1 // SPDX-License-Identifier: GPL-2.0-only
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
38 #define pr_fmt(fmt) "TCP: " fmt
42 #include <linux/compiler.h>
43 #include <linux/gfp.h>
44 #include <linux/module.h>
45 #include <linux/static_key.h>
47 #include <trace/events/tcp.h>
49 /* Refresh clocks of a TCP socket,
50 * ensuring monotically increasing values.
52 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 u64 val = tcp_clock_ns();
56 tp->tcp_clock_cache = val;
57 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
60 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
61 int push_one, gfp_t gfp);
63 /* Account for new data that has been sent to the network. */
64 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 struct inet_connection_sock *icsk = inet_csk(sk);
67 struct tcp_sock *tp = tcp_sk(sk);
68 unsigned int prior_packets = tp->packets_out;
70 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 __skb_unlink(skb, &sk->sk_write_queue);
73 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 tp->packets_out += tcp_skb_pcount(skb);
76 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
79 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
84 * window scaling factor due to loss of precision.
85 * If window has been shrunk, what should we make? It is not clear at all.
86 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
87 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
88 * invalid. OK, let's make this for now:
90 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
92 const struct tcp_sock *tp = tcp_sk(sk);
94 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
95 (tp->rx_opt.wscale_ok &&
96 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
99 return tcp_wnd_end(tp);
102 /* Calculate mss to advertise in SYN segment.
103 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
105 * 1. It is independent of path mtu.
106 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
107 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
108 * attached devices, because some buggy hosts are confused by
110 * 4. We do not make 3, we advertise MSS, calculated from first
111 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
112 * This may be overridden via information stored in routing table.
113 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
114 * probably even Jumbo".
116 static __u16 tcp_advertise_mss(struct sock *sk)
118 struct tcp_sock *tp = tcp_sk(sk);
119 const struct dst_entry *dst = __sk_dst_get(sk);
120 int mss = tp->advmss;
123 unsigned int metric = dst_metric_advmss(dst);
134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
135 * This is the first part of cwnd validation mechanism.
137 void tcp_cwnd_restart(struct sock *sk, s32 delta)
139 struct tcp_sock *tp = tcp_sk(sk);
140 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
141 u32 cwnd = tp->snd_cwnd;
143 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
145 tp->snd_ssthresh = tcp_current_ssthresh(sk);
146 restart_cwnd = min(restart_cwnd, cwnd);
148 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
150 tp->snd_cwnd = max(cwnd, restart_cwnd);
151 tp->snd_cwnd_stamp = tcp_jiffies32;
152 tp->snd_cwnd_used = 0;
155 /* Congestion state accounting after a packet has been sent. */
156 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct inet_connection_sock *icsk = inet_csk(sk);
160 const u32 now = tcp_jiffies32;
162 if (tcp_packets_in_flight(tp) == 0)
163 tcp_ca_event(sk, CA_EVENT_TX_START);
165 /* If this is the first data packet sent in response to the
166 * previous received data,
167 * and it is a reply for ato after last received packet,
168 * increase pingpong count.
170 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
171 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
172 inet_csk_inc_pingpong_cnt(sk);
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
181 struct tcp_sock *tp = tcp_sk(sk);
183 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
184 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
185 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
186 tp->compressed_ack = TCP_FASTRETRANS_THRESH;
187 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
191 if (unlikely(rcv_nxt != tp->rcv_nxt))
192 return; /* Special ACK sent by DCTCP to reflect ECN */
193 tcp_dec_quickack_mode(sk, pkts);
194 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
197 /* Determine a window scaling and initial window to offer.
198 * Based on the assumption that the given amount of space
199 * will be offered. Store the results in the tp structure.
200 * NOTE: for smooth operation initial space offering should
201 * be a multiple of mss if possible. We assume here that mss >= 1.
202 * This MUST be enforced by all callers.
204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
205 __u32 *rcv_wnd, __u32 *window_clamp,
206 int wscale_ok, __u8 *rcv_wscale,
209 unsigned int space = (__space < 0 ? 0 : __space);
211 /* If no clamp set the clamp to the max possible scaled window */
212 if (*window_clamp == 0)
213 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
214 space = min(*window_clamp, space);
216 /* Quantize space offering to a multiple of mss if possible. */
218 space = rounddown(space, mss);
220 /* NOTE: offering an initial window larger than 32767
221 * will break some buggy TCP stacks. If the admin tells us
222 * it is likely we could be speaking with such a buggy stack
223 * we will truncate our initial window offering to 32K-1
224 * unless the remote has sent us a window scaling option,
225 * which we interpret as a sign the remote TCP is not
226 * misinterpreting the window field as a signed quantity.
228 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
229 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 (*rcv_wnd) = min_t(u32, space, U16_MAX);
234 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
238 /* Set window scaling on max possible window */
239 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
240 space = max_t(u32, space, sysctl_rmem_max);
241 space = min_t(u32, space, *window_clamp);
242 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
245 /* Set the clamp no higher than max representable value */
246 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
248 EXPORT_SYMBOL(tcp_select_initial_window);
250 /* Chose a new window to advertise, update state in tcp_sock for the
251 * socket, and return result with RFC1323 scaling applied. The return
252 * value can be stuffed directly into th->window for an outgoing
255 static u16 tcp_select_window(struct sock *sk)
257 struct tcp_sock *tp = tcp_sk(sk);
258 u32 old_win = tp->rcv_wnd;
259 u32 cur_win = tcp_receive_window(tp);
260 u32 new_win = __tcp_select_window(sk);
262 /* Never shrink the offered window */
263 if (new_win < cur_win) {
264 /* Danger Will Robinson!
265 * Don't update rcv_wup/rcv_wnd here or else
266 * we will not be able to advertise a zero
267 * window in time. --DaveM
269 * Relax Will Robinson.
272 NET_INC_STATS(sock_net(sk),
273 LINUX_MIB_TCPWANTZEROWINDOWADV);
274 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
276 tp->rcv_wnd = new_win;
277 tp->rcv_wup = tp->rcv_nxt;
279 /* Make sure we do not exceed the maximum possible
282 if (!tp->rx_opt.rcv_wscale &&
283 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
284 new_win = min(new_win, MAX_TCP_WINDOW);
286 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
288 /* RFC1323 scaling applied */
289 new_win >>= tp->rx_opt.rcv_wscale;
291 /* If we advertise zero window, disable fast path. */
295 NET_INC_STATS(sock_net(sk),
296 LINUX_MIB_TCPTOZEROWINDOWADV);
297 } else if (old_win == 0) {
298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
304 /* Packet ECN state for a SYN-ACK */
305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
307 const struct tcp_sock *tp = tcp_sk(sk);
309 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
310 if (!(tp->ecn_flags & TCP_ECN_OK))
311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
312 else if (tcp_ca_needs_ecn(sk) ||
313 tcp_bpf_ca_needs_ecn(sk))
317 /* Packet ECN state for a SYN. */
318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
320 struct tcp_sock *tp = tcp_sk(sk);
321 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
322 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
323 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
326 const struct dst_entry *dst = __sk_dst_get(sk);
328 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 tp->ecn_flags = TCP_ECN_OK;
337 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
344 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
345 /* tp->ecn_flags are cleared at a later point in time when
346 * SYN ACK is ultimatively being received.
348 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
354 if (inet_rsk(req)->ecn_ok)
358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
362 struct tcphdr *th, int tcp_header_len)
364 struct tcp_sock *tp = tcp_sk(sk);
366 if (tp->ecn_flags & TCP_ECN_OK) {
367 /* Not-retransmitted data segment: set ECT and inject CWR. */
368 if (skb->len != tcp_header_len &&
369 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
371 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
372 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
374 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
376 } else if (!tcp_ca_needs_ecn(sk)) {
377 /* ACK or retransmitted segment: clear ECT|CE */
378 INET_ECN_dontxmit(sk);
380 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
385 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
386 * auto increment end seqno.
388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
390 skb->ip_summed = CHECKSUM_PARTIAL;
392 TCP_SKB_CB(skb)->tcp_flags = flags;
393 TCP_SKB_CB(skb)->sacked = 0;
395 tcp_skb_pcount_set(skb, 1);
397 TCP_SKB_CB(skb)->seq = seq;
398 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
400 TCP_SKB_CB(skb)->end_seq = seq;
403 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
405 return tp->snd_una != tp->snd_up;
408 #define OPTION_SACK_ADVERTISE (1 << 0)
409 #define OPTION_TS (1 << 1)
410 #define OPTION_MD5 (1 << 2)
411 #define OPTION_WSCALE (1 << 3)
412 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
413 #define OPTION_SMC (1 << 9)
415 static void smc_options_write(__be32 *ptr, u16 *options)
417 #if IS_ENABLED(CONFIG_SMC)
418 if (static_branch_unlikely(&tcp_have_smc)) {
419 if (unlikely(OPTION_SMC & *options)) {
420 *ptr++ = htonl((TCPOPT_NOP << 24) |
423 (TCPOLEN_EXP_SMC_BASE));
424 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
430 struct tcp_out_options {
431 u16 options; /* bit field of OPTION_* */
432 u16 mss; /* 0 to disable */
433 u8 ws; /* window scale, 0 to disable */
434 u8 num_sack_blocks; /* number of SACK blocks to include */
435 u8 hash_size; /* bytes in hash_location */
436 __u8 *hash_location; /* temporary pointer, overloaded */
437 __u32 tsval, tsecr; /* need to include OPTION_TS */
438 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
441 /* Write previously computed TCP options to the packet.
443 * Beware: Something in the Internet is very sensitive to the ordering of
444 * TCP options, we learned this through the hard way, so be careful here.
445 * Luckily we can at least blame others for their non-compliance but from
446 * inter-operability perspective it seems that we're somewhat stuck with
447 * the ordering which we have been using if we want to keep working with
448 * those broken things (not that it currently hurts anybody as there isn't
449 * particular reason why the ordering would need to be changed).
451 * At least SACK_PERM as the first option is known to lead to a disaster
452 * (but it may well be that other scenarios fail similarly).
454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
455 struct tcp_out_options *opts)
457 u16 options = opts->options; /* mungable copy */
459 if (unlikely(OPTION_MD5 & options)) {
460 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
461 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
462 /* overload cookie hash location */
463 opts->hash_location = (__u8 *)ptr;
467 if (unlikely(opts->mss)) {
468 *ptr++ = htonl((TCPOPT_MSS << 24) |
469 (TCPOLEN_MSS << 16) |
473 if (likely(OPTION_TS & options)) {
474 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
475 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
476 (TCPOLEN_SACK_PERM << 16) |
477 (TCPOPT_TIMESTAMP << 8) |
479 options &= ~OPTION_SACK_ADVERTISE;
481 *ptr++ = htonl((TCPOPT_NOP << 24) |
483 (TCPOPT_TIMESTAMP << 8) |
486 *ptr++ = htonl(opts->tsval);
487 *ptr++ = htonl(opts->tsecr);
490 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
491 *ptr++ = htonl((TCPOPT_NOP << 24) |
493 (TCPOPT_SACK_PERM << 8) |
497 if (unlikely(OPTION_WSCALE & options)) {
498 *ptr++ = htonl((TCPOPT_NOP << 24) |
499 (TCPOPT_WINDOW << 16) |
500 (TCPOLEN_WINDOW << 8) |
504 if (unlikely(opts->num_sack_blocks)) {
505 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
506 tp->duplicate_sack : tp->selective_acks;
509 *ptr++ = htonl((TCPOPT_NOP << 24) |
512 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
513 TCPOLEN_SACK_PERBLOCK)));
515 for (this_sack = 0; this_sack < opts->num_sack_blocks;
517 *ptr++ = htonl(sp[this_sack].start_seq);
518 *ptr++ = htonl(sp[this_sack].end_seq);
521 tp->rx_opt.dsack = 0;
524 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
525 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
527 u32 len; /* Fast Open option length */
530 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
531 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
532 TCPOPT_FASTOPEN_MAGIC);
533 p += TCPOLEN_EXP_FASTOPEN_BASE;
535 len = TCPOLEN_FASTOPEN_BASE + foc->len;
536 *p++ = TCPOPT_FASTOPEN;
540 memcpy(p, foc->val, foc->len);
541 if ((len & 3) == 2) {
542 p[foc->len] = TCPOPT_NOP;
543 p[foc->len + 1] = TCPOPT_NOP;
545 ptr += (len + 3) >> 2;
548 smc_options_write(ptr, &options);
551 static void smc_set_option(const struct tcp_sock *tp,
552 struct tcp_out_options *opts,
553 unsigned int *remaining)
555 #if IS_ENABLED(CONFIG_SMC)
556 if (static_branch_unlikely(&tcp_have_smc)) {
558 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
559 opts->options |= OPTION_SMC;
560 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
567 static void smc_set_option_cond(const struct tcp_sock *tp,
568 const struct inet_request_sock *ireq,
569 struct tcp_out_options *opts,
570 unsigned int *remaining)
572 #if IS_ENABLED(CONFIG_SMC)
573 if (static_branch_unlikely(&tcp_have_smc)) {
574 if (tp->syn_smc && ireq->smc_ok) {
575 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
576 opts->options |= OPTION_SMC;
577 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
584 /* Compute TCP options for SYN packets. This is not the final
585 * network wire format yet.
587 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
588 struct tcp_out_options *opts,
589 struct tcp_md5sig_key **md5)
591 struct tcp_sock *tp = tcp_sk(sk);
592 unsigned int remaining = MAX_TCP_OPTION_SPACE;
593 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
596 #ifdef CONFIG_TCP_MD5SIG
597 if (static_branch_unlikely(&tcp_md5_needed) &&
598 rcu_access_pointer(tp->md5sig_info)) {
599 *md5 = tp->af_specific->md5_lookup(sk, sk);
601 opts->options |= OPTION_MD5;
602 remaining -= TCPOLEN_MD5SIG_ALIGNED;
607 /* We always get an MSS option. The option bytes which will be seen in
608 * normal data packets should timestamps be used, must be in the MSS
609 * advertised. But we subtract them from tp->mss_cache so that
610 * calculations in tcp_sendmsg are simpler etc. So account for this
611 * fact here if necessary. If we don't do this correctly, as a
612 * receiver we won't recognize data packets as being full sized when we
613 * should, and thus we won't abide by the delayed ACK rules correctly.
614 * SACKs don't matter, we never delay an ACK when we have any of those
616 opts->mss = tcp_advertise_mss(sk);
617 remaining -= TCPOLEN_MSS_ALIGNED;
619 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
620 opts->options |= OPTION_TS;
621 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
622 opts->tsecr = tp->rx_opt.ts_recent;
623 remaining -= TCPOLEN_TSTAMP_ALIGNED;
625 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
626 opts->ws = tp->rx_opt.rcv_wscale;
627 opts->options |= OPTION_WSCALE;
628 remaining -= TCPOLEN_WSCALE_ALIGNED;
630 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
631 opts->options |= OPTION_SACK_ADVERTISE;
632 if (unlikely(!(OPTION_TS & opts->options)))
633 remaining -= TCPOLEN_SACKPERM_ALIGNED;
636 if (fastopen && fastopen->cookie.len >= 0) {
637 u32 need = fastopen->cookie.len;
639 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
640 TCPOLEN_FASTOPEN_BASE;
641 need = (need + 3) & ~3U; /* Align to 32 bits */
642 if (remaining >= need) {
643 opts->options |= OPTION_FAST_OPEN_COOKIE;
644 opts->fastopen_cookie = &fastopen->cookie;
646 tp->syn_fastopen = 1;
647 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
651 smc_set_option(tp, opts, &remaining);
653 return MAX_TCP_OPTION_SPACE - remaining;
656 /* Set up TCP options for SYN-ACKs. */
657 static unsigned int tcp_synack_options(const struct sock *sk,
658 struct request_sock *req,
659 unsigned int mss, struct sk_buff *skb,
660 struct tcp_out_options *opts,
661 const struct tcp_md5sig_key *md5,
662 struct tcp_fastopen_cookie *foc)
664 struct inet_request_sock *ireq = inet_rsk(req);
665 unsigned int remaining = MAX_TCP_OPTION_SPACE;
667 #ifdef CONFIG_TCP_MD5SIG
669 opts->options |= OPTION_MD5;
670 remaining -= TCPOLEN_MD5SIG_ALIGNED;
672 /* We can't fit any SACK blocks in a packet with MD5 + TS
673 * options. There was discussion about disabling SACK
674 * rather than TS in order to fit in better with old,
675 * buggy kernels, but that was deemed to be unnecessary.
677 ireq->tstamp_ok &= !ireq->sack_ok;
681 /* We always send an MSS option. */
683 remaining -= TCPOLEN_MSS_ALIGNED;
685 if (likely(ireq->wscale_ok)) {
686 opts->ws = ireq->rcv_wscale;
687 opts->options |= OPTION_WSCALE;
688 remaining -= TCPOLEN_WSCALE_ALIGNED;
690 if (likely(ireq->tstamp_ok)) {
691 opts->options |= OPTION_TS;
692 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
693 opts->tsecr = req->ts_recent;
694 remaining -= TCPOLEN_TSTAMP_ALIGNED;
696 if (likely(ireq->sack_ok)) {
697 opts->options |= OPTION_SACK_ADVERTISE;
698 if (unlikely(!ireq->tstamp_ok))
699 remaining -= TCPOLEN_SACKPERM_ALIGNED;
701 if (foc != NULL && foc->len >= 0) {
704 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
705 TCPOLEN_FASTOPEN_BASE;
706 need = (need + 3) & ~3U; /* Align to 32 bits */
707 if (remaining >= need) {
708 opts->options |= OPTION_FAST_OPEN_COOKIE;
709 opts->fastopen_cookie = foc;
714 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
716 return MAX_TCP_OPTION_SPACE - remaining;
719 /* Compute TCP options for ESTABLISHED sockets. This is not the
720 * final wire format yet.
722 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
723 struct tcp_out_options *opts,
724 struct tcp_md5sig_key **md5)
726 struct tcp_sock *tp = tcp_sk(sk);
727 unsigned int size = 0;
728 unsigned int eff_sacks;
733 #ifdef CONFIG_TCP_MD5SIG
734 if (static_branch_unlikely(&tcp_md5_needed) &&
735 rcu_access_pointer(tp->md5sig_info)) {
736 *md5 = tp->af_specific->md5_lookup(sk, sk);
738 opts->options |= OPTION_MD5;
739 size += TCPOLEN_MD5SIG_ALIGNED;
744 if (likely(tp->rx_opt.tstamp_ok)) {
745 opts->options |= OPTION_TS;
746 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
747 opts->tsecr = tp->rx_opt.ts_recent;
748 size += TCPOLEN_TSTAMP_ALIGNED;
751 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
752 if (unlikely(eff_sacks)) {
753 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
754 opts->num_sack_blocks =
755 min_t(unsigned int, eff_sacks,
756 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
757 TCPOLEN_SACK_PERBLOCK);
758 size += TCPOLEN_SACK_BASE_ALIGNED +
759 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
766 /* TCP SMALL QUEUES (TSQ)
768 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
769 * to reduce RTT and bufferbloat.
770 * We do this using a special skb destructor (tcp_wfree).
772 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
773 * needs to be reallocated in a driver.
774 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
776 * Since transmit from skb destructor is forbidden, we use a tasklet
777 * to process all sockets that eventually need to send more skbs.
778 * We use one tasklet per cpu, with its own queue of sockets.
781 struct tasklet_struct tasklet;
782 struct list_head head; /* queue of tcp sockets */
784 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
786 static void tcp_tsq_write(struct sock *sk)
788 if ((1 << sk->sk_state) &
789 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
790 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
791 struct tcp_sock *tp = tcp_sk(sk);
793 if (tp->lost_out > tp->retrans_out &&
794 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
795 tcp_mstamp_refresh(tp);
796 tcp_xmit_retransmit_queue(sk);
799 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
804 static void tcp_tsq_handler(struct sock *sk)
807 if (!sock_owned_by_user(sk))
809 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
814 * One tasklet per cpu tries to send more skbs.
815 * We run in tasklet context but need to disable irqs when
816 * transferring tsq->head because tcp_wfree() might
817 * interrupt us (non NAPI drivers)
819 static void tcp_tasklet_func(unsigned long data)
821 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
824 struct list_head *q, *n;
828 local_irq_save(flags);
829 list_splice_init(&tsq->head, &list);
830 local_irq_restore(flags);
832 list_for_each_safe(q, n, &list) {
833 tp = list_entry(q, struct tcp_sock, tsq_node);
834 list_del(&tp->tsq_node);
836 sk = (struct sock *)tp;
837 smp_mb__before_atomic();
838 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
845 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
846 TCPF_WRITE_TIMER_DEFERRED | \
847 TCPF_DELACK_TIMER_DEFERRED | \
848 TCPF_MTU_REDUCED_DEFERRED)
850 * tcp_release_cb - tcp release_sock() callback
853 * called from release_sock() to perform protocol dependent
854 * actions before socket release.
856 void tcp_release_cb(struct sock *sk)
858 unsigned long flags, nflags;
860 /* perform an atomic operation only if at least one flag is set */
862 flags = sk->sk_tsq_flags;
863 if (!(flags & TCP_DEFERRED_ALL))
865 nflags = flags & ~TCP_DEFERRED_ALL;
866 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
868 if (flags & TCPF_TSQ_DEFERRED) {
872 /* Here begins the tricky part :
873 * We are called from release_sock() with :
875 * 2) sk_lock.slock spinlock held
876 * 3) socket owned by us (sk->sk_lock.owned == 1)
878 * But following code is meant to be called from BH handlers,
879 * so we should keep BH disabled, but early release socket ownership
881 sock_release_ownership(sk);
883 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
884 tcp_write_timer_handler(sk);
887 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
888 tcp_delack_timer_handler(sk);
891 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
892 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
896 EXPORT_SYMBOL(tcp_release_cb);
898 void __init tcp_tasklet_init(void)
902 for_each_possible_cpu(i) {
903 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
905 INIT_LIST_HEAD(&tsq->head);
906 tasklet_init(&tsq->tasklet,
913 * Write buffer destructor automatically called from kfree_skb.
914 * We can't xmit new skbs from this context, as we might already
917 void tcp_wfree(struct sk_buff *skb)
919 struct sock *sk = skb->sk;
920 struct tcp_sock *tp = tcp_sk(sk);
921 unsigned long flags, nval, oval;
923 /* Keep one reference on sk_wmem_alloc.
924 * Will be released by sk_free() from here or tcp_tasklet_func()
926 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
928 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
929 * Wait until our queues (qdisc + devices) are drained.
931 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
932 * - chance for incoming ACK (processed by another cpu maybe)
933 * to migrate this flow (skb->ooo_okay will be eventually set)
935 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
938 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
939 struct tsq_tasklet *tsq;
942 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
945 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
946 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
950 /* queue this socket to tasklet queue */
951 local_irq_save(flags);
952 tsq = this_cpu_ptr(&tsq_tasklet);
953 empty = list_empty(&tsq->head);
954 list_add(&tp->tsq_node, &tsq->head);
956 tasklet_schedule(&tsq->tasklet);
957 local_irq_restore(flags);
964 /* Note: Called under soft irq.
965 * We can call TCP stack right away, unless socket is owned by user.
967 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
969 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
970 struct sock *sk = (struct sock *)tp;
975 return HRTIMER_NORESTART;
978 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
981 struct tcp_sock *tp = tcp_sk(sk);
983 if (sk->sk_pacing_status != SK_PACING_NONE) {
984 unsigned long rate = sk->sk_pacing_rate;
986 /* Original sch_fq does not pace first 10 MSS
987 * Note that tp->data_segs_out overflows after 2^32 packets,
988 * this is a minor annoyance.
990 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
991 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
992 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
994 /* take into account OS jitter */
995 len_ns -= min_t(u64, len_ns / 2, credit);
996 tp->tcp_wstamp_ns += len_ns;
999 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1002 /* This routine actually transmits TCP packets queued in by
1003 * tcp_do_sendmsg(). This is used by both the initial
1004 * transmission and possible later retransmissions.
1005 * All SKB's seen here are completely headerless. It is our
1006 * job to build the TCP header, and pass the packet down to
1007 * IP so it can do the same plus pass the packet off to the
1010 * We are working here with either a clone of the original
1011 * SKB, or a fresh unique copy made by the retransmit engine.
1013 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1014 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1016 const struct inet_connection_sock *icsk = inet_csk(sk);
1017 struct inet_sock *inet;
1018 struct tcp_sock *tp;
1019 struct tcp_skb_cb *tcb;
1020 struct tcp_out_options opts;
1021 unsigned int tcp_options_size, tcp_header_size;
1022 struct sk_buff *oskb = NULL;
1023 struct tcp_md5sig_key *md5;
1028 BUG_ON(!skb || !tcp_skb_pcount(skb));
1030 prior_wstamp = tp->tcp_wstamp_ns;
1031 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1032 skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1034 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1038 tcp_skb_tsorted_save(oskb) {
1039 if (unlikely(skb_cloned(oskb)))
1040 skb = pskb_copy(oskb, gfp_mask);
1042 skb = skb_clone(oskb, gfp_mask);
1043 } tcp_skb_tsorted_restore(oskb);
1050 tcb = TCP_SKB_CB(skb);
1051 memset(&opts, 0, sizeof(opts));
1053 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1054 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1056 tcp_options_size = tcp_established_options(sk, skb, &opts,
1058 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1059 * at receiver : This slightly improve GRO performance.
1060 * Note that we do not force the PSH flag for non GSO packets,
1061 * because they might be sent under high congestion events,
1062 * and in this case it is better to delay the delivery of 1-MSS
1063 * packets and thus the corresponding ACK packet that would
1064 * release the following packet.
1066 if (tcp_skb_pcount(skb) > 1)
1067 tcb->tcp_flags |= TCPHDR_PSH;
1069 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1071 /* if no packet is in qdisc/device queue, then allow XPS to select
1072 * another queue. We can be called from tcp_tsq_handler()
1073 * which holds one reference to sk.
1075 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1076 * One way to get this would be to set skb->truesize = 2 on them.
1078 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1080 /* If we had to use memory reserve to allocate this skb,
1081 * this might cause drops if packet is looped back :
1082 * Other socket might not have SOCK_MEMALLOC.
1083 * Packets not looped back do not care about pfmemalloc.
1085 skb->pfmemalloc = 0;
1087 skb_push(skb, tcp_header_size);
1088 skb_reset_transport_header(skb);
1092 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1093 skb_set_hash_from_sk(skb, sk);
1094 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1096 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1098 /* Build TCP header and checksum it. */
1099 th = (struct tcphdr *)skb->data;
1100 th->source = inet->inet_sport;
1101 th->dest = inet->inet_dport;
1102 th->seq = htonl(tcb->seq);
1103 th->ack_seq = htonl(rcv_nxt);
1104 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1110 /* The urg_mode check is necessary during a below snd_una win probe */
1111 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1112 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1113 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1115 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1116 th->urg_ptr = htons(0xFFFF);
1121 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1122 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1123 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1124 th->window = htons(tcp_select_window(sk));
1125 tcp_ecn_send(sk, skb, th, tcp_header_size);
1127 /* RFC1323: The window in SYN & SYN/ACK segments
1130 th->window = htons(min(tp->rcv_wnd, 65535U));
1132 #ifdef CONFIG_TCP_MD5SIG
1133 /* Calculate the MD5 hash, as we have all we need now */
1135 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1136 tp->af_specific->calc_md5_hash(opts.hash_location,
1141 icsk->icsk_af_ops->send_check(sk, skb);
1143 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1144 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1146 if (skb->len != tcp_header_size) {
1147 tcp_event_data_sent(tp, sk);
1148 tp->data_segs_out += tcp_skb_pcount(skb);
1149 tp->bytes_sent += skb->len - tcp_header_size;
1152 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1153 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1154 tcp_skb_pcount(skb));
1156 tp->segs_out += tcp_skb_pcount(skb);
1157 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1158 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1159 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1161 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1163 /* Cleanup our debris for IP stacks */
1164 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1165 sizeof(struct inet6_skb_parm)));
1167 tcp_add_tx_delay(skb, tp);
1169 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1171 if (unlikely(err > 0)) {
1173 err = net_xmit_eval(err);
1176 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1177 tcp_rate_skb_sent(sk, oskb);
1182 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1185 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1186 tcp_sk(sk)->rcv_nxt);
1189 /* This routine just queues the buffer for sending.
1191 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1192 * otherwise socket can stall.
1194 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1196 struct tcp_sock *tp = tcp_sk(sk);
1198 /* Advance write_seq and place onto the write_queue. */
1199 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1200 __skb_header_release(skb);
1201 tcp_add_write_queue_tail(sk, skb);
1202 sk_wmem_queued_add(sk, skb->truesize);
1203 sk_mem_charge(sk, skb->truesize);
1206 /* Initialize TSO segments for a packet. */
1207 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1209 if (skb->len <= mss_now) {
1210 /* Avoid the costly divide in the normal
1213 tcp_skb_pcount_set(skb, 1);
1214 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1216 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1217 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1221 /* Pcount in the middle of the write queue got changed, we need to do various
1222 * tweaks to fix counters
1224 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1226 struct tcp_sock *tp = tcp_sk(sk);
1228 tp->packets_out -= decr;
1230 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1231 tp->sacked_out -= decr;
1232 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1233 tp->retrans_out -= decr;
1234 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1235 tp->lost_out -= decr;
1237 /* Reno case is special. Sigh... */
1238 if (tcp_is_reno(tp) && decr > 0)
1239 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1241 if (tp->lost_skb_hint &&
1242 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1243 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1244 tp->lost_cnt_hint -= decr;
1246 tcp_verify_left_out(tp);
1249 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1251 return TCP_SKB_CB(skb)->txstamp_ack ||
1252 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1255 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1257 struct skb_shared_info *shinfo = skb_shinfo(skb);
1259 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1260 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1261 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1262 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1264 shinfo->tx_flags &= ~tsflags;
1265 shinfo2->tx_flags |= tsflags;
1266 swap(shinfo->tskey, shinfo2->tskey);
1267 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1268 TCP_SKB_CB(skb)->txstamp_ack = 0;
1272 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1274 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1275 TCP_SKB_CB(skb)->eor = 0;
1278 /* Insert buff after skb on the write or rtx queue of sk. */
1279 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1280 struct sk_buff *buff,
1282 enum tcp_queue tcp_queue)
1284 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1285 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1287 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1290 /* Function to create two new TCP segments. Shrinks the given segment
1291 * to the specified size and appends a new segment with the rest of the
1292 * packet to the list. This won't be called frequently, I hope.
1293 * Remember, these are still headerless SKBs at this point.
1295 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1296 struct sk_buff *skb, u32 len,
1297 unsigned int mss_now, gfp_t gfp)
1299 struct tcp_sock *tp = tcp_sk(sk);
1300 struct sk_buff *buff;
1301 int nsize, old_factor;
1306 if (WARN_ON(len > skb->len))
1309 nsize = skb_headlen(skb) - len;
1313 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1314 * We need some allowance to not penalize applications setting small
1316 * Also allow first and last skb in retransmit queue to be split.
1318 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1319 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1320 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1321 skb != tcp_rtx_queue_head(sk) &&
1322 skb != tcp_rtx_queue_tail(sk))) {
1323 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1327 if (skb_unclone(skb, gfp))
1330 /* Get a new skb... force flag on. */
1331 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1333 return -ENOMEM; /* We'll just try again later. */
1334 skb_copy_decrypted(buff, skb);
1336 sk_wmem_queued_add(sk, buff->truesize);
1337 sk_mem_charge(sk, buff->truesize);
1338 nlen = skb->len - len - nsize;
1339 buff->truesize += nlen;
1340 skb->truesize -= nlen;
1342 /* Correct the sequence numbers. */
1343 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1344 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1345 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1347 /* PSH and FIN should only be set in the second packet. */
1348 flags = TCP_SKB_CB(skb)->tcp_flags;
1349 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1350 TCP_SKB_CB(buff)->tcp_flags = flags;
1351 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1352 tcp_skb_fragment_eor(skb, buff);
1354 skb_split(skb, buff, len);
1356 buff->ip_summed = CHECKSUM_PARTIAL;
1358 buff->tstamp = skb->tstamp;
1359 tcp_fragment_tstamp(skb, buff);
1361 old_factor = tcp_skb_pcount(skb);
1363 /* Fix up tso_factor for both original and new SKB. */
1364 tcp_set_skb_tso_segs(skb, mss_now);
1365 tcp_set_skb_tso_segs(buff, mss_now);
1367 /* Update delivered info for the new segment */
1368 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1370 /* If this packet has been sent out already, we must
1371 * adjust the various packet counters.
1373 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1374 int diff = old_factor - tcp_skb_pcount(skb) -
1375 tcp_skb_pcount(buff);
1378 tcp_adjust_pcount(sk, skb, diff);
1381 /* Link BUFF into the send queue. */
1382 __skb_header_release(buff);
1383 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1384 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1385 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1390 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1391 * data is not copied, but immediately discarded.
1393 static int __pskb_trim_head(struct sk_buff *skb, int len)
1395 struct skb_shared_info *shinfo;
1398 eat = min_t(int, len, skb_headlen(skb));
1400 __skb_pull(skb, eat);
1407 shinfo = skb_shinfo(skb);
1408 for (i = 0; i < shinfo->nr_frags; i++) {
1409 int size = skb_frag_size(&shinfo->frags[i]);
1412 skb_frag_unref(skb, i);
1415 shinfo->frags[k] = shinfo->frags[i];
1417 skb_frag_off_add(&shinfo->frags[k], eat);
1418 skb_frag_size_sub(&shinfo->frags[k], eat);
1424 shinfo->nr_frags = k;
1426 skb->data_len -= len;
1427 skb->len = skb->data_len;
1431 /* Remove acked data from a packet in the transmit queue. */
1432 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1436 if (skb_unclone(skb, GFP_ATOMIC))
1439 delta_truesize = __pskb_trim_head(skb, len);
1441 TCP_SKB_CB(skb)->seq += len;
1442 skb->ip_summed = CHECKSUM_PARTIAL;
1444 if (delta_truesize) {
1445 skb->truesize -= delta_truesize;
1446 sk_wmem_queued_add(sk, -delta_truesize);
1447 sk_mem_uncharge(sk, delta_truesize);
1448 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1451 /* Any change of skb->len requires recalculation of tso factor. */
1452 if (tcp_skb_pcount(skb) > 1)
1453 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1458 /* Calculate MSS not accounting any TCP options. */
1459 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1461 const struct tcp_sock *tp = tcp_sk(sk);
1462 const struct inet_connection_sock *icsk = inet_csk(sk);
1465 /* Calculate base mss without TCP options:
1466 It is MMS_S - sizeof(tcphdr) of rfc1122
1468 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1470 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1471 if (icsk->icsk_af_ops->net_frag_header_len) {
1472 const struct dst_entry *dst = __sk_dst_get(sk);
1474 if (dst && dst_allfrag(dst))
1475 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1478 /* Clamp it (mss_clamp does not include tcp options) */
1479 if (mss_now > tp->rx_opt.mss_clamp)
1480 mss_now = tp->rx_opt.mss_clamp;
1482 /* Now subtract optional transport overhead */
1483 mss_now -= icsk->icsk_ext_hdr_len;
1485 /* Then reserve room for full set of TCP options and 8 bytes of data */
1486 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1490 /* Calculate MSS. Not accounting for SACKs here. */
1491 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1493 /* Subtract TCP options size, not including SACKs */
1494 return __tcp_mtu_to_mss(sk, pmtu) -
1495 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1498 /* Inverse of above */
1499 int tcp_mss_to_mtu(struct sock *sk, int mss)
1501 const struct tcp_sock *tp = tcp_sk(sk);
1502 const struct inet_connection_sock *icsk = inet_csk(sk);
1506 tp->tcp_header_len +
1507 icsk->icsk_ext_hdr_len +
1508 icsk->icsk_af_ops->net_header_len;
1510 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1511 if (icsk->icsk_af_ops->net_frag_header_len) {
1512 const struct dst_entry *dst = __sk_dst_get(sk);
1514 if (dst && dst_allfrag(dst))
1515 mtu += icsk->icsk_af_ops->net_frag_header_len;
1519 EXPORT_SYMBOL(tcp_mss_to_mtu);
1521 /* MTU probing init per socket */
1522 void tcp_mtup_init(struct sock *sk)
1524 struct tcp_sock *tp = tcp_sk(sk);
1525 struct inet_connection_sock *icsk = inet_csk(sk);
1526 struct net *net = sock_net(sk);
1528 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1529 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1530 icsk->icsk_af_ops->net_header_len;
1531 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1532 icsk->icsk_mtup.probe_size = 0;
1533 if (icsk->icsk_mtup.enabled)
1534 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1536 EXPORT_SYMBOL(tcp_mtup_init);
1538 /* This function synchronize snd mss to current pmtu/exthdr set.
1540 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1541 for TCP options, but includes only bare TCP header.
1543 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1544 It is minimum of user_mss and mss received with SYN.
1545 It also does not include TCP options.
1547 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1549 tp->mss_cache is current effective sending mss, including
1550 all tcp options except for SACKs. It is evaluated,
1551 taking into account current pmtu, but never exceeds
1552 tp->rx_opt.mss_clamp.
1554 NOTE1. rfc1122 clearly states that advertised MSS
1555 DOES NOT include either tcp or ip options.
1557 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1558 are READ ONLY outside this function. --ANK (980731)
1560 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1562 struct tcp_sock *tp = tcp_sk(sk);
1563 struct inet_connection_sock *icsk = inet_csk(sk);
1566 if (icsk->icsk_mtup.search_high > pmtu)
1567 icsk->icsk_mtup.search_high = pmtu;
1569 mss_now = tcp_mtu_to_mss(sk, pmtu);
1570 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1572 /* And store cached results */
1573 icsk->icsk_pmtu_cookie = pmtu;
1574 if (icsk->icsk_mtup.enabled)
1575 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1576 tp->mss_cache = mss_now;
1580 EXPORT_SYMBOL(tcp_sync_mss);
1582 /* Compute the current effective MSS, taking SACKs and IP options,
1583 * and even PMTU discovery events into account.
1585 unsigned int tcp_current_mss(struct sock *sk)
1587 const struct tcp_sock *tp = tcp_sk(sk);
1588 const struct dst_entry *dst = __sk_dst_get(sk);
1590 unsigned int header_len;
1591 struct tcp_out_options opts;
1592 struct tcp_md5sig_key *md5;
1594 mss_now = tp->mss_cache;
1597 u32 mtu = dst_mtu(dst);
1598 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1599 mss_now = tcp_sync_mss(sk, mtu);
1602 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1603 sizeof(struct tcphdr);
1604 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1605 * some common options. If this is an odd packet (because we have SACK
1606 * blocks etc) then our calculated header_len will be different, and
1607 * we have to adjust mss_now correspondingly */
1608 if (header_len != tp->tcp_header_len) {
1609 int delta = (int) header_len - tp->tcp_header_len;
1616 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1617 * As additional protections, we do not touch cwnd in retransmission phases,
1618 * and if application hit its sndbuf limit recently.
1620 static void tcp_cwnd_application_limited(struct sock *sk)
1622 struct tcp_sock *tp = tcp_sk(sk);
1624 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1625 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1626 /* Limited by application or receiver window. */
1627 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1628 u32 win_used = max(tp->snd_cwnd_used, init_win);
1629 if (win_used < tp->snd_cwnd) {
1630 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1631 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1633 tp->snd_cwnd_used = 0;
1635 tp->snd_cwnd_stamp = tcp_jiffies32;
1638 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1640 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1641 struct tcp_sock *tp = tcp_sk(sk);
1643 /* Track the maximum number of outstanding packets in each
1644 * window, and remember whether we were cwnd-limited then.
1646 if (!before(tp->snd_una, tp->max_packets_seq) ||
1647 tp->packets_out > tp->max_packets_out) {
1648 tp->max_packets_out = tp->packets_out;
1649 tp->max_packets_seq = tp->snd_nxt;
1650 tp->is_cwnd_limited = is_cwnd_limited;
1653 if (tcp_is_cwnd_limited(sk)) {
1654 /* Network is feed fully. */
1655 tp->snd_cwnd_used = 0;
1656 tp->snd_cwnd_stamp = tcp_jiffies32;
1658 /* Network starves. */
1659 if (tp->packets_out > tp->snd_cwnd_used)
1660 tp->snd_cwnd_used = tp->packets_out;
1662 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1663 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1664 !ca_ops->cong_control)
1665 tcp_cwnd_application_limited(sk);
1667 /* The following conditions together indicate the starvation
1668 * is caused by insufficient sender buffer:
1669 * 1) just sent some data (see tcp_write_xmit)
1670 * 2) not cwnd limited (this else condition)
1671 * 3) no more data to send (tcp_write_queue_empty())
1672 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1674 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1675 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1676 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1677 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1681 /* Minshall's variant of the Nagle send check. */
1682 static bool tcp_minshall_check(const struct tcp_sock *tp)
1684 return after(tp->snd_sml, tp->snd_una) &&
1685 !after(tp->snd_sml, tp->snd_nxt);
1688 /* Update snd_sml if this skb is under mss
1689 * Note that a TSO packet might end with a sub-mss segment
1690 * The test is really :
1691 * if ((skb->len % mss) != 0)
1692 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1693 * But we can avoid doing the divide again given we already have
1694 * skb_pcount = skb->len / mss_now
1696 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1697 const struct sk_buff *skb)
1699 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1700 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1703 /* Return false, if packet can be sent now without violation Nagle's rules:
1704 * 1. It is full sized. (provided by caller in %partial bool)
1705 * 2. Or it contains FIN. (already checked by caller)
1706 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1707 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1708 * With Minshall's modification: all sent small packets are ACKed.
1710 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1714 ((nonagle & TCP_NAGLE_CORK) ||
1715 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1718 /* Return how many segs we'd like on a TSO packet,
1719 * to send one TSO packet per ms
1721 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1726 bytes = min_t(unsigned long,
1727 sk->sk_pacing_rate >> sk->sk_pacing_shift,
1728 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1730 /* Goal is to send at least one packet per ms,
1731 * not one big TSO packet every 100 ms.
1732 * This preserves ACK clocking and is consistent
1733 * with tcp_tso_should_defer() heuristic.
1735 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1740 /* Return the number of segments we want in the skb we are transmitting.
1741 * See if congestion control module wants to decide; otherwise, autosize.
1743 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1745 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1746 u32 min_tso, tso_segs;
1748 min_tso = ca_ops->min_tso_segs ?
1749 ca_ops->min_tso_segs(sk) :
1750 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1752 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1753 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1756 /* Returns the portion of skb which can be sent right away */
1757 static unsigned int tcp_mss_split_point(const struct sock *sk,
1758 const struct sk_buff *skb,
1759 unsigned int mss_now,
1760 unsigned int max_segs,
1763 const struct tcp_sock *tp = tcp_sk(sk);
1764 u32 partial, needed, window, max_len;
1766 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1767 max_len = mss_now * max_segs;
1769 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1772 needed = min(skb->len, window);
1774 if (max_len <= needed)
1777 partial = needed % mss_now;
1778 /* If last segment is not a full MSS, check if Nagle rules allow us
1779 * to include this last segment in this skb.
1780 * Otherwise, we'll split the skb at last MSS boundary
1782 if (tcp_nagle_check(partial != 0, tp, nonagle))
1783 return needed - partial;
1788 /* Can at least one segment of SKB be sent right now, according to the
1789 * congestion window rules? If so, return how many segments are allowed.
1791 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1792 const struct sk_buff *skb)
1794 u32 in_flight, cwnd, halfcwnd;
1796 /* Don't be strict about the congestion window for the final FIN. */
1797 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1798 tcp_skb_pcount(skb) == 1)
1801 in_flight = tcp_packets_in_flight(tp);
1802 cwnd = tp->snd_cwnd;
1803 if (in_flight >= cwnd)
1806 /* For better scheduling, ensure we have at least
1807 * 2 GSO packets in flight.
1809 halfcwnd = max(cwnd >> 1, 1U);
1810 return min(halfcwnd, cwnd - in_flight);
1813 /* Initialize TSO state of a skb.
1814 * This must be invoked the first time we consider transmitting
1815 * SKB onto the wire.
1817 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1819 int tso_segs = tcp_skb_pcount(skb);
1821 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1822 tcp_set_skb_tso_segs(skb, mss_now);
1823 tso_segs = tcp_skb_pcount(skb);
1829 /* Return true if the Nagle test allows this packet to be
1832 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1833 unsigned int cur_mss, int nonagle)
1835 /* Nagle rule does not apply to frames, which sit in the middle of the
1836 * write_queue (they have no chances to get new data).
1838 * This is implemented in the callers, where they modify the 'nonagle'
1839 * argument based upon the location of SKB in the send queue.
1841 if (nonagle & TCP_NAGLE_PUSH)
1844 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1845 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1848 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1854 /* Does at least the first segment of SKB fit into the send window? */
1855 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1856 const struct sk_buff *skb,
1857 unsigned int cur_mss)
1859 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1861 if (skb->len > cur_mss)
1862 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1864 return !after(end_seq, tcp_wnd_end(tp));
1867 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1868 * which is put after SKB on the list. It is very much like
1869 * tcp_fragment() except that it may make several kinds of assumptions
1870 * in order to speed up the splitting operation. In particular, we
1871 * know that all the data is in scatter-gather pages, and that the
1872 * packet has never been sent out before (and thus is not cloned).
1874 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1875 unsigned int mss_now, gfp_t gfp)
1877 int nlen = skb->len - len;
1878 struct sk_buff *buff;
1881 /* All of a TSO frame must be composed of paged data. */
1882 if (skb->len != skb->data_len)
1883 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1884 skb, len, mss_now, gfp);
1886 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1887 if (unlikely(!buff))
1889 skb_copy_decrypted(buff, skb);
1891 sk_wmem_queued_add(sk, buff->truesize);
1892 sk_mem_charge(sk, buff->truesize);
1893 buff->truesize += nlen;
1894 skb->truesize -= nlen;
1896 /* Correct the sequence numbers. */
1897 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1898 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1899 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1901 /* PSH and FIN should only be set in the second packet. */
1902 flags = TCP_SKB_CB(skb)->tcp_flags;
1903 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1904 TCP_SKB_CB(buff)->tcp_flags = flags;
1906 /* This packet was never sent out yet, so no SACK bits. */
1907 TCP_SKB_CB(buff)->sacked = 0;
1909 tcp_skb_fragment_eor(skb, buff);
1911 buff->ip_summed = CHECKSUM_PARTIAL;
1912 skb_split(skb, buff, len);
1913 tcp_fragment_tstamp(skb, buff);
1915 /* Fix up tso_factor for both original and new SKB. */
1916 tcp_set_skb_tso_segs(skb, mss_now);
1917 tcp_set_skb_tso_segs(buff, mss_now);
1919 /* Link BUFF into the send queue. */
1920 __skb_header_release(buff);
1921 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
1926 /* Try to defer sending, if possible, in order to minimize the amount
1927 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1929 * This algorithm is from John Heffner.
1931 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1932 bool *is_cwnd_limited,
1933 bool *is_rwnd_limited,
1936 const struct inet_connection_sock *icsk = inet_csk(sk);
1937 u32 send_win, cong_win, limit, in_flight;
1938 struct tcp_sock *tp = tcp_sk(sk);
1939 struct sk_buff *head;
1943 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1946 /* Avoid bursty behavior by allowing defer
1947 * only if the last write was recent (1 ms).
1948 * Note that tp->tcp_wstamp_ns can be in the future if we have
1949 * packets waiting in a qdisc or device for EDT delivery.
1951 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
1955 in_flight = tcp_packets_in_flight(tp);
1957 BUG_ON(tcp_skb_pcount(skb) <= 1);
1958 BUG_ON(tp->snd_cwnd <= in_flight);
1960 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1962 /* From in_flight test above, we know that cwnd > in_flight. */
1963 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1965 limit = min(send_win, cong_win);
1967 /* If a full-sized TSO skb can be sent, do it. */
1968 if (limit >= max_segs * tp->mss_cache)
1971 /* Middle in queue won't get any more data, full sendable already? */
1972 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1975 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1977 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1979 /* If at least some fraction of a window is available,
1982 chunk /= win_divisor;
1986 /* Different approach, try not to defer past a single
1987 * ACK. Receiver should ACK every other full sized
1988 * frame, so if we have space for more than 3 frames
1991 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1995 /* TODO : use tsorted_sent_queue ? */
1996 head = tcp_rtx_queue_head(sk);
1999 delta = tp->tcp_clock_cache - head->tstamp;
2000 /* If next ACK is likely to come too late (half srtt), do not defer */
2001 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2004 /* Ok, it looks like it is advisable to defer.
2005 * Three cases are tracked :
2006 * 1) We are cwnd-limited
2007 * 2) We are rwnd-limited
2008 * 3) We are application limited.
2010 if (cong_win < send_win) {
2011 if (cong_win <= skb->len) {
2012 *is_cwnd_limited = true;
2016 if (send_win <= skb->len) {
2017 *is_rwnd_limited = true;
2022 /* If this packet won't get more data, do not wait. */
2023 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2024 TCP_SKB_CB(skb)->eor)
2033 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2035 struct inet_connection_sock *icsk = inet_csk(sk);
2036 struct tcp_sock *tp = tcp_sk(sk);
2037 struct net *net = sock_net(sk);
2041 interval = net->ipv4.sysctl_tcp_probe_interval;
2042 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2043 if (unlikely(delta >= interval * HZ)) {
2044 int mss = tcp_current_mss(sk);
2046 /* Update current search range */
2047 icsk->icsk_mtup.probe_size = 0;
2048 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2049 sizeof(struct tcphdr) +
2050 icsk->icsk_af_ops->net_header_len;
2051 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2053 /* Update probe time stamp */
2054 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2058 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2060 struct sk_buff *skb, *next;
2062 skb = tcp_send_head(sk);
2063 tcp_for_write_queue_from_safe(skb, next, sk) {
2064 if (len <= skb->len)
2067 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2076 /* Create a new MTU probe if we are ready.
2077 * MTU probe is regularly attempting to increase the path MTU by
2078 * deliberately sending larger packets. This discovers routing
2079 * changes resulting in larger path MTUs.
2081 * Returns 0 if we should wait to probe (no cwnd available),
2082 * 1 if a probe was sent,
2085 static int tcp_mtu_probe(struct sock *sk)
2087 struct inet_connection_sock *icsk = inet_csk(sk);
2088 struct tcp_sock *tp = tcp_sk(sk);
2089 struct sk_buff *skb, *nskb, *next;
2090 struct net *net = sock_net(sk);
2097 /* Not currently probing/verifying,
2099 * have enough cwnd, and
2100 * not SACKing (the variable headers throw things off)
2102 if (likely(!icsk->icsk_mtup.enabled ||
2103 icsk->icsk_mtup.probe_size ||
2104 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2105 tp->snd_cwnd < 11 ||
2106 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2109 /* Use binary search for probe_size between tcp_mss_base,
2110 * and current mss_clamp. if (search_high - search_low)
2111 * smaller than a threshold, backoff from probing.
2113 mss_now = tcp_current_mss(sk);
2114 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2115 icsk->icsk_mtup.search_low) >> 1);
2116 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2117 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2118 /* When misfortune happens, we are reprobing actively,
2119 * and then reprobe timer has expired. We stick with current
2120 * probing process by not resetting search range to its orignal.
2122 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2123 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2124 /* Check whether enough time has elaplased for
2125 * another round of probing.
2127 tcp_mtu_check_reprobe(sk);
2131 /* Have enough data in the send queue to probe? */
2132 if (tp->write_seq - tp->snd_nxt < size_needed)
2135 if (tp->snd_wnd < size_needed)
2137 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2140 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2141 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2142 if (!tcp_packets_in_flight(tp))
2148 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2151 /* We're allowed to probe. Build it now. */
2152 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2155 sk_wmem_queued_add(sk, nskb->truesize);
2156 sk_mem_charge(sk, nskb->truesize);
2158 skb = tcp_send_head(sk);
2159 skb_copy_decrypted(nskb, skb);
2161 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2162 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2163 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2164 TCP_SKB_CB(nskb)->sacked = 0;
2166 nskb->ip_summed = CHECKSUM_PARTIAL;
2168 tcp_insert_write_queue_before(nskb, skb, sk);
2169 tcp_highest_sack_replace(sk, skb, nskb);
2172 tcp_for_write_queue_from_safe(skb, next, sk) {
2173 copy = min_t(int, skb->len, probe_size - len);
2174 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2176 if (skb->len <= copy) {
2177 /* We've eaten all the data from this skb.
2179 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2180 /* If this is the last SKB we copy and eor is set
2181 * we need to propagate it to the new skb.
2183 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2184 tcp_skb_collapse_tstamp(nskb, skb);
2185 tcp_unlink_write_queue(skb, sk);
2186 sk_wmem_free_skb(sk, skb);
2188 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2189 ~(TCPHDR_FIN|TCPHDR_PSH);
2190 if (!skb_shinfo(skb)->nr_frags) {
2191 skb_pull(skb, copy);
2193 __pskb_trim_head(skb, copy);
2194 tcp_set_skb_tso_segs(skb, mss_now);
2196 TCP_SKB_CB(skb)->seq += copy;
2201 if (len >= probe_size)
2204 tcp_init_tso_segs(nskb, nskb->len);
2206 /* We're ready to send. If this fails, the probe will
2207 * be resegmented into mss-sized pieces by tcp_write_xmit().
2209 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2210 /* Decrement cwnd here because we are sending
2211 * effectively two packets. */
2213 tcp_event_new_data_sent(sk, nskb);
2215 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2216 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2217 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2225 static bool tcp_pacing_check(struct sock *sk)
2227 struct tcp_sock *tp = tcp_sk(sk);
2229 if (!tcp_needs_internal_pacing(sk))
2232 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2235 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2236 hrtimer_start(&tp->pacing_timer,
2237 ns_to_ktime(tp->tcp_wstamp_ns),
2238 HRTIMER_MODE_ABS_PINNED_SOFT);
2244 /* TCP Small Queues :
2245 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2246 * (These limits are doubled for retransmits)
2248 * - better RTT estimation and ACK scheduling
2251 * Alas, some drivers / subsystems require a fair amount
2252 * of queued bytes to ensure line rate.
2253 * One example is wifi aggregation (802.11 AMPDU)
2255 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2256 unsigned int factor)
2258 unsigned long limit;
2260 limit = max_t(unsigned long,
2262 sk->sk_pacing_rate >> sk->sk_pacing_shift);
2263 if (sk->sk_pacing_status == SK_PACING_NONE)
2264 limit = min_t(unsigned long, limit,
2265 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2268 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2269 tcp_sk(sk)->tcp_tx_delay) {
2270 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2272 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2273 * approximate our needs assuming an ~100% skb->truesize overhead.
2274 * USEC_PER_SEC is approximated by 2^20.
2275 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2277 extra_bytes >>= (20 - 1);
2278 limit += extra_bytes;
2280 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2281 /* Always send skb if rtx queue is empty.
2282 * No need to wait for TX completion to call us back,
2283 * after softirq/tasklet schedule.
2284 * This helps when TX completions are delayed too much.
2286 if (tcp_rtx_queue_empty(sk))
2289 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2290 /* It is possible TX completion already happened
2291 * before we set TSQ_THROTTLED, so we must
2292 * test again the condition.
2294 smp_mb__after_atomic();
2295 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2301 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2303 const u32 now = tcp_jiffies32;
2304 enum tcp_chrono old = tp->chrono_type;
2306 if (old > TCP_CHRONO_UNSPEC)
2307 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2308 tp->chrono_start = now;
2309 tp->chrono_type = new;
2312 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2314 struct tcp_sock *tp = tcp_sk(sk);
2316 /* If there are multiple conditions worthy of tracking in a
2317 * chronograph then the highest priority enum takes precedence
2318 * over the other conditions. So that if something "more interesting"
2319 * starts happening, stop the previous chrono and start a new one.
2321 if (type > tp->chrono_type)
2322 tcp_chrono_set(tp, type);
2325 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2327 struct tcp_sock *tp = tcp_sk(sk);
2330 /* There are multiple conditions worthy of tracking in a
2331 * chronograph, so that the highest priority enum takes
2332 * precedence over the other conditions (see tcp_chrono_start).
2333 * If a condition stops, we only stop chrono tracking if
2334 * it's the "most interesting" or current chrono we are
2335 * tracking and starts busy chrono if we have pending data.
2337 if (tcp_rtx_and_write_queues_empty(sk))
2338 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2339 else if (type == tp->chrono_type)
2340 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2343 /* This routine writes packets to the network. It advances the
2344 * send_head. This happens as incoming acks open up the remote
2347 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2348 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2349 * account rare use of URG, this is not a big flaw.
2351 * Send at most one packet when push_one > 0. Temporarily ignore
2352 * cwnd limit to force at most one packet out when push_one == 2.
2354 * Returns true, if no segments are in flight and we have queued segments,
2355 * but cannot send anything now because of SWS or another problem.
2357 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2358 int push_one, gfp_t gfp)
2360 struct tcp_sock *tp = tcp_sk(sk);
2361 struct sk_buff *skb;
2362 unsigned int tso_segs, sent_pkts;
2365 bool is_cwnd_limited = false, is_rwnd_limited = false;
2370 tcp_mstamp_refresh(tp);
2372 /* Do MTU probing. */
2373 result = tcp_mtu_probe(sk);
2376 } else if (result > 0) {
2381 max_segs = tcp_tso_segs(sk, mss_now);
2382 while ((skb = tcp_send_head(sk))) {
2385 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2386 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2387 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2388 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2389 tcp_init_tso_segs(skb, mss_now);
2390 goto repair; /* Skip network transmission */
2393 if (tcp_pacing_check(sk))
2396 tso_segs = tcp_init_tso_segs(skb, mss_now);
2399 cwnd_quota = tcp_cwnd_test(tp, skb);
2402 /* Force out a loss probe pkt. */
2408 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2409 is_rwnd_limited = true;
2413 if (tso_segs == 1) {
2414 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2415 (tcp_skb_is_last(sk, skb) ?
2416 nonagle : TCP_NAGLE_PUSH))))
2420 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2421 &is_rwnd_limited, max_segs))
2426 if (tso_segs > 1 && !tcp_urg_mode(tp))
2427 limit = tcp_mss_split_point(sk, skb, mss_now,
2433 if (skb->len > limit &&
2434 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2437 if (tcp_small_queue_check(sk, skb, 0))
2440 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2444 /* Advance the send_head. This one is sent out.
2445 * This call will increment packets_out.
2447 tcp_event_new_data_sent(sk, skb);
2449 tcp_minshall_update(tp, mss_now, skb);
2450 sent_pkts += tcp_skb_pcount(skb);
2456 if (is_rwnd_limited)
2457 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2459 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2461 if (likely(sent_pkts)) {
2462 if (tcp_in_cwnd_reduction(sk))
2463 tp->prr_out += sent_pkts;
2465 /* Send one loss probe per tail loss episode. */
2467 tcp_schedule_loss_probe(sk, false);
2468 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2469 tcp_cwnd_validate(sk, is_cwnd_limited);
2472 return !tp->packets_out && !tcp_write_queue_empty(sk);
2475 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2477 struct inet_connection_sock *icsk = inet_csk(sk);
2478 struct tcp_sock *tp = tcp_sk(sk);
2479 u32 timeout, rto_delta_us;
2482 /* Don't do any loss probe on a Fast Open connection before 3WHS
2485 if (rcu_access_pointer(tp->fastopen_rsk))
2488 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2489 /* Schedule a loss probe in 2*RTT for SACK capable connections
2490 * not in loss recovery, that are either limited by cwnd or application.
2492 if ((early_retrans != 3 && early_retrans != 4) ||
2493 !tp->packets_out || !tcp_is_sack(tp) ||
2494 (icsk->icsk_ca_state != TCP_CA_Open &&
2495 icsk->icsk_ca_state != TCP_CA_CWR))
2498 /* Probe timeout is 2*rtt. Add minimum RTO to account
2499 * for delayed ack when there's one outstanding packet. If no RTT
2500 * sample is available then probe after TCP_TIMEOUT_INIT.
2503 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2504 if (tp->packets_out == 1)
2505 timeout += TCP_RTO_MIN;
2507 timeout += TCP_TIMEOUT_MIN;
2509 timeout = TCP_TIMEOUT_INIT;
2512 /* If the RTO formula yields an earlier time, then use that time. */
2513 rto_delta_us = advancing_rto ?
2514 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2515 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2516 if (rto_delta_us > 0)
2517 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2519 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2524 /* Thanks to skb fast clones, we can detect if a prior transmit of
2525 * a packet is still in a qdisc or driver queue.
2526 * In this case, there is very little point doing a retransmit !
2528 static bool skb_still_in_host_queue(const struct sock *sk,
2529 const struct sk_buff *skb)
2531 if (unlikely(skb_fclone_busy(sk, skb))) {
2532 NET_INC_STATS(sock_net(sk),
2533 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2539 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2540 * retransmit the last segment.
2542 void tcp_send_loss_probe(struct sock *sk)
2544 struct tcp_sock *tp = tcp_sk(sk);
2545 struct sk_buff *skb;
2547 int mss = tcp_current_mss(sk);
2549 skb = tcp_send_head(sk);
2550 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2551 pcount = tp->packets_out;
2552 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2553 if (tp->packets_out > pcount)
2557 skb = skb_rb_last(&sk->tcp_rtx_queue);
2558 if (unlikely(!skb)) {
2559 WARN_ONCE(tp->packets_out,
2560 "invalid inflight: %u state %u cwnd %u mss %d\n",
2561 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2562 inet_csk(sk)->icsk_pending = 0;
2566 /* At most one outstanding TLP retransmission. */
2567 if (tp->tlp_high_seq)
2570 if (skb_still_in_host_queue(sk, skb))
2573 pcount = tcp_skb_pcount(skb);
2574 if (WARN_ON(!pcount))
2577 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2578 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2579 (pcount - 1) * mss, mss,
2582 skb = skb_rb_next(skb);
2585 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2588 if (__tcp_retransmit_skb(sk, skb, 1))
2591 /* Record snd_nxt for loss detection. */
2592 tp->tlp_high_seq = tp->snd_nxt;
2595 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2596 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2597 inet_csk(sk)->icsk_pending = 0;
2602 /* Push out any pending frames which were held back due to
2603 * TCP_CORK or attempt at coalescing tiny packets.
2604 * The socket must be locked by the caller.
2606 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2609 /* If we are closed, the bytes will have to remain here.
2610 * In time closedown will finish, we empty the write queue and
2611 * all will be happy.
2613 if (unlikely(sk->sk_state == TCP_CLOSE))
2616 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2617 sk_gfp_mask(sk, GFP_ATOMIC)))
2618 tcp_check_probe_timer(sk);
2621 /* Send _single_ skb sitting at the send head. This function requires
2622 * true push pending frames to setup probe timer etc.
2624 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2626 struct sk_buff *skb = tcp_send_head(sk);
2628 BUG_ON(!skb || skb->len < mss_now);
2630 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2633 /* This function returns the amount that we can raise the
2634 * usable window based on the following constraints
2636 * 1. The window can never be shrunk once it is offered (RFC 793)
2637 * 2. We limit memory per socket
2640 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2641 * RECV.NEXT + RCV.WIN fixed until:
2642 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2644 * i.e. don't raise the right edge of the window until you can raise
2645 * it at least MSS bytes.
2647 * Unfortunately, the recommended algorithm breaks header prediction,
2648 * since header prediction assumes th->window stays fixed.
2650 * Strictly speaking, keeping th->window fixed violates the receiver
2651 * side SWS prevention criteria. The problem is that under this rule
2652 * a stream of single byte packets will cause the right side of the
2653 * window to always advance by a single byte.
2655 * Of course, if the sender implements sender side SWS prevention
2656 * then this will not be a problem.
2658 * BSD seems to make the following compromise:
2660 * If the free space is less than the 1/4 of the maximum
2661 * space available and the free space is less than 1/2 mss,
2662 * then set the window to 0.
2663 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2664 * Otherwise, just prevent the window from shrinking
2665 * and from being larger than the largest representable value.
2667 * This prevents incremental opening of the window in the regime
2668 * where TCP is limited by the speed of the reader side taking
2669 * data out of the TCP receive queue. It does nothing about
2670 * those cases where the window is constrained on the sender side
2671 * because the pipeline is full.
2673 * BSD also seems to "accidentally" limit itself to windows that are a
2674 * multiple of MSS, at least until the free space gets quite small.
2675 * This would appear to be a side effect of the mbuf implementation.
2676 * Combining these two algorithms results in the observed behavior
2677 * of having a fixed window size at almost all times.
2679 * Below we obtain similar behavior by forcing the offered window to
2680 * a multiple of the mss when it is feasible to do so.
2682 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2683 * Regular options like TIMESTAMP are taken into account.
2685 u32 __tcp_select_window(struct sock *sk)
2687 struct inet_connection_sock *icsk = inet_csk(sk);
2688 struct tcp_sock *tp = tcp_sk(sk);
2689 /* MSS for the peer's data. Previous versions used mss_clamp
2690 * here. I don't know if the value based on our guesses
2691 * of peer's MSS is better for the performance. It's more correct
2692 * but may be worse for the performance because of rcv_mss
2693 * fluctuations. --SAW 1998/11/1
2695 int mss = icsk->icsk_ack.rcv_mss;
2696 int free_space = tcp_space(sk);
2697 int allowed_space = tcp_full_space(sk);
2698 int full_space = min_t(int, tp->window_clamp, allowed_space);
2701 if (unlikely(mss > full_space)) {
2706 if (free_space < (full_space >> 1)) {
2707 icsk->icsk_ack.quick = 0;
2709 if (tcp_under_memory_pressure(sk))
2710 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2713 /* free_space might become our new window, make sure we don't
2714 * increase it due to wscale.
2716 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2718 /* if free space is less than mss estimate, or is below 1/16th
2719 * of the maximum allowed, try to move to zero-window, else
2720 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2721 * new incoming data is dropped due to memory limits.
2722 * With large window, mss test triggers way too late in order
2723 * to announce zero window in time before rmem limit kicks in.
2725 if (free_space < (allowed_space >> 4) || free_space < mss)
2729 if (free_space > tp->rcv_ssthresh)
2730 free_space = tp->rcv_ssthresh;
2732 /* Don't do rounding if we are using window scaling, since the
2733 * scaled window will not line up with the MSS boundary anyway.
2735 if (tp->rx_opt.rcv_wscale) {
2736 window = free_space;
2738 /* Advertise enough space so that it won't get scaled away.
2739 * Import case: prevent zero window announcement if
2740 * 1<<rcv_wscale > mss.
2742 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2744 window = tp->rcv_wnd;
2745 /* Get the largest window that is a nice multiple of mss.
2746 * Window clamp already applied above.
2747 * If our current window offering is within 1 mss of the
2748 * free space we just keep it. This prevents the divide
2749 * and multiply from happening most of the time.
2750 * We also don't do any window rounding when the free space
2753 if (window <= free_space - mss || window > free_space)
2754 window = rounddown(free_space, mss);
2755 else if (mss == full_space &&
2756 free_space > window + (full_space >> 1))
2757 window = free_space;
2763 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2764 const struct sk_buff *next_skb)
2766 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2767 const struct skb_shared_info *next_shinfo =
2768 skb_shinfo(next_skb);
2769 struct skb_shared_info *shinfo = skb_shinfo(skb);
2771 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2772 shinfo->tskey = next_shinfo->tskey;
2773 TCP_SKB_CB(skb)->txstamp_ack |=
2774 TCP_SKB_CB(next_skb)->txstamp_ack;
2778 /* Collapses two adjacent SKB's during retransmission. */
2779 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2781 struct tcp_sock *tp = tcp_sk(sk);
2782 struct sk_buff *next_skb = skb_rb_next(skb);
2785 next_skb_size = next_skb->len;
2787 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2789 if (next_skb_size) {
2790 if (next_skb_size <= skb_availroom(skb))
2791 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2793 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2796 tcp_highest_sack_replace(sk, next_skb, skb);
2798 /* Update sequence range on original skb. */
2799 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2801 /* Merge over control information. This moves PSH/FIN etc. over */
2802 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2804 /* All done, get rid of second SKB and account for it so
2805 * packet counting does not break.
2807 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2808 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2810 /* changed transmit queue under us so clear hints */
2811 tcp_clear_retrans_hints_partial(tp);
2812 if (next_skb == tp->retransmit_skb_hint)
2813 tp->retransmit_skb_hint = skb;
2815 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2817 tcp_skb_collapse_tstamp(skb, next_skb);
2819 tcp_rtx_queue_unlink_and_free(next_skb, sk);
2823 /* Check if coalescing SKBs is legal. */
2824 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2826 if (tcp_skb_pcount(skb) > 1)
2828 if (skb_cloned(skb))
2830 /* Some heuristics for collapsing over SACK'd could be invented */
2831 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2837 /* Collapse packets in the retransmit queue to make to create
2838 * less packets on the wire. This is only done on retransmission.
2840 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2843 struct tcp_sock *tp = tcp_sk(sk);
2844 struct sk_buff *skb = to, *tmp;
2847 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2849 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2852 skb_rbtree_walk_from_safe(skb, tmp) {
2853 if (!tcp_can_collapse(sk, skb))
2856 if (!tcp_skb_can_collapse_to(to))
2869 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2872 if (!tcp_collapse_retrans(sk, to))
2877 /* This retransmits one SKB. Policy decisions and retransmit queue
2878 * state updates are done by the caller. Returns non-zero if an
2879 * error occurred which prevented the send.
2881 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2883 struct inet_connection_sock *icsk = inet_csk(sk);
2884 struct tcp_sock *tp = tcp_sk(sk);
2885 unsigned int cur_mss;
2889 /* Inconclusive MTU probe */
2890 if (icsk->icsk_mtup.probe_size)
2891 icsk->icsk_mtup.probe_size = 0;
2893 /* Do not sent more than we queued. 1/4 is reserved for possible
2894 * copying overhead: fragmentation, tunneling, mangling etc.
2896 if (refcount_read(&sk->sk_wmem_alloc) >
2897 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2901 if (skb_still_in_host_queue(sk, skb))
2904 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2905 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2909 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2913 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2914 return -EHOSTUNREACH; /* Routing failure or similar. */
2916 cur_mss = tcp_current_mss(sk);
2918 /* If receiver has shrunk his window, and skb is out of
2919 * new window, do not retransmit it. The exception is the
2920 * case, when window is shrunk to zero. In this case
2921 * our retransmit serves as a zero window probe.
2923 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2924 TCP_SKB_CB(skb)->seq != tp->snd_una)
2927 len = cur_mss * segs;
2928 if (skb->len > len) {
2929 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2930 cur_mss, GFP_ATOMIC))
2931 return -ENOMEM; /* We'll try again later. */
2933 if (skb_unclone(skb, GFP_ATOMIC))
2936 diff = tcp_skb_pcount(skb);
2937 tcp_set_skb_tso_segs(skb, cur_mss);
2938 diff -= tcp_skb_pcount(skb);
2940 tcp_adjust_pcount(sk, skb, diff);
2941 if (skb->len < cur_mss)
2942 tcp_retrans_try_collapse(sk, skb, cur_mss);
2945 /* RFC3168, section 6.1.1.1. ECN fallback */
2946 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2947 tcp_ecn_clear_syn(sk, skb);
2949 /* Update global and local TCP statistics. */
2950 segs = tcp_skb_pcount(skb);
2951 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2952 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2953 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2954 tp->total_retrans += segs;
2955 tp->bytes_retrans += skb->len;
2957 /* make sure skb->data is aligned on arches that require it
2958 * and check if ack-trimming & collapsing extended the headroom
2959 * beyond what csum_start can cover.
2961 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2962 skb_headroom(skb) >= 0xFFFF)) {
2963 struct sk_buff *nskb;
2965 tcp_skb_tsorted_save(skb) {
2966 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2967 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2969 } tcp_skb_tsorted_restore(skb);
2972 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
2973 tcp_rate_skb_sent(sk, skb);
2976 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2979 /* To avoid taking spuriously low RTT samples based on a timestamp
2980 * for a transmit that never happened, always mark EVER_RETRANS
2982 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2984 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2985 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2986 TCP_SKB_CB(skb)->seq, segs, err);
2989 trace_tcp_retransmit_skb(sk, skb);
2990 } else if (err != -EBUSY) {
2991 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2996 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2998 struct tcp_sock *tp = tcp_sk(sk);
2999 int err = __tcp_retransmit_skb(sk, skb, segs);
3002 #if FASTRETRANS_DEBUG > 0
3003 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3004 net_dbg_ratelimited("retrans_out leaked\n");
3007 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3008 tp->retrans_out += tcp_skb_pcount(skb);
3011 /* Save stamp of the first (attempted) retransmit. */
3012 if (!tp->retrans_stamp)
3013 tp->retrans_stamp = tcp_skb_timestamp(skb);
3015 if (tp->undo_retrans < 0)
3016 tp->undo_retrans = 0;
3017 tp->undo_retrans += tcp_skb_pcount(skb);
3021 /* This gets called after a retransmit timeout, and the initially
3022 * retransmitted data is acknowledged. It tries to continue
3023 * resending the rest of the retransmit queue, until either
3024 * we've sent it all or the congestion window limit is reached.
3026 void tcp_xmit_retransmit_queue(struct sock *sk)
3028 const struct inet_connection_sock *icsk = inet_csk(sk);
3029 struct sk_buff *skb, *rtx_head, *hole = NULL;
3030 struct tcp_sock *tp = tcp_sk(sk);
3034 if (!tp->packets_out)
3037 rtx_head = tcp_rtx_queue_head(sk);
3038 skb = tp->retransmit_skb_hint ?: rtx_head;
3039 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3040 skb_rbtree_walk_from(skb) {
3044 if (tcp_pacing_check(sk))
3047 /* we could do better than to assign each time */
3049 tp->retransmit_skb_hint = skb;
3051 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3054 sacked = TCP_SKB_CB(skb)->sacked;
3055 /* In case tcp_shift_skb_data() have aggregated large skbs,
3056 * we need to make sure not sending too bigs TSO packets
3058 segs = min_t(int, segs, max_segs);
3060 if (tp->retrans_out >= tp->lost_out) {
3062 } else if (!(sacked & TCPCB_LOST)) {
3063 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3068 if (icsk->icsk_ca_state != TCP_CA_Loss)
3069 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3071 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3074 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3077 if (tcp_small_queue_check(sk, skb, 1))
3080 if (tcp_retransmit_skb(sk, skb, segs))
3083 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3085 if (tcp_in_cwnd_reduction(sk))
3086 tp->prr_out += tcp_skb_pcount(skb);
3088 if (skb == rtx_head &&
3089 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3090 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3091 inet_csk(sk)->icsk_rto,
3097 /* We allow to exceed memory limits for FIN packets to expedite
3098 * connection tear down and (memory) recovery.
3099 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3100 * or even be forced to close flow without any FIN.
3101 * In general, we want to allow one skb per socket to avoid hangs
3102 * with edge trigger epoll()
3104 void sk_forced_mem_schedule(struct sock *sk, int size)
3108 if (size <= sk->sk_forward_alloc)
3110 amt = sk_mem_pages(size);
3111 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3112 sk_memory_allocated_add(sk, amt);
3114 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3115 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3118 /* Send a FIN. The caller locks the socket for us.
3119 * We should try to send a FIN packet really hard, but eventually give up.
3121 void tcp_send_fin(struct sock *sk)
3123 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3124 struct tcp_sock *tp = tcp_sk(sk);
3126 /* Optimization, tack on the FIN if we have one skb in write queue and
3127 * this skb was not yet sent, or we are under memory pressure.
3128 * Note: in the latter case, FIN packet will be sent after a timeout,
3129 * as TCP stack thinks it has already been transmitted.
3131 if (!tskb && tcp_under_memory_pressure(sk))
3132 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3135 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3136 TCP_SKB_CB(tskb)->end_seq++;
3138 if (tcp_write_queue_empty(sk)) {
3139 /* This means tskb was already sent.
3140 * Pretend we included the FIN on previous transmit.
3141 * We need to set tp->snd_nxt to the value it would have
3142 * if FIN had been sent. This is because retransmit path
3143 * does not change tp->snd_nxt.
3145 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3149 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3153 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3154 skb_reserve(skb, MAX_TCP_HEADER);
3155 sk_forced_mem_schedule(sk, skb->truesize);
3156 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3157 tcp_init_nondata_skb(skb, tp->write_seq,
3158 TCPHDR_ACK | TCPHDR_FIN);
3159 tcp_queue_skb(sk, skb);
3161 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3164 /* We get here when a process closes a file descriptor (either due to
3165 * an explicit close() or as a byproduct of exit()'ing) and there
3166 * was unread data in the receive queue. This behavior is recommended
3167 * by RFC 2525, section 2.17. -DaveM
3169 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3171 struct sk_buff *skb;
3173 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3175 /* NOTE: No TCP options attached and we never retransmit this. */
3176 skb = alloc_skb(MAX_TCP_HEADER, priority);
3178 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3182 /* Reserve space for headers and prepare control bits. */
3183 skb_reserve(skb, MAX_TCP_HEADER);
3184 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3185 TCPHDR_ACK | TCPHDR_RST);
3186 tcp_mstamp_refresh(tcp_sk(sk));
3188 if (tcp_transmit_skb(sk, skb, 0, priority))
3189 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3191 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3192 * skb here is different to the troublesome skb, so use NULL
3194 trace_tcp_send_reset(sk, NULL);
3197 /* Send a crossed SYN-ACK during socket establishment.
3198 * WARNING: This routine must only be called when we have already sent
3199 * a SYN packet that crossed the incoming SYN that caused this routine
3200 * to get called. If this assumption fails then the initial rcv_wnd
3201 * and rcv_wscale values will not be correct.
3203 int tcp_send_synack(struct sock *sk)
3205 struct sk_buff *skb;
3207 skb = tcp_rtx_queue_head(sk);
3208 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3209 pr_err("%s: wrong queue state\n", __func__);
3212 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3213 if (skb_cloned(skb)) {
3214 struct sk_buff *nskb;
3216 tcp_skb_tsorted_save(skb) {
3217 nskb = skb_copy(skb, GFP_ATOMIC);
3218 } tcp_skb_tsorted_restore(skb);
3221 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3222 tcp_rtx_queue_unlink_and_free(skb, sk);
3223 __skb_header_release(nskb);
3224 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3225 sk_wmem_queued_add(sk, nskb->truesize);
3226 sk_mem_charge(sk, nskb->truesize);
3230 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3231 tcp_ecn_send_synack(sk, skb);
3233 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3237 * tcp_make_synack - Prepare a SYN-ACK.
3238 * sk: listener socket
3239 * dst: dst entry attached to the SYNACK
3240 * req: request_sock pointer
3242 * Allocate one skb and build a SYNACK packet.
3243 * @dst is consumed : Caller should not use it again.
3245 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3246 struct request_sock *req,
3247 struct tcp_fastopen_cookie *foc,
3248 enum tcp_synack_type synack_type)
3250 struct inet_request_sock *ireq = inet_rsk(req);
3251 const struct tcp_sock *tp = tcp_sk(sk);
3252 struct tcp_md5sig_key *md5 = NULL;
3253 struct tcp_out_options opts;
3254 struct sk_buff *skb;
3255 int tcp_header_size;
3260 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3261 if (unlikely(!skb)) {
3265 /* Reserve space for headers. */
3266 skb_reserve(skb, MAX_TCP_HEADER);
3268 switch (synack_type) {
3269 case TCP_SYNACK_NORMAL:
3270 skb_set_owner_w(skb, req_to_sk(req));
3272 case TCP_SYNACK_COOKIE:
3273 /* Under synflood, we do not attach skb to a socket,
3274 * to avoid false sharing.
3277 case TCP_SYNACK_FASTOPEN:
3278 /* sk is a const pointer, because we want to express multiple
3279 * cpu might call us concurrently.
3280 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3282 skb_set_owner_w(skb, (struct sock *)sk);
3285 skb_dst_set(skb, dst);
3287 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3289 memset(&opts, 0, sizeof(opts));
3290 now = tcp_clock_ns();
3291 #ifdef CONFIG_SYN_COOKIES
3292 if (unlikely(req->cookie_ts))
3293 skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3297 skb->skb_mstamp_ns = now;
3298 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3299 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3302 #ifdef CONFIG_TCP_MD5SIG
3304 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3306 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3307 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3310 skb_push(skb, tcp_header_size);
3311 skb_reset_transport_header(skb);
3313 th = (struct tcphdr *)skb->data;
3314 memset(th, 0, sizeof(struct tcphdr));
3317 tcp_ecn_make_synack(req, th);
3318 th->source = htons(ireq->ir_num);
3319 th->dest = ireq->ir_rmt_port;
3320 skb->mark = ireq->ir_mark;
3321 skb->ip_summed = CHECKSUM_PARTIAL;
3322 th->seq = htonl(tcp_rsk(req)->snt_isn);
3323 /* XXX data is queued and acked as is. No buffer/window check */
3324 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3326 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3327 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3328 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3329 th->doff = (tcp_header_size >> 2);
3330 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3332 #ifdef CONFIG_TCP_MD5SIG
3333 /* Okay, we have all we need - do the md5 hash if needed */
3335 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3336 md5, req_to_sk(req), skb);
3340 skb->skb_mstamp_ns = now;
3341 tcp_add_tx_delay(skb, tp);
3345 EXPORT_SYMBOL(tcp_make_synack);
3347 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3349 struct inet_connection_sock *icsk = inet_csk(sk);
3350 const struct tcp_congestion_ops *ca;
3351 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3353 if (ca_key == TCP_CA_UNSPEC)
3357 ca = tcp_ca_find_key(ca_key);
3358 if (likely(ca && try_module_get(ca->owner))) {
3359 module_put(icsk->icsk_ca_ops->owner);
3360 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3361 icsk->icsk_ca_ops = ca;
3366 /* Do all connect socket setups that can be done AF independent. */
3367 static void tcp_connect_init(struct sock *sk)
3369 const struct dst_entry *dst = __sk_dst_get(sk);
3370 struct tcp_sock *tp = tcp_sk(sk);
3374 /* We'll fix this up when we get a response from the other end.
3375 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3377 tp->tcp_header_len = sizeof(struct tcphdr);
3378 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3379 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3381 #ifdef CONFIG_TCP_MD5SIG
3382 if (tp->af_specific->md5_lookup(sk, sk))
3383 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3386 /* If user gave his TCP_MAXSEG, record it to clamp */
3387 if (tp->rx_opt.user_mss)
3388 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3391 tcp_sync_mss(sk, dst_mtu(dst));
3393 tcp_ca_dst_init(sk, dst);
3395 if (!tp->window_clamp)
3396 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3397 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3399 tcp_initialize_rcv_mss(sk);
3401 /* limit the window selection if the user enforce a smaller rx buffer */
3402 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3403 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3404 tp->window_clamp = tcp_full_space(sk);
3406 rcv_wnd = tcp_rwnd_init_bpf(sk);
3408 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3410 tcp_select_initial_window(sk, tcp_full_space(sk),
3411 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3414 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3418 tp->rx_opt.rcv_wscale = rcv_wscale;
3419 tp->rcv_ssthresh = tp->rcv_wnd;
3422 sock_reset_flag(sk, SOCK_DONE);
3425 tcp_write_queue_purge(sk);
3426 tp->snd_una = tp->write_seq;
3427 tp->snd_sml = tp->write_seq;
3428 tp->snd_up = tp->write_seq;
3429 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3431 if (likely(!tp->repair))
3434 tp->rcv_tstamp = tcp_jiffies32;
3435 tp->rcv_wup = tp->rcv_nxt;
3436 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3438 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3439 inet_csk(sk)->icsk_retransmits = 0;
3440 tcp_clear_retrans(tp);
3443 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3445 struct tcp_sock *tp = tcp_sk(sk);
3446 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3448 tcb->end_seq += skb->len;
3449 __skb_header_release(skb);
3450 sk_wmem_queued_add(sk, skb->truesize);
3451 sk_mem_charge(sk, skb->truesize);
3452 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3453 tp->packets_out += tcp_skb_pcount(skb);
3456 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3457 * queue a data-only packet after the regular SYN, such that regular SYNs
3458 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3459 * only the SYN sequence, the data are retransmitted in the first ACK.
3460 * If cookie is not cached or other error occurs, falls back to send a
3461 * regular SYN with Fast Open cookie request option.
3463 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3465 struct tcp_sock *tp = tcp_sk(sk);
3466 struct tcp_fastopen_request *fo = tp->fastopen_req;
3468 struct sk_buff *syn_data;
3470 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3471 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3474 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3475 * user-MSS. Reserve maximum option space for middleboxes that add
3476 * private TCP options. The cost is reduced data space in SYN :(
3478 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3480 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3481 MAX_TCP_OPTION_SPACE;
3483 space = min_t(size_t, space, fo->size);
3485 /* limit to order-0 allocations */
3486 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3488 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3491 syn_data->ip_summed = CHECKSUM_PARTIAL;
3492 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3494 int copied = copy_from_iter(skb_put(syn_data, space), space,
3495 &fo->data->msg_iter);
3496 if (unlikely(!copied)) {
3497 tcp_skb_tsorted_anchor_cleanup(syn_data);
3498 kfree_skb(syn_data);
3501 if (copied != space) {
3502 skb_trim(syn_data, copied);
3505 skb_zcopy_set(syn_data, fo->uarg, NULL);
3507 /* No more data pending in inet_wait_for_connect() */
3508 if (space == fo->size)
3512 tcp_connect_queue_skb(sk, syn_data);
3514 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3516 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3518 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3520 /* Now full SYN+DATA was cloned and sent (or not),
3521 * remove the SYN from the original skb (syn_data)
3522 * we keep in write queue in case of a retransmit, as we
3523 * also have the SYN packet (with no data) in the same queue.
3525 TCP_SKB_CB(syn_data)->seq++;
3526 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3528 tp->syn_data = (fo->copied > 0);
3529 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3530 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3534 /* data was not sent, put it in write_queue */
3535 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3536 tp->packets_out -= tcp_skb_pcount(syn_data);
3539 /* Send a regular SYN with Fast Open cookie request option */
3540 if (fo->cookie.len > 0)
3542 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3544 tp->syn_fastopen = 0;
3546 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3550 /* Build a SYN and send it off. */
3551 int tcp_connect(struct sock *sk)
3553 struct tcp_sock *tp = tcp_sk(sk);
3554 struct sk_buff *buff;
3557 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3559 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3560 return -EHOSTUNREACH; /* Routing failure or similar. */
3562 tcp_connect_init(sk);
3564 if (unlikely(tp->repair)) {
3565 tcp_finish_connect(sk, NULL);
3569 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3570 if (unlikely(!buff))
3573 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3574 tcp_mstamp_refresh(tp);
3575 tp->retrans_stamp = tcp_time_stamp(tp);
3576 tcp_connect_queue_skb(sk, buff);
3577 tcp_ecn_send_syn(sk, buff);
3578 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3580 /* Send off SYN; include data in Fast Open. */
3581 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3582 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3583 if (err == -ECONNREFUSED)
3586 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3587 * in order to make this packet get counted in tcpOutSegs.
3589 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3590 tp->pushed_seq = tp->write_seq;
3591 buff = tcp_send_head(sk);
3592 if (unlikely(buff)) {
3593 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3594 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3596 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3598 /* Timer for repeating the SYN until an answer. */
3599 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3600 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3603 EXPORT_SYMBOL(tcp_connect);
3605 /* Send out a delayed ack, the caller does the policy checking
3606 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3609 void tcp_send_delayed_ack(struct sock *sk)
3611 struct inet_connection_sock *icsk = inet_csk(sk);
3612 int ato = icsk->icsk_ack.ato;
3613 unsigned long timeout;
3615 if (ato > TCP_DELACK_MIN) {
3616 const struct tcp_sock *tp = tcp_sk(sk);
3617 int max_ato = HZ / 2;
3619 if (inet_csk_in_pingpong_mode(sk) ||
3620 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3621 max_ato = TCP_DELACK_MAX;
3623 /* Slow path, intersegment interval is "high". */
3625 /* If some rtt estimate is known, use it to bound delayed ack.
3626 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3630 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3637 ato = min(ato, max_ato);
3640 /* Stay within the limit we were given */
3641 timeout = jiffies + ato;
3643 /* Use new timeout only if there wasn't a older one earlier. */
3644 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3645 /* If delack timer was blocked or is about to expire,
3648 if (icsk->icsk_ack.blocked ||
3649 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3654 if (!time_before(timeout, icsk->icsk_ack.timeout))
3655 timeout = icsk->icsk_ack.timeout;
3657 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3658 icsk->icsk_ack.timeout = timeout;
3659 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3662 /* This routine sends an ack and also updates the window. */
3663 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3665 struct sk_buff *buff;
3667 /* If we have been reset, we may not send again. */
3668 if (sk->sk_state == TCP_CLOSE)
3671 /* We are not putting this on the write queue, so
3672 * tcp_transmit_skb() will set the ownership to this
3675 buff = alloc_skb(MAX_TCP_HEADER,
3676 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3677 if (unlikely(!buff)) {
3678 inet_csk_schedule_ack(sk);
3679 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3680 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3681 TCP_DELACK_MAX, TCP_RTO_MAX);
3685 /* Reserve space for headers and prepare control bits. */
3686 skb_reserve(buff, MAX_TCP_HEADER);
3687 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3689 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3691 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3693 skb_set_tcp_pure_ack(buff);
3695 /* Send it off, this clears delayed acks for us. */
3696 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3698 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3700 void tcp_send_ack(struct sock *sk)
3702 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3705 /* This routine sends a packet with an out of date sequence
3706 * number. It assumes the other end will try to ack it.
3708 * Question: what should we make while urgent mode?
3709 * 4.4BSD forces sending single byte of data. We cannot send
3710 * out of window data, because we have SND.NXT==SND.MAX...
3712 * Current solution: to send TWO zero-length segments in urgent mode:
3713 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3714 * out-of-date with SND.UNA-1 to probe window.
3716 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3718 struct tcp_sock *tp = tcp_sk(sk);
3719 struct sk_buff *skb;
3721 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3722 skb = alloc_skb(MAX_TCP_HEADER,
3723 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3727 /* Reserve space for headers and set control bits. */
3728 skb_reserve(skb, MAX_TCP_HEADER);
3729 /* Use a previous sequence. This should cause the other
3730 * end to send an ack. Don't queue or clone SKB, just
3733 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3734 NET_INC_STATS(sock_net(sk), mib);
3735 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3738 /* Called from setsockopt( ... TCP_REPAIR ) */
3739 void tcp_send_window_probe(struct sock *sk)
3741 if (sk->sk_state == TCP_ESTABLISHED) {
3742 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3743 tcp_mstamp_refresh(tcp_sk(sk));
3744 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3748 /* Initiate keepalive or window probe from timer. */
3749 int tcp_write_wakeup(struct sock *sk, int mib)
3751 struct tcp_sock *tp = tcp_sk(sk);
3752 struct sk_buff *skb;
3754 if (sk->sk_state == TCP_CLOSE)
3757 skb = tcp_send_head(sk);
3758 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3760 unsigned int mss = tcp_current_mss(sk);
3761 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3763 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3764 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3766 /* We are probing the opening of a window
3767 * but the window size is != 0
3768 * must have been a result SWS avoidance ( sender )
3770 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3772 seg_size = min(seg_size, mss);
3773 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3774 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3775 skb, seg_size, mss, GFP_ATOMIC))
3777 } else if (!tcp_skb_pcount(skb))
3778 tcp_set_skb_tso_segs(skb, mss);
3780 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3781 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3783 tcp_event_new_data_sent(sk, skb);
3786 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3787 tcp_xmit_probe_skb(sk, 1, mib);
3788 return tcp_xmit_probe_skb(sk, 0, mib);
3792 /* A window probe timeout has occurred. If window is not closed send
3793 * a partial packet else a zero probe.
3795 void tcp_send_probe0(struct sock *sk)
3797 struct inet_connection_sock *icsk = inet_csk(sk);
3798 struct tcp_sock *tp = tcp_sk(sk);
3799 struct net *net = sock_net(sk);
3800 unsigned long timeout;
3803 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3805 if (tp->packets_out || tcp_write_queue_empty(sk)) {
3806 /* Cancel probe timer, if it is not required. */
3807 icsk->icsk_probes_out = 0;
3808 icsk->icsk_backoff = 0;
3812 icsk->icsk_probes_out++;
3814 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3815 icsk->icsk_backoff++;
3816 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3818 /* If packet was not sent due to local congestion,
3819 * Let senders fight for local resources conservatively.
3821 timeout = TCP_RESOURCE_PROBE_INTERVAL;
3823 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL);
3826 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3828 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3832 tcp_rsk(req)->txhash = net_tx_rndhash();
3833 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3835 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3836 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3837 if (unlikely(tcp_passive_fastopen(sk)))
3838 tcp_sk(sk)->total_retrans++;
3839 trace_tcp_retransmit_synack(sk, req);
3843 EXPORT_SYMBOL(tcp_rtx_synack);