1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
4 /* Copyright (c) 2008-2019, IBM Corporation */
6 #include <linux/errno.h>
7 #include <linux/types.h>
8 #include <linux/uaccess.h>
9 #include <linux/vmalloc.h>
10 #include <linux/xarray.h>
12 #include <rdma/iw_cm.h>
13 #include <rdma/ib_verbs.h>
14 #include <rdma/ib_user_verbs.h>
15 #include <rdma/uverbs_ioctl.h>
18 #include "siw_verbs.h"
21 static int ib_qp_state_to_siw_qp_state[IB_QPS_ERR + 1] = {
22 [IB_QPS_RESET] = SIW_QP_STATE_IDLE,
23 [IB_QPS_INIT] = SIW_QP_STATE_IDLE,
24 [IB_QPS_RTR] = SIW_QP_STATE_RTR,
25 [IB_QPS_RTS] = SIW_QP_STATE_RTS,
26 [IB_QPS_SQD] = SIW_QP_STATE_CLOSING,
27 [IB_QPS_SQE] = SIW_QP_STATE_TERMINATE,
28 [IB_QPS_ERR] = SIW_QP_STATE_ERROR
31 static char ib_qp_state_to_string[IB_QPS_ERR + 1][sizeof("RESET")] = {
32 [IB_QPS_RESET] = "RESET", [IB_QPS_INIT] = "INIT", [IB_QPS_RTR] = "RTR",
33 [IB_QPS_RTS] = "RTS", [IB_QPS_SQD] = "SQD", [IB_QPS_SQE] = "SQE",
37 static u32 siw_create_uobj(struct siw_ucontext *uctx, void *vaddr, u32 size)
39 struct siw_uobj *uobj;
40 struct xa_limit limit = XA_LIMIT(0, SIW_UOBJ_MAX_KEY);
43 uobj = kzalloc(sizeof(*uobj), GFP_KERNEL);
45 return SIW_INVAL_UOBJ_KEY;
47 if (xa_alloc_cyclic(&uctx->xa, &key, uobj, limit, &uctx->uobj_nextkey,
50 return SIW_INVAL_UOBJ_KEY;
52 uobj->size = PAGE_ALIGN(size);
58 static struct siw_uobj *siw_get_uobj(struct siw_ucontext *uctx,
59 unsigned long off, u32 size)
61 struct siw_uobj *uobj = xa_load(&uctx->xa, off);
63 if (uobj && uobj->size == size)
69 int siw_mmap(struct ib_ucontext *ctx, struct vm_area_struct *vma)
71 struct siw_ucontext *uctx = to_siw_ctx(ctx);
72 struct siw_uobj *uobj;
73 unsigned long off = vma->vm_pgoff;
74 int size = vma->vm_end - vma->vm_start;
78 * Must be page aligned
80 if (vma->vm_start & (PAGE_SIZE - 1)) {
81 pr_warn("siw: mmap not page aligned\n");
84 uobj = siw_get_uobj(uctx, off, size);
86 siw_dbg(&uctx->sdev->base_dev, "mmap lookup failed: %lu, %u\n",
90 rv = remap_vmalloc_range(vma, uobj->addr, 0);
92 pr_warn("remap_vmalloc_range failed: %lu, %u\n", off, size);
97 int siw_alloc_ucontext(struct ib_ucontext *base_ctx, struct ib_udata *udata)
99 struct siw_device *sdev = to_siw_dev(base_ctx->device);
100 struct siw_ucontext *ctx = to_siw_ctx(base_ctx);
101 struct siw_uresp_alloc_ctx uresp = {};
104 if (atomic_inc_return(&sdev->num_ctx) > SIW_MAX_CONTEXT) {
108 xa_init_flags(&ctx->xa, XA_FLAGS_ALLOC);
109 ctx->uobj_nextkey = 0;
112 uresp.dev_id = sdev->vendor_part_id;
114 if (udata->outlen < sizeof(uresp)) {
118 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
122 siw_dbg(base_ctx->device, "success. now %d context(s)\n",
123 atomic_read(&sdev->num_ctx));
128 atomic_dec(&sdev->num_ctx);
129 siw_dbg(base_ctx->device, "failure %d. now %d context(s)\n", rv,
130 atomic_read(&sdev->num_ctx));
135 void siw_dealloc_ucontext(struct ib_ucontext *base_ctx)
137 struct siw_ucontext *uctx = to_siw_ctx(base_ctx);
142 * Make sure all user mmap objects are gone. Since QP, CQ
143 * and SRQ destroy routines destroy related objects, nothing
144 * should be found here.
146 xa_for_each(&uctx->xa, index, entry) {
147 kfree(xa_erase(&uctx->xa, index));
148 pr_warn("siw: dropping orphaned uobj at %lu\n", index);
150 xa_destroy(&uctx->xa);
151 atomic_dec(&uctx->sdev->num_ctx);
154 int siw_query_device(struct ib_device *base_dev, struct ib_device_attr *attr,
155 struct ib_udata *udata)
157 struct siw_device *sdev = to_siw_dev(base_dev);
159 if (udata->inlen || udata->outlen)
162 memset(attr, 0, sizeof(*attr));
164 /* Revisit atomic caps if RFC 7306 gets supported */
165 attr->atomic_cap = 0;
166 attr->device_cap_flags =
167 IB_DEVICE_MEM_MGT_EXTENSIONS | IB_DEVICE_ALLOW_USER_UNREG;
168 attr->max_cq = sdev->attrs.max_cq;
169 attr->max_cqe = sdev->attrs.max_cqe;
170 attr->max_fast_reg_page_list_len = SIW_MAX_SGE_PBL;
171 attr->max_fmr = sdev->attrs.max_fmr;
172 attr->max_mr = sdev->attrs.max_mr;
173 attr->max_mw = sdev->attrs.max_mw;
174 attr->max_mr_size = ~0ull;
175 attr->max_pd = sdev->attrs.max_pd;
176 attr->max_qp = sdev->attrs.max_qp;
177 attr->max_qp_init_rd_atom = sdev->attrs.max_ird;
178 attr->max_qp_rd_atom = sdev->attrs.max_ord;
179 attr->max_qp_wr = sdev->attrs.max_qp_wr;
180 attr->max_recv_sge = sdev->attrs.max_sge;
181 attr->max_res_rd_atom = sdev->attrs.max_qp * sdev->attrs.max_ird;
182 attr->max_send_sge = sdev->attrs.max_sge;
183 attr->max_sge_rd = sdev->attrs.max_sge_rd;
184 attr->max_srq = sdev->attrs.max_srq;
185 attr->max_srq_sge = sdev->attrs.max_srq_sge;
186 attr->max_srq_wr = sdev->attrs.max_srq_wr;
187 attr->page_size_cap = PAGE_SIZE;
188 attr->vendor_id = SIW_VENDOR_ID;
189 attr->vendor_part_id = sdev->vendor_part_id;
191 memcpy(&attr->sys_image_guid, sdev->netdev->dev_addr, 6);
196 int siw_query_port(struct ib_device *base_dev, u8 port,
197 struct ib_port_attr *attr)
199 struct siw_device *sdev = to_siw_dev(base_dev);
201 memset(attr, 0, sizeof(*attr));
203 attr->active_mtu = attr->max_mtu;
204 attr->active_speed = 2;
205 attr->active_width = 2;
206 attr->gid_tbl_len = 1;
207 attr->max_msg_sz = -1;
208 attr->max_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
209 attr->phys_state = sdev->state == IB_PORT_ACTIVE ?
210 IB_PORT_PHYS_STATE_LINK_UP : IB_PORT_PHYS_STATE_DISABLED;
211 attr->pkey_tbl_len = 1;
212 attr->port_cap_flags = IB_PORT_CM_SUP | IB_PORT_DEVICE_MGMT_SUP;
213 attr->state = sdev->state;
218 * attr->bad_pkey_cntr = 0;
219 * attr->qkey_viol_cntr = 0;
222 * attr->max_vl_num = 0;
224 * attr->subnet_timeout = 0;
225 * attr->init_type_repy = 0;
230 int siw_get_port_immutable(struct ib_device *base_dev, u8 port,
231 struct ib_port_immutable *port_immutable)
233 struct ib_port_attr attr;
234 int rv = siw_query_port(base_dev, port, &attr);
239 port_immutable->pkey_tbl_len = attr.pkey_tbl_len;
240 port_immutable->gid_tbl_len = attr.gid_tbl_len;
241 port_immutable->core_cap_flags = RDMA_CORE_PORT_IWARP;
246 int siw_query_pkey(struct ib_device *base_dev, u8 port, u16 idx, u16 *pkey)
248 /* Report the default pkey */
253 int siw_query_gid(struct ib_device *base_dev, u8 port, int idx,
256 struct siw_device *sdev = to_siw_dev(base_dev);
258 /* subnet_prefix == interface_id == 0; */
259 memset(gid, 0, sizeof(*gid));
260 memcpy(&gid->raw[0], sdev->netdev->dev_addr, 6);
265 int siw_alloc_pd(struct ib_pd *pd, struct ib_udata *udata)
267 struct siw_device *sdev = to_siw_dev(pd->device);
269 if (atomic_inc_return(&sdev->num_pd) > SIW_MAX_PD) {
270 atomic_dec(&sdev->num_pd);
273 siw_dbg_pd(pd, "now %d PD's(s)\n", atomic_read(&sdev->num_pd));
278 void siw_dealloc_pd(struct ib_pd *pd, struct ib_udata *udata)
280 struct siw_device *sdev = to_siw_dev(pd->device);
282 siw_dbg_pd(pd, "free PD\n");
283 atomic_dec(&sdev->num_pd);
286 void siw_qp_get_ref(struct ib_qp *base_qp)
288 siw_qp_get(to_siw_qp(base_qp));
291 void siw_qp_put_ref(struct ib_qp *base_qp)
293 siw_qp_put(to_siw_qp(base_qp));
299 * Create QP of requested size on given device.
301 * @pd: Protection Domain
302 * @attrs: Initial QP attributes.
303 * @udata: used to provide QP ID, SQ and RQ size back to user.
306 struct ib_qp *siw_create_qp(struct ib_pd *pd,
307 struct ib_qp_init_attr *attrs,
308 struct ib_udata *udata)
310 struct siw_qp *qp = NULL;
311 struct siw_base_qp *siw_base_qp = NULL;
312 struct ib_device *base_dev = pd->device;
313 struct siw_device *sdev = to_siw_dev(base_dev);
314 struct siw_ucontext *uctx =
315 rdma_udata_to_drv_context(udata, struct siw_ucontext,
317 struct siw_cq *scq = NULL, *rcq = NULL;
319 int num_sqe, num_rqe, rv = 0;
321 siw_dbg(base_dev, "create new QP\n");
323 if (atomic_inc_return(&sdev->num_qp) > SIW_MAX_QP) {
324 siw_dbg(base_dev, "too many QP's\n");
328 if (attrs->qp_type != IB_QPT_RC) {
329 siw_dbg(base_dev, "only RC QP's supported\n");
333 if ((attrs->cap.max_send_wr > SIW_MAX_QP_WR) ||
334 (attrs->cap.max_recv_wr > SIW_MAX_QP_WR) ||
335 (attrs->cap.max_send_sge > SIW_MAX_SGE) ||
336 (attrs->cap.max_recv_sge > SIW_MAX_SGE)) {
337 siw_dbg(base_dev, "QP size error\n");
341 if (attrs->cap.max_inline_data > SIW_MAX_INLINE) {
342 siw_dbg(base_dev, "max inline send: %d > %d\n",
343 attrs->cap.max_inline_data, (int)SIW_MAX_INLINE);
348 * NOTE: we allow for zero element SQ and RQ WQE's SGL's
349 * but not for a QP unable to hold any WQE (SQ + RQ)
351 if (attrs->cap.max_send_wr + attrs->cap.max_recv_wr == 0) {
352 siw_dbg(base_dev, "QP must have send or receive queue\n");
356 scq = to_siw_cq(attrs->send_cq);
357 rcq = to_siw_cq(attrs->recv_cq);
359 if (!scq || (!rcq && !attrs->srq)) {
360 siw_dbg(base_dev, "send CQ or receive CQ invalid\n");
364 siw_base_qp = kzalloc(sizeof(*siw_base_qp), GFP_KERNEL);
369 qp = kzalloc(sizeof(*qp), GFP_KERNEL);
374 siw_base_qp->qp = qp;
375 qp->ib_qp = &siw_base_qp->base_qp;
377 init_rwsem(&qp->state_lock);
378 spin_lock_init(&qp->sq_lock);
379 spin_lock_init(&qp->rq_lock);
380 spin_lock_init(&qp->orq_lock);
382 qp->kernel_verbs = !udata;
383 qp->xa_sq_index = SIW_INVAL_UOBJ_KEY;
384 qp->xa_rq_index = SIW_INVAL_UOBJ_KEY;
386 rv = siw_qp_add(sdev, qp);
390 /* All queue indices are derived from modulo operations
391 * on a free running 'get' (consumer) and 'put' (producer)
392 * unsigned counter. Having queue sizes at power of two
393 * avoids handling counter wrap around.
395 num_sqe = roundup_pow_of_two(attrs->cap.max_send_wr);
396 num_rqe = roundup_pow_of_two(attrs->cap.max_recv_wr);
398 if (qp->kernel_verbs)
399 qp->sendq = vzalloc(num_sqe * sizeof(struct siw_sqe));
401 qp->sendq = vmalloc_user(num_sqe * sizeof(struct siw_sqe));
403 if (qp->sendq == NULL) {
404 siw_dbg(base_dev, "SQ size %d alloc failed\n", num_sqe);
408 if (attrs->sq_sig_type != IB_SIGNAL_REQ_WR) {
409 if (attrs->sq_sig_type == IB_SIGNAL_ALL_WR)
410 qp->attrs.flags |= SIW_SIGNAL_ALL_WR;
423 * Verbs 6.3.7: ignore RQ size, if SRQ present
424 * Verbs 6.3.5: do not check PD of SRQ against PD of QP
426 qp->srq = to_siw_srq(attrs->srq);
427 qp->attrs.rq_size = 0;
428 siw_dbg(base_dev, "QP [%u]: SRQ attached\n", qp->qp_num);
429 } else if (num_rqe) {
430 if (qp->kernel_verbs)
431 qp->recvq = vzalloc(num_rqe * sizeof(struct siw_rqe));
434 vmalloc_user(num_rqe * sizeof(struct siw_rqe));
436 if (qp->recvq == NULL) {
437 siw_dbg(base_dev, "RQ size %d alloc failed\n", num_rqe);
441 qp->attrs.rq_size = num_rqe;
443 qp->attrs.sq_size = num_sqe;
444 qp->attrs.sq_max_sges = attrs->cap.max_send_sge;
445 qp->attrs.rq_max_sges = attrs->cap.max_recv_sge;
447 /* Make those two tunables fixed for now. */
448 qp->tx_ctx.gso_seg_limit = 1;
449 qp->tx_ctx.zcopy_tx = zcopy_tx;
451 qp->attrs.state = SIW_QP_STATE_IDLE;
454 struct siw_uresp_create_qp uresp = {};
456 uresp.num_sqe = num_sqe;
457 uresp.num_rqe = num_rqe;
458 uresp.qp_id = qp_id(qp);
462 siw_create_uobj(uctx, qp->sendq,
463 num_sqe * sizeof(struct siw_sqe));
467 siw_create_uobj(uctx, qp->recvq,
468 num_rqe * sizeof(struct siw_rqe));
470 if (qp->xa_sq_index == SIW_INVAL_UOBJ_KEY ||
471 qp->xa_rq_index == SIW_INVAL_UOBJ_KEY) {
475 uresp.sq_key = qp->xa_sq_index << PAGE_SHIFT;
476 uresp.rq_key = qp->xa_rq_index << PAGE_SHIFT;
478 if (udata->outlen < sizeof(uresp)) {
482 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
486 qp->tx_cpu = siw_get_tx_cpu(sdev);
487 if (qp->tx_cpu < 0) {
491 INIT_LIST_HEAD(&qp->devq);
492 spin_lock_irqsave(&sdev->lock, flags);
493 list_add_tail(&qp->devq, &sdev->qp_list);
494 spin_unlock_irqrestore(&sdev->lock, flags);
499 xa_erase(&sdev->qp_xa, qp_id(qp));
504 if (qp->xa_sq_index != SIW_INVAL_UOBJ_KEY)
505 kfree(xa_erase(&uctx->xa, qp->xa_sq_index));
506 if (qp->xa_rq_index != SIW_INVAL_UOBJ_KEY)
507 kfree(xa_erase(&uctx->xa, qp->xa_rq_index));
513 atomic_dec(&sdev->num_qp);
519 * Minimum siw_query_qp() verb interface.
521 * @qp_attr_mask is not used but all available information is provided
523 int siw_query_qp(struct ib_qp *base_qp, struct ib_qp_attr *qp_attr,
524 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr)
527 struct siw_device *sdev;
529 if (base_qp && qp_attr && qp_init_attr) {
530 qp = to_siw_qp(base_qp);
531 sdev = to_siw_dev(base_qp->device);
535 qp_attr->cap.max_inline_data = SIW_MAX_INLINE;
536 qp_attr->cap.max_send_wr = qp->attrs.sq_size;
537 qp_attr->cap.max_send_sge = qp->attrs.sq_max_sges;
538 qp_attr->cap.max_recv_wr = qp->attrs.rq_size;
539 qp_attr->cap.max_recv_sge = qp->attrs.rq_max_sges;
540 qp_attr->path_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
541 qp_attr->max_rd_atomic = qp->attrs.irq_size;
542 qp_attr->max_dest_rd_atomic = qp->attrs.orq_size;
544 qp_attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE |
545 IB_ACCESS_REMOTE_WRITE |
546 IB_ACCESS_REMOTE_READ;
548 qp_init_attr->qp_type = base_qp->qp_type;
549 qp_init_attr->send_cq = base_qp->send_cq;
550 qp_init_attr->recv_cq = base_qp->recv_cq;
551 qp_init_attr->srq = base_qp->srq;
553 qp_init_attr->cap = qp_attr->cap;
558 int siw_verbs_modify_qp(struct ib_qp *base_qp, struct ib_qp_attr *attr,
559 int attr_mask, struct ib_udata *udata)
561 struct siw_qp_attrs new_attrs;
562 enum siw_qp_attr_mask siw_attr_mask = 0;
563 struct siw_qp *qp = to_siw_qp(base_qp);
569 memset(&new_attrs, 0, sizeof(new_attrs));
571 if (attr_mask & IB_QP_ACCESS_FLAGS) {
572 siw_attr_mask = SIW_QP_ATTR_ACCESS_FLAGS;
574 if (attr->qp_access_flags & IB_ACCESS_REMOTE_READ)
575 new_attrs.flags |= SIW_RDMA_READ_ENABLED;
576 if (attr->qp_access_flags & IB_ACCESS_REMOTE_WRITE)
577 new_attrs.flags |= SIW_RDMA_WRITE_ENABLED;
578 if (attr->qp_access_flags & IB_ACCESS_MW_BIND)
579 new_attrs.flags |= SIW_RDMA_BIND_ENABLED;
581 if (attr_mask & IB_QP_STATE) {
582 siw_dbg_qp(qp, "desired IB QP state: %s\n",
583 ib_qp_state_to_string[attr->qp_state]);
585 new_attrs.state = ib_qp_state_to_siw_qp_state[attr->qp_state];
587 if (new_attrs.state > SIW_QP_STATE_RTS)
588 qp->tx_ctx.tx_suspend = 1;
590 siw_attr_mask |= SIW_QP_ATTR_STATE;
595 down_write(&qp->state_lock);
597 rv = siw_qp_modify(qp, &new_attrs, siw_attr_mask);
599 up_write(&qp->state_lock);
604 int siw_destroy_qp(struct ib_qp *base_qp, struct ib_udata *udata)
606 struct siw_qp *qp = to_siw_qp(base_qp);
607 struct siw_ucontext *uctx =
608 rdma_udata_to_drv_context(udata, struct siw_ucontext,
610 struct siw_qp_attrs qp_attrs;
612 siw_dbg_qp(qp, "state %d\n", qp->attrs.state);
615 * Mark QP as in process of destruction to prevent from
616 * any async callbacks to RDMA core
618 qp->attrs.flags |= SIW_QP_IN_DESTROY;
619 qp->rx_stream.rx_suspend = 1;
621 if (uctx && qp->xa_sq_index != SIW_INVAL_UOBJ_KEY)
622 kfree(xa_erase(&uctx->xa, qp->xa_sq_index));
623 if (uctx && qp->xa_rq_index != SIW_INVAL_UOBJ_KEY)
624 kfree(xa_erase(&uctx->xa, qp->xa_rq_index));
626 down_write(&qp->state_lock);
628 qp_attrs.state = SIW_QP_STATE_ERROR;
629 siw_qp_modify(qp, &qp_attrs, SIW_QP_ATTR_STATE);
632 siw_cep_put(qp->cep);
635 up_write(&qp->state_lock);
637 kfree(qp->tx_ctx.mpa_crc_hd);
638 kfree(qp->rx_stream.mpa_crc_hd);
640 qp->scq = qp->rcq = NULL;
648 * siw_copy_inline_sgl()
650 * Prepare sgl of inlined data for sending. For userland callers
651 * function checks if given buffer addresses and len's are within
652 * process context bounds.
653 * Data from all provided sge's are copied together into the wqe,
654 * referenced by a single sge.
656 static int siw_copy_inline_sgl(const struct ib_send_wr *core_wr,
659 struct ib_sge *core_sge = core_wr->sg_list;
660 void *kbuf = &sqe->sge[1];
661 int num_sge = core_wr->num_sge, bytes = 0;
663 sqe->sge[0].laddr = (uintptr_t)kbuf;
664 sqe->sge[0].lkey = 0;
667 if (!core_sge->length) {
671 bytes += core_sge->length;
672 if (bytes > SIW_MAX_INLINE) {
676 memcpy(kbuf, (void *)(uintptr_t)core_sge->addr,
679 kbuf += core_sge->length;
682 sqe->sge[0].length = bytes > 0 ? bytes : 0;
683 sqe->num_sge = bytes > 0 ? 1 : 0;
691 * Post a list of S-WR's to a SQ.
693 * @base_qp: Base QP contained in siw QP
694 * @wr: Null terminated list of user WR's
695 * @bad_wr: Points to failing WR in case of synchronous failure.
697 int siw_post_send(struct ib_qp *base_qp, const struct ib_send_wr *wr,
698 const struct ib_send_wr **bad_wr)
700 struct siw_qp *qp = to_siw_qp(base_qp);
701 struct siw_wqe *wqe = tx_wqe(qp);
707 * Try to acquire QP state lock. Must be non-blocking
708 * to accommodate kernel clients needs.
710 if (!down_read_trylock(&qp->state_lock)) {
712 siw_dbg_qp(qp, "QP locked, state %d\n", qp->attrs.state);
715 if (unlikely(qp->attrs.state != SIW_QP_STATE_RTS)) {
716 up_read(&qp->state_lock);
718 siw_dbg_qp(qp, "QP out of state %d\n", qp->attrs.state);
721 if (wr && !qp->kernel_verbs) {
722 siw_dbg_qp(qp, "wr must be empty for user mapped sq\n");
723 up_read(&qp->state_lock);
727 spin_lock_irqsave(&qp->sq_lock, flags);
730 u32 idx = qp->sq_put % qp->attrs.sq_size;
731 struct siw_sqe *sqe = &qp->sendq[idx];
734 siw_dbg_qp(qp, "sq full\n");
738 if (wr->num_sge > qp->attrs.sq_max_sges) {
739 siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
745 if ((wr->send_flags & IB_SEND_SIGNALED) ||
746 (qp->attrs.flags & SIW_SIGNAL_ALL_WR))
747 sqe->flags |= SIW_WQE_SIGNALLED;
749 if (wr->send_flags & IB_SEND_FENCE)
750 sqe->flags |= SIW_WQE_READ_FENCE;
752 switch (wr->opcode) {
754 case IB_WR_SEND_WITH_INV:
755 if (wr->send_flags & IB_SEND_SOLICITED)
756 sqe->flags |= SIW_WQE_SOLICITED;
758 if (!(wr->send_flags & IB_SEND_INLINE)) {
759 siw_copy_sgl(wr->sg_list, sqe->sge,
761 sqe->num_sge = wr->num_sge;
763 rv = siw_copy_inline_sgl(wr, sqe);
768 sqe->flags |= SIW_WQE_INLINE;
771 if (wr->opcode == IB_WR_SEND)
772 sqe->opcode = SIW_OP_SEND;
774 sqe->opcode = SIW_OP_SEND_REMOTE_INV;
775 sqe->rkey = wr->ex.invalidate_rkey;
779 case IB_WR_RDMA_READ_WITH_INV:
780 case IB_WR_RDMA_READ:
782 * iWarp restricts RREAD sink to SGL containing
783 * 1 SGE only. we could relax to SGL with multiple
784 * elements referring the SAME ltag or even sending
785 * a private per-rreq tag referring to a checked
786 * local sgl with MULTIPLE ltag's.
788 if (unlikely(wr->num_sge != 1)) {
792 siw_copy_sgl(wr->sg_list, &sqe->sge[0], 1);
794 * NOTE: zero length RREAD is allowed!
796 sqe->raddr = rdma_wr(wr)->remote_addr;
797 sqe->rkey = rdma_wr(wr)->rkey;
800 if (wr->opcode == IB_WR_RDMA_READ)
801 sqe->opcode = SIW_OP_READ;
803 sqe->opcode = SIW_OP_READ_LOCAL_INV;
806 case IB_WR_RDMA_WRITE:
807 if (!(wr->send_flags & IB_SEND_INLINE)) {
808 siw_copy_sgl(wr->sg_list, &sqe->sge[0],
810 sqe->num_sge = wr->num_sge;
812 rv = siw_copy_inline_sgl(wr, sqe);
813 if (unlikely(rv < 0)) {
817 sqe->flags |= SIW_WQE_INLINE;
820 sqe->raddr = rdma_wr(wr)->remote_addr;
821 sqe->rkey = rdma_wr(wr)->rkey;
822 sqe->opcode = SIW_OP_WRITE;
826 sqe->base_mr = (uintptr_t)reg_wr(wr)->mr;
827 sqe->rkey = reg_wr(wr)->key;
828 sqe->access = reg_wr(wr)->access & IWARP_ACCESS_MASK;
829 sqe->opcode = SIW_OP_REG_MR;
832 case IB_WR_LOCAL_INV:
833 sqe->rkey = wr->ex.invalidate_rkey;
834 sqe->opcode = SIW_OP_INVAL_STAG;
838 siw_dbg_qp(qp, "ib wr type %d unsupported\n",
843 siw_dbg_qp(qp, "opcode %d, flags 0x%x, wr_id 0x%pK\n",
844 sqe->opcode, sqe->flags,
845 (void *)(uintptr_t)sqe->id);
847 if (unlikely(rv < 0))
850 /* make SQE only valid after completely written */
852 sqe->flags |= SIW_WQE_VALID;
859 * Send directly if SQ processing is not in progress.
860 * Eventual immediate errors (rv < 0) do not affect the involved
861 * RI resources (Verbs, 8.3.1) and thus do not prevent from SQ
862 * processing, if new work is already pending. But rv must be passed
865 if (wqe->wr_status != SIW_WR_IDLE) {
866 spin_unlock_irqrestore(&qp->sq_lock, flags);
867 goto skip_direct_sending;
869 rv = siw_activate_tx(qp);
870 spin_unlock_irqrestore(&qp->sq_lock, flags);
873 goto skip_direct_sending;
875 if (qp->kernel_verbs) {
876 rv = siw_sq_start(qp);
878 qp->tx_ctx.in_syscall = 1;
880 if (siw_qp_sq_process(qp) != 0 && !(qp->tx_ctx.tx_suspend))
881 siw_qp_cm_drop(qp, 0);
883 qp->tx_ctx.in_syscall = 0;
887 up_read(&qp->state_lock);
894 siw_dbg_qp(qp, "error %d\n", rv);
903 * Post a list of R-WR's to a RQ.
905 * @base_qp: Base QP contained in siw QP
906 * @wr: Null terminated list of user WR's
907 * @bad_wr: Points to failing WR in case of synchronous failure.
909 int siw_post_receive(struct ib_qp *base_qp, const struct ib_recv_wr *wr,
910 const struct ib_recv_wr **bad_wr)
912 struct siw_qp *qp = to_siw_qp(base_qp);
918 return -EOPNOTSUPP; /* what else from errno.h? */
921 * Try to acquire QP state lock. Must be non-blocking
922 * to accommodate kernel clients needs.
924 if (!down_read_trylock(&qp->state_lock)) {
928 if (!qp->kernel_verbs) {
929 siw_dbg_qp(qp, "no kernel post_recv for user mapped sq\n");
930 up_read(&qp->state_lock);
934 if (qp->attrs.state > SIW_QP_STATE_RTS) {
935 up_read(&qp->state_lock);
940 * Serialize potentially multiple producers.
941 * Not needed for single threaded consumer side.
943 spin_lock_irqsave(&qp->rq_lock, flags);
946 u32 idx = qp->rq_put % qp->attrs.rq_size;
947 struct siw_rqe *rqe = &qp->recvq[idx];
950 siw_dbg_qp(qp, "RQ full\n");
954 if (wr->num_sge > qp->attrs.rq_max_sges) {
955 siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
960 rqe->num_sge = wr->num_sge;
961 siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
963 /* make sure RQE is completely written before valid */
966 rqe->flags = SIW_WQE_VALID;
971 spin_unlock_irqrestore(&qp->rq_lock, flags);
973 up_read(&qp->state_lock);
976 siw_dbg_qp(qp, "error %d\n", rv);
979 return rv > 0 ? 0 : rv;
982 void siw_destroy_cq(struct ib_cq *base_cq, struct ib_udata *udata)
984 struct siw_cq *cq = to_siw_cq(base_cq);
985 struct siw_device *sdev = to_siw_dev(base_cq->device);
986 struct siw_ucontext *ctx =
987 rdma_udata_to_drv_context(udata, struct siw_ucontext,
990 siw_dbg_cq(cq, "free CQ resources\n");
994 if (ctx && cq->xa_cq_index != SIW_INVAL_UOBJ_KEY)
995 kfree(xa_erase(&ctx->xa, cq->xa_cq_index));
997 atomic_dec(&sdev->num_cq);
1005 * Populate CQ of requested size
1007 * @base_cq: CQ as allocated by RDMA midlayer
1008 * @attr: Initial CQ attributes
1009 * @udata: relates to user context
1012 int siw_create_cq(struct ib_cq *base_cq, const struct ib_cq_init_attr *attr,
1013 struct ib_udata *udata)
1015 struct siw_device *sdev = to_siw_dev(base_cq->device);
1016 struct siw_cq *cq = to_siw_cq(base_cq);
1017 int rv, size = attr->cqe;
1019 if (atomic_inc_return(&sdev->num_cq) > SIW_MAX_CQ) {
1020 siw_dbg(base_cq->device, "too many CQ's\n");
1024 if (size < 1 || size > sdev->attrs.max_cqe) {
1025 siw_dbg(base_cq->device, "CQ size error: %d\n", size);
1029 size = roundup_pow_of_two(size);
1030 cq->base_cq.cqe = size;
1032 cq->xa_cq_index = SIW_INVAL_UOBJ_KEY;
1035 cq->kernel_verbs = 1;
1036 cq->queue = vzalloc(size * sizeof(struct siw_cqe) +
1037 sizeof(struct siw_cq_ctrl));
1039 cq->queue = vmalloc_user(size * sizeof(struct siw_cqe) +
1040 sizeof(struct siw_cq_ctrl));
1042 if (cq->queue == NULL) {
1046 get_random_bytes(&cq->id, 4);
1047 siw_dbg(base_cq->device, "new CQ [%u]\n", cq->id);
1049 spin_lock_init(&cq->lock);
1051 cq->notify = (struct siw_cq_ctrl *)&cq->queue[size];
1054 struct siw_uresp_create_cq uresp = {};
1055 struct siw_ucontext *ctx =
1056 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1060 siw_create_uobj(ctx, cq->queue,
1061 size * sizeof(struct siw_cqe) +
1062 sizeof(struct siw_cq_ctrl));
1063 if (cq->xa_cq_index == SIW_INVAL_UOBJ_KEY) {
1067 uresp.cq_key = cq->xa_cq_index << PAGE_SHIFT;
1068 uresp.cq_id = cq->id;
1069 uresp.num_cqe = size;
1071 if (udata->outlen < sizeof(uresp)) {
1075 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1082 siw_dbg(base_cq->device, "CQ creation failed: %d", rv);
1084 if (cq && cq->queue) {
1085 struct siw_ucontext *ctx =
1086 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1088 if (cq->xa_cq_index != SIW_INVAL_UOBJ_KEY)
1089 kfree(xa_erase(&ctx->xa, cq->xa_cq_index));
1092 atomic_dec(&sdev->num_cq);
1100 * Reap CQ entries if available and copy work completion status into
1101 * array of WC's provided by caller. Returns number of reaped CQE's.
1103 * @base_cq: Base CQ contained in siw CQ.
1104 * @num_cqe: Maximum number of CQE's to reap.
1105 * @wc: Array of work completions to be filled by siw.
1107 int siw_poll_cq(struct ib_cq *base_cq, int num_cqe, struct ib_wc *wc)
1109 struct siw_cq *cq = to_siw_cq(base_cq);
1112 for (i = 0; i < num_cqe; i++) {
1113 if (!siw_reap_cqe(cq, wc))
1121 * siw_req_notify_cq()
1123 * Request notification for new CQE's added to that CQ.
1125 * o SIW_CQ_NOTIFY_SOLICITED lets siw trigger a notification
1126 * event if a WQE with notification flag set enters the CQ
1127 * o SIW_CQ_NOTIFY_NEXT_COMP lets siw trigger a notification
1128 * event if a WQE enters the CQ.
1129 * o IB_CQ_REPORT_MISSED_EVENTS: return value will provide the
1130 * number of not reaped CQE's regardless of its notification
1131 * type and current or new CQ notification settings.
1133 * @base_cq: Base CQ contained in siw CQ.
1134 * @flags: Requested notification flags.
1136 int siw_req_notify_cq(struct ib_cq *base_cq, enum ib_cq_notify_flags flags)
1138 struct siw_cq *cq = to_siw_cq(base_cq);
1140 siw_dbg_cq(cq, "flags: 0x%02x\n", flags);
1142 if ((flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED)
1144 * Enable CQ event for next solicited completion.
1145 * and make it visible to all associated producers.
1147 smp_store_mb(cq->notify->flags, SIW_NOTIFY_SOLICITED);
1150 * Enable CQ event for any signalled completion.
1151 * and make it visible to all associated producers.
1153 smp_store_mb(cq->notify->flags, SIW_NOTIFY_ALL);
1155 if (flags & IB_CQ_REPORT_MISSED_EVENTS)
1156 return cq->cq_put - cq->cq_get;
1164 * Release Memory Region.
1166 * @base_mr: Base MR contained in siw MR.
1167 * @udata: points to user context, unused.
1169 int siw_dereg_mr(struct ib_mr *base_mr, struct ib_udata *udata)
1171 struct siw_mr *mr = to_siw_mr(base_mr);
1172 struct siw_device *sdev = to_siw_dev(base_mr->device);
1174 siw_dbg_mem(mr->mem, "deregister MR\n");
1176 atomic_dec(&sdev->num_mr);
1178 siw_mr_drop_mem(mr);
1187 * Register Memory Region.
1189 * @pd: Protection Domain
1190 * @start: starting address of MR (virtual address)
1192 * @rnic_va: not used by siw
1193 * @rights: MR access rights
1194 * @udata: user buffer to communicate STag and Key.
1196 struct ib_mr *siw_reg_user_mr(struct ib_pd *pd, u64 start, u64 len,
1197 u64 rnic_va, int rights, struct ib_udata *udata)
1199 struct siw_mr *mr = NULL;
1200 struct siw_umem *umem = NULL;
1201 struct siw_ureq_reg_mr ureq;
1202 struct siw_device *sdev = to_siw_dev(pd->device);
1204 unsigned long mem_limit = rlimit(RLIMIT_MEMLOCK);
1207 siw_dbg_pd(pd, "start: 0x%pK, va: 0x%pK, len: %llu\n",
1208 (void *)(uintptr_t)start, (void *)(uintptr_t)rnic_va,
1209 (unsigned long long)len);
1211 if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1212 siw_dbg_pd(pd, "too many mr's\n");
1220 if (mem_limit != RLIM_INFINITY) {
1221 unsigned long num_pages =
1222 (PAGE_ALIGN(len + (start & ~PAGE_MASK))) >> PAGE_SHIFT;
1223 mem_limit >>= PAGE_SHIFT;
1225 if (num_pages > mem_limit - current->mm->locked_vm) {
1226 siw_dbg_pd(pd, "pages req %lu, max %lu, lock %lu\n",
1227 num_pages, mem_limit,
1228 current->mm->locked_vm);
1233 umem = siw_umem_get(start, len, ib_access_writable(rights));
1236 siw_dbg_pd(pd, "getting user memory failed: %d\n", rv);
1240 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1245 rv = siw_mr_add_mem(mr, pd, umem, start, len, rights);
1250 struct siw_uresp_reg_mr uresp = {};
1251 struct siw_mem *mem = mr->mem;
1253 if (udata->inlen < sizeof(ureq)) {
1257 rv = ib_copy_from_udata(&ureq, udata, sizeof(ureq));
1261 mr->base_mr.lkey |= ureq.stag_key;
1262 mr->base_mr.rkey |= ureq.stag_key;
1263 mem->stag |= ureq.stag_key;
1264 uresp.stag = mem->stag;
1266 if (udata->outlen < sizeof(uresp)) {
1270 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1274 mr->mem->stag_valid = 1;
1276 return &mr->base_mr;
1279 atomic_dec(&sdev->num_mr);
1282 siw_mr_drop_mem(mr);
1286 siw_umem_release(umem, false);
1291 struct ib_mr *siw_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1292 u32 max_sge, struct ib_udata *udata)
1294 struct siw_device *sdev = to_siw_dev(pd->device);
1295 struct siw_mr *mr = NULL;
1296 struct siw_pbl *pbl = NULL;
1299 if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1300 siw_dbg_pd(pd, "too many mr's\n");
1304 if (mr_type != IB_MR_TYPE_MEM_REG) {
1305 siw_dbg_pd(pd, "mr type %d unsupported\n", mr_type);
1309 if (max_sge > SIW_MAX_SGE_PBL) {
1310 siw_dbg_pd(pd, "too many sge's: %d\n", max_sge);
1314 pbl = siw_pbl_alloc(max_sge);
1317 siw_dbg_pd(pd, "pbl allocation failed: %d\n", rv);
1321 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1326 rv = siw_mr_add_mem(mr, pd, pbl, 0, max_sge * PAGE_SIZE, 0);
1330 mr->mem->is_pbl = 1;
1332 siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1334 return &mr->base_mr;
1337 atomic_dec(&sdev->num_mr);
1343 siw_mr_drop_mem(mr);
1346 siw_dbg_pd(pd, "failed: %d\n", rv);
1351 /* Just used to count number of pages being mapped */
1352 static int siw_set_pbl_page(struct ib_mr *base_mr, u64 buf_addr)
1357 int siw_map_mr_sg(struct ib_mr *base_mr, struct scatterlist *sl, int num_sle,
1358 unsigned int *sg_off)
1360 struct scatterlist *slp;
1361 struct siw_mr *mr = to_siw_mr(base_mr);
1362 struct siw_mem *mem = mr->mem;
1363 struct siw_pbl *pbl = mem->pbl;
1364 struct siw_pble *pble;
1365 unsigned long pbl_size;
1369 siw_dbg_mem(mem, "no PBL allocated\n");
1374 if (pbl->max_buf < num_sle) {
1375 siw_dbg_mem(mem, "too many SGE's: %d > %d\n",
1376 mem->pbl->max_buf, num_sle);
1379 for_each_sg(sl, slp, num_sle, i) {
1380 if (sg_dma_len(slp) == 0) {
1381 siw_dbg_mem(mem, "empty SGE\n");
1385 pble->addr = sg_dma_address(slp);
1386 pble->size = sg_dma_len(slp);
1388 pbl_size = pble->size;
1391 /* Merge PBL entries if adjacent */
1392 if (pble->addr + pble->size == sg_dma_address(slp)) {
1393 pble->size += sg_dma_len(slp);
1397 pble->addr = sg_dma_address(slp);
1398 pble->size = sg_dma_len(slp);
1399 pble->pbl_off = pbl_size;
1401 pbl_size += sg_dma_len(slp);
1404 "sge[%d], size %u, addr 0x%p, total %lu\n",
1405 i, pble->size, (void *)(uintptr_t)pble->addr,
1408 rv = ib_sg_to_pages(base_mr, sl, num_sle, sg_off, siw_set_pbl_page);
1410 mem->len = base_mr->length;
1411 mem->va = base_mr->iova;
1413 "%llu bytes, start 0x%pK, %u SLE to %u entries\n",
1414 mem->len, (void *)(uintptr_t)mem->va, num_sle,
1423 * Create a (empty) DMA memory region, where no umem is attached.
1425 struct ib_mr *siw_get_dma_mr(struct ib_pd *pd, int rights)
1427 struct siw_device *sdev = to_siw_dev(pd->device);
1428 struct siw_mr *mr = NULL;
1431 if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1432 siw_dbg_pd(pd, "too many mr's\n");
1436 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1441 rv = siw_mr_add_mem(mr, pd, NULL, 0, ULONG_MAX, rights);
1445 mr->mem->stag_valid = 1;
1447 siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1449 return &mr->base_mr;
1455 atomic_dec(&sdev->num_mr);
1463 * Create Shared Receive Queue of attributes @init_attrs
1464 * within protection domain given by @pd.
1466 * @base_srq: Base SRQ contained in siw SRQ.
1467 * @init_attrs: SRQ init attributes.
1468 * @udata: points to user context
1470 int siw_create_srq(struct ib_srq *base_srq,
1471 struct ib_srq_init_attr *init_attrs, struct ib_udata *udata)
1473 struct siw_srq *srq = to_siw_srq(base_srq);
1474 struct ib_srq_attr *attrs = &init_attrs->attr;
1475 struct siw_device *sdev = to_siw_dev(base_srq->device);
1476 struct siw_ucontext *ctx =
1477 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1481 if (atomic_inc_return(&sdev->num_srq) > SIW_MAX_SRQ) {
1482 siw_dbg_pd(base_srq->pd, "too many SRQ's\n");
1486 if (attrs->max_wr == 0 || attrs->max_wr > SIW_MAX_SRQ_WR ||
1487 attrs->max_sge > SIW_MAX_SGE || attrs->srq_limit > attrs->max_wr) {
1491 srq->max_sge = attrs->max_sge;
1492 srq->num_rqe = roundup_pow_of_two(attrs->max_wr);
1493 srq->xa_srq_index = SIW_INVAL_UOBJ_KEY;
1494 srq->limit = attrs->srq_limit;
1498 srq->kernel_verbs = !udata;
1502 vmalloc_user(srq->num_rqe * sizeof(struct siw_rqe));
1504 srq->recvq = vzalloc(srq->num_rqe * sizeof(struct siw_rqe));
1506 if (srq->recvq == NULL) {
1511 struct siw_uresp_create_srq uresp = {};
1513 srq->xa_srq_index = siw_create_uobj(
1514 ctx, srq->recvq, srq->num_rqe * sizeof(struct siw_rqe));
1516 if (srq->xa_srq_index == SIW_INVAL_UOBJ_KEY) {
1520 uresp.srq_key = srq->xa_srq_index;
1521 uresp.num_rqe = srq->num_rqe;
1523 if (udata->outlen < sizeof(uresp)) {
1527 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1531 spin_lock_init(&srq->lock);
1533 siw_dbg_pd(base_srq->pd, "[SRQ]: success\n");
1539 if (ctx && srq->xa_srq_index != SIW_INVAL_UOBJ_KEY)
1540 kfree(xa_erase(&ctx->xa, srq->xa_srq_index));
1543 atomic_dec(&sdev->num_srq);
1551 * Modify SRQ. The caller may resize SRQ and/or set/reset notification
1552 * limit and (re)arm IB_EVENT_SRQ_LIMIT_REACHED notification.
1554 * NOTE: it is unclear if RDMA core allows for changing the MAX_SGE
1555 * parameter. siw_modify_srq() does not check the attrs->max_sge param.
1557 int siw_modify_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs,
1558 enum ib_srq_attr_mask attr_mask, struct ib_udata *udata)
1560 struct siw_srq *srq = to_siw_srq(base_srq);
1561 unsigned long flags;
1564 spin_lock_irqsave(&srq->lock, flags);
1566 if (attr_mask & IB_SRQ_MAX_WR) {
1567 /* resize request not yet supported */
1571 if (attr_mask & IB_SRQ_LIMIT) {
1572 if (attrs->srq_limit) {
1573 if (unlikely(attrs->srq_limit > srq->num_rqe)) {
1581 srq->limit = attrs->srq_limit;
1584 spin_unlock_irqrestore(&srq->lock, flags);
1592 * Query SRQ attributes.
1594 int siw_query_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs)
1596 struct siw_srq *srq = to_siw_srq(base_srq);
1597 unsigned long flags;
1599 spin_lock_irqsave(&srq->lock, flags);
1601 attrs->max_wr = srq->num_rqe;
1602 attrs->max_sge = srq->max_sge;
1603 attrs->srq_limit = srq->limit;
1605 spin_unlock_irqrestore(&srq->lock, flags);
1614 * It is assumed that the SRQ is not referenced by any
1615 * QP anymore - the code trusts the RDMA core environment to keep track
1618 void siw_destroy_srq(struct ib_srq *base_srq, struct ib_udata *udata)
1620 struct siw_srq *srq = to_siw_srq(base_srq);
1621 struct siw_device *sdev = to_siw_dev(base_srq->device);
1622 struct siw_ucontext *ctx =
1623 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1626 if (ctx && srq->xa_srq_index != SIW_INVAL_UOBJ_KEY)
1627 kfree(xa_erase(&ctx->xa, srq->xa_srq_index));
1630 atomic_dec(&sdev->num_srq);
1634 * siw_post_srq_recv()
1636 * Post a list of receive queue elements to SRQ.
1637 * NOTE: The function does not check or lock a certain SRQ state
1638 * during the post operation. The code simply trusts the
1639 * RDMA core environment.
1641 * @base_srq: Base SRQ contained in siw SRQ
1642 * @wr: List of R-WR's
1643 * @bad_wr: Updated to failing WR if posting fails.
1645 int siw_post_srq_recv(struct ib_srq *base_srq, const struct ib_recv_wr *wr,
1646 const struct ib_recv_wr **bad_wr)
1648 struct siw_srq *srq = to_siw_srq(base_srq);
1649 unsigned long flags;
1652 if (unlikely(!srq->kernel_verbs)) {
1653 siw_dbg_pd(base_srq->pd,
1654 "[SRQ]: no kernel post_recv for mapped srq\n");
1659 * Serialize potentially multiple producers.
1660 * Also needed to serialize potentially multiple
1663 spin_lock_irqsave(&srq->lock, flags);
1666 u32 idx = srq->rq_put % srq->num_rqe;
1667 struct siw_rqe *rqe = &srq->recvq[idx];
1670 siw_dbg_pd(base_srq->pd, "SRQ full\n");
1674 if (unlikely(wr->num_sge > srq->max_sge)) {
1675 siw_dbg_pd(base_srq->pd,
1676 "[SRQ]: too many sge's: %d\n", wr->num_sge);
1680 rqe->id = wr->wr_id;
1681 rqe->num_sge = wr->num_sge;
1682 siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1684 /* Make sure S-RQE is completely written before valid */
1687 rqe->flags = SIW_WQE_VALID;
1692 spin_unlock_irqrestore(&srq->lock, flags);
1694 if (unlikely(rv < 0)) {
1695 siw_dbg_pd(base_srq->pd, "[SRQ]: error %d\n", rv);
1701 void siw_qp_event(struct siw_qp *qp, enum ib_event_type etype)
1703 struct ib_event event;
1704 struct ib_qp *base_qp = qp->ib_qp;
1707 * Do not report asynchronous errors on QP which gets
1708 * destroyed via verbs interface (siw_destroy_qp())
1710 if (qp->attrs.flags & SIW_QP_IN_DESTROY)
1713 event.event = etype;
1714 event.device = base_qp->device;
1715 event.element.qp = base_qp;
1717 if (base_qp->event_handler) {
1718 siw_dbg_qp(qp, "reporting event %d\n", etype);
1719 base_qp->event_handler(&event, base_qp->qp_context);
1723 void siw_cq_event(struct siw_cq *cq, enum ib_event_type etype)
1725 struct ib_event event;
1726 struct ib_cq *base_cq = &cq->base_cq;
1728 event.event = etype;
1729 event.device = base_cq->device;
1730 event.element.cq = base_cq;
1732 if (base_cq->event_handler) {
1733 siw_dbg_cq(cq, "reporting CQ event %d\n", etype);
1734 base_cq->event_handler(&event, base_cq->cq_context);
1738 void siw_srq_event(struct siw_srq *srq, enum ib_event_type etype)
1740 struct ib_event event;
1741 struct ib_srq *base_srq = &srq->base_srq;
1743 event.event = etype;
1744 event.device = base_srq->device;
1745 event.element.srq = base_srq;
1747 if (base_srq->event_handler) {
1748 siw_dbg_pd(srq->base_srq.pd,
1749 "reporting SRQ event %d\n", etype);
1750 base_srq->event_handler(&event, base_srq->srq_context);
1754 void siw_port_event(struct siw_device *sdev, u8 port, enum ib_event_type etype)
1756 struct ib_event event;
1758 event.event = etype;
1759 event.device = &sdev->base_dev;
1760 event.element.port_num = port;
1762 siw_dbg(&sdev->base_dev, "reporting port event %d\n", etype);
1764 ib_dispatch_event(&event);