1 // SPDX-License-Identifier: GPL-2.0
3 * drivers/base/core.c - core driver model code (device registration, etc)
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
8 * Copyright (c) 2006 Novell, Inc.
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include <linux/kdev_t.h>
22 #include <linux/notifier.h>
24 #include <linux/of_device.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
36 #include "physical_location.h"
37 #include "power/power.h"
39 #ifdef CONFIG_SYSFS_DEPRECATED
40 #ifdef CONFIG_SYSFS_DEPRECATED_V2
41 long sysfs_deprecated = 1;
43 long sysfs_deprecated = 0;
45 static int __init sysfs_deprecated_setup(char *arg)
47 return kstrtol(arg, 10, &sysfs_deprecated);
49 early_param("sysfs.deprecated", sysfs_deprecated_setup);
52 /* Device links support. */
53 static LIST_HEAD(deferred_sync);
54 static unsigned int defer_sync_state_count = 1;
55 static DEFINE_MUTEX(fwnode_link_lock);
56 static bool fw_devlink_is_permissive(void);
57 static void __fw_devlink_link_to_consumers(struct device *dev);
58 static bool fw_devlink_drv_reg_done;
59 static bool fw_devlink_best_effort;
62 * __fwnode_link_add - Create a link between two fwnode_handles.
63 * @con: Consumer end of the link.
64 * @sup: Supplier end of the link.
66 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
67 * represents the detail that the firmware lists @sup fwnode as supplying a
70 * The driver core will use the fwnode link to create a device link between the
71 * two device objects corresponding to @con and @sup when they are created. The
72 * driver core will automatically delete the fwnode link between @con and @sup
75 * Attempts to create duplicate links between the same pair of fwnode handles
76 * are ignored and there is no reference counting.
78 static int __fwnode_link_add(struct fwnode_handle *con,
79 struct fwnode_handle *sup, u8 flags)
81 struct fwnode_link *link;
83 list_for_each_entry(link, &sup->consumers, s_hook)
84 if (link->consumer == con) {
89 link = kzalloc(sizeof(*link), GFP_KERNEL);
94 INIT_LIST_HEAD(&link->s_hook);
96 INIT_LIST_HEAD(&link->c_hook);
99 list_add(&link->s_hook, &sup->consumers);
100 list_add(&link->c_hook, &con->suppliers);
101 pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
107 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
111 mutex_lock(&fwnode_link_lock);
112 ret = __fwnode_link_add(con, sup, 0);
113 mutex_unlock(&fwnode_link_lock);
118 * __fwnode_link_del - Delete a link between two fwnode_handles.
119 * @link: the fwnode_link to be deleted
121 * The fwnode_link_lock needs to be held when this function is called.
123 static void __fwnode_link_del(struct fwnode_link *link)
125 pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
126 link->consumer, link->supplier);
127 list_del(&link->s_hook);
128 list_del(&link->c_hook);
133 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
134 * @link: the fwnode_link to be marked
136 * The fwnode_link_lock needs to be held when this function is called.
138 static void __fwnode_link_cycle(struct fwnode_link *link)
140 pr_debug("%pfwf: Relaxing link with %pfwf\n",
141 link->consumer, link->supplier);
142 link->flags |= FWLINK_FLAG_CYCLE;
146 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
147 * @fwnode: fwnode whose supplier links need to be deleted
149 * Deletes all supplier links connecting directly to @fwnode.
151 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
153 struct fwnode_link *link, *tmp;
155 mutex_lock(&fwnode_link_lock);
156 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
157 __fwnode_link_del(link);
158 mutex_unlock(&fwnode_link_lock);
162 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
163 * @fwnode: fwnode whose consumer links need to be deleted
165 * Deletes all consumer links connecting directly to @fwnode.
167 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
169 struct fwnode_link *link, *tmp;
171 mutex_lock(&fwnode_link_lock);
172 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
173 __fwnode_link_del(link);
174 mutex_unlock(&fwnode_link_lock);
178 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
179 * @fwnode: fwnode whose links needs to be deleted
181 * Deletes all links connecting directly to a fwnode.
183 void fwnode_links_purge(struct fwnode_handle *fwnode)
185 fwnode_links_purge_suppliers(fwnode);
186 fwnode_links_purge_consumers(fwnode);
189 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
191 struct fwnode_handle *child;
193 /* Don't purge consumer links of an added child */
197 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
198 fwnode_links_purge_consumers(fwnode);
200 fwnode_for_each_available_child_node(fwnode, child)
201 fw_devlink_purge_absent_suppliers(child);
203 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
206 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
207 * @from: move consumers away from this fwnode
208 * @to: move consumers to this fwnode
210 * Move all consumer links from @from fwnode to @to fwnode.
212 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
213 struct fwnode_handle *to)
215 struct fwnode_link *link, *tmp;
217 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
218 __fwnode_link_add(link->consumer, to, link->flags);
219 __fwnode_link_del(link);
224 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
225 * @fwnode: fwnode from which to pick up dangling consumers
226 * @new_sup: fwnode of new supplier
228 * If the @fwnode has a corresponding struct device and the device supports
229 * probing (that is, added to a bus), then we want to let fw_devlink create
230 * MANAGED device links to this device, so leave @fwnode and its descendant's
231 * fwnode links alone.
233 * Otherwise, move its consumers to the new supplier @new_sup.
235 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
236 struct fwnode_handle *new_sup)
238 struct fwnode_handle *child;
240 if (fwnode->dev && fwnode->dev->bus)
243 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
244 __fwnode_links_move_consumers(fwnode, new_sup);
246 fwnode_for_each_available_child_node(fwnode, child)
247 __fw_devlink_pickup_dangling_consumers(child, new_sup);
251 static DEFINE_MUTEX(device_links_lock);
252 DEFINE_STATIC_SRCU(device_links_srcu);
254 static inline void device_links_write_lock(void)
256 mutex_lock(&device_links_lock);
259 static inline void device_links_write_unlock(void)
261 mutex_unlock(&device_links_lock);
264 int device_links_read_lock(void) __acquires(&device_links_srcu)
266 return srcu_read_lock(&device_links_srcu);
269 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
271 srcu_read_unlock(&device_links_srcu, idx);
274 int device_links_read_lock_held(void)
276 return srcu_read_lock_held(&device_links_srcu);
279 static void device_link_synchronize_removal(void)
281 synchronize_srcu(&device_links_srcu);
284 static void device_link_remove_from_lists(struct device_link *link)
286 list_del_rcu(&link->s_node);
287 list_del_rcu(&link->c_node);
289 #else /* !CONFIG_SRCU */
290 static DECLARE_RWSEM(device_links_lock);
292 static inline void device_links_write_lock(void)
294 down_write(&device_links_lock);
297 static inline void device_links_write_unlock(void)
299 up_write(&device_links_lock);
302 int device_links_read_lock(void)
304 down_read(&device_links_lock);
308 void device_links_read_unlock(int not_used)
310 up_read(&device_links_lock);
313 #ifdef CONFIG_DEBUG_LOCK_ALLOC
314 int device_links_read_lock_held(void)
316 return lockdep_is_held(&device_links_lock);
320 static inline void device_link_synchronize_removal(void)
324 static void device_link_remove_from_lists(struct device_link *link)
326 list_del(&link->s_node);
327 list_del(&link->c_node);
329 #endif /* !CONFIG_SRCU */
331 static bool device_is_ancestor(struct device *dev, struct device *target)
333 while (target->parent) {
334 target = target->parent;
341 static inline bool device_link_flag_is_sync_state_only(u32 flags)
343 return (flags & ~(DL_FLAG_INFERRED | DL_FLAG_CYCLE)) ==
344 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED);
348 * device_is_dependent - Check if one device depends on another one
349 * @dev: Device to check dependencies for.
350 * @target: Device to check against.
352 * Check if @target depends on @dev or any device dependent on it (its child or
353 * its consumer etc). Return 1 if that is the case or 0 otherwise.
355 int device_is_dependent(struct device *dev, void *target)
357 struct device_link *link;
361 * The "ancestors" check is needed to catch the case when the target
362 * device has not been completely initialized yet and it is still
363 * missing from the list of children of its parent device.
365 if (dev == target || device_is_ancestor(dev, target))
368 ret = device_for_each_child(dev, target, device_is_dependent);
372 list_for_each_entry(link, &dev->links.consumers, s_node) {
373 if (device_link_flag_is_sync_state_only(link->flags))
376 if (link->consumer == target)
379 ret = device_is_dependent(link->consumer, target);
386 static void device_link_init_status(struct device_link *link,
387 struct device *consumer,
388 struct device *supplier)
390 switch (supplier->links.status) {
392 switch (consumer->links.status) {
395 * A consumer driver can create a link to a supplier
396 * that has not completed its probing yet as long as it
397 * knows that the supplier is already functional (for
398 * example, it has just acquired some resources from the
401 link->status = DL_STATE_CONSUMER_PROBE;
404 link->status = DL_STATE_DORMANT;
408 case DL_DEV_DRIVER_BOUND:
409 switch (consumer->links.status) {
411 link->status = DL_STATE_CONSUMER_PROBE;
413 case DL_DEV_DRIVER_BOUND:
414 link->status = DL_STATE_ACTIVE;
417 link->status = DL_STATE_AVAILABLE;
421 case DL_DEV_UNBINDING:
422 link->status = DL_STATE_SUPPLIER_UNBIND;
425 link->status = DL_STATE_DORMANT;
430 static int device_reorder_to_tail(struct device *dev, void *not_used)
432 struct device_link *link;
435 * Devices that have not been registered yet will be put to the ends
436 * of the lists during the registration, so skip them here.
438 if (device_is_registered(dev))
439 devices_kset_move_last(dev);
441 if (device_pm_initialized(dev))
442 device_pm_move_last(dev);
444 device_for_each_child(dev, NULL, device_reorder_to_tail);
445 list_for_each_entry(link, &dev->links.consumers, s_node) {
446 if (device_link_flag_is_sync_state_only(link->flags))
448 device_reorder_to_tail(link->consumer, NULL);
455 * device_pm_move_to_tail - Move set of devices to the end of device lists
456 * @dev: Device to move
458 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
460 * It moves the @dev along with all of its children and all of its consumers
461 * to the ends of the device_kset and dpm_list, recursively.
463 void device_pm_move_to_tail(struct device *dev)
467 idx = device_links_read_lock();
469 device_reorder_to_tail(dev, NULL);
471 device_links_read_unlock(idx);
474 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
476 static ssize_t status_show(struct device *dev,
477 struct device_attribute *attr, char *buf)
481 switch (to_devlink(dev)->status) {
483 output = "not tracked";
485 case DL_STATE_DORMANT:
488 case DL_STATE_AVAILABLE:
489 output = "available";
491 case DL_STATE_CONSUMER_PROBE:
492 output = "consumer probing";
494 case DL_STATE_ACTIVE:
497 case DL_STATE_SUPPLIER_UNBIND:
498 output = "supplier unbinding";
505 return sysfs_emit(buf, "%s\n", output);
507 static DEVICE_ATTR_RO(status);
509 static ssize_t auto_remove_on_show(struct device *dev,
510 struct device_attribute *attr, char *buf)
512 struct device_link *link = to_devlink(dev);
515 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
516 output = "supplier unbind";
517 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
518 output = "consumer unbind";
522 return sysfs_emit(buf, "%s\n", output);
524 static DEVICE_ATTR_RO(auto_remove_on);
526 static ssize_t runtime_pm_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
529 struct device_link *link = to_devlink(dev);
531 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
533 static DEVICE_ATTR_RO(runtime_pm);
535 static ssize_t sync_state_only_show(struct device *dev,
536 struct device_attribute *attr, char *buf)
538 struct device_link *link = to_devlink(dev);
540 return sysfs_emit(buf, "%d\n",
541 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
543 static DEVICE_ATTR_RO(sync_state_only);
545 static struct attribute *devlink_attrs[] = {
546 &dev_attr_status.attr,
547 &dev_attr_auto_remove_on.attr,
548 &dev_attr_runtime_pm.attr,
549 &dev_attr_sync_state_only.attr,
552 ATTRIBUTE_GROUPS(devlink);
554 static void device_link_release_fn(struct work_struct *work)
556 struct device_link *link = container_of(work, struct device_link, rm_work);
558 /* Ensure that all references to the link object have been dropped. */
559 device_link_synchronize_removal();
561 pm_runtime_release_supplier(link);
563 * If supplier_preactivated is set, the link has been dropped between
564 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
565 * in __driver_probe_device(). In that case, drop the supplier's
566 * PM-runtime usage counter to remove the reference taken by
567 * pm_runtime_get_suppliers().
569 if (link->supplier_preactivated)
570 pm_runtime_put_noidle(link->supplier);
572 pm_request_idle(link->supplier);
574 put_device(link->consumer);
575 put_device(link->supplier);
579 static void devlink_dev_release(struct device *dev)
581 struct device_link *link = to_devlink(dev);
583 INIT_WORK(&link->rm_work, device_link_release_fn);
585 * It may take a while to complete this work because of the SRCU
586 * synchronization in device_link_release_fn() and if the consumer or
587 * supplier devices get deleted when it runs, so put it into the "long"
590 queue_work(system_long_wq, &link->rm_work);
593 static struct class devlink_class = {
595 .owner = THIS_MODULE,
596 .dev_groups = devlink_groups,
597 .dev_release = devlink_dev_release,
600 static int devlink_add_symlinks(struct device *dev,
601 struct class_interface *class_intf)
605 struct device_link *link = to_devlink(dev);
606 struct device *sup = link->supplier;
607 struct device *con = link->consumer;
610 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
611 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
613 len += strlen("supplier:") + 1;
614 buf = kzalloc(len, GFP_KERNEL);
618 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
622 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
626 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
627 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
631 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
632 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
639 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
640 sysfs_remove_link(&sup->kobj, buf);
642 sysfs_remove_link(&link->link_dev.kobj, "consumer");
644 sysfs_remove_link(&link->link_dev.kobj, "supplier");
650 static void devlink_remove_symlinks(struct device *dev,
651 struct class_interface *class_intf)
653 struct device_link *link = to_devlink(dev);
655 struct device *sup = link->supplier;
656 struct device *con = link->consumer;
659 sysfs_remove_link(&link->link_dev.kobj, "consumer");
660 sysfs_remove_link(&link->link_dev.kobj, "supplier");
662 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
663 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
665 len += strlen("supplier:") + 1;
666 buf = kzalloc(len, GFP_KERNEL);
668 WARN(1, "Unable to properly free device link symlinks!\n");
672 if (device_is_registered(con)) {
673 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
674 sysfs_remove_link(&con->kobj, buf);
676 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
677 sysfs_remove_link(&sup->kobj, buf);
681 static struct class_interface devlink_class_intf = {
682 .class = &devlink_class,
683 .add_dev = devlink_add_symlinks,
684 .remove_dev = devlink_remove_symlinks,
687 static int __init devlink_class_init(void)
691 ret = class_register(&devlink_class);
695 ret = class_interface_register(&devlink_class_intf);
697 class_unregister(&devlink_class);
701 postcore_initcall(devlink_class_init);
703 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
704 DL_FLAG_AUTOREMOVE_SUPPLIER | \
705 DL_FLAG_AUTOPROBE_CONSUMER | \
706 DL_FLAG_SYNC_STATE_ONLY | \
710 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
711 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
714 * device_link_add - Create a link between two devices.
715 * @consumer: Consumer end of the link.
716 * @supplier: Supplier end of the link.
717 * @flags: Link flags.
719 * The caller is responsible for the proper synchronization of the link creation
720 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
721 * runtime PM framework to take the link into account. Second, if the
722 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
723 * be forced into the active meta state and reference-counted upon the creation
724 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
727 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
728 * expected to release the link returned by it directly with the help of either
729 * device_link_del() or device_link_remove().
731 * If that flag is not set, however, the caller of this function is handing the
732 * management of the link over to the driver core entirely and its return value
733 * can only be used to check whether or not the link is present. In that case,
734 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
735 * flags can be used to indicate to the driver core when the link can be safely
736 * deleted. Namely, setting one of them in @flags indicates to the driver core
737 * that the link is not going to be used (by the given caller of this function)
738 * after unbinding the consumer or supplier driver, respectively, from its
739 * device, so the link can be deleted at that point. If none of them is set,
740 * the link will be maintained until one of the devices pointed to by it (either
741 * the consumer or the supplier) is unregistered.
743 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
744 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
745 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
746 * be used to request the driver core to automatically probe for a consumer
747 * driver after successfully binding a driver to the supplier device.
749 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
750 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
751 * the same time is invalid and will cause NULL to be returned upfront.
752 * However, if a device link between the given @consumer and @supplier pair
753 * exists already when this function is called for them, the existing link will
754 * be returned regardless of its current type and status (the link's flags may
755 * be modified then). The caller of this function is then expected to treat
756 * the link as though it has just been created, so (in particular) if
757 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
758 * explicitly when not needed any more (as stated above).
760 * A side effect of the link creation is re-ordering of dpm_list and the
761 * devices_kset list by moving the consumer device and all devices depending
762 * on it to the ends of these lists (that does not happen to devices that have
763 * not been registered when this function is called).
765 * The supplier device is required to be registered when this function is called
766 * and NULL will be returned if that is not the case. The consumer device need
767 * not be registered, however.
769 struct device_link *device_link_add(struct device *consumer,
770 struct device *supplier, u32 flags)
772 struct device_link *link;
774 if (!consumer || !supplier || consumer == supplier ||
775 flags & ~DL_ADD_VALID_FLAGS ||
776 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
777 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
778 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
779 DL_FLAG_AUTOREMOVE_SUPPLIER)))
782 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
783 if (pm_runtime_get_sync(supplier) < 0) {
784 pm_runtime_put_noidle(supplier);
789 if (!(flags & DL_FLAG_STATELESS))
790 flags |= DL_FLAG_MANAGED;
792 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
793 !device_link_flag_is_sync_state_only(flags))
796 device_links_write_lock();
800 * If the supplier has not been fully registered yet or there is a
801 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
802 * the supplier already in the graph, return NULL. If the link is a
803 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
804 * because it only affects sync_state() callbacks.
806 if (!device_pm_initialized(supplier)
807 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
808 device_is_dependent(consumer, supplier))) {
814 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
815 * So, only create it if the consumer hasn't probed yet.
817 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
818 consumer->links.status != DL_DEV_NO_DRIVER &&
819 consumer->links.status != DL_DEV_PROBING) {
825 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
826 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
827 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
829 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
830 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
832 list_for_each_entry(link, &supplier->links.consumers, s_node) {
833 if (link->consumer != consumer)
836 if (link->flags & DL_FLAG_INFERRED &&
837 !(flags & DL_FLAG_INFERRED))
838 link->flags &= ~DL_FLAG_INFERRED;
840 if (flags & DL_FLAG_PM_RUNTIME) {
841 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
842 pm_runtime_new_link(consumer);
843 link->flags |= DL_FLAG_PM_RUNTIME;
845 if (flags & DL_FLAG_RPM_ACTIVE)
846 refcount_inc(&link->rpm_active);
849 if (flags & DL_FLAG_STATELESS) {
850 kref_get(&link->kref);
851 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
852 !(link->flags & DL_FLAG_STATELESS)) {
853 link->flags |= DL_FLAG_STATELESS;
856 link->flags |= DL_FLAG_STATELESS;
862 * If the life time of the link following from the new flags is
863 * longer than indicated by the flags of the existing link,
864 * update the existing link to stay around longer.
866 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
867 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
868 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
869 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
871 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
872 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
873 DL_FLAG_AUTOREMOVE_SUPPLIER);
875 if (!(link->flags & DL_FLAG_MANAGED)) {
876 kref_get(&link->kref);
877 link->flags |= DL_FLAG_MANAGED;
878 device_link_init_status(link, consumer, supplier);
880 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
881 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
882 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
889 link = kzalloc(sizeof(*link), GFP_KERNEL);
893 refcount_set(&link->rpm_active, 1);
895 get_device(supplier);
896 link->supplier = supplier;
897 INIT_LIST_HEAD(&link->s_node);
898 get_device(consumer);
899 link->consumer = consumer;
900 INIT_LIST_HEAD(&link->c_node);
902 kref_init(&link->kref);
904 link->link_dev.class = &devlink_class;
905 device_set_pm_not_required(&link->link_dev);
906 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
907 dev_bus_name(supplier), dev_name(supplier),
908 dev_bus_name(consumer), dev_name(consumer));
909 if (device_register(&link->link_dev)) {
910 put_device(&link->link_dev);
915 if (flags & DL_FLAG_PM_RUNTIME) {
916 if (flags & DL_FLAG_RPM_ACTIVE)
917 refcount_inc(&link->rpm_active);
919 pm_runtime_new_link(consumer);
922 /* Determine the initial link state. */
923 if (flags & DL_FLAG_STATELESS)
924 link->status = DL_STATE_NONE;
926 device_link_init_status(link, consumer, supplier);
929 * Some callers expect the link creation during consumer driver probe to
930 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
932 if (link->status == DL_STATE_CONSUMER_PROBE &&
933 flags & DL_FLAG_PM_RUNTIME)
934 pm_runtime_resume(supplier);
936 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
937 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
939 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
941 "Linked as a sync state only consumer to %s\n",
948 * Move the consumer and all of the devices depending on it to the end
949 * of dpm_list and the devices_kset list.
951 * It is necessary to hold dpm_list locked throughout all that or else
952 * we may end up suspending with a wrong ordering of it.
954 device_reorder_to_tail(consumer, NULL);
956 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
960 device_links_write_unlock();
962 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
963 pm_runtime_put(supplier);
967 EXPORT_SYMBOL_GPL(device_link_add);
969 static void __device_link_del(struct kref *kref)
971 struct device_link *link = container_of(kref, struct device_link, kref);
973 dev_dbg(link->consumer, "Dropping the link to %s\n",
974 dev_name(link->supplier));
976 pm_runtime_drop_link(link);
978 device_link_remove_from_lists(link);
979 device_unregister(&link->link_dev);
982 static void device_link_put_kref(struct device_link *link)
984 if (link->flags & DL_FLAG_STATELESS)
985 kref_put(&link->kref, __device_link_del);
986 else if (!device_is_registered(link->consumer))
987 __device_link_del(&link->kref);
989 WARN(1, "Unable to drop a managed device link reference\n");
993 * device_link_del - Delete a stateless link between two devices.
994 * @link: Device link to delete.
996 * The caller must ensure proper synchronization of this function with runtime
997 * PM. If the link was added multiple times, it needs to be deleted as often.
998 * Care is required for hotplugged devices: Their links are purged on removal
999 * and calling device_link_del() is then no longer allowed.
1001 void device_link_del(struct device_link *link)
1003 device_links_write_lock();
1004 device_link_put_kref(link);
1005 device_links_write_unlock();
1007 EXPORT_SYMBOL_GPL(device_link_del);
1010 * device_link_remove - Delete a stateless link between two devices.
1011 * @consumer: Consumer end of the link.
1012 * @supplier: Supplier end of the link.
1014 * The caller must ensure proper synchronization of this function with runtime
1017 void device_link_remove(void *consumer, struct device *supplier)
1019 struct device_link *link;
1021 if (WARN_ON(consumer == supplier))
1024 device_links_write_lock();
1026 list_for_each_entry(link, &supplier->links.consumers, s_node) {
1027 if (link->consumer == consumer) {
1028 device_link_put_kref(link);
1033 device_links_write_unlock();
1035 EXPORT_SYMBOL_GPL(device_link_remove);
1037 static void device_links_missing_supplier(struct device *dev)
1039 struct device_link *link;
1041 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1042 if (link->status != DL_STATE_CONSUMER_PROBE)
1045 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1046 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1048 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1049 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1054 static bool dev_is_best_effort(struct device *dev)
1056 return (fw_devlink_best_effort && dev->can_match) ||
1057 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1060 static struct fwnode_handle *fwnode_links_check_suppliers(
1061 struct fwnode_handle *fwnode)
1063 struct fwnode_link *link;
1065 if (!fwnode || fw_devlink_is_permissive())
1068 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1069 if (!(link->flags & FWLINK_FLAG_CYCLE))
1070 return link->supplier;
1076 * device_links_check_suppliers - Check presence of supplier drivers.
1077 * @dev: Consumer device.
1079 * Check links from this device to any suppliers. Walk the list of the device's
1080 * links to suppliers and see if all of them are available. If not, simply
1081 * return -EPROBE_DEFER.
1083 * We need to guarantee that the supplier will not go away after the check has
1084 * been positive here. It only can go away in __device_release_driver() and
1085 * that function checks the device's links to consumers. This means we need to
1086 * mark the link as "consumer probe in progress" to make the supplier removal
1087 * wait for us to complete (or bad things may happen).
1089 * Links without the DL_FLAG_MANAGED flag set are ignored.
1091 int device_links_check_suppliers(struct device *dev)
1093 struct device_link *link;
1094 int ret = 0, fwnode_ret = 0;
1095 struct fwnode_handle *sup_fw;
1098 * Device waiting for supplier to become available is not allowed to
1101 mutex_lock(&fwnode_link_lock);
1102 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1104 if (!dev_is_best_effort(dev)) {
1105 fwnode_ret = -EPROBE_DEFER;
1106 dev_err_probe(dev, -EPROBE_DEFER,
1107 "wait for supplier %pfwP\n", sup_fw);
1109 fwnode_ret = -EAGAIN;
1112 mutex_unlock(&fwnode_link_lock);
1113 if (fwnode_ret == -EPROBE_DEFER)
1116 device_links_write_lock();
1118 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1119 if (!(link->flags & DL_FLAG_MANAGED))
1122 if (link->status != DL_STATE_AVAILABLE &&
1123 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1125 if (dev_is_best_effort(dev) &&
1126 link->flags & DL_FLAG_INFERRED &&
1127 !link->supplier->can_match) {
1132 device_links_missing_supplier(dev);
1133 dev_err_probe(dev, -EPROBE_DEFER,
1134 "supplier %s not ready\n",
1135 dev_name(link->supplier));
1136 ret = -EPROBE_DEFER;
1139 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1141 dev->links.status = DL_DEV_PROBING;
1143 device_links_write_unlock();
1145 return ret ? ret : fwnode_ret;
1149 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1150 * @dev: Device to call sync_state() on
1151 * @list: List head to queue the @dev on
1153 * Queues a device for a sync_state() callback when the device links write lock
1154 * isn't held. This allows the sync_state() execution flow to use device links
1155 * APIs. The caller must ensure this function is called with
1156 * device_links_write_lock() held.
1158 * This function does a get_device() to make sure the device is not freed while
1161 * So the caller must also ensure that device_links_flush_sync_list() is called
1162 * as soon as the caller releases device_links_write_lock(). This is necessary
1163 * to make sure the sync_state() is called in a timely fashion and the
1164 * put_device() is called on this device.
1166 static void __device_links_queue_sync_state(struct device *dev,
1167 struct list_head *list)
1169 struct device_link *link;
1171 if (!dev_has_sync_state(dev))
1173 if (dev->state_synced)
1176 list_for_each_entry(link, &dev->links.consumers, s_node) {
1177 if (!(link->flags & DL_FLAG_MANAGED))
1179 if (link->status != DL_STATE_ACTIVE)
1184 * Set the flag here to avoid adding the same device to a list more
1185 * than once. This can happen if new consumers get added to the device
1186 * and probed before the list is flushed.
1188 dev->state_synced = true;
1190 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1194 list_add_tail(&dev->links.defer_sync, list);
1198 * device_links_flush_sync_list - Call sync_state() on a list of devices
1199 * @list: List of devices to call sync_state() on
1200 * @dont_lock_dev: Device for which lock is already held by the caller
1202 * Calls sync_state() on all the devices that have been queued for it. This
1203 * function is used in conjunction with __device_links_queue_sync_state(). The
1204 * @dont_lock_dev parameter is useful when this function is called from a
1205 * context where a device lock is already held.
1207 static void device_links_flush_sync_list(struct list_head *list,
1208 struct device *dont_lock_dev)
1210 struct device *dev, *tmp;
1212 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1213 list_del_init(&dev->links.defer_sync);
1215 if (dev != dont_lock_dev)
1218 if (dev->bus->sync_state)
1219 dev->bus->sync_state(dev);
1220 else if (dev->driver && dev->driver->sync_state)
1221 dev->driver->sync_state(dev);
1223 if (dev != dont_lock_dev)
1230 void device_links_supplier_sync_state_pause(void)
1232 device_links_write_lock();
1233 defer_sync_state_count++;
1234 device_links_write_unlock();
1237 void device_links_supplier_sync_state_resume(void)
1239 struct device *dev, *tmp;
1240 LIST_HEAD(sync_list);
1242 device_links_write_lock();
1243 if (!defer_sync_state_count) {
1244 WARN(true, "Unmatched sync_state pause/resume!");
1247 defer_sync_state_count--;
1248 if (defer_sync_state_count)
1251 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1253 * Delete from deferred_sync list before queuing it to
1254 * sync_list because defer_sync is used for both lists.
1256 list_del_init(&dev->links.defer_sync);
1257 __device_links_queue_sync_state(dev, &sync_list);
1260 device_links_write_unlock();
1262 device_links_flush_sync_list(&sync_list, NULL);
1265 static int sync_state_resume_initcall(void)
1267 device_links_supplier_sync_state_resume();
1270 late_initcall(sync_state_resume_initcall);
1272 static void __device_links_supplier_defer_sync(struct device *sup)
1274 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1275 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1278 static void device_link_drop_managed(struct device_link *link)
1280 link->flags &= ~DL_FLAG_MANAGED;
1281 WRITE_ONCE(link->status, DL_STATE_NONE);
1282 kref_put(&link->kref, __device_link_del);
1285 static ssize_t waiting_for_supplier_show(struct device *dev,
1286 struct device_attribute *attr,
1292 mutex_lock(&fwnode_link_lock);
1293 val = !!fwnode_links_check_suppliers(dev->fwnode);
1294 mutex_unlock(&fwnode_link_lock);
1296 return sysfs_emit(buf, "%u\n", val);
1298 static DEVICE_ATTR_RO(waiting_for_supplier);
1301 * device_links_force_bind - Prepares device to be force bound
1302 * @dev: Consumer device.
1304 * device_bind_driver() force binds a device to a driver without calling any
1305 * driver probe functions. So the consumer really isn't going to wait for any
1306 * supplier before it's bound to the driver. We still want the device link
1307 * states to be sensible when this happens.
1309 * In preparation for device_bind_driver(), this function goes through each
1310 * supplier device links and checks if the supplier is bound. If it is, then
1311 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1312 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1314 void device_links_force_bind(struct device *dev)
1316 struct device_link *link, *ln;
1318 device_links_write_lock();
1320 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1321 if (!(link->flags & DL_FLAG_MANAGED))
1324 if (link->status != DL_STATE_AVAILABLE) {
1325 device_link_drop_managed(link);
1328 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1330 dev->links.status = DL_DEV_PROBING;
1332 device_links_write_unlock();
1336 * device_links_driver_bound - Update device links after probing its driver.
1337 * @dev: Device to update the links for.
1339 * The probe has been successful, so update links from this device to any
1340 * consumers by changing their status to "available".
1342 * Also change the status of @dev's links to suppliers to "active".
1344 * Links without the DL_FLAG_MANAGED flag set are ignored.
1346 void device_links_driver_bound(struct device *dev)
1348 struct device_link *link, *ln;
1349 LIST_HEAD(sync_list);
1352 * If a device binds successfully, it's expected to have created all
1353 * the device links it needs to or make new device links as it needs
1354 * them. So, fw_devlink no longer needs to create device links to any
1355 * of the device's suppliers.
1357 * Also, if a child firmware node of this bound device is not added as a
1358 * device by now, assume it is never going to be added. Make this bound
1359 * device the fallback supplier to the dangling consumers of the child
1360 * firmware node because this bound device is probably implementing the
1361 * child firmware node functionality and we don't want the dangling
1362 * consumers to defer probe indefinitely waiting for a device for the
1363 * child firmware node.
1365 if (dev->fwnode && dev->fwnode->dev == dev) {
1366 struct fwnode_handle *child;
1367 fwnode_links_purge_suppliers(dev->fwnode);
1368 mutex_lock(&fwnode_link_lock);
1369 fwnode_for_each_available_child_node(dev->fwnode, child)
1370 __fw_devlink_pickup_dangling_consumers(child,
1372 __fw_devlink_link_to_consumers(dev);
1373 mutex_unlock(&fwnode_link_lock);
1375 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1377 device_links_write_lock();
1379 list_for_each_entry(link, &dev->links.consumers, s_node) {
1380 if (!(link->flags & DL_FLAG_MANAGED))
1384 * Links created during consumer probe may be in the "consumer
1385 * probe" state to start with if the supplier is still probing
1386 * when they are created and they may become "active" if the
1387 * consumer probe returns first. Skip them here.
1389 if (link->status == DL_STATE_CONSUMER_PROBE ||
1390 link->status == DL_STATE_ACTIVE)
1393 WARN_ON(link->status != DL_STATE_DORMANT);
1394 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1396 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1397 driver_deferred_probe_add(link->consumer);
1400 if (defer_sync_state_count)
1401 __device_links_supplier_defer_sync(dev);
1403 __device_links_queue_sync_state(dev, &sync_list);
1405 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1406 struct device *supplier;
1408 if (!(link->flags & DL_FLAG_MANAGED))
1411 supplier = link->supplier;
1412 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1414 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1415 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1416 * save to drop the managed link completely.
1418 device_link_drop_managed(link);
1419 } else if (dev_is_best_effort(dev) &&
1420 link->flags & DL_FLAG_INFERRED &&
1421 link->status != DL_STATE_CONSUMER_PROBE &&
1422 !link->supplier->can_match) {
1424 * When dev_is_best_effort() is true, we ignore device
1425 * links to suppliers that don't have a driver. If the
1426 * consumer device still managed to probe, there's no
1427 * point in maintaining a device link in a weird state
1428 * (consumer probed before supplier). So delete it.
1430 device_link_drop_managed(link);
1432 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1433 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1437 * This needs to be done even for the deleted
1438 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1439 * device link that was preventing the supplier from getting a
1440 * sync_state() call.
1442 if (defer_sync_state_count)
1443 __device_links_supplier_defer_sync(supplier);
1445 __device_links_queue_sync_state(supplier, &sync_list);
1448 dev->links.status = DL_DEV_DRIVER_BOUND;
1450 device_links_write_unlock();
1452 device_links_flush_sync_list(&sync_list, dev);
1456 * __device_links_no_driver - Update links of a device without a driver.
1457 * @dev: Device without a drvier.
1459 * Delete all non-persistent links from this device to any suppliers.
1461 * Persistent links stay around, but their status is changed to "available",
1462 * unless they already are in the "supplier unbind in progress" state in which
1463 * case they need not be updated.
1465 * Links without the DL_FLAG_MANAGED flag set are ignored.
1467 static void __device_links_no_driver(struct device *dev)
1469 struct device_link *link, *ln;
1471 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1472 if (!(link->flags & DL_FLAG_MANAGED))
1475 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1476 device_link_drop_managed(link);
1480 if (link->status != DL_STATE_CONSUMER_PROBE &&
1481 link->status != DL_STATE_ACTIVE)
1484 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1485 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1487 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1488 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1492 dev->links.status = DL_DEV_NO_DRIVER;
1496 * device_links_no_driver - Update links after failing driver probe.
1497 * @dev: Device whose driver has just failed to probe.
1499 * Clean up leftover links to consumers for @dev and invoke
1500 * %__device_links_no_driver() to update links to suppliers for it as
1503 * Links without the DL_FLAG_MANAGED flag set are ignored.
1505 void device_links_no_driver(struct device *dev)
1507 struct device_link *link;
1509 device_links_write_lock();
1511 list_for_each_entry(link, &dev->links.consumers, s_node) {
1512 if (!(link->flags & DL_FLAG_MANAGED))
1516 * The probe has failed, so if the status of the link is
1517 * "consumer probe" or "active", it must have been added by
1518 * a probing consumer while this device was still probing.
1519 * Change its state to "dormant", as it represents a valid
1520 * relationship, but it is not functionally meaningful.
1522 if (link->status == DL_STATE_CONSUMER_PROBE ||
1523 link->status == DL_STATE_ACTIVE)
1524 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1527 __device_links_no_driver(dev);
1529 device_links_write_unlock();
1533 * device_links_driver_cleanup - Update links after driver removal.
1534 * @dev: Device whose driver has just gone away.
1536 * Update links to consumers for @dev by changing their status to "dormant" and
1537 * invoke %__device_links_no_driver() to update links to suppliers for it as
1540 * Links without the DL_FLAG_MANAGED flag set are ignored.
1542 void device_links_driver_cleanup(struct device *dev)
1544 struct device_link *link, *ln;
1546 device_links_write_lock();
1548 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1549 if (!(link->flags & DL_FLAG_MANAGED))
1552 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1553 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1556 * autoremove the links between this @dev and its consumer
1557 * devices that are not active, i.e. where the link state
1558 * has moved to DL_STATE_SUPPLIER_UNBIND.
1560 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1561 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1562 device_link_drop_managed(link);
1564 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1567 list_del_init(&dev->links.defer_sync);
1568 __device_links_no_driver(dev);
1570 device_links_write_unlock();
1574 * device_links_busy - Check if there are any busy links to consumers.
1575 * @dev: Device to check.
1577 * Check each consumer of the device and return 'true' if its link's status
1578 * is one of "consumer probe" or "active" (meaning that the given consumer is
1579 * probing right now or its driver is present). Otherwise, change the link
1580 * state to "supplier unbind" to prevent the consumer from being probed
1581 * successfully going forward.
1583 * Return 'false' if there are no probing or active consumers.
1585 * Links without the DL_FLAG_MANAGED flag set are ignored.
1587 bool device_links_busy(struct device *dev)
1589 struct device_link *link;
1592 device_links_write_lock();
1594 list_for_each_entry(link, &dev->links.consumers, s_node) {
1595 if (!(link->flags & DL_FLAG_MANAGED))
1598 if (link->status == DL_STATE_CONSUMER_PROBE
1599 || link->status == DL_STATE_ACTIVE) {
1603 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1606 dev->links.status = DL_DEV_UNBINDING;
1608 device_links_write_unlock();
1613 * device_links_unbind_consumers - Force unbind consumers of the given device.
1614 * @dev: Device to unbind the consumers of.
1616 * Walk the list of links to consumers for @dev and if any of them is in the
1617 * "consumer probe" state, wait for all device probes in progress to complete
1620 * If that's not the case, change the status of the link to "supplier unbind"
1621 * and check if the link was in the "active" state. If so, force the consumer
1622 * driver to unbind and start over (the consumer will not re-probe as we have
1623 * changed the state of the link already).
1625 * Links without the DL_FLAG_MANAGED flag set are ignored.
1627 void device_links_unbind_consumers(struct device *dev)
1629 struct device_link *link;
1632 device_links_write_lock();
1634 list_for_each_entry(link, &dev->links.consumers, s_node) {
1635 enum device_link_state status;
1637 if (!(link->flags & DL_FLAG_MANAGED) ||
1638 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1641 status = link->status;
1642 if (status == DL_STATE_CONSUMER_PROBE) {
1643 device_links_write_unlock();
1645 wait_for_device_probe();
1648 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1649 if (status == DL_STATE_ACTIVE) {
1650 struct device *consumer = link->consumer;
1652 get_device(consumer);
1654 device_links_write_unlock();
1656 device_release_driver_internal(consumer, NULL,
1658 put_device(consumer);
1663 device_links_write_unlock();
1667 * device_links_purge - Delete existing links to other devices.
1668 * @dev: Target device.
1670 static void device_links_purge(struct device *dev)
1672 struct device_link *link, *ln;
1674 if (dev->class == &devlink_class)
1678 * Delete all of the remaining links from this device to any other
1679 * devices (either consumers or suppliers).
1681 device_links_write_lock();
1683 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1684 WARN_ON(link->status == DL_STATE_ACTIVE);
1685 __device_link_del(&link->kref);
1688 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1689 WARN_ON(link->status != DL_STATE_DORMANT &&
1690 link->status != DL_STATE_NONE);
1691 __device_link_del(&link->kref);
1694 device_links_write_unlock();
1697 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1698 DL_FLAG_SYNC_STATE_ONLY)
1699 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1700 DL_FLAG_AUTOPROBE_CONSUMER)
1701 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1704 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1705 static int __init fw_devlink_setup(char *arg)
1710 if (strcmp(arg, "off") == 0) {
1711 fw_devlink_flags = 0;
1712 } else if (strcmp(arg, "permissive") == 0) {
1713 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1714 } else if (strcmp(arg, "on") == 0) {
1715 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1716 } else if (strcmp(arg, "rpm") == 0) {
1717 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1721 early_param("fw_devlink", fw_devlink_setup);
1723 static bool fw_devlink_strict;
1724 static int __init fw_devlink_strict_setup(char *arg)
1726 return kstrtobool(arg, &fw_devlink_strict);
1728 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1730 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1732 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1733 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1735 return fw_devlink_flags;
1738 static bool fw_devlink_is_permissive(void)
1740 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1743 bool fw_devlink_is_strict(void)
1745 return fw_devlink_strict && !fw_devlink_is_permissive();
1748 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1750 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1753 fwnode_call_int_op(fwnode, add_links);
1754 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1757 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1759 struct fwnode_handle *child = NULL;
1761 fw_devlink_parse_fwnode(fwnode);
1763 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1764 fw_devlink_parse_fwtree(child);
1767 static void fw_devlink_relax_link(struct device_link *link)
1769 if (!(link->flags & DL_FLAG_INFERRED))
1772 if (device_link_flag_is_sync_state_only(link->flags))
1775 pm_runtime_drop_link(link);
1776 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1777 dev_dbg(link->consumer, "Relaxing link with %s\n",
1778 dev_name(link->supplier));
1781 static int fw_devlink_no_driver(struct device *dev, void *data)
1783 struct device_link *link = to_devlink(dev);
1785 if (!link->supplier->can_match)
1786 fw_devlink_relax_link(link);
1791 void fw_devlink_drivers_done(void)
1793 fw_devlink_drv_reg_done = true;
1794 device_links_write_lock();
1795 class_for_each_device(&devlink_class, NULL, NULL,
1796 fw_devlink_no_driver);
1797 device_links_write_unlock();
1801 * wait_for_init_devices_probe - Try to probe any device needed for init
1803 * Some devices might need to be probed and bound successfully before the kernel
1804 * boot sequence can finish and move on to init/userspace. For example, a
1805 * network interface might need to be bound to be able to mount a NFS rootfs.
1807 * With fw_devlink=on by default, some of these devices might be blocked from
1808 * probing because they are waiting on a optional supplier that doesn't have a
1809 * driver. While fw_devlink will eventually identify such devices and unblock
1810 * the probing automatically, it might be too late by the time it unblocks the
1811 * probing of devices. For example, the IP4 autoconfig might timeout before
1812 * fw_devlink unblocks probing of the network interface.
1814 * This function is available to temporarily try and probe all devices that have
1815 * a driver even if some of their suppliers haven't been added or don't have
1818 * The drivers can then decide which of the suppliers are optional vs mandatory
1819 * and probe the device if possible. By the time this function returns, all such
1820 * "best effort" probes are guaranteed to be completed. If a device successfully
1821 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1822 * device where the supplier hasn't yet probed successfully because they have to
1823 * be optional dependencies.
1825 * Any devices that didn't successfully probe go back to being treated as if
1826 * this function was never called.
1828 * This also means that some devices that aren't needed for init and could have
1829 * waited for their optional supplier to probe (when the supplier's module is
1830 * loaded later on) would end up probing prematurely with limited functionality.
1831 * So call this function only when boot would fail without it.
1833 void __init wait_for_init_devices_probe(void)
1835 if (!fw_devlink_flags || fw_devlink_is_permissive())
1839 * Wait for all ongoing probes to finish so that the "best effort" is
1840 * only applied to devices that can't probe otherwise.
1842 wait_for_device_probe();
1844 pr_info("Trying to probe devices needed for running init ...\n");
1845 fw_devlink_best_effort = true;
1846 driver_deferred_probe_trigger();
1849 * Wait for all "best effort" probes to finish before going back to
1850 * normal enforcement.
1852 wait_for_device_probe();
1853 fw_devlink_best_effort = false;
1856 static void fw_devlink_unblock_consumers(struct device *dev)
1858 struct device_link *link;
1860 if (!fw_devlink_flags || fw_devlink_is_permissive())
1863 device_links_write_lock();
1864 list_for_each_entry(link, &dev->links.consumers, s_node)
1865 fw_devlink_relax_link(link);
1866 device_links_write_unlock();
1870 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1875 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1878 dev = get_dev_from_fwnode(fwnode);
1879 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1885 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1887 struct fwnode_handle *parent;
1889 fwnode_for_each_parent_node(fwnode, parent) {
1890 if (fwnode_init_without_drv(parent)) {
1891 fwnode_handle_put(parent);
1900 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1901 * @con: Potential consumer device.
1902 * @sup_handle: Potential supplier's fwnode.
1904 * Needs to be called with fwnode_lock and device link lock held.
1906 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1907 * depend on @con. This function can detect multiple cyles between @sup_handle
1908 * and @con. When such dependency cycles are found, convert all device links
1909 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1910 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1911 * converted into a device link in the future, they are created as
1912 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1913 * fw_devlink=permissive just between the devices in the cycle. We need to do
1914 * this because, at this point, fw_devlink can't tell which of these
1915 * dependencies is not a real dependency.
1917 * Return true if one or more cycles were found. Otherwise, return false.
1919 static bool __fw_devlink_relax_cycles(struct device *con,
1920 struct fwnode_handle *sup_handle)
1922 struct device *sup_dev = NULL, *par_dev = NULL;
1923 struct fwnode_link *link;
1924 struct device_link *dev_link;
1931 * We aren't trying to find all cycles. Just a cycle between con and
1934 if (sup_handle->flags & FWNODE_FLAG_VISITED)
1937 sup_handle->flags |= FWNODE_FLAG_VISITED;
1939 sup_dev = get_dev_from_fwnode(sup_handle);
1941 /* Termination condition. */
1942 if (sup_dev == con) {
1948 * If sup_dev is bound to a driver and @con hasn't started binding to a
1949 * driver, sup_dev can't be a consumer of @con. So, no need to check
1952 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
1953 con->links.status == DL_DEV_NO_DRIVER) {
1958 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1959 if (__fw_devlink_relax_cycles(con, link->supplier)) {
1960 __fwnode_link_cycle(link);
1966 * Give priority to device parent over fwnode parent to account for any
1967 * quirks in how fwnodes are converted to devices.
1970 par_dev = get_device(sup_dev->parent);
1972 par_dev = fwnode_get_next_parent_dev(sup_handle);
1974 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode))
1980 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
1982 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
1983 * such due to a cycle.
1985 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
1986 !(dev_link->flags & DL_FLAG_CYCLE))
1989 if (__fw_devlink_relax_cycles(con,
1990 dev_link->supplier->fwnode)) {
1991 fw_devlink_relax_link(dev_link);
1992 dev_link->flags |= DL_FLAG_CYCLE;
1998 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
1999 put_device(sup_dev);
2000 put_device(par_dev);
2005 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2006 * @con: consumer device for the device link
2007 * @sup_handle: fwnode handle of supplier
2008 * @link: fwnode link that's being converted to a device link
2010 * This function will try to create a device link between the consumer device
2011 * @con and the supplier device represented by @sup_handle.
2013 * The supplier has to be provided as a fwnode because incorrect cycles in
2014 * fwnode links can sometimes cause the supplier device to never be created.
2015 * This function detects such cases and returns an error if it cannot create a
2016 * device link from the consumer to a missing supplier.
2019 * 0 on successfully creating a device link
2020 * -EINVAL if the device link cannot be created as expected
2021 * -EAGAIN if the device link cannot be created right now, but it may be
2022 * possible to do that in the future
2024 static int fw_devlink_create_devlink(struct device *con,
2025 struct fwnode_handle *sup_handle,
2026 struct fwnode_link *link)
2028 struct device *sup_dev;
2032 if (con->fwnode == link->consumer)
2033 flags = fw_devlink_get_flags(link->flags);
2035 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2038 * In some cases, a device P might also be a supplier to its child node
2039 * C. However, this would defer the probe of C until the probe of P
2040 * completes successfully. This is perfectly fine in the device driver
2041 * model. device_add() doesn't guarantee probe completion of the device
2042 * by the time it returns.
2044 * However, there are a few drivers that assume C will finish probing
2045 * as soon as it's added and before P finishes probing. So, we provide
2046 * a flag to let fw_devlink know not to delay the probe of C until the
2047 * probe of P completes successfully.
2049 * When such a flag is set, we can't create device links where P is the
2050 * supplier of C as that would delay the probe of C.
2052 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2053 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2057 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2058 * So cycle detection isn't necessary and shouldn't be done.
2060 if (!(flags & DL_FLAG_SYNC_STATE_ONLY)) {
2061 device_links_write_lock();
2062 if (__fw_devlink_relax_cycles(con, sup_handle)) {
2063 __fwnode_link_cycle(link);
2064 flags = fw_devlink_get_flags(link->flags);
2065 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2068 device_links_write_unlock();
2071 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2072 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2074 sup_dev = get_dev_from_fwnode(sup_handle);
2078 * If it's one of those drivers that don't actually bind to
2079 * their device using driver core, then don't wait on this
2080 * supplier device indefinitely.
2082 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2083 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2085 "Not linking %pfwf - dev might never probe\n",
2091 if (!device_link_add(con, sup_dev, flags)) {
2092 dev_err(con, "Failed to create device link with %s\n",
2101 * Supplier or supplier's ancestor already initialized without a struct
2102 * device or being probed by a driver.
2104 if (fwnode_init_without_drv(sup_handle) ||
2105 fwnode_ancestor_init_without_drv(sup_handle)) {
2106 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2113 put_device(sup_dev);
2118 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2119 * @dev: Device that needs to be linked to its consumers
2121 * This function looks at all the consumer fwnodes of @dev and creates device
2122 * links between the consumer device and @dev (supplier).
2124 * If the consumer device has not been added yet, then this function creates a
2125 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2126 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2127 * sync_state() callback before the real consumer device gets to be added and
2130 * Once device links are created from the real consumer to @dev (supplier), the
2131 * fwnode links are deleted.
2133 static void __fw_devlink_link_to_consumers(struct device *dev)
2135 struct fwnode_handle *fwnode = dev->fwnode;
2136 struct fwnode_link *link, *tmp;
2138 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2139 struct device *con_dev;
2140 bool own_link = true;
2143 con_dev = get_dev_from_fwnode(link->consumer);
2145 * If consumer device is not available yet, make a "proxy"
2146 * SYNC_STATE_ONLY link from the consumer's parent device to
2147 * the supplier device. This is necessary to make sure the
2148 * supplier doesn't get a sync_state() callback before the real
2149 * consumer can create a device link to the supplier.
2151 * This proxy link step is needed to handle the case where the
2152 * consumer's parent device is added before the supplier.
2155 con_dev = fwnode_get_next_parent_dev(link->consumer);
2157 * However, if the consumer's parent device is also the
2158 * parent of the supplier, don't create a
2159 * consumer-supplier link from the parent to its child
2160 * device. Such a dependency is impossible.
2163 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2164 put_device(con_dev);
2174 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2175 put_device(con_dev);
2176 if (!own_link || ret == -EAGAIN)
2179 __fwnode_link_del(link);
2184 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2185 * @dev: The consumer device that needs to be linked to its suppliers
2186 * @fwnode: Root of the fwnode tree that is used to create device links
2188 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2189 * @fwnode and creates device links between @dev (consumer) and all the
2190 * supplier devices of the entire fwnode tree at @fwnode.
2192 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2193 * and the real suppliers of @dev. Once these device links are created, the
2194 * fwnode links are deleted.
2196 * In addition, it also looks at all the suppliers of the entire fwnode tree
2197 * because some of the child devices of @dev that have not been added yet
2198 * (because @dev hasn't probed) might already have their suppliers added to
2199 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2200 * @dev (consumer) and these suppliers to make sure they don't execute their
2201 * sync_state() callbacks before these child devices have a chance to create
2202 * their device links. The fwnode links that correspond to the child devices
2203 * aren't delete because they are needed later to create the device links
2204 * between the real consumer and supplier devices.
2206 static void __fw_devlink_link_to_suppliers(struct device *dev,
2207 struct fwnode_handle *fwnode)
2209 bool own_link = (dev->fwnode == fwnode);
2210 struct fwnode_link *link, *tmp;
2211 struct fwnode_handle *child = NULL;
2213 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2215 struct fwnode_handle *sup = link->supplier;
2217 ret = fw_devlink_create_devlink(dev, sup, link);
2218 if (!own_link || ret == -EAGAIN)
2221 __fwnode_link_del(link);
2225 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2226 * all the descendants. This proxy link step is needed to handle the
2227 * case where the supplier is added before the consumer's parent device
2230 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2231 __fw_devlink_link_to_suppliers(dev, child);
2234 static void fw_devlink_link_device(struct device *dev)
2236 struct fwnode_handle *fwnode = dev->fwnode;
2238 if (!fw_devlink_flags)
2241 fw_devlink_parse_fwtree(fwnode);
2243 mutex_lock(&fwnode_link_lock);
2244 __fw_devlink_link_to_consumers(dev);
2245 __fw_devlink_link_to_suppliers(dev, fwnode);
2246 mutex_unlock(&fwnode_link_lock);
2249 /* Device links support end. */
2251 int (*platform_notify)(struct device *dev) = NULL;
2252 int (*platform_notify_remove)(struct device *dev) = NULL;
2253 static struct kobject *dev_kobj;
2254 struct kobject *sysfs_dev_char_kobj;
2255 struct kobject *sysfs_dev_block_kobj;
2257 static DEFINE_MUTEX(device_hotplug_lock);
2259 void lock_device_hotplug(void)
2261 mutex_lock(&device_hotplug_lock);
2264 void unlock_device_hotplug(void)
2266 mutex_unlock(&device_hotplug_lock);
2269 int lock_device_hotplug_sysfs(void)
2271 if (mutex_trylock(&device_hotplug_lock))
2274 /* Avoid busy looping (5 ms of sleep should do). */
2276 return restart_syscall();
2280 static inline int device_is_not_partition(struct device *dev)
2282 return !(dev->type == &part_type);
2285 static inline int device_is_not_partition(struct device *dev)
2291 static void device_platform_notify(struct device *dev)
2293 acpi_device_notify(dev);
2295 software_node_notify(dev);
2297 if (platform_notify)
2298 platform_notify(dev);
2301 static void device_platform_notify_remove(struct device *dev)
2303 acpi_device_notify_remove(dev);
2305 software_node_notify_remove(dev);
2307 if (platform_notify_remove)
2308 platform_notify_remove(dev);
2312 * dev_driver_string - Return a device's driver name, if at all possible
2313 * @dev: struct device to get the name of
2315 * Will return the device's driver's name if it is bound to a device. If
2316 * the device is not bound to a driver, it will return the name of the bus
2317 * it is attached to. If it is not attached to a bus either, an empty
2318 * string will be returned.
2320 const char *dev_driver_string(const struct device *dev)
2322 struct device_driver *drv;
2324 /* dev->driver can change to NULL underneath us because of unbinding,
2325 * so be careful about accessing it. dev->bus and dev->class should
2326 * never change once they are set, so they don't need special care.
2328 drv = READ_ONCE(dev->driver);
2329 return drv ? drv->name : dev_bus_name(dev);
2331 EXPORT_SYMBOL(dev_driver_string);
2333 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2335 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2338 struct device_attribute *dev_attr = to_dev_attr(attr);
2339 struct device *dev = kobj_to_dev(kobj);
2343 ret = dev_attr->show(dev, dev_attr, buf);
2344 if (ret >= (ssize_t)PAGE_SIZE) {
2345 printk("dev_attr_show: %pS returned bad count\n",
2351 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2352 const char *buf, size_t count)
2354 struct device_attribute *dev_attr = to_dev_attr(attr);
2355 struct device *dev = kobj_to_dev(kobj);
2358 if (dev_attr->store)
2359 ret = dev_attr->store(dev, dev_attr, buf, count);
2363 static const struct sysfs_ops dev_sysfs_ops = {
2364 .show = dev_attr_show,
2365 .store = dev_attr_store,
2368 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2370 ssize_t device_store_ulong(struct device *dev,
2371 struct device_attribute *attr,
2372 const char *buf, size_t size)
2374 struct dev_ext_attribute *ea = to_ext_attr(attr);
2378 ret = kstrtoul(buf, 0, &new);
2381 *(unsigned long *)(ea->var) = new;
2382 /* Always return full write size even if we didn't consume all */
2385 EXPORT_SYMBOL_GPL(device_store_ulong);
2387 ssize_t device_show_ulong(struct device *dev,
2388 struct device_attribute *attr,
2391 struct dev_ext_attribute *ea = to_ext_attr(attr);
2392 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2394 EXPORT_SYMBOL_GPL(device_show_ulong);
2396 ssize_t device_store_int(struct device *dev,
2397 struct device_attribute *attr,
2398 const char *buf, size_t size)
2400 struct dev_ext_attribute *ea = to_ext_attr(attr);
2404 ret = kstrtol(buf, 0, &new);
2408 if (new > INT_MAX || new < INT_MIN)
2410 *(int *)(ea->var) = new;
2411 /* Always return full write size even if we didn't consume all */
2414 EXPORT_SYMBOL_GPL(device_store_int);
2416 ssize_t device_show_int(struct device *dev,
2417 struct device_attribute *attr,
2420 struct dev_ext_attribute *ea = to_ext_attr(attr);
2422 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2424 EXPORT_SYMBOL_GPL(device_show_int);
2426 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2427 const char *buf, size_t size)
2429 struct dev_ext_attribute *ea = to_ext_attr(attr);
2431 if (kstrtobool(buf, ea->var) < 0)
2436 EXPORT_SYMBOL_GPL(device_store_bool);
2438 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2441 struct dev_ext_attribute *ea = to_ext_attr(attr);
2443 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2445 EXPORT_SYMBOL_GPL(device_show_bool);
2448 * device_release - free device structure.
2449 * @kobj: device's kobject.
2451 * This is called once the reference count for the object
2452 * reaches 0. We forward the call to the device's release
2453 * method, which should handle actually freeing the structure.
2455 static void device_release(struct kobject *kobj)
2457 struct device *dev = kobj_to_dev(kobj);
2458 struct device_private *p = dev->p;
2461 * Some platform devices are driven without driver attached
2462 * and managed resources may have been acquired. Make sure
2463 * all resources are released.
2465 * Drivers still can add resources into device after device
2466 * is deleted but alive, so release devres here to avoid
2467 * possible memory leak.
2469 devres_release_all(dev);
2471 kfree(dev->dma_range_map);
2475 else if (dev->type && dev->type->release)
2476 dev->type->release(dev);
2477 else if (dev->class && dev->class->dev_release)
2478 dev->class->dev_release(dev);
2480 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2485 static const void *device_namespace(const struct kobject *kobj)
2487 const struct device *dev = kobj_to_dev(kobj);
2488 const void *ns = NULL;
2490 if (dev->class && dev->class->ns_type)
2491 ns = dev->class->namespace(dev);
2496 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2498 const struct device *dev = kobj_to_dev(kobj);
2500 if (dev->class && dev->class->get_ownership)
2501 dev->class->get_ownership(dev, uid, gid);
2504 static const struct kobj_type device_ktype = {
2505 .release = device_release,
2506 .sysfs_ops = &dev_sysfs_ops,
2507 .namespace = device_namespace,
2508 .get_ownership = device_get_ownership,
2512 static int dev_uevent_filter(const struct kobject *kobj)
2514 const struct kobj_type *ktype = get_ktype(kobj);
2516 if (ktype == &device_ktype) {
2517 const struct device *dev = kobj_to_dev(kobj);
2526 static const char *dev_uevent_name(const struct kobject *kobj)
2528 const struct device *dev = kobj_to_dev(kobj);
2531 return dev->bus->name;
2533 return dev->class->name;
2537 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2539 const struct device *dev = kobj_to_dev(kobj);
2542 /* add device node properties if present */
2543 if (MAJOR(dev->devt)) {
2547 kuid_t uid = GLOBAL_ROOT_UID;
2548 kgid_t gid = GLOBAL_ROOT_GID;
2550 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2551 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2552 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2554 add_uevent_var(env, "DEVNAME=%s", name);
2556 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2557 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2558 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2559 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2560 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2565 if (dev->type && dev->type->name)
2566 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2569 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2571 /* Add common DT information about the device */
2572 of_device_uevent(dev, env);
2574 /* have the bus specific function add its stuff */
2575 if (dev->bus && dev->bus->uevent) {
2576 retval = dev->bus->uevent(dev, env);
2578 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2579 dev_name(dev), __func__, retval);
2582 /* have the class specific function add its stuff */
2583 if (dev->class && dev->class->dev_uevent) {
2584 retval = dev->class->dev_uevent(dev, env);
2586 pr_debug("device: '%s': %s: class uevent() "
2587 "returned %d\n", dev_name(dev),
2591 /* have the device type specific function add its stuff */
2592 if (dev->type && dev->type->uevent) {
2593 retval = dev->type->uevent(dev, env);
2595 pr_debug("device: '%s': %s: dev_type uevent() "
2596 "returned %d\n", dev_name(dev),
2603 static const struct kset_uevent_ops device_uevent_ops = {
2604 .filter = dev_uevent_filter,
2605 .name = dev_uevent_name,
2606 .uevent = dev_uevent,
2609 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2612 struct kobject *top_kobj;
2614 struct kobj_uevent_env *env = NULL;
2619 /* search the kset, the device belongs to */
2620 top_kobj = &dev->kobj;
2621 while (!top_kobj->kset && top_kobj->parent)
2622 top_kobj = top_kobj->parent;
2623 if (!top_kobj->kset)
2626 kset = top_kobj->kset;
2627 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2630 /* respect filter */
2631 if (kset->uevent_ops && kset->uevent_ops->filter)
2632 if (!kset->uevent_ops->filter(&dev->kobj))
2635 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2639 /* let the kset specific function add its keys */
2640 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2644 /* copy keys to file */
2645 for (i = 0; i < env->envp_idx; i++)
2646 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2652 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2653 const char *buf, size_t count)
2657 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2660 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2666 static DEVICE_ATTR_RW(uevent);
2668 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2674 val = !dev->offline;
2676 return sysfs_emit(buf, "%u\n", val);
2679 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2680 const char *buf, size_t count)
2685 ret = kstrtobool(buf, &val);
2689 ret = lock_device_hotplug_sysfs();
2693 ret = val ? device_online(dev) : device_offline(dev);
2694 unlock_device_hotplug();
2695 return ret < 0 ? ret : count;
2697 static DEVICE_ATTR_RW(online);
2699 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2704 switch (dev->removable) {
2705 case DEVICE_REMOVABLE:
2714 return sysfs_emit(buf, "%s\n", loc);
2716 static DEVICE_ATTR_RO(removable);
2718 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2720 return sysfs_create_groups(&dev->kobj, groups);
2722 EXPORT_SYMBOL_GPL(device_add_groups);
2724 void device_remove_groups(struct device *dev,
2725 const struct attribute_group **groups)
2727 sysfs_remove_groups(&dev->kobj, groups);
2729 EXPORT_SYMBOL_GPL(device_remove_groups);
2731 union device_attr_group_devres {
2732 const struct attribute_group *group;
2733 const struct attribute_group **groups;
2736 static void devm_attr_group_remove(struct device *dev, void *res)
2738 union device_attr_group_devres *devres = res;
2739 const struct attribute_group *group = devres->group;
2741 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2742 sysfs_remove_group(&dev->kobj, group);
2745 static void devm_attr_groups_remove(struct device *dev, void *res)
2747 union device_attr_group_devres *devres = res;
2748 const struct attribute_group **groups = devres->groups;
2750 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2751 sysfs_remove_groups(&dev->kobj, groups);
2755 * devm_device_add_group - given a device, create a managed attribute group
2756 * @dev: The device to create the group for
2757 * @grp: The attribute group to create
2759 * This function creates a group for the first time. It will explicitly
2760 * warn and error if any of the attribute files being created already exist.
2762 * Returns 0 on success or error code on failure.
2764 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2766 union device_attr_group_devres *devres;
2769 devres = devres_alloc(devm_attr_group_remove,
2770 sizeof(*devres), GFP_KERNEL);
2774 error = sysfs_create_group(&dev->kobj, grp);
2776 devres_free(devres);
2780 devres->group = grp;
2781 devres_add(dev, devres);
2784 EXPORT_SYMBOL_GPL(devm_device_add_group);
2787 * devm_device_add_groups - create a bunch of managed attribute groups
2788 * @dev: The device to create the group for
2789 * @groups: The attribute groups to create, NULL terminated
2791 * This function creates a bunch of managed attribute groups. If an error
2792 * occurs when creating a group, all previously created groups will be
2793 * removed, unwinding everything back to the original state when this
2794 * function was called. It will explicitly warn and error if any of the
2795 * attribute files being created already exist.
2797 * Returns 0 on success or error code from sysfs_create_group on failure.
2799 int devm_device_add_groups(struct device *dev,
2800 const struct attribute_group **groups)
2802 union device_attr_group_devres *devres;
2805 devres = devres_alloc(devm_attr_groups_remove,
2806 sizeof(*devres), GFP_KERNEL);
2810 error = sysfs_create_groups(&dev->kobj, groups);
2812 devres_free(devres);
2816 devres->groups = groups;
2817 devres_add(dev, devres);
2820 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2822 static int device_add_attrs(struct device *dev)
2824 struct class *class = dev->class;
2825 const struct device_type *type = dev->type;
2829 error = device_add_groups(dev, class->dev_groups);
2835 error = device_add_groups(dev, type->groups);
2837 goto err_remove_class_groups;
2840 error = device_add_groups(dev, dev->groups);
2842 goto err_remove_type_groups;
2844 if (device_supports_offline(dev) && !dev->offline_disabled) {
2845 error = device_create_file(dev, &dev_attr_online);
2847 goto err_remove_dev_groups;
2850 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2851 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2853 goto err_remove_dev_online;
2856 if (dev_removable_is_valid(dev)) {
2857 error = device_create_file(dev, &dev_attr_removable);
2859 goto err_remove_dev_waiting_for_supplier;
2862 if (dev_add_physical_location(dev)) {
2863 error = device_add_group(dev,
2864 &dev_attr_physical_location_group);
2866 goto err_remove_dev_removable;
2871 err_remove_dev_removable:
2872 device_remove_file(dev, &dev_attr_removable);
2873 err_remove_dev_waiting_for_supplier:
2874 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2875 err_remove_dev_online:
2876 device_remove_file(dev, &dev_attr_online);
2877 err_remove_dev_groups:
2878 device_remove_groups(dev, dev->groups);
2879 err_remove_type_groups:
2881 device_remove_groups(dev, type->groups);
2882 err_remove_class_groups:
2884 device_remove_groups(dev, class->dev_groups);
2889 static void device_remove_attrs(struct device *dev)
2891 struct class *class = dev->class;
2892 const struct device_type *type = dev->type;
2894 if (dev->physical_location) {
2895 device_remove_group(dev, &dev_attr_physical_location_group);
2896 kfree(dev->physical_location);
2899 device_remove_file(dev, &dev_attr_removable);
2900 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2901 device_remove_file(dev, &dev_attr_online);
2902 device_remove_groups(dev, dev->groups);
2905 device_remove_groups(dev, type->groups);
2908 device_remove_groups(dev, class->dev_groups);
2911 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2914 return print_dev_t(buf, dev->devt);
2916 static DEVICE_ATTR_RO(dev);
2919 struct kset *devices_kset;
2922 * devices_kset_move_before - Move device in the devices_kset's list.
2923 * @deva: Device to move.
2924 * @devb: Device @deva should come before.
2926 static void devices_kset_move_before(struct device *deva, struct device *devb)
2930 pr_debug("devices_kset: Moving %s before %s\n",
2931 dev_name(deva), dev_name(devb));
2932 spin_lock(&devices_kset->list_lock);
2933 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2934 spin_unlock(&devices_kset->list_lock);
2938 * devices_kset_move_after - Move device in the devices_kset's list.
2939 * @deva: Device to move
2940 * @devb: Device @deva should come after.
2942 static void devices_kset_move_after(struct device *deva, struct device *devb)
2946 pr_debug("devices_kset: Moving %s after %s\n",
2947 dev_name(deva), dev_name(devb));
2948 spin_lock(&devices_kset->list_lock);
2949 list_move(&deva->kobj.entry, &devb->kobj.entry);
2950 spin_unlock(&devices_kset->list_lock);
2954 * devices_kset_move_last - move the device to the end of devices_kset's list.
2955 * @dev: device to move
2957 void devices_kset_move_last(struct device *dev)
2961 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2962 spin_lock(&devices_kset->list_lock);
2963 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2964 spin_unlock(&devices_kset->list_lock);
2968 * device_create_file - create sysfs attribute file for device.
2970 * @attr: device attribute descriptor.
2972 int device_create_file(struct device *dev,
2973 const struct device_attribute *attr)
2978 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2979 "Attribute %s: write permission without 'store'\n",
2981 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2982 "Attribute %s: read permission without 'show'\n",
2984 error = sysfs_create_file(&dev->kobj, &attr->attr);
2989 EXPORT_SYMBOL_GPL(device_create_file);
2992 * device_remove_file - remove sysfs attribute file.
2994 * @attr: device attribute descriptor.
2996 void device_remove_file(struct device *dev,
2997 const struct device_attribute *attr)
3000 sysfs_remove_file(&dev->kobj, &attr->attr);
3002 EXPORT_SYMBOL_GPL(device_remove_file);
3005 * device_remove_file_self - remove sysfs attribute file from its own method.
3007 * @attr: device attribute descriptor.
3009 * See kernfs_remove_self() for details.
3011 bool device_remove_file_self(struct device *dev,
3012 const struct device_attribute *attr)
3015 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3019 EXPORT_SYMBOL_GPL(device_remove_file_self);
3022 * device_create_bin_file - create sysfs binary attribute file for device.
3024 * @attr: device binary attribute descriptor.
3026 int device_create_bin_file(struct device *dev,
3027 const struct bin_attribute *attr)
3029 int error = -EINVAL;
3031 error = sysfs_create_bin_file(&dev->kobj, attr);
3034 EXPORT_SYMBOL_GPL(device_create_bin_file);
3037 * device_remove_bin_file - remove sysfs binary attribute file
3039 * @attr: device binary attribute descriptor.
3041 void device_remove_bin_file(struct device *dev,
3042 const struct bin_attribute *attr)
3045 sysfs_remove_bin_file(&dev->kobj, attr);
3047 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3049 static void klist_children_get(struct klist_node *n)
3051 struct device_private *p = to_device_private_parent(n);
3052 struct device *dev = p->device;
3057 static void klist_children_put(struct klist_node *n)
3059 struct device_private *p = to_device_private_parent(n);
3060 struct device *dev = p->device;
3066 * device_initialize - init device structure.
3069 * This prepares the device for use by other layers by initializing
3071 * It is the first half of device_register(), if called by
3072 * that function, though it can also be called separately, so one
3073 * may use @dev's fields. In particular, get_device()/put_device()
3074 * may be used for reference counting of @dev after calling this
3077 * All fields in @dev must be initialized by the caller to 0, except
3078 * for those explicitly set to some other value. The simplest
3079 * approach is to use kzalloc() to allocate the structure containing
3082 * NOTE: Use put_device() to give up your reference instead of freeing
3083 * @dev directly once you have called this function.
3085 void device_initialize(struct device *dev)
3087 dev->kobj.kset = devices_kset;
3088 kobject_init(&dev->kobj, &device_ktype);
3089 INIT_LIST_HEAD(&dev->dma_pools);
3090 mutex_init(&dev->mutex);
3091 lockdep_set_novalidate_class(&dev->mutex);
3092 spin_lock_init(&dev->devres_lock);
3093 INIT_LIST_HEAD(&dev->devres_head);
3094 device_pm_init(dev);
3095 set_dev_node(dev, NUMA_NO_NODE);
3096 INIT_LIST_HEAD(&dev->links.consumers);
3097 INIT_LIST_HEAD(&dev->links.suppliers);
3098 INIT_LIST_HEAD(&dev->links.defer_sync);
3099 dev->links.status = DL_DEV_NO_DRIVER;
3100 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3101 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3102 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3103 dev->dma_coherent = dma_default_coherent;
3105 #ifdef CONFIG_SWIOTLB
3106 dev->dma_io_tlb_mem = &io_tlb_default_mem;
3109 EXPORT_SYMBOL_GPL(device_initialize);
3111 struct kobject *virtual_device_parent(struct device *dev)
3113 static struct kobject *virtual_dir = NULL;
3116 virtual_dir = kobject_create_and_add("virtual",
3117 &devices_kset->kobj);
3123 struct kobject kobj;
3124 struct class *class;
3127 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3129 static void class_dir_release(struct kobject *kobj)
3131 struct class_dir *dir = to_class_dir(kobj);
3136 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3138 const struct class_dir *dir = to_class_dir(kobj);
3139 return dir->class->ns_type;
3142 static const struct kobj_type class_dir_ktype = {
3143 .release = class_dir_release,
3144 .sysfs_ops = &kobj_sysfs_ops,
3145 .child_ns_type = class_dir_child_ns_type
3148 static struct kobject *
3149 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
3151 struct class_dir *dir;
3154 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3156 return ERR_PTR(-ENOMEM);
3159 kobject_init(&dir->kobj, &class_dir_ktype);
3161 dir->kobj.kset = &class->p->glue_dirs;
3163 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
3165 kobject_put(&dir->kobj);
3166 return ERR_PTR(retval);
3171 static DEFINE_MUTEX(gdp_mutex);
3173 static struct kobject *get_device_parent(struct device *dev,
3174 struct device *parent)
3176 struct kobject *kobj = NULL;
3179 struct kobject *parent_kobj;
3183 /* block disks show up in /sys/block */
3184 if (sysfs_deprecated && dev->class == &block_class) {
3185 if (parent && parent->class == &block_class)
3186 return &parent->kobj;
3187 return &block_class.p->subsys.kobj;
3192 * If we have no parent, we live in "virtual".
3193 * Class-devices with a non class-device as parent, live
3194 * in a "glue" directory to prevent namespace collisions.
3197 parent_kobj = virtual_device_parent(dev);
3198 else if (parent->class && !dev->class->ns_type)
3199 return &parent->kobj;
3201 parent_kobj = &parent->kobj;
3203 mutex_lock(&gdp_mutex);
3205 /* find our class-directory at the parent and reference it */
3206 spin_lock(&dev->class->p->glue_dirs.list_lock);
3207 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3208 if (k->parent == parent_kobj) {
3209 kobj = kobject_get(k);
3212 spin_unlock(&dev->class->p->glue_dirs.list_lock);
3214 mutex_unlock(&gdp_mutex);
3218 /* or create a new class-directory at the parent device */
3219 k = class_dir_create_and_add(dev->class, parent_kobj);
3220 /* do not emit an uevent for this simple "glue" directory */
3221 mutex_unlock(&gdp_mutex);
3225 /* subsystems can specify a default root directory for their devices */
3226 if (!parent && dev->bus) {
3227 struct device *dev_root = bus_get_dev_root(dev->bus);
3230 kobj = &dev_root->kobj;
3231 put_device(dev_root);
3237 return &parent->kobj;
3241 static inline bool live_in_glue_dir(struct kobject *kobj,
3244 if (!kobj || !dev->class ||
3245 kobj->kset != &dev->class->p->glue_dirs)
3250 static inline struct kobject *get_glue_dir(struct device *dev)
3252 return dev->kobj.parent;
3256 * kobject_has_children - Returns whether a kobject has children.
3257 * @kobj: the object to test
3259 * This will return whether a kobject has other kobjects as children.
3261 * It does NOT account for the presence of attribute files, only sub
3262 * directories. It also assumes there is no concurrent addition or
3263 * removal of such children, and thus relies on external locking.
3265 static inline bool kobject_has_children(struct kobject *kobj)
3267 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3269 return kobj->sd && kobj->sd->dir.subdirs;
3273 * make sure cleaning up dir as the last step, we need to make
3274 * sure .release handler of kobject is run with holding the
3277 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3281 /* see if we live in a "glue" directory */
3282 if (!live_in_glue_dir(glue_dir, dev))
3285 mutex_lock(&gdp_mutex);
3287 * There is a race condition between removing glue directory
3288 * and adding a new device under the glue directory.
3293 * get_device_parent()
3294 * class_dir_create_and_add()
3295 * kobject_add_internal()
3296 * create_dir() // create glue_dir
3299 * get_device_parent()
3300 * kobject_get() // get glue_dir
3303 * cleanup_glue_dir()
3304 * kobject_del(glue_dir)
3307 * kobject_add_internal()
3308 * create_dir() // in glue_dir
3309 * sysfs_create_dir_ns()
3310 * kernfs_create_dir_ns(sd)
3312 * sysfs_remove_dir() // glue_dir->sd=NULL
3313 * sysfs_put() // free glue_dir->sd
3316 * kernfs_new_node(sd)
3317 * kernfs_get(glue_dir)
3321 * Before CPU1 remove last child device under glue dir, if CPU2 add
3322 * a new device under glue dir, the glue_dir kobject reference count
3323 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3324 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3325 * and sysfs_put(). This result in glue_dir->sd is freed.
3327 * Then the CPU2 will see a stale "empty" but still potentially used
3328 * glue dir around in kernfs_new_node().
3330 * In order to avoid this happening, we also should make sure that
3331 * kernfs_node for glue_dir is released in CPU1 only when refcount
3332 * for glue_dir kobj is 1.
3334 ref = kref_read(&glue_dir->kref);
3335 if (!kobject_has_children(glue_dir) && !--ref)
3336 kobject_del(glue_dir);
3337 kobject_put(glue_dir);
3338 mutex_unlock(&gdp_mutex);
3341 static int device_add_class_symlinks(struct device *dev)
3343 struct device_node *of_node = dev_of_node(dev);
3347 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3349 dev_warn(dev, "Error %d creating of_node link\n",error);
3350 /* An error here doesn't warrant bringing down the device */
3356 error = sysfs_create_link(&dev->kobj,
3357 &dev->class->p->subsys.kobj,
3362 if (dev->parent && device_is_not_partition(dev)) {
3363 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3370 /* /sys/block has directories and does not need symlinks */
3371 if (sysfs_deprecated && dev->class == &block_class)
3375 /* link in the class directory pointing to the device */
3376 error = sysfs_create_link(&dev->class->p->subsys.kobj,
3377 &dev->kobj, dev_name(dev));
3384 sysfs_remove_link(&dev->kobj, "device");
3387 sysfs_remove_link(&dev->kobj, "subsystem");
3389 sysfs_remove_link(&dev->kobj, "of_node");
3393 static void device_remove_class_symlinks(struct device *dev)
3395 if (dev_of_node(dev))
3396 sysfs_remove_link(&dev->kobj, "of_node");
3401 if (dev->parent && device_is_not_partition(dev))
3402 sysfs_remove_link(&dev->kobj, "device");
3403 sysfs_remove_link(&dev->kobj, "subsystem");
3405 if (sysfs_deprecated && dev->class == &block_class)
3408 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3412 * dev_set_name - set a device name
3414 * @fmt: format string for the device's name
3416 int dev_set_name(struct device *dev, const char *fmt, ...)
3421 va_start(vargs, fmt);
3422 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3426 EXPORT_SYMBOL_GPL(dev_set_name);
3429 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3432 * By default we select char/ for new entries. Setting class->dev_obj
3433 * to NULL prevents an entry from being created. class->dev_kobj must
3434 * be set (or cleared) before any devices are registered to the class
3435 * otherwise device_create_sys_dev_entry() and
3436 * device_remove_sys_dev_entry() will disagree about the presence of
3439 static struct kobject *device_to_dev_kobj(struct device *dev)
3441 struct kobject *kobj;
3444 kobj = dev->class->dev_kobj;
3446 kobj = sysfs_dev_char_kobj;
3451 static int device_create_sys_dev_entry(struct device *dev)
3453 struct kobject *kobj = device_to_dev_kobj(dev);
3458 format_dev_t(devt_str, dev->devt);
3459 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3465 static void device_remove_sys_dev_entry(struct device *dev)
3467 struct kobject *kobj = device_to_dev_kobj(dev);
3471 format_dev_t(devt_str, dev->devt);
3472 sysfs_remove_link(kobj, devt_str);
3476 static int device_private_init(struct device *dev)
3478 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3481 dev->p->device = dev;
3482 klist_init(&dev->p->klist_children, klist_children_get,
3483 klist_children_put);
3484 INIT_LIST_HEAD(&dev->p->deferred_probe);
3489 * device_add - add device to device hierarchy.
3492 * This is part 2 of device_register(), though may be called
3493 * separately _iff_ device_initialize() has been called separately.
3495 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3496 * to the global and sibling lists for the device, then
3497 * adds it to the other relevant subsystems of the driver model.
3499 * Do not call this routine or device_register() more than once for
3500 * any device structure. The driver model core is not designed to work
3501 * with devices that get unregistered and then spring back to life.
3502 * (Among other things, it's very hard to guarantee that all references
3503 * to the previous incarnation of @dev have been dropped.) Allocate
3504 * and register a fresh new struct device instead.
3506 * NOTE: _Never_ directly free @dev after calling this function, even
3507 * if it returned an error! Always use put_device() to give up your
3508 * reference instead.
3510 * Rule of thumb is: if device_add() succeeds, you should call
3511 * device_del() when you want to get rid of it. If device_add() has
3512 * *not* succeeded, use *only* put_device() to drop the reference
3515 int device_add(struct device *dev)
3517 struct device *parent;
3518 struct kobject *kobj;
3519 struct class_interface *class_intf;
3520 int error = -EINVAL;
3521 struct kobject *glue_dir = NULL;
3523 dev = get_device(dev);
3528 error = device_private_init(dev);
3534 * for statically allocated devices, which should all be converted
3535 * some day, we need to initialize the name. We prevent reading back
3536 * the name, and force the use of dev_name()
3538 if (dev->init_name) {
3539 dev_set_name(dev, "%s", dev->init_name);
3540 dev->init_name = NULL;
3543 /* subsystems can specify simple device enumeration */
3544 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3545 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3547 if (!dev_name(dev)) {
3552 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3554 parent = get_device(dev->parent);
3555 kobj = get_device_parent(dev, parent);
3557 error = PTR_ERR(kobj);
3561 dev->kobj.parent = kobj;
3563 /* use parent numa_node */
3564 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3565 set_dev_node(dev, dev_to_node(parent));
3567 /* first, register with generic layer. */
3568 /* we require the name to be set before, and pass NULL */
3569 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3575 /* notify platform of device entry */
3576 device_platform_notify(dev);
3578 error = device_create_file(dev, &dev_attr_uevent);
3582 error = device_add_class_symlinks(dev);
3585 error = device_add_attrs(dev);
3588 error = bus_add_device(dev);
3591 error = dpm_sysfs_add(dev);
3596 if (MAJOR(dev->devt)) {
3597 error = device_create_file(dev, &dev_attr_dev);
3601 error = device_create_sys_dev_entry(dev);
3605 devtmpfs_create_node(dev);
3608 /* Notify clients of device addition. This call must come
3609 * after dpm_sysfs_add() and before kobject_uevent().
3611 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3612 kobject_uevent(&dev->kobj, KOBJ_ADD);
3615 * Check if any of the other devices (consumers) have been waiting for
3616 * this device (supplier) to be added so that they can create a device
3619 * This needs to happen after device_pm_add() because device_link_add()
3620 * requires the supplier be registered before it's called.
3622 * But this also needs to happen before bus_probe_device() to make sure
3623 * waiting consumers can link to it before the driver is bound to the
3624 * device and the driver sync_state callback is called for this device.
3626 if (dev->fwnode && !dev->fwnode->dev) {
3627 dev->fwnode->dev = dev;
3628 fw_devlink_link_device(dev);
3631 bus_probe_device(dev);
3634 * If all driver registration is done and a newly added device doesn't
3635 * match with any driver, don't block its consumers from probing in
3636 * case the consumer device is able to operate without this supplier.
3638 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3639 fw_devlink_unblock_consumers(dev);
3642 klist_add_tail(&dev->p->knode_parent,
3643 &parent->p->klist_children);
3646 mutex_lock(&dev->class->p->mutex);
3647 /* tie the class to the device */
3648 klist_add_tail(&dev->p->knode_class,
3649 &dev->class->p->klist_devices);
3651 /* notify any interfaces that the device is here */
3652 list_for_each_entry(class_intf,
3653 &dev->class->p->interfaces, node)
3654 if (class_intf->add_dev)
3655 class_intf->add_dev(dev, class_intf);
3656 mutex_unlock(&dev->class->p->mutex);
3662 if (MAJOR(dev->devt))
3663 device_remove_file(dev, &dev_attr_dev);
3665 device_pm_remove(dev);
3666 dpm_sysfs_remove(dev);
3669 bus_remove_device(dev);
3671 device_remove_attrs(dev);
3673 device_remove_class_symlinks(dev);
3675 device_remove_file(dev, &dev_attr_uevent);
3677 device_platform_notify_remove(dev);
3678 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3679 glue_dir = get_glue_dir(dev);
3680 kobject_del(&dev->kobj);
3682 cleanup_glue_dir(dev, glue_dir);
3690 EXPORT_SYMBOL_GPL(device_add);
3693 * device_register - register a device with the system.
3694 * @dev: pointer to the device structure
3696 * This happens in two clean steps - initialize the device
3697 * and add it to the system. The two steps can be called
3698 * separately, but this is the easiest and most common.
3699 * I.e. you should only call the two helpers separately if
3700 * have a clearly defined need to use and refcount the device
3701 * before it is added to the hierarchy.
3703 * For more information, see the kerneldoc for device_initialize()
3706 * NOTE: _Never_ directly free @dev after calling this function, even
3707 * if it returned an error! Always use put_device() to give up the
3708 * reference initialized in this function instead.
3710 int device_register(struct device *dev)
3712 device_initialize(dev);
3713 return device_add(dev);
3715 EXPORT_SYMBOL_GPL(device_register);
3718 * get_device - increment reference count for device.
3721 * This simply forwards the call to kobject_get(), though
3722 * we do take care to provide for the case that we get a NULL
3723 * pointer passed in.
3725 struct device *get_device(struct device *dev)
3727 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3729 EXPORT_SYMBOL_GPL(get_device);
3732 * put_device - decrement reference count.
3733 * @dev: device in question.
3735 void put_device(struct device *dev)
3737 /* might_sleep(); */
3739 kobject_put(&dev->kobj);
3741 EXPORT_SYMBOL_GPL(put_device);
3743 bool kill_device(struct device *dev)
3746 * Require the device lock and set the "dead" flag to guarantee that
3747 * the update behavior is consistent with the other bitfields near
3748 * it and that we cannot have an asynchronous probe routine trying
3749 * to run while we are tearing out the bus/class/sysfs from
3750 * underneath the device.
3752 device_lock_assert(dev);
3756 dev->p->dead = true;
3759 EXPORT_SYMBOL_GPL(kill_device);
3762 * device_del - delete device from system.
3765 * This is the first part of the device unregistration
3766 * sequence. This removes the device from the lists we control
3767 * from here, has it removed from the other driver model
3768 * subsystems it was added to in device_add(), and removes it
3769 * from the kobject hierarchy.
3771 * NOTE: this should be called manually _iff_ device_add() was
3772 * also called manually.
3774 void device_del(struct device *dev)
3776 struct device *parent = dev->parent;
3777 struct kobject *glue_dir = NULL;
3778 struct class_interface *class_intf;
3779 unsigned int noio_flag;
3785 if (dev->fwnode && dev->fwnode->dev == dev)
3786 dev->fwnode->dev = NULL;
3788 /* Notify clients of device removal. This call must come
3789 * before dpm_sysfs_remove().
3791 noio_flag = memalloc_noio_save();
3792 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3794 dpm_sysfs_remove(dev);
3796 klist_del(&dev->p->knode_parent);
3797 if (MAJOR(dev->devt)) {
3798 devtmpfs_delete_node(dev);
3799 device_remove_sys_dev_entry(dev);
3800 device_remove_file(dev, &dev_attr_dev);
3803 device_remove_class_symlinks(dev);
3805 mutex_lock(&dev->class->p->mutex);
3806 /* notify any interfaces that the device is now gone */
3807 list_for_each_entry(class_intf,
3808 &dev->class->p->interfaces, node)
3809 if (class_intf->remove_dev)
3810 class_intf->remove_dev(dev, class_intf);
3811 /* remove the device from the class list */
3812 klist_del(&dev->p->knode_class);
3813 mutex_unlock(&dev->class->p->mutex);
3815 device_remove_file(dev, &dev_attr_uevent);
3816 device_remove_attrs(dev);
3817 bus_remove_device(dev);
3818 device_pm_remove(dev);
3819 driver_deferred_probe_del(dev);
3820 device_platform_notify_remove(dev);
3821 device_links_purge(dev);
3823 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3824 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3825 glue_dir = get_glue_dir(dev);
3826 kobject_del(&dev->kobj);
3827 cleanup_glue_dir(dev, glue_dir);
3828 memalloc_noio_restore(noio_flag);
3831 EXPORT_SYMBOL_GPL(device_del);
3834 * device_unregister - unregister device from system.
3835 * @dev: device going away.
3837 * We do this in two parts, like we do device_register(). First,
3838 * we remove it from all the subsystems with device_del(), then
3839 * we decrement the reference count via put_device(). If that
3840 * is the final reference count, the device will be cleaned up
3841 * via device_release() above. Otherwise, the structure will
3842 * stick around until the final reference to the device is dropped.
3844 void device_unregister(struct device *dev)
3846 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3850 EXPORT_SYMBOL_GPL(device_unregister);
3852 static struct device *prev_device(struct klist_iter *i)
3854 struct klist_node *n = klist_prev(i);
3855 struct device *dev = NULL;
3856 struct device_private *p;
3859 p = to_device_private_parent(n);
3865 static struct device *next_device(struct klist_iter *i)
3867 struct klist_node *n = klist_next(i);
3868 struct device *dev = NULL;
3869 struct device_private *p;
3872 p = to_device_private_parent(n);
3879 * device_get_devnode - path of device node file
3881 * @mode: returned file access mode
3882 * @uid: returned file owner
3883 * @gid: returned file group
3884 * @tmp: possibly allocated string
3886 * Return the relative path of a possible device node.
3887 * Non-default names may need to allocate a memory to compose
3888 * a name. This memory is returned in tmp and needs to be
3889 * freed by the caller.
3891 const char *device_get_devnode(const struct device *dev,
3892 umode_t *mode, kuid_t *uid, kgid_t *gid,
3899 /* the device type may provide a specific name */
3900 if (dev->type && dev->type->devnode)
3901 *tmp = dev->type->devnode(dev, mode, uid, gid);
3905 /* the class may provide a specific name */
3906 if (dev->class && dev->class->devnode)
3907 *tmp = dev->class->devnode(dev, mode);
3911 /* return name without allocation, tmp == NULL */
3912 if (strchr(dev_name(dev), '!') == NULL)
3913 return dev_name(dev);
3915 /* replace '!' in the name with '/' */
3916 s = kstrdup(dev_name(dev), GFP_KERNEL);
3919 strreplace(s, '!', '/');
3924 * device_for_each_child - device child iterator.
3925 * @parent: parent struct device.
3926 * @fn: function to be called for each device.
3927 * @data: data for the callback.
3929 * Iterate over @parent's child devices, and call @fn for each,
3932 * We check the return of @fn each time. If it returns anything
3933 * other than 0, we break out and return that value.
3935 int device_for_each_child(struct device *parent, void *data,
3936 int (*fn)(struct device *dev, void *data))
3938 struct klist_iter i;
3939 struct device *child;
3945 klist_iter_init(&parent->p->klist_children, &i);
3946 while (!error && (child = next_device(&i)))
3947 error = fn(child, data);
3948 klist_iter_exit(&i);
3951 EXPORT_SYMBOL_GPL(device_for_each_child);
3954 * device_for_each_child_reverse - device child iterator in reversed order.
3955 * @parent: parent struct device.
3956 * @fn: function to be called for each device.
3957 * @data: data for the callback.
3959 * Iterate over @parent's child devices, and call @fn for each,
3962 * We check the return of @fn each time. If it returns anything
3963 * other than 0, we break out and return that value.
3965 int device_for_each_child_reverse(struct device *parent, void *data,
3966 int (*fn)(struct device *dev, void *data))
3968 struct klist_iter i;
3969 struct device *child;
3975 klist_iter_init(&parent->p->klist_children, &i);
3976 while ((child = prev_device(&i)) && !error)
3977 error = fn(child, data);
3978 klist_iter_exit(&i);
3981 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3984 * device_find_child - device iterator for locating a particular device.
3985 * @parent: parent struct device
3986 * @match: Callback function to check device
3987 * @data: Data to pass to match function
3989 * This is similar to the device_for_each_child() function above, but it
3990 * returns a reference to a device that is 'found' for later use, as
3991 * determined by the @match callback.
3993 * The callback should return 0 if the device doesn't match and non-zero
3994 * if it does. If the callback returns non-zero and a reference to the
3995 * current device can be obtained, this function will return to the caller
3996 * and not iterate over any more devices.
3998 * NOTE: you will need to drop the reference with put_device() after use.
4000 struct device *device_find_child(struct device *parent, void *data,
4001 int (*match)(struct device *dev, void *data))
4003 struct klist_iter i;
4004 struct device *child;
4009 klist_iter_init(&parent->p->klist_children, &i);
4010 while ((child = next_device(&i)))
4011 if (match(child, data) && get_device(child))
4013 klist_iter_exit(&i);
4016 EXPORT_SYMBOL_GPL(device_find_child);
4019 * device_find_child_by_name - device iterator for locating a child device.
4020 * @parent: parent struct device
4021 * @name: name of the child device
4023 * This is similar to the device_find_child() function above, but it
4024 * returns a reference to a device that has the name @name.
4026 * NOTE: you will need to drop the reference with put_device() after use.
4028 struct device *device_find_child_by_name(struct device *parent,
4031 struct klist_iter i;
4032 struct device *child;
4037 klist_iter_init(&parent->p->klist_children, &i);
4038 while ((child = next_device(&i)))
4039 if (sysfs_streq(dev_name(child), name) && get_device(child))
4041 klist_iter_exit(&i);
4044 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4046 static int match_any(struct device *dev, void *unused)
4052 * device_find_any_child - device iterator for locating a child device, if any.
4053 * @parent: parent struct device
4055 * This is similar to the device_find_child() function above, but it
4056 * returns a reference to a child device, if any.
4058 * NOTE: you will need to drop the reference with put_device() after use.
4060 struct device *device_find_any_child(struct device *parent)
4062 return device_find_child(parent, NULL, match_any);
4064 EXPORT_SYMBOL_GPL(device_find_any_child);
4066 int __init devices_init(void)
4068 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4071 dev_kobj = kobject_create_and_add("dev", NULL);
4074 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4075 if (!sysfs_dev_block_kobj)
4076 goto block_kobj_err;
4077 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4078 if (!sysfs_dev_char_kobj)
4084 kobject_put(sysfs_dev_block_kobj);
4086 kobject_put(dev_kobj);
4088 kset_unregister(devices_kset);
4092 static int device_check_offline(struct device *dev, void *not_used)
4096 ret = device_for_each_child(dev, NULL, device_check_offline);
4100 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4104 * device_offline - Prepare the device for hot-removal.
4105 * @dev: Device to be put offline.
4107 * Execute the device bus type's .offline() callback, if present, to prepare
4108 * the device for a subsequent hot-removal. If that succeeds, the device must
4109 * not be used until either it is removed or its bus type's .online() callback
4112 * Call under device_hotplug_lock.
4114 int device_offline(struct device *dev)
4118 if (dev->offline_disabled)
4121 ret = device_for_each_child(dev, NULL, device_check_offline);
4126 if (device_supports_offline(dev)) {
4130 ret = dev->bus->offline(dev);
4132 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4133 dev->offline = true;
4143 * device_online - Put the device back online after successful device_offline().
4144 * @dev: Device to be put back online.
4146 * If device_offline() has been successfully executed for @dev, but the device
4147 * has not been removed subsequently, execute its bus type's .online() callback
4148 * to indicate that the device can be used again.
4150 * Call under device_hotplug_lock.
4152 int device_online(struct device *dev)
4157 if (device_supports_offline(dev)) {
4159 ret = dev->bus->online(dev);
4161 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4162 dev->offline = false;
4173 struct root_device {
4175 struct module *owner;
4178 static inline struct root_device *to_root_device(struct device *d)
4180 return container_of(d, struct root_device, dev);
4183 static void root_device_release(struct device *dev)
4185 kfree(to_root_device(dev));
4189 * __root_device_register - allocate and register a root device
4190 * @name: root device name
4191 * @owner: owner module of the root device, usually THIS_MODULE
4193 * This function allocates a root device and registers it
4194 * using device_register(). In order to free the returned
4195 * device, use root_device_unregister().
4197 * Root devices are dummy devices which allow other devices
4198 * to be grouped under /sys/devices. Use this function to
4199 * allocate a root device and then use it as the parent of
4200 * any device which should appear under /sys/devices/{name}
4202 * The /sys/devices/{name} directory will also contain a
4203 * 'module' symlink which points to the @owner directory
4206 * Returns &struct device pointer on success, or ERR_PTR() on error.
4208 * Note: You probably want to use root_device_register().
4210 struct device *__root_device_register(const char *name, struct module *owner)
4212 struct root_device *root;
4215 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4217 return ERR_PTR(err);
4219 err = dev_set_name(&root->dev, "%s", name);
4222 return ERR_PTR(err);
4225 root->dev.release = root_device_release;
4227 err = device_register(&root->dev);
4229 put_device(&root->dev);
4230 return ERR_PTR(err);
4233 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4235 struct module_kobject *mk = &owner->mkobj;
4237 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4239 device_unregister(&root->dev);
4240 return ERR_PTR(err);
4242 root->owner = owner;
4248 EXPORT_SYMBOL_GPL(__root_device_register);
4251 * root_device_unregister - unregister and free a root device
4252 * @dev: device going away
4254 * This function unregisters and cleans up a device that was created by
4255 * root_device_register().
4257 void root_device_unregister(struct device *dev)
4259 struct root_device *root = to_root_device(dev);
4262 sysfs_remove_link(&root->dev.kobj, "module");
4264 device_unregister(dev);
4266 EXPORT_SYMBOL_GPL(root_device_unregister);
4269 static void device_create_release(struct device *dev)
4271 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4275 static __printf(6, 0) struct device *
4276 device_create_groups_vargs(struct class *class, struct device *parent,
4277 dev_t devt, void *drvdata,
4278 const struct attribute_group **groups,
4279 const char *fmt, va_list args)
4281 struct device *dev = NULL;
4282 int retval = -ENODEV;
4284 if (IS_ERR_OR_NULL(class))
4287 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4293 device_initialize(dev);
4296 dev->parent = parent;
4297 dev->groups = groups;
4298 dev->release = device_create_release;
4299 dev_set_drvdata(dev, drvdata);
4301 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4305 retval = device_add(dev);
4313 return ERR_PTR(retval);
4317 * device_create - creates a device and registers it with sysfs
4318 * @class: pointer to the struct class that this device should be registered to
4319 * @parent: pointer to the parent struct device of this new device, if any
4320 * @devt: the dev_t for the char device to be added
4321 * @drvdata: the data to be added to the device for callbacks
4322 * @fmt: string for the device's name
4324 * This function can be used by char device classes. A struct device
4325 * will be created in sysfs, registered to the specified class.
4327 * A "dev" file will be created, showing the dev_t for the device, if
4328 * the dev_t is not 0,0.
4329 * If a pointer to a parent struct device is passed in, the newly created
4330 * struct device will be a child of that device in sysfs.
4331 * The pointer to the struct device will be returned from the call.
4332 * Any further sysfs files that might be required can be created using this
4335 * Returns &struct device pointer on success, or ERR_PTR() on error.
4337 * Note: the struct class passed to this function must have previously
4338 * been created with a call to class_create().
4340 struct device *device_create(struct class *class, struct device *parent,
4341 dev_t devt, void *drvdata, const char *fmt, ...)
4346 va_start(vargs, fmt);
4347 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4352 EXPORT_SYMBOL_GPL(device_create);
4355 * device_create_with_groups - creates a device and registers it with sysfs
4356 * @class: pointer to the struct class that this device should be registered to
4357 * @parent: pointer to the parent struct device of this new device, if any
4358 * @devt: the dev_t for the char device to be added
4359 * @drvdata: the data to be added to the device for callbacks
4360 * @groups: NULL-terminated list of attribute groups to be created
4361 * @fmt: string for the device's name
4363 * This function can be used by char device classes. A struct device
4364 * will be created in sysfs, registered to the specified class.
4365 * Additional attributes specified in the groups parameter will also
4366 * be created automatically.
4368 * A "dev" file will be created, showing the dev_t for the device, if
4369 * the dev_t is not 0,0.
4370 * If a pointer to a parent struct device is passed in, the newly created
4371 * struct device will be a child of that device in sysfs.
4372 * The pointer to the struct device will be returned from the call.
4373 * Any further sysfs files that might be required can be created using this
4376 * Returns &struct device pointer on success, or ERR_PTR() on error.
4378 * Note: the struct class passed to this function must have previously
4379 * been created with a call to class_create().
4381 struct device *device_create_with_groups(struct class *class,
4382 struct device *parent, dev_t devt,
4384 const struct attribute_group **groups,
4385 const char *fmt, ...)
4390 va_start(vargs, fmt);
4391 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4396 EXPORT_SYMBOL_GPL(device_create_with_groups);
4399 * device_destroy - removes a device that was created with device_create()
4400 * @class: pointer to the struct class that this device was registered with
4401 * @devt: the dev_t of the device that was previously registered
4403 * This call unregisters and cleans up a device that was created with a
4404 * call to device_create().
4406 void device_destroy(struct class *class, dev_t devt)
4410 dev = class_find_device_by_devt(class, devt);
4413 device_unregister(dev);
4416 EXPORT_SYMBOL_GPL(device_destroy);
4419 * device_rename - renames a device
4420 * @dev: the pointer to the struct device to be renamed
4421 * @new_name: the new name of the device
4423 * It is the responsibility of the caller to provide mutual
4424 * exclusion between two different calls of device_rename
4425 * on the same device to ensure that new_name is valid and
4426 * won't conflict with other devices.
4428 * Note: Don't call this function. Currently, the networking layer calls this
4429 * function, but that will change. The following text from Kay Sievers offers
4432 * Renaming devices is racy at many levels, symlinks and other stuff are not
4433 * replaced atomically, and you get a "move" uevent, but it's not easy to
4434 * connect the event to the old and new device. Device nodes are not renamed at
4435 * all, there isn't even support for that in the kernel now.
4437 * In the meantime, during renaming, your target name might be taken by another
4438 * driver, creating conflicts. Or the old name is taken directly after you
4439 * renamed it -- then you get events for the same DEVPATH, before you even see
4440 * the "move" event. It's just a mess, and nothing new should ever rely on
4441 * kernel device renaming. Besides that, it's not even implemented now for
4442 * other things than (driver-core wise very simple) network devices.
4444 * We are currently about to change network renaming in udev to completely
4445 * disallow renaming of devices in the same namespace as the kernel uses,
4446 * because we can't solve the problems properly, that arise with swapping names
4447 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4448 * be allowed to some other name than eth[0-9]*, for the aforementioned
4451 * Make up a "real" name in the driver before you register anything, or add
4452 * some other attributes for userspace to find the device, or use udev to add
4453 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4454 * don't even want to get into that and try to implement the missing pieces in
4455 * the core. We really have other pieces to fix in the driver core mess. :)
4457 int device_rename(struct device *dev, const char *new_name)
4459 struct kobject *kobj = &dev->kobj;
4460 char *old_device_name = NULL;
4463 dev = get_device(dev);
4467 dev_dbg(dev, "renaming to %s\n", new_name);
4469 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4470 if (!old_device_name) {
4476 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4477 kobj, old_device_name,
4478 new_name, kobject_namespace(kobj));
4483 error = kobject_rename(kobj, new_name);
4490 kfree(old_device_name);
4494 EXPORT_SYMBOL_GPL(device_rename);
4496 static int device_move_class_links(struct device *dev,
4497 struct device *old_parent,
4498 struct device *new_parent)
4503 sysfs_remove_link(&dev->kobj, "device");
4505 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4511 * device_move - moves a device to a new parent
4512 * @dev: the pointer to the struct device to be moved
4513 * @new_parent: the new parent of the device (can be NULL)
4514 * @dpm_order: how to reorder the dpm_list
4516 int device_move(struct device *dev, struct device *new_parent,
4517 enum dpm_order dpm_order)
4520 struct device *old_parent;
4521 struct kobject *new_parent_kobj;
4523 dev = get_device(dev);
4528 new_parent = get_device(new_parent);
4529 new_parent_kobj = get_device_parent(dev, new_parent);
4530 if (IS_ERR(new_parent_kobj)) {
4531 error = PTR_ERR(new_parent_kobj);
4532 put_device(new_parent);
4536 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4537 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4538 error = kobject_move(&dev->kobj, new_parent_kobj);
4540 cleanup_glue_dir(dev, new_parent_kobj);
4541 put_device(new_parent);
4544 old_parent = dev->parent;
4545 dev->parent = new_parent;
4547 klist_remove(&dev->p->knode_parent);
4549 klist_add_tail(&dev->p->knode_parent,
4550 &new_parent->p->klist_children);
4551 set_dev_node(dev, dev_to_node(new_parent));
4555 error = device_move_class_links(dev, old_parent, new_parent);
4557 /* We ignore errors on cleanup since we're hosed anyway... */
4558 device_move_class_links(dev, new_parent, old_parent);
4559 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4561 klist_remove(&dev->p->knode_parent);
4562 dev->parent = old_parent;
4564 klist_add_tail(&dev->p->knode_parent,
4565 &old_parent->p->klist_children);
4566 set_dev_node(dev, dev_to_node(old_parent));
4569 cleanup_glue_dir(dev, new_parent_kobj);
4570 put_device(new_parent);
4574 switch (dpm_order) {
4575 case DPM_ORDER_NONE:
4577 case DPM_ORDER_DEV_AFTER_PARENT:
4578 device_pm_move_after(dev, new_parent);
4579 devices_kset_move_after(dev, new_parent);
4581 case DPM_ORDER_PARENT_BEFORE_DEV:
4582 device_pm_move_before(new_parent, dev);
4583 devices_kset_move_before(new_parent, dev);
4585 case DPM_ORDER_DEV_LAST:
4586 device_pm_move_last(dev);
4587 devices_kset_move_last(dev);
4591 put_device(old_parent);
4597 EXPORT_SYMBOL_GPL(device_move);
4599 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4602 struct kobject *kobj = &dev->kobj;
4603 struct class *class = dev->class;
4604 const struct device_type *type = dev->type;
4609 * Change the device groups of the device class for @dev to
4612 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4620 * Change the device groups of the device type for @dev to
4623 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4629 /* Change the device groups of @dev to @kuid/@kgid. */
4630 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4634 if (device_supports_offline(dev) && !dev->offline_disabled) {
4635 /* Change online device attributes of @dev to @kuid/@kgid. */
4636 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4646 * device_change_owner - change the owner of an existing device.
4648 * @kuid: new owner's kuid
4649 * @kgid: new owner's kgid
4651 * This changes the owner of @dev and its corresponding sysfs entries to
4652 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4655 * Returns 0 on success or error code on failure.
4657 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4660 struct kobject *kobj = &dev->kobj;
4662 dev = get_device(dev);
4667 * Change the kobject and the default attributes and groups of the
4668 * ktype associated with it to @kuid/@kgid.
4670 error = sysfs_change_owner(kobj, kuid, kgid);
4675 * Change the uevent file for @dev to the new owner. The uevent file
4676 * was created in a separate step when @dev got added and we mirror
4679 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4685 * Change the device groups, the device groups associated with the
4686 * device class, and the groups associated with the device type of @dev
4689 error = device_attrs_change_owner(dev, kuid, kgid);
4693 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4698 if (sysfs_deprecated && dev->class == &block_class)
4703 * Change the owner of the symlink located in the class directory of
4704 * the device class associated with @dev which points to the actual
4705 * directory entry for @dev to @kuid/@kgid. This ensures that the
4706 * symlink shows the same permissions as its target.
4708 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4709 dev_name(dev), kuid, kgid);
4717 EXPORT_SYMBOL_GPL(device_change_owner);
4720 * device_shutdown - call ->shutdown() on each device to shutdown.
4722 void device_shutdown(void)
4724 struct device *dev, *parent;
4726 wait_for_device_probe();
4727 device_block_probing();
4731 spin_lock(&devices_kset->list_lock);
4733 * Walk the devices list backward, shutting down each in turn.
4734 * Beware that device unplug events may also start pulling
4735 * devices offline, even as the system is shutting down.
4737 while (!list_empty(&devices_kset->list)) {
4738 dev = list_entry(devices_kset->list.prev, struct device,
4742 * hold reference count of device's parent to
4743 * prevent it from being freed because parent's
4744 * lock is to be held
4746 parent = get_device(dev->parent);
4749 * Make sure the device is off the kset list, in the
4750 * event that dev->*->shutdown() doesn't remove it.
4752 list_del_init(&dev->kobj.entry);
4753 spin_unlock(&devices_kset->list_lock);
4755 /* hold lock to avoid race with probe/release */
4757 device_lock(parent);
4760 /* Don't allow any more runtime suspends */
4761 pm_runtime_get_noresume(dev);
4762 pm_runtime_barrier(dev);
4764 if (dev->class && dev->class->shutdown_pre) {
4766 dev_info(dev, "shutdown_pre\n");
4767 dev->class->shutdown_pre(dev);
4769 if (dev->bus && dev->bus->shutdown) {
4771 dev_info(dev, "shutdown\n");
4772 dev->bus->shutdown(dev);
4773 } else if (dev->driver && dev->driver->shutdown) {
4775 dev_info(dev, "shutdown\n");
4776 dev->driver->shutdown(dev);
4781 device_unlock(parent);
4786 spin_lock(&devices_kset->list_lock);
4788 spin_unlock(&devices_kset->list_lock);
4792 * Device logging functions
4795 #ifdef CONFIG_PRINTK
4797 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4801 memset(dev_info, 0, sizeof(*dev_info));
4804 subsys = dev->class->name;
4806 subsys = dev->bus->name;
4810 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4813 * Add device identifier DEVICE=:
4817 * +sound:card0 subsystem:devname
4819 if (MAJOR(dev->devt)) {
4822 if (strcmp(subsys, "block") == 0)
4827 snprintf(dev_info->device, sizeof(dev_info->device),
4828 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4829 } else if (strcmp(subsys, "net") == 0) {
4830 struct net_device *net = to_net_dev(dev);
4832 snprintf(dev_info->device, sizeof(dev_info->device),
4833 "n%u", net->ifindex);
4835 snprintf(dev_info->device, sizeof(dev_info->device),
4836 "+%s:%s", subsys, dev_name(dev));
4840 int dev_vprintk_emit(int level, const struct device *dev,
4841 const char *fmt, va_list args)
4843 struct dev_printk_info dev_info;
4845 set_dev_info(dev, &dev_info);
4847 return vprintk_emit(0, level, &dev_info, fmt, args);
4849 EXPORT_SYMBOL(dev_vprintk_emit);
4851 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4856 va_start(args, fmt);
4858 r = dev_vprintk_emit(level, dev, fmt, args);
4864 EXPORT_SYMBOL(dev_printk_emit);
4866 static void __dev_printk(const char *level, const struct device *dev,
4867 struct va_format *vaf)
4870 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4871 dev_driver_string(dev), dev_name(dev), vaf);
4873 printk("%s(NULL device *): %pV", level, vaf);
4876 void _dev_printk(const char *level, const struct device *dev,
4877 const char *fmt, ...)
4879 struct va_format vaf;
4882 va_start(args, fmt);
4887 __dev_printk(level, dev, &vaf);
4891 EXPORT_SYMBOL(_dev_printk);
4893 #define define_dev_printk_level(func, kern_level) \
4894 void func(const struct device *dev, const char *fmt, ...) \
4896 struct va_format vaf; \
4899 va_start(args, fmt); \
4904 __dev_printk(kern_level, dev, &vaf); \
4908 EXPORT_SYMBOL(func);
4910 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4911 define_dev_printk_level(_dev_alert, KERN_ALERT);
4912 define_dev_printk_level(_dev_crit, KERN_CRIT);
4913 define_dev_printk_level(_dev_err, KERN_ERR);
4914 define_dev_printk_level(_dev_warn, KERN_WARNING);
4915 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4916 define_dev_printk_level(_dev_info, KERN_INFO);
4921 * dev_err_probe - probe error check and log helper
4922 * @dev: the pointer to the struct device
4923 * @err: error value to test
4924 * @fmt: printf-style format string
4925 * @...: arguments as specified in the format string
4927 * This helper implements common pattern present in probe functions for error
4928 * checking: print debug or error message depending if the error value is
4929 * -EPROBE_DEFER and propagate error upwards.
4930 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4931 * checked later by reading devices_deferred debugfs attribute.
4932 * It replaces code sequence::
4934 * if (err != -EPROBE_DEFER)
4935 * dev_err(dev, ...);
4937 * dev_dbg(dev, ...);
4942 * return dev_err_probe(dev, err, ...);
4944 * Note that it is deemed acceptable to use this function for error
4945 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4946 * The benefit compared to a normal dev_err() is the standardized format
4947 * of the error code and the fact that the error code is returned.
4952 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4954 struct va_format vaf;
4957 va_start(args, fmt);
4961 if (err != -EPROBE_DEFER) {
4962 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4964 device_set_deferred_probe_reason(dev, &vaf);
4965 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4972 EXPORT_SYMBOL_GPL(dev_err_probe);
4974 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4976 return fwnode && !IS_ERR(fwnode->secondary);
4980 * set_primary_fwnode - Change the primary firmware node of a given device.
4981 * @dev: Device to handle.
4982 * @fwnode: New primary firmware node of the device.
4984 * Set the device's firmware node pointer to @fwnode, but if a secondary
4985 * firmware node of the device is present, preserve it.
4987 * Valid fwnode cases are:
4988 * - primary --> secondary --> -ENODEV
4989 * - primary --> NULL
4990 * - secondary --> -ENODEV
4993 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4995 struct device *parent = dev->parent;
4996 struct fwnode_handle *fn = dev->fwnode;
4999 if (fwnode_is_primary(fn))
5003 WARN_ON(fwnode->secondary);
5004 fwnode->secondary = fn;
5006 dev->fwnode = fwnode;
5008 if (fwnode_is_primary(fn)) {
5009 dev->fwnode = fn->secondary;
5010 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5011 if (!(parent && fn == parent->fwnode))
5012 fn->secondary = NULL;
5018 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5021 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5022 * @dev: Device to handle.
5023 * @fwnode: New secondary firmware node of the device.
5025 * If a primary firmware node of the device is present, set its secondary
5026 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5029 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5032 fwnode->secondary = ERR_PTR(-ENODEV);
5034 if (fwnode_is_primary(dev->fwnode))
5035 dev->fwnode->secondary = fwnode;
5037 dev->fwnode = fwnode;
5039 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5042 * device_set_of_node_from_dev - reuse device-tree node of another device
5043 * @dev: device whose device-tree node is being set
5044 * @dev2: device whose device-tree node is being reused
5046 * Takes another reference to the new device-tree node after first dropping
5047 * any reference held to the old node.
5049 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5051 of_node_put(dev->of_node);
5052 dev->of_node = of_node_get(dev2->of_node);
5053 dev->of_node_reused = true;
5055 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5057 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5059 dev->fwnode = fwnode;
5060 dev->of_node = to_of_node(fwnode);
5062 EXPORT_SYMBOL_GPL(device_set_node);
5064 int device_match_name(struct device *dev, const void *name)
5066 return sysfs_streq(dev_name(dev), name);
5068 EXPORT_SYMBOL_GPL(device_match_name);
5070 int device_match_of_node(struct device *dev, const void *np)
5072 return dev->of_node == np;
5074 EXPORT_SYMBOL_GPL(device_match_of_node);
5076 int device_match_fwnode(struct device *dev, const void *fwnode)
5078 return dev_fwnode(dev) == fwnode;
5080 EXPORT_SYMBOL_GPL(device_match_fwnode);
5082 int device_match_devt(struct device *dev, const void *pdevt)
5084 return dev->devt == *(dev_t *)pdevt;
5086 EXPORT_SYMBOL_GPL(device_match_devt);
5088 int device_match_acpi_dev(struct device *dev, const void *adev)
5090 return ACPI_COMPANION(dev) == adev;
5092 EXPORT_SYMBOL(device_match_acpi_dev);
5094 int device_match_acpi_handle(struct device *dev, const void *handle)
5096 return ACPI_HANDLE(dev) == handle;
5098 EXPORT_SYMBOL(device_match_acpi_handle);
5100 int device_match_any(struct device *dev, const void *unused)
5104 EXPORT_SYMBOL_GPL(device_match_any);