1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/ialloc.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * BSD ufs-inspired inode and directory allocation by
12 * Big-endian to little-endian byte-swapping/bitmaps by
16 #include <linux/time.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
27 #include <asm/byteorder.h>
30 #include "ext4_jbd2.h"
34 #include <trace/events/ext4.h>
37 * ialloc.c contains the inodes allocation and deallocation routines
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
59 if (start_bit >= end_bit)
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 ext4_set_bit(i, bitmap);
66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
72 set_buffer_uptodate(bh);
73 set_bitmap_uptodate(bh);
79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 struct ext4_group_desc *desc,
81 ext4_group_t block_group,
82 struct buffer_head *bh)
85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
87 if (buffer_verified(bh))
89 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
92 ext4_lock_group(sb, block_group);
93 blk = ext4_inode_bitmap(sb, desc);
94 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
95 EXT4_INODES_PER_GROUP(sb) / 8)) {
96 ext4_unlock_group(sb, block_group);
97 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
98 "inode_bitmap = %llu", block_group, blk);
99 ext4_mark_group_bitmap_corrupted(sb, block_group,
100 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
103 set_buffer_verified(bh);
104 ext4_unlock_group(sb, block_group);
109 * Read the inode allocation bitmap for a given block_group, reading
110 * into the specified slot in the superblock's bitmap cache.
112 * Return buffer_head of bitmap on success or NULL.
114 static struct buffer_head *
115 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
117 struct ext4_group_desc *desc;
118 struct ext4_sb_info *sbi = EXT4_SB(sb);
119 struct buffer_head *bh = NULL;
120 ext4_fsblk_t bitmap_blk;
123 desc = ext4_get_group_desc(sb, block_group, NULL);
125 return ERR_PTR(-EFSCORRUPTED);
127 bitmap_blk = ext4_inode_bitmap(sb, desc);
128 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
129 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
130 ext4_error(sb, "Invalid inode bitmap blk %llu in "
131 "block_group %u", bitmap_blk, block_group);
132 ext4_mark_group_bitmap_corrupted(sb, block_group,
133 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
134 return ERR_PTR(-EFSCORRUPTED);
136 bh = sb_getblk(sb, bitmap_blk);
138 ext4_error(sb, "Cannot read inode bitmap - "
139 "block_group = %u, inode_bitmap = %llu",
140 block_group, bitmap_blk);
141 return ERR_PTR(-ENOMEM);
143 if (bitmap_uptodate(bh))
147 if (bitmap_uptodate(bh)) {
152 ext4_lock_group(sb, block_group);
153 if (ext4_has_group_desc_csum(sb) &&
154 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
155 if (block_group == 0) {
156 ext4_unlock_group(sb, block_group);
158 ext4_error(sb, "Inode bitmap for bg 0 marked "
163 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
164 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
165 sb->s_blocksize * 8, bh->b_data);
166 set_bitmap_uptodate(bh);
167 set_buffer_uptodate(bh);
168 set_buffer_verified(bh);
169 ext4_unlock_group(sb, block_group);
173 ext4_unlock_group(sb, block_group);
175 if (buffer_uptodate(bh)) {
177 * if not uninit if bh is uptodate,
178 * bitmap is also uptodate
180 set_bitmap_uptodate(bh);
185 * submit the buffer_head for reading
187 trace_ext4_load_inode_bitmap(sb, block_group);
188 bh->b_end_io = ext4_end_bitmap_read;
190 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
192 if (!buffer_uptodate(bh)) {
194 ext4_error(sb, "Cannot read inode bitmap - "
195 "block_group = %u, inode_bitmap = %llu",
196 block_group, bitmap_blk);
197 ext4_mark_group_bitmap_corrupted(sb, block_group,
198 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
199 return ERR_PTR(-EIO);
203 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
213 * NOTE! When we get the inode, we're the only people
214 * that have access to it, and as such there are no
215 * race conditions we have to worry about. The inode
216 * is not on the hash-lists, and it cannot be reached
217 * through the filesystem because the directory entry
218 * has been deleted earlier.
220 * HOWEVER: we must make sure that we get no aliases,
221 * which means that we have to call "clear_inode()"
222 * _before_ we mark the inode not in use in the inode
223 * bitmaps. Otherwise a newly created file might use
224 * the same inode number (not actually the same pointer
225 * though), and then we'd have two inodes sharing the
226 * same inode number and space on the harddisk.
228 void ext4_free_inode(handle_t *handle, struct inode *inode)
230 struct super_block *sb = inode->i_sb;
233 struct buffer_head *bitmap_bh = NULL;
234 struct buffer_head *bh2;
235 ext4_group_t block_group;
237 struct ext4_group_desc *gdp;
238 struct ext4_super_block *es;
239 struct ext4_sb_info *sbi;
240 int fatal = 0, err, count, cleared;
241 struct ext4_group_info *grp;
244 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
245 "nonexistent device\n", __func__, __LINE__);
248 if (atomic_read(&inode->i_count) > 1) {
249 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
250 __func__, __LINE__, inode->i_ino,
251 atomic_read(&inode->i_count));
254 if (inode->i_nlink) {
255 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
256 __func__, __LINE__, inode->i_ino, inode->i_nlink);
262 ext4_debug("freeing inode %lu\n", ino);
263 trace_ext4_free_inode(inode);
266 * Note: we must free any quota before locking the superblock,
267 * as writing the quota to disk may need the lock as well.
269 dquot_initialize(inode);
270 dquot_free_inode(inode);
273 is_directory = S_ISDIR(inode->i_mode);
275 /* Do this BEFORE marking the inode not in use or returning an error */
276 ext4_clear_inode(inode);
279 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
280 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
283 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
284 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
285 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
286 /* Don't bother if the inode bitmap is corrupt. */
287 grp = ext4_get_group_info(sb, block_group);
288 if (IS_ERR(bitmap_bh)) {
289 fatal = PTR_ERR(bitmap_bh);
293 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
294 fatal = -EFSCORRUPTED;
298 BUFFER_TRACE(bitmap_bh, "get_write_access");
299 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
304 gdp = ext4_get_group_desc(sb, block_group, &bh2);
306 BUFFER_TRACE(bh2, "get_write_access");
307 fatal = ext4_journal_get_write_access(handle, bh2);
309 ext4_lock_group(sb, block_group);
310 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
311 if (fatal || !cleared) {
312 ext4_unlock_group(sb, block_group);
316 count = ext4_free_inodes_count(sb, gdp) + 1;
317 ext4_free_inodes_set(sb, gdp, count);
319 count = ext4_used_dirs_count(sb, gdp) - 1;
320 ext4_used_dirs_set(sb, gdp, count);
321 percpu_counter_dec(&sbi->s_dirs_counter);
323 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
324 EXT4_INODES_PER_GROUP(sb) / 8);
325 ext4_group_desc_csum_set(sb, block_group, gdp);
326 ext4_unlock_group(sb, block_group);
328 percpu_counter_inc(&sbi->s_freeinodes_counter);
329 if (sbi->s_log_groups_per_flex) {
330 ext4_group_t f = ext4_flex_group(sbi, block_group);
332 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
334 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
336 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
337 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
340 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
341 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
345 ext4_error(sb, "bit already cleared for inode %lu", ino);
346 ext4_mark_group_bitmap_corrupted(sb, block_group,
347 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
352 ext4_std_error(sb, fatal);
362 * Helper function for Orlov's allocator; returns critical information
363 * for a particular block group or flex_bg. If flex_size is 1, then g
364 * is a block group number; otherwise it is flex_bg number.
366 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
367 int flex_size, struct orlov_stats *stats)
369 struct ext4_group_desc *desc;
370 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
373 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
374 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
375 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
379 desc = ext4_get_group_desc(sb, g, NULL);
381 stats->free_inodes = ext4_free_inodes_count(sb, desc);
382 stats->free_clusters = ext4_free_group_clusters(sb, desc);
383 stats->used_dirs = ext4_used_dirs_count(sb, desc);
385 stats->free_inodes = 0;
386 stats->free_clusters = 0;
387 stats->used_dirs = 0;
392 * Orlov's allocator for directories.
394 * We always try to spread first-level directories.
396 * If there are blockgroups with both free inodes and free blocks counts
397 * not worse than average we return one with smallest directory count.
398 * Otherwise we simply return a random group.
400 * For the rest rules look so:
402 * It's OK to put directory into a group unless
403 * it has too many directories already (max_dirs) or
404 * it has too few free inodes left (min_inodes) or
405 * it has too few free blocks left (min_blocks) or
406 * Parent's group is preferred, if it doesn't satisfy these
407 * conditions we search cyclically through the rest. If none
408 * of the groups look good we just look for a group with more
409 * free inodes than average (starting at parent's group).
412 static int find_group_orlov(struct super_block *sb, struct inode *parent,
413 ext4_group_t *group, umode_t mode,
414 const struct qstr *qstr)
416 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
417 struct ext4_sb_info *sbi = EXT4_SB(sb);
418 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
419 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
420 unsigned int freei, avefreei, grp_free;
421 ext4_fsblk_t freeb, avefreec;
423 int max_dirs, min_inodes;
424 ext4_grpblk_t min_clusters;
425 ext4_group_t i, grp, g, ngroups;
426 struct ext4_group_desc *desc;
427 struct orlov_stats stats;
428 int flex_size = ext4_flex_bg_size(sbi);
429 struct dx_hash_info hinfo;
431 ngroups = real_ngroups;
433 ngroups = (real_ngroups + flex_size - 1) >>
434 sbi->s_log_groups_per_flex;
435 parent_group >>= sbi->s_log_groups_per_flex;
438 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
439 avefreei = freei / ngroups;
440 freeb = EXT4_C2B(sbi,
441 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
443 do_div(avefreec, ngroups);
444 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
447 ((parent == d_inode(sb->s_root)) ||
448 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
449 int best_ndir = inodes_per_group;
453 hinfo.hash_version = DX_HASH_HALF_MD4;
454 hinfo.seed = sbi->s_hash_seed;
455 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
459 parent_group = (unsigned)grp % ngroups;
460 for (i = 0; i < ngroups; i++) {
461 g = (parent_group + i) % ngroups;
462 get_orlov_stats(sb, g, flex_size, &stats);
463 if (!stats.free_inodes)
465 if (stats.used_dirs >= best_ndir)
467 if (stats.free_inodes < avefreei)
469 if (stats.free_clusters < avefreec)
473 best_ndir = stats.used_dirs;
478 if (flex_size == 1) {
484 * We pack inodes at the beginning of the flexgroup's
485 * inode tables. Block allocation decisions will do
486 * something similar, although regular files will
487 * start at 2nd block group of the flexgroup. See
488 * ext4_ext_find_goal() and ext4_find_near().
491 for (i = 0; i < flex_size; i++) {
492 if (grp+i >= real_ngroups)
494 desc = ext4_get_group_desc(sb, grp+i, NULL);
495 if (desc && ext4_free_inodes_count(sb, desc)) {
503 max_dirs = ndirs / ngroups + inodes_per_group / 16;
504 min_inodes = avefreei - inodes_per_group*flex_size / 4;
507 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
510 * Start looking in the flex group where we last allocated an
511 * inode for this parent directory
513 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
514 parent_group = EXT4_I(parent)->i_last_alloc_group;
516 parent_group >>= sbi->s_log_groups_per_flex;
519 for (i = 0; i < ngroups; i++) {
520 grp = (parent_group + i) % ngroups;
521 get_orlov_stats(sb, grp, flex_size, &stats);
522 if (stats.used_dirs >= max_dirs)
524 if (stats.free_inodes < min_inodes)
526 if (stats.free_clusters < min_clusters)
532 ngroups = real_ngroups;
533 avefreei = freei / ngroups;
535 parent_group = EXT4_I(parent)->i_block_group;
536 for (i = 0; i < ngroups; i++) {
537 grp = (parent_group + i) % ngroups;
538 desc = ext4_get_group_desc(sb, grp, NULL);
540 grp_free = ext4_free_inodes_count(sb, desc);
541 if (grp_free && grp_free >= avefreei) {
550 * The free-inodes counter is approximate, and for really small
551 * filesystems the above test can fail to find any blockgroups
560 static int find_group_other(struct super_block *sb, struct inode *parent,
561 ext4_group_t *group, umode_t mode)
563 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
564 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
565 struct ext4_group_desc *desc;
566 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
569 * Try to place the inode is the same flex group as its
570 * parent. If we can't find space, use the Orlov algorithm to
571 * find another flex group, and store that information in the
572 * parent directory's inode information so that use that flex
573 * group for future allocations.
579 parent_group &= ~(flex_size-1);
580 last = parent_group + flex_size;
583 for (i = parent_group; i < last; i++) {
584 desc = ext4_get_group_desc(sb, i, NULL);
585 if (desc && ext4_free_inodes_count(sb, desc)) {
590 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
592 parent_group = EXT4_I(parent)->i_last_alloc_group;
596 * If this didn't work, use the Orlov search algorithm
597 * to find a new flex group; we pass in the mode to
598 * avoid the topdir algorithms.
600 *group = parent_group + flex_size;
601 if (*group > ngroups)
603 return find_group_orlov(sb, parent, group, mode, NULL);
607 * Try to place the inode in its parent directory
609 *group = parent_group;
610 desc = ext4_get_group_desc(sb, *group, NULL);
611 if (desc && ext4_free_inodes_count(sb, desc) &&
612 ext4_free_group_clusters(sb, desc))
616 * We're going to place this inode in a different blockgroup from its
617 * parent. We want to cause files in a common directory to all land in
618 * the same blockgroup. But we want files which are in a different
619 * directory which shares a blockgroup with our parent to land in a
620 * different blockgroup.
622 * So add our directory's i_ino into the starting point for the hash.
624 *group = (*group + parent->i_ino) % ngroups;
627 * Use a quadratic hash to find a group with a free inode and some free
630 for (i = 1; i < ngroups; i <<= 1) {
632 if (*group >= ngroups)
634 desc = ext4_get_group_desc(sb, *group, NULL);
635 if (desc && ext4_free_inodes_count(sb, desc) &&
636 ext4_free_group_clusters(sb, desc))
641 * That failed: try linear search for a free inode, even if that group
642 * has no free blocks.
644 *group = parent_group;
645 for (i = 0; i < ngroups; i++) {
646 if (++*group >= ngroups)
648 desc = ext4_get_group_desc(sb, *group, NULL);
649 if (desc && ext4_free_inodes_count(sb, desc))
657 * In no journal mode, if an inode has recently been deleted, we want
658 * to avoid reusing it until we're reasonably sure the inode table
659 * block has been written back to disk. (Yes, these values are
660 * somewhat arbitrary...)
662 #define RECENTCY_MIN 5
663 #define RECENTCY_DIRTY 300
665 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
667 struct ext4_group_desc *gdp;
668 struct ext4_inode *raw_inode;
669 struct buffer_head *bh;
670 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
672 int recentcy = RECENTCY_MIN;
675 gdp = ext4_get_group_desc(sb, group, NULL);
679 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
680 (ino / inodes_per_block));
681 if (!bh || !buffer_uptodate(bh))
683 * If the block is not in the buffer cache, then it
684 * must have been written out.
688 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
689 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
691 /* i_dtime is only 32 bits on disk, but we only care about relative
692 * times in the range of a few minutes (i.e. long enough to sync a
693 * recently-deleted inode to disk), so using the low 32 bits of the
694 * clock (a 68 year range) is enough, see time_before32() */
695 dtime = le32_to_cpu(raw_inode->i_dtime);
696 now = ktime_get_real_seconds();
697 if (buffer_dirty(bh))
698 recentcy += RECENTCY_DIRTY;
700 if (dtime && time_before32(dtime, now) &&
701 time_before32(now, dtime + recentcy))
708 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
709 struct buffer_head *bitmap, unsigned long *ino)
712 *ino = ext4_find_next_zero_bit((unsigned long *)
714 EXT4_INODES_PER_GROUP(sb), *ino);
715 if (*ino >= EXT4_INODES_PER_GROUP(sb))
718 if ((EXT4_SB(sb)->s_journal == NULL) &&
719 recently_deleted(sb, group, *ino)) {
721 if (*ino < EXT4_INODES_PER_GROUP(sb))
730 * There are two policies for allocating an inode. If the new inode is
731 * a directory, then a forward search is made for a block group with both
732 * free space and a low directory-to-inode ratio; if that fails, then of
733 * the groups with above-average free space, that group with the fewest
734 * directories already is chosen.
736 * For other inodes, search forward from the parent directory's block
737 * group to find a free inode.
739 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
740 umode_t mode, const struct qstr *qstr,
741 __u32 goal, uid_t *owner, __u32 i_flags,
742 int handle_type, unsigned int line_no,
745 struct super_block *sb;
746 struct buffer_head *inode_bitmap_bh = NULL;
747 struct buffer_head *group_desc_bh;
748 ext4_group_t ngroups, group = 0;
749 unsigned long ino = 0;
751 struct ext4_group_desc *gdp = NULL;
752 struct ext4_inode_info *ei;
753 struct ext4_sb_info *sbi;
757 ext4_group_t flex_group;
758 struct ext4_group_info *grp;
761 /* Cannot create files in a deleted directory */
762 if (!dir || !dir->i_nlink)
763 return ERR_PTR(-EPERM);
768 if (unlikely(ext4_forced_shutdown(sbi)))
769 return ERR_PTR(-EIO);
771 if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
772 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
773 !(i_flags & EXT4_EA_INODE_FL)) {
774 err = fscrypt_get_encryption_info(dir);
777 if (!fscrypt_has_encryption_key(dir))
778 return ERR_PTR(-ENOKEY);
782 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
783 #ifdef CONFIG_EXT4_FS_POSIX_ACL
784 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
789 int acl_size = p->a_count * sizeof(ext4_acl_entry);
791 nblocks += (S_ISDIR(mode) ? 2 : 1) *
792 __ext4_xattr_set_credits(sb, NULL /* inode */,
793 NULL /* block_bh */, acl_size,
794 true /* is_create */);
795 posix_acl_release(p);
799 #ifdef CONFIG_SECURITY
801 int num_security_xattrs = 1;
803 #ifdef CONFIG_INTEGRITY
804 num_security_xattrs++;
807 * We assume that security xattrs are never
808 * more than 1k. In practice they are under
811 nblocks += num_security_xattrs *
812 __ext4_xattr_set_credits(sb, NULL /* inode */,
813 NULL /* block_bh */, 1024,
814 true /* is_create */);
818 nblocks += __ext4_xattr_set_credits(sb,
819 NULL /* inode */, NULL /* block_bh */,
820 FSCRYPT_SET_CONTEXT_MAX_SIZE,
821 true /* is_create */);
824 ngroups = ext4_get_groups_count(sb);
825 trace_ext4_request_inode(dir, mode);
826 inode = new_inode(sb);
828 return ERR_PTR(-ENOMEM);
832 * Initialize owners and quota early so that we don't have to account
833 * for quota initialization worst case in standard inode creating
837 inode->i_mode = mode;
838 i_uid_write(inode, owner[0]);
839 i_gid_write(inode, owner[1]);
840 } else if (test_opt(sb, GRPID)) {
841 inode->i_mode = mode;
842 inode->i_uid = current_fsuid();
843 inode->i_gid = dir->i_gid;
845 inode_init_owner(inode, dir, mode);
847 if (ext4_has_feature_project(sb) &&
848 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
849 ei->i_projid = EXT4_I(dir)->i_projid;
851 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
853 err = dquot_initialize(inode);
858 goal = sbi->s_inode_goal;
860 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
861 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
862 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
868 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
870 ret2 = find_group_other(sb, dir, &group, mode);
873 EXT4_I(dir)->i_last_alloc_group = group;
879 * Normally we will only go through one pass of this loop,
880 * unless we get unlucky and it turns out the group we selected
881 * had its last inode grabbed by someone else.
883 for (i = 0; i < ngroups; i++, ino = 0) {
886 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
891 * Check free inodes count before loading bitmap.
893 if (ext4_free_inodes_count(sb, gdp) == 0)
896 grp = ext4_get_group_info(sb, group);
897 /* Skip groups with already-known suspicious inode tables */
898 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
901 brelse(inode_bitmap_bh);
902 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
903 /* Skip groups with suspicious inode tables */
904 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
905 IS_ERR(inode_bitmap_bh)) {
906 inode_bitmap_bh = NULL;
910 repeat_in_this_group:
911 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
915 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
916 ext4_error(sb, "reserved inode found cleared - "
917 "inode=%lu", ino + 1);
918 ext4_mark_group_bitmap_corrupted(sb, group,
919 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
924 BUG_ON(nblocks <= 0);
925 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
926 handle_type, nblocks,
928 if (IS_ERR(handle)) {
929 err = PTR_ERR(handle);
930 ext4_std_error(sb, err);
934 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
935 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
937 ext4_std_error(sb, err);
940 ext4_lock_group(sb, group);
941 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
943 /* Someone already took the bit. Repeat the search
946 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
948 ext4_set_bit(ino, inode_bitmap_bh->b_data);
951 ret2 = 1; /* we didn't grab the inode */
954 ext4_unlock_group(sb, group);
955 ino++; /* the inode bitmap is zero-based */
957 goto got; /* we grabbed the inode! */
959 if (ino < EXT4_INODES_PER_GROUP(sb))
960 goto repeat_in_this_group;
962 if (++group == ngroups)
969 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
970 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
972 ext4_std_error(sb, err);
976 BUFFER_TRACE(group_desc_bh, "get_write_access");
977 err = ext4_journal_get_write_access(handle, group_desc_bh);
979 ext4_std_error(sb, err);
983 /* We may have to initialize the block bitmap if it isn't already */
984 if (ext4_has_group_desc_csum(sb) &&
985 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
986 struct buffer_head *block_bitmap_bh;
988 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
989 if (IS_ERR(block_bitmap_bh)) {
990 err = PTR_ERR(block_bitmap_bh);
993 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
994 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
996 brelse(block_bitmap_bh);
997 ext4_std_error(sb, err);
1001 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1002 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1004 /* recheck and clear flag under lock if we still need to */
1005 ext4_lock_group(sb, group);
1006 if (ext4_has_group_desc_csum(sb) &&
1007 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1008 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1009 ext4_free_group_clusters_set(sb, gdp,
1010 ext4_free_clusters_after_init(sb, group, gdp));
1011 ext4_block_bitmap_csum_set(sb, group, gdp,
1013 ext4_group_desc_csum_set(sb, group, gdp);
1015 ext4_unlock_group(sb, group);
1016 brelse(block_bitmap_bh);
1019 ext4_std_error(sb, err);
1024 /* Update the relevant bg descriptor fields */
1025 if (ext4_has_group_desc_csum(sb)) {
1027 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1029 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1030 ext4_lock_group(sb, group); /* while we modify the bg desc */
1031 free = EXT4_INODES_PER_GROUP(sb) -
1032 ext4_itable_unused_count(sb, gdp);
1033 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1034 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1038 * Check the relative inode number against the last used
1039 * relative inode number in this group. if it is greater
1040 * we need to update the bg_itable_unused count
1043 ext4_itable_unused_set(sb, gdp,
1044 (EXT4_INODES_PER_GROUP(sb) - ino));
1045 up_read(&grp->alloc_sem);
1047 ext4_lock_group(sb, group);
1050 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1051 if (S_ISDIR(mode)) {
1052 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1053 if (sbi->s_log_groups_per_flex) {
1054 ext4_group_t f = ext4_flex_group(sbi, group);
1056 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1059 if (ext4_has_group_desc_csum(sb)) {
1060 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1061 EXT4_INODES_PER_GROUP(sb) / 8);
1062 ext4_group_desc_csum_set(sb, group, gdp);
1064 ext4_unlock_group(sb, group);
1066 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1067 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1069 ext4_std_error(sb, err);
1073 percpu_counter_dec(&sbi->s_freeinodes_counter);
1075 percpu_counter_inc(&sbi->s_dirs_counter);
1077 if (sbi->s_log_groups_per_flex) {
1078 flex_group = ext4_flex_group(sbi, group);
1079 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1082 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1083 /* This is the optimal IO size (for stat), not the fs block size */
1084 inode->i_blocks = 0;
1085 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1086 current_time(inode);
1088 memset(ei->i_data, 0, sizeof(ei->i_data));
1089 ei->i_dir_start_lookup = 0;
1092 /* Don't inherit extent flag from directory, amongst others. */
1094 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1095 ei->i_flags |= i_flags;
1098 ei->i_block_group = group;
1099 ei->i_last_alloc_group = ~0;
1101 ext4_set_inode_flags(inode);
1102 if (IS_DIRSYNC(inode))
1103 ext4_handle_sync(handle);
1104 if (insert_inode_locked(inode) < 0) {
1106 * Likely a bitmap corruption causing inode to be allocated
1110 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1112 ext4_mark_group_bitmap_corrupted(sb, group,
1113 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1116 inode->i_generation = prandom_u32();
1118 /* Precompute checksum seed for inode metadata */
1119 if (ext4_has_metadata_csum(sb)) {
1121 __le32 inum = cpu_to_le32(inode->i_ino);
1122 __le32 gen = cpu_to_le32(inode->i_generation);
1123 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1125 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1129 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1130 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1132 ei->i_extra_isize = sbi->s_want_extra_isize;
1133 ei->i_inline_off = 0;
1134 if (ext4_has_feature_inline_data(sb))
1135 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1137 err = dquot_alloc_inode(inode);
1142 * Since the encryption xattr will always be unique, create it first so
1143 * that it's less likely to end up in an external xattr block and
1144 * prevent its deduplication.
1147 err = fscrypt_inherit_context(dir, inode, handle, true);
1149 goto fail_free_drop;
1152 if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1153 err = ext4_init_acl(handle, inode, dir);
1155 goto fail_free_drop;
1157 err = ext4_init_security(handle, inode, dir, qstr);
1159 goto fail_free_drop;
1162 if (ext4_has_feature_extents(sb)) {
1163 /* set extent flag only for directory, file and normal symlink*/
1164 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1165 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1166 ext4_ext_tree_init(handle, inode);
1170 if (ext4_handle_valid(handle)) {
1171 ei->i_sync_tid = handle->h_transaction->t_tid;
1172 ei->i_datasync_tid = handle->h_transaction->t_tid;
1175 err = ext4_mark_inode_dirty(handle, inode);
1177 ext4_std_error(sb, err);
1178 goto fail_free_drop;
1181 ext4_debug("allocating inode %lu\n", inode->i_ino);
1182 trace_ext4_allocate_inode(inode, dir, mode);
1183 brelse(inode_bitmap_bh);
1187 dquot_free_inode(inode);
1190 unlock_new_inode(inode);
1193 inode->i_flags |= S_NOQUOTA;
1195 brelse(inode_bitmap_bh);
1196 return ERR_PTR(err);
1199 /* Verify that we are loading a valid orphan from disk */
1200 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1202 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1203 ext4_group_t block_group;
1205 struct buffer_head *bitmap_bh = NULL;
1206 struct inode *inode = NULL;
1207 int err = -EFSCORRUPTED;
1209 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1212 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1213 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1214 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1215 if (IS_ERR(bitmap_bh))
1216 return (struct inode *) bitmap_bh;
1218 /* Having the inode bit set should be a 100% indicator that this
1219 * is a valid orphan (no e2fsck run on fs). Orphans also include
1220 * inodes that were being truncated, so we can't check i_nlink==0.
1222 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1225 inode = ext4_iget(sb, ino);
1226 if (IS_ERR(inode)) {
1227 err = PTR_ERR(inode);
1228 ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1234 * If the orphans has i_nlinks > 0 then it should be able to
1235 * be truncated, otherwise it won't be removed from the orphan
1236 * list during processing and an infinite loop will result.
1237 * Similarly, it must not be a bad inode.
1239 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1240 is_bad_inode(inode))
1243 if (NEXT_ORPHAN(inode) > max_ino)
1249 ext4_error(sb, "bad orphan inode %lu", ino);
1251 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1252 bit, (unsigned long long)bitmap_bh->b_blocknr,
1253 ext4_test_bit(bit, bitmap_bh->b_data));
1255 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1256 is_bad_inode(inode));
1257 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1258 NEXT_ORPHAN(inode));
1259 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1260 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1261 /* Avoid freeing blocks if we got a bad deleted inode */
1262 if (inode->i_nlink == 0)
1263 inode->i_blocks = 0;
1267 return ERR_PTR(err);
1270 unsigned long ext4_count_free_inodes(struct super_block *sb)
1272 unsigned long desc_count;
1273 struct ext4_group_desc *gdp;
1274 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1276 struct ext4_super_block *es;
1277 unsigned long bitmap_count, x;
1278 struct buffer_head *bitmap_bh = NULL;
1280 es = EXT4_SB(sb)->s_es;
1284 for (i = 0; i < ngroups; i++) {
1285 gdp = ext4_get_group_desc(sb, i, NULL);
1288 desc_count += ext4_free_inodes_count(sb, gdp);
1290 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1291 if (IS_ERR(bitmap_bh)) {
1296 x = ext4_count_free(bitmap_bh->b_data,
1297 EXT4_INODES_PER_GROUP(sb) / 8);
1298 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1299 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1303 printk(KERN_DEBUG "ext4_count_free_inodes: "
1304 "stored = %u, computed = %lu, %lu\n",
1305 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1309 for (i = 0; i < ngroups; i++) {
1310 gdp = ext4_get_group_desc(sb, i, NULL);
1313 desc_count += ext4_free_inodes_count(sb, gdp);
1320 /* Called at mount-time, super-block is locked */
1321 unsigned long ext4_count_dirs(struct super_block * sb)
1323 unsigned long count = 0;
1324 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1326 for (i = 0; i < ngroups; i++) {
1327 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1330 count += ext4_used_dirs_count(sb, gdp);
1336 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1337 * inode table. Must be called without any spinlock held. The only place
1338 * where it is called from on active part of filesystem is ext4lazyinit
1339 * thread, so we do not need any special locks, however we have to prevent
1340 * inode allocation from the current group, so we take alloc_sem lock, to
1341 * block ext4_new_inode() until we are finished.
1343 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1346 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1347 struct ext4_sb_info *sbi = EXT4_SB(sb);
1348 struct ext4_group_desc *gdp = NULL;
1349 struct buffer_head *group_desc_bh;
1352 int num, ret = 0, used_blks = 0;
1354 /* This should not happen, but just to be sure check this */
1355 if (sb_rdonly(sb)) {
1360 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1365 * We do not need to lock this, because we are the only one
1366 * handling this flag.
1368 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1371 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1372 if (IS_ERR(handle)) {
1373 ret = PTR_ERR(handle);
1377 down_write(&grp->alloc_sem);
1379 * If inode bitmap was already initialized there may be some
1380 * used inodes so we need to skip blocks with used inodes in
1383 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1384 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1385 ext4_itable_unused_count(sb, gdp)),
1386 sbi->s_inodes_per_block);
1388 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1389 ext4_error(sb, "Something is wrong with group %u: "
1390 "used itable blocks: %d; "
1391 "itable unused count: %u",
1393 ext4_itable_unused_count(sb, gdp));
1398 blk = ext4_inode_table(sb, gdp) + used_blks;
1399 num = sbi->s_itb_per_group - used_blks;
1401 BUFFER_TRACE(group_desc_bh, "get_write_access");
1402 ret = ext4_journal_get_write_access(handle,
1408 * Skip zeroout if the inode table is full. But we set the ZEROED
1409 * flag anyway, because obviously, when it is full it does not need
1412 if (unlikely(num == 0))
1415 ext4_debug("going to zero out inode table in group %d\n",
1417 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1421 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1424 ext4_lock_group(sb, group);
1425 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1426 ext4_group_desc_csum_set(sb, group, gdp);
1427 ext4_unlock_group(sb, group);
1429 BUFFER_TRACE(group_desc_bh,
1430 "call ext4_handle_dirty_metadata");
1431 ret = ext4_handle_dirty_metadata(handle, NULL,
1435 up_write(&grp->alloc_sem);
1436 ext4_journal_stop(handle);