member(env, struct_type, member,
1985                                         "Invalid member bitfield_size");
1986                 return -EINVAL;
1987         }
1988
1989         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1990         nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1991         if (nr_copy_bits > BITS_PER_U128) {
1992                 btf_verifier_log_member(env, struct_type, member,
1993                                         "nr_copy_bits exceeds 128");
1994                 return -EINVAL;
1995         }
1996
1997         if (struct_size < bytes_offset ||
1998             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1999                 btf_verifier_log_member(env, struct_type, member,
2000                                         "Member exceeds struct_size");
2001                 return -EINVAL;
2002         }
2003
2004         return 0;
2005 }
2006
2007 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2008                               const struct btf_type *t,
2009                               u32 meta_left)
2010 {
2011         u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2012         u16 encoding;
2013
2014         if (meta_left < meta_needed) {
2015                 btf_verifier_log_basic(env, t,
2016                                        "meta_left:%u meta_needed:%u",
2017                                        meta_left, meta_needed);
2018                 return -EINVAL;
2019         }
2020
2021         if (btf_type_vlen(t)) {
2022                 btf_verifier_log_type(env, t, "vlen != 0");
2023                 return -EINVAL;
2024         }
2025
2026         if (btf_type_kflag(t)) {
2027                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2028                 return -EINVAL;
2029         }
2030
2031         int_data = btf_type_int(t);
2032         if (int_data & ~BTF_INT_MASK) {
2033                 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2034                                        int_data);
2035                 return -EINVAL;
2036         }
2037
2038         nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2039
2040         if (nr_bits > BITS_PER_U128) {
2041                 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2042                                       BITS_PER_U128);
2043                 return -EINVAL;
2044         }
2045
2046         if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2047                 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2048                 return -EINVAL;
2049         }
2050
2051         /*
2052          * Only one of the encoding bits is allowed and it
2053          * should be sufficient for the pretty print purpose (i.e. decoding).
2054          * Multiple bits can be allowed later if it is found
2055          * to be insufficient.
2056          */
2057         encoding = BTF_INT_ENCODING(int_data);
2058         if (encoding &&
2059             encoding != BTF_INT_SIGNED &&
2060             encoding != BTF_INT_CHAR &&
2061             encoding != BTF_INT_BOOL) {
2062                 btf_verifier_log_type(env, t, "Unsupported encoding");
2063                 return -ENOTSUPP;
2064         }
2065
2066         btf_verifier_log_type(env, t, NULL);
2067
2068         return meta_needed;
2069 }
2070
2071 static void btf_int_log(struct btf_verifier_env *env,
2072                         const struct btf_type *t)
2073 {
2074         int int_data = btf_type_int(t);
2075
2076         btf_verifier_log(env,
2077                          "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2078                          t->size, BTF_INT_OFFSET(int_data),
2079                          BTF_INT_BITS(int_data),
2080                          btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2081 }
2082
2083 static void btf_int128_print(struct btf_show *show, void *data)
2084 {
2085         /* data points to a __int128 number.
2086          * Suppose
2087          *     int128_num = *(__int128 *)data;
2088          * The below formulas shows what upper_num and lower_num represents:
2089          *     upper_num = int128_num >> 64;
2090          *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2091          */
2092         u64 upper_num, lower_num;
2093
2094 #ifdef __BIG_ENDIAN_BITFIELD
2095         upper_num = *(u64 *)data;
2096         lower_num = *(u64 *)(data + 8);
2097 #else
2098         upper_num = *(u64 *)(data + 8);
2099         lower_num = *(u64 *)data;
2100 #endif
2101         if (upper_num == 0)
2102                 btf_show_type_value(show, "0x%llx", lower_num);
2103         else
2104                 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2105                                      lower_num);
2106 }
2107
2108 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2109                              u16 right_shift_bits)
2110 {
2111         u64 upper_num, lower_num;
2112
2113 #ifdef __BIG_ENDIAN_BITFIELD
2114         upper_num = print_num[0];
2115         lower_num = print_num[1];
2116 #else
2117         upper_num = print_num[1];
2118         lower_num = print_num[0];
2119 #endif
2120
2121         /* shake out un-needed bits by shift/or operations */
2122         if (left_shift_bits >= 64) {
2123                 upper_num = lower_num << (left_shift_bits - 64);
2124                 lower_num = 0;
2125         } else {
2126                 upper_num = (upper_num << left_shift_bits) |
2127                             (lower_num >> (64 - left_shift_bits));
2128                 lower_num = lower_num << left_shift_bits;
2129         }
2130
2131         if (right_shift_bits >= 64) {
2132                 lower_num = upper_num >> (right_shift_bits - 64);
2133                 upper_num = 0;
2134         } else {
2135                 lower_num = (lower_num >> right_shift_bits) |
2136                             (upper_num << (64 - right_shift_bits));
2137                 upper_num = upper_num >> right_shift_bits;
2138         }
2139
2140 #ifdef __BIG_ENDIAN_BITFIELD
2141         print_num[0] = upper_num;
2142         print_num[1] = lower_num;
2143 #else
2144         print_num[0] = lower_num;
2145         print_num[1] = upper_num;
2146 #endif
2147 }
2148
2149 static void btf_bitfield_show(void *data, u8 bits_offset,
2150                               u8 nr_bits, struct btf_show *show)
2151 {
2152         u16 left_shift_bits, right_shift_bits;
2153         u8 nr_copy_bytes;
2154         u8 nr_copy_bits;
2155         u64 print_num[2] = {};
2156
2157         nr_copy_bits = nr_bits + bits_offset;
2158         nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2159
2160         memcpy(print_num, data, nr_copy_bytes);
2161
2162 #ifdef __BIG_ENDIAN_BITFIELD
2163         left_shift_bits = bits_offset;
2164 #else
2165         left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2166 #endif
2167         right_shift_bits = BITS_PER_U128 - nr_bits;
2168
2169         btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2170         btf_int128_print(show, print_num);
2171 }
2172
2173
2174 static void btf_int_bits_show(const struct btf *btf,
2175                               const struct btf_type *t,
2176                               void *data, u8 bits_offset,
2177                               struct btf_show *show)
2178 {
2179         u32 int_data = btf_type_int(t);
2180         u8 nr_bits = BTF_INT_BITS(int_data);
2181         u8 total_bits_offset;
2182
2183         /*
2184          * bits_offset is at most 7.
2185          * BTF_INT_OFFSET() cannot exceed 128 bits.
2186          */
2187         total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2188         data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2189         bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2190         btf_bitfield_show(data, bits_offset, nr_bits, show);
2191 }
2192
2193 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2194                          u32 type_id, void *data, u8 bits_offset,
2195                          struct btf_show *show)
2196 {
2197         u32 int_data = btf_type_int(t);
2198         u8 encoding = BTF_INT_ENCODING(int_data);
2199         bool sign = encoding & BTF_INT_SIGNED;
2200         u8 nr_bits = BTF_INT_BITS(int_data);
2201         void *safe_data;
2202
2203         safe_data = btf_show_start_type(show, t, type_id, data);
2204         if (!safe_data)
2205                 return;
2206
2207         if (bits_offset || BTF_INT_OFFSET(int_data) ||
2208             BITS_PER_BYTE_MASKED(nr_bits)) {
2209                 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2210                 goto out;
2211         }
2212
2213         switch (nr_bits) {
2214         case 128:
2215                 btf_int128_print(show, safe_data);
2216                 break;
2217         case 64:
2218                 if (sign)
2219                         btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2220                 else
2221                         btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2222                 break;
2223         case 32:
2224                 if (sign)
2225                         btf_show_type_value(show, "%d", *(s32 *)safe_data);
2226                 else
2227                         btf_show_type_value(show, "%u", *(u32 *)safe_data);
2228                 break;
2229         case 16:
2230                 if (sign)
2231                         btf_show_type_value(show, "%d", *(s16 *)safe_data);
2232                 else
2233                         btf_show_type_value(show, "%u", *(u16 *)safe_data);
2234                 break;
2235         case 8:
2236                 if (show->state.array_encoding == BTF_INT_CHAR) {
2237                         /* check for null terminator */
2238                         if (show->state.array_terminated)
2239                                 break;
2240                         if (*(char *)data == '\0') {
2241                                 show->state.array_terminated = 1;
2242                                 break;
2243                         }
2244                         if (isprint(*(char *)data)) {
2245                                 btf_show_type_value(show, "'%c'",
2246                                                     *(char *)safe_data);
2247                                 break;
2248                         }
2249                 }
2250                 if (sign)
2251                         btf_show_type_value(show, "%d", *(s8 *)safe_data);
2252                 else
2253                         btf_show_type_value(show, "%u", *(u8 *)safe_data);
2254                 break;
2255         default:
2256                 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2257                 break;
2258         }
2259 out:
2260         btf_show_end_type(show);
2261 }
2262
2263 static const struct btf_kind_operations int_ops = {
2264         .check_meta = btf_int_check_meta,
2265         .resolve = btf_df_resolve,
2266         .check_member = btf_int_check_member,
2267         .check_kflag_member = btf_int_check_kflag_member,
2268         .log_details = btf_int_log,
2269         .show = btf_int_show,
2270 };
2271
2272 static int btf_modifier_check_member(struct btf_verifier_env *env,
2273                                      const struct btf_type *struct_type,
2274                                      const struct btf_member *member,
2275                                      const struct btf_type *member_type)
2276 {
2277         const struct btf_type *resolved_type;
2278         u32 resolved_type_id = member->type;
2279         struct btf_member resolved_member;
2280         struct btf *btf = env->btf;
2281
2282         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2283         if (!resolved_type) {
2284                 btf_verifier_log_member(env, struct_type, member,
2285                                         "Invalid member");
2286                 return -EINVAL;
2287         }
2288
2289         resolved_member = *member;
2290         resolved_member.type = resolved_type_id;
2291
2292         return btf_type_ops(resolved_type)->check_member(env, struct_type,
2293                                                          &resolved_member,
2294                                                          resolved_type);
2295 }
2296
2297 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2298                                            const struct btf_type *struct_type,
2299                                            const struct btf_member *member,
2300                                            const struct btf_type *member_type)
2301 {
2302         const struct btf_type *resolved_type;
2303         u32 resolved_type_id = member->type;
2304         struct btf_member resolved_member;
2305         struct btf *btf = env->btf;
2306
2307         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2308         if (!resolved_type) {
2309                 btf_verifier_log_member(env, struct_type, member,
2310                                         "Invalid member");
2311                 return -EINVAL;
2312         }
2313
2314         resolved_member = *member;
2315         resolved_member.type = resolved_type_id;
2316
2317         return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2318                                                                &resolved_member,
2319                                                                resolved_type);
2320 }
2321
2322 static int btf_ptr_check_member(struct btf_verifier_env *env,
2323                                 const struct btf_type *struct_type,
2324                                 const struct btf_member *member,
2325                                 const struct btf_type *member_type)
2326 {
2327         u32 struct_size, struct_bits_off, bytes_offset;
2328
2329         struct_size = struct_type->size;
2330         struct_bits_off = member->offset;
2331         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2332
2333         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2334                 btf_verifier_log_member(env, struct_type, member,
2335                                         "Member is not byte aligned");
2336                 return -EINVAL;
2337         }
2338
2339         if (struct_size - bytes_offset < sizeof(void *)) {
2340                 btf_verifier_log_member(env, struct_type, member,
2341                                         "Member exceeds struct_size");
2342                 return -EINVAL;
2343         }
2344
2345         return 0;
2346 }
2347
2348 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2349                                    const struct btf_type *t,
2350                                    u32 meta_left)
2351 {
2352         const char *value;
2353
2354         if (btf_type_vlen(t)) {
2355                 btf_verifier_log_type(env, t, "vlen != 0");
2356                 return -EINVAL;
2357         }
2358
2359         if (btf_type_kflag(t)) {
2360                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2361                 return -EINVAL;
2362         }
2363
2364         if (!BTF_TYPE_ID_VALID(t->type)) {
2365                 btf_verifier_log_type(env, t, "Invalid type_id");
2366                 return -EINVAL;
2367         }
2368
2369         /* typedef/type_tag type must have a valid name, and other ref types,
2370          * volatile, const, restrict, should have a null name.
2371          */
2372         if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2373                 if (!t->name_off ||
2374                     !btf_name_valid_identifier(env->btf, t->name_off)) {
2375                         btf_verifier_log_type(env, t, "Invalid name");
2376                         return -EINVAL;
2377                 }
2378         } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2379                 value = btf_name_by_offset(env->btf, t->name_off);
2380                 if (!value || !value[0]) {
2381                         btf_verifier_log_type(env, t, "Invalid name");
2382                         return -EINVAL;
2383                 }
2384         } else {
2385                 if (t->name_off) {
2386                         btf_verifier_log_type(env, t, "Invalid name");
2387                         return -EINVAL;
2388                 }
2389         }
2390
2391         btf_verifier_log_type(env, t, NULL);
2392
2393         return 0;
2394 }
2395
2396 static int btf_modifier_resolve(struct btf_verifier_env *env,
2397                                 const struct resolve_vertex *v)
2398 {
2399         const struct btf_type *t = v->t;
2400         const struct btf_type *next_type;
2401         u32 next_type_id = t->type;
2402         struct btf *btf = env->btf;
2403
2404         next_type = btf_type_by_id(btf, next_type_id);
2405         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2406                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2407                 return -EINVAL;
2408         }
2409
2410         if (!env_type_is_resolve_sink(env, next_type) &&
2411             !env_type_is_resolved(env, next_type_id))
2412                 return env_stack_push(env, next_type, next_type_id);
2413
2414         /* Figure out the resolved next_type_id with size.
2415          * They will be stored in the current modifier's
2416          * resolved_ids and resolved_sizes such that it can
2417          * save us a few type-following when we use it later (e.g. in
2418          * pretty print).
2419          */
2420         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2421                 if (env_type_is_resolved(env, next_type_id))
2422                         next_type = btf_type_id_resolve(btf, &next_type_id);
2423
2424                 /* "typedef void new_void", "const void"...etc */
2425                 if (!btf_type_is_void(next_type) &&
2426                     !btf_type_is_fwd(next_type) &&
2427                     !btf_type_is_func_proto(next_type)) {
2428                         btf_verifier_log_type(env, v->t, "Invalid type_id");
2429                         return -EINVAL;
2430                 }
2431         }
2432
2433         env_stack_pop_resolved(env, next_type_id, 0);
2434
2435         return 0;
2436 }
2437
2438 static int btf_var_resolve(struct btf_verifier_env *env,
2439                            const struct resolve_vertex *v)
2440 {
2441         const struct btf_type *next_type;
2442         const struct btf_type *t = v->t;
2443         u32 next_type_id = t->type;
2444         struct btf *btf = env->btf;
2445
2446         next_type = btf_type_by_id(btf, next_type_id);
2447         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2448                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2449                 return -EINVAL;
2450         }
2451
2452         if (!env_type_is_resolve_sink(env, next_type) &&
2453             !env_type_is_resolved(env, next_type_id))
2454                 return env_stack_push(env, next_type, next_type_id);
2455
2456         if (btf_type_is_modifier(next_type)) {
2457                 const struct btf_type *resolved_type;
2458                 u32 resolved_type_id;
2459
2460                 resolved_type_id = next_type_id;
2461                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2462
2463                 if (btf_type_is_ptr(resolved_type) &&
2464                     !env_type_is_resolve_sink(env, resolved_type) &&
2465                     !env_type_is_resolved(env, resolved_type_id))
2466                         return env_stack_push(env, resolved_type,
2467                                               resolved_type_id);
2468         }
2469
2470         /* We must resolve to something concrete at this point, no
2471          * forward types or similar that would resolve to size of
2472          * zero is allowed.
2473          */
2474         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2475                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2476                 return -EINVAL;
2477         }
2478
2479         env_stack_pop_resolved(env, next_type_id, 0);
2480
2481         return 0;
2482 }
2483
2484 static int btf_ptr_resolve(struct btf_verifier_env *env,
2485                            const struct resolve_vertex *v)
2486 {
2487         const struct btf_type *next_type;
2488         const struct btf_type *t = v->t;
2489         u32 next_type_id = t->type;
2490         struct btf *btf = env->btf;
2491
2492         next_type = btf_type_by_id(btf, next_type_id);
2493         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2494                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2495                 return -EINVAL;
2496         }
2497
2498         if (!env_type_is_resolve_sink(env, next_type) &&
2499             !env_type_is_resolved(env, next_type_id))
2500                 return env_stack_push(env, next_type, next_type_id);
2501
2502         /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2503          * the modifier may have stopped resolving when it was resolved
2504          * to a ptr (last-resolved-ptr).
2505          *
2506          * We now need to continue from the last-resolved-ptr to
2507          * ensure the last-resolved-ptr will not referring back to
2508          * the currenct ptr (t).
2509          */
2510         if (btf_type_is_modifier(next_type)) {
2511                 const struct btf_type *resolved_type;
2512                 u32 resolved_type_id;
2513
2514                 resolved_type_id = next_type_id;
2515                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2516
2517                 if (btf_type_is_ptr(resolved_type) &&
2518                     !env_type_is_resolve_sink(env, resolved_type) &&
2519                     !env_type_is_resolved(env, resolved_type_id))
2520                         return env_stack_push(env, resolved_type,
2521                                               resolved_type_id);
2522         }
2523
2524         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2525                 if (env_type_is_resolved(env, next_type_id))
2526                         next_type = btf_type_id_resolve(btf, &next_type_id);
2527
2528                 if (!btf_type_is_void(next_type) &&
2529                     !btf_type_is_fwd(next_type) &&
2530                     !btf_type_is_func_proto(next_type)) {
2531                         btf_verifier_log_type(env, v->t, "Invalid type_id");
2532                         return -EINVAL;
2533                 }
2534         }
2535
2536         env_stack_pop_resolved(env, next_type_id, 0);
2537
2538         return 0;
2539 }
2540
2541 static void btf_modifier_show(const struct btf *btf,
2542                               const struct btf_type *t,
2543                               u32 type_id, void *data,
2544                               u8 bits_offset, struct btf_show *show)
2545 {
2546         if (btf->resolved_ids)
2547                 t = btf_type_id_resolve(btf, &type_id);
2548         else
2549                 t = btf_type_skip_modifiers(btf, type_id, NULL);
2550
2551         btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2552 }
2553
2554 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2555                          u32 type_id, void *data, u8 bits_offset,
2556                          struct btf_show *show)
2557 {
2558         t = btf_type_id_resolve(btf, &type_id);
2559
2560         btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2561 }
2562
2563 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2564                          u32 type_id, void *data, u8 bits_offset,
2565                          struct btf_show *show)
2566 {
2567         void *safe_data;
2568
2569         safe_data = btf_show_start_type(show, t, type_id, data);
2570         if (!safe_data)
2571                 return;
2572
2573         /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2574         if (show->flags & BTF_SHOW_PTR_RAW)
2575                 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2576         else
2577                 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2578         btf_show_end_type(show);
2579 }
2580
2581 static void btf_ref_type_log(struct btf_verifier_env *env,
2582                              const struct btf_type *t)
2583 {
2584         btf_verifier_log(env, "type_id=%u", t->type);
2585 }
2586
2587 static struct btf_kind_operations modifier_ops = {
2588         .check_meta = btf_ref_type_check_meta,
2589         .resolve = btf_modifier_resolve,
2590         .check_member = btf_modifier_check_member,
2591         .check_kflag_member = btf_modifier_check_kflag_member,
2592         .log_details = btf_ref_type_log,
2593         .show = btf_modifier_show,
2594 };
2595
2596 static struct btf_kind_operations ptr_ops = {
2597         .check_meta = btf_ref_type_check_meta,
2598         .resolve = btf_ptr_resolve,
2599         .check_member = btf_ptr_check_member,
2600         .check_kflag_member = btf_generic_check_kflag_member,
2601         .log_details = btf_ref_type_log,
2602         .show = btf_ptr_show,
2603 };
2604
2605 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2606                               const struct btf_type *t,
2607                               u32 meta_left)
2608 {
2609         if (btf_type_vlen(t)) {
2610                 btf_verifier_log_type(env, t, "vlen != 0");
2611                 return -EINVAL;
2612         }
2613
2614         if (t->type) {
2615                 btf_verifier_log_type(env, t, "type != 0");
2616                 return -EINVAL;
2617         }
2618
2619         /* fwd type must have a valid name */
2620         if (!t->name_off ||
2621             !btf_name_valid_identifier(env->btf, t->name_off)) {
2622                 btf_verifier_log_type(env, t, "Invalid name");
2623                 return -EINVAL;
2624         }
2625
2626         btf_verifier_log_type(env, t, NULL);
2627
2628         return 0;
2629 }
2630
2631 static void btf_fwd_type_log(struct btf_verifier_env *env,
2632                              const struct btf_type *t)
2633 {
2634         btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2635 }
2636
2637 static struct btf_kind_operations fwd_ops = {
2638         .check_meta = btf_fwd_check_meta,
2639         .resolve = btf_df_resolve,
2640         .check_member = btf_df_check_member,
2641         .check_kflag_member = btf_df_check_kflag_member,
2642         .log_details = btf_fwd_type_log,
2643         .show = btf_df_show,
2644 };
2645
2646 static int btf_array_check_member(struct btf_verifier_env *env,
2647                                   const struct btf_type *struct_type,
2648                                   const struct btf_member *member,
2649                                   const struct btf_type *member_type)
2650 {
2651         u32 struct_bits_off = member->offset;
2652         u32 struct_size, bytes_offset;
2653         u32 array_type_id, array_size;
2654         struct btf *btf = env->btf;
2655
2656         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2657                 btf_verifier_log_member(env, struct_type, member,
2658                                         "Member is not byte aligned");
2659                 return -EINVAL;
2660         }
2661
2662         array_type_id = member->type;
2663         btf_type_id_size(btf, &array_type_id, &array_size);
2664         struct_size = struct_type->size;
2665         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2666         if (struct_size - bytes_offset < array_size) {
2667                 btf_verifier_log_member(env, struct_type, member,
2668                                         "Member exceeds struct_size");
2669                 return -EINVAL;
2670         }
2671
2672         return 0;
2673 }
2674
2675 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2676                                 const struct btf_type *t,
2677                                 u32 meta_left)
2678 {
2679         const struct btf_array *array = btf_type_array(t);
2680         u32 meta_needed = sizeof(*array);
2681
2682         if (meta_left < meta_needed) {
2683                 btf_verifier_log_basic(env, t,
2684                                        "meta_left:%u meta_needed:%u",
2685                                        meta_left, meta_needed);
2686                 return -EINVAL;
2687         }
2688
2689         /* array type should not have a name */
2690         if (t->name_off) {
2691                 btf_verifier_log_type(env, t, "Invalid name");
2692                 return -EINVAL;
2693         }
2694
2695         if (btf_type_vlen(t)) {
2696                 btf_verifier_log_type(env, t, "vlen != 0");
2697                 return -EINVAL;
2698         }
2699
2700         if (btf_type_kflag(t)) {
2701                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2702                 return -EINVAL;
2703         }
2704
2705         if (t->size) {
2706                 btf_verifier_log_type(env, t, "size != 0");
2707                 return -EINVAL;
2708         }
2709
2710         /* Array elem type and index type cannot be in type void,
2711          * so !array->type and !array->index_type are not allowed.
2712          */
2713         if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2714                 btf_verifier_log_type(env, t, "Invalid elem");
2715                 return -EINVAL;
2716         }
2717
2718         if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2719                 btf_verifier_log_type(env, t, "Invalid index");
2720                 return -EINVAL;
2721         }
2722
2723         btf_verifier_log_type(env, t, NULL);
2724
2725         return meta_needed;
2726 }
2727
2728 static int btf_array_resolve(struct btf_verifier_env *env,
2729                              const struct resolve_vertex *v)
2730 {
2731         const struct btf_array *array = btf_type_array(v->t);
2732         const struct btf_type *elem_type, *index_type;
2733         u32 elem_type_id, index_type_id;
2734         struct btf *btf = env->btf;
2735         u32 elem_size;
2736
2737         /* Check array->index_type */
2738         index_type_id = array->index_type;
2739         index_type = btf_type_by_id(btf, index_type_id);
2740         if (btf_type_nosize_or_null(index_type) ||
2741             btf_type_is_resolve_source_only(index_type)) {
2742                 btf_verifier_log_type(env, v->t, "Invalid index");
2743                 return -EINVAL;
2744         }
2745
2746         if (!env_type_is_resolve_sink(env, index_type) &&
2747             !env_type_is_resolved(env, index_type_id))
2748                 return env_stack_push(env, index_type, index_type_id);
2749
2750         index_type = btf_type_id_size(btf, &index_type_id, NULL);
2751         if (!index_type || !btf_type_is_int(index_type) ||
2752             !btf_type_int_is_regular(index_type)) {
2753                 btf_verifier_log_type(env, v->t, "Invalid index");
2754                 return -EINVAL;
2755         }
2756
2757         /* Check array->type */
2758         elem_type_id = array->type;
2759         elem_type = btf_type_by_id(btf, elem_type_id);
2760         if (btf_type_nosize_or_null(elem_type) ||
2761             btf_type_is_resolve_source_only(elem_type)) {
2762                 btf_verifier_log_type(env, v->t,
2763                                       "Invalid elem");
2764                 return -EINVAL;
2765         }
2766
2767         if (!env_type_is_resolve_sink(env, elem_type) &&
2768             !env_type_is_resolved(env, elem_type_id))
2769                 return env_stack_push(env, elem_type, elem_type_id);
2770
2771         elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2772         if (!elem_type) {
2773                 btf_verifier_log_type(env, v->t, "Invalid elem");
2774                 return -EINVAL;
2775         }
2776
2777         if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2778                 btf_verifier_log_type(env, v->t, "Invalid array of int");
2779                 return -EINVAL;
2780         }
2781
2782         if (array->nelems && elem_size > U32_MAX / array->nelems) {
2783                 btf_verifier_log_type(env, v->t,
2784                                       "Array size overflows U32_MAX");
2785                 return -EINVAL;
2786         }
2787
2788         env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2789
2790         return 0;
2791 }
2792
2793 static void btf_array_log(struct btf_verifier_env *env,
2794                           const struct btf_type *t)
2795 {
2796         const struct btf_array *array = btf_type_array(t);
2797
2798         btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2799                          array->type, array->index_type, array->nelems);
2800 }
2801
2802 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2803                              u32 type_id, void *data, u8 bits_offset,
2804                              struct btf_show *show)
2805 {
2806         const struct btf_array *array = btf_type_array(t);
2807         const struct btf_kind_operations *elem_ops;
2808         const struct btf_type *elem_type;
2809         u32 i, elem_size = 0, elem_type_id;
2810         u16 encoding = 0;
2811
2812         elem_type_id = array->type;
2813         elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2814         if (elem_type && btf_type_has_size(elem_type))
2815                 elem_size = elem_type->size;
2816
2817         if (elem_type && btf_type_is_int(elem_type)) {
2818                 u32 int_type = btf_type_int(elem_type);
2819
2820                 encoding = BTF_INT_ENCODING(int_type);
2821
2822                 /*
2823                  * BTF_INT_CHAR encoding never seems to be set for
2824                  * char arrays, so if size is 1 and element is
2825                  * printable as a char, we'll do that.
2826                  */
2827                 if (elem_size == 1)
2828                         encoding = BTF_INT_CHAR;
2829         }
2830
2831         if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2832                 return;
2833
2834         if (!elem_type)
2835                 goto out;
2836         elem_ops = btf_type_ops(elem_type);
2837
2838         for (i = 0; i < array->nelems; i++) {
2839
2840                 btf_show_start_array_member(show);
2841
2842                 elem_ops->show(btf, elem_type, elem_type_id, data,
2843                                bits_offset, show);
2844                 data += elem_size;
2845
2846                 btf_show_end_array_member(show);
2847
2848                 if (show->state.array_terminated)
2849                         break;
2850         }
2851 out:
2852         btf_show_end_array_type(show);
2853 }
2854
2855 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2856                            u32 type_id, void *data, u8 bits_offset,
2857                            struct btf_show *show)
2858 {
2859         const struct btf_member *m = show->state.member;
2860
2861         /*
2862          * First check if any members would be shown (are non-zero).
2863          * See comments above "struct btf_show" definition for more
2864          * details on how this works at a high-level.
2865          */
2866         if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2867                 if (!show->state.depth_check) {
2868                         show->state.depth_check = show->state.depth + 1;
2869                         show->state.depth_to_show = 0;
2870                 }
2871                 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2872                 show->state.member = m;
2873
2874                 if (show->state.depth_check != show->state.depth + 1)
2875                         return;
2876                 show->state.depth_check = 0;
2877
2878                 if (show->state.depth_to_show <= show->state.depth)
2879                         return;
2880                 /*
2881                  * Reaching here indicates we have recursed and found
2882                  * non-zero array member(s).
2883                  */
2884         }
2885         __btf_array_show(btf, t, type_id, data, bits_offset, show);
2886 }
2887
2888 static struct btf_kind_operations array_ops = {
2889         .check_meta = btf_array_check_meta,
2890         .resolve = btf_array_resolve,
2891         .check_member = btf_array_check_member,
2892         .check_kflag_member = btf_generic_check_kflag_member,
2893         .log_details = btf_array_log,
2894         .show = btf_array_show,
2895 };
2896
2897 static int btf_struct_check_member(struct btf_verifier_env *env,
2898                                    const struct btf_type *struct_type,
2899                                    const struct btf_member *member,
2900                                    const struct btf_type *member_type)
2901 {
2902         u32 struct_bits_off = member->offset;
2903         u32 struct_size, bytes_offset;
2904
2905         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2906                 btf_verifier_log_member(env, struct_type, member,
2907                                         "Member is not byte aligned");
2908                 return -EINVAL;
2909         }
2910
2911         struct_size = struct_type->size;
2912         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2913         if (struct_size - bytes_offset < member_type->size) {
2914                 btf_verifier_log_member(env, struct_type, member,
2915                                         "Member exceeds struct_size");
2916                 return -EINVAL;
2917         }
2918
2919         return 0;
2920 }
2921
2922 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2923                                  const struct btf_type *t,
2924                                  u32 meta_left)
2925 {
2926         bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2927         const struct btf_member *member;
2928         u32 meta_needed, last_offset;
2929         struct btf *btf = env->btf;
2930         u32 struct_size = t->size;
2931         u32 offset;
2932         u16 i;
2933
2934         meta_needed = btf_type_vlen(t) * sizeof(*member);
2935         if (meta_left < meta_needed) {
2936                 btf_verifier_log_basic(env, t,
2937                                        "meta_left:%u meta_needed:%u",
2938                                        meta_left, meta_needed);
2939                 return -EINVAL;
2940         }
2941
2942         /* struct type either no name or a valid one */
2943         if (t->name_off &&
2944             !btf_name_valid_identifier(env->btf, t->name_off)) {
2945                 btf_verifier_log_type(env, t, "Invalid name");
2946                 return -EINVAL;
2947         }
2948
2949         btf_verifier_log_type(env, t, NULL);
2950
2951         last_offset = 0;
2952         for_each_member(i, t, member) {
2953                 if (!btf_name_offset_valid(btf, member->name_off)) {
2954                         btf_verifier_log_member(env, t, member,
2955                                                 "Invalid member name_offset:%u",
2956                                                 member->name_off);
2957                         return -EINVAL;
2958                 }
2959
2960                 /* struct member either no name or a valid one */
2961                 if (member->name_off &&
2962                     !btf_name_valid_identifier(btf, member->name_off)) {
2963                         btf_verifier_log_member(env, t, member, "Invalid name");
2964                         return -EINVAL;
2965                 }
2966                 /* A member cannot be in type void */
2967                 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2968                         btf_verifier_log_member(env, t, member,
2969                                                 "Invalid type_id");
2970                         return -EINVAL;
2971                 }
2972
2973                 offset = __btf_member_bit_offset(t, member);
2974                 if (is_union && offset) {
2975                         btf_verifier_log_member(env, t, member,
2976                                                 "Invalid member bits_offset");
2977                         return -EINVAL;
2978                 }
2979
2980                 /*
2981                  * ">" instead of ">=" because the last member could be
2982                  * "char a[0];"
2983                  */
2984                 if (last_offset > offset) {
2985                         btf_verifier_log_member(env, t, member,
2986                                                 "Invalid member bits_offset");
2987                         return -EINVAL;
2988                 }
2989
2990                 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2991                         btf_verifier_log_member(env, t, member,
2992                                                 "Member bits_offset exceeds its struct size");
2993                         return -EINVAL;
2994                 }
2995
2996                 btf_verifier_log_member(env, t, member, NULL);
2997                 last_offset = offset;
2998         }
2999
3000         return meta_needed;
3001 }
3002
3003 static int btf_struct_resolve(struct btf_verifier_env *env,
3004                               const struct resolve_vertex *v)
3005 {
3006         const struct btf_member *member;
3007         int err;
3008         u16 i;
3009
3010         /* Before continue resolving the next_member,
3011          * ensure the last member is indeed resolved to a
3012          * type with size info.
3013          */
3014         if (v->next_member) {
3015                 const struct btf_type *last_member_type;
3016                 const struct btf_member *last_member;
3017                 u16 last_member_type_id;
3018
3019                 last_member = btf_type_member(v->t) + v->next_member - 1;
3020                 last_member_type_id = last_member->type;
3021                 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3022                                                        last_member_type_id)))
3023                         return -EINVAL;
3024
3025                 last_member_type = btf_type_by_id(env->btf,
3026                                                   last_member_type_id);
3027                 if (btf_type_kflag(v->t))
3028                         err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3029                                                                 last_member,
3030                                                                 last_member_type);
3031                 else
3032                         err = btf_type_ops(last_member_type)->check_member(env, v->t,
3033                                                                 last_member,
3034                                                                 last_member_type);
3035                 if (err)
3036                         return err;
3037         }
3038
3039         for_each_member_from(i, v->next_member, v->t, member) {
3040                 u32 member_type_id = member->type;
3041                 const struct btf_type *member_type = btf_type_by_id(env->btf,
3042                                                                 member_type_id);
3043
3044                 if (btf_type_nosize_or_null(member_type) ||
3045                     btf_type_is_resolve_source_only(member_type)) {
3046                         btf_verifier_log_member(env, v->t, member,
3047                                                 "Invalid member");
3048                         return -EINVAL;
3049                 }
3050
3051                 if (!env_type_is_resolve_sink(env, member_type) &&
3052                     !env_type_is_resolved(env, member_type_id)) {
3053                         env_stack_set_next_member(env, i + 1);
3054                         return env_stack_push(env, member_type, member_type_id);
3055                 }
3056
3057                 if (btf_type_kflag(v->t))
3058                         err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3059                                                                             member,
3060                                                                             member_type);
3061                 else
3062                         err = btf_type_ops(member_type)->check_member(env, v->t,
3063                                                                       member,
3064                                                                       member_type);
3065                 if (err)
3066                         return err;
3067         }
3068
3069         env_stack_pop_resolved(env, 0, 0);
3070
3071         return 0;
3072 }
3073
3074 static void btf_struct_log(struct btf_verifier_env *env,
3075                            const struct btf_type *t)
3076 {
3077         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3078 }
3079
3080 static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
3081                                  const char *name, int sz, int align)
3082 {
3083         const struct btf_member *member;
3084         u32 i, off = -ENOENT;
3085
3086         for_each_member(i, t, member) {
3087                 const struct btf_type *member_type = btf_type_by_id(btf,
3088                                                                     member->type);
3089                 if (!__btf_type_is_struct(member_type))
3090                         continue;
3091                 if (member_type->size != sz)
3092                         continue;
3093                 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
3094                         continue;
3095                 if (off != -ENOENT)
3096                         /* only one such field is allowed */
3097                         return -E2BIG;
3098                 off = __btf_member_bit_offset(t, member);
3099                 if (off % 8)
3100                         /* valid C code cannot generate such BTF */
3101                         return -EINVAL;
3102                 off /= 8;
3103                 if (off % align)
3104                         return -EINVAL;
3105         }
3106         return off;
3107 }
3108
3109 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3110                                 const char *name, int sz, int align)
3111 {
3112         const struct btf_var_secinfo *vsi;
3113         u32 i, off = -ENOENT;
3114
3115         for_each_vsi(i, t, vsi) {
3116                 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3117                 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3118
3119                 if (!__btf_type_is_struct(var_type))
3120                         continue;
3121                 if (var_type->size != sz)
3122                         continue;
3123                 if (vsi->size != sz)
3124                         continue;
3125                 if (strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
3126                         continue;
3127                 if (off != -ENOENT)
3128                         /* only one such field is allowed */
3129                         return -E2BIG;
3130                 off = vsi->offset;
3131                 if (off % align)
3132                         return -EINVAL;
3133         }
3134         return off;
3135 }
3136
3137 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3138                           const char *name, int sz, int align)
3139 {
3140
3141         if (__btf_type_is_struct(t))
3142                 return btf_find_struct_field(btf, t, name, sz, align);
3143         else if (btf_type_is_datasec(t))
3144                 return btf_find_datasec_var(btf, t, name, sz, align);
3145         return -EINVAL;
3146 }
3147
3148 /* find 'struct bpf_spin_lock' in map value.
3149  * return >= 0 offset if found
3150  * and < 0 in case of error
3151  */
3152 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3153 {
3154         return btf_find_field(btf, t, "bpf_spin_lock",
3155                               sizeof(struct bpf_spin_lock),
3156                               __alignof__(struct bpf_spin_lock));
3157 }
3158
3159 int btf_find_timer(const struct btf *btf, const struct btf_type *t)
3160 {
3161         return btf_find_field(btf, t, "bpf_timer",
3162                               sizeof(struct bpf_timer),
3163                               __alignof__(struct bpf_timer));
3164 }
3165
3166 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3167                               u32 type_id, void *data, u8 bits_offset,
3168                               struct btf_show *show)
3169 {
3170         const struct btf_member *member;
3171         void *safe_data;
3172         u32 i;
3173
3174         safe_data = btf_show_start_struct_type(show, t, type_id, data);
3175         if (!safe_data)
3176                 return;
3177
3178         for_each_member(i, t, member) {
3179                 const struct btf_type *member_type = btf_type_by_id(btf,
3180                                                                 member->type);
3181                 const struct btf_kind_operations *ops;
3182                 u32 member_offset, bitfield_size;
3183                 u32 bytes_offset;
3184                 u8 bits8_offset;
3185
3186                 btf_show_start_member(show, member);
3187
3188                 member_offset = __btf_member_bit_offset(t, member);
3189                 bitfield_size = __btf_member_bitfield_size(t, member);
3190                 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3191                 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3192                 if (bitfield_size) {
3193                         safe_data = btf_show_start_type(show, member_type,
3194                                                         member->type,
3195                                                         data + bytes_offset);
3196                         if (safe_data)
3197                                 btf_bitfield_show(safe_data,
3198                                                   bits8_offset,
3199                                                   bitfield_size, show);
3200                         btf_show_end_type(show);
3201                 } else {
3202                         ops = btf_type_ops(member_type);
3203                         ops->show(btf, member_type, member->type,
3204                                   data + bytes_offset, bits8_offset, show);
3205                 }
3206
3207                 btf_show_end_member(show);
3208         }
3209
3210         btf_show_end_struct_type(show);
3211 }
3212
3213 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3214                             u32 type_id, void *data, u8 bits_offset,
3215                             struct btf_show *show)
3216 {
3217         const struct btf_member *m = show->state.member;
3218
3219         /*
3220          * First check if any members would be shown (are non-zero).
3221          * See comments above "struct btf_show" definition for more
3222          * details on how this works at a high-level.
3223          */
3224         if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3225                 if (!show->state.depth_check) {
3226                         show->state.depth_check = show->state.depth + 1;
3227                         show->state.depth_to_show = 0;
3228                 }
3229                 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3230                 /* Restore saved member data here */
3231                 show->state.member = m;
3232                 if (show->state.depth_check != show->state.depth + 1)
3233                         return;
3234                 show->state.depth_check = 0;
3235
3236                 if (show->state.depth_to_show <= show->state.depth)
3237                         return;
3238                 /*
3239                  * Reaching here indicates we have recursed and found
3240                  * non-zero child values.
3241                  */
3242         }
3243
3244         __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3245 }
3246
3247 static struct btf_kind_operations struct_ops = {
3248         .check_meta = btf_struct_check_meta,
3249         .resolve = btf_struct_resolve,
3250         .check_member = btf_struct_check_member,
3251         .check_kflag_member = btf_generic_check_kflag_member,
3252         .log_details = btf_struct_log,
3253         .show = btf_struct_show,
3254 };
3255
3256 static int btf_enum_check_member(struct btf_verifier_env *env,
3257                                  const struct btf_type *struct_type,
3258                                  const struct btf_member *member,
3259                                  const struct btf_type *member_type)
3260 {
3261         u32 struct_bits_off = member->offset;
3262         u32 struct_size, bytes_offset;
3263
3264         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3265                 btf_verifier_log_member(env, struct_type, member,
3266                                         "Member is not byte aligned");
3267                 return -EINVAL;
3268         }
3269
3270         struct_size = struct_type->size;
3271         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3272         if (struct_size - bytes_offset < member_type->size) {
3273                 btf_verifier_log_member(env, struct_type, member,
3274                                         "Member exceeds struct_size");
3275                 return -EINVAL;
3276         }
3277
3278         return 0;
3279 }
3280
3281 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3282                                        const struct btf_type *struct_type,
3283                                        const struct btf_member *member,
3284                                        const struct btf_type *member_type)
3285 {
3286         u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3287         u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3288
3289         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3290         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3291         if (!nr_bits) {
3292                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3293                         btf_verifier_log_member(env, struct_type, member,
3294                                                 "Member is not byte aligned");
3295                         return -EINVAL;
3296                 }
3297
3298                 nr_bits = int_bitsize;
3299         } else if (nr_bits > int_bitsize) {
3300                 btf_verifier_log_member(env, struct_type, member,
3301                                         "Invalid member bitfield_size");
3302                 return -EINVAL;
3303         }
3304
3305         struct_size = struct_type->size;
3306         bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3307         if (struct_size < bytes_end) {
3308                 btf_verifier_log_member(env, struct_type, member,
3309                                         "Member exceeds struct_size");
3310                 return -EINVAL;
3311         }
3312
3313         return 0;
3314 }
3315
3316 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3317                                const struct btf_type *t,
3318                                u32 meta_left)
3319 {
3320         const struct btf_enum *enums = btf_type_enum(t);
3321         struct btf *btf = env->btf;
3322         u16 i, nr_enums;
3323         u32 meta_needed;
3324
3325         nr_enums = btf_type_vlen(t);
3326         meta_needed = nr_enums * sizeof(*enums);
3327
3328         if (meta_left < meta_needed) {
3329                 btf_verifier_log_basic(env, t,
3330                                        "meta_left:%u meta_needed:%u",
3331                                        meta_left, meta_needed);
3332                 return -EINVAL;
3333         }
3334
3335         if (btf_type_kflag(t)) {
3336                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3337                 return -EINVAL;
3338         }
3339
3340         if (t->size > 8 || !is_power_of_2(t->size)) {
3341                 btf_verifier_log_type(env, t, "Unexpected size");
3342                 return -EINVAL;
3343         }
3344
3345         /* enum type either no name or a valid one */
3346         if (t->name_off &&
3347             !btf_name_valid_identifier(env->btf, t->name_off)) {
3348                 btf_verifier_log_type(env, t, "Invalid name");
3349                 return -EINVAL;
3350         }
3351
3352         btf_verifier_log_type(env, t, NULL);
3353
3354         for (i = 0; i < nr_enums; i++) {
3355                 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3356                         btf_verifier_log(env, "\tInvalid name_offset:%u",
3357                                          enums[i].name_off);
3358                         return -EINVAL;
3359                 }
3360
3361                 /* enum member must have a valid name */
3362                 if (!enums[i].name_off ||
3363                     !btf_name_valid_identifier(btf, enums[i].name_off)) {
3364                         btf_verifier_log_type(env, t, "Invalid name");
3365                         return -EINVAL;
3366                 }
3367
3368                 if (env->log.level == BPF_LOG_KERNEL)
3369                         continue;
3370                 btf_verifier_log(env, "\t%s val=%d\n",
3371                                  __btf_name_by_offset(btf, enums[i].name_off),
3372                                  enums[i].val);
3373         }
3374
3375         return meta_needed;
3376 }
3377
3378 static void btf_enum_log(struct btf_verifier_env *env,
3379                          const struct btf_type *t)
3380 {
3381         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3382 }
3383
3384 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3385                           u32 type_id, void *data, u8 bits_offset,
3386                           struct btf_show *show)
3387 {
3388         const struct btf_enum *enums = btf_type_enum(t);
3389         u32 i, nr_enums = btf_type_vlen(t);
3390         void *safe_data;
3391         int v;
3392
3393         safe_data = btf_show_start_type(show, t, type_id, data);
3394         if (!safe_data)
3395                 return;
3396
3397         v = *(int *)safe_data;
3398
3399         for (i = 0; i < nr_enums; i++) {
3400                 if (v != enums[i].val)
3401                         continue;
3402
3403                 btf_show_type_value(show, "%s",
3404                                     __btf_name_by_offset(btf,
3405                                                          enums[i].name_off));
3406
3407                 btf_show_end_type(show);
3408                 return;
3409         }
3410
3411         btf_show_type_value(show, "%d", v);
3412         btf_show_end_type(show);
3413 }
3414
3415 static struct btf_kind_operations enum_ops = {
3416         .check_meta = btf_enum_check_meta,
3417         .resolve = btf_df_resolve,
3418         .check_member = btf_enum_check_member,
3419         .check_kflag_member = btf_enum_check_kflag_member,
3420         .log_details = btf_enum_log,
3421         .show = btf_enum_show,
3422 };
3423
3424 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3425                                      const struct btf_type *t,
3426                                      u32 meta_left)
3427 {
3428         u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3429
3430         if (meta_left < meta_needed) {
3431                 btf_verifier_log_basic(env, t,
3432                                        "meta_left:%u meta_needed:%u",
3433                                        meta_left, meta_needed);
3434                 return -EINVAL;
3435         }
3436
3437         if (t->name_off) {
3438                 btf_verifier_log_type(env, t, "Invalid name");
3439                 return -EINVAL;
3440         }
3441
3442         if (btf_type_kflag(t)) {
3443                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3444                 return -EINVAL;
3445         }
3446
3447         btf_verifier_log_type(env, t, NULL);
3448
3449         return meta_needed;
3450 }
3451
3452 static void btf_func_proto_log(struct btf_verifier_env *env,
3453                                const struct btf_type *t)
3454 {
3455         const struct btf_param *args = (const struct btf_param *)(t + 1);
3456         u16 nr_args = btf_type_vlen(t), i;
3457
3458         btf_verifier_log(env, "return=%u args=(", t->type);
3459         if (!nr_args) {
3460                 btf_verifier_log(env, "void");
3461                 goto done;
3462         }
3463
3464         if (nr_args == 1 && !args[0].type) {
3465                 /* Only one vararg */
3466                 btf_verifier_log(env, "vararg");
3467                 goto done;
3468         }
3469
3470         btf_verifier_log(env, "%u %s", args[0].type,
3471                          __btf_name_by_offset(env->btf,
3472                                               args[0].name_off));
3473         for (i = 1; i < nr_args - 1; i++)
3474                 btf_verifier_log(env, ", %u %s", args[i].type,
3475                                  __btf_name_by_offset(env->btf,
3476                                                       args[i].name_off));
3477
3478         if (nr_args > 1) {
3479                 const struct btf_param *last_arg = &args[nr_args - 1];
3480
3481                 if (last_arg->type)
3482                         btf_verifier_log(env, ", %u %s", last_arg->type,
3483                                          __btf_name_by_offset(env->btf,
3484                                                               last_arg->name_off));
3485                 else
3486                         btf_verifier_log(env, ", vararg");
3487         }
3488
3489 done:
3490         btf_verifier_log(env, ")");
3491 }
3492
3493 static struct btf_kind_operations func_proto_ops = {
3494         .check_meta = btf_func_proto_check_meta,
3495         .resolve = btf_df_resolve,
3496         /*
3497          * BTF_KIND_FUNC_PROTO cannot be directly referred by
3498          * a struct's member.
3499          *
3500          * It should be a function pointer instead.
3501          * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3502          *
3503          * Hence, there is no btf_func_check_member().
3504          */
3505         .check_member = btf_df_check_member,
3506         .check_kflag_member = btf_df_check_kflag_member,
3507         .log_details = btf_func_proto_log,
3508         .show = btf_df_show,
3509 };
3510
3511 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3512                                const struct btf_type *t,
3513                                u32 meta_left)
3514 {
3515         if (!t->name_off ||
3516             !btf_name_valid_identifier(env->btf, t->name_off)) {
3517                 btf_verifier_log_type(env, t, "Invalid name");
3518                 return -EINVAL;
3519         }
3520
3521         if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3522                 btf_verifier_log_type(env, t, "Invalid func linkage");
3523                 return -EINVAL;
3524         }
3525
3526         if (btf_type_kflag(t)) {
3527                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3528                 return -EINVAL;
3529         }
3530
3531         btf_verifier_log_type(env, t, NULL);
3532
3533         return 0;
3534 }
3535
3536 static struct btf_kind_operations func_ops = {
3537         .check_meta = btf_func_check_meta,
3538         .resolve = btf_df_resolve,
3539         .check_member = btf_df_check_member,
3540         .check_kflag_member = btf_df_check_kflag_member,
3541         .log_details = btf_ref_type_log,
3542         .show = btf_df_show,
3543 };
3544
3545 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3546                               const struct btf_type *t,
3547                               u32 meta_left)
3548 {
3549         const struct btf_var *var;
3550         u32 meta_needed = sizeof(*var);
3551
3552         if (meta_left < meta_needed) {
3553                 btf_verifier_log_basic(env, t,
3554                                        "meta_left:%u meta_needed:%u",
3555                                        meta_left, meta_needed);
3556                 return -EINVAL;
3557         }
3558
3559         if (btf_type_vlen(t)) {
3560                 btf_verifier_log_type(env, t, "vlen != 0");
3561                 return -EINVAL;
3562         }
3563
3564         if (btf_type_kflag(t)) {
3565                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3566                 return -EINVAL;
3567         }
3568
3569         if (!t->name_off ||
3570             !__btf_name_valid(env->btf, t->name_off, true)) {
3571                 btf_verifier_log_type(env, t, "Invalid name");
3572                 return -EINVAL;
3573         }
3574
3575         /* A var cannot be in type void */
3576         if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3577                 btf_verifier_log_type(env, t, "Invalid type_id");
3578                 return -EINVAL;
3579         }
3580
3581         var = btf_type_var(t);
3582         if (var->linkage != BTF_VAR_STATIC &&
3583             var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3584                 btf_verifier_log_type(env, t, "Linkage not supported");
3585                 return -EINVAL;
3586         }
3587
3588         btf_verifier_log_type(env, t, NULL);
3589
3590         return meta_needed;
3591 }
3592
3593 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3594 {
3595         const struct btf_var *var = btf_type_var(t);
3596
3597         btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3598 }
3599
3600 static const struct btf_kind_operations var_ops = {
3601         .check_meta             = btf_var_check_meta,
3602         .resolve                = btf_var_resolve,
3603         .check_member           = btf_df_check_member,
3604         .check_kflag_member     = btf_df_check_kflag_member,
3605         .log_details            = btf_var_log,
3606         .show                   = btf_var_show,
3607 };
3608
3609 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3610                                   const struct btf_type *t,
3611                                   u32 meta_left)
3612 {
3613         const struct btf_var_secinfo *vsi;
3614         u64 last_vsi_end_off = 0, sum = 0;
3615         u32 i, meta_needed;
3616
3617         meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3618         if (meta_left < meta_needed) {
3619                 btf_verifier_log_basic(env, t,
3620                                        "meta_left:%u meta_needed:%u",
3621                                        meta_left, meta_needed);
3622                 return -EINVAL;
3623         }
3624
3625         if (!t->size) {
3626                 btf_verifier_log_type(env, t, "size == 0");
3627                 return -EINVAL;
3628         }
3629
3630         if (btf_type_kflag(t)) {
3631                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3632                 return -EINVAL;
3633         }
3634
3635         if (!t->name_off ||
3636             !btf_name_valid_section(env->btf, t->name_off)) {
3637                 btf_verifier_log_type(env, t, "Invalid name");
3638                 return -EINVAL;
3639         }
3640
3641         btf_verifier_log_type(env, t, NULL);
3642
3643         for_each_vsi(i, t, vsi) {
3644                 /* A var cannot be in type void */
3645                 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3646                         btf_verifier_log_vsi(env, t, vsi,
3647                                              "Invalid type_id");
3648                         return -EINVAL;
3649                 }
3650
3651                 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3652                         btf_verifier_log_vsi(env, t, vsi,
3653                                              "Invalid offset");
3654                         return -EINVAL;
3655                 }
3656
3657                 if (!vsi->size || vsi->size > t->size) {
3658                         btf_verifier_log_vsi(env, t, vsi,
3659                                              "Invalid size");
3660                         return -EINVAL;
3661                 }
3662
3663                 last_vsi_end_off = vsi->offset + vsi->size;
3664                 if (last_vsi_end_off > t->size) {
3665                         btf_verifier_log_vsi(env, t, vsi,
3666                                              "Invalid offset+size");
3667                         return -EINVAL;
3668                 }
3669
3670                 btf_verifier_log_vsi(env, t, vsi, NULL);
3671                 sum += vsi->size;
3672         }
3673
3674         if (t->size < sum) {
3675                 btf_verifier_log_type(env, t, "Invalid btf_info size");
3676                 return -EINVAL;
3677         }
3678
3679         return meta_needed;
3680 }
3681
3682 static int btf_datasec_resolve(struct btf_verifier_env *env,
3683                                const struct resolve_vertex *v)
3684 {
3685         const struct btf_var_secinfo *vsi;
3686         struct btf *btf = env->btf;
3687         u16 i;
3688
3689         for_each_vsi_from(i, v->next_member, v->t, vsi) {
3690                 u32 var_type_id = vsi->type, type_id, type_size = 0;
3691                 const struct btf_type *var_type = btf_type_by_id(env->btf,
3692                                                                  var_type_id);
3693                 if (!var_type || !btf_type_is_var(var_type)) {
3694                         btf_verifier_log_vsi(env, v->t, vsi,
3695                                              "Not a VAR kind member");
3696                         return -EINVAL;
3697                 }
3698
3699                 if (!env_type_is_resolve_sink(env, var_type) &&
3700                     !env_type_is_resolved(env, var_type_id)) {
3701                         env_stack_set_next_member(env, i + 1);
3702                         return env_stack_push(env, var_type, var_type_id);
3703                 }
3704
3705                 type_id = var_type->type;
3706                 if (!btf_type_id_size(btf, &type_id, &type_size)) {
3707                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3708                         return -EINVAL;
3709                 }
3710
3711                 if (vsi->size < type_size) {
3712                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3713                         return -EINVAL;
3714                 }
3715         }
3716
3717         env_stack_pop_resolved(env, 0, 0);
3718         return 0;
3719 }
3720
3721 static void btf_datasec_log(struct btf_verifier_env *env,
3722                             const struct btf_type *t)
3723 {
3724         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3725 }
3726
3727 static void btf_datasec_show(const struct btf *btf,
3728                              const struct btf_type *t, u32 type_id,
3729                              void *data, u8 bits_offset,
3730                              struct btf_show *show)
3731 {
3732         const struct btf_var_secinfo *vsi;
3733         const struct btf_type *var;
3734         u32 i;
3735
3736         if (!btf_show_start_type(show, t, type_id, data))
3737                 return;
3738
3739         btf_show_type_value(show, "section (\"%s\") = {",
3740                             __btf_name_by_offset(btf, t->name_off));
3741         for_each_vsi(i, t, vsi) {
3742                 var = btf_type_by_id(btf, vsi->type);
3743                 if (i)
3744                         btf_show(show, ",");
3745                 btf_type_ops(var)->show(btf, var, vsi->type,
3746                                         data + vsi->offset, bits_offset, show);
3747         }
3748         btf_show_end_type(show);
3749 }
3750
3751 static const struct btf_kind_operations datasec_ops = {
3752         .check_meta             = btf_datasec_check_meta,
3753         .resolve                = btf_datasec_resolve,
3754         .check_member           = btf_df_check_member,
3755         .check_kflag_member     = btf_df_check_kflag_member,
3756         .log_details            = btf_datasec_log,
3757         .show                   = btf_datasec_show,
3758 };
3759
3760 static s32 btf_float_check_meta(struct btf_verifier_env *env,
3761                                 const struct btf_type *t,
3762                                 u32 meta_left)
3763 {
3764         if (btf_type_vlen(t)) {
3765                 btf_verifier_log_type(env, t, "vlen != 0");
3766                 return -EINVAL;
3767         }
3768
3769         if (btf_type_kflag(t)) {
3770                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3771                 return -EINVAL;
3772         }
3773
3774         if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
3775             t->size != 16) {
3776                 btf_verifier_log_type(env, t, "Invalid type_size");
3777                 return -EINVAL;
3778         }
3779
3780         btf_verifier_log_type(env, t, NULL);
3781
3782         return 0;
3783 }
3784
3785 static int btf_float_check_member(struct btf_verifier_env *env,
3786                                   const struct btf_type *struct_type,
3787                                   const struct btf_member *member,
3788                                   const struct btf_type *member_type)
3789 {
3790         u64 start_offset_bytes;
3791         u64 end_offset_bytes;
3792         u64 misalign_bits;
3793         u64 align_bytes;
3794         u64 align_bits;
3795
3796         /* Different architectures have different alignment requirements, so
3797          * here we check only for the reasonable minimum. This way we ensure
3798          * that types after CO-RE can pass the kernel BTF verifier.
3799          */
3800         align_bytes = min_t(u64, sizeof(void *), member_type->size);
3801         align_bits = align_bytes * BITS_PER_BYTE;
3802         div64_u64_rem(member->offset, align_bits, &misalign_bits);
3803         if (misalign_bits) {
3804                 btf_verifier_log_member(env, struct_type, member,
3805                                         "Member is not properly aligned");
3806                 return -EINVAL;
3807         }
3808
3809         start_offset_bytes = member->offset / BITS_PER_BYTE;
3810         end_offset_bytes = start_offset_bytes + member_type->size;
3811         if (end_offset_bytes > struct_type->size) {
3812                 btf_verifier_log_member(env, struct_type, member,
3813                                         "Member exceeds struct_size");
3814                 return -EINVAL;
3815         }
3816
3817         return 0;
3818 }
3819
3820 static void btf_float_log(struct btf_verifier_env *env,
3821                           const struct btf_type *t)
3822 {
3823         btf_verifier_log(env, "size=%u", t->size);
3824 }
3825
3826 static const struct btf_kind_operations float_ops = {
3827         .check_meta = btf_float_check_meta,
3828         .resolve = btf_df_resolve,
3829         .check_member = btf_float_check_member,
3830         .check_kflag_member = btf_generic_check_kflag_member,
3831         .log_details = btf_float_log,
3832         .show = btf_df_show,
3833 };
3834
3835 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
3836                               const struct btf_type *t,
3837                               u32 meta_left)
3838 {
3839         const struct btf_decl_tag *tag;
3840         u32 meta_needed = sizeof(*tag);
3841         s32 component_idx;
3842         const char *value;
3843
3844         if (meta_left < meta_needed) {
3845                 btf_verifier_log_basic(env, t,
3846                                        "meta_left:%u meta_needed:%u",
3847                                        meta_left, meta_needed);
3848                 return -EINVAL;
3849         }
3850
3851         value = btf_name_by_offset(env->btf, t->name_off);
3852         if (!value || !value[0]) {
3853                 btf_verifier_log_type(env, t, "Invalid value");
3854                 return -EINVAL;
3855         }
3856
3857         if (btf_type_vlen(t)) {
3858                 btf_verifier_log_type(env, t, "vlen != 0");
3859                 return -EINVAL;
3860         }
3861
3862         if (btf_type_kflag(t)) {
3863                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3864                 return -EINVAL;
3865         }
3866
3867         component_idx = btf_type_decl_tag(t)->component_idx;
3868         if (component_idx < -1) {
3869                 btf_verifier_log_type(env, t, "Invalid component_idx");
3870                 return -EINVAL;
3871         }
3872
3873         btf_verifier_log_type(env, t, NULL);
3874
3875         return meta_needed;
3876 }
3877
3878 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
3879                            const struct resolve_vertex *v)
3880 {
3881         const struct btf_type *next_type;
3882         const struct btf_type *t = v->t;
3883         u32 next_type_id = t->type;
3884         struct btf *btf = env->btf;
3885         s32 component_idx;
3886         u32 vlen;
3887
3888         next_type = btf_type_by_id(btf, next_type_id);
3889         if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
3890                 btf_verifier_log_type(env, v->t, "Invalid type_id");
3891                 return -EINVAL;
3892         }
3893
3894         if (!env_type_is_resolve_sink(env, next_type) &&
3895             !env_type_is_resolved(env, next_type_id))
3896                 return env_stack_push(env, next_type, next_type_id);
3897
3898         component_idx = btf_type_decl_tag(t)->component_idx;
3899         if (component_idx != -1) {
3900                 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
3901                         btf_verifier_log_type(env, v->t, "Invalid component_idx");
3902                         return -EINVAL;
3903                 }
3904
3905                 if (btf_type_is_struct(next_type)) {
3906                         vlen = btf_type_vlen(next_type);
3907                 } else {
3908                         /* next_type should be a function */
3909                         next_type = btf_type_by_id(btf, next_type->type);
3910                         vlen = btf_type_vlen(next_type);
3911                 }
3912
3913                 if ((u32)component_idx >= vlen) {
3914                         btf_verifier_log_type(env, v->t, "Invalid component_idx");
3915                         return -EINVAL;
3916                 }
3917         }
3918
3919         env_stack_pop_resolved(env, next_type_id, 0);
3920
3921         return 0;
3922 }
3923
3924 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
3925 {
3926         btf_verifier_log(env, "type=%u component_idx=%d", t->type,
3927                          btf_type_decl_tag(t)->component_idx);
3928 }
3929
3930 static const struct btf_kind_operations decl_tag_ops = {
3931         .check_meta = btf_decl_tag_check_meta,
3932         .resolve = btf_decl_tag_resolve,
3933         .check_member = btf_df_check_member,
3934         .check_kflag_member = btf_df_check_kflag_member,
3935         .log_details = btf_decl_tag_log,
3936         .show = btf_df_show,
3937 };
3938
3939 static int btf_func_proto_check(struct btf_verifier_env *env,
3940                                 const struct btf_type *t)
3941 {
3942         const struct btf_type *ret_type;
3943         const struct btf_param *args;
3944         const struct btf *btf;
3945         u16 nr_args, i;
3946         int err;
3947
3948         btf = env->btf;
3949         args = (const struct btf_param *)(t + 1);
3950         nr_args = btf_type_vlen(t);
3951
3952         /* Check func return type which could be "void" (t->type == 0) */
3953         if (t->type) {
3954                 u32 ret_type_id = t->type;
3955
3956                 ret_type = btf_type_by_id(btf, ret_type_id);
3957                 if (!ret_type) {
3958                         btf_verifier_log_type(env, t, "Invalid return type");
3959                         return -EINVAL;
3960                 }
3961
3962                 if (btf_type_needs_resolve(ret_type) &&
3963                     !env_type_is_resolved(env, ret_type_id)) {
3964                         err = btf_resolve(env, ret_type, ret_type_id);
3965                         if (err)
3966                                 return err;
3967                 }
3968
3969                 /* Ensure the return type is a type that has a size */
3970                 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3971                         btf_verifier_log_type(env, t, "Invalid return type");
3972                         return -EINVAL;
3973                 }
3974         }
3975
3976         if (!nr_args)
3977                 return 0;
3978
3979         /* Last func arg type_id could be 0 if it is a vararg */
3980         if (!args[nr_args - 1].type) {
3981                 if (args[nr_args - 1].name_off) {
3982                         btf_verifier_log_type(env, t, "Invalid arg#%u",
3983                                               nr_args);
3984                         return -EINVAL;
3985                 }
3986                 nr_args--;
3987         }
3988
3989         err = 0;
3990         for (i = 0; i < nr_args; i++) {
3991                 const struct btf_type *arg_type;
3992                 u32 arg_type_id;
3993
3994                 arg_type_id = args[i].type;
3995                 arg_type = btf_type_by_id(btf, arg_type_id);
3996                 if (!arg_type) {
3997                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3998                         err = -EINVAL;
3999                         break;
4000                 }
4001
4002                 if (args[i].name_off &&
4003                     (!btf_name_offset_valid(btf, args[i].name_off) ||
4004                      !btf_name_valid_identifier(btf, args[i].name_off))) {
4005                         btf_verifier_log_type(env, t,
4006                                               "Invalid arg#%u", i + 1);
4007                         err = -EINVAL;
4008                         break;
4009                 }
4010
4011                 if (btf_type_needs_resolve(arg_type) &&
4012                     !env_type_is_resolved(env, arg_type_id)) {
4013                         err = btf_resolve(env, arg_type, arg_type_id);
4014                         if (err)
4015                                 break;
4016                 }
4017
4018                 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4019                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4020                         err = -EINVAL;
4021                         break;
4022                 }
4023         }
4024
4025         return err;
4026 }
4027
4028 static int btf_func_check(struct btf_verifier_env *env,
4029                           const struct btf_type *t)
4030 {
4031         const struct btf_type *proto_type;
4032         const struct btf_param *args;
4033         const struct btf *btf;
4034         u16 nr_args, i;
4035
4036         btf = env->btf;
4037         proto_type = btf_type_by_id(btf, t->type);
4038
4039         if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4040                 btf_verifier_log_type(env, t, "Invalid type_id");
4041                 return -EINVAL;
4042         }
4043
4044         args = (const struct btf_param *)(proto_type + 1);
4045         nr_args = btf_type_vlen(proto_type);
4046         for (i = 0; i < nr_args; i++) {
4047                 if (!args[i].name_off && args[i].type) {
4048                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4049                         return -EINVAL;
4050                 }
4051         }
4052
4053         return 0;
4054 }
4055
4056 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4057         [BTF_KIND_INT] = &int_ops,
4058         [BTF_KIND_PTR] = &ptr_ops,
4059         [BTF_KIND_ARRAY] = &array_ops,
4060         [BTF_KIND_STRUCT] = &struct_ops,
4061         [BTF_KIND_UNION] = &struct_ops,
4062         [BTF_KIND_ENUM] = &enum_ops,
4063         [BTF_KIND_FWD] = &fwd_ops,
4064         [BTF_KIND_TYPEDEF] = &modifier_ops,
4065         [BTF_KIND_VOLATILE] = &modifier_ops,
4066         [BTF_KIND_CONST] = &modifier_ops,
4067         [BTF_KIND_RESTRICT] = &modifier_ops,
4068         [BTF_KIND_FUNC] = &func_ops,
4069         [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4070         [BTF_KIND_VAR] = &var_ops,
4071         [BTF_KIND_DATASEC] = &datasec_ops,
4072         [BTF_KIND_FLOAT] = &float_ops,
4073         [BTF_KIND_DECL_TAG] = &decl_tag_ops,
4074         [BTF_KIND_TYPE_TAG] = &modifier_ops,
4075 };
4076
4077 static s32 btf_check_meta(struct btf_verifier_env *env,
4078                           const struct btf_type *t,
4079                           u32 meta_left)
4080 {
4081         u32 saved_meta_left = meta_left;
4082         s32 var_meta_size;
4083
4084         if (meta_left < sizeof(*t)) {
4085                 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4086                                  env->log_type_id, meta_left, sizeof(*t));
4087                 return -EINVAL;
4088         }
4089         meta_left -= sizeof(*t);
4090
4091         if (t->info & ~BTF_INFO_MASK) {
4092                 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4093                                  env->log_type_id, t->info);
4094                 return -EINVAL;
4095         }
4096
4097         if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4098             BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4099                 btf_verifier_log(env, "[%u] Invalid kind:%u",
4100                                  env->log_type_id, BTF_INFO_KIND(t->info));
4101                 return -EINVAL;
4102         }
4103
4104         if (!btf_name_offset_valid(env->btf, t->name_off)) {
4105                 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4106                                  env->log_type_id, t->name_off);
4107                 return -EINVAL;
4108         }
4109
4110         var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4111         if (var_meta_size < 0)
4112                 return var_meta_size;
4113
4114         meta_left -= var_meta_size;
4115
4116         return saved_meta_left - meta_left;
4117 }
4118
4119 static int btf_check_all_metas(struct btf_verifier_env *env)
4120 {
4121         struct btf *btf = env->btf;
4122         struct btf_header *hdr;
4123         void *cur, *end;
4124
4125         hdr = &btf->hdr;
4126         cur = btf->nohdr_data + hdr->type_off;
4127         end = cur + hdr->type_len;
4128
4129         env->log_type_id = btf->base_btf ? btf->start_id : 1;
4130         while (cur < end) {
4131                 struct btf_type *t = cur;
4132                 s32 meta_size;
4133
4134                 meta_size = btf_check_meta(env, t, end - cur);
4135                 if (meta_size < 0)
4136                         return meta_size;
4137
4138                 btf_add_type(env, t);
4139                 cur += meta_size;
4140                 env->log_type_id++;
4141         }
4142
4143         return 0;
4144 }
4145
4146 static bool btf_resolve_valid(struct btf_verifier_env *env,
4147                               const struct btf_type *t,
4148                               u32 type_id)
4149 {
4150         struct btf *btf = env->btf;
4151
4152         if (!env_type_is_resolved(env, type_id))
4153                 return false;
4154
4155         if (btf_type_is_struct(t) || btf_type_is_datasec(t))
4156                 return !btf_resolved_type_id(btf, type_id) &&
4157                        !btf_resolved_type_size(btf, type_id);
4158
4159         if (btf_type_is_decl_tag(t))
4160                 return btf_resolved_type_id(btf, type_id) &&
4161                        !btf_resolved_type_size(btf, type_id);
4162
4163         if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4164             btf_type_is_var(t)) {
4165                 t = btf_type_id_resolve(btf, &type_id);
4166                 return t &&
4167                        !btf_type_is_modifier(t) &&
4168                        !btf_type_is_var(t) &&
4169                        !btf_type_is_datasec(t);
4170         }
4171
4172         if (btf_type_is_array(t)) {
4173                 const struct btf_array *array = btf_type_array(t);
4174                 const struct btf_type *elem_type;
4175                 u32 elem_type_id = array->type;
4176                 u32 elem_size;
4177
4178                 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4179                 return elem_type && !btf_type_is_modifier(elem_type) &&
4180                         (array->nelems * elem_size ==
4181                          btf_resolved_type_size(btf, type_id));
4182         }
4183
4184         return false;
4185 }
4186
4187 static int btf_resolve(struct btf_verifier_env *env,
4188                        const struct btf_type *t, u32 type_id)
4189 {
4190         u32 save_log_type_id = env->log_type_id;
4191         const struct resolve_vertex *v;
4192         int err = 0;
4193
4194         env->resolve_mode = RESOLVE_TBD;
4195         env_stack_push(env, t, type_id);
4196         while (!err && (v = env_stack_peak(env))) {
4197                 env->log_type_id = v->type_id;
4198                 err = btf_type_ops(v->t)->resolve(env, v);
4199         }
4200
4201         env->log_type_id = type_id;
4202         if (err == -E2BIG) {
4203                 btf_verifier_log_type(env, t,
4204                                       "Exceeded max resolving depth:%u",
4205                                       MAX_RESOLVE_DEPTH);
4206         } else if (err == -EEXIST) {
4207                 btf_verifier_log_type(env, t, "Loop detected");
4208         }
4209
4210         /* Final sanity check */
4211         if (!err && !btf_resolve_valid(env, t, type_id)) {
4212                 btf_verifier_log_type(env, t, "Invalid resolve state");
4213                 err = -EINVAL;
4214         }
4215
4216         env->log_type_id = save_log_type_id;
4217         return err;
4218 }
4219
4220 static int btf_check_all_types(struct btf_verifier_env *env)
4221 {
4222         struct btf *btf = env->btf;
4223         const struct btf_type *t;
4224         u32 type_id, i;
4225         int err;
4226
4227         err = env_resolve_init(env);
4228         if (err)
4229                 return err;
4230
4231         env->phase++;
4232         for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4233                 type_id = btf->start_id + i;
4234                 t = btf_type_by_id(btf, type_id);
4235
4236                 env->log_type_id = type_id;
4237                 if (btf_type_needs_resolve(t) &&
4238                     !env_type_is_resolved(env, type_id)) {
4239                         err = btf_resolve(env, t, type_id);
4240                         if (err)
4241                                 return err;
4242                 }
4243
4244                 if (btf_type_is_func_proto(t)) {
4245                         err = btf_func_proto_check(env, t);
4246                         if (err)
4247                                 return err;
4248                 }
4249
4250                 if (btf_type_is_func(t)) {
4251                         err = btf_func_check(env, t);
4252                         if (err)
4253                                 return err;
4254                 }
4255         }
4256
4257         return 0;
4258 }
4259
4260 static int btf_parse_type_sec(struct btf_verifier_env *env)
4261 {
4262         const struct btf_header *hdr = &env->btf->hdr;
4263         int err;
4264
4265         /* Type section must align to 4 bytes */
4266         if (hdr->type_off & (sizeof(u32) - 1)) {
4267                 btf_verifier_log(env, "Unaligned type_off");
4268                 return -EINVAL;
4269         }
4270
4271         if (!env->btf->base_btf && !hdr->type_len) {
4272                 btf_verifier_log(env, "No type found");
4273                 return -EINVAL;
4274         }
4275
4276         err = btf_check_all_metas(env);
4277         if (err)
4278                 return err;
4279
4280         return btf_check_all_types(env);
4281 }
4282
4283 static int btf_parse_str_sec(struct btf_verifier_env *env)
4284 {
4285         const struct btf_header *hdr;
4286         struct btf *btf = env->btf;
4287         const char *start, *end;
4288
4289         hdr = &btf->hdr;
4290         start = btf->nohdr_data + hdr->str_off;
4291         end = start + hdr->str_len;
4292
4293         if (end != btf->data + btf->data_size) {
4294                 btf_verifier_log(env, "String section is not at the end");
4295                 return -EINVAL;
4296         }
4297
4298         btf->strings = start;
4299
4300         if (btf->base_btf && !hdr->str_len)
4301                 return 0;
4302         if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4303                 btf_verifier_log(env, "Invalid string section");
4304                 return -EINVAL;
4305         }
4306         if (!btf->base_btf && start[0]) {
4307                 btf_verifier_log(env, "Invalid string section");
4308                 return -EINVAL;
4309         }
4310
4311         return 0;
4312 }
4313
4314 static const size_t btf_sec_info_offset[] = {
4315         offsetof(struct btf_header, type_off),
4316         offsetof(struct btf_header, str_off),
4317 };
4318
4319 static int btf_sec_info_cmp(const void *a, const void *b)
4320 {
4321         const struct btf_sec_info *x = a;
4322         const struct btf_sec_info *y = b;
4323
4324         return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4325 }
4326
4327 static int btf_check_sec_info(struct btf_verifier_env *env,
4328                               u32 btf_data_size)
4329 {
4330         struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4331         u32 total, expected_total, i;
4332         const struct btf_header *hdr;
4333         const struct btf *btf;
4334
4335         btf = env->btf;
4336         hdr = &btf->hdr;
4337
4338         /* Populate the secs from hdr */
4339         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4340                 secs[i] = *(struct btf_sec_info *)((void *)hdr +
4341                                                    btf_sec_info_offset[i]);
4342
4343         sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4344              sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4345
4346         /* Check for gaps and overlap among sections */
4347         total = 0;
4348         expected_total = btf_data_size - hdr->hdr_len;
4349         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4350                 if (expected_total < secs[i].off) {
4351                         btf_verifier_log(env, "Invalid section offset");
4352                         return -EINVAL;
4353                 }
4354                 if (total < secs[i].off) {
4355                         /* gap */
4356                         btf_verifier_log(env, "Unsupported section found");
4357                         return -EINVAL;
4358                 }
4359                 if (total > secs[i].off) {
4360                         btf_verifier_log(env, "Section overlap found");
4361                         return -EINVAL;
4362                 }
4363                 if (expected_total - total < secs[i].len) {
4364                         btf_verifier_log(env,
4365                                          "Total section length too long");
4366                         return -EINVAL;
4367                 }
4368                 total += secs[i].len;
4369         }
4370
4371         /* There is data other than hdr and known sections */
4372         if (expected_total != total) {
4373                 btf_verifier_log(env, "Unsupported section found");
4374                 return -EINVAL;
4375         }
4376
4377         return 0;
4378 }
4379
4380 static int btf_parse_hdr(struct btf_verifier_env *env)
4381 {
4382         u32 hdr_len, hdr_copy, btf_data_size;
4383         const struct btf_header *hdr;
4384         struct btf *btf;
4385         int err;
4386
4387         btf = env->btf;
4388         btf_data_size = btf->data_size;
4389
4390         if (btf_data_size <
4391             offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4392                 btf_verifier_log(env, "hdr_len not found");
4393                 return -EINVAL;
4394         }
4395
4396         hdr = btf->data;
4397         hdr_len = hdr->hdr_len;
4398         if (btf_data_size < hdr_len) {
4399                 btf_verifier_log(env, "btf_header not found");
4400                 return -EINVAL;
4401         }
4402
4403         /* Ensure the unsupported header fields are zero */
4404         if (hdr_len > sizeof(btf->hdr)) {
4405                 u8 *expected_zero = btf->data + sizeof(btf->hdr);
4406                 u8 *end = btf->data + hdr_len;
4407
4408                 for (; expected_zero < end; expected_zero++) {
4409                         if (*expected_zero) {
4410                                 btf_verifier_log(env, "Unsupported btf_header");
4411                                 return -E2BIG;
4412                         }
4413                 }
4414         }
4415
4416         hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4417         memcpy(&btf->hdr, btf->data, hdr_copy);
4418
4419         hdr = &btf->hdr;
4420
4421         btf_verifier_log_hdr(env, btf_data_size);
4422
4423         if (hdr->magic != BTF_MAGIC) {
4424                 btf_verifier_log(env, "Invalid magic");
4425                 return -EINVAL;
4426         }
4427
4428         if (hdr->version != BTF_VERSION) {
4429                 btf_verifier_log(env, "Unsupported version");
4430                 return -ENOTSUPP;
4431         }
4432
4433         if (hdr->flags) {
4434                 btf_verifier_log(env, "Unsupported flags");
4435                 return -ENOTSUPP;
4436         }
4437
4438         if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4439                 btf_verifier_log(env, "No data");
4440                 return -EINVAL;
4441         }
4442
4443         err = btf_check_sec_info(env, btf_data_size);
4444         if (err)
4445                 return err;
4446
4447         return 0;
4448 }
4449
4450 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
4451                              u32 log_level, char __user *log_ubuf, u32 log_size)
4452 {
4453         struct btf_verifier_env *env = NULL;
4454         struct bpf_verifier_log *log;
4455         struct btf *btf = NULL;
4456         u8 *data;
4457         int err;
4458
4459         if (btf_data_size > BTF_MAX_SIZE)
4460                 return ERR_PTR(-E2BIG);
4461
4462         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4463         if (!env)
4464                 return ERR_PTR(-ENOMEM);
4465
4466         log = &env->log;
4467         if (log_level || log_ubuf || log_size) {
4468                 /* user requested verbose verifier output
4469                  * and supplied buffer to store the verification trace
4470                  */
4471                 log->level = log_level;
4472                 log->ubuf = log_ubuf;
4473                 log->len_total = log_size;
4474
4475                 /* log attributes have to be sane */
4476                 if (!bpf_verifier_log_attr_valid(log)) {
4477                         err = -EINVAL;
4478                         goto errout;
4479                 }
4480         }
4481
4482         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4483         if (!btf) {
4484                 err = -ENOMEM;
4485                 goto errout;
4486         }
4487         env->btf = btf;
4488
4489         data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4490         if (!data) {
4491                 err = -ENOMEM;
4492                 goto errout;
4493         }
4494
4495         btf->data = data;
4496         btf->data_size = btf_data_size;
4497
4498         if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
4499                 err = -EFAULT;
4500                 goto errout;
4501         }
4502
4503         err = btf_parse_hdr(env);
4504         if (err)
4505                 goto errout;
4506
4507         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4508
4509         err = btf_parse_str_sec(env);
4510         if (err)
4511                 goto errout;
4512
4513         err = btf_parse_type_sec(env);
4514         if (err)
4515                 goto errout;
4516
4517         if (log->level && bpf_verifier_log_full(log)) {
4518                 err = -ENOSPC;
4519                 goto errout;
4520         }
4521
4522         btf_verifier_env_free(env);
4523         refcount_set(&btf->refcnt, 1);
4524         return btf;
4525
4526 errout:
4527         btf_verifier_env_free(env);
4528         if (btf)
4529                 btf_free(btf);
4530         return ERR_PTR(err);
4531 }
4532
4533 extern char __weak __start_BTF[];
4534 extern char __weak __stop_BTF[];
4535 extern struct btf *btf_vmlinux;
4536
4537 #define BPF_MAP_TYPE(_id, _ops)
4538 #define BPF_LINK_TYPE(_id, _name)
4539 static union {
4540         struct bpf_ctx_convert {
4541 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4542         prog_ctx_type _id##_prog; \
4543         kern_ctx_type _id##_kern;
4544 #include <linux/bpf_types.h>
4545 #undef BPF_PROG_TYPE
4546         } *__t;
4547         /* 't' is written once under lock. Read many times. */
4548         const struct btf_type *t;
4549 } bpf_ctx_convert;
4550 enum {
4551 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4552         __ctx_convert##_id,
4553 #include <linux/bpf_types.h>
4554 #undef BPF_PROG_TYPE
4555         __ctx_convert_unused, /* to avoid empty enum in extreme .config */
4556 };
4557 static u8 bpf_ctx_convert_map[] = {
4558 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4559         [_id] = __ctx_convert##_id,
4560 #include <linux/bpf_types.h>
4561 #undef BPF_PROG_TYPE
4562         0, /* avoid empty array */
4563 };
4564 #undef BPF_MAP_TYPE
4565 #undef BPF_LINK_TYPE
4566
4567 static const struct btf_member *
4568 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
4569                       const struct btf_type *t, enum bpf_prog_type prog_type,
4570                       int arg)
4571 {
4572         const struct btf_type *conv_struct;
4573         const struct btf_type *ctx_struct;
4574         const struct btf_member *ctx_type;
4575         const char *tname, *ctx_tname;
4576
4577         conv_struct = bpf_ctx_convert.t;
4578         if (!conv_struct) {
4579                 bpf_log(log, "btf_vmlinux is malformed\n");
4580                 return NULL;
4581         }
4582         t = btf_type_by_id(btf, t->type);
4583         while (btf_type_is_modifier(t))
4584                 t = btf_type_by_id(btf, t->type);
4585         if (!btf_type_is_struct(t)) {
4586                 /* Only pointer to struct is supported for now.
4587                  * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4588                  * is not supported yet.
4589                  * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4590                  */
4591                 return NULL;
4592         }
4593         tname = btf_name_by_offset(btf, t->name_off);
4594         if (!tname) {
4595                 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4596                 return NULL;
4597         }
4598         /* prog_type is valid bpf program type. No need for bounds check. */
4599         ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4600         /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4601          * Like 'struct __sk_buff'
4602          */
4603         ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4604         if (!ctx_struct)
4605                 /* should not happen */
4606                 return NULL;
4607         ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4608         if (!ctx_tname) {
4609                 /* should not happen */
4610                 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4611                 return NULL;
4612         }
4613         /* only compare that prog's ctx type name is the same as
4614          * kernel expects. No need to compare field by field.
4615          * It's ok for bpf prog to do:
4616          * struct __sk_buff {};
4617          * int socket_filter_bpf_prog(struct __sk_buff *skb)
4618          * { // no fields of skb are ever used }
4619          */
4620         if (strcmp(ctx_tname, tname))
4621                 return NULL;
4622         return ctx_type;
4623 }
4624
4625 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4626 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4627 #define BPF_LINK_TYPE(_id, _name)
4628 #define BPF_MAP_TYPE(_id, _ops) \
4629         [_id] = &_ops,
4630 #include <linux/bpf_types.h>
4631 #undef BPF_PROG_TYPE
4632 #undef BPF_LINK_TYPE
4633 #undef BPF_MAP_TYPE
4634 };
4635
4636 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4637                                     struct bpf_verifier_log *log)
4638 {
4639         const struct bpf_map_ops *ops;
4640         int i, btf_id;
4641
4642         for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4643                 ops = btf_vmlinux_map_ops[i];
4644                 if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4645                         continue;
4646                 if (!ops->map_btf_name || !ops->map_btf_id) {
4647                         bpf_log(log, "map type %d is misconfigured\n", i);
4648                         return -EINVAL;
4649                 }
4650                 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4651                                                BTF_KIND_STRUCT);
4652                 if (btf_id < 0)
4653                         return btf_id;
4654                 *ops->map_btf_id = btf_id;
4655         }
4656
4657         return 0;
4658 }
4659
4660 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4661                                      struct btf *btf,
4662                                      const struct btf_type *t,
4663                                      enum bpf_prog_type prog_type,
4664                                      int arg)
4665 {
4666         const struct btf_member *prog_ctx_type, *kern_ctx_type;
4667
4668         prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4669         if (!prog_ctx_type)
4670                 return -ENOENT;
4671         kern_ctx_type = prog_ctx_type + 1;
4672         return kern_ctx_type->type;
4673 }
4674
4675 BTF_ID_LIST(bpf_ctx_convert_btf_id)
4676 BTF_ID(struct, bpf_ctx_convert)
4677
4678 struct btf *btf_parse_vmlinux(void)
4679 {
4680         struct btf_verifier_env *env = NULL;
4681         struct bpf_verifier_log *log;
4682         struct btf *btf = NULL;
4683         int err;
4684
4685         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4686         if (!env)
4687                 return ERR_PTR(-ENOMEM);
4688
4689         log = &env->log;
4690         log->level = BPF_LOG_KERNEL;
4691
4692         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4693         if (!btf) {
4694                 err = -ENOMEM;
4695                 goto errout;
4696         }
4697         env->btf = btf;
4698
4699         btf->data = __start_BTF;
4700         btf->data_size = __stop_BTF - __start_BTF;
4701         btf->kernel_btf = true;
4702         snprintf(btf->name, sizeof(btf->name), "vmlinux");
4703
4704         err = btf_parse_hdr(env);
4705         if (err)
4706                 goto errout;
4707
4708         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4709
4710         err = btf_parse_str_sec(env);
4711         if (err)
4712                 goto errout;
4713
4714         err = btf_check_all_metas(env);
4715         if (err)
4716                 goto errout;
4717
4718         /* btf_parse_vmlinux() runs under bpf_verifier_lock */
4719         bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4720
4721         /* find bpf map structs for map_ptr access checking */
4722         err = btf_vmlinux_map_ids_init(btf, log);
4723         if (err < 0)
4724                 goto errout;
4725
4726         bpf_struct_ops_init(btf, log);
4727
4728         refcount_set(&btf->refcnt, 1);
4729
4730         err = btf_alloc_id(btf);
4731         if (err)
4732                 goto errout;
4733
4734         btf_verifier_env_free(env);
4735         return btf;
4736
4737 errout:
4738         btf_verifier_env_free(env);
4739         if (btf) {
4740                 kvfree(btf->types);
4741                 kfree(btf);
4742         }
4743         return ERR_PTR(err);
4744 }
4745
4746 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4747
4748 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4749 {
4750         struct btf_verifier_env *env = NULL;
4751         struct bpf_verifier_log *log;
4752         struct btf *btf = NULL, *base_btf;
4753         int err;
4754
4755         base_btf = bpf_get_btf_vmlinux();
4756         if (IS_ERR(base_btf))
4757                 return base_btf;
4758         if (!base_btf)
4759                 return ERR_PTR(-EINVAL);
4760
4761         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4762         if (!env)
4763                 return ERR_PTR(-ENOMEM);
4764
4765         log = &env->log;
4766         log->level = BPF_LOG_KERNEL;
4767
4768         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4769         if (!btf) {
4770                 err = -ENOMEM;
4771                 goto errout;
4772         }
4773         env->btf = btf;
4774
4775         btf->base_btf = base_btf;
4776         btf->start_id = base_btf->nr_types;
4777         btf->start_str_off = base_btf->hdr.str_len;
4778         btf->kernel_btf = true;
4779         snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4780
4781         btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4782         if (!btf->data) {
4783                 err = -ENOMEM;
4784                 goto errout;
4785         }
4786         memcpy(btf->data, data, data_size);
4787         btf->data_size = data_size;
4788
4789         err = btf_parse_hdr(env);
4790         if (err)
4791                 goto errout;
4792
4793         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4794
4795         err = btf_parse_str_sec(env);
4796         if (err)
4797                 goto errout;
4798
4799         err = btf_check_all_metas(env);
4800         if (err)
4801                 goto errout;
4802
4803         btf_verifier_env_free(env);
4804         refcount_set(&btf->refcnt, 1);
4805         return btf;
4806
4807 errout:
4808         btf_verifier_env_free(env);
4809         if (btf) {
4810                 kvfree(btf->data);
4811                 kvfree(btf->types);
4812                 kfree(btf);
4813         }
4814         return ERR_PTR(err);
4815 }
4816
4817 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4818
4819 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4820 {
4821         struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4822
4823         if (tgt_prog)
4824                 return tgt_prog->aux->btf;
4825         else
4826                 return prog->aux->attach_btf;
4827 }
4828
4829 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
4830 {
4831         /* t comes in already as a pointer */
4832         t = btf_type_by_id(btf, t->type);
4833
4834         /* allow const */
4835         if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4836                 t = btf_type_by_id(btf, t->type);
4837
4838         return btf_type_is_int(t);
4839 }
4840
4841 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4842                     const struct bpf_prog *prog,
4843                     struct bpf_insn_access_aux *info)
4844 {
4845         const struct btf_type *t = prog->aux->attach_func_proto;
4846         struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4847         struct btf *btf = bpf_prog_get_target_btf(prog);
4848         const char *tname = prog->aux->attach_func_name;
4849         struct bpf_verifier_log *log = info->log;
4850         const struct btf_param *args;
4851         u32 nr_args, arg;
4852         int i, ret;
4853
4854         if (off % 8) {
4855                 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4856                         tname, off);
4857                 return false;
4858         }
4859         arg = off / 8;
4860         args = (const struct btf_param *)(t + 1);
4861         /* if (t == NULL) Fall back to default BPF prog with
4862          * MAX_BPF_FUNC_REG_ARGS u64 arguments.
4863          */
4864         nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
4865         if (prog->aux->attach_btf_trace) {
4866                 /* skip first 'void *__data' argument in btf_trace_##name typedef */
4867                 args++;
4868                 nr_args--;
4869         }
4870
4871         if (arg > nr_args) {
4872                 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4873                         tname, arg + 1);
4874                 return false;
4875         }
4876
4877         if (arg == nr_args) {
4878                 switch (prog->expected_attach_type) {
4879                 case BPF_LSM_MAC:
4880                 case BPF_TRACE_FEXIT:
4881                         /* When LSM programs are attached to void LSM hooks
4882                          * they use FEXIT trampolines and when attached to
4883                          * int LSM hooks, they use MODIFY_RETURN trampolines.
4884                          *
4885                          * While the LSM programs are BPF_MODIFY_RETURN-like
4886                          * the check:
4887                          *
4888                          *      if (ret_type != 'int')
4889                          *              return -EINVAL;
4890                          *
4891                          * is _not_ done here. This is still safe as LSM hooks
4892                          * have only void and int return types.
4893                          */
4894                         if (!t)
4895                                 return true;
4896                         t = btf_type_by_id(btf, t->type);
4897                         break;
4898                 case BPF_MODIFY_RETURN:
4899                         /* For now the BPF_MODIFY_RETURN can only be attached to
4900                          * functions that return an int.
4901                          */
4902                         if (!t)
4903                                 return false;
4904
4905                         t = btf_type_skip_modifiers(btf, t->type, NULL);
4906                         if (!btf_type_is_small_int(t)) {
4907                                 bpf_log(log,
4908                                         "ret type %s not allowed for fmod_ret\n",
4909                                         btf_kind_str[BTF_INFO_KIND(t->info)]);
4910                                 return false;
4911                         }
4912                         break;
4913                 default:
4914                         bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4915                                 tname, arg + 1);
4916                         return false;
4917                 }
4918         } else {
4919                 if (!t)
4920                         /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
4921                         return true;
4922                 t = btf_type_by_id(btf, args[arg].type);
4923         }
4924
4925         /* skip modifiers */
4926         while (btf_type_is_modifier(t))
4927                 t = btf_type_by_id(btf, t->type);
4928         if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4929                 /* accessing a scalar */
4930                 return true;
4931         if (!btf_type_is_ptr(t)) {
4932                 bpf_log(log,
4933                         "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4934                         tname, arg,
4935                         __btf_name_by_offset(btf, t->name_off),
4936                         btf_kind_str[BTF_INFO_KIND(t->info)]);
4937                 return false;
4938         }
4939
4940         /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4941         for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4942                 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4943                 u32 type, flag;
4944
4945                 type = base_type(ctx_arg_info->reg_type);
4946                 flag = type_flag(ctx_arg_info->reg_type);
4947                 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
4948                     (flag & PTR_MAYBE_NULL)) {
4949                         info->reg_type = ctx_arg_info->reg_type;
4950                         return true;
4951                 }
4952         }
4953
4954         if (t->type == 0)
4955                 /* This is a pointer to void.
4956                  * It is the same as scalar from the verifier safety pov.
4957                  * No further pointer walking is allowed.
4958                  */
4959                 return true;
4960
4961         if (is_int_ptr(btf, t))
4962                 return true;
4963
4964         /* this is a pointer to another type */
4965         for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4966                 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4967
4968                 if (ctx_arg_info->offset == off) {
4969                         if (!ctx_arg_info->btf_id) {
4970                                 bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
4971                                 return false;
4972                         }
4973
4974                         info->reg_type = ctx_arg_info->reg_type;
4975                         info->btf = btf_vmlinux;
4976                         info->btf_id = ctx_arg_info->btf_id;
4977                         return true;
4978                 }
4979         }
4980
4981         info->reg_type = PTR_TO_BTF_ID;
4982         if (tgt_prog) {
4983                 enum bpf_prog_type tgt_type;
4984
4985                 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4986                         tgt_type = tgt_prog->aux->saved_dst_prog_type;
4987                 else
4988                         tgt_type = tgt_prog->type;
4989
4990                 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4991                 if (ret > 0) {
4992                         info->btf = btf_vmlinux;
4993                         info->btf_id = ret;
4994                         return true;
4995                 } else {
4996                         return false;
4997                 }
4998         }
4999
5000         info->btf = btf;
5001         info->btf_id = t->type;
5002         t = btf_type_by_id(btf, t->type);
5003         /* skip modifiers */
5004         while (btf_type_is_modifier(t)) {
5005                 info->btf_id = t->type;
5006                 t = btf_type_by_id(btf, t->type);
5007         }
5008         if (!btf_type_is_struct(t)) {
5009                 bpf_log(log,
5010                         "func '%s' arg%d type %s is not a struct\n",
5011                         tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
5012                 return false;
5013         }
5014         bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
5015                 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
5016                 __btf_name_by_offset(btf, t->name_off));
5017         return true;
5018 }
5019
5020 enum bpf_struct_walk_result {
5021         /* < 0 error */
5022         WALK_SCALAR = 0,
5023         WALK_PTR,
5024         WALK_STRUCT,
5025 };
5026
5027 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
5028                            const struct btf_type *t, int off, int size,
5029                            u32 *next_btf_id)
5030 {
5031         u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
5032         const struct btf_type *mtype, *elem_type = NULL;
5033         const struct btf_member *member;
5034         const char *tname, *mname;
5035         u32 vlen, elem_id, mid;
5036
5037 again:
5038         tname = __btf_name_by_offset(btf, t->name_off);
5039         if (!btf_type_is_struct(t)) {
5040                 bpf_log(log, "Type '%s' is not a struct\n", tname);
5041                 return -EINVAL;
5042         }
5043
5044         vlen = btf_type_vlen(t);
5045         if (off + size > t->size) {
5046                 /* If the last element is a variable size array, we may
5047                  * need to relax the rule.
5048                  */
5049                 struct btf_array *array_elem;
5050
5051                 if (vlen == 0)
5052                         goto error;
5053
5054                 member = btf_type_member(t) + vlen - 1;
5055                 mtype = btf_type_skip_modifiers(btf, member->type,
5056                                                 NULL);
5057                 if (!btf_type_is_array(mtype))
5058                         goto error;
5059
5060                 array_elem = (struct btf_array *)(mtype + 1);
5061                 if (array_elem->nelems != 0)
5062                         goto error;
5063
5064                 moff = __btf_member_bit_offset(t, member) / 8;
5065                 if (off < moff)
5066                         goto error;
5067
5068                 /* Only allow structure for now, can be relaxed for
5069                  * other types later.
5070                  */
5071                 t = btf_type_skip_modifiers(btf, array_elem->type,
5072                                             NULL);
5073                 if (!btf_type_is_struct(t))
5074                         goto error;
5075
5076                 off = (off - moff) % t->size;
5077                 goto again;
5078
5079 error:
5080                 bpf_log(log, "access beyond struct %s at off %u size %u\n",
5081                         tname, off, size);
5082                 return -EACCES;
5083         }
5084
5085         for_each_member(i, t, member) {
5086                 /* offset of the field in bytes */
5087                 moff = __btf_member_bit_offset(t, member) / 8;
5088                 if (off + size <= moff)
5089                         /* won't find anything, field is already too far */
5090                         break;
5091
5092                 if (__btf_member_bitfield_size(t, member)) {
5093                         u32 end_bit = __btf_member_bit_offset(t, member) +
5094                                 __btf_member_bitfield_size(t, member);
5095
5096                         /* off <= moff instead of off == moff because clang
5097                          * does not generate a BTF member for anonymous
5098                          * bitfield like the ":16" here:
5099                          * struct {
5100                          *      int :16;
5101                          *      int x:8;
5102                          * };
5103                          */
5104                         if (off <= moff &&
5105                             BITS_ROUNDUP_BYTES(end_bit) <= off + size)
5106                                 return WALK_SCALAR;
5107
5108                         /* off may be accessing a following member
5109                          *
5110                          * or
5111                          *
5112                          * Doing partial access at either end of this
5113                          * bitfield.  Continue on this case also to
5114                          * treat it as not accessing this bitfield
5115                          * and eventually error out as field not
5116                          * found to keep it simple.
5117                          * It could be relaxed if there was a legit
5118                          * partial access case later.
5119                          */
5120                         continue;
5121                 }
5122
5123                 /* In case of "off" is pointing to holes of a struct */
5124                 if (off < moff)
5125                         break;
5126
5127                 /* type of the field */
5128                 mid = member->type;
5129                 mtype = btf_type_by_id(btf, member->type);
5130                 mname = __btf_name_by_offset(btf, member->name_off);
5131
5132                 mtype = __btf_resolve_size(btf, mtype, &msize,
5133                                            &elem_type, &elem_id, &total_nelems,
5134                                            &mid);
5135                 if (IS_ERR(mtype)) {
5136                         bpf_log(log, "field %s doesn't have size\n", mname);
5137                         return -EFAULT;
5138                 }
5139
5140                 mtrue_end = moff + msize;
5141                 if (off >= mtrue_end)
5142                         /* no overlap with member, keep iterating */
5143                         continue;
5144
5145                 if (btf_type_is_array(mtype)) {
5146                         u32 elem_idx;
5147
5148                         /* __btf_resolve_size() above helps to
5149                          * linearize a multi-dimensional array.
5150                          *
5151                          * The logic here is treating an array
5152                          * in a struct as the following way:
5153                          *
5154                          * struct outer {
5155                          *      struct inner array[2][2];
5156                          * };
5157                          *
5158                          * looks like:
5159                          *
5160                          * struct outer {
5161                          *      struct inner array_elem0;
5162                          *      struct inner array_elem1;
5163                          *      struct inner array_elem2;
5164                          *      struct inner array_elem3;
5165                          * };
5166                          *
5167                          * When accessing outer->array[1][0], it moves
5168                          * moff to "array_elem2", set mtype to
5169                          * "struct inner", and msize also becomes
5170                          * sizeof(struct inner).  Then most of the
5171                          * remaining logic will fall through without
5172                          * caring the current member is an array or
5173                          * not.
5174                          *
5175                          * Unlike mtype/msize/moff, mtrue_end does not
5176                          * change.  The naming difference ("_true") tells
5177                          * that it is not always corresponding to
5178                          * the current mtype/msize/moff.
5179                          * It is the true end of the current
5180                          * member (i.e. array in this case).  That
5181                          * will allow an int array to be accessed like
5182                          * a scratch space,
5183                          * i.e. allow access beyond the size of
5184                          *      the array's element as long as it is
5185                          *      within the mtrue_end boundary.
5186                          */
5187
5188                         /* skip empty array */
5189                         if (moff == mtrue_end)
5190                                 continue;
5191
5192                         msize /= total_nelems;
5193                         elem_idx = (off - moff) / msize;
5194                         moff += elem_idx * msize;
5195                         mtype = elem_type;
5196                         mid = elem_id;
5197                 }
5198
5199                 /* the 'off' we're looking for is either equal to start
5200                  * of this field or inside of this struct
5201                  */
5202                 if (btf_type_is_struct(mtype)) {
5203                         /* our field must be inside that union or struct */
5204                         t = mtype;
5205
5206                         /* return if the offset matches the member offset */
5207                         if (off == moff) {
5208                                 *next_btf_id = mid;
5209                                 return WALK_STRUCT;
5210                         }
5211
5212                         /* adjust offset we're looking for */
5213                         off -= moff;
5214                         goto again;
5215                 }
5216
5217                 if (btf_type_is_ptr(mtype)) {
5218                         const struct btf_type *stype;
5219                         u32 id;
5220
5221                         if (msize != size || off != moff) {
5222                                 bpf_log(log,
5223                                         "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5224                                         mname, moff, tname, off, size);
5225                                 return -EACCES;
5226                         }
5227                         stype = btf_type_skip_modifiers(btf, mtype->type, &id);
5228                         if (btf_type_is_struct(stype)) {
5229                                 *next_btf_id = id;
5230                                 return WALK_PTR;
5231                         }
5232                 }
5233
5234                 /* Allow more flexible access within an int as long as
5235                  * it is within mtrue_end.
5236                  * Since mtrue_end could be the end of an array,
5237                  * that also allows using an array of int as a scratch
5238                  * space. e.g. skb->cb[].
5239                  */
5240                 if (off + size > mtrue_end) {
5241                         bpf_log(log,
5242                                 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5243                                 mname, mtrue_end, tname, off, size);
5244                         return -EACCES;
5245                 }
5246
5247                 return WALK_SCALAR;
5248         }
5249         bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5250         return -EINVAL;
5251 }
5252
5253 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
5254                       const struct btf_type *t, int off, int size,
5255                       enum bpf_access_type atype __maybe_unused,
5256                       u32 *next_btf_id)
5257 {
5258         int err;
5259         u32 id;
5260
5261         do {
5262                 err = btf_struct_walk(log, btf, t, off, size, &id);
5263
5264                 switch (err) {
5265                 case WALK_PTR:
5266                         /* If we found the pointer or scalar on t+off,
5267                          * we're done.
5268                          */
5269                         *next_btf_id = id;
5270                         return PTR_TO_BTF_ID;
5271                 case WALK_SCALAR:
5272                         return SCALAR_VALUE;
5273                 case WALK_STRUCT:
5274                         /* We found nested struct, so continue the search
5275                          * by diving in it. At this point the offset is
5276                          * aligned with the new type, so set it to 0.
5277                          */
5278                         t = btf_type_by_id(btf, id);
5279                         off = 0;
5280                         break;
5281                 default:
5282                         /* It's either error or unknown return value..
5283                          * scream and leave.
5284                          */
5285                         if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5286                                 return -EINVAL;
5287                         return err;
5288                 }
5289         } while (t);
5290
5291         return -EINVAL;
5292 }
5293
5294 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5295  * the same. Trivial ID check is not enough due to module BTFs, because we can
5296  * end up with two different module BTFs, but IDs point to the common type in
5297  * vmlinux BTF.
5298  */
5299 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5300                                const struct btf *btf2, u32 id2)
5301 {
5302         if (id1 != id2)
5303                 return false;
5304         if (btf1 == btf2)
5305                 return true;
5306         return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5307 }
5308
5309 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5310                           const struct btf *btf, u32 id, int off,
5311                           const struct btf *need_btf, u32 need_type_id)
5312 {
5313         const struct btf_type *type;
5314         int err;
5315
5316         /* Are we already done? */
5317         if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5318                 return true;
5319
5320 again:
5321         type = btf_type_by_id(btf, id);
5322         if (!type)
5323                 return false;
5324         err = btf_struct_walk(log, btf, type, off, 1, &id);
5325         if (err != WALK_STRUCT)
5326                 return false;
5327
5328         /* We found nested struct object. If it matches
5329          * the requested ID, we're done. Otherwise let's
5330          * continue the search with offset 0 in the new
5331          * type.
5332          */
5333         if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5334                 off = 0;
5335                 goto again;
5336         }
5337
5338         return true;
5339 }
5340
5341 static int __get_type_size(struct btf *btf, u32 btf_id,
5342                            const struct btf_type **bad_type)
5343 {
5344         const struct btf_type *t;
5345
5346         if (!btf_id)
5347                 /* void */
5348                 return 0;
5349         t = btf_type_by_id(btf, btf_id);
5350         while (t && btf_type_is_modifier(t))
5351                 t = btf_type_by_id(btf, t->type);
5352         if (!t) {
5353                 *bad_type = btf_type_by_id(btf, 0);
5354                 return -EINVAL;
5355         }
5356         if (btf_type_is_ptr(t))
5357                 /* kernel size of pointer. Not BPF's size of pointer*/
5358                 return sizeof(void *);
5359         if (btf_type_is_int(t) || btf_type_is_enum(t))
5360                 return t->size;
5361         *bad_type = t;
5362         return -EINVAL;
5363 }
5364
5365 int btf_distill_func_proto(struct bpf_verifier_log *log,
5366                            struct btf *btf,
5367                            const struct btf_type *func,
5368                            const char *tname,
5369                            struct btf_func_model *m)
5370 {
5371         const struct btf_param *args;
5372         const struct btf_type *t;
5373         u32 i, nargs;
5374         int ret;
5375
5376         if (!func) {
5377                 /* BTF function prototype doesn't match the verifier types.
5378                  * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5379                  */
5380                 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
5381                         m->arg_size[i] = 8;
5382                 m->ret_size = 8;
5383                 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5384                 return 0;
5385         }
5386         args = (const struct btf_param *)(func + 1);
5387         nargs = btf_type_vlen(func);
5388         if (nargs >= MAX_BPF_FUNC_ARGS) {
5389                 bpf_log(log,
5390                         "The function %s has %d arguments. Too many.\n",
5391                         tname, nargs);
5392                 return -EINVAL;
5393         }
5394         ret = __get_type_size(btf, func->type, &t);
5395         if (ret < 0) {
5396                 bpf_log(log,
5397                         "The function %s return type %s is unsupported.\n",
5398                         tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5399                 return -EINVAL;
5400         }
5401         m->ret_size = ret;
5402
5403         for (i = 0; i < nargs; i++) {
5404                 if (i == nargs - 1 && args[i].type == 0) {
5405                         bpf_log(log,
5406                                 "The function %s with variable args is unsupported.\n",
5407                                 tname);
5408                         return -EINVAL;
5409                 }
5410                 ret = __get_type_size(btf, args[i].type, &t);
5411                 if (ret < 0) {
5412                         bpf_log(log,
5413                                 "The function %s arg%d type %s is unsupported.\n",
5414                                 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5415                         return -EINVAL;
5416                 }
5417                 if (ret == 0) {
5418                         bpf_log(log,
5419                                 "The function %s has malformed void argument.\n",
5420                                 tname);
5421                         return -EINVAL;
5422                 }
5423                 m->arg_size[i] = ret;
5424         }
5425         m->nr_args = nargs;
5426         return 0;
5427 }
5428
5429 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5430  * t1 points to BTF_KIND_FUNC in btf1
5431  * t2 points to BTF_KIND_FUNC in btf2
5432  * Returns:
5433  * EINVAL - function prototype mismatch
5434  * EFAULT - verifier bug
5435  * 0 - 99% match. The last 1% is validated by the verifier.
5436  */
5437 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5438                                      struct btf *btf1, const struct btf_type *t1,
5439                                      struct btf *btf2, const struct btf_type *t2)
5440 {
5441         const struct btf_param *args1, *args2;
5442         const char *fn1, *fn2, *s1, *s2;
5443         u32 nargs1, nargs2, i;
5444
5445         fn1 = btf_name_by_offset(btf1, t1->name_off);
5446         fn2 = btf_name_by_offset(btf2, t2->name_off);
5447
5448         if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5449                 bpf_log(log, "%s() is not a global function\n", fn1);
5450                 return -EINVAL;
5451         }
5452         if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5453                 bpf_log(log, "%s() is not a global function\n", fn2);
5454                 return -EINVAL;
5455         }
5456
5457         t1 = btf_type_by_id(btf1, t1->type);
5458         if (!t1 || !btf_type_is_func_proto(t1))
5459                 return -EFAULT;
5460         t2 = btf_type_by_id(btf2, t2->type);
5461         if (!t2 || !btf_type_is_func_proto(t2))
5462                 return -EFAULT;
5463
5464         args1 = (const struct btf_param *)(t1 + 1);
5465         nargs1 = btf_type_vlen(t1);
5466         args2 = (const struct btf_param *)(t2 + 1);
5467         nargs2 = btf_type_vlen(t2);
5468
5469         if (nargs1 != nargs2) {
5470                 bpf_log(log, "%s() has %d args while %s() has %d args\n",
5471                         fn1, nargs1, fn2, nargs2);
5472                 return -EINVAL;
5473         }
5474
5475         t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5476         t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5477         if (t1->info != t2->info) {
5478                 bpf_log(log,
5479                         "Return type %s of %s() doesn't match type %s of %s()\n",
5480                         btf_type_str(t1), fn1,
5481                         btf_type_str(t2), fn2);
5482                 return -EINVAL;
5483         }
5484
5485         for (i = 0; i < nargs1; i++) {
5486                 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5487                 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5488
5489                 if (t1->info != t2->info) {
5490                         bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5491                                 i, fn1, btf_type_str(t1),
5492                                 fn2, btf_type_str(t2));
5493                         return -EINVAL;
5494                 }
5495                 if (btf_type_has_size(t1) && t1->size != t2->size) {
5496                         bpf_log(log,
5497                                 "arg%d in %s() has size %d while %s() has %d\n",
5498                                 i, fn1, t1->size,
5499                                 fn2, t2->size);
5500                         return -EINVAL;
5501                 }
5502
5503                 /* global functions are validated with scalars and pointers
5504                  * to context only. And only global functions can be replaced.
5505                  * Hence type check only those types.
5506                  */
5507                 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5508                         continue;
5509                 if (!btf_type_is_ptr(t1)) {
5510                         bpf_log(log,
5511                                 "arg%d in %s() has unrecognized type\n",
5512                                 i, fn1);
5513                         return -EINVAL;
5514                 }
5515                 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5516                 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5517                 if (!btf_type_is_struct(t1)) {
5518                         bpf_log(log,
5519                                 "arg%d in %s() is not a pointer to context\n",
5520                                 i, fn1);
5521                         return -EINVAL;
5522                 }
5523                 if (!btf_type_is_struct(t2)) {
5524                         bpf_log(log,
5525                                 "arg%d in %s() is not a pointer to context\n",
5526                                 i, fn2);
5527                         return -EINVAL;
5528                 }
5529                 /* This is an optional check to make program writing easier.
5530                  * Compare names of structs and report an error to the user.
5531                  * btf_prepare_func_args() already checked that t2 struct
5532                  * is a context type. btf_prepare_func_args() will check
5533                  * later that t1 struct is a context type as well.
5534                  */
5535                 s1 = btf_name_by_offset(btf1, t1->name_off);
5536                 s2 = btf_name_by_offset(btf2, t2->name_off);
5537                 if (strcmp(s1, s2)) {
5538                         bpf_log(log,
5539                                 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5540                                 i, fn1, s1, fn2, s2);
5541                         return -EINVAL;
5542                 }
5543         }
5544         return 0;
5545 }
5546
5547 /* Compare BTFs of given program with BTF of target program */
5548 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5549                          struct btf *btf2, const struct btf_type *t2)
5550 {
5551         struct btf *btf1 = prog->aux->btf;
5552         const struct btf_type *t1;
5553         u32 btf_id = 0;
5554
5555         if (!prog->aux->func_info) {
5556                 bpf_log(log, "Program extension requires BTF\n");
5557                 return -EINVAL;
5558         }
5559
5560         btf_id = prog->aux->func_info[0].type_id;
5561         if (!btf_id)
5562                 return -EFAULT;
5563
5564         t1 = btf_type_by_id(btf1, btf_id);
5565         if (!t1 || !btf_type_is_func(t1))
5566                 return -EFAULT;
5567
5568         return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5569 }
5570
5571 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5572 #ifdef CONFIG_NET
5573         [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5574         [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5575         [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5576 #endif
5577 };
5578
5579 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
5580 static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log,
5581                                         const struct btf *btf,
5582                                         const struct btf_type *t, int rec)
5583 {
5584         const struct btf_type *member_type;
5585         const struct btf_member *member;
5586         u32 i;
5587
5588         if (!btf_type_is_struct(t))
5589                 return false;
5590
5591         for_each_member(i, t, member) {
5592                 const struct btf_array *array;
5593
5594                 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
5595                 if (btf_type_is_struct(member_type)) {
5596                         if (rec >= 3) {
5597                                 bpf_log(log, "max struct nesting depth exceeded\n");
5598                                 return false;
5599                         }
5600                         if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1))
5601                                 return false;
5602                         continue;
5603                 }
5604                 if (btf_type_is_array(member_type)) {
5605                         array = btf_type_array(member_type);
5606                         if (!array->nelems)
5607                                 return false;
5608                         member_type = btf_type_skip_modifiers(btf, array->type, NULL);
5609                         if (!btf_type_is_scalar(member_type))
5610                                 return false;
5611                         continue;
5612                 }
5613                 if (!btf_type_is_scalar(member_type))
5614                         return false;
5615         }
5616         return true;
5617 }
5618
5619 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
5620                                     const struct btf *btf, u32 func_id,
5621                                     struct bpf_reg_state *regs,
5622                                     bool ptr_to_mem_ok)
5623 {
5624         struct bpf_verifier_log *log = &env->log;
5625         bool is_kfunc = btf_is_kernel(btf);
5626         const char *func_name, *ref_tname;
5627         const struct btf_type *t, *ref_t;
5628         const struct btf_param *args;
5629         u32 i, nargs, ref_id;
5630
5631         t = btf_type_by_id(btf, func_id);
5632         if (!t || !btf_type_is_func(t)) {
5633                 /* These checks were already done by the verifier while loading
5634                  * struct bpf_func_info or in add_kfunc_call().
5635                  */
5636                 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
5637                         func_id);
5638                 return -EFAULT;
5639         }
5640         func_name = btf_name_by_offset(btf, t->name_off);
5641
5642         t = btf_type_by_id(btf, t->type);
5643         if (!t || !btf_type_is_func_proto(t)) {
5644                 bpf_log(log, "Invalid BTF of func %s\n", func_name);
5645                 return -EFAULT;
5646         }
5647         args = (const struct btf_param *)(t + 1);
5648         nargs = btf_type_vlen(t);
5649         if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5650                 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
5651                         MAX_BPF_FUNC_REG_ARGS);
5652                 return -EINVAL;
5653         }
5654
5655         /* check that BTF function arguments match actual types that the
5656          * verifier sees.
5657          */
5658         for (i = 0; i < nargs; i++) {
5659                 u32 regno = i + 1;
5660                 struct bpf_reg_state *reg = &regs[regno];
5661
5662                 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5663                 if (btf_type_is_scalar(t)) {
5664                         if (reg->type == SCALAR_VALUE)
5665                                 continue;
5666                         bpf_log(log, "R%d is not a scalar\n", regno);
5667                         return -EINVAL;
5668                 }
5669
5670                 if (!btf_type_is_ptr(t)) {
5671                         bpf_log(log, "Unrecognized arg#%d type %s\n",
5672                                 i, btf_type_str(t));
5673                         return -EINVAL;
5674                 }
5675
5676                 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
5677                 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
5678                 if (btf_get_prog_ctx_type(log, btf, t,
5679                                           env->prog->type, i)) {
5680                         /* If function expects ctx type in BTF check that caller
5681                          * is passing PTR_TO_CTX.
5682                          */
5683                         if (reg->type != PTR_TO_CTX) {
5684                                 bpf_log(log,
5685                                         "arg#%d expected pointer to ctx, but got %s\n",
5686                                         i, btf_type_str(t));
5687                                 return -EINVAL;
5688                         }
5689                         if (check_ctx_reg(env, reg, regno))
5690                                 return -EINVAL;
5691                 } else if (is_kfunc && (reg->type == PTR_TO_BTF_ID || reg2btf_ids[reg->type])) {
5692                         const struct btf_type *reg_ref_t;
5693                         const struct btf *reg_btf;
5694                         const char *reg_ref_tname;
5695                         u32 reg_ref_id;
5696
5697                         if (!btf_type_is_struct(ref_t)) {
5698                                 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
5699                                         func_name, i, btf_type_str(ref_t),
5700                                         ref_tname);
5701                                 return -EINVAL;
5702                         }
5703
5704                         if (reg->type == PTR_TO_BTF_ID) {
5705                                 reg_btf = reg->btf;
5706                                 reg_ref_id = reg->btf_id;
5707                         } else {
5708                                 reg_btf = btf_vmlinux;
5709                                 reg_ref_id = *reg2btf_ids[reg->type];
5710                         }
5711
5712                         reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
5713                                                             &reg_ref_id);
5714                         reg_ref_tname = btf_name_by_offset(reg_btf,
5715                                                            reg_ref_t->name_off);
5716                         if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
5717                                                   reg->off, btf, ref_id)) {
5718                                 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
5719                                         func_name, i,
5720                                         btf_type_str(ref_t), ref_tname,
5721                                         regno, btf_type_str(reg_ref_t),
5722                                         reg_ref_tname);
5723                                 return -EINVAL;
5724                         }
5725                 } else if (ptr_to_mem_ok) {
5726                         const struct btf_type *resolve_ret;
5727                         u32 type_size;
5728
5729                         if (is_kfunc) {
5730                                 /* Permit pointer to mem, but only when argument
5731                                  * type is pointer to scalar, or struct composed
5732                                  * (recursively) of scalars.
5733                                  */
5734                                 if (!btf_type_is_scalar(ref_t) &&
5735                                     !__btf_type_is_scalar_struct(log, btf, ref_t, 0)) {
5736                                         bpf_log(log,
5737                                                 "arg#%d pointer type %s %s must point to scalar or struct with scalar\n",
5738                                                 i, btf_type_str(ref_t), ref_tname);
5739                                         return -EINVAL;
5740                                 }
5741                         }
5742
5743                         resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
5744                         if (IS_ERR(resolve_ret)) {
5745                                 bpf_log(log,
5746                                         "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5747                                         i, btf_type_str(ref_t), ref_tname,
5748                                         PTR_ERR(resolve_ret));
5749                                 return -EINVAL;
5750                         }
5751
5752                         if (check_mem_reg(env, reg, regno, type_size))
5753                                 return -EINVAL;
5754                 } else {
5755                         bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i,
5756                                 is_kfunc ? "kernel " : "", func_name, func_id);
5757                         return -EINVAL;
5758                 }
5759         }
5760
5761         return 0;
5762 }
5763
5764 /* Compare BTF of a function with given bpf_reg_state.
5765  * Returns:
5766  * EFAULT - there is a verifier bug. Abort verification.
5767  * EINVAL - there is a type mismatch or BTF is not available.
5768  * 0 - BTF matches with what bpf_reg_state expects.
5769  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5770  */
5771 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
5772                                 struct bpf_reg_state *regs)
5773 {
5774         struct bpf_prog *prog = env->prog;
5775         struct btf *btf = prog->aux->btf;
5776         bool is_global;
5777         u32 btf_id;
5778         int err;
5779
5780         if (!prog->aux->func_info)
5781                 return -EINVAL;
5782
5783         btf_id = prog->aux->func_info[subprog].type_id;
5784         if (!btf_id)
5785                 return -EFAULT;
5786
5787         if (prog->aux->func_info_aux[subprog].unreliable)
5788                 return -EINVAL;
5789
5790         is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5791         err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
5792
5793         /* Compiler optimizations can remove arguments from static functions
5794          * or mismatched type can be passed into a global function.
5795          * In such cases mark the function as unreliable from BTF point of view.
5796          */
5797         if (err)
5798                 prog->aux->func_info_aux[subprog].unreliable = true;
5799         return err;
5800 }
5801
5802 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
5803                               const struct btf *btf, u32 func_id,
5804                               struct bpf_reg_state *regs)
5805 {
5806         return btf_check_func_arg_match(env, btf, func_id, regs, true);
5807 }
5808
5809 /* Convert BTF of a function into bpf_reg_state if possible
5810  * Returns:
5811  * EFAULT - there is a verifier bug. Abort verification.
5812  * EINVAL - cannot convert BTF.
5813  * 0 - Successfully converted BTF into bpf_reg_state
5814  * (either PTR_TO_CTX or SCALAR_VALUE).
5815  */
5816 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5817                           struct bpf_reg_state *regs)
5818 {
5819         struct bpf_verifier_log *log = &env->log;
5820         struct bpf_prog *prog = env->prog;
5821         enum bpf_prog_type prog_type = prog->type;
5822         struct btf *btf = prog->aux->btf;
5823         const struct btf_param *args;
5824         const struct btf_type *t, *ref_t;
5825         u32 i, nargs, btf_id;
5826         const char *tname;
5827
5828         if (!prog->aux->func_info ||
5829             prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5830                 bpf_log(log, "Verifier bug\n");
5831                 return -EFAULT;
5832         }
5833
5834         btf_id = prog->aux->func_info[subprog].type_id;
5835         if (!btf_id) {
5836                 bpf_log(log, "Global functions need valid BTF\n");
5837                 return -EFAULT;
5838         }
5839
5840         t = btf_type_by_id(btf, btf_id);
5841         if (!t || !btf_type_is_func(t)) {
5842                 /* These checks were already done by the verifier while loading
5843                  * struct bpf_func_info
5844                  */
5845                 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5846                         subprog);
5847                 return -EFAULT;
5848         }
5849         tname = btf_name_by_offset(btf, t->name_off);
5850
5851         if (log->level & BPF_LOG_LEVEL)
5852                 bpf_log(log, "Validating %s() func#%d...\n",
5853                         tname, subprog);
5854
5855         if (prog->aux->func_info_aux[subprog].unreliable) {
5856                 bpf_log(log, "Verifier bug in function %s()\n", tname);
5857                 return -EFAULT;
5858         }
5859         if (prog_type == BPF_PROG_TYPE_EXT)
5860                 prog_type = prog->aux->dst_prog->type;
5861
5862         t = btf_type_by_id(btf, t->type);
5863         if (!t || !btf_type_is_func_proto(t)) {
5864                 bpf_log(log, "Invalid type of function %s()\n", tname);
5865                 return -EFAULT;
5866         }
5867         args = (const struct btf_param *)(t + 1);
5868         nargs = btf_type_vlen(t);
5869         if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5870                 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
5871                         tname, nargs, MAX_BPF_FUNC_REG_ARGS);
5872                 return -EINVAL;
5873         }
5874         /* check that function returns int */
5875         t = btf_type_by_id(btf, t->type);
5876         while (btf_type_is_modifier(t))
5877                 t = btf_type_by_id(btf, t->type);
5878         if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5879                 bpf_log(log,
5880                         "Global function %s() doesn't return scalar. Only those are supported.\n",
5881                         tname);
5882                 return -EINVAL;
5883         }
5884         /* Convert BTF function arguments into verifier types.
5885          * Only PTR_TO_CTX and SCALAR are supported atm.
5886          */
5887         for (i = 0; i < nargs; i++) {
5888                 struct bpf_reg_state *reg = &regs[i + 1];
5889
5890                 t = btf_type_by_id(btf, args[i].type);
5891                 while (btf_type_is_modifier(t))
5892                         t = btf_type_by_id(btf, t->type);
5893                 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5894                         reg->type = SCALAR_VALUE;
5895                         continue;
5896                 }
5897                 if (btf_type_is_ptr(t)) {
5898                         if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5899                                 reg->type = PTR_TO_CTX;
5900                                 continue;
5901                         }
5902
5903                         t = btf_type_skip_modifiers(btf, t->type, NULL);
5904
5905                         ref_t = btf_resolve_size(btf, t, &reg->mem_size);
5906                         if (IS_ERR(ref_t)) {
5907                                 bpf_log(log,
5908                                     "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5909                                     i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
5910                                         PTR_ERR(ref_t));
5911                                 return -EINVAL;
5912                         }
5913
5914                         reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
5915                         reg->id = ++env->id_gen;
5916
5917                         continue;
5918                 }
5919                 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5920                         i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5921                 return -EINVAL;
5922         }
5923         return 0;
5924 }
5925
5926 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5927                           struct btf_show *show)
5928 {
5929         const struct btf_type *t = btf_type_by_id(btf, type_id);
5930
5931         show->btf = btf;
5932         memset(&show->state, 0, sizeof(show->state));
5933         memset(&show->obj, 0, sizeof(show->obj));
5934
5935         btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5936 }
5937
5938 static void btf_seq_show(struct btf_show *show, const char *fmt,
5939                          va_list args)
5940 {
5941         seq_vprintf((struct seq_file *)show->target, fmt, args);
5942 }
5943
5944 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5945                             void *obj, struct seq_file *m, u64 flags)
5946 {
5947         struct btf_show sseq;
5948
5949         sseq.target = m;
5950         sseq.showfn = btf_seq_show;
5951         sseq.flags = flags;
5952
5953         btf_type_show(btf, type_id, obj, &sseq);
5954
5955         return sseq.state.status;
5956 }
5957
5958 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5959                        struct seq_file *m)
5960 {
5961         (void) btf_type_seq_show_flags(btf, type_id, obj, m,
5962                                        BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5963                                        BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5964 }
5965
5966 struct btf_show_snprintf {
5967         struct btf_show show;
5968         int len_left;           /* space left in string */
5969         int len;                /* length we would have written */
5970 };
5971
5972 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5973                               va_list args)
5974 {
5975         struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5976         int len;
5977
5978         len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5979
5980         if (len < 0) {
5981                 ssnprintf->len_left = 0;
5982                 ssnprintf->len = len;
5983         } else if (len > ssnprintf->len_left) {
5984                 /* no space, drive on to get length we would have written */
5985                 ssnprintf->len_left = 0;
5986                 ssnprintf->len += len;
5987         } else {
5988                 ssnprintf->len_left -= len;
5989                 ssnprintf->len += len;
5990                 show->target += len;
5991         }
5992 }
5993
5994 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5995                            char *buf, int len, u64 flags)
5996 {
5997         struct btf_show_snprintf ssnprintf;
5998
5999         ssnprintf.show.target = buf;
6000         ssnprintf.show.flags = flags;
6001         ssnprintf.show.showfn = btf_snprintf_show;
6002         ssnprintf.len_left = len;
6003         ssnprintf.len = 0;
6004
6005         btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
6006
6007         /* If we encontered an error, return it. */
6008         if (ssnprintf.show.state.status)
6009                 return ssnprintf.show.state.status;
6010
6011         /* Otherwise return length we would have written */
6012         return ssnprintf.len;
6013 }
6014
6015 #ifdef CONFIG_PROC_FS
6016 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
6017 {
6018         const struct btf *btf = filp->private_data;
6019
6020         seq_printf(m, "btf_id:\t%u\n", btf->id);
6021 }
6022 #endif
6023
6024 static int btf_release(struct inode *inode, struct file *filp)
6025 {
6026         btf_put(filp->private_data);
6027         return 0;
6028 }
6029
6030 const struct file_operations btf_fops = {
6031 #ifdef CONFIG_PROC_FS
6032         .show_fdinfo    = bpf_btf_show_fdinfo,
6033 #endif
6034         .release        = btf_release,
6035 };
6036
6037 static int __btf_new_fd(struct btf *btf)
6038 {
6039         return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
6040 }
6041
6042 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
6043 {
6044         struct btf *btf;
6045         int ret;
6046
6047         btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
6048                         attr->btf_size, attr->btf_log_level,
6049                         u64_to_user_ptr(attr->btf_log_buf),
6050                         attr->btf_log_size);
6051         if (IS_ERR(btf))
6052                 return PTR_ERR(btf);
6053
6054         ret = btf_alloc_id(btf);
6055         if (ret) {
6056                 btf_free(btf);
6057                 return ret;
6058         }
6059
6060         /*
6061          * The BTF ID is published to the userspace.
6062          * All BTF free must go through call_rcu() from
6063          * now on (i.e. free by calling btf_put()).
6064          */
6065
6066         ret = __btf_new_fd(btf);
6067         if (ret < 0)
6068                 btf_put(btf);
6069
6070         return ret;
6071 }
6072
6073 struct btf *btf_get_by_fd(int fd)
6074 {
6075         struct btf *btf;
6076         struct fd f;
6077
6078         f = fdget(fd);
6079
6080         if (!f.file)
6081                 return ERR_PTR(-EBADF);
6082
6083         if (f.file->f_op != &btf_fops) {
6084                 fdput(f);
6085                 return ERR_PTR(-EINVAL);
6086         }
6087
6088         btf = f.file->private_data;
6089         refcount_inc(&btf->refcnt);
6090         fdput(f);
6091
6092         return btf;
6093 }
6094
6095 int btf_get_info_by_fd(const struct btf *btf,
6096                        const union bpf_attr *attr,
6097                        union bpf_attr __user *uattr)
6098 {
6099         struct bpf_btf_info __user *uinfo;
6100         struct bpf_btf_info info;
6101         u32 info_copy, btf_copy;
6102         void __user *ubtf;
6103         char __user *uname;
6104         u32 uinfo_len, uname_len, name_len;
6105         int ret = 0;
6106
6107         uinfo = u64_to_user_ptr(attr->info.info);
6108         uinfo_len = attr->info.info_len;
6109
6110         info_copy = min_t(u32, uinfo_len, sizeof(info));
6111         memset(&info, 0, sizeof(info));
6112         if (copy_from_user(&info, uinfo, info_copy))
6113                 return -EFAULT;
6114
6115         info.id = btf->id;
6116         ubtf = u64_to_user_ptr(info.btf);
6117         btf_copy = min_t(u32, btf->data_size, info.btf_size);
6118         if (copy_to_user(ubtf, btf->data, btf_copy))
6119                 return -EFAULT;
6120         info.btf_size = btf->data_size;
6121
6122         info.kernel_btf = btf->kernel_btf;
6123
6124         uname = u64_to_user_ptr(info.name);
6125         uname_len = info.name_len;
6126         if (!uname ^ !uname_len)
6127                 return -EINVAL;
6128
6129         name_len = strlen(btf->name);
6130         info.name_len = name_len;
6131
6132         if (uname) {
6133                 if (uname_len >= name_len + 1) {
6134                         if (copy_to_user(uname, btf->name, name_len + 1))
6135                                 return -EFAULT;
6136                 } else {
6137                         char zero = '\0';
6138
6139                         if (copy_to_user(uname, btf->name, uname_len - 1))
6140                                 return -EFAULT;
6141                         if (put_user(zero, uname + uname_len - 1))
6142                                 return -EFAULT;
6143                         /* let user-space know about too short buffer */
6144                         ret = -ENOSPC;
6145                 }
6146         }
6147
6148         if (copy_to_user(uinfo, &info, info_copy) ||
6149             put_user(info_copy, &uattr->info.info_len))
6150                 return -EFAULT;
6151
6152         return ret;
6153 }
6154
6155 int btf_get_fd_by_id(u32 id)
6156 {
6157         struct btf *btf;
6158         int fd;
6159
6160         rcu_read_lock();
6161         btf = idr_find(&btf_idr, id);
6162         if (!btf || !refcount_inc_not_zero(&btf->refcnt))
6163                 btf = ERR_PTR(-ENOENT);
6164         rcu_read_unlock();
6165
6166         if (IS_ERR(btf))
6167                 return PTR_ERR(btf);
6168
6169         fd = __btf_new_fd(btf);
6170         if (fd < 0)
6171                 btf_put(btf);
6172
6173         return fd;
6174 }
6175
6176 u32 btf_obj_id(const struct btf *btf)
6177 {
6178         return btf->id;
6179 }
6180
6181 bool btf_is_kernel(const struct btf *btf)
6182 {
6183         return btf->kernel_btf;
6184 }
6185
6186 bool btf_is_module(const struct btf *btf)
6187 {
6188         return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
6189 }
6190
6191 static int btf_id_cmp_func(const void *a, const void *b)
6192 {
6193         const int *pa = a, *pb = b;
6194
6195         return *pa - *pb;
6196 }
6197
6198 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
6199 {
6200         return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
6201 }
6202
6203 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6204 struct btf_module {
6205         struct list_head list;
6206         struct module *module;
6207         struct btf *btf;
6208         struct bin_attribute *sysfs_attr;
6209 };
6210
6211 static LIST_HEAD(btf_modules);
6212 static DEFINE_MUTEX(btf_module_mutex);
6213
6214 static ssize_t
6215 btf_module_read(struct file *file, struct kobject *kobj,
6216                 struct bin_attribute *bin_attr,
6217                 char *buf, loff_t off, size_t len)
6218 {
6219         const struct btf *btf = bin_attr->private;
6220
6221         memcpy(buf, btf->data + off, len);
6222         return len;
6223 }
6224
6225 static void purge_cand_cache(struct btf *btf);
6226
6227 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
6228                              void *module)
6229 {
6230         struct btf_module *btf_mod, *tmp;
6231         struct module *mod = module;
6232         struct btf *btf;
6233         int err = 0;
6234
6235         if (mod->btf_data_size == 0 ||
6236             (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
6237                 goto out;
6238
6239         switch (op) {
6240         case MODULE_STATE_COMING:
6241                 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
6242                 if (!btf_mod) {
6243                         err = -ENOMEM;
6244                         goto out;
6245                 }
6246                 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
6247                 if (IS_ERR(btf)) {
6248                         pr_warn("failed to validate module [%s] BTF: %ld\n",
6249                                 mod->name, PTR_ERR(btf));
6250                         kfree(btf_mod);
6251                         err = PTR_ERR(btf);
6252                         goto out;
6253                 }
6254                 err = btf_alloc_id(btf);
6255                 if (err) {
6256                         btf_free(btf);
6257                         kfree(btf_mod);
6258                         goto out;
6259                 }
6260
6261                 purge_cand_cache(NULL);
6262                 mutex_lock(&btf_module_mutex);
6263                 btf_mod->module = module;
6264                 btf_mod->btf = btf;
6265                 list_add(&btf_mod->list, &btf_modules);
6266                 mutex_unlock(&btf_module_mutex);
6267
6268                 if (IS_ENABLED(CONFIG_SYSFS)) {
6269                         struct bin_attribute *attr;
6270
6271                         attr = kzalloc(sizeof(*attr), GFP_KERNEL);
6272                         if (!attr)
6273                                 goto out;
6274
6275                         sysfs_bin_attr_init(attr);
6276                         attr->attr.name = btf->name;
6277                         attr->attr.mode = 0444;
6278                         attr->size = btf->data_size;
6279                         attr->private = btf;
6280                         attr->read = btf_module_read;
6281
6282                         err = sysfs_create_bin_file(btf_kobj, attr);
6283                         if (err) {
6284                                 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
6285                                         mod->name, err);
6286                                 kfree(attr);
6287                                 err = 0;
6288                                 goto out;
6289                         }
6290
6291                         btf_mod->sysfs_attr = attr;
6292                 }
6293
6294                 break;
6295         case MODULE_STATE_GOING:
6296                 mutex_lock(&btf_module_mutex);
6297                 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6298                         if (btf_mod->module != module)
6299                                 continue;
6300
6301                         list_del(&btf_mod->list);
6302                         if (btf_mod->sysfs_attr)
6303                                 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
6304                         purge_cand_cache(btf_mod->btf);
6305                         btf_put(btf_mod->btf);
6306                         kfree(btf_mod->sysfs_attr);
6307                         kfree(btf_mod);
6308                         break;
6309                 }
6310                 mutex_unlock(&btf_module_mutex);
6311                 break;
6312         }
6313 out:
6314         return notifier_from_errno(err);
6315 }
6316
6317 static struct notifier_block btf_module_nb = {
6318         .notifier_call = btf_module_notify,
6319 };
6320
6321 static int __init btf_module_init(void)
6322 {
6323         register_module_notifier(&btf_module_nb);
6324         return 0;
6325 }
6326
6327 fs_initcall(btf_module_init);
6328 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6329
6330 struct module *btf_try_get_module(const struct btf *btf)
6331 {
6332         struct module *res = NULL;
6333 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6334         struct btf_module *btf_mod, *tmp;
6335
6336         mutex_lock(&btf_module_mutex);
6337         list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6338                 if (btf_mod->btf != btf)
6339                         continue;
6340
6341                 if (try_module_get(btf_mod->module))
6342                         res = btf_mod->module;
6343
6344                 break;
6345         }
6346         mutex_unlock(&btf_module_mutex);
6347 #endif
6348
6349         return res;
6350 }
6351
6352 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
6353 {
6354         struct btf *btf;
6355         long ret;
6356
6357         if (flags)
6358                 return -EINVAL;
6359
6360         if (name_sz <= 1 || name[name_sz - 1])
6361                 return -EINVAL;
6362
6363         btf = bpf_get_btf_vmlinux();
6364         if (IS_ERR(btf))
6365                 return PTR_ERR(btf);
6366
6367         ret = btf_find_by_name_kind(btf, name, kind);
6368         /* ret is never zero, since btf_find_by_name_kind returns
6369          * positive btf_id or negative error.
6370          */
6371         if (ret < 0) {
6372                 struct btf *mod_btf;
6373                 int id;
6374
6375                 /* If name is not found in vmlinux's BTF then search in module's BTFs */
6376                 spin_lock_bh(&btf_idr_lock);
6377                 idr_for_each_entry(&btf_idr, mod_btf, id) {
6378                         if (!btf_is_module(mod_btf))
6379                                 continue;
6380                         /* linear search could be slow hence unlock/lock
6381                          * the IDR to avoiding holding it for too long
6382                          */
6383                         btf_get(mod_btf);
6384                         spin_unlock_bh(&btf_idr_lock);
6385                         ret = btf_find_by_name_kind(mod_btf, name, kind);
6386                         if (ret > 0) {
6387                                 int btf_obj_fd;
6388
6389                                 btf_obj_fd = __btf_new_fd(mod_btf);
6390                                 if (btf_obj_fd < 0) {
6391                                         btf_put(mod_btf);
6392                                         return btf_obj_fd;
6393                                 }
6394                                 return ret | (((u64)btf_obj_fd) << 32);
6395                         }
6396                         spin_lock_bh(&btf_idr_lock);
6397                         btf_put(mod_btf);
6398                 }
6399                 spin_unlock_bh(&btf_idr_lock);
6400         }
6401         return ret;
6402 }
6403
6404 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
6405         .func           = bpf_btf_find_by_name_kind,
6406         .gpl_only       = false,
6407         .ret_type       = RET_INTEGER,
6408         .arg1_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6409         .arg2_type      = ARG_CONST_SIZE,
6410         .arg3_type      = ARG_ANYTHING,
6411         .arg4_type      = ARG_ANYTHING,
6412 };
6413
6414 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
6415 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
6416 BTF_TRACING_TYPE_xxx
6417 #undef BTF_TRACING_TYPE
6418
6419 /* BTF ID set registration API for modules */
6420
6421 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6422
6423 void register_kfunc_btf_id_set(struct kfunc_btf_id_list *l,
6424                                struct kfunc_btf_id_set *s)
6425 {
6426         mutex_lock(&l->mutex);
6427         list_add(&s->list, &l->list);
6428         mutex_unlock(&l->mutex);
6429 }
6430 EXPORT_SYMBOL_GPL(register_kfunc_btf_id_set);
6431
6432 void unregister_kfunc_btf_id_set(struct kfunc_btf_id_list *l,
6433                                  struct kfunc_btf_id_set *s)
6434 {
6435         mutex_lock(&l->mutex);
6436         list_del_init(&s->list);
6437         mutex_unlock(&l->mutex);
6438 }
6439 EXPORT_SYMBOL_GPL(unregister_kfunc_btf_id_set);
6440
6441 bool bpf_check_mod_kfunc_call(struct kfunc_btf_id_list *klist, u32 kfunc_id,
6442                               struct module *owner)
6443 {
6444         struct kfunc_btf_id_set *s;
6445
6446         mutex_lock(&klist->mutex);
6447         list_for_each_entry(s, &klist->list, list) {
6448                 if (s->owner == owner && btf_id_set_contains(s->set, kfunc_id)) {
6449                         mutex_unlock(&klist->mutex);
6450                         return true;
6451                 }
6452         }
6453         mutex_unlock(&klist->mutex);
6454         return false;
6455 }
6456
6457 #define DEFINE_KFUNC_BTF_ID_LIST(name)                                         \
6458         struct kfunc_btf_id_list name = { LIST_HEAD_INIT(name.list),           \
6459                                           __MUTEX_INITIALIZER(name.mutex) };   \
6460         EXPORT_SYMBOL_GPL(name)
6461
6462 DEFINE_KFUNC_BTF_ID_LIST(bpf_tcp_ca_kfunc_list);
6463 DEFINE_KFUNC_BTF_ID_LIST(prog_test_kfunc_list);
6464
6465 #endif
6466
6467 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
6468                               const struct btf *targ_btf, __u32 targ_id)
6469 {
6470         return -EOPNOTSUPP;
6471 }
6472
6473 static bool bpf_core_is_flavor_sep(const char *s)
6474 {
6475         /* check X___Y name pattern, where X and Y are not underscores */
6476         return s[0] != '_' &&                                 /* X */
6477                s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
6478                s[4] != '_';                                   /* Y */
6479 }
6480
6481 size_t bpf_core_essential_name_len(const char *name)
6482 {
6483         size_t n = strlen(name);
6484         int i;
6485
6486         for (i = n - 5; i >= 0; i--) {
6487                 if (bpf_core_is_flavor_sep(name + i))
6488                         return i + 1;
6489         }
6490         return n;
6491 }
6492
6493 struct bpf_cand_cache {
6494         const char *name;
6495         u32 name_len;
6496         u16 kind;
6497         u16 cnt;
6498         struct {
6499                 const struct btf *btf;
6500                 u32 id;
6501         } cands[];
6502 };
6503
6504 static void bpf_free_cands(struct bpf_cand_cache *cands)
6505 {
6506         if (!cands->cnt)
6507                 /* empty candidate array was allocated on stack */
6508                 return;
6509         kfree(cands);
6510 }
6511
6512 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
6513 {
6514         kfree(cands->name);
6515         kfree(cands);
6516 }
6517
6518 #define VMLINUX_CAND_CACHE_SIZE 31
6519 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
6520
6521 #define MODULE_CAND_CACHE_SIZE 31
6522 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
6523
6524 static DEFINE_MUTEX(cand_cache_mutex);
6525
6526 static void __print_cand_cache(struct bpf_verifier_log *log,
6527                                struct bpf_cand_cache **cache,
6528                                int cache_size)
6529 {
6530         struct bpf_cand_cache *cc;
6531         int i, j;
6532
6533         for (i = 0; i < cache_size; i++) {
6534                 cc = cache[i];
6535                 if (!cc)
6536                         continue;
6537                 bpf_log(log, "[%d]%s(", i, cc->name);
6538                 for (j = 0; j < cc->cnt; j++) {
6539                         bpf_log(log, "%d", cc->cands[j].id);
6540                         if (j < cc->cnt - 1)
6541                                 bpf_log(log, " ");
6542                 }
6543                 bpf_log(log, "), ");
6544         }
6545 }
6546
6547 static void print_cand_cache(struct bpf_verifier_log *log)
6548 {
6549         mutex_lock(&cand_cache_mutex);
6550         bpf_log(log, "vmlinux_cand_cache:");
6551         __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
6552         bpf_log(log, "\nmodule_cand_cache:");
6553         __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
6554         bpf_log(log, "\n");
6555         mutex_unlock(&cand_cache_mutex);
6556 }
6557
6558 static u32 hash_cands(struct bpf_cand_cache *cands)
6559 {
6560         return jhash(cands->name, cands->name_len, 0);
6561 }
6562
6563 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
6564                                                struct bpf_cand_cache **cache,
6565                                                int cache_size)
6566 {
6567         struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
6568
6569         if (cc && cc->name_len == cands->name_len &&
6570             !strncmp(cc->name, cands->name, cands->name_len))
6571                 return cc;
6572         return NULL;
6573 }
6574
6575 static size_t sizeof_cands(int cnt)
6576 {
6577         return offsetof(struct bpf_cand_cache, cands[cnt]);
6578 }
6579
6580 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
6581                                                   struct bpf_cand_cache **cache,
6582                                                   int cache_size)
6583 {
6584         struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
6585
6586         if (*cc) {
6587                 bpf_free_cands_from_cache(*cc);
6588                 *cc = NULL;
6589         }
6590         new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
6591         if (!new_cands) {
6592                 bpf_free_cands(cands);
6593                 return ERR_PTR(-ENOMEM);
6594         }
6595         /* strdup the name, since it will stay in cache.
6596          * the cands->name points to strings in prog's BTF and the prog can be unloaded.
6597          */
6598         new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
6599         bpf_free_cands(cands);
6600         if (!new_cands->name) {
6601                 kfree(new_cands);
6602                 return ERR_PTR(-ENOMEM);
6603         }
6604         *cc = new_cands;
6605         return new_cands;
6606 }
6607
6608 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6609 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
6610                                int cache_size)
6611 {
6612         struct bpf_cand_cache *cc;
6613         int i, j;
6614
6615         for (i = 0; i < cache_size; i++) {
6616                 cc = cache[i];
6617                 if (!cc)
6618                         continue;
6619                 if (!btf) {
6620                         /* when new module is loaded purge all of module_cand_cache,
6621                          * since new module might have candidates with the name
6622                          * that matches cached cands.
6623                          */
6624                         bpf_free_cands_from_cache(cc);
6625                         cache[i] = NULL;
6626                         continue;
6627                 }
6628                 /* when module is unloaded purge cache entries
6629                  * that match module's btf
6630                  */
6631                 for (j = 0; j < cc->cnt; j++)
6632                         if (cc->cands[j].btf == btf) {
6633                                 bpf_free_cands_from_cache(cc);
6634                                 cache[i] = NULL;
6635                                 break;
6636                         }
6637         }
6638
6639 }
6640
6641 static void purge_cand_cache(struct btf *btf)
6642 {
6643         mutex_lock(&cand_cache_mutex);
6644         __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
6645         mutex_unlock(&cand_cache_mutex);
6646 }
6647 #endif
6648
6649 static struct bpf_cand_cache *
6650 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
6651                    int targ_start_id)
6652 {
6653         struct bpf_cand_cache *new_cands;
6654         const struct btf_type *t;
6655         const char *targ_name;
6656         size_t targ_essent_len;
6657         int n, i;
6658
6659         n = btf_nr_types(targ_btf);
6660         for (i = targ_start_id; i < n; i++) {
6661                 t = btf_type_by_id(targ_btf, i);
6662                 if (btf_kind(t) != cands->kind)
6663                         continue;
6664
6665                 targ_name = btf_name_by_offset(targ_btf, t->name_off);
6666                 if (!targ_name)
6667                         continue;
6668
6669                 /* the resched point is before strncmp to make sure that search
6670                  * for non-existing name will have a chance to schedule().
6671                  */
6672                 cond_resched();
6673
6674                 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
6675                         continue;
6676
6677                 targ_essent_len = bpf_core_essential_name_len(targ_name);
6678                 if (targ_essent_len != cands->name_len)
6679                         continue;
6680
6681                 /* most of the time there is only one candidate for a given kind+name pair */
6682                 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
6683                 if (!new_cands) {
6684                         bpf_free_cands(cands);
6685                         return ERR_PTR(-ENOMEM);
6686                 }
6687
6688                 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
6689                 bpf_free_cands(cands);
6690                 cands = new_cands;
6691                 cands->cands[cands->cnt].btf = targ_btf;
6692                 cands->cands[cands->cnt].id = i;
6693                 cands->cnt++;
6694         }
6695         return cands;
6696 }
6697
6698 static struct bpf_cand_cache *
6699 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
6700 {
6701         struct bpf_cand_cache *cands, *cc, local_cand = {};
6702         const struct btf *local_btf = ctx->btf;
6703         const struct btf_type *local_type;
6704         const struct btf *main_btf;
6705         size_t local_essent_len;
6706         struct btf *mod_btf;
6707         const char *name;
6708         int id;
6709
6710         main_btf = bpf_get_btf_vmlinux();
6711         if (IS_ERR(main_btf))
6712                 return ERR_CAST(main_btf);
6713
6714         local_type = btf_type_by_id(local_btf, local_type_id);
6715         if (!local_type)
6716                 return ERR_PTR(-EINVAL);
6717
6718         name = btf_name_by_offset(local_btf, local_type->name_off);
6719         if (str_is_empty(name))
6720                 return ERR_PTR(-EINVAL);
6721         local_essent_len = bpf_core_essential_name_len(name);
6722
6723         cands = &local_cand;
6724         cands->name = name;
6725         cands->kind = btf_kind(local_type);
6726         cands->name_len = local_essent_len;
6727
6728         cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
6729         /* cands is a pointer to stack here */
6730         if (cc) {
6731                 if (cc->cnt)
6732                         return cc;
6733                 goto check_modules;
6734         }
6735
6736         /* Attempt to find target candidates in vmlinux BTF first */
6737         cands = bpf_core_add_cands(cands, main_btf, 1);
6738         if (IS_ERR(cands))
6739                 return ERR_CAST(cands);
6740
6741         /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
6742
6743         /* populate cache even when cands->cnt == 0 */
6744         cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
6745         if (IS_ERR(cc))
6746                 return ERR_CAST(cc);
6747
6748         /* if vmlinux BTF has any candidate, don't go for module BTFs */
6749         if (cc->cnt)
6750                 return cc;
6751
6752 check_modules:
6753         /* cands is a pointer to stack here and cands->cnt == 0 */
6754         cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
6755         if (cc)
6756                 /* if cache has it return it even if cc->cnt == 0 */
6757                 return cc;
6758
6759         /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
6760         spin_lock_bh(&btf_idr_lock);
6761         idr_for_each_entry(&btf_idr, mod_btf, id) {
6762                 if (!btf_is_module(mod_btf))
6763                         continue;
6764                 /* linear search could be slow hence unlock/lock
6765                  * the IDR to avoiding holding it for too long
6766                  */
6767                 btf_get(mod_btf);
6768                 spin_unlock_bh(&btf_idr_lock);
6769                 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
6770                 if (IS_ERR(cands)) {
6771                         btf_put(mod_btf);
6772                         return ERR_CAST(cands);
6773                 }
6774                 spin_lock_bh(&btf_idr_lock);
6775                 btf_put(mod_btf);
6776         }
6777         spin_unlock_bh(&btf_idr_lock);
6778         /* cands is a pointer to kmalloced memory here if cands->cnt > 0
6779          * or pointer to stack if cands->cnd == 0.
6780          * Copy it into the cache even when cands->cnt == 0 and
6781          * return the result.
6782          */
6783         return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
6784 }
6785
6786 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
6787                    int relo_idx, void *insn)
6788 {
6789         bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
6790         struct bpf_core_cand_list cands = {};
6791         struct bpf_core_spec *specs;
6792         int err;
6793
6794         /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
6795          * into arrays of btf_ids of struct fields and array indices.
6796          */
6797         specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
6798         if (!specs)
6799                 return -ENOMEM;
6800
6801         if (need_cands) {
6802                 struct bpf_cand_cache *cc;
6803                 int i;
6804
6805                 mutex_lock(&cand_cache_mutex);
6806                 cc = bpf_core_find_cands(ctx, relo->type_id);
6807                 if (IS_ERR(cc)) {
6808                         bpf_log(ctx->log, "target candidate search failed for %d\n",
6809                                 relo->type_id);
6810                         err = PTR_ERR(cc);
6811                         goto out;
6812                 }
6813                 if (cc->cnt) {
6814                         cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
6815                         if (!cands.cands) {
6816                                 err = -ENOMEM;
6817                                 goto out;
6818                         }
6819                 }
6820                 for (i = 0; i < cc->cnt; i++) {
6821                         bpf_log(ctx->log,
6822                                 "CO-RE relocating %s %s: found target candidate [%d]\n",
6823                                 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
6824                         cands.cands[i].btf = cc->cands[i].btf;
6825                         cands.cands[i].id = cc->cands[i].id;
6826                 }
6827                 cands.len = cc->cnt;
6828                 /* cand_cache_mutex needs to span the cache lookup and
6829                  * copy of btf pointer into bpf_core_cand_list,
6830                  * since module can be unloaded while bpf_core_apply_relo_insn
6831                  * is working with module's btf.
6832                  */
6833         }
6834
6835         err = bpf_core_apply_relo_insn((void *)ctx->log, insn, relo->insn_off / 8,
6836                                        relo, relo_idx, ctx->btf, &cands, specs);
6837 out:
6838         kfree(specs);
6839         if (need_cands) {
6840                 kfree(cands.cands);
6841                 mutex_unlock(&cand_cache_mutex);
6842                 if (ctx->log->level & BPF_LOG_LEVEL2)
6843                         print_cand_cache(ctx->log);
6844         }
6845         return err;
6846 }
This page took 0.43275 seconds and 4 git commands to generate.