1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
4 * BTF-to-C type converter.
6 * Copyright (c) 2019 Facebook
14 #include <linux/err.h>
15 #include <linux/btf.h>
19 #include "libbpf_internal.h"
21 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
22 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
24 static const char *pfx(int lvl)
26 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
29 enum btf_dump_type_order_state {
35 enum btf_dump_type_emit_state {
41 /* per-type auxiliary state */
42 struct btf_dump_type_aux_state {
43 /* topological sorting state */
44 enum btf_dump_type_order_state order_state: 2;
45 /* emitting state used to determine the need for forward declaration */
46 enum btf_dump_type_emit_state emit_state: 2;
47 /* whether forward declaration was already emitted */
49 /* whether unique non-duplicate name was already assigned */
50 __u8 name_resolved: 1;
51 /* whether type is referenced from any other type */
56 const struct btf *btf;
57 const struct btf_ext *btf_ext;
58 btf_dump_printf_fn_t printf_fn;
59 struct btf_dump_opts opts;
61 /* per-type auxiliary state */
62 struct btf_dump_type_aux_state *type_states;
63 /* per-type optional cached unique name, must be freed, if present */
64 const char **cached_names;
66 /* topo-sorted list of dependent type definitions */
72 * stack of type declarations (e.g., chain of modifiers, arrays,
79 /* maps struct/union/enum name to a number of name occurrences */
80 struct hashmap *type_names;
82 * maps typedef identifiers and enum value names to a number of such
85 struct hashmap *ident_names;
88 static size_t str_hash_fn(const void *key, void *ctx)
100 static bool str_equal_fn(const void *a, const void *b, void *ctx)
102 return strcmp(a, b) == 0;
105 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
107 return btf__name_by_offset(d->btf, name_off);
110 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
115 d->printf_fn(d->opts.ctx, fmt, args);
119 struct btf_dump *btf_dump__new(const struct btf *btf,
120 const struct btf_ext *btf_ext,
121 const struct btf_dump_opts *opts,
122 btf_dump_printf_fn_t printf_fn)
127 d = calloc(1, sizeof(struct btf_dump));
129 return ERR_PTR(-ENOMEM);
132 d->btf_ext = btf_ext;
133 d->printf_fn = printf_fn;
134 d->opts.ctx = opts ? opts->ctx : NULL;
136 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
137 if (IS_ERR(d->type_names)) {
138 err = PTR_ERR(d->type_names);
139 d->type_names = NULL;
143 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
144 if (IS_ERR(d->ident_names)) {
145 err = PTR_ERR(d->ident_names);
146 d->ident_names = NULL;
154 void btf_dump__free(struct btf_dump *d)
161 free(d->type_states);
162 if (d->cached_names) {
163 /* any set cached name is owned by us and should be freed */
164 for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) {
165 if (d->cached_names[i])
166 free((void *)d->cached_names[i]);
169 free(d->cached_names);
172 hashmap__free(d->type_names);
173 hashmap__free(d->ident_names);
178 static int btf_dump_mark_referenced(struct btf_dump *d);
179 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
180 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
183 * Dump BTF type in a compilable C syntax, including all the necessary
184 * dependent types, necessary for compilation. If some of the dependent types
185 * were already emitted as part of previous btf_dump__dump_type() invocation
186 * for another type, they won't be emitted again. This API allows callers to
187 * filter out BTF types according to user-defined criterias and emitted only
188 * minimal subset of types, necessary to compile everything. Full struct/union
189 * definitions will still be emitted, even if the only usage is through
190 * pointer and could be satisfied with just a forward declaration.
192 * Dumping is done in two high-level passes:
193 * 1. Topologically sort type definitions to satisfy C rules of compilation.
194 * 2. Emit type definitions in C syntax.
196 * Returns 0 on success; <0, otherwise.
198 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
202 if (id > btf__get_nr_types(d->btf))
205 /* type states are lazily allocated, as they might not be needed */
206 if (!d->type_states) {
207 d->type_states = calloc(1 + btf__get_nr_types(d->btf),
208 sizeof(d->type_states[0]));
211 d->cached_names = calloc(1 + btf__get_nr_types(d->btf),
212 sizeof(d->cached_names[0]));
213 if (!d->cached_names)
216 /* VOID is special */
217 d->type_states[0].order_state = ORDERED;
218 d->type_states[0].emit_state = EMITTED;
220 /* eagerly determine referenced types for anon enums */
221 err = btf_dump_mark_referenced(d);
226 d->emit_queue_cnt = 0;
227 err = btf_dump_order_type(d, id, false);
231 for (i = 0; i < d->emit_queue_cnt; i++)
232 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
238 * Mark all types that are referenced from any other type. This is used to
239 * determine top-level anonymous enums that need to be emitted as an
240 * independent type declarations.
241 * Anonymous enums come in two flavors: either embedded in a struct's field
242 * definition, in which case they have to be declared inline as part of field
243 * type declaration; or as a top-level anonymous enum, typically used for
244 * declaring global constants. It's impossible to distinguish between two
245 * without knowning whether given enum type was referenced from other type:
246 * top-level anonymous enum won't be referenced by anything, while embedded
249 static int btf_dump_mark_referenced(struct btf_dump *d)
251 int i, j, n = btf__get_nr_types(d->btf);
252 const struct btf_type *t;
255 for (i = 1; i <= n; i++) {
256 t = btf__type_by_id(d->btf, i);
259 switch (btf_kind(t)) {
265 case BTF_KIND_VOLATILE:
267 case BTF_KIND_RESTRICT:
269 case BTF_KIND_TYPEDEF:
272 d->type_states[t->type].referenced = 1;
275 case BTF_KIND_ARRAY: {
276 const struct btf_array *a = btf_array(t);
278 d->type_states[a->index_type].referenced = 1;
279 d->type_states[a->type].referenced = 1;
282 case BTF_KIND_STRUCT:
283 case BTF_KIND_UNION: {
284 const struct btf_member *m = btf_members(t);
286 for (j = 0; j < vlen; j++, m++)
287 d->type_states[m->type].referenced = 1;
290 case BTF_KIND_FUNC_PROTO: {
291 const struct btf_param *p = btf_params(t);
293 for (j = 0; j < vlen; j++, p++)
294 d->type_states[p->type].referenced = 1;
297 case BTF_KIND_DATASEC: {
298 const struct btf_var_secinfo *v = btf_var_secinfos(t);
300 for (j = 0; j < vlen; j++, v++)
301 d->type_states[v->type].referenced = 1;
310 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
315 if (d->emit_queue_cnt >= d->emit_queue_cap) {
316 new_cap = max(16, d->emit_queue_cap * 3 / 2);
317 new_queue = realloc(d->emit_queue,
318 new_cap * sizeof(new_queue[0]));
321 d->emit_queue = new_queue;
322 d->emit_queue_cap = new_cap;
325 d->emit_queue[d->emit_queue_cnt++] = id;
330 * Determine order of emitting dependent types and specified type to satisfy
331 * C compilation rules. This is done through topological sorting with an
332 * additional complication which comes from C rules. The main idea for C is
333 * that if some type is "embedded" into a struct/union, it's size needs to be
334 * known at the time of definition of containing type. E.g., for:
337 * struct B { struct A x; }
339 * struct A *HAS* to be defined before struct B, because it's "embedded",
340 * i.e., it is part of struct B layout. But in the following case:
343 * struct B { struct A *x; }
346 * it's enough to just have a forward declaration of struct A at the time of
347 * struct B definition, as struct B has a pointer to struct A, so the size of
348 * field x is known without knowing struct A size: it's sizeof(void *).
350 * Unfortunately, there are some trickier cases we need to handle, e.g.:
352 * struct A {}; // if this was forward-declaration: compilation error
354 * struct { // anonymous struct
359 * In this case, struct B's field x is a pointer, so it's size is known
360 * regardless of the size of (anonymous) struct it points to. But because this
361 * struct is anonymous and thus defined inline inside struct B, *and* it
362 * embeds struct A, compiler requires full definition of struct A to be known
363 * before struct B can be defined. This creates a transitive dependency
364 * between struct A and struct B. If struct A was forward-declared before
365 * struct B definition and fully defined after struct B definition, that would
366 * trigger compilation error.
368 * All this means that while we are doing topological sorting on BTF type
369 * graph, we need to determine relationships between different types (graph
371 * - weak link (relationship) between X and Y, if Y *CAN* be
372 * forward-declared at the point of X definition;
373 * - strong link, if Y *HAS* to be fully-defined before X can be defined.
375 * The rule is as follows. Given a chain of BTF types from X to Y, if there is
376 * BTF_KIND_PTR type in the chain and at least one non-anonymous type
377 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
378 * Weak/strong relationship is determined recursively during DFS traversal and
379 * is returned as a result from btf_dump_order_type().
381 * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
382 * but it is not guaranteeing that no extraneous forward declarations will be
385 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
386 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
387 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
388 * entire graph path, so depending where from one came to that BTF type, it
389 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
390 * once they are processed, there is no need to do it again, so they are
391 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
392 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
393 * in any case, once those are processed, no need to do it again, as the
394 * result won't change.
397 * - 1, if type is part of strong link (so there is strong topological
398 * ordering requirements);
399 * - 0, if type is part of weak link (so can be satisfied through forward
401 * - <0, on error (e.g., unsatisfiable type loop detected).
403 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
406 * Order state is used to detect strong link cycles, but only for BTF
407 * kinds that are or could be an independent definition (i.e.,
408 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
409 * func_protos, modifiers are just means to get to these definitions.
410 * Int/void don't need definitions, they are assumed to be always
411 * properly defined. We also ignore datasec, var, and funcs for now.
412 * So for all non-defining kinds, we never even set ordering state,
413 * for defining kinds we set ORDERING and subsequently ORDERED if it
414 * forms a strong link.
416 struct btf_dump_type_aux_state *tstate = &d->type_states[id];
417 const struct btf_type *t;
421 /* return true, letting typedefs know that it's ok to be emitted */
422 if (tstate->order_state == ORDERED)
425 t = btf__type_by_id(d->btf, id);
427 if (tstate->order_state == ORDERING) {
428 /* type loop, but resolvable through fwd declaration */
429 if (btf_is_composite(t) && through_ptr && t->name_off != 0)
431 pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
435 switch (btf_kind(t)) {
437 tstate->order_state = ORDERED;
441 err = btf_dump_order_type(d, t->type, true);
442 tstate->order_state = ORDERED;
446 return btf_dump_order_type(d, btf_array(t)->type, through_ptr);
448 case BTF_KIND_STRUCT:
449 case BTF_KIND_UNION: {
450 const struct btf_member *m = btf_members(t);
452 * struct/union is part of strong link, only if it's embedded
453 * (so no ptr in a path) or it's anonymous (so has to be
454 * defined inline, even if declared through ptr)
456 if (through_ptr && t->name_off != 0)
459 tstate->order_state = ORDERING;
462 for (i = 0; i < vlen; i++, m++) {
463 err = btf_dump_order_type(d, m->type, false);
468 if (t->name_off != 0) {
469 err = btf_dump_add_emit_queue_id(d, id);
474 tstate->order_state = ORDERED;
480 * non-anonymous or non-referenced enums are top-level
481 * declarations and should be emitted. Same logic can be
482 * applied to FWDs, it won't hurt anyways.
484 if (t->name_off != 0 || !tstate->referenced) {
485 err = btf_dump_add_emit_queue_id(d, id);
489 tstate->order_state = ORDERED;
492 case BTF_KIND_TYPEDEF: {
495 is_strong = btf_dump_order_type(d, t->type, through_ptr);
499 /* typedef is similar to struct/union w.r.t. fwd-decls */
500 if (through_ptr && !is_strong)
503 /* typedef is always a named definition */
504 err = btf_dump_add_emit_queue_id(d, id);
508 d->type_states[id].order_state = ORDERED;
511 case BTF_KIND_VOLATILE:
513 case BTF_KIND_RESTRICT:
514 return btf_dump_order_type(d, t->type, through_ptr);
516 case BTF_KIND_FUNC_PROTO: {
517 const struct btf_param *p = btf_params(t);
520 err = btf_dump_order_type(d, t->type, through_ptr);
526 for (i = 0; i < vlen; i++, p++) {
527 err = btf_dump_order_type(d, p->type, through_ptr);
537 case BTF_KIND_DATASEC:
538 d->type_states[id].order_state = ORDERED;
546 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
547 const struct btf_type *t);
548 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
549 const struct btf_type *t, int lvl);
551 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
552 const struct btf_type *t);
553 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
554 const struct btf_type *t, int lvl);
556 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
557 const struct btf_type *t);
559 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
560 const struct btf_type *t, int lvl);
562 /* a local view into a shared stack */
568 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
569 const char *fname, int lvl);
570 static void btf_dump_emit_type_chain(struct btf_dump *d,
571 struct id_stack *decl_stack,
572 const char *fname, int lvl);
574 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
575 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
576 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
577 const char *orig_name);
579 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
581 const struct btf_type *t = btf__type_by_id(d->btf, id);
583 /* __builtin_va_list is a compiler built-in, which causes compilation
584 * errors, when compiling w/ different compiler, then used to compile
585 * original code (e.g., GCC to compile kernel, Clang to use generated
586 * C header from BTF). As it is built-in, it should be already defined
587 * properly internally in compiler.
589 if (t->name_off == 0)
591 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
595 * Emit C-syntax definitions of types from chains of BTF types.
597 * High-level handling of determining necessary forward declarations are handled
598 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
599 * declarations/definitions in C syntax are handled by a combo of
600 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
601 * corresponding btf_dump_emit_*_{def,fwd}() functions.
603 * We also keep track of "containing struct/union type ID" to determine when
604 * we reference it from inside and thus can avoid emitting unnecessary forward
607 * This algorithm is designed in such a way, that even if some error occurs
608 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
609 * that doesn't comply to C rules completely), algorithm will try to proceed
610 * and produce as much meaningful output as possible.
612 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
614 struct btf_dump_type_aux_state *tstate = &d->type_states[id];
615 bool top_level_def = cont_id == 0;
616 const struct btf_type *t;
619 if (tstate->emit_state == EMITTED)
622 t = btf__type_by_id(d->btf, id);
625 if (tstate->emit_state == EMITTING) {
626 if (tstate->fwd_emitted)
630 case BTF_KIND_STRUCT:
633 * if we are referencing a struct/union that we are
634 * part of - then no need for fwd declaration
638 if (t->name_off == 0) {
639 pr_warn("anonymous struct/union loop, id:[%u]\n",
643 btf_dump_emit_struct_fwd(d, id, t);
644 btf_dump_printf(d, ";\n\n");
645 tstate->fwd_emitted = 1;
647 case BTF_KIND_TYPEDEF:
649 * for typedef fwd_emitted means typedef definition
650 * was emitted, but it can be used only for "weak"
651 * references through pointer only, not for embedding
653 if (!btf_dump_is_blacklisted(d, id)) {
654 btf_dump_emit_typedef_def(d, id, t, 0);
655 btf_dump_printf(d, ";\n\n");
657 tstate->fwd_emitted = 1;
668 tstate->emit_state = EMITTED;
672 btf_dump_emit_enum_def(d, id, t, 0);
673 btf_dump_printf(d, ";\n\n");
675 tstate->emit_state = EMITTED;
678 case BTF_KIND_VOLATILE:
680 case BTF_KIND_RESTRICT:
681 btf_dump_emit_type(d, t->type, cont_id);
684 btf_dump_emit_type(d, btf_array(t)->type, cont_id);
687 btf_dump_emit_fwd_def(d, id, t);
688 btf_dump_printf(d, ";\n\n");
689 tstate->emit_state = EMITTED;
691 case BTF_KIND_TYPEDEF:
692 tstate->emit_state = EMITTING;
693 btf_dump_emit_type(d, t->type, id);
695 * typedef can server as both definition and forward
696 * declaration; at this stage someone depends on
697 * typedef as a forward declaration (refers to it
698 * through pointer), so unless we already did it,
699 * emit typedef as a forward declaration
701 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
702 btf_dump_emit_typedef_def(d, id, t, 0);
703 btf_dump_printf(d, ";\n\n");
705 tstate->emit_state = EMITTED;
707 case BTF_KIND_STRUCT:
709 tstate->emit_state = EMITTING;
710 /* if it's a top-level struct/union definition or struct/union
711 * is anonymous, then in C we'll be emitting all fields and
712 * their types (as opposed to just `struct X`), so we need to
713 * make sure that all types, referenced from struct/union
714 * members have necessary forward-declarations, where
717 if (top_level_def || t->name_off == 0) {
718 const struct btf_member *m = btf_members(t);
719 __u16 vlen = btf_vlen(t);
722 new_cont_id = t->name_off == 0 ? cont_id : id;
723 for (i = 0; i < vlen; i++, m++)
724 btf_dump_emit_type(d, m->type, new_cont_id);
725 } else if (!tstate->fwd_emitted && id != cont_id) {
726 btf_dump_emit_struct_fwd(d, id, t);
727 btf_dump_printf(d, ";\n\n");
728 tstate->fwd_emitted = 1;
732 btf_dump_emit_struct_def(d, id, t, 0);
733 btf_dump_printf(d, ";\n\n");
734 tstate->emit_state = EMITTED;
736 tstate->emit_state = NOT_EMITTED;
739 case BTF_KIND_FUNC_PROTO: {
740 const struct btf_param *p = btf_params(t);
741 __u16 vlen = btf_vlen(t);
744 btf_dump_emit_type(d, t->type, cont_id);
745 for (i = 0; i < vlen; i++, p++)
746 btf_dump_emit_type(d, p->type, cont_id);
755 static int btf_align_of(const struct btf *btf, __u32 id)
757 const struct btf_type *t = btf__type_by_id(btf, id);
758 __u16 kind = btf_kind(t);
763 return min(sizeof(void *), t->size);
765 return sizeof(void *);
766 case BTF_KIND_TYPEDEF:
767 case BTF_KIND_VOLATILE:
769 case BTF_KIND_RESTRICT:
770 return btf_align_of(btf, t->type);
772 return btf_align_of(btf, btf_array(t)->type);
773 case BTF_KIND_STRUCT:
774 case BTF_KIND_UNION: {
775 const struct btf_member *m = btf_members(t);
776 __u16 vlen = btf_vlen(t);
779 for (i = 0; i < vlen; i++, m++)
780 align = max(align, btf_align_of(btf, m->type));
785 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
790 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
791 const struct btf_type *t)
793 const struct btf_member *m;
794 int align, i, bit_sz;
797 align = btf_align_of(btf, id);
798 /* size of a non-packed struct has to be a multiple of its alignment*/
804 /* all non-bitfield fields have to be naturally aligned */
805 for (i = 0; i < vlen; i++, m++) {
806 align = btf_align_of(btf, m->type);
807 bit_sz = btf_member_bitfield_size(t, i);
808 if (bit_sz == 0 && m->offset % (8 * align) != 0)
813 * if original struct was marked as packed, but its layout is
814 * naturally aligned, we'll detect that it's not packed
819 static int chip_away_bits(int total, int at_most)
821 return total % at_most ? : at_most;
824 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
825 int cur_off, int m_off, int m_bit_sz,
828 int off_diff = m_off - cur_off;
829 int ptr_bits = sizeof(void *) * 8;
834 if (m_bit_sz == 0 && off_diff < align * 8)
835 /* natural padding will take care of a gap */
838 while (off_diff > 0) {
839 const char *pad_type;
842 if (ptr_bits > 32 && off_diff > 32) {
844 pad_bits = chip_away_bits(off_diff, ptr_bits);
845 } else if (off_diff > 16) {
847 pad_bits = chip_away_bits(off_diff, 32);
848 } else if (off_diff > 8) {
850 pad_bits = chip_away_bits(off_diff, 16);
853 pad_bits = chip_away_bits(off_diff, 8);
855 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
856 off_diff -= pad_bits;
860 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
861 const struct btf_type *t)
863 btf_dump_printf(d, "%s %s",
864 btf_is_struct(t) ? "struct" : "union",
865 btf_dump_type_name(d, id));
868 static void btf_dump_emit_struct_def(struct btf_dump *d,
870 const struct btf_type *t,
873 const struct btf_member *m = btf_members(t);
874 bool is_struct = btf_is_struct(t);
875 int align, i, packed, off = 0;
876 __u16 vlen = btf_vlen(t);
878 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
880 btf_dump_printf(d, "%s%s%s {",
881 is_struct ? "struct" : "union",
882 t->name_off ? " " : "",
883 btf_dump_type_name(d, id));
885 for (i = 0; i < vlen; i++, m++) {
889 fname = btf_name_of(d, m->name_off);
890 m_sz = btf_member_bitfield_size(t, i);
891 m_off = btf_member_bit_offset(t, i);
892 align = packed ? 1 : btf_align_of(d->btf, m->type);
894 btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
895 btf_dump_printf(d, "\n%s", pfx(lvl + 1));
896 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
899 btf_dump_printf(d, ": %d", m_sz);
902 m_sz = max(0, btf__resolve_size(d->btf, m->type));
903 off = m_off + m_sz * 8;
905 btf_dump_printf(d, ";");
908 /* pad at the end, if necessary */
910 align = packed ? 1 : btf_align_of(d->btf, id);
911 btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
916 btf_dump_printf(d, "\n");
917 btf_dump_printf(d, "%s}", pfx(lvl));
919 btf_dump_printf(d, " __attribute__((packed))");
922 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
923 const struct btf_type *t)
925 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
928 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
929 const struct btf_type *t,
932 const struct btf_enum *v = btf_enum(t);
933 __u16 vlen = btf_vlen(t);
938 btf_dump_printf(d, "enum%s%s",
939 t->name_off ? " " : "",
940 btf_dump_type_name(d, id));
943 btf_dump_printf(d, " {");
944 for (i = 0; i < vlen; i++, v++) {
945 name = btf_name_of(d, v->name_off);
946 /* enumerators share namespace with typedef idents */
947 dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
949 btf_dump_printf(d, "\n%s%s___%zu = %d,",
950 pfx(lvl + 1), name, dup_cnt,
953 btf_dump_printf(d, "\n%s%s = %d,",
958 btf_dump_printf(d, "\n%s}", pfx(lvl));
962 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
963 const struct btf_type *t)
965 const char *name = btf_dump_type_name(d, id);
968 btf_dump_printf(d, "union %s", name);
970 btf_dump_printf(d, "struct %s", name);
973 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
974 const struct btf_type *t, int lvl)
976 const char *name = btf_dump_ident_name(d, id);
979 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
980 * pointing to VOID. This generates warnings from btf_dump() and
981 * results in uncompilable header file, so we are fixing it up here
982 * with valid typedef into __builtin_va_list.
984 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
985 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
989 btf_dump_printf(d, "typedef ");
990 btf_dump_emit_type_decl(d, t->type, name, lvl);
993 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
998 if (d->decl_stack_cnt >= d->decl_stack_cap) {
999 new_cap = max(16, d->decl_stack_cap * 3 / 2);
1000 new_stack = realloc(d->decl_stack,
1001 new_cap * sizeof(new_stack[0]));
1004 d->decl_stack = new_stack;
1005 d->decl_stack_cap = new_cap;
1008 d->decl_stack[d->decl_stack_cnt++] = id;
1014 * Emit type declaration (e.g., field type declaration in a struct or argument
1015 * declaration in function prototype) in correct C syntax.
1017 * For most types it's trivial, but there are few quirky type declaration
1018 * cases worth mentioning:
1019 * - function prototypes (especially nesting of function prototypes);
1021 * - const/volatile/restrict for pointers vs other types.
1023 * For a good discussion of *PARSING* C syntax (as a human), see
1024 * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1025 * Ch.3 "Unscrambling Declarations in C".
1027 * It won't help with BTF to C conversion much, though, as it's an opposite
1028 * problem. So we came up with this algorithm in reverse to van der Linden's
1029 * parsing algorithm. It goes from structured BTF representation of type
1030 * declaration to a valid compilable C syntax.
1032 * For instance, consider this C typedef:
1033 * typedef const int * const * arr[10] arr_t;
1034 * It will be represented in BTF with this chain of BTF types:
1035 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1037 * Notice how [const] modifier always goes before type it modifies in BTF type
1038 * graph, but in C syntax, const/volatile/restrict modifiers are written to
1039 * the right of pointers, but to the left of other types. There are also other
1040 * quirks, like function pointers, arrays of them, functions returning other
1043 * We handle that by pushing all the types to a stack, until we hit "terminal"
1044 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1045 * top of a stack, modifiers are handled differently. Array/function pointers
1046 * have also wildly different syntax and how nesting of them are done. See
1047 * code for authoritative definition.
1049 * To avoid allocating new stack for each independent chain of BTF types, we
1050 * share one bigger stack, with each chain working only on its own local view
1051 * of a stack frame. Some care is required to "pop" stack frames after
1052 * processing type declaration chain.
1054 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1055 const char *fname, int lvl)
1057 struct id_stack decl_stack;
1058 const struct btf_type *t;
1059 int err, stack_start;
1061 stack_start = d->decl_stack_cnt;
1063 err = btf_dump_push_decl_stack_id(d, id);
1066 * if we don't have enough memory for entire type decl
1067 * chain, restore stack, emit warning, and try to
1068 * proceed nevertheless
1070 pr_warn("not enough memory for decl stack:%d", err);
1071 d->decl_stack_cnt = stack_start;
1079 t = btf__type_by_id(d->btf, id);
1080 switch (btf_kind(t)) {
1082 case BTF_KIND_VOLATILE:
1083 case BTF_KIND_CONST:
1084 case BTF_KIND_RESTRICT:
1085 case BTF_KIND_FUNC_PROTO:
1088 case BTF_KIND_ARRAY:
1089 id = btf_array(t)->type;
1094 case BTF_KIND_STRUCT:
1095 case BTF_KIND_UNION:
1096 case BTF_KIND_TYPEDEF:
1099 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1106 * We might be inside a chain of declarations (e.g., array of function
1107 * pointers returning anonymous (so inlined) structs, having another
1108 * array field). Each of those needs its own "stack frame" to handle
1109 * emitting of declarations. Those stack frames are non-overlapping
1110 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1111 * handle this set of nested stacks, we create a view corresponding to
1112 * our own "stack frame" and work with it as an independent stack.
1113 * We'll need to clean up after emit_type_chain() returns, though.
1115 decl_stack.ids = d->decl_stack + stack_start;
1116 decl_stack.cnt = d->decl_stack_cnt - stack_start;
1117 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1119 * emit_type_chain() guarantees that it will pop its entire decl_stack
1120 * frame before returning. But it works with a read-only view into
1121 * decl_stack, so it doesn't actually pop anything from the
1122 * perspective of shared btf_dump->decl_stack, per se. We need to
1123 * reset decl_stack state to how it was before us to avoid it growing
1126 d->decl_stack_cnt = stack_start;
1129 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1131 const struct btf_type *t;
1134 while (decl_stack->cnt) {
1135 id = decl_stack->ids[decl_stack->cnt - 1];
1136 t = btf__type_by_id(d->btf, id);
1138 switch (btf_kind(t)) {
1139 case BTF_KIND_VOLATILE:
1140 btf_dump_printf(d, "volatile ");
1142 case BTF_KIND_CONST:
1143 btf_dump_printf(d, "const ");
1145 case BTF_KIND_RESTRICT:
1146 btf_dump_printf(d, "restrict ");
1155 static void btf_dump_emit_name(const struct btf_dump *d,
1156 const char *name, bool last_was_ptr)
1158 bool separate = name[0] && !last_was_ptr;
1160 btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1163 static void btf_dump_emit_type_chain(struct btf_dump *d,
1164 struct id_stack *decls,
1165 const char *fname, int lvl)
1168 * last_was_ptr is used to determine if we need to separate pointer
1169 * asterisk (*) from previous part of type signature with space, so
1170 * that we get `int ***`, instead of `int * * *`. We default to true
1171 * for cases where we have single pointer in a chain. E.g., in ptr ->
1172 * func_proto case. func_proto will start a new emit_type_chain call
1173 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1174 * don't want to prepend space for that last pointer.
1176 bool last_was_ptr = true;
1177 const struct btf_type *t;
1182 while (decls->cnt) {
1183 id = decls->ids[--decls->cnt];
1185 /* VOID is a special snowflake */
1186 btf_dump_emit_mods(d, decls);
1187 btf_dump_printf(d, "void");
1188 last_was_ptr = false;
1192 t = btf__type_by_id(d->btf, id);
1197 btf_dump_emit_mods(d, decls);
1198 name = btf_name_of(d, t->name_off);
1199 btf_dump_printf(d, "%s", name);
1201 case BTF_KIND_STRUCT:
1202 case BTF_KIND_UNION:
1203 btf_dump_emit_mods(d, decls);
1204 /* inline anonymous struct/union */
1205 if (t->name_off == 0)
1206 btf_dump_emit_struct_def(d, id, t, lvl);
1208 btf_dump_emit_struct_fwd(d, id, t);
1211 btf_dump_emit_mods(d, decls);
1212 /* inline anonymous enum */
1213 if (t->name_off == 0)
1214 btf_dump_emit_enum_def(d, id, t, lvl);
1216 btf_dump_emit_enum_fwd(d, id, t);
1219 btf_dump_emit_mods(d, decls);
1220 btf_dump_emit_fwd_def(d, id, t);
1222 case BTF_KIND_TYPEDEF:
1223 btf_dump_emit_mods(d, decls);
1224 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1227 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1229 case BTF_KIND_VOLATILE:
1230 btf_dump_printf(d, " volatile");
1232 case BTF_KIND_CONST:
1233 btf_dump_printf(d, " const");
1235 case BTF_KIND_RESTRICT:
1236 btf_dump_printf(d, " restrict");
1238 case BTF_KIND_ARRAY: {
1239 const struct btf_array *a = btf_array(t);
1240 const struct btf_type *next_t;
1245 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1246 * which causes it to emit extra const/volatile
1247 * modifiers for an array, if array's element type has
1248 * const/volatile modifiers. Clang doesn't do that.
1249 * In general, it doesn't seem very meaningful to have
1250 * a const/volatile modifier for array, so we are
1251 * going to silently skip them here.
1253 while (decls->cnt) {
1254 next_id = decls->ids[decls->cnt - 1];
1255 next_t = btf__type_by_id(d->btf, next_id);
1256 if (btf_is_mod(next_t))
1262 if (decls->cnt == 0) {
1263 btf_dump_emit_name(d, fname, last_was_ptr);
1264 btf_dump_printf(d, "[%u]", a->nelems);
1268 next_id = decls->ids[decls->cnt - 1];
1269 next_t = btf__type_by_id(d->btf, next_id);
1270 multidim = btf_is_array(next_t);
1271 /* we need space if we have named non-pointer */
1272 if (fname[0] && !last_was_ptr)
1273 btf_dump_printf(d, " ");
1274 /* no parentheses for multi-dimensional array */
1276 btf_dump_printf(d, "(");
1277 btf_dump_emit_type_chain(d, decls, fname, lvl);
1279 btf_dump_printf(d, ")");
1280 btf_dump_printf(d, "[%u]", a->nelems);
1283 case BTF_KIND_FUNC_PROTO: {
1284 const struct btf_param *p = btf_params(t);
1285 __u16 vlen = btf_vlen(t);
1288 btf_dump_emit_mods(d, decls);
1290 btf_dump_printf(d, " (");
1291 btf_dump_emit_type_chain(d, decls, fname, lvl);
1292 btf_dump_printf(d, ")");
1294 btf_dump_emit_name(d, fname, last_was_ptr);
1296 btf_dump_printf(d, "(");
1298 * Clang for BPF target generates func_proto with no
1299 * args as a func_proto with a single void arg (e.g.,
1300 * `int (*f)(void)` vs just `int (*f)()`). We are
1301 * going to pretend there are no args for such case.
1303 if (vlen == 1 && p->type == 0) {
1304 btf_dump_printf(d, ")");
1308 for (i = 0; i < vlen; i++, p++) {
1310 btf_dump_printf(d, ", ");
1312 /* last arg of type void is vararg */
1313 if (i == vlen - 1 && p->type == 0) {
1314 btf_dump_printf(d, "...");
1318 name = btf_name_of(d, p->name_off);
1319 btf_dump_emit_type_decl(d, p->type, name, lvl);
1322 btf_dump_printf(d, ")");
1326 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1331 last_was_ptr = kind == BTF_KIND_PTR;
1334 btf_dump_emit_name(d, fname, last_was_ptr);
1337 /* return number of duplicates (occurrences) of a given name */
1338 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1339 const char *orig_name)
1343 hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1345 hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1350 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1351 struct hashmap *name_map)
1353 struct btf_dump_type_aux_state *s = &d->type_states[id];
1354 const struct btf_type *t = btf__type_by_id(d->btf, id);
1355 const char *orig_name = btf_name_of(d, t->name_off);
1356 const char **cached_name = &d->cached_names[id];
1359 if (t->name_off == 0)
1362 if (s->name_resolved)
1363 return *cached_name ? *cached_name : orig_name;
1365 dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1367 const size_t max_len = 256;
1368 char new_name[max_len];
1370 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1371 *cached_name = strdup(new_name);
1374 s->name_resolved = 1;
1375 return *cached_name ? *cached_name : orig_name;
1378 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1380 return btf_dump_resolve_name(d, id, d->type_names);
1383 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1385 return btf_dump_resolve_name(d, id, d->ident_names);