]> Git Repo - linux.git/blob - drivers/clocksource/arm_arch_timer.c
Merge tag 'timers-core-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
27
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
30
31 #include <clocksource/arm_arch_timer.h>
32
33 #define CNTTIDR         0x08
34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
35
36 #define CNTACR(n)       (0x40 + ((n) * 4))
37 #define CNTACR_RPCT     BIT(0)
38 #define CNTACR_RVCT     BIT(1)
39 #define CNTACR_RFRQ     BIT(2)
40 #define CNTACR_RVOFF    BIT(3)
41 #define CNTACR_RWVT     BIT(4)
42 #define CNTACR_RWPT     BIT(5)
43
44 #define CNTVCT_LO       0x08
45 #define CNTVCT_HI       0x0c
46 #define CNTFRQ          0x10
47 #define CNTP_TVAL       0x28
48 #define CNTP_CTL        0x2c
49 #define CNTV_TVAL       0x38
50 #define CNTV_CTL        0x3c
51
52 static unsigned arch_timers_present __initdata;
53
54 static void __iomem *arch_counter_base __ro_after_init;
55
56 struct arch_timer {
57         void __iomem *base;
58         struct clock_event_device evt;
59 };
60
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
62
63 static u32 arch_timer_rate __ro_after_init;
64 u32 arch_timer_rate1 __ro_after_init;
65 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
66
67 static struct clock_event_device __percpu *arch_timer_evt;
68
69 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
70 static bool arch_timer_c3stop __ro_after_init;
71 static bool arch_timer_mem_use_virtual __ro_after_init;
72 static bool arch_counter_suspend_stop __ro_after_init;
73 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
74 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
75 #else
76 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
77 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
78
79 static cpumask_t evtstrm_available = CPU_MASK_NONE;
80 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
81
82 static int __init early_evtstrm_cfg(char *buf)
83 {
84         return strtobool(buf, &evtstrm_enable);
85 }
86 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
87
88 /*
89  * Architected system timer support.
90  */
91
92 static __always_inline
93 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
94                           struct clock_event_device *clk)
95 {
96         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
97                 struct arch_timer *timer = to_arch_timer(clk);
98                 switch (reg) {
99                 case ARCH_TIMER_REG_CTRL:
100                         writel_relaxed(val, timer->base + CNTP_CTL);
101                         break;
102                 case ARCH_TIMER_REG_TVAL:
103                         writel_relaxed(val, timer->base + CNTP_TVAL);
104                         break;
105                 }
106         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
107                 struct arch_timer *timer = to_arch_timer(clk);
108                 switch (reg) {
109                 case ARCH_TIMER_REG_CTRL:
110                         writel_relaxed(val, timer->base + CNTV_CTL);
111                         break;
112                 case ARCH_TIMER_REG_TVAL:
113                         writel_relaxed(val, timer->base + CNTV_TVAL);
114                         break;
115                 }
116         } else {
117                 arch_timer_reg_write_cp15(access, reg, val);
118         }
119 }
120
121 static __always_inline
122 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
123                         struct clock_event_device *clk)
124 {
125         u32 val;
126
127         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
128                 struct arch_timer *timer = to_arch_timer(clk);
129                 switch (reg) {
130                 case ARCH_TIMER_REG_CTRL:
131                         val = readl_relaxed(timer->base + CNTP_CTL);
132                         break;
133                 case ARCH_TIMER_REG_TVAL:
134                         val = readl_relaxed(timer->base + CNTP_TVAL);
135                         break;
136                 }
137         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
138                 struct arch_timer *timer = to_arch_timer(clk);
139                 switch (reg) {
140                 case ARCH_TIMER_REG_CTRL:
141                         val = readl_relaxed(timer->base + CNTV_CTL);
142                         break;
143                 case ARCH_TIMER_REG_TVAL:
144                         val = readl_relaxed(timer->base + CNTV_TVAL);
145                         break;
146                 }
147         } else {
148                 val = arch_timer_reg_read_cp15(access, reg);
149         }
150
151         return val;
152 }
153
154 static notrace u64 arch_counter_get_cntpct_stable(void)
155 {
156         return __arch_counter_get_cntpct_stable();
157 }
158
159 static notrace u64 arch_counter_get_cntpct(void)
160 {
161         return __arch_counter_get_cntpct();
162 }
163
164 static notrace u64 arch_counter_get_cntvct_stable(void)
165 {
166         return __arch_counter_get_cntvct_stable();
167 }
168
169 static notrace u64 arch_counter_get_cntvct(void)
170 {
171         return __arch_counter_get_cntvct();
172 }
173
174 /*
175  * Default to cp15 based access because arm64 uses this function for
176  * sched_clock() before DT is probed and the cp15 method is guaranteed
177  * to exist on arm64. arm doesn't use this before DT is probed so even
178  * if we don't have the cp15 accessors we won't have a problem.
179  */
180 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
181 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
182
183 static u64 arch_counter_read(struct clocksource *cs)
184 {
185         return arch_timer_read_counter();
186 }
187
188 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
189 {
190         return arch_timer_read_counter();
191 }
192
193 static struct clocksource clocksource_counter = {
194         .name   = "arch_sys_counter",
195         .rating = 400,
196         .read   = arch_counter_read,
197         .mask   = CLOCKSOURCE_MASK(56),
198         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
199 };
200
201 static struct cyclecounter cyclecounter __ro_after_init = {
202         .read   = arch_counter_read_cc,
203         .mask   = CLOCKSOURCE_MASK(56),
204 };
205
206 struct ate_acpi_oem_info {
207         char oem_id[ACPI_OEM_ID_SIZE + 1];
208         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
209         u32 oem_revision;
210 };
211
212 #ifdef CONFIG_FSL_ERRATUM_A008585
213 /*
214  * The number of retries is an arbitrary value well beyond the highest number
215  * of iterations the loop has been observed to take.
216  */
217 #define __fsl_a008585_read_reg(reg) ({                  \
218         u64 _old, _new;                                 \
219         int _retries = 200;                             \
220                                                         \
221         do {                                            \
222                 _old = read_sysreg(reg);                \
223                 _new = read_sysreg(reg);                \
224                 _retries--;                             \
225         } while (unlikely(_old != _new) && _retries);   \
226                                                         \
227         WARN_ON_ONCE(!_retries);                        \
228         _new;                                           \
229 })
230
231 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
232 {
233         return __fsl_a008585_read_reg(cntp_tval_el0);
234 }
235
236 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
237 {
238         return __fsl_a008585_read_reg(cntv_tval_el0);
239 }
240
241 static u64 notrace fsl_a008585_read_cntpct_el0(void)
242 {
243         return __fsl_a008585_read_reg(cntpct_el0);
244 }
245
246 static u64 notrace fsl_a008585_read_cntvct_el0(void)
247 {
248         return __fsl_a008585_read_reg(cntvct_el0);
249 }
250 #endif
251
252 #ifdef CONFIG_HISILICON_ERRATUM_161010101
253 /*
254  * Verify whether the value of the second read is larger than the first by
255  * less than 32 is the only way to confirm the value is correct, so clear the
256  * lower 5 bits to check whether the difference is greater than 32 or not.
257  * Theoretically the erratum should not occur more than twice in succession
258  * when reading the system counter, but it is possible that some interrupts
259  * may lead to more than twice read errors, triggering the warning, so setting
260  * the number of retries far beyond the number of iterations the loop has been
261  * observed to take.
262  */
263 #define __hisi_161010101_read_reg(reg) ({                               \
264         u64 _old, _new;                                         \
265         int _retries = 50;                                      \
266                                                                 \
267         do {                                                    \
268                 _old = read_sysreg(reg);                        \
269                 _new = read_sysreg(reg);                        \
270                 _retries--;                                     \
271         } while (unlikely((_new - _old) >> 5) && _retries);     \
272                                                                 \
273         WARN_ON_ONCE(!_retries);                                \
274         _new;                                                   \
275 })
276
277 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
278 {
279         return __hisi_161010101_read_reg(cntp_tval_el0);
280 }
281
282 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
283 {
284         return __hisi_161010101_read_reg(cntv_tval_el0);
285 }
286
287 static u64 notrace hisi_161010101_read_cntpct_el0(void)
288 {
289         return __hisi_161010101_read_reg(cntpct_el0);
290 }
291
292 static u64 notrace hisi_161010101_read_cntvct_el0(void)
293 {
294         return __hisi_161010101_read_reg(cntvct_el0);
295 }
296
297 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
298         /*
299          * Note that trailing spaces are required to properly match
300          * the OEM table information.
301          */
302         {
303                 .oem_id         = "HISI  ",
304                 .oem_table_id   = "HIP05   ",
305                 .oem_revision   = 0,
306         },
307         {
308                 .oem_id         = "HISI  ",
309                 .oem_table_id   = "HIP06   ",
310                 .oem_revision   = 0,
311         },
312         {
313                 .oem_id         = "HISI  ",
314                 .oem_table_id   = "HIP07   ",
315                 .oem_revision   = 0,
316         },
317         { /* Sentinel indicating the end of the OEM array */ },
318 };
319 #endif
320
321 #ifdef CONFIG_ARM64_ERRATUM_858921
322 static u64 notrace arm64_858921_read_cntpct_el0(void)
323 {
324         u64 old, new;
325
326         old = read_sysreg(cntpct_el0);
327         new = read_sysreg(cntpct_el0);
328         return (((old ^ new) >> 32) & 1) ? old : new;
329 }
330
331 static u64 notrace arm64_858921_read_cntvct_el0(void)
332 {
333         u64 old, new;
334
335         old = read_sysreg(cntvct_el0);
336         new = read_sysreg(cntvct_el0);
337         return (((old ^ new) >> 32) & 1) ? old : new;
338 }
339 #endif
340
341 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
342 /*
343  * The low bits of the counter registers are indeterminate while bit 10 or
344  * greater is rolling over. Since the counter value can jump both backward
345  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
346  * with all ones or all zeros in the low bits. Bound the loop by the maximum
347  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
348  */
349 #define __sun50i_a64_read_reg(reg) ({                                   \
350         u64 _val;                                                       \
351         int _retries = 150;                                             \
352                                                                         \
353         do {                                                            \
354                 _val = read_sysreg(reg);                                \
355                 _retries--;                                             \
356         } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);        \
357                                                                         \
358         WARN_ON_ONCE(!_retries);                                        \
359         _val;                                                           \
360 })
361
362 static u64 notrace sun50i_a64_read_cntpct_el0(void)
363 {
364         return __sun50i_a64_read_reg(cntpct_el0);
365 }
366
367 static u64 notrace sun50i_a64_read_cntvct_el0(void)
368 {
369         return __sun50i_a64_read_reg(cntvct_el0);
370 }
371
372 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
373 {
374         return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
375 }
376
377 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
378 {
379         return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
380 }
381 #endif
382
383 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
384 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
385 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
386
387 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
388
389 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
390                                                 struct clock_event_device *clk)
391 {
392         unsigned long ctrl;
393         u64 cval;
394
395         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
396         ctrl |= ARCH_TIMER_CTRL_ENABLE;
397         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
398
399         if (access == ARCH_TIMER_PHYS_ACCESS) {
400                 cval = evt + arch_counter_get_cntpct_stable();
401                 write_sysreg(cval, cntp_cval_el0);
402         } else {
403                 cval = evt + arch_counter_get_cntvct_stable();
404                 write_sysreg(cval, cntv_cval_el0);
405         }
406
407         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
408 }
409
410 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
411                                             struct clock_event_device *clk)
412 {
413         erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
414         return 0;
415 }
416
417 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
418                                             struct clock_event_device *clk)
419 {
420         erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
421         return 0;
422 }
423
424 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
425 #ifdef CONFIG_FSL_ERRATUM_A008585
426         {
427                 .match_type = ate_match_dt,
428                 .id = "fsl,erratum-a008585",
429                 .desc = "Freescale erratum a005858",
430                 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
431                 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
432                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
433                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
434                 .set_next_event_phys = erratum_set_next_event_tval_phys,
435                 .set_next_event_virt = erratum_set_next_event_tval_virt,
436         },
437 #endif
438 #ifdef CONFIG_HISILICON_ERRATUM_161010101
439         {
440                 .match_type = ate_match_dt,
441                 .id = "hisilicon,erratum-161010101",
442                 .desc = "HiSilicon erratum 161010101",
443                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
444                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
445                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
446                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
447                 .set_next_event_phys = erratum_set_next_event_tval_phys,
448                 .set_next_event_virt = erratum_set_next_event_tval_virt,
449         },
450         {
451                 .match_type = ate_match_acpi_oem_info,
452                 .id = hisi_161010101_oem_info,
453                 .desc = "HiSilicon erratum 161010101",
454                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
455                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
456                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
457                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
458                 .set_next_event_phys = erratum_set_next_event_tval_phys,
459                 .set_next_event_virt = erratum_set_next_event_tval_virt,
460         },
461 #endif
462 #ifdef CONFIG_ARM64_ERRATUM_858921
463         {
464                 .match_type = ate_match_local_cap_id,
465                 .id = (void *)ARM64_WORKAROUND_858921,
466                 .desc = "ARM erratum 858921",
467                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
468                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
469         },
470 #endif
471 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
472         {
473                 .match_type = ate_match_dt,
474                 .id = "allwinner,erratum-unknown1",
475                 .desc = "Allwinner erratum UNKNOWN1",
476                 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
477                 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
478                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
479                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
480                 .set_next_event_phys = erratum_set_next_event_tval_phys,
481                 .set_next_event_virt = erratum_set_next_event_tval_virt,
482         },
483 #endif
484 #ifdef CONFIG_ARM64_ERRATUM_1418040
485         {
486                 .match_type = ate_match_local_cap_id,
487                 .id = (void *)ARM64_WORKAROUND_1418040,
488                 .desc = "ARM erratum 1418040",
489                 .disable_compat_vdso = true,
490         },
491 #endif
492 };
493
494 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
495                                const void *);
496
497 static
498 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
499                                  const void *arg)
500 {
501         const struct device_node *np = arg;
502
503         return of_property_read_bool(np, wa->id);
504 }
505
506 static
507 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
508                                         const void *arg)
509 {
510         return this_cpu_has_cap((uintptr_t)wa->id);
511 }
512
513
514 static
515 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
516                                        const void *arg)
517 {
518         static const struct ate_acpi_oem_info empty_oem_info = {};
519         const struct ate_acpi_oem_info *info = wa->id;
520         const struct acpi_table_header *table = arg;
521
522         /* Iterate over the ACPI OEM info array, looking for a match */
523         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
524                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
525                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
526                     info->oem_revision == table->oem_revision)
527                         return true;
528
529                 info++;
530         }
531
532         return false;
533 }
534
535 static const struct arch_timer_erratum_workaround *
536 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
537                           ate_match_fn_t match_fn,
538                           void *arg)
539 {
540         int i;
541
542         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
543                 if (ool_workarounds[i].match_type != type)
544                         continue;
545
546                 if (match_fn(&ool_workarounds[i], arg))
547                         return &ool_workarounds[i];
548         }
549
550         return NULL;
551 }
552
553 static
554 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
555                                   bool local)
556 {
557         int i;
558
559         if (local) {
560                 __this_cpu_write(timer_unstable_counter_workaround, wa);
561         } else {
562                 for_each_possible_cpu(i)
563                         per_cpu(timer_unstable_counter_workaround, i) = wa;
564         }
565
566         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
567                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
568
569         /*
570          * Don't use the vdso fastpath if errata require using the
571          * out-of-line counter accessor. We may change our mind pretty
572          * late in the game (with a per-CPU erratum, for example), so
573          * change both the default value and the vdso itself.
574          */
575         if (wa->read_cntvct_el0) {
576                 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
577                 vdso_default = VDSO_CLOCKMODE_NONE;
578         } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
579                 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
580                 clocksource_counter.vdso_clock_mode = vdso_default;
581         }
582 }
583
584 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
585                                             void *arg)
586 {
587         const struct arch_timer_erratum_workaround *wa, *__wa;
588         ate_match_fn_t match_fn = NULL;
589         bool local = false;
590
591         switch (type) {
592         case ate_match_dt:
593                 match_fn = arch_timer_check_dt_erratum;
594                 break;
595         case ate_match_local_cap_id:
596                 match_fn = arch_timer_check_local_cap_erratum;
597                 local = true;
598                 break;
599         case ate_match_acpi_oem_info:
600                 match_fn = arch_timer_check_acpi_oem_erratum;
601                 break;
602         default:
603                 WARN_ON(1);
604                 return;
605         }
606
607         wa = arch_timer_iterate_errata(type, match_fn, arg);
608         if (!wa)
609                 return;
610
611         __wa = __this_cpu_read(timer_unstable_counter_workaround);
612         if (__wa && wa != __wa)
613                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
614                         wa->desc, __wa->desc);
615
616         if (__wa)
617                 return;
618
619         arch_timer_enable_workaround(wa, local);
620         pr_info("Enabling %s workaround for %s\n",
621                 local ? "local" : "global", wa->desc);
622 }
623
624 static bool arch_timer_this_cpu_has_cntvct_wa(void)
625 {
626         return has_erratum_handler(read_cntvct_el0);
627 }
628
629 static bool arch_timer_counter_has_wa(void)
630 {
631         return atomic_read(&timer_unstable_counter_workaround_in_use);
632 }
633 #else
634 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
635 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
636 #define arch_timer_counter_has_wa()                     ({false;})
637 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
638
639 static __always_inline irqreturn_t timer_handler(const int access,
640                                         struct clock_event_device *evt)
641 {
642         unsigned long ctrl;
643
644         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
645         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
646                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
647                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
648                 evt->event_handler(evt);
649                 return IRQ_HANDLED;
650         }
651
652         return IRQ_NONE;
653 }
654
655 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
656 {
657         struct clock_event_device *evt = dev_id;
658
659         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
660 }
661
662 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
663 {
664         struct clock_event_device *evt = dev_id;
665
666         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
667 }
668
669 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
670 {
671         struct clock_event_device *evt = dev_id;
672
673         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
674 }
675
676 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
677 {
678         struct clock_event_device *evt = dev_id;
679
680         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
681 }
682
683 static __always_inline int timer_shutdown(const int access,
684                                           struct clock_event_device *clk)
685 {
686         unsigned long ctrl;
687
688         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
689         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
690         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
691
692         return 0;
693 }
694
695 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
696 {
697         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
698 }
699
700 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
701 {
702         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
703 }
704
705 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
706 {
707         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
708 }
709
710 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
711 {
712         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
713 }
714
715 static __always_inline void set_next_event(const int access, unsigned long evt,
716                                            struct clock_event_device *clk)
717 {
718         unsigned long ctrl;
719         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
720         ctrl |= ARCH_TIMER_CTRL_ENABLE;
721         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
722         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
723         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
724 }
725
726 static int arch_timer_set_next_event_virt(unsigned long evt,
727                                           struct clock_event_device *clk)
728 {
729         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
730         return 0;
731 }
732
733 static int arch_timer_set_next_event_phys(unsigned long evt,
734                                           struct clock_event_device *clk)
735 {
736         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
737         return 0;
738 }
739
740 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
741                                               struct clock_event_device *clk)
742 {
743         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
744         return 0;
745 }
746
747 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
748                                               struct clock_event_device *clk)
749 {
750         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
751         return 0;
752 }
753
754 static void __arch_timer_setup(unsigned type,
755                                struct clock_event_device *clk)
756 {
757         clk->features = CLOCK_EVT_FEAT_ONESHOT;
758
759         if (type == ARCH_TIMER_TYPE_CP15) {
760                 typeof(clk->set_next_event) sne;
761
762                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
763
764                 if (arch_timer_c3stop)
765                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
766                 clk->name = "arch_sys_timer";
767                 clk->rating = 450;
768                 clk->cpumask = cpumask_of(smp_processor_id());
769                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
770                 switch (arch_timer_uses_ppi) {
771                 case ARCH_TIMER_VIRT_PPI:
772                         clk->set_state_shutdown = arch_timer_shutdown_virt;
773                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
774                         sne = erratum_handler(set_next_event_virt);
775                         break;
776                 case ARCH_TIMER_PHYS_SECURE_PPI:
777                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
778                 case ARCH_TIMER_HYP_PPI:
779                         clk->set_state_shutdown = arch_timer_shutdown_phys;
780                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
781                         sne = erratum_handler(set_next_event_phys);
782                         break;
783                 default:
784                         BUG();
785                 }
786
787                 clk->set_next_event = sne;
788         } else {
789                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
790                 clk->name = "arch_mem_timer";
791                 clk->rating = 400;
792                 clk->cpumask = cpu_possible_mask;
793                 if (arch_timer_mem_use_virtual) {
794                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
795                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
796                         clk->set_next_event =
797                                 arch_timer_set_next_event_virt_mem;
798                 } else {
799                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
800                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
801                         clk->set_next_event =
802                                 arch_timer_set_next_event_phys_mem;
803                 }
804         }
805
806         clk->set_state_shutdown(clk);
807
808         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
809 }
810
811 static void arch_timer_evtstrm_enable(int divider)
812 {
813         u32 cntkctl = arch_timer_get_cntkctl();
814
815         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
816         /* Set the divider and enable virtual event stream */
817         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
818                         | ARCH_TIMER_VIRT_EVT_EN;
819         arch_timer_set_cntkctl(cntkctl);
820         arch_timer_set_evtstrm_feature();
821         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
822 }
823
824 static void arch_timer_configure_evtstream(void)
825 {
826         int evt_stream_div, lsb;
827
828         /*
829          * As the event stream can at most be generated at half the frequency
830          * of the counter, use half the frequency when computing the divider.
831          */
832         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
833
834         /*
835          * Find the closest power of two to the divisor. If the adjacent bit
836          * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
837          */
838         lsb = fls(evt_stream_div) - 1;
839         if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
840                 lsb++;
841
842         /* enable event stream */
843         arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
844 }
845
846 static void arch_counter_set_user_access(void)
847 {
848         u32 cntkctl = arch_timer_get_cntkctl();
849
850         /* Disable user access to the timers and both counters */
851         /* Also disable virtual event stream */
852         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
853                         | ARCH_TIMER_USR_VT_ACCESS_EN
854                         | ARCH_TIMER_USR_VCT_ACCESS_EN
855                         | ARCH_TIMER_VIRT_EVT_EN
856                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
857
858         /*
859          * Enable user access to the virtual counter if it doesn't
860          * need to be workaround. The vdso may have been already
861          * disabled though.
862          */
863         if (arch_timer_this_cpu_has_cntvct_wa())
864                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
865         else
866                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
867
868         arch_timer_set_cntkctl(cntkctl);
869 }
870
871 static bool arch_timer_has_nonsecure_ppi(void)
872 {
873         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
874                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
875 }
876
877 static u32 check_ppi_trigger(int irq)
878 {
879         u32 flags = irq_get_trigger_type(irq);
880
881         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
882                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
883                 pr_warn("WARNING: Please fix your firmware\n");
884                 flags = IRQF_TRIGGER_LOW;
885         }
886
887         return flags;
888 }
889
890 static int arch_timer_starting_cpu(unsigned int cpu)
891 {
892         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
893         u32 flags;
894
895         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
896
897         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
898         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
899
900         if (arch_timer_has_nonsecure_ppi()) {
901                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
902                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
903                                   flags);
904         }
905
906         arch_counter_set_user_access();
907         if (evtstrm_enable)
908                 arch_timer_configure_evtstream();
909
910         return 0;
911 }
912
913 static int validate_timer_rate(void)
914 {
915         if (!arch_timer_rate)
916                 return -EINVAL;
917
918         /* Arch timer frequency < 1MHz can cause trouble */
919         WARN_ON(arch_timer_rate < 1000000);
920
921         return 0;
922 }
923
924 /*
925  * For historical reasons, when probing with DT we use whichever (non-zero)
926  * rate was probed first, and don't verify that others match. If the first node
927  * probed has a clock-frequency property, this overrides the HW register.
928  */
929 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
930 {
931         /* Who has more than one independent system counter? */
932         if (arch_timer_rate)
933                 return;
934
935         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
936                 arch_timer_rate = rate;
937
938         /* Check the timer frequency. */
939         if (validate_timer_rate())
940                 pr_warn("frequency not available\n");
941 }
942
943 static void __init arch_timer_banner(unsigned type)
944 {
945         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
946                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
947                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
948                         " and " : "",
949                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
950                 (unsigned long)arch_timer_rate / 1000000,
951                 (unsigned long)(arch_timer_rate / 10000) % 100,
952                 type & ARCH_TIMER_TYPE_CP15 ?
953                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
954                         "",
955                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
956                 type & ARCH_TIMER_TYPE_MEM ?
957                         arch_timer_mem_use_virtual ? "virt" : "phys" :
958                         "");
959 }
960
961 u32 arch_timer_get_rate(void)
962 {
963         return arch_timer_rate;
964 }
965
966 bool arch_timer_evtstrm_available(void)
967 {
968         /*
969          * We might get called from a preemptible context. This is fine
970          * because availability of the event stream should be always the same
971          * for a preemptible context and context where we might resume a task.
972          */
973         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
974 }
975
976 static u64 arch_counter_get_cntvct_mem(void)
977 {
978         u32 vct_lo, vct_hi, tmp_hi;
979
980         do {
981                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
982                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
983                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
984         } while (vct_hi != tmp_hi);
985
986         return ((u64) vct_hi << 32) | vct_lo;
987 }
988
989 static struct arch_timer_kvm_info arch_timer_kvm_info;
990
991 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
992 {
993         return &arch_timer_kvm_info;
994 }
995
996 static void __init arch_counter_register(unsigned type)
997 {
998         u64 start_count;
999
1000         /* Register the CP15 based counter if we have one */
1001         if (type & ARCH_TIMER_TYPE_CP15) {
1002                 u64 (*rd)(void);
1003
1004                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1005                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1006                         if (arch_timer_counter_has_wa())
1007                                 rd = arch_counter_get_cntvct_stable;
1008                         else
1009                                 rd = arch_counter_get_cntvct;
1010                 } else {
1011                         if (arch_timer_counter_has_wa())
1012                                 rd = arch_counter_get_cntpct_stable;
1013                         else
1014                                 rd = arch_counter_get_cntpct;
1015                 }
1016
1017                 arch_timer_read_counter = rd;
1018                 clocksource_counter.vdso_clock_mode = vdso_default;
1019         } else {
1020                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1021         }
1022
1023         if (!arch_counter_suspend_stop)
1024                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1025         start_count = arch_timer_read_counter();
1026         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1027         cyclecounter.mult = clocksource_counter.mult;
1028         cyclecounter.shift = clocksource_counter.shift;
1029         timecounter_init(&arch_timer_kvm_info.timecounter,
1030                          &cyclecounter, start_count);
1031
1032         /* 56 bits minimum, so we assume worst case rollover */
1033         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1034 }
1035
1036 static void arch_timer_stop(struct clock_event_device *clk)
1037 {
1038         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1039
1040         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1041         if (arch_timer_has_nonsecure_ppi())
1042                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1043
1044         clk->set_state_shutdown(clk);
1045 }
1046
1047 static int arch_timer_dying_cpu(unsigned int cpu)
1048 {
1049         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1050
1051         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1052
1053         arch_timer_stop(clk);
1054         return 0;
1055 }
1056
1057 #ifdef CONFIG_CPU_PM
1058 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1059 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1060                                     unsigned long action, void *hcpu)
1061 {
1062         if (action == CPU_PM_ENTER) {
1063                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1064
1065                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1066         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1067                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1068
1069                 if (arch_timer_have_evtstrm_feature())
1070                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1071         }
1072         return NOTIFY_OK;
1073 }
1074
1075 static struct notifier_block arch_timer_cpu_pm_notifier = {
1076         .notifier_call = arch_timer_cpu_pm_notify,
1077 };
1078
1079 static int __init arch_timer_cpu_pm_init(void)
1080 {
1081         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1082 }
1083
1084 static void __init arch_timer_cpu_pm_deinit(void)
1085 {
1086         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1087 }
1088
1089 #else
1090 static int __init arch_timer_cpu_pm_init(void)
1091 {
1092         return 0;
1093 }
1094
1095 static void __init arch_timer_cpu_pm_deinit(void)
1096 {
1097 }
1098 #endif
1099
1100 static int __init arch_timer_register(void)
1101 {
1102         int err;
1103         int ppi;
1104
1105         arch_timer_evt = alloc_percpu(struct clock_event_device);
1106         if (!arch_timer_evt) {
1107                 err = -ENOMEM;
1108                 goto out;
1109         }
1110
1111         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1112         switch (arch_timer_uses_ppi) {
1113         case ARCH_TIMER_VIRT_PPI:
1114                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1115                                          "arch_timer", arch_timer_evt);
1116                 break;
1117         case ARCH_TIMER_PHYS_SECURE_PPI:
1118         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1119                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1120                                          "arch_timer", arch_timer_evt);
1121                 if (!err && arch_timer_has_nonsecure_ppi()) {
1122                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1123                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1124                                                  "arch_timer", arch_timer_evt);
1125                         if (err)
1126                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1127                                                 arch_timer_evt);
1128                 }
1129                 break;
1130         case ARCH_TIMER_HYP_PPI:
1131                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1132                                          "arch_timer", arch_timer_evt);
1133                 break;
1134         default:
1135                 BUG();
1136         }
1137
1138         if (err) {
1139                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1140                 goto out_free;
1141         }
1142
1143         err = arch_timer_cpu_pm_init();
1144         if (err)
1145                 goto out_unreg_notify;
1146
1147         /* Register and immediately configure the timer on the boot CPU */
1148         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1149                                 "clockevents/arm/arch_timer:starting",
1150                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1151         if (err)
1152                 goto out_unreg_cpupm;
1153         return 0;
1154
1155 out_unreg_cpupm:
1156         arch_timer_cpu_pm_deinit();
1157
1158 out_unreg_notify:
1159         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1160         if (arch_timer_has_nonsecure_ppi())
1161                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1162                                 arch_timer_evt);
1163
1164 out_free:
1165         free_percpu(arch_timer_evt);
1166 out:
1167         return err;
1168 }
1169
1170 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1171 {
1172         int ret;
1173         irq_handler_t func;
1174         struct arch_timer *t;
1175
1176         t = kzalloc(sizeof(*t), GFP_KERNEL);
1177         if (!t)
1178                 return -ENOMEM;
1179
1180         t->base = base;
1181         t->evt.irq = irq;
1182         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1183
1184         if (arch_timer_mem_use_virtual)
1185                 func = arch_timer_handler_virt_mem;
1186         else
1187                 func = arch_timer_handler_phys_mem;
1188
1189         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1190         if (ret) {
1191                 pr_err("Failed to request mem timer irq\n");
1192                 kfree(t);
1193         }
1194
1195         return ret;
1196 }
1197
1198 static const struct of_device_id arch_timer_of_match[] __initconst = {
1199         { .compatible   = "arm,armv7-timer",    },
1200         { .compatible   = "arm,armv8-timer",    },
1201         {},
1202 };
1203
1204 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1205         { .compatible   = "arm,armv7-timer-mem", },
1206         {},
1207 };
1208
1209 static bool __init arch_timer_needs_of_probing(void)
1210 {
1211         struct device_node *dn;
1212         bool needs_probing = false;
1213         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1214
1215         /* We have two timers, and both device-tree nodes are probed. */
1216         if ((arch_timers_present & mask) == mask)
1217                 return false;
1218
1219         /*
1220          * Only one type of timer is probed,
1221          * check if we have another type of timer node in device-tree.
1222          */
1223         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1224                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1225         else
1226                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1227
1228         if (dn && of_device_is_available(dn))
1229                 needs_probing = true;
1230
1231         of_node_put(dn);
1232
1233         return needs_probing;
1234 }
1235
1236 static int __init arch_timer_common_init(void)
1237 {
1238         arch_timer_banner(arch_timers_present);
1239         arch_counter_register(arch_timers_present);
1240         return arch_timer_arch_init();
1241 }
1242
1243 /**
1244  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1245  *
1246  * If HYP mode is available, we know that the physical timer
1247  * has been configured to be accessible from PL1. Use it, so
1248  * that a guest can use the virtual timer instead.
1249  *
1250  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1251  * accesses to CNTP_*_EL1 registers are silently redirected to
1252  * their CNTHP_*_EL2 counterparts, and use a different PPI
1253  * number.
1254  *
1255  * If no interrupt provided for virtual timer, we'll have to
1256  * stick to the physical timer. It'd better be accessible...
1257  * For arm64 we never use the secure interrupt.
1258  *
1259  * Return: a suitable PPI type for the current system.
1260  */
1261 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1262 {
1263         if (is_kernel_in_hyp_mode())
1264                 return ARCH_TIMER_HYP_PPI;
1265
1266         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1267                 return ARCH_TIMER_VIRT_PPI;
1268
1269         if (IS_ENABLED(CONFIG_ARM64))
1270                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1271
1272         return ARCH_TIMER_PHYS_SECURE_PPI;
1273 }
1274
1275 static void __init arch_timer_populate_kvm_info(void)
1276 {
1277         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1278         if (is_kernel_in_hyp_mode())
1279                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1280 }
1281
1282 static int __init arch_timer_of_init(struct device_node *np)
1283 {
1284         int i, ret;
1285         u32 rate;
1286
1287         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1288                 pr_warn("multiple nodes in dt, skipping\n");
1289                 return 0;
1290         }
1291
1292         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1293         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1294                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1295
1296         arch_timer_populate_kvm_info();
1297
1298         rate = arch_timer_get_cntfrq();
1299         arch_timer_of_configure_rate(rate, np);
1300
1301         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1302
1303         /* Check for globally applicable workarounds */
1304         arch_timer_check_ool_workaround(ate_match_dt, np);
1305
1306         /*
1307          * If we cannot rely on firmware initializing the timer registers then
1308          * we should use the physical timers instead.
1309          */
1310         if (IS_ENABLED(CONFIG_ARM) &&
1311             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1312                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1313         else
1314                 arch_timer_uses_ppi = arch_timer_select_ppi();
1315
1316         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1317                 pr_err("No interrupt available, giving up\n");
1318                 return -EINVAL;
1319         }
1320
1321         /* On some systems, the counter stops ticking when in suspend. */
1322         arch_counter_suspend_stop = of_property_read_bool(np,
1323                                                          "arm,no-tick-in-suspend");
1324
1325         ret = arch_timer_register();
1326         if (ret)
1327                 return ret;
1328
1329         if (arch_timer_needs_of_probing())
1330                 return 0;
1331
1332         return arch_timer_common_init();
1333 }
1334 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1335 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1336
1337 static u32 __init
1338 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1339 {
1340         void __iomem *base;
1341         u32 rate;
1342
1343         base = ioremap(frame->cntbase, frame->size);
1344         if (!base) {
1345                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1346                 return 0;
1347         }
1348
1349         rate = readl_relaxed(base + CNTFRQ);
1350
1351         iounmap(base);
1352
1353         return rate;
1354 }
1355
1356 static struct arch_timer_mem_frame * __init
1357 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1358 {
1359         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1360         void __iomem *cntctlbase;
1361         u32 cnttidr;
1362         int i;
1363
1364         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1365         if (!cntctlbase) {
1366                 pr_err("Can't map CNTCTLBase @ %pa\n",
1367                         &timer_mem->cntctlbase);
1368                 return NULL;
1369         }
1370
1371         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1372
1373         /*
1374          * Try to find a virtual capable frame. Otherwise fall back to a
1375          * physical capable frame.
1376          */
1377         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1378                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1379                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1380
1381                 frame = &timer_mem->frame[i];
1382                 if (!frame->valid)
1383                         continue;
1384
1385                 /* Try enabling everything, and see what sticks */
1386                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1387                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1388
1389                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1390                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1391                         best_frame = frame;
1392                         arch_timer_mem_use_virtual = true;
1393                         break;
1394                 }
1395
1396                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1397                         continue;
1398
1399                 best_frame = frame;
1400         }
1401
1402         iounmap(cntctlbase);
1403
1404         return best_frame;
1405 }
1406
1407 static int __init
1408 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1409 {
1410         void __iomem *base;
1411         int ret, irq = 0;
1412
1413         if (arch_timer_mem_use_virtual)
1414                 irq = frame->virt_irq;
1415         else
1416                 irq = frame->phys_irq;
1417
1418         if (!irq) {
1419                 pr_err("Frame missing %s irq.\n",
1420                        arch_timer_mem_use_virtual ? "virt" : "phys");
1421                 return -EINVAL;
1422         }
1423
1424         if (!request_mem_region(frame->cntbase, frame->size,
1425                                 "arch_mem_timer"))
1426                 return -EBUSY;
1427
1428         base = ioremap(frame->cntbase, frame->size);
1429         if (!base) {
1430                 pr_err("Can't map frame's registers\n");
1431                 return -ENXIO;
1432         }
1433
1434         ret = arch_timer_mem_register(base, irq);
1435         if (ret) {
1436                 iounmap(base);
1437                 return ret;
1438         }
1439
1440         arch_counter_base = base;
1441         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1442
1443         return 0;
1444 }
1445
1446 static int __init arch_timer_mem_of_init(struct device_node *np)
1447 {
1448         struct arch_timer_mem *timer_mem;
1449         struct arch_timer_mem_frame *frame;
1450         struct device_node *frame_node;
1451         struct resource res;
1452         int ret = -EINVAL;
1453         u32 rate;
1454
1455         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1456         if (!timer_mem)
1457                 return -ENOMEM;
1458
1459         if (of_address_to_resource(np, 0, &res))
1460                 goto out;
1461         timer_mem->cntctlbase = res.start;
1462         timer_mem->size = resource_size(&res);
1463
1464         for_each_available_child_of_node(np, frame_node) {
1465                 u32 n;
1466                 struct arch_timer_mem_frame *frame;
1467
1468                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1469                         pr_err(FW_BUG "Missing frame-number.\n");
1470                         of_node_put(frame_node);
1471                         goto out;
1472                 }
1473                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1474                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1475                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1476                         of_node_put(frame_node);
1477                         goto out;
1478                 }
1479                 frame = &timer_mem->frame[n];
1480
1481                 if (frame->valid) {
1482                         pr_err(FW_BUG "Duplicated frame-number.\n");
1483                         of_node_put(frame_node);
1484                         goto out;
1485                 }
1486
1487                 if (of_address_to_resource(frame_node, 0, &res)) {
1488                         of_node_put(frame_node);
1489                         goto out;
1490                 }
1491                 frame->cntbase = res.start;
1492                 frame->size = resource_size(&res);
1493
1494                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1495                                                        ARCH_TIMER_VIRT_SPI);
1496                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1497                                                        ARCH_TIMER_PHYS_SPI);
1498
1499                 frame->valid = true;
1500         }
1501
1502         frame = arch_timer_mem_find_best_frame(timer_mem);
1503         if (!frame) {
1504                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1505                         &timer_mem->cntctlbase);
1506                 ret = -EINVAL;
1507                 goto out;
1508         }
1509
1510         rate = arch_timer_mem_frame_get_cntfrq(frame);
1511         arch_timer_of_configure_rate(rate, np);
1512
1513         ret = arch_timer_mem_frame_register(frame);
1514         if (!ret && !arch_timer_needs_of_probing())
1515                 ret = arch_timer_common_init();
1516 out:
1517         kfree(timer_mem);
1518         return ret;
1519 }
1520 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1521                        arch_timer_mem_of_init);
1522
1523 #ifdef CONFIG_ACPI_GTDT
1524 static int __init
1525 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1526 {
1527         struct arch_timer_mem_frame *frame;
1528         u32 rate;
1529         int i;
1530
1531         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1532                 frame = &timer_mem->frame[i];
1533
1534                 if (!frame->valid)
1535                         continue;
1536
1537                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1538                 if (rate == arch_timer_rate)
1539                         continue;
1540
1541                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1542                         &frame->cntbase,
1543                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1544
1545                 return -EINVAL;
1546         }
1547
1548         return 0;
1549 }
1550
1551 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1552 {
1553         struct arch_timer_mem *timers, *timer;
1554         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1555         int timer_count, i, ret = 0;
1556
1557         timers = kcalloc(platform_timer_count, sizeof(*timers),
1558                             GFP_KERNEL);
1559         if (!timers)
1560                 return -ENOMEM;
1561
1562         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1563         if (ret || !timer_count)
1564                 goto out;
1565
1566         /*
1567          * While unlikely, it's theoretically possible that none of the frames
1568          * in a timer expose the combination of feature we want.
1569          */
1570         for (i = 0; i < timer_count; i++) {
1571                 timer = &timers[i];
1572
1573                 frame = arch_timer_mem_find_best_frame(timer);
1574                 if (!best_frame)
1575                         best_frame = frame;
1576
1577                 ret = arch_timer_mem_verify_cntfrq(timer);
1578                 if (ret) {
1579                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1580                         goto out;
1581                 }
1582
1583                 if (!best_frame) /* implies !frame */
1584                         /*
1585                          * Only complain about missing suitable frames if we
1586                          * haven't already found one in a previous iteration.
1587                          */
1588                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1589                                 &timer->cntctlbase);
1590         }
1591
1592         if (best_frame)
1593                 ret = arch_timer_mem_frame_register(best_frame);
1594 out:
1595         kfree(timers);
1596         return ret;
1597 }
1598
1599 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1600 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1601 {
1602         int ret, platform_timer_count;
1603
1604         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1605                 pr_warn("already initialized, skipping\n");
1606                 return -EINVAL;
1607         }
1608
1609         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1610
1611         ret = acpi_gtdt_init(table, &platform_timer_count);
1612         if (ret)
1613                 return ret;
1614
1615         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1616                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1617
1618         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1619                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1620
1621         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1622                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1623
1624         arch_timer_populate_kvm_info();
1625
1626         /*
1627          * When probing via ACPI, we have no mechanism to override the sysreg
1628          * CNTFRQ value. This *must* be correct.
1629          */
1630         arch_timer_rate = arch_timer_get_cntfrq();
1631         ret = validate_timer_rate();
1632         if (ret) {
1633                 pr_err(FW_BUG "frequency not available.\n");
1634                 return ret;
1635         }
1636
1637         arch_timer_uses_ppi = arch_timer_select_ppi();
1638         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1639                 pr_err("No interrupt available, giving up\n");
1640                 return -EINVAL;
1641         }
1642
1643         /* Always-on capability */
1644         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1645
1646         /* Check for globally applicable workarounds */
1647         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1648
1649         ret = arch_timer_register();
1650         if (ret)
1651                 return ret;
1652
1653         if (platform_timer_count &&
1654             arch_timer_mem_acpi_init(platform_timer_count))
1655                 pr_err("Failed to initialize memory-mapped timer.\n");
1656
1657         return arch_timer_common_init();
1658 }
1659 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1660 #endif
This page took 0.130188 seconds and 4 git commands to generate.