1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright © 2006-2014 Intel Corporation.
13 #define pr_fmt(fmt) "DMAR: " fmt
14 #define dev_fmt(fmt) pr_fmt(fmt)
16 #include <linux/init.h>
17 #include <linux/bitmap.h>
18 #include <linux/debugfs.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/irq.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock.h>
24 #include <linux/pci.h>
25 #include <linux/dmar.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/mempool.h>
28 #include <linux/memory.h>
29 #include <linux/cpu.h>
30 #include <linux/timer.h>
32 #include <linux/iova.h>
33 #include <linux/iommu.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38 #include <linux/pci-ats.h>
39 #include <linux/memblock.h>
40 #include <linux/dma-contiguous.h>
41 #include <linux/dma-direct.h>
42 #include <linux/crash_dump.h>
43 #include <linux/numa.h>
44 #include <linux/swiotlb.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
48 #include <trace/events/intel_iommu.h>
50 #include "irq_remapping.h"
51 #include "intel-pasid.h"
53 #define ROOT_SIZE VTD_PAGE_SIZE
54 #define CONTEXT_SIZE VTD_PAGE_SIZE
56 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
61 #define IOAPIC_RANGE_START (0xfee00000)
62 #define IOAPIC_RANGE_END (0xfeefffff)
63 #define IOVA_START_ADDR (0x1000)
65 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
67 #define MAX_AGAW_WIDTH 64
68 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
70 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
73 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
76 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
79 /* IO virtual address start page frame number */
80 #define IOVA_START_PFN (1)
82 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
84 /* page table handling */
85 #define LEVEL_STRIDE (9)
86 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
89 * This bitmap is used to advertise the page sizes our hardware support
90 * to the IOMMU core, which will then use this information to split
91 * physically contiguous memory regions it is mapping into page sizes
94 * Traditionally the IOMMU core just handed us the mappings directly,
95 * after making sure the size is an order of a 4KiB page and that the
96 * mapping has natural alignment.
98 * To retain this behavior, we currently advertise that we support
99 * all page sizes that are an order of 4KiB.
101 * If at some point we'd like to utilize the IOMMU core's new behavior,
102 * we could change this to advertise the real page sizes we support.
104 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
106 static inline int agaw_to_level(int agaw)
111 static inline int agaw_to_width(int agaw)
113 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
116 static inline int width_to_agaw(int width)
118 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
121 static inline unsigned int level_to_offset_bits(int level)
123 return (level - 1) * LEVEL_STRIDE;
126 static inline int pfn_level_offset(unsigned long pfn, int level)
128 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
131 static inline unsigned long level_mask(int level)
133 return -1UL << level_to_offset_bits(level);
136 static inline unsigned long level_size(int level)
138 return 1UL << level_to_offset_bits(level);
141 static inline unsigned long align_to_level(unsigned long pfn, int level)
143 return (pfn + level_size(level) - 1) & level_mask(level);
146 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
148 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
151 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
152 are never going to work. */
153 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
155 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
160 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
162 static inline unsigned long page_to_dma_pfn(struct page *pg)
164 return mm_to_dma_pfn(page_to_pfn(pg));
166 static inline unsigned long virt_to_dma_pfn(void *p)
168 return page_to_dma_pfn(virt_to_page(p));
171 /* global iommu list, set NULL for ignored DMAR units */
172 static struct intel_iommu **g_iommus;
174 static void __init check_tylersburg_isoch(void);
175 static int rwbf_quirk;
178 * set to 1 to panic kernel if can't successfully enable VT-d
179 * (used when kernel is launched w/ TXT)
181 static int force_on = 0;
182 int intel_iommu_tboot_noforce;
183 static int no_platform_optin;
185 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
188 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
191 static phys_addr_t root_entry_lctp(struct root_entry *re)
196 return re->lo & VTD_PAGE_MASK;
200 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
203 static phys_addr_t root_entry_uctp(struct root_entry *re)
208 return re->hi & VTD_PAGE_MASK;
211 static inline void context_clear_pasid_enable(struct context_entry *context)
213 context->lo &= ~(1ULL << 11);
216 static inline bool context_pasid_enabled(struct context_entry *context)
218 return !!(context->lo & (1ULL << 11));
221 static inline void context_set_copied(struct context_entry *context)
223 context->hi |= (1ull << 3);
226 static inline bool context_copied(struct context_entry *context)
228 return !!(context->hi & (1ULL << 3));
231 static inline bool __context_present(struct context_entry *context)
233 return (context->lo & 1);
236 bool context_present(struct context_entry *context)
238 return context_pasid_enabled(context) ?
239 __context_present(context) :
240 __context_present(context) && !context_copied(context);
243 static inline void context_set_present(struct context_entry *context)
248 static inline void context_set_fault_enable(struct context_entry *context)
250 context->lo &= (((u64)-1) << 2) | 1;
253 static inline void context_set_translation_type(struct context_entry *context,
256 context->lo &= (((u64)-1) << 4) | 3;
257 context->lo |= (value & 3) << 2;
260 static inline void context_set_address_root(struct context_entry *context,
263 context->lo &= ~VTD_PAGE_MASK;
264 context->lo |= value & VTD_PAGE_MASK;
267 static inline void context_set_address_width(struct context_entry *context,
270 context->hi |= value & 7;
273 static inline void context_set_domain_id(struct context_entry *context,
276 context->hi |= (value & ((1 << 16) - 1)) << 8;
279 static inline int context_domain_id(struct context_entry *c)
281 return((c->hi >> 8) & 0xffff);
284 static inline void context_clear_entry(struct context_entry *context)
291 * This domain is a statically identity mapping domain.
292 * 1. This domain creats a static 1:1 mapping to all usable memory.
293 * 2. It maps to each iommu if successful.
294 * 3. Each iommu mapps to this domain if successful.
296 static struct dmar_domain *si_domain;
297 static int hw_pass_through = 1;
299 /* si_domain contains mulitple devices */
300 #define DOMAIN_FLAG_STATIC_IDENTITY BIT(0)
303 * This is a DMA domain allocated through the iommu domain allocation
304 * interface. But one or more devices belonging to this domain have
305 * been chosen to use a private domain. We should avoid to use the
306 * map/unmap/iova_to_phys APIs on it.
308 #define DOMAIN_FLAG_LOSE_CHILDREN BIT(1)
310 #define for_each_domain_iommu(idx, domain) \
311 for (idx = 0; idx < g_num_of_iommus; idx++) \
312 if (domain->iommu_refcnt[idx])
314 struct dmar_rmrr_unit {
315 struct list_head list; /* list of rmrr units */
316 struct acpi_dmar_header *hdr; /* ACPI header */
317 u64 base_address; /* reserved base address*/
318 u64 end_address; /* reserved end address */
319 struct dmar_dev_scope *devices; /* target devices */
320 int devices_cnt; /* target device count */
323 struct dmar_atsr_unit {
324 struct list_head list; /* list of ATSR units */
325 struct acpi_dmar_header *hdr; /* ACPI header */
326 struct dmar_dev_scope *devices; /* target devices */
327 int devices_cnt; /* target device count */
328 u8 include_all:1; /* include all ports */
331 static LIST_HEAD(dmar_atsr_units);
332 static LIST_HEAD(dmar_rmrr_units);
334 #define for_each_rmrr_units(rmrr) \
335 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
337 /* bitmap for indexing intel_iommus */
338 static int g_num_of_iommus;
340 static void domain_exit(struct dmar_domain *domain);
341 static void domain_remove_dev_info(struct dmar_domain *domain);
342 static void dmar_remove_one_dev_info(struct device *dev);
343 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
344 static void domain_context_clear(struct intel_iommu *iommu,
346 static int domain_detach_iommu(struct dmar_domain *domain,
347 struct intel_iommu *iommu);
348 static bool device_is_rmrr_locked(struct device *dev);
349 static int intel_iommu_attach_device(struct iommu_domain *domain,
351 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
354 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
355 int dmar_disabled = 0;
357 int dmar_disabled = 1;
358 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
361 int intel_iommu_enabled = 0;
362 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
364 static int dmar_map_gfx = 1;
365 static int dmar_forcedac;
366 static int intel_iommu_strict;
367 static int intel_iommu_superpage = 1;
368 static int iommu_identity_mapping;
369 static int intel_no_bounce;
371 #define IDENTMAP_ALL 1
372 #define IDENTMAP_GFX 2
373 #define IDENTMAP_AZALIA 4
375 int intel_iommu_gfx_mapped;
376 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
378 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
379 #define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
380 static DEFINE_SPINLOCK(device_domain_lock);
381 static LIST_HEAD(device_domain_list);
383 #define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) && \
384 to_pci_dev(d)->untrusted)
387 * Iterate over elements in device_domain_list and call the specified
388 * callback @fn against each element.
390 int for_each_device_domain(int (*fn)(struct device_domain_info *info,
391 void *data), void *data)
395 struct device_domain_info *info;
397 spin_lock_irqsave(&device_domain_lock, flags);
398 list_for_each_entry(info, &device_domain_list, global) {
399 ret = fn(info, data);
401 spin_unlock_irqrestore(&device_domain_lock, flags);
405 spin_unlock_irqrestore(&device_domain_lock, flags);
410 const struct iommu_ops intel_iommu_ops;
412 static bool translation_pre_enabled(struct intel_iommu *iommu)
414 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
417 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
419 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
422 static void init_translation_status(struct intel_iommu *iommu)
426 gsts = readl(iommu->reg + DMAR_GSTS_REG);
427 if (gsts & DMA_GSTS_TES)
428 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
431 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
432 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
434 return container_of(dom, struct dmar_domain, domain);
437 static int __init intel_iommu_setup(char *str)
442 if (!strncmp(str, "on", 2)) {
444 pr_info("IOMMU enabled\n");
445 } else if (!strncmp(str, "off", 3)) {
447 no_platform_optin = 1;
448 pr_info("IOMMU disabled\n");
449 } else if (!strncmp(str, "igfx_off", 8)) {
451 pr_info("Disable GFX device mapping\n");
452 } else if (!strncmp(str, "forcedac", 8)) {
453 pr_info("Forcing DAC for PCI devices\n");
455 } else if (!strncmp(str, "strict", 6)) {
456 pr_info("Disable batched IOTLB flush\n");
457 intel_iommu_strict = 1;
458 } else if (!strncmp(str, "sp_off", 6)) {
459 pr_info("Disable supported super page\n");
460 intel_iommu_superpage = 0;
461 } else if (!strncmp(str, "sm_on", 5)) {
462 pr_info("Intel-IOMMU: scalable mode supported\n");
464 } else if (!strncmp(str, "tboot_noforce", 13)) {
466 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
467 intel_iommu_tboot_noforce = 1;
468 } else if (!strncmp(str, "nobounce", 8)) {
469 pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
473 str += strcspn(str, ",");
479 __setup("intel_iommu=", intel_iommu_setup);
481 static struct kmem_cache *iommu_domain_cache;
482 static struct kmem_cache *iommu_devinfo_cache;
484 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
486 struct dmar_domain **domains;
489 domains = iommu->domains[idx];
493 return domains[did & 0xff];
496 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
497 struct dmar_domain *domain)
499 struct dmar_domain **domains;
502 if (!iommu->domains[idx]) {
503 size_t size = 256 * sizeof(struct dmar_domain *);
504 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
507 domains = iommu->domains[idx];
508 if (WARN_ON(!domains))
511 domains[did & 0xff] = domain;
514 void *alloc_pgtable_page(int node)
519 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
521 vaddr = page_address(page);
525 void free_pgtable_page(void *vaddr)
527 free_page((unsigned long)vaddr);
530 static inline void *alloc_domain_mem(void)
532 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
535 static void free_domain_mem(void *vaddr)
537 kmem_cache_free(iommu_domain_cache, vaddr);
540 static inline void * alloc_devinfo_mem(void)
542 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
545 static inline void free_devinfo_mem(void *vaddr)
547 kmem_cache_free(iommu_devinfo_cache, vaddr);
550 static inline int domain_type_is_si(struct dmar_domain *domain)
552 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
555 static inline int domain_pfn_supported(struct dmar_domain *domain,
558 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
560 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
563 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
568 sagaw = cap_sagaw(iommu->cap);
569 for (agaw = width_to_agaw(max_gaw);
571 if (test_bit(agaw, &sagaw))
579 * Calculate max SAGAW for each iommu.
581 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
583 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
587 * calculate agaw for each iommu.
588 * "SAGAW" may be different across iommus, use a default agaw, and
589 * get a supported less agaw for iommus that don't support the default agaw.
591 int iommu_calculate_agaw(struct intel_iommu *iommu)
593 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
596 /* This functionin only returns single iommu in a domain */
597 struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
601 /* si_domain and vm domain should not get here. */
602 if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
605 for_each_domain_iommu(iommu_id, domain)
608 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
611 return g_iommus[iommu_id];
614 static void domain_update_iommu_coherency(struct dmar_domain *domain)
616 struct dmar_drhd_unit *drhd;
617 struct intel_iommu *iommu;
621 domain->iommu_coherency = 1;
623 for_each_domain_iommu(i, domain) {
625 if (!ecap_coherent(g_iommus[i]->ecap)) {
626 domain->iommu_coherency = 0;
633 /* No hardware attached; use lowest common denominator */
635 for_each_active_iommu(iommu, drhd) {
636 if (!ecap_coherent(iommu->ecap)) {
637 domain->iommu_coherency = 0;
644 static int domain_update_iommu_snooping(struct intel_iommu *skip)
646 struct dmar_drhd_unit *drhd;
647 struct intel_iommu *iommu;
651 for_each_active_iommu(iommu, drhd) {
653 if (!ecap_sc_support(iommu->ecap)) {
664 static int domain_update_iommu_superpage(struct intel_iommu *skip)
666 struct dmar_drhd_unit *drhd;
667 struct intel_iommu *iommu;
670 if (!intel_iommu_superpage) {
674 /* set iommu_superpage to the smallest common denominator */
676 for_each_active_iommu(iommu, drhd) {
678 mask &= cap_super_page_val(iommu->cap);
688 /* Some capabilities may be different across iommus */
689 static void domain_update_iommu_cap(struct dmar_domain *domain)
691 domain_update_iommu_coherency(domain);
692 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
693 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
696 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
699 struct root_entry *root = &iommu->root_entry[bus];
700 struct context_entry *context;
704 if (sm_supported(iommu)) {
712 context = phys_to_virt(*entry & VTD_PAGE_MASK);
714 unsigned long phy_addr;
718 context = alloc_pgtable_page(iommu->node);
722 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
723 phy_addr = virt_to_phys((void *)context);
724 *entry = phy_addr | 1;
725 __iommu_flush_cache(iommu, entry, sizeof(*entry));
727 return &context[devfn];
730 static int iommu_dummy(struct device *dev)
732 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
736 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
737 * sub-hierarchy of a candidate PCI-PCI bridge
738 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
739 * @bridge: the candidate PCI-PCI bridge
741 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
744 is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
746 struct pci_dev *pdev, *pbridge;
748 if (!dev_is_pci(dev) || !dev_is_pci(bridge))
751 pdev = to_pci_dev(dev);
752 pbridge = to_pci_dev(bridge);
754 if (pbridge->subordinate &&
755 pbridge->subordinate->number <= pdev->bus->number &&
756 pbridge->subordinate->busn_res.end >= pdev->bus->number)
762 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
764 struct dmar_drhd_unit *drhd = NULL;
765 struct intel_iommu *iommu;
767 struct pci_dev *pdev = NULL;
771 if (iommu_dummy(dev))
774 if (dev_is_pci(dev)) {
775 struct pci_dev *pf_pdev;
777 pdev = to_pci_dev(dev);
780 /* VMD child devices currently cannot be handled individually */
781 if (is_vmd(pdev->bus))
785 /* VFs aren't listed in scope tables; we need to look up
786 * the PF instead to find the IOMMU. */
787 pf_pdev = pci_physfn(pdev);
789 segment = pci_domain_nr(pdev->bus);
790 } else if (has_acpi_companion(dev))
791 dev = &ACPI_COMPANION(dev)->dev;
794 for_each_active_iommu(iommu, drhd) {
795 if (pdev && segment != drhd->segment)
798 for_each_active_dev_scope(drhd->devices,
799 drhd->devices_cnt, i, tmp) {
801 /* For a VF use its original BDF# not that of the PF
802 * which we used for the IOMMU lookup. Strictly speaking
803 * we could do this for all PCI devices; we only need to
804 * get the BDF# from the scope table for ACPI matches. */
805 if (pdev && pdev->is_virtfn)
808 *bus = drhd->devices[i].bus;
809 *devfn = drhd->devices[i].devfn;
813 if (is_downstream_to_pci_bridge(dev, tmp))
817 if (pdev && drhd->include_all) {
819 *bus = pdev->bus->number;
820 *devfn = pdev->devfn;
831 static void domain_flush_cache(struct dmar_domain *domain,
832 void *addr, int size)
834 if (!domain->iommu_coherency)
835 clflush_cache_range(addr, size);
838 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
840 struct context_entry *context;
844 spin_lock_irqsave(&iommu->lock, flags);
845 context = iommu_context_addr(iommu, bus, devfn, 0);
847 ret = context_present(context);
848 spin_unlock_irqrestore(&iommu->lock, flags);
852 static void free_context_table(struct intel_iommu *iommu)
856 struct context_entry *context;
858 spin_lock_irqsave(&iommu->lock, flags);
859 if (!iommu->root_entry) {
862 for (i = 0; i < ROOT_ENTRY_NR; i++) {
863 context = iommu_context_addr(iommu, i, 0, 0);
865 free_pgtable_page(context);
867 if (!sm_supported(iommu))
870 context = iommu_context_addr(iommu, i, 0x80, 0);
872 free_pgtable_page(context);
875 free_pgtable_page(iommu->root_entry);
876 iommu->root_entry = NULL;
878 spin_unlock_irqrestore(&iommu->lock, flags);
881 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
882 unsigned long pfn, int *target_level)
884 struct dma_pte *parent, *pte;
885 int level = agaw_to_level(domain->agaw);
888 BUG_ON(!domain->pgd);
890 if (!domain_pfn_supported(domain, pfn))
891 /* Address beyond IOMMU's addressing capabilities. */
894 parent = domain->pgd;
899 offset = pfn_level_offset(pfn, level);
900 pte = &parent[offset];
901 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
903 if (level == *target_level)
906 if (!dma_pte_present(pte)) {
909 tmp_page = alloc_pgtable_page(domain->nid);
914 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
915 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
916 if (cmpxchg64(&pte->val, 0ULL, pteval))
917 /* Someone else set it while we were thinking; use theirs. */
918 free_pgtable_page(tmp_page);
920 domain_flush_cache(domain, pte, sizeof(*pte));
925 parent = phys_to_virt(dma_pte_addr(pte));
930 *target_level = level;
935 /* return address's pte at specific level */
936 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
938 int level, int *large_page)
940 struct dma_pte *parent, *pte;
941 int total = agaw_to_level(domain->agaw);
944 parent = domain->pgd;
945 while (level <= total) {
946 offset = pfn_level_offset(pfn, total);
947 pte = &parent[offset];
951 if (!dma_pte_present(pte)) {
956 if (dma_pte_superpage(pte)) {
961 parent = phys_to_virt(dma_pte_addr(pte));
967 /* clear last level pte, a tlb flush should be followed */
968 static void dma_pte_clear_range(struct dmar_domain *domain,
969 unsigned long start_pfn,
970 unsigned long last_pfn)
972 unsigned int large_page;
973 struct dma_pte *first_pte, *pte;
975 BUG_ON(!domain_pfn_supported(domain, start_pfn));
976 BUG_ON(!domain_pfn_supported(domain, last_pfn));
977 BUG_ON(start_pfn > last_pfn);
979 /* we don't need lock here; nobody else touches the iova range */
982 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
984 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
989 start_pfn += lvl_to_nr_pages(large_page);
991 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
993 domain_flush_cache(domain, first_pte,
994 (void *)pte - (void *)first_pte);
996 } while (start_pfn && start_pfn <= last_pfn);
999 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1000 int retain_level, struct dma_pte *pte,
1001 unsigned long pfn, unsigned long start_pfn,
1002 unsigned long last_pfn)
1004 pfn = max(start_pfn, pfn);
1005 pte = &pte[pfn_level_offset(pfn, level)];
1008 unsigned long level_pfn;
1009 struct dma_pte *level_pte;
1011 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1014 level_pfn = pfn & level_mask(level);
1015 level_pte = phys_to_virt(dma_pte_addr(pte));
1018 dma_pte_free_level(domain, level - 1, retain_level,
1019 level_pte, level_pfn, start_pfn,
1024 * Free the page table if we're below the level we want to
1025 * retain and the range covers the entire table.
1027 if (level < retain_level && !(start_pfn > level_pfn ||
1028 last_pfn < level_pfn + level_size(level) - 1)) {
1030 domain_flush_cache(domain, pte, sizeof(*pte));
1031 free_pgtable_page(level_pte);
1034 pfn += level_size(level);
1035 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1039 * clear last level (leaf) ptes and free page table pages below the
1040 * level we wish to keep intact.
1042 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1043 unsigned long start_pfn,
1044 unsigned long last_pfn,
1047 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1048 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1049 BUG_ON(start_pfn > last_pfn);
1051 dma_pte_clear_range(domain, start_pfn, last_pfn);
1053 /* We don't need lock here; nobody else touches the iova range */
1054 dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1055 domain->pgd, 0, start_pfn, last_pfn);
1058 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1059 free_pgtable_page(domain->pgd);
1064 /* When a page at a given level is being unlinked from its parent, we don't
1065 need to *modify* it at all. All we need to do is make a list of all the
1066 pages which can be freed just as soon as we've flushed the IOTLB and we
1067 know the hardware page-walk will no longer touch them.
1068 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1070 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1071 int level, struct dma_pte *pte,
1072 struct page *freelist)
1076 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1077 pg->freelist = freelist;
1083 pte = page_address(pg);
1085 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1086 freelist = dma_pte_list_pagetables(domain, level - 1,
1089 } while (!first_pte_in_page(pte));
1094 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1095 struct dma_pte *pte, unsigned long pfn,
1096 unsigned long start_pfn,
1097 unsigned long last_pfn,
1098 struct page *freelist)
1100 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1102 pfn = max(start_pfn, pfn);
1103 pte = &pte[pfn_level_offset(pfn, level)];
1106 unsigned long level_pfn;
1108 if (!dma_pte_present(pte))
1111 level_pfn = pfn & level_mask(level);
1113 /* If range covers entire pagetable, free it */
1114 if (start_pfn <= level_pfn &&
1115 last_pfn >= level_pfn + level_size(level) - 1) {
1116 /* These suborbinate page tables are going away entirely. Don't
1117 bother to clear them; we're just going to *free* them. */
1118 if (level > 1 && !dma_pte_superpage(pte))
1119 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1125 } else if (level > 1) {
1126 /* Recurse down into a level that isn't *entirely* obsolete */
1127 freelist = dma_pte_clear_level(domain, level - 1,
1128 phys_to_virt(dma_pte_addr(pte)),
1129 level_pfn, start_pfn, last_pfn,
1133 pfn += level_size(level);
1134 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1137 domain_flush_cache(domain, first_pte,
1138 (void *)++last_pte - (void *)first_pte);
1143 /* We can't just free the pages because the IOMMU may still be walking
1144 the page tables, and may have cached the intermediate levels. The
1145 pages can only be freed after the IOTLB flush has been done. */
1146 static struct page *domain_unmap(struct dmar_domain *domain,
1147 unsigned long start_pfn,
1148 unsigned long last_pfn)
1150 struct page *freelist;
1152 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1153 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1154 BUG_ON(start_pfn > last_pfn);
1156 /* we don't need lock here; nobody else touches the iova range */
1157 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1158 domain->pgd, 0, start_pfn, last_pfn, NULL);
1161 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1162 struct page *pgd_page = virt_to_page(domain->pgd);
1163 pgd_page->freelist = freelist;
1164 freelist = pgd_page;
1172 static void dma_free_pagelist(struct page *freelist)
1176 while ((pg = freelist)) {
1177 freelist = pg->freelist;
1178 free_pgtable_page(page_address(pg));
1182 static void iova_entry_free(unsigned long data)
1184 struct page *freelist = (struct page *)data;
1186 dma_free_pagelist(freelist);
1189 /* iommu handling */
1190 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1192 struct root_entry *root;
1193 unsigned long flags;
1195 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1197 pr_err("Allocating root entry for %s failed\n",
1202 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1204 spin_lock_irqsave(&iommu->lock, flags);
1205 iommu->root_entry = root;
1206 spin_unlock_irqrestore(&iommu->lock, flags);
1211 static void iommu_set_root_entry(struct intel_iommu *iommu)
1217 addr = virt_to_phys(iommu->root_entry);
1218 if (sm_supported(iommu))
1219 addr |= DMA_RTADDR_SMT;
1221 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1222 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1224 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1226 /* Make sure hardware complete it */
1227 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1228 readl, (sts & DMA_GSTS_RTPS), sts);
1230 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1233 void iommu_flush_write_buffer(struct intel_iommu *iommu)
1238 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1241 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1242 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1244 /* Make sure hardware complete it */
1245 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1246 readl, (!(val & DMA_GSTS_WBFS)), val);
1248 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1251 /* return value determine if we need a write buffer flush */
1252 static void __iommu_flush_context(struct intel_iommu *iommu,
1253 u16 did, u16 source_id, u8 function_mask,
1260 case DMA_CCMD_GLOBAL_INVL:
1261 val = DMA_CCMD_GLOBAL_INVL;
1263 case DMA_CCMD_DOMAIN_INVL:
1264 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1266 case DMA_CCMD_DEVICE_INVL:
1267 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1268 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1273 val |= DMA_CCMD_ICC;
1275 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1276 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1278 /* Make sure hardware complete it */
1279 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1280 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1282 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1285 /* return value determine if we need a write buffer flush */
1286 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1287 u64 addr, unsigned int size_order, u64 type)
1289 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1290 u64 val = 0, val_iva = 0;
1294 case DMA_TLB_GLOBAL_FLUSH:
1295 /* global flush doesn't need set IVA_REG */
1296 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1298 case DMA_TLB_DSI_FLUSH:
1299 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1301 case DMA_TLB_PSI_FLUSH:
1302 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1303 /* IH bit is passed in as part of address */
1304 val_iva = size_order | addr;
1309 /* Note: set drain read/write */
1312 * This is probably to be super secure.. Looks like we can
1313 * ignore it without any impact.
1315 if (cap_read_drain(iommu->cap))
1316 val |= DMA_TLB_READ_DRAIN;
1318 if (cap_write_drain(iommu->cap))
1319 val |= DMA_TLB_WRITE_DRAIN;
1321 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1322 /* Note: Only uses first TLB reg currently */
1324 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1325 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1327 /* Make sure hardware complete it */
1328 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1329 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1331 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1333 /* check IOTLB invalidation granularity */
1334 if (DMA_TLB_IAIG(val) == 0)
1335 pr_err("Flush IOTLB failed\n");
1336 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1337 pr_debug("TLB flush request %Lx, actual %Lx\n",
1338 (unsigned long long)DMA_TLB_IIRG(type),
1339 (unsigned long long)DMA_TLB_IAIG(val));
1342 static struct device_domain_info *
1343 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1346 struct device_domain_info *info;
1348 assert_spin_locked(&device_domain_lock);
1353 list_for_each_entry(info, &domain->devices, link)
1354 if (info->iommu == iommu && info->bus == bus &&
1355 info->devfn == devfn) {
1356 if (info->ats_supported && info->dev)
1364 static void domain_update_iotlb(struct dmar_domain *domain)
1366 struct device_domain_info *info;
1367 bool has_iotlb_device = false;
1369 assert_spin_locked(&device_domain_lock);
1371 list_for_each_entry(info, &domain->devices, link) {
1372 struct pci_dev *pdev;
1374 if (!info->dev || !dev_is_pci(info->dev))
1377 pdev = to_pci_dev(info->dev);
1378 if (pdev->ats_enabled) {
1379 has_iotlb_device = true;
1384 domain->has_iotlb_device = has_iotlb_device;
1387 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1389 struct pci_dev *pdev;
1391 assert_spin_locked(&device_domain_lock);
1393 if (!info || !dev_is_pci(info->dev))
1396 pdev = to_pci_dev(info->dev);
1397 /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1398 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1399 * queue depth at PF level. If DIT is not set, PFSID will be treated as
1400 * reserved, which should be set to 0.
1402 if (!ecap_dit(info->iommu->ecap))
1405 struct pci_dev *pf_pdev;
1407 /* pdev will be returned if device is not a vf */
1408 pf_pdev = pci_physfn(pdev);
1409 info->pfsid = pci_dev_id(pf_pdev);
1412 #ifdef CONFIG_INTEL_IOMMU_SVM
1413 /* The PCIe spec, in its wisdom, declares that the behaviour of
1414 the device if you enable PASID support after ATS support is
1415 undefined. So always enable PASID support on devices which
1416 have it, even if we can't yet know if we're ever going to
1418 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1419 info->pasid_enabled = 1;
1421 if (info->pri_supported &&
1422 (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1) &&
1423 !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1424 info->pri_enabled = 1;
1426 if (!pdev->untrusted && info->ats_supported &&
1427 pci_ats_page_aligned(pdev) &&
1428 !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1429 info->ats_enabled = 1;
1430 domain_update_iotlb(info->domain);
1431 info->ats_qdep = pci_ats_queue_depth(pdev);
1435 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1437 struct pci_dev *pdev;
1439 assert_spin_locked(&device_domain_lock);
1441 if (!dev_is_pci(info->dev))
1444 pdev = to_pci_dev(info->dev);
1446 if (info->ats_enabled) {
1447 pci_disable_ats(pdev);
1448 info->ats_enabled = 0;
1449 domain_update_iotlb(info->domain);
1451 #ifdef CONFIG_INTEL_IOMMU_SVM
1452 if (info->pri_enabled) {
1453 pci_disable_pri(pdev);
1454 info->pri_enabled = 0;
1456 if (info->pasid_enabled) {
1457 pci_disable_pasid(pdev);
1458 info->pasid_enabled = 0;
1463 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1464 u64 addr, unsigned mask)
1467 unsigned long flags;
1468 struct device_domain_info *info;
1470 if (!domain->has_iotlb_device)
1473 spin_lock_irqsave(&device_domain_lock, flags);
1474 list_for_each_entry(info, &domain->devices, link) {
1475 if (!info->ats_enabled)
1478 sid = info->bus << 8 | info->devfn;
1479 qdep = info->ats_qdep;
1480 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1483 spin_unlock_irqrestore(&device_domain_lock, flags);
1486 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1487 struct dmar_domain *domain,
1488 unsigned long pfn, unsigned int pages,
1491 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1492 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1493 u16 did = domain->iommu_did[iommu->seq_id];
1500 * Fallback to domain selective flush if no PSI support or the size is
1502 * PSI requires page size to be 2 ^ x, and the base address is naturally
1503 * aligned to the size
1505 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1506 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1509 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1513 * In caching mode, changes of pages from non-present to present require
1514 * flush. However, device IOTLB doesn't need to be flushed in this case.
1516 if (!cap_caching_mode(iommu->cap) || !map)
1517 iommu_flush_dev_iotlb(domain, addr, mask);
1520 /* Notification for newly created mappings */
1521 static inline void __mapping_notify_one(struct intel_iommu *iommu,
1522 struct dmar_domain *domain,
1523 unsigned long pfn, unsigned int pages)
1525 /* It's a non-present to present mapping. Only flush if caching mode */
1526 if (cap_caching_mode(iommu->cap))
1527 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1529 iommu_flush_write_buffer(iommu);
1532 static void iommu_flush_iova(struct iova_domain *iovad)
1534 struct dmar_domain *domain;
1537 domain = container_of(iovad, struct dmar_domain, iovad);
1539 for_each_domain_iommu(idx, domain) {
1540 struct intel_iommu *iommu = g_iommus[idx];
1541 u16 did = domain->iommu_did[iommu->seq_id];
1543 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1545 if (!cap_caching_mode(iommu->cap))
1546 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1547 0, MAX_AGAW_PFN_WIDTH);
1551 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1554 unsigned long flags;
1556 if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1559 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1560 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1561 pmen &= ~DMA_PMEN_EPM;
1562 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1564 /* wait for the protected region status bit to clear */
1565 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1566 readl, !(pmen & DMA_PMEN_PRS), pmen);
1568 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1571 static void iommu_enable_translation(struct intel_iommu *iommu)
1574 unsigned long flags;
1576 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1577 iommu->gcmd |= DMA_GCMD_TE;
1578 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1580 /* Make sure hardware complete it */
1581 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1582 readl, (sts & DMA_GSTS_TES), sts);
1584 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1587 static void iommu_disable_translation(struct intel_iommu *iommu)
1592 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1593 iommu->gcmd &= ~DMA_GCMD_TE;
1594 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1596 /* Make sure hardware complete it */
1597 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1598 readl, (!(sts & DMA_GSTS_TES)), sts);
1600 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1603 static int iommu_init_domains(struct intel_iommu *iommu)
1605 u32 ndomains, nlongs;
1608 ndomains = cap_ndoms(iommu->cap);
1609 pr_debug("%s: Number of Domains supported <%d>\n",
1610 iommu->name, ndomains);
1611 nlongs = BITS_TO_LONGS(ndomains);
1613 spin_lock_init(&iommu->lock);
1615 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1616 if (!iommu->domain_ids) {
1617 pr_err("%s: Allocating domain id array failed\n",
1622 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1623 iommu->domains = kzalloc(size, GFP_KERNEL);
1625 if (iommu->domains) {
1626 size = 256 * sizeof(struct dmar_domain *);
1627 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1630 if (!iommu->domains || !iommu->domains[0]) {
1631 pr_err("%s: Allocating domain array failed\n",
1633 kfree(iommu->domain_ids);
1634 kfree(iommu->domains);
1635 iommu->domain_ids = NULL;
1636 iommu->domains = NULL;
1641 * If Caching mode is set, then invalid translations are tagged
1642 * with domain-id 0, hence we need to pre-allocate it. We also
1643 * use domain-id 0 as a marker for non-allocated domain-id, so
1644 * make sure it is not used for a real domain.
1646 set_bit(0, iommu->domain_ids);
1649 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1650 * entry for first-level or pass-through translation modes should
1651 * be programmed with a domain id different from those used for
1652 * second-level or nested translation. We reserve a domain id for
1655 if (sm_supported(iommu))
1656 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
1661 static void disable_dmar_iommu(struct intel_iommu *iommu)
1663 struct device_domain_info *info, *tmp;
1664 unsigned long flags;
1666 if (!iommu->domains || !iommu->domain_ids)
1669 spin_lock_irqsave(&device_domain_lock, flags);
1670 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1671 if (info->iommu != iommu)
1674 if (!info->dev || !info->domain)
1677 __dmar_remove_one_dev_info(info);
1679 spin_unlock_irqrestore(&device_domain_lock, flags);
1681 if (iommu->gcmd & DMA_GCMD_TE)
1682 iommu_disable_translation(iommu);
1685 static void free_dmar_iommu(struct intel_iommu *iommu)
1687 if ((iommu->domains) && (iommu->domain_ids)) {
1688 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1691 for (i = 0; i < elems; i++)
1692 kfree(iommu->domains[i]);
1693 kfree(iommu->domains);
1694 kfree(iommu->domain_ids);
1695 iommu->domains = NULL;
1696 iommu->domain_ids = NULL;
1699 g_iommus[iommu->seq_id] = NULL;
1701 /* free context mapping */
1702 free_context_table(iommu);
1704 #ifdef CONFIG_INTEL_IOMMU_SVM
1705 if (pasid_supported(iommu)) {
1706 if (ecap_prs(iommu->ecap))
1707 intel_svm_finish_prq(iommu);
1712 static struct dmar_domain *alloc_domain(int flags)
1714 struct dmar_domain *domain;
1716 domain = alloc_domain_mem();
1720 memset(domain, 0, sizeof(*domain));
1721 domain->nid = NUMA_NO_NODE;
1722 domain->flags = flags;
1723 domain->has_iotlb_device = false;
1724 INIT_LIST_HEAD(&domain->devices);
1729 /* Must be called with iommu->lock */
1730 static int domain_attach_iommu(struct dmar_domain *domain,
1731 struct intel_iommu *iommu)
1733 unsigned long ndomains;
1736 assert_spin_locked(&device_domain_lock);
1737 assert_spin_locked(&iommu->lock);
1739 domain->iommu_refcnt[iommu->seq_id] += 1;
1740 domain->iommu_count += 1;
1741 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1742 ndomains = cap_ndoms(iommu->cap);
1743 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1745 if (num >= ndomains) {
1746 pr_err("%s: No free domain ids\n", iommu->name);
1747 domain->iommu_refcnt[iommu->seq_id] -= 1;
1748 domain->iommu_count -= 1;
1752 set_bit(num, iommu->domain_ids);
1753 set_iommu_domain(iommu, num, domain);
1755 domain->iommu_did[iommu->seq_id] = num;
1756 domain->nid = iommu->node;
1758 domain_update_iommu_cap(domain);
1764 static int domain_detach_iommu(struct dmar_domain *domain,
1765 struct intel_iommu *iommu)
1769 assert_spin_locked(&device_domain_lock);
1770 assert_spin_locked(&iommu->lock);
1772 domain->iommu_refcnt[iommu->seq_id] -= 1;
1773 count = --domain->iommu_count;
1774 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1775 num = domain->iommu_did[iommu->seq_id];
1776 clear_bit(num, iommu->domain_ids);
1777 set_iommu_domain(iommu, num, NULL);
1779 domain_update_iommu_cap(domain);
1780 domain->iommu_did[iommu->seq_id] = 0;
1786 static struct iova_domain reserved_iova_list;
1787 static struct lock_class_key reserved_rbtree_key;
1789 static int dmar_init_reserved_ranges(void)
1791 struct pci_dev *pdev = NULL;
1795 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1797 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1798 &reserved_rbtree_key);
1800 /* IOAPIC ranges shouldn't be accessed by DMA */
1801 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1802 IOVA_PFN(IOAPIC_RANGE_END));
1804 pr_err("Reserve IOAPIC range failed\n");
1808 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1809 for_each_pci_dev(pdev) {
1812 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1813 r = &pdev->resource[i];
1814 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1816 iova = reserve_iova(&reserved_iova_list,
1820 pci_err(pdev, "Reserve iova for %pR failed\n", r);
1828 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1830 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1833 static inline int guestwidth_to_adjustwidth(int gaw)
1836 int r = (gaw - 12) % 9;
1847 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1850 int adjust_width, agaw;
1851 unsigned long sagaw;
1854 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1856 err = init_iova_flush_queue(&domain->iovad,
1857 iommu_flush_iova, iova_entry_free);
1861 domain_reserve_special_ranges(domain);
1863 /* calculate AGAW */
1864 if (guest_width > cap_mgaw(iommu->cap))
1865 guest_width = cap_mgaw(iommu->cap);
1866 domain->gaw = guest_width;
1867 adjust_width = guestwidth_to_adjustwidth(guest_width);
1868 agaw = width_to_agaw(adjust_width);
1869 sagaw = cap_sagaw(iommu->cap);
1870 if (!test_bit(agaw, &sagaw)) {
1871 /* hardware doesn't support it, choose a bigger one */
1872 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1873 agaw = find_next_bit(&sagaw, 5, agaw);
1877 domain->agaw = agaw;
1879 if (ecap_coherent(iommu->ecap))
1880 domain->iommu_coherency = 1;
1882 domain->iommu_coherency = 0;
1884 if (ecap_sc_support(iommu->ecap))
1885 domain->iommu_snooping = 1;
1887 domain->iommu_snooping = 0;
1889 if (intel_iommu_superpage)
1890 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1892 domain->iommu_superpage = 0;
1894 domain->nid = iommu->node;
1896 /* always allocate the top pgd */
1897 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1900 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1904 static void domain_exit(struct dmar_domain *domain)
1907 /* Remove associated devices and clear attached or cached domains */
1908 domain_remove_dev_info(domain);
1911 put_iova_domain(&domain->iovad);
1914 struct page *freelist;
1916 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1917 dma_free_pagelist(freelist);
1920 free_domain_mem(domain);
1924 * Get the PASID directory size for scalable mode context entry.
1925 * Value of X in the PDTS field of a scalable mode context entry
1926 * indicates PASID directory with 2^(X + 7) entries.
1928 static inline unsigned long context_get_sm_pds(struct pasid_table *table)
1932 max_pde = table->max_pasid >> PASID_PDE_SHIFT;
1933 pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
1941 * Set the RID_PASID field of a scalable mode context entry. The
1942 * IOMMU hardware will use the PASID value set in this field for
1943 * DMA translations of DMA requests without PASID.
1946 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1948 context->hi |= pasid & ((1 << 20) - 1);
1949 context->hi |= (1 << 20);
1953 * Set the DTE(Device-TLB Enable) field of a scalable mode context
1956 static inline void context_set_sm_dte(struct context_entry *context)
1958 context->lo |= (1 << 2);
1962 * Set the PRE(Page Request Enable) field of a scalable mode context
1965 static inline void context_set_sm_pre(struct context_entry *context)
1967 context->lo |= (1 << 4);
1970 /* Convert value to context PASID directory size field coding. */
1971 #define context_pdts(pds) (((pds) & 0x7) << 9)
1973 static int domain_context_mapping_one(struct dmar_domain *domain,
1974 struct intel_iommu *iommu,
1975 struct pasid_table *table,
1978 u16 did = domain->iommu_did[iommu->seq_id];
1979 int translation = CONTEXT_TT_MULTI_LEVEL;
1980 struct device_domain_info *info = NULL;
1981 struct context_entry *context;
1982 unsigned long flags;
1987 if (hw_pass_through && domain_type_is_si(domain))
1988 translation = CONTEXT_TT_PASS_THROUGH;
1990 pr_debug("Set context mapping for %02x:%02x.%d\n",
1991 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1993 BUG_ON(!domain->pgd);
1995 spin_lock_irqsave(&device_domain_lock, flags);
1996 spin_lock(&iommu->lock);
1999 context = iommu_context_addr(iommu, bus, devfn, 1);
2004 if (context_present(context))
2008 * For kdump cases, old valid entries may be cached due to the
2009 * in-flight DMA and copied pgtable, but there is no unmapping
2010 * behaviour for them, thus we need an explicit cache flush for
2011 * the newly-mapped device. For kdump, at this point, the device
2012 * is supposed to finish reset at its driver probe stage, so no
2013 * in-flight DMA will exist, and we don't need to worry anymore
2016 if (context_copied(context)) {
2017 u16 did_old = context_domain_id(context);
2019 if (did_old < cap_ndoms(iommu->cap)) {
2020 iommu->flush.flush_context(iommu, did_old,
2021 (((u16)bus) << 8) | devfn,
2022 DMA_CCMD_MASK_NOBIT,
2023 DMA_CCMD_DEVICE_INVL);
2024 iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2029 context_clear_entry(context);
2031 if (sm_supported(iommu)) {
2036 /* Setup the PASID DIR pointer: */
2037 pds = context_get_sm_pds(table);
2038 context->lo = (u64)virt_to_phys(table->table) |
2041 /* Setup the RID_PASID field: */
2042 context_set_sm_rid2pasid(context, PASID_RID2PASID);
2045 * Setup the Device-TLB enable bit and Page request
2048 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2049 if (info && info->ats_supported)
2050 context_set_sm_dte(context);
2051 if (info && info->pri_supported)
2052 context_set_sm_pre(context);
2054 struct dma_pte *pgd = domain->pgd;
2057 context_set_domain_id(context, did);
2059 if (translation != CONTEXT_TT_PASS_THROUGH) {
2061 * Skip top levels of page tables for iommu which has
2062 * less agaw than default. Unnecessary for PT mode.
2064 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2066 pgd = phys_to_virt(dma_pte_addr(pgd));
2067 if (!dma_pte_present(pgd))
2071 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2072 if (info && info->ats_supported)
2073 translation = CONTEXT_TT_DEV_IOTLB;
2075 translation = CONTEXT_TT_MULTI_LEVEL;
2077 context_set_address_root(context, virt_to_phys(pgd));
2078 context_set_address_width(context, agaw);
2081 * In pass through mode, AW must be programmed to
2082 * indicate the largest AGAW value supported by
2083 * hardware. And ASR is ignored by hardware.
2085 context_set_address_width(context, iommu->msagaw);
2088 context_set_translation_type(context, translation);
2091 context_set_fault_enable(context);
2092 context_set_present(context);
2093 domain_flush_cache(domain, context, sizeof(*context));
2096 * It's a non-present to present mapping. If hardware doesn't cache
2097 * non-present entry we only need to flush the write-buffer. If the
2098 * _does_ cache non-present entries, then it does so in the special
2099 * domain #0, which we have to flush:
2101 if (cap_caching_mode(iommu->cap)) {
2102 iommu->flush.flush_context(iommu, 0,
2103 (((u16)bus) << 8) | devfn,
2104 DMA_CCMD_MASK_NOBIT,
2105 DMA_CCMD_DEVICE_INVL);
2106 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2108 iommu_flush_write_buffer(iommu);
2110 iommu_enable_dev_iotlb(info);
2115 spin_unlock(&iommu->lock);
2116 spin_unlock_irqrestore(&device_domain_lock, flags);
2121 struct domain_context_mapping_data {
2122 struct dmar_domain *domain;
2123 struct intel_iommu *iommu;
2124 struct pasid_table *table;
2127 static int domain_context_mapping_cb(struct pci_dev *pdev,
2128 u16 alias, void *opaque)
2130 struct domain_context_mapping_data *data = opaque;
2132 return domain_context_mapping_one(data->domain, data->iommu,
2133 data->table, PCI_BUS_NUM(alias),
2138 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2140 struct domain_context_mapping_data data;
2141 struct pasid_table *table;
2142 struct intel_iommu *iommu;
2145 iommu = device_to_iommu(dev, &bus, &devfn);
2149 table = intel_pasid_get_table(dev);
2151 if (!dev_is_pci(dev))
2152 return domain_context_mapping_one(domain, iommu, table,
2155 data.domain = domain;
2159 return pci_for_each_dma_alias(to_pci_dev(dev),
2160 &domain_context_mapping_cb, &data);
2163 static int domain_context_mapped_cb(struct pci_dev *pdev,
2164 u16 alias, void *opaque)
2166 struct intel_iommu *iommu = opaque;
2168 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2171 static int domain_context_mapped(struct device *dev)
2173 struct intel_iommu *iommu;
2176 iommu = device_to_iommu(dev, &bus, &devfn);
2180 if (!dev_is_pci(dev))
2181 return device_context_mapped(iommu, bus, devfn);
2183 return !pci_for_each_dma_alias(to_pci_dev(dev),
2184 domain_context_mapped_cb, iommu);
2187 /* Returns a number of VTD pages, but aligned to MM page size */
2188 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2191 host_addr &= ~PAGE_MASK;
2192 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2195 /* Return largest possible superpage level for a given mapping */
2196 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2197 unsigned long iov_pfn,
2198 unsigned long phy_pfn,
2199 unsigned long pages)
2201 int support, level = 1;
2202 unsigned long pfnmerge;
2204 support = domain->iommu_superpage;
2206 /* To use a large page, the virtual *and* physical addresses
2207 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2208 of them will mean we have to use smaller pages. So just
2209 merge them and check both at once. */
2210 pfnmerge = iov_pfn | phy_pfn;
2212 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2213 pages >>= VTD_STRIDE_SHIFT;
2216 pfnmerge >>= VTD_STRIDE_SHIFT;
2223 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2224 struct scatterlist *sg, unsigned long phys_pfn,
2225 unsigned long nr_pages, int prot)
2227 struct dma_pte *first_pte = NULL, *pte = NULL;
2228 phys_addr_t uninitialized_var(pteval);
2229 unsigned long sg_res = 0;
2230 unsigned int largepage_lvl = 0;
2231 unsigned long lvl_pages = 0;
2233 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2235 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2238 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2242 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2245 while (nr_pages > 0) {
2249 unsigned int pgoff = sg->offset & ~PAGE_MASK;
2251 sg_res = aligned_nrpages(sg->offset, sg->length);
2252 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2253 sg->dma_length = sg->length;
2254 pteval = (sg_phys(sg) - pgoff) | prot;
2255 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2259 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2261 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2264 /* It is large page*/
2265 if (largepage_lvl > 1) {
2266 unsigned long nr_superpages, end_pfn;
2268 pteval |= DMA_PTE_LARGE_PAGE;
2269 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2271 nr_superpages = sg_res / lvl_pages;
2272 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2275 * Ensure that old small page tables are
2276 * removed to make room for superpage(s).
2277 * We're adding new large pages, so make sure
2278 * we don't remove their parent tables.
2280 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2283 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2287 /* We don't need lock here, nobody else
2288 * touches the iova range
2290 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2292 static int dumps = 5;
2293 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2294 iov_pfn, tmp, (unsigned long long)pteval);
2297 debug_dma_dump_mappings(NULL);
2302 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2304 BUG_ON(nr_pages < lvl_pages);
2305 BUG_ON(sg_res < lvl_pages);
2307 nr_pages -= lvl_pages;
2308 iov_pfn += lvl_pages;
2309 phys_pfn += lvl_pages;
2310 pteval += lvl_pages * VTD_PAGE_SIZE;
2311 sg_res -= lvl_pages;
2313 /* If the next PTE would be the first in a new page, then we
2314 need to flush the cache on the entries we've just written.
2315 And then we'll need to recalculate 'pte', so clear it and
2316 let it get set again in the if (!pte) block above.
2318 If we're done (!nr_pages) we need to flush the cache too.
2320 Also if we've been setting superpages, we may need to
2321 recalculate 'pte' and switch back to smaller pages for the
2322 end of the mapping, if the trailing size is not enough to
2323 use another superpage (i.e. sg_res < lvl_pages). */
2325 if (!nr_pages || first_pte_in_page(pte) ||
2326 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2327 domain_flush_cache(domain, first_pte,
2328 (void *)pte - (void *)first_pte);
2332 if (!sg_res && nr_pages)
2338 static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2339 struct scatterlist *sg, unsigned long phys_pfn,
2340 unsigned long nr_pages, int prot)
2343 struct intel_iommu *iommu;
2345 /* Do the real mapping first */
2346 ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
2350 for_each_domain_iommu(iommu_id, domain) {
2351 iommu = g_iommus[iommu_id];
2352 __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2358 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2359 struct scatterlist *sg, unsigned long nr_pages,
2362 return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2365 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2366 unsigned long phys_pfn, unsigned long nr_pages,
2369 return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2372 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2374 unsigned long flags;
2375 struct context_entry *context;
2381 spin_lock_irqsave(&iommu->lock, flags);
2382 context = iommu_context_addr(iommu, bus, devfn, 0);
2384 spin_unlock_irqrestore(&iommu->lock, flags);
2387 did_old = context_domain_id(context);
2388 context_clear_entry(context);
2389 __iommu_flush_cache(iommu, context, sizeof(*context));
2390 spin_unlock_irqrestore(&iommu->lock, flags);
2391 iommu->flush.flush_context(iommu,
2393 (((u16)bus) << 8) | devfn,
2394 DMA_CCMD_MASK_NOBIT,
2395 DMA_CCMD_DEVICE_INVL);
2396 iommu->flush.flush_iotlb(iommu,
2403 static inline void unlink_domain_info(struct device_domain_info *info)
2405 assert_spin_locked(&device_domain_lock);
2406 list_del(&info->link);
2407 list_del(&info->global);
2409 info->dev->archdata.iommu = NULL;
2412 static void domain_remove_dev_info(struct dmar_domain *domain)
2414 struct device_domain_info *info, *tmp;
2415 unsigned long flags;
2417 spin_lock_irqsave(&device_domain_lock, flags);
2418 list_for_each_entry_safe(info, tmp, &domain->devices, link)
2419 __dmar_remove_one_dev_info(info);
2420 spin_unlock_irqrestore(&device_domain_lock, flags);
2425 * Note: we use struct device->archdata.iommu stores the info
2427 static struct dmar_domain *find_domain(struct device *dev)
2429 struct device_domain_info *info;
2431 if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO)) {
2432 struct iommu_domain *domain;
2434 dev->archdata.iommu = NULL;
2435 domain = iommu_get_domain_for_dev(dev);
2437 intel_iommu_attach_device(domain, dev);
2440 /* No lock here, assumes no domain exit in normal case */
2441 info = dev->archdata.iommu;
2444 return info->domain;
2448 static inline struct device_domain_info *
2449 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2451 struct device_domain_info *info;
2453 list_for_each_entry(info, &device_domain_list, global)
2454 if (info->iommu->segment == segment && info->bus == bus &&
2455 info->devfn == devfn)
2461 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2464 struct dmar_domain *domain)
2466 struct dmar_domain *found = NULL;
2467 struct device_domain_info *info;
2468 unsigned long flags;
2471 info = alloc_devinfo_mem();
2476 info->devfn = devfn;
2477 info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2478 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2481 info->domain = domain;
2482 info->iommu = iommu;
2483 info->pasid_table = NULL;
2484 info->auxd_enabled = 0;
2485 INIT_LIST_HEAD(&info->auxiliary_domains);
2487 if (dev && dev_is_pci(dev)) {
2488 struct pci_dev *pdev = to_pci_dev(info->dev);
2490 if (!pdev->untrusted &&
2491 !pci_ats_disabled() &&
2492 ecap_dev_iotlb_support(iommu->ecap) &&
2493 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2494 dmar_find_matched_atsr_unit(pdev))
2495 info->ats_supported = 1;
2497 if (sm_supported(iommu)) {
2498 if (pasid_supported(iommu)) {
2499 int features = pci_pasid_features(pdev);
2501 info->pasid_supported = features | 1;
2504 if (info->ats_supported && ecap_prs(iommu->ecap) &&
2505 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2506 info->pri_supported = 1;
2510 spin_lock_irqsave(&device_domain_lock, flags);
2512 found = find_domain(dev);
2515 struct device_domain_info *info2;
2516 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2518 found = info2->domain;
2524 spin_unlock_irqrestore(&device_domain_lock, flags);
2525 free_devinfo_mem(info);
2526 /* Caller must free the original domain */
2530 spin_lock(&iommu->lock);
2531 ret = domain_attach_iommu(domain, iommu);
2532 spin_unlock(&iommu->lock);
2535 spin_unlock_irqrestore(&device_domain_lock, flags);
2536 free_devinfo_mem(info);
2540 list_add(&info->link, &domain->devices);
2541 list_add(&info->global, &device_domain_list);
2543 dev->archdata.iommu = info;
2544 spin_unlock_irqrestore(&device_domain_lock, flags);
2546 /* PASID table is mandatory for a PCI device in scalable mode. */
2547 if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2548 ret = intel_pasid_alloc_table(dev);
2550 dev_err(dev, "PASID table allocation failed\n");
2551 dmar_remove_one_dev_info(dev);
2555 /* Setup the PASID entry for requests without PASID: */
2556 spin_lock(&iommu->lock);
2557 if (hw_pass_through && domain_type_is_si(domain))
2558 ret = intel_pasid_setup_pass_through(iommu, domain,
2559 dev, PASID_RID2PASID);
2561 ret = intel_pasid_setup_second_level(iommu, domain,
2562 dev, PASID_RID2PASID);
2563 spin_unlock(&iommu->lock);
2565 dev_err(dev, "Setup RID2PASID failed\n");
2566 dmar_remove_one_dev_info(dev);
2571 if (dev && domain_context_mapping(domain, dev)) {
2572 dev_err(dev, "Domain context map failed\n");
2573 dmar_remove_one_dev_info(dev);
2580 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2582 *(u16 *)opaque = alias;
2586 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2588 struct device_domain_info *info;
2589 struct dmar_domain *domain = NULL;
2590 struct intel_iommu *iommu;
2592 unsigned long flags;
2595 iommu = device_to_iommu(dev, &bus, &devfn);
2599 if (dev_is_pci(dev)) {
2600 struct pci_dev *pdev = to_pci_dev(dev);
2602 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2604 spin_lock_irqsave(&device_domain_lock, flags);
2605 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2606 PCI_BUS_NUM(dma_alias),
2609 iommu = info->iommu;
2610 domain = info->domain;
2612 spin_unlock_irqrestore(&device_domain_lock, flags);
2614 /* DMA alias already has a domain, use it */
2619 /* Allocate and initialize new domain for the device */
2620 domain = alloc_domain(0);
2623 if (domain_init(domain, iommu, gaw)) {
2624 domain_exit(domain);
2632 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2633 struct dmar_domain *domain)
2635 struct intel_iommu *iommu;
2636 struct dmar_domain *tmp;
2637 u16 req_id, dma_alias;
2640 iommu = device_to_iommu(dev, &bus, &devfn);
2644 req_id = ((u16)bus << 8) | devfn;
2646 if (dev_is_pci(dev)) {
2647 struct pci_dev *pdev = to_pci_dev(dev);
2649 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2651 /* register PCI DMA alias device */
2652 if (req_id != dma_alias) {
2653 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2654 dma_alias & 0xff, NULL, domain);
2656 if (!tmp || tmp != domain)
2661 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2662 if (!tmp || tmp != domain)
2668 static int iommu_domain_identity_map(struct dmar_domain *domain,
2669 unsigned long long start,
2670 unsigned long long end)
2672 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2673 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2675 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2676 dma_to_mm_pfn(last_vpfn))) {
2677 pr_err("Reserving iova failed\n");
2681 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2683 * RMRR range might have overlap with physical memory range,
2686 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2688 return __domain_mapping(domain, first_vpfn, NULL,
2689 first_vpfn, last_vpfn - first_vpfn + 1,
2690 DMA_PTE_READ|DMA_PTE_WRITE);
2693 static int domain_prepare_identity_map(struct device *dev,
2694 struct dmar_domain *domain,
2695 unsigned long long start,
2696 unsigned long long end)
2698 /* For _hardware_ passthrough, don't bother. But for software
2699 passthrough, we do it anyway -- it may indicate a memory
2700 range which is reserved in E820, so which didn't get set
2701 up to start with in si_domain */
2702 if (domain == si_domain && hw_pass_through) {
2703 dev_warn(dev, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
2708 dev_info(dev, "Setting identity map [0x%Lx - 0x%Lx]\n", start, end);
2711 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2712 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2713 dmi_get_system_info(DMI_BIOS_VENDOR),
2714 dmi_get_system_info(DMI_BIOS_VERSION),
2715 dmi_get_system_info(DMI_PRODUCT_VERSION));
2719 if (end >> agaw_to_width(domain->agaw)) {
2720 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2721 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2722 agaw_to_width(domain->agaw),
2723 dmi_get_system_info(DMI_BIOS_VENDOR),
2724 dmi_get_system_info(DMI_BIOS_VERSION),
2725 dmi_get_system_info(DMI_PRODUCT_VERSION));
2729 return iommu_domain_identity_map(domain, start, end);
2732 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2734 static int __init si_domain_init(int hw)
2736 struct dmar_rmrr_unit *rmrr;
2740 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2744 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2745 domain_exit(si_domain);
2752 for_each_online_node(nid) {
2753 unsigned long start_pfn, end_pfn;
2756 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2757 ret = iommu_domain_identity_map(si_domain,
2758 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2765 * Normally we use DMA domains for devices which have RMRRs. But we
2766 * loose this requirement for graphic and usb devices. Identity map
2767 * the RMRRs for graphic and USB devices so that they could use the
2770 for_each_rmrr_units(rmrr) {
2771 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2773 unsigned long long start = rmrr->base_address;
2774 unsigned long long end = rmrr->end_address;
2776 if (device_is_rmrr_locked(dev))
2779 if (WARN_ON(end < start ||
2780 end >> agaw_to_width(si_domain->agaw)))
2783 ret = iommu_domain_identity_map(si_domain, start, end);
2792 static int identity_mapping(struct device *dev)
2794 struct device_domain_info *info;
2796 info = dev->archdata.iommu;
2797 if (info && info != DUMMY_DEVICE_DOMAIN_INFO && info != DEFER_DEVICE_DOMAIN_INFO)
2798 return (info->domain == si_domain);
2803 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2805 struct dmar_domain *ndomain;
2806 struct intel_iommu *iommu;
2809 iommu = device_to_iommu(dev, &bus, &devfn);
2813 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2814 if (ndomain != domain)
2820 static bool device_has_rmrr(struct device *dev)
2822 struct dmar_rmrr_unit *rmrr;
2827 for_each_rmrr_units(rmrr) {
2829 * Return TRUE if this RMRR contains the device that
2832 for_each_active_dev_scope(rmrr->devices,
2833 rmrr->devices_cnt, i, tmp)
2835 is_downstream_to_pci_bridge(dev, tmp)) {
2845 * device_rmrr_is_relaxable - Test whether the RMRR of this device
2846 * is relaxable (ie. is allowed to be not enforced under some conditions)
2847 * @dev: device handle
2849 * We assume that PCI USB devices with RMRRs have them largely
2850 * for historical reasons and that the RMRR space is not actively used post
2851 * boot. This exclusion may change if vendors begin to abuse it.
2853 * The same exception is made for graphics devices, with the requirement that
2854 * any use of the RMRR regions will be torn down before assigning the device
2857 * Return: true if the RMRR is relaxable, false otherwise
2859 static bool device_rmrr_is_relaxable(struct device *dev)
2861 struct pci_dev *pdev;
2863 if (!dev_is_pci(dev))
2866 pdev = to_pci_dev(dev);
2867 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2874 * There are a couple cases where we need to restrict the functionality of
2875 * devices associated with RMRRs. The first is when evaluating a device for
2876 * identity mapping because problems exist when devices are moved in and out
2877 * of domains and their respective RMRR information is lost. This means that
2878 * a device with associated RMRRs will never be in a "passthrough" domain.
2879 * The second is use of the device through the IOMMU API. This interface
2880 * expects to have full control of the IOVA space for the device. We cannot
2881 * satisfy both the requirement that RMRR access is maintained and have an
2882 * unencumbered IOVA space. We also have no ability to quiesce the device's
2883 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2884 * We therefore prevent devices associated with an RMRR from participating in
2885 * the IOMMU API, which eliminates them from device assignment.
2887 * In both cases, devices which have relaxable RMRRs are not concerned by this
2888 * restriction. See device_rmrr_is_relaxable comment.
2890 static bool device_is_rmrr_locked(struct device *dev)
2892 if (!device_has_rmrr(dev))
2895 if (device_rmrr_is_relaxable(dev))
2902 * Return the required default domain type for a specific device.
2904 * @dev: the device in query
2905 * @startup: true if this is during early boot
2908 * - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
2909 * - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
2910 * - 0: both identity and dynamic domains work for this device
2912 static int device_def_domain_type(struct device *dev)
2914 if (dev_is_pci(dev)) {
2915 struct pci_dev *pdev = to_pci_dev(dev);
2917 if (device_is_rmrr_locked(dev))
2918 return IOMMU_DOMAIN_DMA;
2921 * Prevent any device marked as untrusted from getting
2922 * placed into the statically identity mapping domain.
2924 if (pdev->untrusted)
2925 return IOMMU_DOMAIN_DMA;
2927 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2928 return IOMMU_DOMAIN_IDENTITY;
2930 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2931 return IOMMU_DOMAIN_IDENTITY;
2934 * We want to start off with all devices in the 1:1 domain, and
2935 * take them out later if we find they can't access all of memory.
2937 * However, we can't do this for PCI devices behind bridges,
2938 * because all PCI devices behind the same bridge will end up
2939 * with the same source-id on their transactions.
2941 * Practically speaking, we can't change things around for these
2942 * devices at run-time, because we can't be sure there'll be no
2943 * DMA transactions in flight for any of their siblings.
2945 * So PCI devices (unless they're on the root bus) as well as
2946 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2947 * the 1:1 domain, just in _case_ one of their siblings turns out
2948 * not to be able to map all of memory.
2950 if (!pci_is_pcie(pdev)) {
2951 if (!pci_is_root_bus(pdev->bus))
2952 return IOMMU_DOMAIN_DMA;
2953 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2954 return IOMMU_DOMAIN_DMA;
2955 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2956 return IOMMU_DOMAIN_DMA;
2958 if (device_has_rmrr(dev))
2959 return IOMMU_DOMAIN_DMA;
2962 return (iommu_identity_mapping & IDENTMAP_ALL) ?
2963 IOMMU_DOMAIN_IDENTITY : 0;
2966 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2969 * Start from the sane iommu hardware state.
2970 * If the queued invalidation is already initialized by us
2971 * (for example, while enabling interrupt-remapping) then
2972 * we got the things already rolling from a sane state.
2976 * Clear any previous faults.
2978 dmar_fault(-1, iommu);
2980 * Disable queued invalidation if supported and already enabled
2981 * before OS handover.
2983 dmar_disable_qi(iommu);
2986 if (dmar_enable_qi(iommu)) {
2988 * Queued Invalidate not enabled, use Register Based Invalidate
2990 iommu->flush.flush_context = __iommu_flush_context;
2991 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2992 pr_info("%s: Using Register based invalidation\n",
2995 iommu->flush.flush_context = qi_flush_context;
2996 iommu->flush.flush_iotlb = qi_flush_iotlb;
2997 pr_info("%s: Using Queued invalidation\n", iommu->name);
3001 static int copy_context_table(struct intel_iommu *iommu,
3002 struct root_entry *old_re,
3003 struct context_entry **tbl,
3006 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3007 struct context_entry *new_ce = NULL, ce;
3008 struct context_entry *old_ce = NULL;
3009 struct root_entry re;
3010 phys_addr_t old_ce_phys;
3012 tbl_idx = ext ? bus * 2 : bus;
3013 memcpy(&re, old_re, sizeof(re));
3015 for (devfn = 0; devfn < 256; devfn++) {
3016 /* First calculate the correct index */
3017 idx = (ext ? devfn * 2 : devfn) % 256;
3020 /* First save what we may have and clean up */
3022 tbl[tbl_idx] = new_ce;
3023 __iommu_flush_cache(iommu, new_ce,
3033 old_ce_phys = root_entry_lctp(&re);
3035 old_ce_phys = root_entry_uctp(&re);
3038 if (ext && devfn == 0) {
3039 /* No LCTP, try UCTP */
3048 old_ce = memremap(old_ce_phys, PAGE_SIZE,
3053 new_ce = alloc_pgtable_page(iommu->node);
3060 /* Now copy the context entry */
3061 memcpy(&ce, old_ce + idx, sizeof(ce));
3063 if (!__context_present(&ce))
3066 did = context_domain_id(&ce);
3067 if (did >= 0 && did < cap_ndoms(iommu->cap))
3068 set_bit(did, iommu->domain_ids);
3071 * We need a marker for copied context entries. This
3072 * marker needs to work for the old format as well as
3073 * for extended context entries.
3075 * Bit 67 of the context entry is used. In the old
3076 * format this bit is available to software, in the
3077 * extended format it is the PGE bit, but PGE is ignored
3078 * by HW if PASIDs are disabled (and thus still
3081 * So disable PASIDs first and then mark the entry
3082 * copied. This means that we don't copy PASID
3083 * translations from the old kernel, but this is fine as
3084 * faults there are not fatal.
3086 context_clear_pasid_enable(&ce);
3087 context_set_copied(&ce);
3092 tbl[tbl_idx + pos] = new_ce;
3094 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3103 static int copy_translation_tables(struct intel_iommu *iommu)
3105 struct context_entry **ctxt_tbls;
3106 struct root_entry *old_rt;
3107 phys_addr_t old_rt_phys;
3108 int ctxt_table_entries;
3109 unsigned long flags;
3114 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3115 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
3116 new_ext = !!ecap_ecs(iommu->ecap);
3119 * The RTT bit can only be changed when translation is disabled,
3120 * but disabling translation means to open a window for data
3121 * corruption. So bail out and don't copy anything if we would
3122 * have to change the bit.
3127 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3131 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3135 /* This is too big for the stack - allocate it from slab */
3136 ctxt_table_entries = ext ? 512 : 256;
3138 ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3142 for (bus = 0; bus < 256; bus++) {
3143 ret = copy_context_table(iommu, &old_rt[bus],
3144 ctxt_tbls, bus, ext);
3146 pr_err("%s: Failed to copy context table for bus %d\n",
3152 spin_lock_irqsave(&iommu->lock, flags);
3154 /* Context tables are copied, now write them to the root_entry table */
3155 for (bus = 0; bus < 256; bus++) {
3156 int idx = ext ? bus * 2 : bus;
3159 if (ctxt_tbls[idx]) {
3160 val = virt_to_phys(ctxt_tbls[idx]) | 1;
3161 iommu->root_entry[bus].lo = val;
3164 if (!ext || !ctxt_tbls[idx + 1])
3167 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3168 iommu->root_entry[bus].hi = val;
3171 spin_unlock_irqrestore(&iommu->lock, flags);
3175 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3185 static int __init init_dmars(void)
3187 struct dmar_drhd_unit *drhd;
3188 struct intel_iommu *iommu;
3194 * initialize and program root entry to not present
3197 for_each_drhd_unit(drhd) {
3199 * lock not needed as this is only incremented in the single
3200 * threaded kernel __init code path all other access are read
3203 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3207 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3210 /* Preallocate enough resources for IOMMU hot-addition */
3211 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3212 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3214 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3217 pr_err("Allocating global iommu array failed\n");
3222 for_each_iommu(iommu, drhd) {
3223 if (drhd->ignored) {
3224 iommu_disable_translation(iommu);
3229 * Find the max pasid size of all IOMMU's in the system.
3230 * We need to ensure the system pasid table is no bigger
3231 * than the smallest supported.
3233 if (pasid_supported(iommu)) {
3234 u32 temp = 2 << ecap_pss(iommu->ecap);
3236 intel_pasid_max_id = min_t(u32, temp,
3237 intel_pasid_max_id);
3240 g_iommus[iommu->seq_id] = iommu;
3242 intel_iommu_init_qi(iommu);
3244 ret = iommu_init_domains(iommu);
3248 init_translation_status(iommu);
3250 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3251 iommu_disable_translation(iommu);
3252 clear_translation_pre_enabled(iommu);
3253 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3259 * we could share the same root & context tables
3260 * among all IOMMU's. Need to Split it later.
3262 ret = iommu_alloc_root_entry(iommu);
3266 if (translation_pre_enabled(iommu)) {
3267 pr_info("Translation already enabled - trying to copy translation structures\n");
3269 ret = copy_translation_tables(iommu);
3272 * We found the IOMMU with translation
3273 * enabled - but failed to copy over the
3274 * old root-entry table. Try to proceed
3275 * by disabling translation now and
3276 * allocating a clean root-entry table.
3277 * This might cause DMAR faults, but
3278 * probably the dump will still succeed.
3280 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3282 iommu_disable_translation(iommu);
3283 clear_translation_pre_enabled(iommu);
3285 pr_info("Copied translation tables from previous kernel for %s\n",
3290 if (!ecap_pass_through(iommu->ecap))
3291 hw_pass_through = 0;
3292 #ifdef CONFIG_INTEL_IOMMU_SVM
3293 if (pasid_supported(iommu))
3294 intel_svm_init(iommu);
3299 * Now that qi is enabled on all iommus, set the root entry and flush
3300 * caches. This is required on some Intel X58 chipsets, otherwise the
3301 * flush_context function will loop forever and the boot hangs.
3303 for_each_active_iommu(iommu, drhd) {
3304 iommu_flush_write_buffer(iommu);
3305 iommu_set_root_entry(iommu);
3306 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3307 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3310 if (iommu_default_passthrough())
3311 iommu_identity_mapping |= IDENTMAP_ALL;
3313 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3318 iommu_identity_mapping |= IDENTMAP_GFX;
3320 check_tylersburg_isoch();
3322 ret = si_domain_init(hw_pass_through);
3329 * global invalidate context cache
3330 * global invalidate iotlb
3331 * enable translation
3333 for_each_iommu(iommu, drhd) {
3334 if (drhd->ignored) {
3336 * we always have to disable PMRs or DMA may fail on
3340 iommu_disable_protect_mem_regions(iommu);
3344 iommu_flush_write_buffer(iommu);
3346 #ifdef CONFIG_INTEL_IOMMU_SVM
3347 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3349 * Call dmar_alloc_hwirq() with dmar_global_lock held,
3350 * could cause possible lock race condition.
3352 up_write(&dmar_global_lock);
3353 ret = intel_svm_enable_prq(iommu);
3354 down_write(&dmar_global_lock);
3359 ret = dmar_set_interrupt(iommu);
3367 for_each_active_iommu(iommu, drhd) {
3368 disable_dmar_iommu(iommu);
3369 free_dmar_iommu(iommu);
3378 /* This takes a number of _MM_ pages, not VTD pages */
3379 static unsigned long intel_alloc_iova(struct device *dev,
3380 struct dmar_domain *domain,
3381 unsigned long nrpages, uint64_t dma_mask)
3383 unsigned long iova_pfn;
3385 /* Restrict dma_mask to the width that the iommu can handle */
3386 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3387 /* Ensure we reserve the whole size-aligned region */
3388 nrpages = __roundup_pow_of_two(nrpages);
3390 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3392 * First try to allocate an io virtual address in
3393 * DMA_BIT_MASK(32) and if that fails then try allocating
3396 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3397 IOVA_PFN(DMA_BIT_MASK(32)), false);
3401 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3402 IOVA_PFN(dma_mask), true);
3403 if (unlikely(!iova_pfn)) {
3404 dev_err(dev, "Allocating %ld-page iova failed", nrpages);
3411 static struct dmar_domain *get_private_domain_for_dev(struct device *dev)
3413 struct dmar_domain *domain, *tmp;
3414 struct dmar_rmrr_unit *rmrr;
3415 struct device *i_dev;
3418 /* Device shouldn't be attached by any domains. */
3419 domain = find_domain(dev);
3423 domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3427 /* We have a new domain - setup possible RMRRs for the device */
3429 for_each_rmrr_units(rmrr) {
3430 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3435 ret = domain_prepare_identity_map(dev, domain,
3439 dev_err(dev, "Mapping reserved region failed\n");
3444 tmp = set_domain_for_dev(dev, domain);
3445 if (!tmp || domain != tmp) {
3446 domain_exit(domain);
3452 dev_err(dev, "Allocating domain failed\n");
3454 domain->domain.type = IOMMU_DOMAIN_DMA;
3459 /* Check if the dev needs to go through non-identity map and unmap process.*/
3460 static bool iommu_need_mapping(struct device *dev)
3464 if (iommu_dummy(dev))
3467 ret = identity_mapping(dev);
3469 u64 dma_mask = *dev->dma_mask;
3471 if (dev->coherent_dma_mask && dev->coherent_dma_mask < dma_mask)
3472 dma_mask = dev->coherent_dma_mask;
3474 if (dma_mask >= dma_direct_get_required_mask(dev))
3478 * 32 bit DMA is removed from si_domain and fall back to
3479 * non-identity mapping.
3481 dmar_remove_one_dev_info(dev);
3482 ret = iommu_request_dma_domain_for_dev(dev);
3484 struct iommu_domain *domain;
3485 struct dmar_domain *dmar_domain;
3487 domain = iommu_get_domain_for_dev(dev);
3489 dmar_domain = to_dmar_domain(domain);
3490 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
3492 dmar_remove_one_dev_info(dev);
3493 get_private_domain_for_dev(dev);
3496 dev_info(dev, "32bit DMA uses non-identity mapping\n");
3502 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3503 size_t size, int dir, u64 dma_mask)
3505 struct dmar_domain *domain;
3506 phys_addr_t start_paddr;
3507 unsigned long iova_pfn;
3510 struct intel_iommu *iommu;
3511 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3513 BUG_ON(dir == DMA_NONE);
3515 domain = find_domain(dev);
3517 return DMA_MAPPING_ERROR;
3519 iommu = domain_get_iommu(domain);
3520 size = aligned_nrpages(paddr, size);
3522 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3527 * Check if DMAR supports zero-length reads on write only
3530 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3531 !cap_zlr(iommu->cap))
3532 prot |= DMA_PTE_READ;
3533 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3534 prot |= DMA_PTE_WRITE;
3536 * paddr - (paddr + size) might be partial page, we should map the whole
3537 * page. Note: if two part of one page are separately mapped, we
3538 * might have two guest_addr mapping to the same host paddr, but this
3539 * is not a big problem
3541 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3542 mm_to_dma_pfn(paddr_pfn), size, prot);
3546 start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3547 start_paddr += paddr & ~PAGE_MASK;
3549 trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);
3555 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3556 dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
3557 size, (unsigned long long)paddr, dir);
3558 return DMA_MAPPING_ERROR;
3561 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3562 unsigned long offset, size_t size,
3563 enum dma_data_direction dir,
3564 unsigned long attrs)
3566 if (iommu_need_mapping(dev))
3567 return __intel_map_single(dev, page_to_phys(page) + offset,
3568 size, dir, *dev->dma_mask);
3569 return dma_direct_map_page(dev, page, offset, size, dir, attrs);
3572 static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
3573 size_t size, enum dma_data_direction dir,
3574 unsigned long attrs)
3576 if (iommu_need_mapping(dev))
3577 return __intel_map_single(dev, phys_addr, size, dir,
3579 return dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
3582 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3584 struct dmar_domain *domain;
3585 unsigned long start_pfn, last_pfn;
3586 unsigned long nrpages;
3587 unsigned long iova_pfn;
3588 struct intel_iommu *iommu;
3589 struct page *freelist;
3590 struct pci_dev *pdev = NULL;
3592 domain = find_domain(dev);
3595 iommu = domain_get_iommu(domain);
3597 iova_pfn = IOVA_PFN(dev_addr);
3599 nrpages = aligned_nrpages(dev_addr, size);
3600 start_pfn = mm_to_dma_pfn(iova_pfn);
3601 last_pfn = start_pfn + nrpages - 1;
3603 if (dev_is_pci(dev))
3604 pdev = to_pci_dev(dev);
3606 freelist = domain_unmap(domain, start_pfn, last_pfn);
3607 if (intel_iommu_strict || (pdev && pdev->untrusted) ||
3608 !has_iova_flush_queue(&domain->iovad)) {
3609 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3610 nrpages, !freelist, 0);
3612 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3613 dma_free_pagelist(freelist);
3615 queue_iova(&domain->iovad, iova_pfn, nrpages,
3616 (unsigned long)freelist);
3618 * queue up the release of the unmap to save the 1/6th of the
3619 * cpu used up by the iotlb flush operation...
3623 trace_unmap_single(dev, dev_addr, size);
3626 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3627 size_t size, enum dma_data_direction dir,
3628 unsigned long attrs)
3630 if (iommu_need_mapping(dev))
3631 intel_unmap(dev, dev_addr, size);
3633 dma_direct_unmap_page(dev, dev_addr, size, dir, attrs);
3636 static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
3637 size_t size, enum dma_data_direction dir, unsigned long attrs)
3639 if (iommu_need_mapping(dev))
3640 intel_unmap(dev, dev_addr, size);
3643 static void *intel_alloc_coherent(struct device *dev, size_t size,
3644 dma_addr_t *dma_handle, gfp_t flags,
3645 unsigned long attrs)
3647 struct page *page = NULL;
3650 if (!iommu_need_mapping(dev))
3651 return dma_direct_alloc(dev, size, dma_handle, flags, attrs);
3653 size = PAGE_ALIGN(size);
3654 order = get_order(size);
3656 if (gfpflags_allow_blocking(flags)) {
3657 unsigned int count = size >> PAGE_SHIFT;
3659 page = dma_alloc_from_contiguous(dev, count, order,
3660 flags & __GFP_NOWARN);
3664 page = alloc_pages(flags, order);
3667 memset(page_address(page), 0, size);
3669 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3671 dev->coherent_dma_mask);
3672 if (*dma_handle != DMA_MAPPING_ERROR)
3673 return page_address(page);
3674 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3675 __free_pages(page, order);
3680 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3681 dma_addr_t dma_handle, unsigned long attrs)
3684 struct page *page = virt_to_page(vaddr);
3686 if (!iommu_need_mapping(dev))
3687 return dma_direct_free(dev, size, vaddr, dma_handle, attrs);
3689 size = PAGE_ALIGN(size);
3690 order = get_order(size);
3692 intel_unmap(dev, dma_handle, size);
3693 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3694 __free_pages(page, order);
3697 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3698 int nelems, enum dma_data_direction dir,
3699 unsigned long attrs)
3701 dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3702 unsigned long nrpages = 0;
3703 struct scatterlist *sg;
3706 if (!iommu_need_mapping(dev))
3707 return dma_direct_unmap_sg(dev, sglist, nelems, dir, attrs);
3709 for_each_sg(sglist, sg, nelems, i) {
3710 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3713 intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3715 trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3718 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3719 enum dma_data_direction dir, unsigned long attrs)
3722 struct dmar_domain *domain;
3725 unsigned long iova_pfn;
3727 struct scatterlist *sg;
3728 unsigned long start_vpfn;
3729 struct intel_iommu *iommu;
3731 BUG_ON(dir == DMA_NONE);
3732 if (!iommu_need_mapping(dev))
3733 return dma_direct_map_sg(dev, sglist, nelems, dir, attrs);
3735 domain = find_domain(dev);
3739 iommu = domain_get_iommu(domain);
3741 for_each_sg(sglist, sg, nelems, i)
3742 size += aligned_nrpages(sg->offset, sg->length);
3744 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3747 sglist->dma_length = 0;
3752 * Check if DMAR supports zero-length reads on write only
3755 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3756 !cap_zlr(iommu->cap))
3757 prot |= DMA_PTE_READ;
3758 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3759 prot |= DMA_PTE_WRITE;
3761 start_vpfn = mm_to_dma_pfn(iova_pfn);
3763 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3764 if (unlikely(ret)) {
3765 dma_pte_free_pagetable(domain, start_vpfn,
3766 start_vpfn + size - 1,
3767 agaw_to_level(domain->agaw) + 1);
3768 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3772 trace_map_sg(dev, iova_pfn << PAGE_SHIFT,
3773 sg_phys(sglist), size << VTD_PAGE_SHIFT);
3778 static u64 intel_get_required_mask(struct device *dev)
3780 if (!iommu_need_mapping(dev))
3781 return dma_direct_get_required_mask(dev);
3782 return DMA_BIT_MASK(32);
3785 static const struct dma_map_ops intel_dma_ops = {
3786 .alloc = intel_alloc_coherent,
3787 .free = intel_free_coherent,
3788 .map_sg = intel_map_sg,
3789 .unmap_sg = intel_unmap_sg,
3790 .map_page = intel_map_page,
3791 .unmap_page = intel_unmap_page,
3792 .map_resource = intel_map_resource,
3793 .unmap_resource = intel_unmap_resource,
3794 .dma_supported = dma_direct_supported,
3795 .mmap = dma_common_mmap,
3796 .get_sgtable = dma_common_get_sgtable,
3797 .get_required_mask = intel_get_required_mask,
3801 bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
3802 enum dma_data_direction dir, enum dma_sync_target target)
3804 struct dmar_domain *domain;
3805 phys_addr_t tlb_addr;
3807 domain = find_domain(dev);
3808 if (WARN_ON(!domain))
3811 tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
3812 if (is_swiotlb_buffer(tlb_addr))
3813 swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
3817 bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
3818 enum dma_data_direction dir, unsigned long attrs,
3821 size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
3822 struct dmar_domain *domain;
3823 struct intel_iommu *iommu;
3824 unsigned long iova_pfn;
3825 unsigned long nrpages;
3826 phys_addr_t tlb_addr;
3830 domain = find_domain(dev);
3831 if (WARN_ON(dir == DMA_NONE || !domain))
3832 return DMA_MAPPING_ERROR;
3834 iommu = domain_get_iommu(domain);
3835 if (WARN_ON(!iommu))
3836 return DMA_MAPPING_ERROR;
3838 nrpages = aligned_nrpages(0, size);
3839 iova_pfn = intel_alloc_iova(dev, domain,
3840 dma_to_mm_pfn(nrpages), dma_mask);
3842 return DMA_MAPPING_ERROR;
3845 * Check if DMAR supports zero-length reads on write only
3848 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
3849 !cap_zlr(iommu->cap))
3850 prot |= DMA_PTE_READ;
3851 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3852 prot |= DMA_PTE_WRITE;
3855 * If both the physical buffer start address and size are
3856 * page aligned, we don't need to use a bounce page.
3858 if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
3859 tlb_addr = swiotlb_tbl_map_single(dev,
3860 __phys_to_dma(dev, io_tlb_start),
3861 paddr, size, aligned_size, dir, attrs);
3862 if (tlb_addr == DMA_MAPPING_ERROR) {
3865 /* Cleanup the padding area. */
3866 void *padding_start = phys_to_virt(tlb_addr);
3867 size_t padding_size = aligned_size;
3869 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
3870 (dir == DMA_TO_DEVICE ||
3871 dir == DMA_BIDIRECTIONAL)) {
3872 padding_start += size;
3873 padding_size -= size;
3876 memset(padding_start, 0, padding_size);
3882 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3883 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
3887 trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);
3889 return (phys_addr_t)iova_pfn << PAGE_SHIFT;
3892 if (is_swiotlb_buffer(tlb_addr))
3893 swiotlb_tbl_unmap_single(dev, tlb_addr, size,
3894 aligned_size, dir, attrs);
3896 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3897 dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
3898 size, (unsigned long long)paddr, dir);
3900 return DMA_MAPPING_ERROR;
3904 bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
3905 enum dma_data_direction dir, unsigned long attrs)
3907 size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
3908 struct dmar_domain *domain;
3909 phys_addr_t tlb_addr;
3911 domain = find_domain(dev);
3912 if (WARN_ON(!domain))
3915 tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
3916 if (WARN_ON(!tlb_addr))
3919 intel_unmap(dev, dev_addr, size);
3920 if (is_swiotlb_buffer(tlb_addr))
3921 swiotlb_tbl_unmap_single(dev, tlb_addr, size,
3922 aligned_size, dir, attrs);
3924 trace_bounce_unmap_single(dev, dev_addr, size);
3928 bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
3929 size_t size, enum dma_data_direction dir, unsigned long attrs)
3931 return bounce_map_single(dev, page_to_phys(page) + offset,
3932 size, dir, attrs, *dev->dma_mask);
3936 bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
3937 enum dma_data_direction dir, unsigned long attrs)
3939 return bounce_map_single(dev, phys_addr, size,
3940 dir, attrs, *dev->dma_mask);
3944 bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
3945 enum dma_data_direction dir, unsigned long attrs)
3947 bounce_unmap_single(dev, dev_addr, size, dir, attrs);
3951 bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
3952 enum dma_data_direction dir, unsigned long attrs)
3954 bounce_unmap_single(dev, dev_addr, size, dir, attrs);
3958 bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3959 enum dma_data_direction dir, unsigned long attrs)
3961 struct scatterlist *sg;
3964 for_each_sg(sglist, sg, nelems, i)
3965 bounce_unmap_page(dev, sg->dma_address,
3966 sg_dma_len(sg), dir, attrs);
3970 bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3971 enum dma_data_direction dir, unsigned long attrs)
3974 struct scatterlist *sg;
3976 for_each_sg(sglist, sg, nelems, i) {
3977 sg->dma_address = bounce_map_page(dev, sg_page(sg),
3978 sg->offset, sg->length,
3980 if (sg->dma_address == DMA_MAPPING_ERROR)
3982 sg_dma_len(sg) = sg->length;
3988 bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
3993 bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
3994 size_t size, enum dma_data_direction dir)
3996 bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
4000 bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
4001 size_t size, enum dma_data_direction dir)
4003 bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
4007 bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
4008 int nelems, enum dma_data_direction dir)
4010 struct scatterlist *sg;
4013 for_each_sg(sglist, sg, nelems, i)
4014 bounce_sync_single(dev, sg_dma_address(sg),
4015 sg_dma_len(sg), dir, SYNC_FOR_CPU);
4019 bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
4020 int nelems, enum dma_data_direction dir)
4022 struct scatterlist *sg;
4025 for_each_sg(sglist, sg, nelems, i)
4026 bounce_sync_single(dev, sg_dma_address(sg),
4027 sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
4030 static const struct dma_map_ops bounce_dma_ops = {
4031 .alloc = intel_alloc_coherent,
4032 .free = intel_free_coherent,
4033 .map_sg = bounce_map_sg,
4034 .unmap_sg = bounce_unmap_sg,
4035 .map_page = bounce_map_page,
4036 .unmap_page = bounce_unmap_page,
4037 .sync_single_for_cpu = bounce_sync_single_for_cpu,
4038 .sync_single_for_device = bounce_sync_single_for_device,
4039 .sync_sg_for_cpu = bounce_sync_sg_for_cpu,
4040 .sync_sg_for_device = bounce_sync_sg_for_device,
4041 .map_resource = bounce_map_resource,
4042 .unmap_resource = bounce_unmap_resource,
4043 .dma_supported = dma_direct_supported,
4046 static inline int iommu_domain_cache_init(void)
4050 iommu_domain_cache = kmem_cache_create("iommu_domain",
4051 sizeof(struct dmar_domain),
4056 if (!iommu_domain_cache) {
4057 pr_err("Couldn't create iommu_domain cache\n");
4064 static inline int iommu_devinfo_cache_init(void)
4068 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
4069 sizeof(struct device_domain_info),
4073 if (!iommu_devinfo_cache) {
4074 pr_err("Couldn't create devinfo cache\n");
4081 static int __init iommu_init_mempool(void)
4084 ret = iova_cache_get();
4088 ret = iommu_domain_cache_init();
4092 ret = iommu_devinfo_cache_init();
4096 kmem_cache_destroy(iommu_domain_cache);
4103 static void __init iommu_exit_mempool(void)
4105 kmem_cache_destroy(iommu_devinfo_cache);
4106 kmem_cache_destroy(iommu_domain_cache);
4110 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4112 struct dmar_drhd_unit *drhd;
4116 /* We know that this device on this chipset has its own IOMMU.
4117 * If we find it under a different IOMMU, then the BIOS is lying
4118 * to us. Hope that the IOMMU for this device is actually
4119 * disabled, and it needs no translation...
4121 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4123 /* "can't" happen */
4124 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4127 vtbar &= 0xffff0000;
4129 /* we know that the this iommu should be at offset 0xa000 from vtbar */
4130 drhd = dmar_find_matched_drhd_unit(pdev);
4131 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4132 TAINT_FIRMWARE_WORKAROUND,
4133 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4134 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4136 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4138 static void __init init_no_remapping_devices(void)
4140 struct dmar_drhd_unit *drhd;
4144 for_each_drhd_unit(drhd) {
4145 if (!drhd->include_all) {
4146 for_each_active_dev_scope(drhd->devices,
4147 drhd->devices_cnt, i, dev)
4149 /* ignore DMAR unit if no devices exist */
4150 if (i == drhd->devices_cnt)
4155 for_each_active_drhd_unit(drhd) {
4156 if (drhd->include_all)
4159 for_each_active_dev_scope(drhd->devices,
4160 drhd->devices_cnt, i, dev)
4161 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4163 if (i < drhd->devices_cnt)
4166 /* This IOMMU has *only* gfx devices. Either bypass it or
4167 set the gfx_mapped flag, as appropriate */
4168 if (!dmar_map_gfx) {
4170 for_each_active_dev_scope(drhd->devices,
4171 drhd->devices_cnt, i, dev)
4172 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4177 #ifdef CONFIG_SUSPEND
4178 static int init_iommu_hw(void)
4180 struct dmar_drhd_unit *drhd;
4181 struct intel_iommu *iommu = NULL;
4183 for_each_active_iommu(iommu, drhd)
4185 dmar_reenable_qi(iommu);
4187 for_each_iommu(iommu, drhd) {
4188 if (drhd->ignored) {
4190 * we always have to disable PMRs or DMA may fail on
4194 iommu_disable_protect_mem_regions(iommu);
4198 iommu_flush_write_buffer(iommu);
4200 iommu_set_root_entry(iommu);
4202 iommu->flush.flush_context(iommu, 0, 0, 0,
4203 DMA_CCMD_GLOBAL_INVL);
4204 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4205 iommu_enable_translation(iommu);
4206 iommu_disable_protect_mem_regions(iommu);
4212 static void iommu_flush_all(void)
4214 struct dmar_drhd_unit *drhd;
4215 struct intel_iommu *iommu;
4217 for_each_active_iommu(iommu, drhd) {
4218 iommu->flush.flush_context(iommu, 0, 0, 0,
4219 DMA_CCMD_GLOBAL_INVL);
4220 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4221 DMA_TLB_GLOBAL_FLUSH);
4225 static int iommu_suspend(void)
4227 struct dmar_drhd_unit *drhd;
4228 struct intel_iommu *iommu = NULL;
4231 for_each_active_iommu(iommu, drhd) {
4232 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4234 if (!iommu->iommu_state)
4240 for_each_active_iommu(iommu, drhd) {
4241 iommu_disable_translation(iommu);
4243 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4245 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4246 readl(iommu->reg + DMAR_FECTL_REG);
4247 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4248 readl(iommu->reg + DMAR_FEDATA_REG);
4249 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4250 readl(iommu->reg + DMAR_FEADDR_REG);
4251 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4252 readl(iommu->reg + DMAR_FEUADDR_REG);
4254 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4259 for_each_active_iommu(iommu, drhd)
4260 kfree(iommu->iommu_state);
4265 static void iommu_resume(void)
4267 struct dmar_drhd_unit *drhd;
4268 struct intel_iommu *iommu = NULL;
4271 if (init_iommu_hw()) {
4273 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4275 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4279 for_each_active_iommu(iommu, drhd) {
4281 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4283 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4284 iommu->reg + DMAR_FECTL_REG);
4285 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4286 iommu->reg + DMAR_FEDATA_REG);
4287 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4288 iommu->reg + DMAR_FEADDR_REG);
4289 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4290 iommu->reg + DMAR_FEUADDR_REG);
4292 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4295 for_each_active_iommu(iommu, drhd)
4296 kfree(iommu->iommu_state);
4299 static struct syscore_ops iommu_syscore_ops = {
4300 .resume = iommu_resume,
4301 .suspend = iommu_suspend,
4304 static void __init init_iommu_pm_ops(void)
4306 register_syscore_ops(&iommu_syscore_ops);
4310 static inline void init_iommu_pm_ops(void) {}
4311 #endif /* CONFIG_PM */
4313 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4315 struct acpi_dmar_reserved_memory *rmrr;
4316 struct dmar_rmrr_unit *rmrru;
4318 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4322 rmrru->hdr = header;
4323 rmrr = (struct acpi_dmar_reserved_memory *)header;
4324 rmrru->base_address = rmrr->base_address;
4325 rmrru->end_address = rmrr->end_address;
4327 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4328 ((void *)rmrr) + rmrr->header.length,
4329 &rmrru->devices_cnt);
4330 if (rmrru->devices_cnt && rmrru->devices == NULL)
4333 list_add(&rmrru->list, &dmar_rmrr_units);
4342 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4344 struct dmar_atsr_unit *atsru;
4345 struct acpi_dmar_atsr *tmp;
4347 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4348 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4349 if (atsr->segment != tmp->segment)
4351 if (atsr->header.length != tmp->header.length)
4353 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4360 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4362 struct acpi_dmar_atsr *atsr;
4363 struct dmar_atsr_unit *atsru;
4365 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4368 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4369 atsru = dmar_find_atsr(atsr);
4373 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4378 * If memory is allocated from slab by ACPI _DSM method, we need to
4379 * copy the memory content because the memory buffer will be freed
4382 atsru->hdr = (void *)(atsru + 1);
4383 memcpy(atsru->hdr, hdr, hdr->length);
4384 atsru->include_all = atsr->flags & 0x1;
4385 if (!atsru->include_all) {
4386 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4387 (void *)atsr + atsr->header.length,
4388 &atsru->devices_cnt);
4389 if (atsru->devices_cnt && atsru->devices == NULL) {
4395 list_add_rcu(&atsru->list, &dmar_atsr_units);
4400 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4402 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4406 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4408 struct acpi_dmar_atsr *atsr;
4409 struct dmar_atsr_unit *atsru;
4411 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4412 atsru = dmar_find_atsr(atsr);
4414 list_del_rcu(&atsru->list);
4416 intel_iommu_free_atsr(atsru);
4422 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4426 struct acpi_dmar_atsr *atsr;
4427 struct dmar_atsr_unit *atsru;
4429 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4430 atsru = dmar_find_atsr(atsr);
4434 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4435 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4443 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4446 struct intel_iommu *iommu = dmaru->iommu;
4448 if (g_iommus[iommu->seq_id])
4451 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4452 pr_warn("%s: Doesn't support hardware pass through.\n",
4456 if (!ecap_sc_support(iommu->ecap) &&
4457 domain_update_iommu_snooping(iommu)) {
4458 pr_warn("%s: Doesn't support snooping.\n",
4462 sp = domain_update_iommu_superpage(iommu) - 1;
4463 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4464 pr_warn("%s: Doesn't support large page.\n",
4470 * Disable translation if already enabled prior to OS handover.
4472 if (iommu->gcmd & DMA_GCMD_TE)
4473 iommu_disable_translation(iommu);
4475 g_iommus[iommu->seq_id] = iommu;
4476 ret = iommu_init_domains(iommu);
4478 ret = iommu_alloc_root_entry(iommu);
4482 #ifdef CONFIG_INTEL_IOMMU_SVM
4483 if (pasid_supported(iommu))
4484 intel_svm_init(iommu);
4487 if (dmaru->ignored) {
4489 * we always have to disable PMRs or DMA may fail on this device
4492 iommu_disable_protect_mem_regions(iommu);
4496 intel_iommu_init_qi(iommu);
4497 iommu_flush_write_buffer(iommu);
4499 #ifdef CONFIG_INTEL_IOMMU_SVM
4500 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4501 ret = intel_svm_enable_prq(iommu);
4506 ret = dmar_set_interrupt(iommu);
4510 iommu_set_root_entry(iommu);
4511 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4512 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4513 iommu_enable_translation(iommu);
4515 iommu_disable_protect_mem_regions(iommu);
4519 disable_dmar_iommu(iommu);
4521 free_dmar_iommu(iommu);
4525 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4528 struct intel_iommu *iommu = dmaru->iommu;
4530 if (!intel_iommu_enabled)
4536 ret = intel_iommu_add(dmaru);
4538 disable_dmar_iommu(iommu);
4539 free_dmar_iommu(iommu);
4545 static void intel_iommu_free_dmars(void)
4547 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4548 struct dmar_atsr_unit *atsru, *atsr_n;
4550 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4551 list_del(&rmrru->list);
4552 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4556 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4557 list_del(&atsru->list);
4558 intel_iommu_free_atsr(atsru);
4562 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4565 struct pci_bus *bus;
4566 struct pci_dev *bridge = NULL;
4568 struct acpi_dmar_atsr *atsr;
4569 struct dmar_atsr_unit *atsru;
4571 dev = pci_physfn(dev);
4572 for (bus = dev->bus; bus; bus = bus->parent) {
4574 /* If it's an integrated device, allow ATS */
4577 /* Connected via non-PCIe: no ATS */
4578 if (!pci_is_pcie(bridge) ||
4579 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4581 /* If we found the root port, look it up in the ATSR */
4582 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4587 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4588 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4589 if (atsr->segment != pci_domain_nr(dev->bus))
4592 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4593 if (tmp == &bridge->dev)
4596 if (atsru->include_all)
4606 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4609 struct dmar_rmrr_unit *rmrru;
4610 struct dmar_atsr_unit *atsru;
4611 struct acpi_dmar_atsr *atsr;
4612 struct acpi_dmar_reserved_memory *rmrr;
4614 if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4617 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4618 rmrr = container_of(rmrru->hdr,
4619 struct acpi_dmar_reserved_memory, header);
4620 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4621 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4622 ((void *)rmrr) + rmrr->header.length,
4623 rmrr->segment, rmrru->devices,
4624 rmrru->devices_cnt);
4627 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4628 dmar_remove_dev_scope(info, rmrr->segment,
4629 rmrru->devices, rmrru->devices_cnt);
4633 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4634 if (atsru->include_all)
4637 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4638 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4639 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4640 (void *)atsr + atsr->header.length,
4641 atsr->segment, atsru->devices,
4642 atsru->devices_cnt);
4647 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4648 if (dmar_remove_dev_scope(info, atsr->segment,
4649 atsru->devices, atsru->devices_cnt))
4657 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4658 unsigned long val, void *v)
4660 struct memory_notify *mhp = v;
4661 unsigned long long start, end;
4662 unsigned long start_vpfn, last_vpfn;
4665 case MEM_GOING_ONLINE:
4666 start = mhp->start_pfn << PAGE_SHIFT;
4667 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4668 if (iommu_domain_identity_map(si_domain, start, end)) {
4669 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4676 case MEM_CANCEL_ONLINE:
4677 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4678 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4679 while (start_vpfn <= last_vpfn) {
4681 struct dmar_drhd_unit *drhd;
4682 struct intel_iommu *iommu;
4683 struct page *freelist;
4685 iova = find_iova(&si_domain->iovad, start_vpfn);
4687 pr_debug("Failed get IOVA for PFN %lx\n",
4692 iova = split_and_remove_iova(&si_domain->iovad, iova,
4693 start_vpfn, last_vpfn);
4695 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4696 start_vpfn, last_vpfn);
4700 freelist = domain_unmap(si_domain, iova->pfn_lo,
4704 for_each_active_iommu(iommu, drhd)
4705 iommu_flush_iotlb_psi(iommu, si_domain,
4706 iova->pfn_lo, iova_size(iova),
4709 dma_free_pagelist(freelist);
4711 start_vpfn = iova->pfn_hi + 1;
4712 free_iova_mem(iova);
4720 static struct notifier_block intel_iommu_memory_nb = {
4721 .notifier_call = intel_iommu_memory_notifier,
4725 static void free_all_cpu_cached_iovas(unsigned int cpu)
4729 for (i = 0; i < g_num_of_iommus; i++) {
4730 struct intel_iommu *iommu = g_iommus[i];
4731 struct dmar_domain *domain;
4737 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4738 domain = get_iommu_domain(iommu, (u16)did);
4742 free_cpu_cached_iovas(cpu, &domain->iovad);
4747 static int intel_iommu_cpu_dead(unsigned int cpu)
4749 free_all_cpu_cached_iovas(cpu);
4753 static void intel_disable_iommus(void)
4755 struct intel_iommu *iommu = NULL;
4756 struct dmar_drhd_unit *drhd;
4758 for_each_iommu(iommu, drhd)
4759 iommu_disable_translation(iommu);
4762 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4764 struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4766 return container_of(iommu_dev, struct intel_iommu, iommu);
4769 static ssize_t intel_iommu_show_version(struct device *dev,
4770 struct device_attribute *attr,
4773 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4774 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4775 return sprintf(buf, "%d:%d\n",
4776 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4778 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4780 static ssize_t intel_iommu_show_address(struct device *dev,
4781 struct device_attribute *attr,
4784 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4785 return sprintf(buf, "%llx\n", iommu->reg_phys);
4787 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4789 static ssize_t intel_iommu_show_cap(struct device *dev,
4790 struct device_attribute *attr,
4793 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4794 return sprintf(buf, "%llx\n", iommu->cap);
4796 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4798 static ssize_t intel_iommu_show_ecap(struct device *dev,
4799 struct device_attribute *attr,
4802 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4803 return sprintf(buf, "%llx\n", iommu->ecap);
4805 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4807 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4808 struct device_attribute *attr,
4811 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4812 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4814 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4816 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4817 struct device_attribute *attr,
4820 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4821 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4822 cap_ndoms(iommu->cap)));
4824 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4826 static struct attribute *intel_iommu_attrs[] = {
4827 &dev_attr_version.attr,
4828 &dev_attr_address.attr,
4830 &dev_attr_ecap.attr,
4831 &dev_attr_domains_supported.attr,
4832 &dev_attr_domains_used.attr,
4836 static struct attribute_group intel_iommu_group = {
4837 .name = "intel-iommu",
4838 .attrs = intel_iommu_attrs,
4841 const struct attribute_group *intel_iommu_groups[] = {
4846 static inline bool has_untrusted_dev(void)
4848 struct pci_dev *pdev = NULL;
4850 for_each_pci_dev(pdev)
4851 if (pdev->untrusted)
4857 static int __init platform_optin_force_iommu(void)
4859 if (!dmar_platform_optin() || no_platform_optin || !has_untrusted_dev())
4862 if (no_iommu || dmar_disabled)
4863 pr_info("Intel-IOMMU force enabled due to platform opt in\n");
4866 * If Intel-IOMMU is disabled by default, we will apply identity
4867 * map for all devices except those marked as being untrusted.
4870 iommu_identity_mapping |= IDENTMAP_ALL;
4878 static int __init probe_acpi_namespace_devices(void)
4880 struct dmar_drhd_unit *drhd;
4881 /* To avoid a -Wunused-but-set-variable warning. */
4882 struct intel_iommu *iommu __maybe_unused;
4886 for_each_active_iommu(iommu, drhd) {
4887 for_each_active_dev_scope(drhd->devices,
4888 drhd->devices_cnt, i, dev) {
4889 struct acpi_device_physical_node *pn;
4890 struct iommu_group *group;
4891 struct acpi_device *adev;
4893 if (dev->bus != &acpi_bus_type)
4896 adev = to_acpi_device(dev);
4897 mutex_lock(&adev->physical_node_lock);
4898 list_for_each_entry(pn,
4899 &adev->physical_node_list, node) {
4900 group = iommu_group_get(pn->dev);
4902 iommu_group_put(group);
4906 pn->dev->bus->iommu_ops = &intel_iommu_ops;
4907 ret = iommu_probe_device(pn->dev);
4911 mutex_unlock(&adev->physical_node_lock);
4921 int __init intel_iommu_init(void)
4924 struct dmar_drhd_unit *drhd;
4925 struct intel_iommu *iommu;
4928 * Intel IOMMU is required for a TXT/tboot launch or platform
4929 * opt in, so enforce that.
4931 force_on = tboot_force_iommu() || platform_optin_force_iommu();
4933 if (iommu_init_mempool()) {
4935 panic("tboot: Failed to initialize iommu memory\n");
4939 down_write(&dmar_global_lock);
4940 if (dmar_table_init()) {
4942 panic("tboot: Failed to initialize DMAR table\n");
4946 if (dmar_dev_scope_init() < 0) {
4948 panic("tboot: Failed to initialize DMAR device scope\n");
4952 up_write(&dmar_global_lock);
4955 * The bus notifier takes the dmar_global_lock, so lockdep will
4956 * complain later when we register it under the lock.
4958 dmar_register_bus_notifier();
4960 down_write(&dmar_global_lock);
4962 if (no_iommu || dmar_disabled) {
4964 * We exit the function here to ensure IOMMU's remapping and
4965 * mempool aren't setup, which means that the IOMMU's PMRs
4966 * won't be disabled via the call to init_dmars(). So disable
4967 * it explicitly here. The PMRs were setup by tboot prior to
4968 * calling SENTER, but the kernel is expected to reset/tear
4971 if (intel_iommu_tboot_noforce) {
4972 for_each_iommu(iommu, drhd)
4973 iommu_disable_protect_mem_regions(iommu);
4977 * Make sure the IOMMUs are switched off, even when we
4978 * boot into a kexec kernel and the previous kernel left
4981 intel_disable_iommus();
4985 if (list_empty(&dmar_rmrr_units))
4986 pr_info("No RMRR found\n");
4988 if (list_empty(&dmar_atsr_units))
4989 pr_info("No ATSR found\n");
4991 if (dmar_init_reserved_ranges()) {
4993 panic("tboot: Failed to reserve iommu ranges\n");
4994 goto out_free_reserved_range;
4998 intel_iommu_gfx_mapped = 1;
5000 init_no_remapping_devices();
5005 panic("tboot: Failed to initialize DMARs\n");
5006 pr_err("Initialization failed\n");
5007 goto out_free_reserved_range;
5009 up_write(&dmar_global_lock);
5011 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
5013 * If the system has no untrusted device or the user has decided
5014 * to disable the bounce page mechanisms, we don't need swiotlb.
5015 * Mark this and the pre-allocated bounce pages will be released
5018 if (!has_untrusted_dev() || intel_no_bounce)
5021 dma_ops = &intel_dma_ops;
5023 init_iommu_pm_ops();
5025 for_each_active_iommu(iommu, drhd) {
5026 iommu_device_sysfs_add(&iommu->iommu, NULL,
5029 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
5030 iommu_device_register(&iommu->iommu);
5033 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
5034 if (si_domain && !hw_pass_through)
5035 register_memory_notifier(&intel_iommu_memory_nb);
5036 cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
5037 intel_iommu_cpu_dead);
5039 down_read(&dmar_global_lock);
5040 if (probe_acpi_namespace_devices())
5041 pr_warn("ACPI name space devices didn't probe correctly\n");
5042 up_read(&dmar_global_lock);
5044 /* Finally, we enable the DMA remapping hardware. */
5045 for_each_iommu(iommu, drhd) {
5046 if (!drhd->ignored && !translation_pre_enabled(iommu))
5047 iommu_enable_translation(iommu);
5049 iommu_disable_protect_mem_regions(iommu);
5051 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
5053 intel_iommu_enabled = 1;
5054 intel_iommu_debugfs_init();
5058 out_free_reserved_range:
5059 put_iova_domain(&reserved_iova_list);
5061 intel_iommu_free_dmars();
5062 up_write(&dmar_global_lock);
5063 iommu_exit_mempool();
5067 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
5069 struct intel_iommu *iommu = opaque;
5071 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
5076 * NB - intel-iommu lacks any sort of reference counting for the users of
5077 * dependent devices. If multiple endpoints have intersecting dependent
5078 * devices, unbinding the driver from any one of them will possibly leave
5079 * the others unable to operate.
5081 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
5083 if (!iommu || !dev || !dev_is_pci(dev))
5086 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
5089 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
5091 struct dmar_domain *domain;
5092 struct intel_iommu *iommu;
5093 unsigned long flags;
5095 assert_spin_locked(&device_domain_lock);
5100 iommu = info->iommu;
5101 domain = info->domain;
5104 if (dev_is_pci(info->dev) && sm_supported(iommu))
5105 intel_pasid_tear_down_entry(iommu, info->dev,
5108 iommu_disable_dev_iotlb(info);
5109 domain_context_clear(iommu, info->dev);
5110 intel_pasid_free_table(info->dev);
5113 unlink_domain_info(info);
5115 spin_lock_irqsave(&iommu->lock, flags);
5116 domain_detach_iommu(domain, iommu);
5117 spin_unlock_irqrestore(&iommu->lock, flags);
5119 /* free the private domain */
5120 if (domain->flags & DOMAIN_FLAG_LOSE_CHILDREN &&
5121 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
5122 list_empty(&domain->devices))
5123 domain_exit(info->domain);
5125 free_devinfo_mem(info);
5128 static void dmar_remove_one_dev_info(struct device *dev)
5130 struct device_domain_info *info;
5131 unsigned long flags;
5133 spin_lock_irqsave(&device_domain_lock, flags);
5134 info = dev->archdata.iommu;
5136 __dmar_remove_one_dev_info(info);
5137 spin_unlock_irqrestore(&device_domain_lock, flags);
5140 static int md_domain_init(struct dmar_domain *domain, int guest_width)
5144 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
5145 domain_reserve_special_ranges(domain);
5147 /* calculate AGAW */
5148 domain->gaw = guest_width;
5149 adjust_width = guestwidth_to_adjustwidth(guest_width);
5150 domain->agaw = width_to_agaw(adjust_width);
5152 domain->iommu_coherency = 0;
5153 domain->iommu_snooping = 0;
5154 domain->iommu_superpage = 0;
5155 domain->max_addr = 0;
5157 /* always allocate the top pgd */
5158 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
5161 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
5165 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
5167 struct dmar_domain *dmar_domain;
5168 struct iommu_domain *domain;
5171 case IOMMU_DOMAIN_DMA:
5173 case IOMMU_DOMAIN_UNMANAGED:
5174 dmar_domain = alloc_domain(0);
5176 pr_err("Can't allocate dmar_domain\n");
5179 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5180 pr_err("Domain initialization failed\n");
5181 domain_exit(dmar_domain);
5185 if (type == IOMMU_DOMAIN_DMA &&
5186 init_iova_flush_queue(&dmar_domain->iovad,
5187 iommu_flush_iova, iova_entry_free)) {
5188 pr_warn("iova flush queue initialization failed\n");
5189 intel_iommu_strict = 1;
5192 domain_update_iommu_cap(dmar_domain);
5194 domain = &dmar_domain->domain;
5195 domain->geometry.aperture_start = 0;
5196 domain->geometry.aperture_end =
5197 __DOMAIN_MAX_ADDR(dmar_domain->gaw);
5198 domain->geometry.force_aperture = true;
5201 case IOMMU_DOMAIN_IDENTITY:
5202 return &si_domain->domain;
5210 static void intel_iommu_domain_free(struct iommu_domain *domain)
5212 if (domain != &si_domain->domain)
5213 domain_exit(to_dmar_domain(domain));
5217 * Check whether a @domain could be attached to the @dev through the
5218 * aux-domain attach/detach APIs.
5221 is_aux_domain(struct device *dev, struct iommu_domain *domain)
5223 struct device_domain_info *info = dev->archdata.iommu;
5225 return info && info->auxd_enabled &&
5226 domain->type == IOMMU_DOMAIN_UNMANAGED;
5229 static void auxiliary_link_device(struct dmar_domain *domain,
5232 struct device_domain_info *info = dev->archdata.iommu;
5234 assert_spin_locked(&device_domain_lock);
5238 domain->auxd_refcnt++;
5239 list_add(&domain->auxd, &info->auxiliary_domains);
5242 static void auxiliary_unlink_device(struct dmar_domain *domain,
5245 struct device_domain_info *info = dev->archdata.iommu;
5247 assert_spin_locked(&device_domain_lock);
5251 list_del(&domain->auxd);
5252 domain->auxd_refcnt--;
5254 if (!domain->auxd_refcnt && domain->default_pasid > 0)
5255 intel_pasid_free_id(domain->default_pasid);
5258 static int aux_domain_add_dev(struct dmar_domain *domain,
5263 unsigned long flags;
5264 struct intel_iommu *iommu;
5266 iommu = device_to_iommu(dev, &bus, &devfn);
5270 if (domain->default_pasid <= 0) {
5273 pasid = intel_pasid_alloc_id(domain, PASID_MIN,
5274 pci_max_pasids(to_pci_dev(dev)),
5277 pr_err("Can't allocate default pasid\n");
5280 domain->default_pasid = pasid;
5283 spin_lock_irqsave(&device_domain_lock, flags);
5285 * iommu->lock must be held to attach domain to iommu and setup the
5286 * pasid entry for second level translation.
5288 spin_lock(&iommu->lock);
5289 ret = domain_attach_iommu(domain, iommu);
5293 /* Setup the PASID entry for mediated devices: */
5294 ret = intel_pasid_setup_second_level(iommu, domain, dev,
5295 domain->default_pasid);
5298 spin_unlock(&iommu->lock);
5300 auxiliary_link_device(domain, dev);
5302 spin_unlock_irqrestore(&device_domain_lock, flags);
5307 domain_detach_iommu(domain, iommu);
5309 spin_unlock(&iommu->lock);
5310 spin_unlock_irqrestore(&device_domain_lock, flags);
5311 if (!domain->auxd_refcnt && domain->default_pasid > 0)
5312 intel_pasid_free_id(domain->default_pasid);
5317 static void aux_domain_remove_dev(struct dmar_domain *domain,
5320 struct device_domain_info *info;
5321 struct intel_iommu *iommu;
5322 unsigned long flags;
5324 if (!is_aux_domain(dev, &domain->domain))
5327 spin_lock_irqsave(&device_domain_lock, flags);
5328 info = dev->archdata.iommu;
5329 iommu = info->iommu;
5331 auxiliary_unlink_device(domain, dev);
5333 spin_lock(&iommu->lock);
5334 intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid);
5335 domain_detach_iommu(domain, iommu);
5336 spin_unlock(&iommu->lock);
5338 spin_unlock_irqrestore(&device_domain_lock, flags);
5341 static int prepare_domain_attach_device(struct iommu_domain *domain,
5344 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5345 struct intel_iommu *iommu;
5349 iommu = device_to_iommu(dev, &bus, &devfn);
5353 /* check if this iommu agaw is sufficient for max mapped address */
5354 addr_width = agaw_to_width(iommu->agaw);
5355 if (addr_width > cap_mgaw(iommu->cap))
5356 addr_width = cap_mgaw(iommu->cap);
5358 if (dmar_domain->max_addr > (1LL << addr_width)) {
5359 dev_err(dev, "%s: iommu width (%d) is not "
5360 "sufficient for the mapped address (%llx)\n",
5361 __func__, addr_width, dmar_domain->max_addr);
5364 dmar_domain->gaw = addr_width;
5367 * Knock out extra levels of page tables if necessary
5369 while (iommu->agaw < dmar_domain->agaw) {
5370 struct dma_pte *pte;
5372 pte = dmar_domain->pgd;
5373 if (dma_pte_present(pte)) {
5374 dmar_domain->pgd = (struct dma_pte *)
5375 phys_to_virt(dma_pte_addr(pte));
5376 free_pgtable_page(pte);
5378 dmar_domain->agaw--;
5384 static int intel_iommu_attach_device(struct iommu_domain *domain,
5389 if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
5390 device_is_rmrr_locked(dev)) {
5391 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
5395 if (is_aux_domain(dev, domain))
5398 /* normally dev is not mapped */
5399 if (unlikely(domain_context_mapped(dev))) {
5400 struct dmar_domain *old_domain;
5402 old_domain = find_domain(dev);
5404 dmar_remove_one_dev_info(dev);
5407 ret = prepare_domain_attach_device(domain, dev);
5411 return domain_add_dev_info(to_dmar_domain(domain), dev);
5414 static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
5419 if (!is_aux_domain(dev, domain))
5422 ret = prepare_domain_attach_device(domain, dev);
5426 return aux_domain_add_dev(to_dmar_domain(domain), dev);
5429 static void intel_iommu_detach_device(struct iommu_domain *domain,
5432 dmar_remove_one_dev_info(dev);
5435 static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
5438 aux_domain_remove_dev(to_dmar_domain(domain), dev);
5441 static int intel_iommu_map(struct iommu_domain *domain,
5442 unsigned long iova, phys_addr_t hpa,
5443 size_t size, int iommu_prot)
5445 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5450 if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5453 if (iommu_prot & IOMMU_READ)
5454 prot |= DMA_PTE_READ;
5455 if (iommu_prot & IOMMU_WRITE)
5456 prot |= DMA_PTE_WRITE;
5457 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5458 prot |= DMA_PTE_SNP;
5460 max_addr = iova + size;
5461 if (dmar_domain->max_addr < max_addr) {
5464 /* check if minimum agaw is sufficient for mapped address */
5465 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5466 if (end < max_addr) {
5467 pr_err("%s: iommu width (%d) is not "
5468 "sufficient for the mapped address (%llx)\n",
5469 __func__, dmar_domain->gaw, max_addr);
5472 dmar_domain->max_addr = max_addr;
5474 /* Round up size to next multiple of PAGE_SIZE, if it and
5475 the low bits of hpa would take us onto the next page */
5476 size = aligned_nrpages(hpa, size);
5477 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5478 hpa >> VTD_PAGE_SHIFT, size, prot);
5482 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5483 unsigned long iova, size_t size,
5484 struct iommu_iotlb_gather *gather)
5486 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5487 struct page *freelist = NULL;
5488 unsigned long start_pfn, last_pfn;
5489 unsigned int npages;
5490 int iommu_id, level = 0;
5492 /* Cope with horrid API which requires us to unmap more than the
5493 size argument if it happens to be a large-page mapping. */
5494 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5495 if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5498 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5499 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5501 start_pfn = iova >> VTD_PAGE_SHIFT;
5502 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5504 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5506 npages = last_pfn - start_pfn + 1;
5508 for_each_domain_iommu(iommu_id, dmar_domain)
5509 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5510 start_pfn, npages, !freelist, 0);
5512 dma_free_pagelist(freelist);
5514 if (dmar_domain->max_addr == iova + size)
5515 dmar_domain->max_addr = iova;
5520 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5523 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5524 struct dma_pte *pte;
5528 if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5531 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5533 phys = dma_pte_addr(pte);
5538 static inline bool scalable_mode_support(void)
5540 struct dmar_drhd_unit *drhd;
5541 struct intel_iommu *iommu;
5545 for_each_active_iommu(iommu, drhd) {
5546 if (!sm_supported(iommu)) {
5556 static inline bool iommu_pasid_support(void)
5558 struct dmar_drhd_unit *drhd;
5559 struct intel_iommu *iommu;
5563 for_each_active_iommu(iommu, drhd) {
5564 if (!pasid_supported(iommu)) {
5574 static bool intel_iommu_capable(enum iommu_cap cap)
5576 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5577 return domain_update_iommu_snooping(NULL) == 1;
5578 if (cap == IOMMU_CAP_INTR_REMAP)
5579 return irq_remapping_enabled == 1;
5584 static int intel_iommu_add_device(struct device *dev)
5586 struct dmar_domain *dmar_domain;
5587 struct iommu_domain *domain;
5588 struct intel_iommu *iommu;
5589 struct iommu_group *group;
5593 iommu = device_to_iommu(dev, &bus, &devfn);
5597 iommu_device_link(&iommu->iommu, dev);
5599 if (translation_pre_enabled(iommu))
5600 dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;
5602 group = iommu_group_get_for_dev(dev);
5605 return PTR_ERR(group);
5607 iommu_group_put(group);
5609 domain = iommu_get_domain_for_dev(dev);
5610 dmar_domain = to_dmar_domain(domain);
5611 if (domain->type == IOMMU_DOMAIN_DMA) {
5612 if (device_def_domain_type(dev) == IOMMU_DOMAIN_IDENTITY) {
5613 ret = iommu_request_dm_for_dev(dev);
5615 dmar_remove_one_dev_info(dev);
5616 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5617 domain_add_dev_info(si_domain, dev);
5619 "Device uses a private identity domain.\n");
5623 if (device_def_domain_type(dev) == IOMMU_DOMAIN_DMA) {
5624 ret = iommu_request_dma_domain_for_dev(dev);
5626 dmar_remove_one_dev_info(dev);
5627 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5628 if (!get_private_domain_for_dev(dev)) {
5630 "Failed to get a private domain.\n");
5635 "Device uses a private dma domain.\n");
5640 if (device_needs_bounce(dev)) {
5641 dev_info(dev, "Use Intel IOMMU bounce page dma_ops\n");
5642 set_dma_ops(dev, &bounce_dma_ops);
5648 static void intel_iommu_remove_device(struct device *dev)
5650 struct intel_iommu *iommu;
5653 iommu = device_to_iommu(dev, &bus, &devfn);
5657 dmar_remove_one_dev_info(dev);
5659 iommu_group_remove_device(dev);
5661 iommu_device_unlink(&iommu->iommu, dev);
5663 if (device_needs_bounce(dev))
5664 set_dma_ops(dev, NULL);
5667 static void intel_iommu_get_resv_regions(struct device *device,
5668 struct list_head *head)
5670 int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5671 struct iommu_resv_region *reg;
5672 struct dmar_rmrr_unit *rmrr;
5673 struct device *i_dev;
5676 down_read(&dmar_global_lock);
5677 for_each_rmrr_units(rmrr) {
5678 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5680 struct iommu_resv_region *resv;
5681 enum iommu_resv_type type;
5684 if (i_dev != device &&
5685 !is_downstream_to_pci_bridge(device, i_dev))
5688 length = rmrr->end_address - rmrr->base_address + 1;
5690 type = device_rmrr_is_relaxable(device) ?
5691 IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
5693 resv = iommu_alloc_resv_region(rmrr->base_address,
5694 length, prot, type);
5698 list_add_tail(&resv->list, head);
5701 up_read(&dmar_global_lock);
5703 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
5704 if (dev_is_pci(device)) {
5705 struct pci_dev *pdev = to_pci_dev(device);
5707 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5708 reg = iommu_alloc_resv_region(0, 1UL << 24, 0,
5711 list_add_tail(®->list, head);
5714 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
5716 reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5717 IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5721 list_add_tail(®->list, head);
5724 static void intel_iommu_put_resv_regions(struct device *dev,
5725 struct list_head *head)
5727 struct iommu_resv_region *entry, *next;
5729 list_for_each_entry_safe(entry, next, head, list)
5733 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5735 struct device_domain_info *info;
5736 struct context_entry *context;
5737 struct dmar_domain *domain;
5738 unsigned long flags;
5742 domain = find_domain(dev);
5746 spin_lock_irqsave(&device_domain_lock, flags);
5747 spin_lock(&iommu->lock);
5750 info = dev->archdata.iommu;
5751 if (!info || !info->pasid_supported)
5754 context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5755 if (WARN_ON(!context))
5758 ctx_lo = context[0].lo;
5760 if (!(ctx_lo & CONTEXT_PASIDE)) {
5761 ctx_lo |= CONTEXT_PASIDE;
5762 context[0].lo = ctx_lo;
5764 iommu->flush.flush_context(iommu,
5765 domain->iommu_did[iommu->seq_id],
5766 PCI_DEVID(info->bus, info->devfn),
5767 DMA_CCMD_MASK_NOBIT,
5768 DMA_CCMD_DEVICE_INVL);
5771 /* Enable PASID support in the device, if it wasn't already */
5772 if (!info->pasid_enabled)
5773 iommu_enable_dev_iotlb(info);
5778 spin_unlock(&iommu->lock);
5779 spin_unlock_irqrestore(&device_domain_lock, flags);
5784 static void intel_iommu_apply_resv_region(struct device *dev,
5785 struct iommu_domain *domain,
5786 struct iommu_resv_region *region)
5788 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5789 unsigned long start, end;
5791 start = IOVA_PFN(region->start);
5792 end = IOVA_PFN(region->start + region->length - 1);
5794 WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
5797 #ifdef CONFIG_INTEL_IOMMU_SVM
5798 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5800 struct intel_iommu *iommu;
5803 if (iommu_dummy(dev)) {
5805 "No IOMMU translation for device; cannot enable SVM\n");
5809 iommu = device_to_iommu(dev, &bus, &devfn);
5811 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5817 #endif /* CONFIG_INTEL_IOMMU_SVM */
5819 static int intel_iommu_enable_auxd(struct device *dev)
5821 struct device_domain_info *info;
5822 struct intel_iommu *iommu;
5823 unsigned long flags;
5827 iommu = device_to_iommu(dev, &bus, &devfn);
5828 if (!iommu || dmar_disabled)
5831 if (!sm_supported(iommu) || !pasid_supported(iommu))
5834 ret = intel_iommu_enable_pasid(iommu, dev);
5838 spin_lock_irqsave(&device_domain_lock, flags);
5839 info = dev->archdata.iommu;
5840 info->auxd_enabled = 1;
5841 spin_unlock_irqrestore(&device_domain_lock, flags);
5846 static int intel_iommu_disable_auxd(struct device *dev)
5848 struct device_domain_info *info;
5849 unsigned long flags;
5851 spin_lock_irqsave(&device_domain_lock, flags);
5852 info = dev->archdata.iommu;
5853 if (!WARN_ON(!info))
5854 info->auxd_enabled = 0;
5855 spin_unlock_irqrestore(&device_domain_lock, flags);
5861 * A PCI express designated vendor specific extended capability is defined
5862 * in the section 3.7 of Intel scalable I/O virtualization technical spec
5863 * for system software and tools to detect endpoint devices supporting the
5864 * Intel scalable IO virtualization without host driver dependency.
5866 * Returns the address of the matching extended capability structure within
5867 * the device's PCI configuration space or 0 if the device does not support
5870 static int siov_find_pci_dvsec(struct pci_dev *pdev)
5875 pos = pci_find_next_ext_capability(pdev, 0, 0x23);
5877 pci_read_config_word(pdev, pos + 4, &vendor);
5878 pci_read_config_word(pdev, pos + 8, &id);
5879 if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
5882 pos = pci_find_next_ext_capability(pdev, pos, 0x23);
5889 intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
5891 if (feat == IOMMU_DEV_FEAT_AUX) {
5894 if (!dev_is_pci(dev) || dmar_disabled ||
5895 !scalable_mode_support() || !iommu_pasid_support())
5898 ret = pci_pasid_features(to_pci_dev(dev));
5902 return !!siov_find_pci_dvsec(to_pci_dev(dev));
5909 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
5911 if (feat == IOMMU_DEV_FEAT_AUX)
5912 return intel_iommu_enable_auxd(dev);
5918 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
5920 if (feat == IOMMU_DEV_FEAT_AUX)
5921 return intel_iommu_disable_auxd(dev);
5927 intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
5929 struct device_domain_info *info = dev->archdata.iommu;
5931 if (feat == IOMMU_DEV_FEAT_AUX)
5932 return scalable_mode_support() && info && info->auxd_enabled;
5938 intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
5940 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5942 return dmar_domain->default_pasid > 0 ?
5943 dmar_domain->default_pasid : -EINVAL;
5946 static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
5949 return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
5952 const struct iommu_ops intel_iommu_ops = {
5953 .capable = intel_iommu_capable,
5954 .domain_alloc = intel_iommu_domain_alloc,
5955 .domain_free = intel_iommu_domain_free,
5956 .attach_dev = intel_iommu_attach_device,
5957 .detach_dev = intel_iommu_detach_device,
5958 .aux_attach_dev = intel_iommu_aux_attach_device,
5959 .aux_detach_dev = intel_iommu_aux_detach_device,
5960 .aux_get_pasid = intel_iommu_aux_get_pasid,
5961 .map = intel_iommu_map,
5962 .unmap = intel_iommu_unmap,
5963 .iova_to_phys = intel_iommu_iova_to_phys,
5964 .add_device = intel_iommu_add_device,
5965 .remove_device = intel_iommu_remove_device,
5966 .get_resv_regions = intel_iommu_get_resv_regions,
5967 .put_resv_regions = intel_iommu_put_resv_regions,
5968 .apply_resv_region = intel_iommu_apply_resv_region,
5969 .device_group = pci_device_group,
5970 .dev_has_feat = intel_iommu_dev_has_feat,
5971 .dev_feat_enabled = intel_iommu_dev_feat_enabled,
5972 .dev_enable_feat = intel_iommu_dev_enable_feat,
5973 .dev_disable_feat = intel_iommu_dev_disable_feat,
5974 .is_attach_deferred = intel_iommu_is_attach_deferred,
5975 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
5978 static void quirk_iommu_igfx(struct pci_dev *dev)
5980 pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
5984 /* G4x/GM45 integrated gfx dmar support is totally busted. */
5985 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
5986 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
5987 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
5988 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
5989 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
5990 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
5991 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);
5993 /* Broadwell igfx malfunctions with dmar */
5994 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
5995 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
5996 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
5997 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
5998 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
5999 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
6000 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
6001 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
6002 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
6003 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
6004 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
6005 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
6006 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
6007 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
6008 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
6009 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
6010 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
6011 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
6012 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
6013 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
6014 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
6015 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
6016 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
6017 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
6019 static void quirk_iommu_rwbf(struct pci_dev *dev)
6022 * Mobile 4 Series Chipset neglects to set RWBF capability,
6023 * but needs it. Same seems to hold for the desktop versions.
6025 pci_info(dev, "Forcing write-buffer flush capability\n");
6029 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
6030 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
6031 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
6032 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
6033 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
6034 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
6035 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
6038 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
6039 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
6040 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
6041 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
6042 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
6043 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
6044 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
6045 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
6047 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
6051 if (pci_read_config_word(dev, GGC, &ggc))
6054 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
6055 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
6057 } else if (dmar_map_gfx) {
6058 /* we have to ensure the gfx device is idle before we flush */
6059 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6060 intel_iommu_strict = 1;
6063 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
6064 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
6065 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
6066 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
6068 /* On Tylersburg chipsets, some BIOSes have been known to enable the
6069 ISOCH DMAR unit for the Azalia sound device, but not give it any
6070 TLB entries, which causes it to deadlock. Check for that. We do
6071 this in a function called from init_dmars(), instead of in a PCI
6072 quirk, because we don't want to print the obnoxious "BIOS broken"
6073 message if VT-d is actually disabled.
6075 static void __init check_tylersburg_isoch(void)
6077 struct pci_dev *pdev;
6078 uint32_t vtisochctrl;
6080 /* If there's no Azalia in the system anyway, forget it. */
6081 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
6086 /* System Management Registers. Might be hidden, in which case
6087 we can't do the sanity check. But that's OK, because the
6088 known-broken BIOSes _don't_ actually hide it, so far. */
6089 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
6093 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
6100 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
6101 if (vtisochctrl & 1)
6104 /* Drop all bits other than the number of TLB entries */
6105 vtisochctrl &= 0x1c;
6107 /* If we have the recommended number of TLB entries (16), fine. */
6108 if (vtisochctrl == 0x10)
6111 /* Zero TLB entries? You get to ride the short bus to school. */
6113 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
6114 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
6115 dmi_get_system_info(DMI_BIOS_VENDOR),
6116 dmi_get_system_info(DMI_BIOS_VERSION),
6117 dmi_get_system_info(DMI_PRODUCT_VERSION));
6118 iommu_identity_mapping |= IDENTMAP_AZALIA;
6122 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",