]> Git Repo - linux.git/blob - drivers/infiniband/sw/rdmavt/qp.c
net: dsa: sja1105: Implement state machine for TAS with PTP clock source
[linux.git] / drivers / infiniband / sw / rdmavt / qp.c
1 /*
2  * Copyright(c) 2016 - 2019 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include <rdma/uverbs_ioctl.h>
57 #include "qp.h"
58 #include "vt.h"
59 #include "trace.h"
60
61 #define RVT_RWQ_COUNT_THRESHOLD 16
62
63 static void rvt_rc_timeout(struct timer_list *t);
64
65 /*
66  * Convert the AETH RNR timeout code into the number of microseconds.
67  */
68 static const u32 ib_rvt_rnr_table[32] = {
69         655360, /* 00: 655.36 */
70         10,     /* 01:    .01 */
71         20,     /* 02     .02 */
72         30,     /* 03:    .03 */
73         40,     /* 04:    .04 */
74         60,     /* 05:    .06 */
75         80,     /* 06:    .08 */
76         120,    /* 07:    .12 */
77         160,    /* 08:    .16 */
78         240,    /* 09:    .24 */
79         320,    /* 0A:    .32 */
80         480,    /* 0B:    .48 */
81         640,    /* 0C:    .64 */
82         960,    /* 0D:    .96 */
83         1280,   /* 0E:   1.28 */
84         1920,   /* 0F:   1.92 */
85         2560,   /* 10:   2.56 */
86         3840,   /* 11:   3.84 */
87         5120,   /* 12:   5.12 */
88         7680,   /* 13:   7.68 */
89         10240,  /* 14:  10.24 */
90         15360,  /* 15:  15.36 */
91         20480,  /* 16:  20.48 */
92         30720,  /* 17:  30.72 */
93         40960,  /* 18:  40.96 */
94         61440,  /* 19:  61.44 */
95         81920,  /* 1A:  81.92 */
96         122880, /* 1B: 122.88 */
97         163840, /* 1C: 163.84 */
98         245760, /* 1D: 245.76 */
99         327680, /* 1E: 327.68 */
100         491520  /* 1F: 491.52 */
101 };
102
103 /*
104  * Note that it is OK to post send work requests in the SQE and ERR
105  * states; rvt_do_send() will process them and generate error
106  * completions as per IB 1.2 C10-96.
107  */
108 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
109         [IB_QPS_RESET] = 0,
110         [IB_QPS_INIT] = RVT_POST_RECV_OK,
111         [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
112         [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
113             RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
114             RVT_PROCESS_NEXT_SEND_OK,
115         [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
116             RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
117         [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
118             RVT_POST_SEND_OK | RVT_FLUSH_SEND,
119         [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
120             RVT_POST_SEND_OK | RVT_FLUSH_SEND,
121 };
122 EXPORT_SYMBOL(ib_rvt_state_ops);
123
124 /* platform specific: return the last level cache (llc) size, in KiB */
125 static int rvt_wss_llc_size(void)
126 {
127         /* assume that the boot CPU value is universal for all CPUs */
128         return boot_cpu_data.x86_cache_size;
129 }
130
131 /* platform specific: cacheless copy */
132 static void cacheless_memcpy(void *dst, void *src, size_t n)
133 {
134         /*
135          * Use the only available X64 cacheless copy.  Add a __user cast
136          * to quiet sparse.  The src agument is already in the kernel so
137          * there are no security issues.  The extra fault recovery machinery
138          * is not invoked.
139          */
140         __copy_user_nocache(dst, (void __user *)src, n, 0);
141 }
142
143 void rvt_wss_exit(struct rvt_dev_info *rdi)
144 {
145         struct rvt_wss *wss = rdi->wss;
146
147         if (!wss)
148                 return;
149
150         /* coded to handle partially initialized and repeat callers */
151         kfree(wss->entries);
152         wss->entries = NULL;
153         kfree(rdi->wss);
154         rdi->wss = NULL;
155 }
156
157 /**
158  * rvt_wss_init - Init wss data structures
159  *
160  * Return: 0 on success
161  */
162 int rvt_wss_init(struct rvt_dev_info *rdi)
163 {
164         unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
165         unsigned int wss_threshold = rdi->dparms.wss_threshold;
166         unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
167         long llc_size;
168         long llc_bits;
169         long table_size;
170         long table_bits;
171         struct rvt_wss *wss;
172         int node = rdi->dparms.node;
173
174         if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
175                 rdi->wss = NULL;
176                 return 0;
177         }
178
179         rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
180         if (!rdi->wss)
181                 return -ENOMEM;
182         wss = rdi->wss;
183
184         /* check for a valid percent range - default to 80 if none or invalid */
185         if (wss_threshold < 1 || wss_threshold > 100)
186                 wss_threshold = 80;
187
188         /* reject a wildly large period */
189         if (wss_clean_period > 1000000)
190                 wss_clean_period = 256;
191
192         /* reject a zero period */
193         if (wss_clean_period == 0)
194                 wss_clean_period = 1;
195
196         /*
197          * Calculate the table size - the next power of 2 larger than the
198          * LLC size.  LLC size is in KiB.
199          */
200         llc_size = rvt_wss_llc_size() * 1024;
201         table_size = roundup_pow_of_two(llc_size);
202
203         /* one bit per page in rounded up table */
204         llc_bits = llc_size / PAGE_SIZE;
205         table_bits = table_size / PAGE_SIZE;
206         wss->pages_mask = table_bits - 1;
207         wss->num_entries = table_bits / BITS_PER_LONG;
208
209         wss->threshold = (llc_bits * wss_threshold) / 100;
210         if (wss->threshold == 0)
211                 wss->threshold = 1;
212
213         wss->clean_period = wss_clean_period;
214         atomic_set(&wss->clean_counter, wss_clean_period);
215
216         wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
217                                     GFP_KERNEL, node);
218         if (!wss->entries) {
219                 rvt_wss_exit(rdi);
220                 return -ENOMEM;
221         }
222
223         return 0;
224 }
225
226 /*
227  * Advance the clean counter.  When the clean period has expired,
228  * clean an entry.
229  *
230  * This is implemented in atomics to avoid locking.  Because multiple
231  * variables are involved, it can be racy which can lead to slightly
232  * inaccurate information.  Since this is only a heuristic, this is
233  * OK.  Any innaccuracies will clean themselves out as the counter
234  * advances.  That said, it is unlikely the entry clean operation will
235  * race - the next possible racer will not start until the next clean
236  * period.
237  *
238  * The clean counter is implemented as a decrement to zero.  When zero
239  * is reached an entry is cleaned.
240  */
241 static void wss_advance_clean_counter(struct rvt_wss *wss)
242 {
243         int entry;
244         int weight;
245         unsigned long bits;
246
247         /* become the cleaner if we decrement the counter to zero */
248         if (atomic_dec_and_test(&wss->clean_counter)) {
249                 /*
250                  * Set, not add, the clean period.  This avoids an issue
251                  * where the counter could decrement below the clean period.
252                  * Doing a set can result in lost decrements, slowing the
253                  * clean advance.  Since this a heuristic, this possible
254                  * slowdown is OK.
255                  *
256                  * An alternative is to loop, advancing the counter by a
257                  * clean period until the result is > 0. However, this could
258                  * lead to several threads keeping another in the clean loop.
259                  * This could be mitigated by limiting the number of times
260                  * we stay in the loop.
261                  */
262                 atomic_set(&wss->clean_counter, wss->clean_period);
263
264                 /*
265                  * Uniquely grab the entry to clean and move to next.
266                  * The current entry is always the lower bits of
267                  * wss.clean_entry.  The table size, wss.num_entries,
268                  * is always a power-of-2.
269                  */
270                 entry = (atomic_inc_return(&wss->clean_entry) - 1)
271                         & (wss->num_entries - 1);
272
273                 /* clear the entry and count the bits */
274                 bits = xchg(&wss->entries[entry], 0);
275                 weight = hweight64((u64)bits);
276                 /* only adjust the contended total count if needed */
277                 if (weight)
278                         atomic_sub(weight, &wss->total_count);
279         }
280 }
281
282 /*
283  * Insert the given address into the working set array.
284  */
285 static void wss_insert(struct rvt_wss *wss, void *address)
286 {
287         u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
288         u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
289         u32 nr = page & (BITS_PER_LONG - 1);
290
291         if (!test_and_set_bit(nr, &wss->entries[entry]))
292                 atomic_inc(&wss->total_count);
293
294         wss_advance_clean_counter(wss);
295 }
296
297 /*
298  * Is the working set larger than the threshold?
299  */
300 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
301 {
302         return atomic_read(&wss->total_count) >= wss->threshold;
303 }
304
305 static void get_map_page(struct rvt_qpn_table *qpt,
306                          struct rvt_qpn_map *map)
307 {
308         unsigned long page = get_zeroed_page(GFP_KERNEL);
309
310         /*
311          * Free the page if someone raced with us installing it.
312          */
313
314         spin_lock(&qpt->lock);
315         if (map->page)
316                 free_page(page);
317         else
318                 map->page = (void *)page;
319         spin_unlock(&qpt->lock);
320 }
321
322 /**
323  * init_qpn_table - initialize the QP number table for a device
324  * @qpt: the QPN table
325  */
326 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
327 {
328         u32 offset, i;
329         struct rvt_qpn_map *map;
330         int ret = 0;
331
332         if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
333                 return -EINVAL;
334
335         spin_lock_init(&qpt->lock);
336
337         qpt->last = rdi->dparms.qpn_start;
338         qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
339
340         /*
341          * Drivers may want some QPs beyond what we need for verbs let them use
342          * our qpn table. No need for two. Lets go ahead and mark the bitmaps
343          * for those. The reserved range must be *after* the range which verbs
344          * will pick from.
345          */
346
347         /* Figure out number of bit maps needed before reserved range */
348         qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
349
350         /* This should always be zero */
351         offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
352
353         /* Starting with the first reserved bit map */
354         map = &qpt->map[qpt->nmaps];
355
356         rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
357                     rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
358         for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
359                 if (!map->page) {
360                         get_map_page(qpt, map);
361                         if (!map->page) {
362                                 ret = -ENOMEM;
363                                 break;
364                         }
365                 }
366                 set_bit(offset, map->page);
367                 offset++;
368                 if (offset == RVT_BITS_PER_PAGE) {
369                         /* next page */
370                         qpt->nmaps++;
371                         map++;
372                         offset = 0;
373                 }
374         }
375         return ret;
376 }
377
378 /**
379  * free_qpn_table - free the QP number table for a device
380  * @qpt: the QPN table
381  */
382 static void free_qpn_table(struct rvt_qpn_table *qpt)
383 {
384         int i;
385
386         for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
387                 free_page((unsigned long)qpt->map[i].page);
388 }
389
390 /**
391  * rvt_driver_qp_init - Init driver qp resources
392  * @rdi: rvt dev strucutre
393  *
394  * Return: 0 on success
395  */
396 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
397 {
398         int i;
399         int ret = -ENOMEM;
400
401         if (!rdi->dparms.qp_table_size)
402                 return -EINVAL;
403
404         /*
405          * If driver is not doing any QP allocation then make sure it is
406          * providing the necessary QP functions.
407          */
408         if (!rdi->driver_f.free_all_qps ||
409             !rdi->driver_f.qp_priv_alloc ||
410             !rdi->driver_f.qp_priv_free ||
411             !rdi->driver_f.notify_qp_reset ||
412             !rdi->driver_f.notify_restart_rc)
413                 return -EINVAL;
414
415         /* allocate parent object */
416         rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
417                                    rdi->dparms.node);
418         if (!rdi->qp_dev)
419                 return -ENOMEM;
420
421         /* allocate hash table */
422         rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
423         rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
424         rdi->qp_dev->qp_table =
425                 kmalloc_array_node(rdi->qp_dev->qp_table_size,
426                              sizeof(*rdi->qp_dev->qp_table),
427                              GFP_KERNEL, rdi->dparms.node);
428         if (!rdi->qp_dev->qp_table)
429                 goto no_qp_table;
430
431         for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
432                 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
433
434         spin_lock_init(&rdi->qp_dev->qpt_lock);
435
436         /* initialize qpn map */
437         if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
438                 goto fail_table;
439
440         spin_lock_init(&rdi->n_qps_lock);
441
442         return 0;
443
444 fail_table:
445         kfree(rdi->qp_dev->qp_table);
446         free_qpn_table(&rdi->qp_dev->qpn_table);
447
448 no_qp_table:
449         kfree(rdi->qp_dev);
450
451         return ret;
452 }
453
454 /**
455  * free_all_qps - check for QPs still in use
456  * @rdi: rvt device info structure
457  *
458  * There should not be any QPs still in use.
459  * Free memory for table.
460  */
461 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
462 {
463         unsigned long flags;
464         struct rvt_qp *qp;
465         unsigned n, qp_inuse = 0;
466         spinlock_t *ql; /* work around too long line below */
467
468         if (rdi->driver_f.free_all_qps)
469                 qp_inuse = rdi->driver_f.free_all_qps(rdi);
470
471         qp_inuse += rvt_mcast_tree_empty(rdi);
472
473         if (!rdi->qp_dev)
474                 return qp_inuse;
475
476         ql = &rdi->qp_dev->qpt_lock;
477         spin_lock_irqsave(ql, flags);
478         for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
479                 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
480                                                lockdep_is_held(ql));
481                 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
482
483                 for (; qp; qp = rcu_dereference_protected(qp->next,
484                                                           lockdep_is_held(ql)))
485                         qp_inuse++;
486         }
487         spin_unlock_irqrestore(ql, flags);
488         synchronize_rcu();
489         return qp_inuse;
490 }
491
492 /**
493  * rvt_qp_exit - clean up qps on device exit
494  * @rdi: rvt dev structure
495  *
496  * Check for qp leaks and free resources.
497  */
498 void rvt_qp_exit(struct rvt_dev_info *rdi)
499 {
500         u32 qps_inuse = rvt_free_all_qps(rdi);
501
502         if (qps_inuse)
503                 rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
504                            qps_inuse);
505         if (!rdi->qp_dev)
506                 return;
507
508         kfree(rdi->qp_dev->qp_table);
509         free_qpn_table(&rdi->qp_dev->qpn_table);
510         kfree(rdi->qp_dev);
511 }
512
513 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
514                               struct rvt_qpn_map *map, unsigned off)
515 {
516         return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
517 }
518
519 /**
520  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
521  *             IB_QPT_SMI/IB_QPT_GSI
522  * @rdi: rvt device info structure
523  * @qpt: queue pair number table pointer
524  * @port_num: IB port number, 1 based, comes from core
525  *
526  * Return: The queue pair number
527  */
528 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
529                      enum ib_qp_type type, u8 port_num)
530 {
531         u32 i, offset, max_scan, qpn;
532         struct rvt_qpn_map *map;
533         u32 ret;
534
535         if (rdi->driver_f.alloc_qpn)
536                 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
537
538         if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
539                 unsigned n;
540
541                 ret = type == IB_QPT_GSI;
542                 n = 1 << (ret + 2 * (port_num - 1));
543                 spin_lock(&qpt->lock);
544                 if (qpt->flags & n)
545                         ret = -EINVAL;
546                 else
547                         qpt->flags |= n;
548                 spin_unlock(&qpt->lock);
549                 goto bail;
550         }
551
552         qpn = qpt->last + qpt->incr;
553         if (qpn >= RVT_QPN_MAX)
554                 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
555         /* offset carries bit 0 */
556         offset = qpn & RVT_BITS_PER_PAGE_MASK;
557         map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
558         max_scan = qpt->nmaps - !offset;
559         for (i = 0;;) {
560                 if (unlikely(!map->page)) {
561                         get_map_page(qpt, map);
562                         if (unlikely(!map->page))
563                                 break;
564                 }
565                 do {
566                         if (!test_and_set_bit(offset, map->page)) {
567                                 qpt->last = qpn;
568                                 ret = qpn;
569                                 goto bail;
570                         }
571                         offset += qpt->incr;
572                         /*
573                          * This qpn might be bogus if offset >= BITS_PER_PAGE.
574                          * That is OK.   It gets re-assigned below
575                          */
576                         qpn = mk_qpn(qpt, map, offset);
577                 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
578                 /*
579                  * In order to keep the number of pages allocated to a
580                  * minimum, we scan the all existing pages before increasing
581                  * the size of the bitmap table.
582                  */
583                 if (++i > max_scan) {
584                         if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
585                                 break;
586                         map = &qpt->map[qpt->nmaps++];
587                         /* start at incr with current bit 0 */
588                         offset = qpt->incr | (offset & 1);
589                 } else if (map < &qpt->map[qpt->nmaps]) {
590                         ++map;
591                         /* start at incr with current bit 0 */
592                         offset = qpt->incr | (offset & 1);
593                 } else {
594                         map = &qpt->map[0];
595                         /* wrap to first map page, invert bit 0 */
596                         offset = qpt->incr | ((offset & 1) ^ 1);
597                 }
598                 /* there can be no set bits in low-order QoS bits */
599                 WARN_ON(rdi->dparms.qos_shift > 1 &&
600                         offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
601                 qpn = mk_qpn(qpt, map, offset);
602         }
603
604         ret = -ENOMEM;
605
606 bail:
607         return ret;
608 }
609
610 /**
611  * rvt_clear_mr_refs - Drop help mr refs
612  * @qp: rvt qp data structure
613  * @clr_sends: If shoudl clear send side or not
614  */
615 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
616 {
617         unsigned n;
618         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
619
620         if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
621                 rvt_put_ss(&qp->s_rdma_read_sge);
622
623         rvt_put_ss(&qp->r_sge);
624
625         if (clr_sends) {
626                 while (qp->s_last != qp->s_head) {
627                         struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
628
629                         rvt_put_qp_swqe(qp, wqe);
630                         if (++qp->s_last >= qp->s_size)
631                                 qp->s_last = 0;
632                         smp_wmb(); /* see qp_set_savail */
633                 }
634                 if (qp->s_rdma_mr) {
635                         rvt_put_mr(qp->s_rdma_mr);
636                         qp->s_rdma_mr = NULL;
637                 }
638         }
639
640         for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
641                 struct rvt_ack_entry *e = &qp->s_ack_queue[n];
642
643                 if (e->rdma_sge.mr) {
644                         rvt_put_mr(e->rdma_sge.mr);
645                         e->rdma_sge.mr = NULL;
646                 }
647         }
648 }
649
650 /**
651  * rvt_swqe_has_lkey - return true if lkey is used by swqe
652  * @wqe - the send wqe
653  * @lkey - the lkey
654  *
655  * Test the swqe for using lkey
656  */
657 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
658 {
659         int i;
660
661         for (i = 0; i < wqe->wr.num_sge; i++) {
662                 struct rvt_sge *sge = &wqe->sg_list[i];
663
664                 if (rvt_mr_has_lkey(sge->mr, lkey))
665                         return true;
666         }
667         return false;
668 }
669
670 /**
671  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
672  * @qp - the rvt_qp
673  * @lkey - the lkey
674  */
675 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
676 {
677         u32 s_last = qp->s_last;
678
679         while (s_last != qp->s_head) {
680                 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
681
682                 if (rvt_swqe_has_lkey(wqe, lkey))
683                         return true;
684
685                 if (++s_last >= qp->s_size)
686                         s_last = 0;
687         }
688         if (qp->s_rdma_mr)
689                 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
690                         return true;
691         return false;
692 }
693
694 /**
695  * rvt_qp_acks_has_lkey - return true if acks have lkey
696  * @qp - the qp
697  * @lkey - the lkey
698  */
699 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
700 {
701         int i;
702         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
703
704         for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
705                 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
706
707                 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
708                         return true;
709         }
710         return false;
711 }
712
713 /*
714  * rvt_qp_mr_clean - clean up remote ops for lkey
715  * @qp - the qp
716  * @lkey - the lkey that is being de-registered
717  *
718  * This routine checks if the lkey is being used by
719  * the qp.
720  *
721  * If so, the qp is put into an error state to elminate
722  * any references from the qp.
723  */
724 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
725 {
726         bool lastwqe = false;
727
728         if (qp->ibqp.qp_type == IB_QPT_SMI ||
729             qp->ibqp.qp_type == IB_QPT_GSI)
730                 /* avoid special QPs */
731                 return;
732         spin_lock_irq(&qp->r_lock);
733         spin_lock(&qp->s_hlock);
734         spin_lock(&qp->s_lock);
735
736         if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
737                 goto check_lwqe;
738
739         if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
740             rvt_qp_sends_has_lkey(qp, lkey) ||
741             rvt_qp_acks_has_lkey(qp, lkey))
742                 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
743 check_lwqe:
744         spin_unlock(&qp->s_lock);
745         spin_unlock(&qp->s_hlock);
746         spin_unlock_irq(&qp->r_lock);
747         if (lastwqe) {
748                 struct ib_event ev;
749
750                 ev.device = qp->ibqp.device;
751                 ev.element.qp = &qp->ibqp;
752                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
753                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
754         }
755 }
756
757 /**
758  * rvt_remove_qp - remove qp form table
759  * @rdi: rvt dev struct
760  * @qp: qp to remove
761  *
762  * Remove the QP from the table so it can't be found asynchronously by
763  * the receive routine.
764  */
765 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
766 {
767         struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
768         u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
769         unsigned long flags;
770         int removed = 1;
771
772         spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
773
774         if (rcu_dereference_protected(rvp->qp[0],
775                         lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
776                 RCU_INIT_POINTER(rvp->qp[0], NULL);
777         } else if (rcu_dereference_protected(rvp->qp[1],
778                         lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
779                 RCU_INIT_POINTER(rvp->qp[1], NULL);
780         } else {
781                 struct rvt_qp *q;
782                 struct rvt_qp __rcu **qpp;
783
784                 removed = 0;
785                 qpp = &rdi->qp_dev->qp_table[n];
786                 for (; (q = rcu_dereference_protected(*qpp,
787                         lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
788                         qpp = &q->next) {
789                         if (q == qp) {
790                                 RCU_INIT_POINTER(*qpp,
791                                      rcu_dereference_protected(qp->next,
792                                      lockdep_is_held(&rdi->qp_dev->qpt_lock)));
793                                 removed = 1;
794                                 trace_rvt_qpremove(qp, n);
795                                 break;
796                         }
797                 }
798         }
799
800         spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
801         if (removed) {
802                 synchronize_rcu();
803                 rvt_put_qp(qp);
804         }
805 }
806
807 /**
808  * rvt_alloc_rq - allocate memory for user or kernel buffer
809  * @rq: receive queue data structure
810  * @size: number of request queue entries
811  * @node: The NUMA node
812  * @udata: True if user data is available or not false
813  *
814  * Return: If memory allocation failed, return -ENONEM
815  * This function is used by both shared receive
816  * queues and non-shared receive queues to allocate
817  * memory.
818  */
819 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
820                  struct ib_udata *udata)
821 {
822         if (udata) {
823                 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
824                 if (!rq->wq)
825                         goto bail;
826                 /* need kwq with no buffers */
827                 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
828                 if (!rq->kwq)
829                         goto bail;
830                 rq->kwq->curr_wq = rq->wq->wq;
831         } else {
832                 /* need kwq with buffers */
833                 rq->kwq =
834                         vzalloc_node(sizeof(struct rvt_krwq) + size, node);
835                 if (!rq->kwq)
836                         goto bail;
837                 rq->kwq->curr_wq = rq->kwq->wq;
838         }
839
840         spin_lock_init(&rq->kwq->p_lock);
841         spin_lock_init(&rq->kwq->c_lock);
842         return 0;
843 bail:
844         rvt_free_rq(rq);
845         return -ENOMEM;
846 }
847
848 /**
849  * rvt_init_qp - initialize the QP state to the reset state
850  * @qp: the QP to init or reinit
851  * @type: the QP type
852  *
853  * This function is called from both rvt_create_qp() and
854  * rvt_reset_qp().   The difference is that the reset
855  * patch the necessary locks to protect against concurent
856  * access.
857  */
858 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
859                         enum ib_qp_type type)
860 {
861         qp->remote_qpn = 0;
862         qp->qkey = 0;
863         qp->qp_access_flags = 0;
864         qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
865         qp->s_hdrwords = 0;
866         qp->s_wqe = NULL;
867         qp->s_draining = 0;
868         qp->s_next_psn = 0;
869         qp->s_last_psn = 0;
870         qp->s_sending_psn = 0;
871         qp->s_sending_hpsn = 0;
872         qp->s_psn = 0;
873         qp->r_psn = 0;
874         qp->r_msn = 0;
875         if (type == IB_QPT_RC) {
876                 qp->s_state = IB_OPCODE_RC_SEND_LAST;
877                 qp->r_state = IB_OPCODE_RC_SEND_LAST;
878         } else {
879                 qp->s_state = IB_OPCODE_UC_SEND_LAST;
880                 qp->r_state = IB_OPCODE_UC_SEND_LAST;
881         }
882         qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
883         qp->r_nak_state = 0;
884         qp->r_aflags = 0;
885         qp->r_flags = 0;
886         qp->s_head = 0;
887         qp->s_tail = 0;
888         qp->s_cur = 0;
889         qp->s_acked = 0;
890         qp->s_last = 0;
891         qp->s_ssn = 1;
892         qp->s_lsn = 0;
893         qp->s_mig_state = IB_MIG_MIGRATED;
894         qp->r_head_ack_queue = 0;
895         qp->s_tail_ack_queue = 0;
896         qp->s_acked_ack_queue = 0;
897         qp->s_num_rd_atomic = 0;
898         if (qp->r_rq.kwq)
899                 qp->r_rq.kwq->count = qp->r_rq.size;
900         qp->r_sge.num_sge = 0;
901         atomic_set(&qp->s_reserved_used, 0);
902 }
903
904 /**
905  * rvt_reset_qp - initialize the QP state to the reset state
906  * @qp: the QP to reset
907  * @type: the QP type
908  *
909  * r_lock, s_hlock, and s_lock are required to be held by the caller
910  */
911 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
912                          enum ib_qp_type type)
913         __must_hold(&qp->s_lock)
914         __must_hold(&qp->s_hlock)
915         __must_hold(&qp->r_lock)
916 {
917         lockdep_assert_held(&qp->r_lock);
918         lockdep_assert_held(&qp->s_hlock);
919         lockdep_assert_held(&qp->s_lock);
920         if (qp->state != IB_QPS_RESET) {
921                 qp->state = IB_QPS_RESET;
922
923                 /* Let drivers flush their waitlist */
924                 rdi->driver_f.flush_qp_waiters(qp);
925                 rvt_stop_rc_timers(qp);
926                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
927                 spin_unlock(&qp->s_lock);
928                 spin_unlock(&qp->s_hlock);
929                 spin_unlock_irq(&qp->r_lock);
930
931                 /* Stop the send queue and the retry timer */
932                 rdi->driver_f.stop_send_queue(qp);
933                 rvt_del_timers_sync(qp);
934                 /* Wait for things to stop */
935                 rdi->driver_f.quiesce_qp(qp);
936
937                 /* take qp out the hash and wait for it to be unused */
938                 rvt_remove_qp(rdi, qp);
939
940                 /* grab the lock b/c it was locked at call time */
941                 spin_lock_irq(&qp->r_lock);
942                 spin_lock(&qp->s_hlock);
943                 spin_lock(&qp->s_lock);
944
945                 rvt_clear_mr_refs(qp, 1);
946                 /*
947                  * Let the driver do any tear down or re-init it needs to for
948                  * a qp that has been reset
949                  */
950                 rdi->driver_f.notify_qp_reset(qp);
951         }
952         rvt_init_qp(rdi, qp, type);
953         lockdep_assert_held(&qp->r_lock);
954         lockdep_assert_held(&qp->s_hlock);
955         lockdep_assert_held(&qp->s_lock);
956 }
957
958 /** rvt_free_qpn - Free a qpn from the bit map
959  * @qpt: QP table
960  * @qpn: queue pair number to free
961  */
962 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
963 {
964         struct rvt_qpn_map *map;
965
966         map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
967         if (map->page)
968                 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
969 }
970
971 /**
972  * get_allowed_ops - Given a QP type return the appropriate allowed OP
973  * @type: valid, supported, QP type
974  */
975 static u8 get_allowed_ops(enum ib_qp_type type)
976 {
977         return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
978                 IB_OPCODE_UC : IB_OPCODE_UD;
979 }
980
981 /**
982  * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
983  * @qp: Valid QP with allowed_ops set
984  *
985  * The rvt_swqe data structure being used is a union, so this is
986  * only valid for UD QPs.
987  */
988 static void free_ud_wq_attr(struct rvt_qp *qp)
989 {
990         struct rvt_swqe *wqe;
991         int i;
992
993         for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
994                 wqe = rvt_get_swqe_ptr(qp, i);
995                 kfree(wqe->ud_wr.attr);
996                 wqe->ud_wr.attr = NULL;
997         }
998 }
999
1000 /**
1001  * alloc_ud_wq_attr - AH attribute cache for UD QPs
1002  * @qp: Valid QP with allowed_ops set
1003  * @node: Numa node for allocation
1004  *
1005  * The rvt_swqe data structure being used is a union, so this is
1006  * only valid for UD QPs.
1007  */
1008 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1009 {
1010         struct rvt_swqe *wqe;
1011         int i;
1012
1013         for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1014                 wqe = rvt_get_swqe_ptr(qp, i);
1015                 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1016                                                GFP_KERNEL, node);
1017                 if (!wqe->ud_wr.attr) {
1018                         free_ud_wq_attr(qp);
1019                         return -ENOMEM;
1020                 }
1021         }
1022
1023         return 0;
1024 }
1025
1026 /**
1027  * rvt_create_qp - create a queue pair for a device
1028  * @ibpd: the protection domain who's device we create the queue pair for
1029  * @init_attr: the attributes of the queue pair
1030  * @udata: user data for libibverbs.so
1031  *
1032  * Queue pair creation is mostly an rvt issue. However, drivers have their own
1033  * unique idea of what queue pair numbers mean. For instance there is a reserved
1034  * range for PSM.
1035  *
1036  * Return: the queue pair on success, otherwise returns an errno.
1037  *
1038  * Called by the ib_create_qp() core verbs function.
1039  */
1040 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
1041                             struct ib_qp_init_attr *init_attr,
1042                             struct ib_udata *udata)
1043 {
1044         struct rvt_qp *qp;
1045         int err;
1046         struct rvt_swqe *swq = NULL;
1047         size_t sz;
1048         size_t sg_list_sz;
1049         struct ib_qp *ret = ERR_PTR(-ENOMEM);
1050         struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
1051         void *priv = NULL;
1052         size_t sqsize;
1053
1054         if (!rdi)
1055                 return ERR_PTR(-EINVAL);
1056
1057         if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1058             init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
1059             init_attr->create_flags)
1060                 return ERR_PTR(-EINVAL);
1061
1062         /* Check receive queue parameters if no SRQ is specified. */
1063         if (!init_attr->srq) {
1064                 if (init_attr->cap.max_recv_sge >
1065                     rdi->dparms.props.max_recv_sge ||
1066                     init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1067                         return ERR_PTR(-EINVAL);
1068
1069                 if (init_attr->cap.max_send_sge +
1070                     init_attr->cap.max_send_wr +
1071                     init_attr->cap.max_recv_sge +
1072                     init_attr->cap.max_recv_wr == 0)
1073                         return ERR_PTR(-EINVAL);
1074         }
1075         sqsize =
1076                 init_attr->cap.max_send_wr + 1 +
1077                 rdi->dparms.reserved_operations;
1078         switch (init_attr->qp_type) {
1079         case IB_QPT_SMI:
1080         case IB_QPT_GSI:
1081                 if (init_attr->port_num == 0 ||
1082                     init_attr->port_num > ibpd->device->phys_port_cnt)
1083                         return ERR_PTR(-EINVAL);
1084                 /* fall through */
1085         case IB_QPT_UC:
1086         case IB_QPT_RC:
1087         case IB_QPT_UD:
1088                 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1089                 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1090                 if (!swq)
1091                         return ERR_PTR(-ENOMEM);
1092
1093                 sz = sizeof(*qp);
1094                 sg_list_sz = 0;
1095                 if (init_attr->srq) {
1096                         struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1097
1098                         if (srq->rq.max_sge > 1)
1099                                 sg_list_sz = sizeof(*qp->r_sg_list) *
1100                                         (srq->rq.max_sge - 1);
1101                 } else if (init_attr->cap.max_recv_sge > 1)
1102                         sg_list_sz = sizeof(*qp->r_sg_list) *
1103                                 (init_attr->cap.max_recv_sge - 1);
1104                 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1105                                   rdi->dparms.node);
1106                 if (!qp)
1107                         goto bail_swq;
1108                 qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1109
1110                 RCU_INIT_POINTER(qp->next, NULL);
1111                 if (init_attr->qp_type == IB_QPT_RC) {
1112                         qp->s_ack_queue =
1113                                 kcalloc_node(rvt_max_atomic(rdi),
1114                                              sizeof(*qp->s_ack_queue),
1115                                              GFP_KERNEL,
1116                                              rdi->dparms.node);
1117                         if (!qp->s_ack_queue)
1118                                 goto bail_qp;
1119                 }
1120                 /* initialize timers needed for rc qp */
1121                 timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1122                 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1123                              HRTIMER_MODE_REL);
1124                 qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1125
1126                 /*
1127                  * Driver needs to set up it's private QP structure and do any
1128                  * initialization that is needed.
1129                  */
1130                 priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1131                 if (IS_ERR(priv)) {
1132                         ret = priv;
1133                         goto bail_qp;
1134                 }
1135                 qp->priv = priv;
1136                 qp->timeout_jiffies =
1137                         usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1138                                 1000UL);
1139                 if (init_attr->srq) {
1140                         sz = 0;
1141                 } else {
1142                         qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1143                         qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1144                         sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1145                                 sizeof(struct rvt_rwqe);
1146                         err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1147                                            rdi->dparms.node, udata);
1148                         if (err) {
1149                                 ret = ERR_PTR(err);
1150                                 goto bail_driver_priv;
1151                         }
1152                 }
1153
1154                 /*
1155                  * ib_create_qp() will initialize qp->ibqp
1156                  * except for qp->ibqp.qp_num.
1157                  */
1158                 spin_lock_init(&qp->r_lock);
1159                 spin_lock_init(&qp->s_hlock);
1160                 spin_lock_init(&qp->s_lock);
1161                 atomic_set(&qp->refcount, 0);
1162                 atomic_set(&qp->local_ops_pending, 0);
1163                 init_waitqueue_head(&qp->wait);
1164                 INIT_LIST_HEAD(&qp->rspwait);
1165                 qp->state = IB_QPS_RESET;
1166                 qp->s_wq = swq;
1167                 qp->s_size = sqsize;
1168                 qp->s_avail = init_attr->cap.max_send_wr;
1169                 qp->s_max_sge = init_attr->cap.max_send_sge;
1170                 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1171                         qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1172                 err = alloc_ud_wq_attr(qp, rdi->dparms.node);
1173                 if (err) {
1174                         ret = (ERR_PTR(err));
1175                         goto bail_driver_priv;
1176                 }
1177
1178                 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1179                                 init_attr->qp_type,
1180                                 init_attr->port_num);
1181                 if (err < 0) {
1182                         ret = ERR_PTR(err);
1183                         goto bail_rq_wq;
1184                 }
1185                 qp->ibqp.qp_num = err;
1186                 qp->port_num = init_attr->port_num;
1187                 rvt_init_qp(rdi, qp, init_attr->qp_type);
1188                 if (rdi->driver_f.qp_priv_init) {
1189                         err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1190                         if (err) {
1191                                 ret = ERR_PTR(err);
1192                                 goto bail_rq_wq;
1193                         }
1194                 }
1195                 break;
1196
1197         default:
1198                 /* Don't support raw QPs */
1199                 return ERR_PTR(-EINVAL);
1200         }
1201
1202         init_attr->cap.max_inline_data = 0;
1203
1204         /*
1205          * Return the address of the RWQ as the offset to mmap.
1206          * See rvt_mmap() for details.
1207          */
1208         if (udata && udata->outlen >= sizeof(__u64)) {
1209                 if (!qp->r_rq.wq) {
1210                         __u64 offset = 0;
1211
1212                         err = ib_copy_to_udata(udata, &offset,
1213                                                sizeof(offset));
1214                         if (err) {
1215                                 ret = ERR_PTR(err);
1216                                 goto bail_qpn;
1217                         }
1218                 } else {
1219                         u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1220
1221                         qp->ip = rvt_create_mmap_info(rdi, s, udata,
1222                                                       qp->r_rq.wq);
1223                         if (!qp->ip) {
1224                                 ret = ERR_PTR(-ENOMEM);
1225                                 goto bail_qpn;
1226                         }
1227
1228                         err = ib_copy_to_udata(udata, &qp->ip->offset,
1229                                                sizeof(qp->ip->offset));
1230                         if (err) {
1231                                 ret = ERR_PTR(err);
1232                                 goto bail_ip;
1233                         }
1234                 }
1235                 qp->pid = current->pid;
1236         }
1237
1238         spin_lock(&rdi->n_qps_lock);
1239         if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1240                 spin_unlock(&rdi->n_qps_lock);
1241                 ret = ERR_PTR(-ENOMEM);
1242                 goto bail_ip;
1243         }
1244
1245         rdi->n_qps_allocated++;
1246         /*
1247          * Maintain a busy_jiffies variable that will be added to the timeout
1248          * period in mod_retry_timer and add_retry_timer. This busy jiffies
1249          * is scaled by the number of rc qps created for the device to reduce
1250          * the number of timeouts occurring when there is a large number of
1251          * qps. busy_jiffies is incremented every rc qp scaling interval.
1252          * The scaling interval is selected based on extensive performance
1253          * evaluation of targeted workloads.
1254          */
1255         if (init_attr->qp_type == IB_QPT_RC) {
1256                 rdi->n_rc_qps++;
1257                 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1258         }
1259         spin_unlock(&rdi->n_qps_lock);
1260
1261         if (qp->ip) {
1262                 spin_lock_irq(&rdi->pending_lock);
1263                 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1264                 spin_unlock_irq(&rdi->pending_lock);
1265         }
1266
1267         ret = &qp->ibqp;
1268
1269         return ret;
1270
1271 bail_ip:
1272         if (qp->ip)
1273                 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1274
1275 bail_qpn:
1276         rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1277
1278 bail_rq_wq:
1279         rvt_free_rq(&qp->r_rq);
1280         free_ud_wq_attr(qp);
1281
1282 bail_driver_priv:
1283         rdi->driver_f.qp_priv_free(rdi, qp);
1284
1285 bail_qp:
1286         kfree(qp->s_ack_queue);
1287         kfree(qp);
1288
1289 bail_swq:
1290         vfree(swq);
1291
1292         return ret;
1293 }
1294
1295 /**
1296  * rvt_error_qp - put a QP into the error state
1297  * @qp: the QP to put into the error state
1298  * @err: the receive completion error to signal if a RWQE is active
1299  *
1300  * Flushes both send and receive work queues.
1301  *
1302  * Return: true if last WQE event should be generated.
1303  * The QP r_lock and s_lock should be held and interrupts disabled.
1304  * If we are already in error state, just return.
1305  */
1306 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1307 {
1308         struct ib_wc wc;
1309         int ret = 0;
1310         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1311
1312         lockdep_assert_held(&qp->r_lock);
1313         lockdep_assert_held(&qp->s_lock);
1314         if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1315                 goto bail;
1316
1317         qp->state = IB_QPS_ERR;
1318
1319         if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1320                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1321                 del_timer(&qp->s_timer);
1322         }
1323
1324         if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1325                 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1326
1327         rdi->driver_f.notify_error_qp(qp);
1328
1329         /* Schedule the sending tasklet to drain the send work queue. */
1330         if (READ_ONCE(qp->s_last) != qp->s_head)
1331                 rdi->driver_f.schedule_send(qp);
1332
1333         rvt_clear_mr_refs(qp, 0);
1334
1335         memset(&wc, 0, sizeof(wc));
1336         wc.qp = &qp->ibqp;
1337         wc.opcode = IB_WC_RECV;
1338
1339         if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1340                 wc.wr_id = qp->r_wr_id;
1341                 wc.status = err;
1342                 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1343         }
1344         wc.status = IB_WC_WR_FLUSH_ERR;
1345
1346         if (qp->r_rq.kwq) {
1347                 u32 head;
1348                 u32 tail;
1349                 struct rvt_rwq *wq = NULL;
1350                 struct rvt_krwq *kwq = NULL;
1351
1352                 spin_lock(&qp->r_rq.kwq->c_lock);
1353                 /* qp->ip used to validate if there is a  user buffer mmaped */
1354                 if (qp->ip) {
1355                         wq = qp->r_rq.wq;
1356                         head = RDMA_READ_UAPI_ATOMIC(wq->head);
1357                         tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1358                 } else {
1359                         kwq = qp->r_rq.kwq;
1360                         head = kwq->head;
1361                         tail = kwq->tail;
1362                 }
1363                 /* sanity check pointers before trusting them */
1364                 if (head >= qp->r_rq.size)
1365                         head = 0;
1366                 if (tail >= qp->r_rq.size)
1367                         tail = 0;
1368                 while (tail != head) {
1369                         wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1370                         if (++tail >= qp->r_rq.size)
1371                                 tail = 0;
1372                         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1373                 }
1374                 if (qp->ip)
1375                         RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1376                 else
1377                         kwq->tail = tail;
1378                 spin_unlock(&qp->r_rq.kwq->c_lock);
1379         } else if (qp->ibqp.event_handler) {
1380                 ret = 1;
1381         }
1382
1383 bail:
1384         return ret;
1385 }
1386 EXPORT_SYMBOL(rvt_error_qp);
1387
1388 /*
1389  * Put the QP into the hash table.
1390  * The hash table holds a reference to the QP.
1391  */
1392 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1393 {
1394         struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1395         unsigned long flags;
1396
1397         rvt_get_qp(qp);
1398         spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1399
1400         if (qp->ibqp.qp_num <= 1) {
1401                 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1402         } else {
1403                 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1404
1405                 qp->next = rdi->qp_dev->qp_table[n];
1406                 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1407                 trace_rvt_qpinsert(qp, n);
1408         }
1409
1410         spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1411 }
1412
1413 /**
1414  * rvt_modify_qp - modify the attributes of a queue pair
1415  * @ibqp: the queue pair who's attributes we're modifying
1416  * @attr: the new attributes
1417  * @attr_mask: the mask of attributes to modify
1418  * @udata: user data for libibverbs.so
1419  *
1420  * Return: 0 on success, otherwise returns an errno.
1421  */
1422 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1423                   int attr_mask, struct ib_udata *udata)
1424 {
1425         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1426         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1427         enum ib_qp_state cur_state, new_state;
1428         struct ib_event ev;
1429         int lastwqe = 0;
1430         int mig = 0;
1431         int pmtu = 0; /* for gcc warning only */
1432         int opa_ah;
1433
1434         spin_lock_irq(&qp->r_lock);
1435         spin_lock(&qp->s_hlock);
1436         spin_lock(&qp->s_lock);
1437
1438         cur_state = attr_mask & IB_QP_CUR_STATE ?
1439                 attr->cur_qp_state : qp->state;
1440         new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1441         opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1442
1443         if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1444                                 attr_mask))
1445                 goto inval;
1446
1447         if (rdi->driver_f.check_modify_qp &&
1448             rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1449                 goto inval;
1450
1451         if (attr_mask & IB_QP_AV) {
1452                 if (opa_ah) {
1453                         if (rdma_ah_get_dlid(&attr->ah_attr) >=
1454                                 opa_get_mcast_base(OPA_MCAST_NR))
1455                                 goto inval;
1456                 } else {
1457                         if (rdma_ah_get_dlid(&attr->ah_attr) >=
1458                                 be16_to_cpu(IB_MULTICAST_LID_BASE))
1459                                 goto inval;
1460                 }
1461
1462                 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1463                         goto inval;
1464         }
1465
1466         if (attr_mask & IB_QP_ALT_PATH) {
1467                 if (opa_ah) {
1468                         if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1469                                 opa_get_mcast_base(OPA_MCAST_NR))
1470                                 goto inval;
1471                 } else {
1472                         if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1473                                 be16_to_cpu(IB_MULTICAST_LID_BASE))
1474                                 goto inval;
1475                 }
1476
1477                 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1478                         goto inval;
1479                 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1480                         goto inval;
1481         }
1482
1483         if (attr_mask & IB_QP_PKEY_INDEX)
1484                 if (attr->pkey_index >= rvt_get_npkeys(rdi))
1485                         goto inval;
1486
1487         if (attr_mask & IB_QP_MIN_RNR_TIMER)
1488                 if (attr->min_rnr_timer > 31)
1489                         goto inval;
1490
1491         if (attr_mask & IB_QP_PORT)
1492                 if (qp->ibqp.qp_type == IB_QPT_SMI ||
1493                     qp->ibqp.qp_type == IB_QPT_GSI ||
1494                     attr->port_num == 0 ||
1495                     attr->port_num > ibqp->device->phys_port_cnt)
1496                         goto inval;
1497
1498         if (attr_mask & IB_QP_DEST_QPN)
1499                 if (attr->dest_qp_num > RVT_QPN_MASK)
1500                         goto inval;
1501
1502         if (attr_mask & IB_QP_RETRY_CNT)
1503                 if (attr->retry_cnt > 7)
1504                         goto inval;
1505
1506         if (attr_mask & IB_QP_RNR_RETRY)
1507                 if (attr->rnr_retry > 7)
1508                         goto inval;
1509
1510         /*
1511          * Don't allow invalid path_mtu values.  OK to set greater
1512          * than the active mtu (or even the max_cap, if we have tuned
1513          * that to a small mtu.  We'll set qp->path_mtu
1514          * to the lesser of requested attribute mtu and active,
1515          * for packetizing messages.
1516          * Note that the QP port has to be set in INIT and MTU in RTR.
1517          */
1518         if (attr_mask & IB_QP_PATH_MTU) {
1519                 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1520                 if (pmtu < 0)
1521                         goto inval;
1522         }
1523
1524         if (attr_mask & IB_QP_PATH_MIG_STATE) {
1525                 if (attr->path_mig_state == IB_MIG_REARM) {
1526                         if (qp->s_mig_state == IB_MIG_ARMED)
1527                                 goto inval;
1528                         if (new_state != IB_QPS_RTS)
1529                                 goto inval;
1530                 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1531                         if (qp->s_mig_state == IB_MIG_REARM)
1532                                 goto inval;
1533                         if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1534                                 goto inval;
1535                         if (qp->s_mig_state == IB_MIG_ARMED)
1536                                 mig = 1;
1537                 } else {
1538                         goto inval;
1539                 }
1540         }
1541
1542         if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1543                 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1544                         goto inval;
1545
1546         switch (new_state) {
1547         case IB_QPS_RESET:
1548                 if (qp->state != IB_QPS_RESET)
1549                         rvt_reset_qp(rdi, qp, ibqp->qp_type);
1550                 break;
1551
1552         case IB_QPS_RTR:
1553                 /* Allow event to re-trigger if QP set to RTR more than once */
1554                 qp->r_flags &= ~RVT_R_COMM_EST;
1555                 qp->state = new_state;
1556                 break;
1557
1558         case IB_QPS_SQD:
1559                 qp->s_draining = qp->s_last != qp->s_cur;
1560                 qp->state = new_state;
1561                 break;
1562
1563         case IB_QPS_SQE:
1564                 if (qp->ibqp.qp_type == IB_QPT_RC)
1565                         goto inval;
1566                 qp->state = new_state;
1567                 break;
1568
1569         case IB_QPS_ERR:
1570                 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1571                 break;
1572
1573         default:
1574                 qp->state = new_state;
1575                 break;
1576         }
1577
1578         if (attr_mask & IB_QP_PKEY_INDEX)
1579                 qp->s_pkey_index = attr->pkey_index;
1580
1581         if (attr_mask & IB_QP_PORT)
1582                 qp->port_num = attr->port_num;
1583
1584         if (attr_mask & IB_QP_DEST_QPN)
1585                 qp->remote_qpn = attr->dest_qp_num;
1586
1587         if (attr_mask & IB_QP_SQ_PSN) {
1588                 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1589                 qp->s_psn = qp->s_next_psn;
1590                 qp->s_sending_psn = qp->s_next_psn;
1591                 qp->s_last_psn = qp->s_next_psn - 1;
1592                 qp->s_sending_hpsn = qp->s_last_psn;
1593         }
1594
1595         if (attr_mask & IB_QP_RQ_PSN)
1596                 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1597
1598         if (attr_mask & IB_QP_ACCESS_FLAGS)
1599                 qp->qp_access_flags = attr->qp_access_flags;
1600
1601         if (attr_mask & IB_QP_AV) {
1602                 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1603                 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1604                 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1605         }
1606
1607         if (attr_mask & IB_QP_ALT_PATH) {
1608                 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1609                 qp->s_alt_pkey_index = attr->alt_pkey_index;
1610         }
1611
1612         if (attr_mask & IB_QP_PATH_MIG_STATE) {
1613                 qp->s_mig_state = attr->path_mig_state;
1614                 if (mig) {
1615                         qp->remote_ah_attr = qp->alt_ah_attr;
1616                         qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1617                         qp->s_pkey_index = qp->s_alt_pkey_index;
1618                 }
1619         }
1620
1621         if (attr_mask & IB_QP_PATH_MTU) {
1622                 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1623                 qp->log_pmtu = ilog2(qp->pmtu);
1624         }
1625
1626         if (attr_mask & IB_QP_RETRY_CNT) {
1627                 qp->s_retry_cnt = attr->retry_cnt;
1628                 qp->s_retry = attr->retry_cnt;
1629         }
1630
1631         if (attr_mask & IB_QP_RNR_RETRY) {
1632                 qp->s_rnr_retry_cnt = attr->rnr_retry;
1633                 qp->s_rnr_retry = attr->rnr_retry;
1634         }
1635
1636         if (attr_mask & IB_QP_MIN_RNR_TIMER)
1637                 qp->r_min_rnr_timer = attr->min_rnr_timer;
1638
1639         if (attr_mask & IB_QP_TIMEOUT) {
1640                 qp->timeout = attr->timeout;
1641                 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1642         }
1643
1644         if (attr_mask & IB_QP_QKEY)
1645                 qp->qkey = attr->qkey;
1646
1647         if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1648                 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1649
1650         if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1651                 qp->s_max_rd_atomic = attr->max_rd_atomic;
1652
1653         if (rdi->driver_f.modify_qp)
1654                 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1655
1656         spin_unlock(&qp->s_lock);
1657         spin_unlock(&qp->s_hlock);
1658         spin_unlock_irq(&qp->r_lock);
1659
1660         if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1661                 rvt_insert_qp(rdi, qp);
1662
1663         if (lastwqe) {
1664                 ev.device = qp->ibqp.device;
1665                 ev.element.qp = &qp->ibqp;
1666                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1667                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1668         }
1669         if (mig) {
1670                 ev.device = qp->ibqp.device;
1671                 ev.element.qp = &qp->ibqp;
1672                 ev.event = IB_EVENT_PATH_MIG;
1673                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1674         }
1675         return 0;
1676
1677 inval:
1678         spin_unlock(&qp->s_lock);
1679         spin_unlock(&qp->s_hlock);
1680         spin_unlock_irq(&qp->r_lock);
1681         return -EINVAL;
1682 }
1683
1684 /**
1685  * rvt_destroy_qp - destroy a queue pair
1686  * @ibqp: the queue pair to destroy
1687  *
1688  * Note that this can be called while the QP is actively sending or
1689  * receiving!
1690  *
1691  * Return: 0 on success.
1692  */
1693 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1694 {
1695         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1696         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1697
1698         spin_lock_irq(&qp->r_lock);
1699         spin_lock(&qp->s_hlock);
1700         spin_lock(&qp->s_lock);
1701         rvt_reset_qp(rdi, qp, ibqp->qp_type);
1702         spin_unlock(&qp->s_lock);
1703         spin_unlock(&qp->s_hlock);
1704         spin_unlock_irq(&qp->r_lock);
1705
1706         wait_event(qp->wait, !atomic_read(&qp->refcount));
1707         /* qpn is now available for use again */
1708         rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1709
1710         spin_lock(&rdi->n_qps_lock);
1711         rdi->n_qps_allocated--;
1712         if (qp->ibqp.qp_type == IB_QPT_RC) {
1713                 rdi->n_rc_qps--;
1714                 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1715         }
1716         spin_unlock(&rdi->n_qps_lock);
1717
1718         if (qp->ip)
1719                 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1720         kvfree(qp->r_rq.kwq);
1721         rdi->driver_f.qp_priv_free(rdi, qp);
1722         kfree(qp->s_ack_queue);
1723         rdma_destroy_ah_attr(&qp->remote_ah_attr);
1724         rdma_destroy_ah_attr(&qp->alt_ah_attr);
1725         free_ud_wq_attr(qp);
1726         vfree(qp->s_wq);
1727         kfree(qp);
1728         return 0;
1729 }
1730
1731 /**
1732  * rvt_query_qp - query an ipbq
1733  * @ibqp: IB qp to query
1734  * @attr: attr struct to fill in
1735  * @attr_mask: attr mask ignored
1736  * @init_attr: struct to fill in
1737  *
1738  * Return: always 0
1739  */
1740 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1741                  int attr_mask, struct ib_qp_init_attr *init_attr)
1742 {
1743         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1744         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1745
1746         attr->qp_state = qp->state;
1747         attr->cur_qp_state = attr->qp_state;
1748         attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1749         attr->path_mig_state = qp->s_mig_state;
1750         attr->qkey = qp->qkey;
1751         attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1752         attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1753         attr->dest_qp_num = qp->remote_qpn;
1754         attr->qp_access_flags = qp->qp_access_flags;
1755         attr->cap.max_send_wr = qp->s_size - 1 -
1756                 rdi->dparms.reserved_operations;
1757         attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1758         attr->cap.max_send_sge = qp->s_max_sge;
1759         attr->cap.max_recv_sge = qp->r_rq.max_sge;
1760         attr->cap.max_inline_data = 0;
1761         attr->ah_attr = qp->remote_ah_attr;
1762         attr->alt_ah_attr = qp->alt_ah_attr;
1763         attr->pkey_index = qp->s_pkey_index;
1764         attr->alt_pkey_index = qp->s_alt_pkey_index;
1765         attr->en_sqd_async_notify = 0;
1766         attr->sq_draining = qp->s_draining;
1767         attr->max_rd_atomic = qp->s_max_rd_atomic;
1768         attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1769         attr->min_rnr_timer = qp->r_min_rnr_timer;
1770         attr->port_num = qp->port_num;
1771         attr->timeout = qp->timeout;
1772         attr->retry_cnt = qp->s_retry_cnt;
1773         attr->rnr_retry = qp->s_rnr_retry_cnt;
1774         attr->alt_port_num =
1775                 rdma_ah_get_port_num(&qp->alt_ah_attr);
1776         attr->alt_timeout = qp->alt_timeout;
1777
1778         init_attr->event_handler = qp->ibqp.event_handler;
1779         init_attr->qp_context = qp->ibqp.qp_context;
1780         init_attr->send_cq = qp->ibqp.send_cq;
1781         init_attr->recv_cq = qp->ibqp.recv_cq;
1782         init_attr->srq = qp->ibqp.srq;
1783         init_attr->cap = attr->cap;
1784         if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1785                 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1786         else
1787                 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1788         init_attr->qp_type = qp->ibqp.qp_type;
1789         init_attr->port_num = qp->port_num;
1790         return 0;
1791 }
1792
1793 /**
1794  * rvt_post_receive - post a receive on a QP
1795  * @ibqp: the QP to post the receive on
1796  * @wr: the WR to post
1797  * @bad_wr: the first bad WR is put here
1798  *
1799  * This may be called from interrupt context.
1800  *
1801  * Return: 0 on success otherwise errno
1802  */
1803 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1804                   const struct ib_recv_wr **bad_wr)
1805 {
1806         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1807         struct rvt_krwq *wq = qp->r_rq.kwq;
1808         unsigned long flags;
1809         int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1810                                 !qp->ibqp.srq;
1811
1812         /* Check that state is OK to post receive. */
1813         if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1814                 *bad_wr = wr;
1815                 return -EINVAL;
1816         }
1817
1818         for (; wr; wr = wr->next) {
1819                 struct rvt_rwqe *wqe;
1820                 u32 next;
1821                 int i;
1822
1823                 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1824                         *bad_wr = wr;
1825                         return -EINVAL;
1826                 }
1827
1828                 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1829                 next = wq->head + 1;
1830                 if (next >= qp->r_rq.size)
1831                         next = 0;
1832                 if (next == READ_ONCE(wq->tail)) {
1833                         spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1834                         *bad_wr = wr;
1835                         return -ENOMEM;
1836                 }
1837                 if (unlikely(qp_err_flush)) {
1838                         struct ib_wc wc;
1839
1840                         memset(&wc, 0, sizeof(wc));
1841                         wc.qp = &qp->ibqp;
1842                         wc.opcode = IB_WC_RECV;
1843                         wc.wr_id = wr->wr_id;
1844                         wc.status = IB_WC_WR_FLUSH_ERR;
1845                         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1846                 } else {
1847                         wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1848                         wqe->wr_id = wr->wr_id;
1849                         wqe->num_sge = wr->num_sge;
1850                         for (i = 0; i < wr->num_sge; i++) {
1851                                 wqe->sg_list[i].addr = wr->sg_list[i].addr;
1852                                 wqe->sg_list[i].length = wr->sg_list[i].length;
1853                                 wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1854                         }
1855                         /*
1856                          * Make sure queue entry is written
1857                          * before the head index.
1858                          */
1859                         smp_store_release(&wq->head, next);
1860                 }
1861                 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1862         }
1863         return 0;
1864 }
1865
1866 /**
1867  * rvt_qp_valid_operation - validate post send wr request
1868  * @qp - the qp
1869  * @post-parms - the post send table for the driver
1870  * @wr - the work request
1871  *
1872  * The routine validates the operation based on the
1873  * validation table an returns the length of the operation
1874  * which can extend beyond the ib_send_bw.  Operation
1875  * dependent flags key atomic operation validation.
1876  *
1877  * There is an exception for UD qps that validates the pd and
1878  * overrides the length to include the additional UD specific
1879  * length.
1880  *
1881  * Returns a negative error or the length of the work request
1882  * for building the swqe.
1883  */
1884 static inline int rvt_qp_valid_operation(
1885         struct rvt_qp *qp,
1886         const struct rvt_operation_params *post_parms,
1887         const struct ib_send_wr *wr)
1888 {
1889         int len;
1890
1891         if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1892                 return -EINVAL;
1893         if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1894                 return -EINVAL;
1895         if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1896             ibpd_to_rvtpd(qp->ibqp.pd)->user)
1897                 return -EINVAL;
1898         if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1899             (wr->num_sge == 0 ||
1900              wr->sg_list[0].length < sizeof(u64) ||
1901              wr->sg_list[0].addr & (sizeof(u64) - 1)))
1902                 return -EINVAL;
1903         if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1904             !qp->s_max_rd_atomic)
1905                 return -EINVAL;
1906         len = post_parms[wr->opcode].length;
1907         /* UD specific */
1908         if (qp->ibqp.qp_type != IB_QPT_UC &&
1909             qp->ibqp.qp_type != IB_QPT_RC) {
1910                 if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1911                         return -EINVAL;
1912                 len = sizeof(struct ib_ud_wr);
1913         }
1914         return len;
1915 }
1916
1917 /**
1918  * rvt_qp_is_avail - determine queue capacity
1919  * @qp: the qp
1920  * @rdi: the rdmavt device
1921  * @reserved_op: is reserved operation
1922  *
1923  * This assumes the s_hlock is held but the s_last
1924  * qp variable is uncontrolled.
1925  *
1926  * For non reserved operations, the qp->s_avail
1927  * may be changed.
1928  *
1929  * The return value is zero or a -ENOMEM.
1930  */
1931 static inline int rvt_qp_is_avail(
1932         struct rvt_qp *qp,
1933         struct rvt_dev_info *rdi,
1934         bool reserved_op)
1935 {
1936         u32 slast;
1937         u32 avail;
1938         u32 reserved_used;
1939
1940         /* see rvt_qp_wqe_unreserve() */
1941         smp_mb__before_atomic();
1942         if (unlikely(reserved_op)) {
1943                 /* see rvt_qp_wqe_unreserve() */
1944                 reserved_used = atomic_read(&qp->s_reserved_used);
1945                 if (reserved_used >= rdi->dparms.reserved_operations)
1946                         return -ENOMEM;
1947                 return 0;
1948         }
1949         /* non-reserved operations */
1950         if (likely(qp->s_avail))
1951                 return 0;
1952         /* See rvt_qp_complete_swqe() */
1953         slast = smp_load_acquire(&qp->s_last);
1954         if (qp->s_head >= slast)
1955                 avail = qp->s_size - (qp->s_head - slast);
1956         else
1957                 avail = slast - qp->s_head;
1958
1959         reserved_used = atomic_read(&qp->s_reserved_used);
1960         avail =  avail - 1 -
1961                 (rdi->dparms.reserved_operations - reserved_used);
1962         /* insure we don't assign a negative s_avail */
1963         if ((s32)avail <= 0)
1964                 return -ENOMEM;
1965         qp->s_avail = avail;
1966         if (WARN_ON(qp->s_avail >
1967                     (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1968                 rvt_pr_err(rdi,
1969                            "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1970                            qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1971                            qp->s_head, qp->s_tail, qp->s_cur,
1972                            qp->s_acked, qp->s_last);
1973         return 0;
1974 }
1975
1976 /**
1977  * rvt_post_one_wr - post one RC, UC, or UD send work request
1978  * @qp: the QP to post on
1979  * @wr: the work request to send
1980  */
1981 static int rvt_post_one_wr(struct rvt_qp *qp,
1982                            const struct ib_send_wr *wr,
1983                            bool *call_send)
1984 {
1985         struct rvt_swqe *wqe;
1986         u32 next;
1987         int i;
1988         int j;
1989         int acc;
1990         struct rvt_lkey_table *rkt;
1991         struct rvt_pd *pd;
1992         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1993         u8 log_pmtu;
1994         int ret;
1995         size_t cplen;
1996         bool reserved_op;
1997         int local_ops_delayed = 0;
1998
1999         BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
2000
2001         /* IB spec says that num_sge == 0 is OK. */
2002         if (unlikely(wr->num_sge > qp->s_max_sge))
2003                 return -EINVAL;
2004
2005         ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
2006         if (ret < 0)
2007                 return ret;
2008         cplen = ret;
2009
2010         /*
2011          * Local operations include fast register and local invalidate.
2012          * Fast register needs to be processed immediately because the
2013          * registered lkey may be used by following work requests and the
2014          * lkey needs to be valid at the time those requests are posted.
2015          * Local invalidate can be processed immediately if fencing is
2016          * not required and no previous local invalidate ops are pending.
2017          * Signaled local operations that have been processed immediately
2018          * need to have requests with "completion only" flags set posted
2019          * to the send queue in order to generate completions.
2020          */
2021         if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2022                 switch (wr->opcode) {
2023                 case IB_WR_REG_MR:
2024                         ret = rvt_fast_reg_mr(qp,
2025                                               reg_wr(wr)->mr,
2026                                               reg_wr(wr)->key,
2027                                               reg_wr(wr)->access);
2028                         if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2029                                 return ret;
2030                         break;
2031                 case IB_WR_LOCAL_INV:
2032                         if ((wr->send_flags & IB_SEND_FENCE) ||
2033                             atomic_read(&qp->local_ops_pending)) {
2034                                 local_ops_delayed = 1;
2035                         } else {
2036                                 ret = rvt_invalidate_rkey(
2037                                         qp, wr->ex.invalidate_rkey);
2038                                 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2039                                         return ret;
2040                         }
2041                         break;
2042                 default:
2043                         return -EINVAL;
2044                 }
2045         }
2046
2047         reserved_op = rdi->post_parms[wr->opcode].flags &
2048                         RVT_OPERATION_USE_RESERVE;
2049         /* check for avail */
2050         ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2051         if (ret)
2052                 return ret;
2053         next = qp->s_head + 1;
2054         if (next >= qp->s_size)
2055                 next = 0;
2056
2057         rkt = &rdi->lkey_table;
2058         pd = ibpd_to_rvtpd(qp->ibqp.pd);
2059         wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2060
2061         /* cplen has length from above */
2062         memcpy(&wqe->wr, wr, cplen);
2063
2064         wqe->length = 0;
2065         j = 0;
2066         if (wr->num_sge) {
2067                 struct rvt_sge *last_sge = NULL;
2068
2069                 acc = wr->opcode >= IB_WR_RDMA_READ ?
2070                         IB_ACCESS_LOCAL_WRITE : 0;
2071                 for (i = 0; i < wr->num_sge; i++) {
2072                         u32 length = wr->sg_list[i].length;
2073
2074                         if (length == 0)
2075                                 continue;
2076                         ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2077                                           &wr->sg_list[i], acc);
2078                         if (unlikely(ret < 0))
2079                                 goto bail_inval_free;
2080                         wqe->length += length;
2081                         if (ret)
2082                                 last_sge = &wqe->sg_list[j];
2083                         j += ret;
2084                 }
2085                 wqe->wr.num_sge = j;
2086         }
2087
2088         /*
2089          * Calculate and set SWQE PSN values prior to handing it off
2090          * to the driver's check routine. This give the driver the
2091          * opportunity to adjust PSN values based on internal checks.
2092          */
2093         log_pmtu = qp->log_pmtu;
2094         if (qp->allowed_ops == IB_OPCODE_UD) {
2095                 struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2096
2097                 log_pmtu = ah->log_pmtu;
2098                 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2099         }
2100
2101         if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2102                 if (local_ops_delayed)
2103                         atomic_inc(&qp->local_ops_pending);
2104                 else
2105                         wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2106                 wqe->ssn = 0;
2107                 wqe->psn = 0;
2108                 wqe->lpsn = 0;
2109         } else {
2110                 wqe->ssn = qp->s_ssn++;
2111                 wqe->psn = qp->s_next_psn;
2112                 wqe->lpsn = wqe->psn +
2113                                 (wqe->length ?
2114                                         ((wqe->length - 1) >> log_pmtu) :
2115                                         0);
2116         }
2117
2118         /* general part of wqe valid - allow for driver checks */
2119         if (rdi->driver_f.setup_wqe) {
2120                 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2121                 if (ret < 0)
2122                         goto bail_inval_free_ref;
2123         }
2124
2125         if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2126                 qp->s_next_psn = wqe->lpsn + 1;
2127
2128         if (unlikely(reserved_op)) {
2129                 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2130                 rvt_qp_wqe_reserve(qp, wqe);
2131         } else {
2132                 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2133                 qp->s_avail--;
2134         }
2135         trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2136         smp_wmb(); /* see request builders */
2137         qp->s_head = next;
2138
2139         return 0;
2140
2141 bail_inval_free_ref:
2142         if (qp->allowed_ops == IB_OPCODE_UD)
2143                 rdma_destroy_ah_attr(wqe->ud_wr.attr);
2144 bail_inval_free:
2145         /* release mr holds */
2146         while (j) {
2147                 struct rvt_sge *sge = &wqe->sg_list[--j];
2148
2149                 rvt_put_mr(sge->mr);
2150         }
2151         return ret;
2152 }
2153
2154 /**
2155  * rvt_post_send - post a send on a QP
2156  * @ibqp: the QP to post the send on
2157  * @wr: the list of work requests to post
2158  * @bad_wr: the first bad WR is put here
2159  *
2160  * This may be called from interrupt context.
2161  *
2162  * Return: 0 on success else errno
2163  */
2164 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2165                   const struct ib_send_wr **bad_wr)
2166 {
2167         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2168         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2169         unsigned long flags = 0;
2170         bool call_send;
2171         unsigned nreq = 0;
2172         int err = 0;
2173
2174         spin_lock_irqsave(&qp->s_hlock, flags);
2175
2176         /*
2177          * Ensure QP state is such that we can send. If not bail out early,
2178          * there is no need to do this every time we post a send.
2179          */
2180         if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2181                 spin_unlock_irqrestore(&qp->s_hlock, flags);
2182                 return -EINVAL;
2183         }
2184
2185         /*
2186          * If the send queue is empty, and we only have a single WR then just go
2187          * ahead and kick the send engine into gear. Otherwise we will always
2188          * just schedule the send to happen later.
2189          */
2190         call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2191
2192         for (; wr; wr = wr->next) {
2193                 err = rvt_post_one_wr(qp, wr, &call_send);
2194                 if (unlikely(err)) {
2195                         *bad_wr = wr;
2196                         goto bail;
2197                 }
2198                 nreq++;
2199         }
2200 bail:
2201         spin_unlock_irqrestore(&qp->s_hlock, flags);
2202         if (nreq) {
2203                 /*
2204                  * Only call do_send if there is exactly one packet, and the
2205                  * driver said it was ok.
2206                  */
2207                 if (nreq == 1 && call_send)
2208                         rdi->driver_f.do_send(qp);
2209                 else
2210                         rdi->driver_f.schedule_send_no_lock(qp);
2211         }
2212         return err;
2213 }
2214
2215 /**
2216  * rvt_post_srq_receive - post a receive on a shared receive queue
2217  * @ibsrq: the SRQ to post the receive on
2218  * @wr: the list of work requests to post
2219  * @bad_wr: A pointer to the first WR to cause a problem is put here
2220  *
2221  * This may be called from interrupt context.
2222  *
2223  * Return: 0 on success else errno
2224  */
2225 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2226                       const struct ib_recv_wr **bad_wr)
2227 {
2228         struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2229         struct rvt_krwq *wq;
2230         unsigned long flags;
2231
2232         for (; wr; wr = wr->next) {
2233                 struct rvt_rwqe *wqe;
2234                 u32 next;
2235                 int i;
2236
2237                 if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2238                         *bad_wr = wr;
2239                         return -EINVAL;
2240                 }
2241
2242                 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2243                 wq = srq->rq.kwq;
2244                 next = wq->head + 1;
2245                 if (next >= srq->rq.size)
2246                         next = 0;
2247                 if (next == READ_ONCE(wq->tail)) {
2248                         spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2249                         *bad_wr = wr;
2250                         return -ENOMEM;
2251                 }
2252
2253                 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2254                 wqe->wr_id = wr->wr_id;
2255                 wqe->num_sge = wr->num_sge;
2256                 for (i = 0; i < wr->num_sge; i++) {
2257                         wqe->sg_list[i].addr = wr->sg_list[i].addr;
2258                         wqe->sg_list[i].length = wr->sg_list[i].length;
2259                         wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2260                 }
2261                 /* Make sure queue entry is written before the head index. */
2262                 smp_store_release(&wq->head, next);
2263                 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2264         }
2265         return 0;
2266 }
2267
2268 /*
2269  * rvt used the internal kernel struct as part of its ABI, for now make sure
2270  * the kernel struct does not change layout. FIXME: rvt should never cast the
2271  * user struct to a kernel struct.
2272  */
2273 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2274 {
2275         BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2276                      offsetof(struct rvt_wqe_sge, addr));
2277         BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2278                      offsetof(struct rvt_wqe_sge, length));
2279         BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2280                      offsetof(struct rvt_wqe_sge, lkey));
2281         return (struct ib_sge *)sge;
2282 }
2283
2284 /*
2285  * Validate a RWQE and fill in the SGE state.
2286  * Return 1 if OK.
2287  */
2288 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2289 {
2290         int i, j, ret;
2291         struct ib_wc wc;
2292         struct rvt_lkey_table *rkt;
2293         struct rvt_pd *pd;
2294         struct rvt_sge_state *ss;
2295         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2296
2297         rkt = &rdi->lkey_table;
2298         pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2299         ss = &qp->r_sge;
2300         ss->sg_list = qp->r_sg_list;
2301         qp->r_len = 0;
2302         for (i = j = 0; i < wqe->num_sge; i++) {
2303                 if (wqe->sg_list[i].length == 0)
2304                         continue;
2305                 /* Check LKEY */
2306                 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2307                                   NULL, rvt_cast_sge(&wqe->sg_list[i]),
2308                                   IB_ACCESS_LOCAL_WRITE);
2309                 if (unlikely(ret <= 0))
2310                         goto bad_lkey;
2311                 qp->r_len += wqe->sg_list[i].length;
2312                 j++;
2313         }
2314         ss->num_sge = j;
2315         ss->total_len = qp->r_len;
2316         return 1;
2317
2318 bad_lkey:
2319         while (j) {
2320                 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2321
2322                 rvt_put_mr(sge->mr);
2323         }
2324         ss->num_sge = 0;
2325         memset(&wc, 0, sizeof(wc));
2326         wc.wr_id = wqe->wr_id;
2327         wc.status = IB_WC_LOC_PROT_ERR;
2328         wc.opcode = IB_WC_RECV;
2329         wc.qp = &qp->ibqp;
2330         /* Signal solicited completion event. */
2331         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2332         return 0;
2333 }
2334
2335 /**
2336  * get_count - count numbers of request work queue entries
2337  * in circular buffer
2338  * @rq: data structure for request queue entry
2339  * @tail: tail indices of the circular buffer
2340  * @head: head indices of the circular buffer
2341  *
2342  * Return - total number of entries in the circular buffer
2343  */
2344 static u32 get_count(struct rvt_rq *rq, u32 tail, u32 head)
2345 {
2346         u32 count;
2347
2348         count = head;
2349
2350         if (count >= rq->size)
2351                 count = 0;
2352         if (count < tail)
2353                 count += rq->size - tail;
2354         else
2355                 count -= tail;
2356
2357         return count;
2358 }
2359
2360 /**
2361  * get_rvt_head - get head indices of the circular buffer
2362  * @rq: data structure for request queue entry
2363  * @ip: the QP
2364  *
2365  * Return - head index value
2366  */
2367 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2368 {
2369         u32 head;
2370
2371         if (ip)
2372                 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2373         else
2374                 head = rq->kwq->head;
2375
2376         return head;
2377 }
2378
2379 /**
2380  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2381  * @qp: the QP
2382  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2383  *
2384  * Return -1 if there is a local error, 0 if no RWQE is available,
2385  * otherwise return 1.
2386  *
2387  * Can be called from interrupt level.
2388  */
2389 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2390 {
2391         unsigned long flags;
2392         struct rvt_rq *rq;
2393         struct rvt_krwq *kwq = NULL;
2394         struct rvt_rwq *wq;
2395         struct rvt_srq *srq;
2396         struct rvt_rwqe *wqe;
2397         void (*handler)(struct ib_event *, void *);
2398         u32 tail;
2399         u32 head;
2400         int ret;
2401         void *ip = NULL;
2402
2403         if (qp->ibqp.srq) {
2404                 srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2405                 handler = srq->ibsrq.event_handler;
2406                 rq = &srq->rq;
2407                 ip = srq->ip;
2408         } else {
2409                 srq = NULL;
2410                 handler = NULL;
2411                 rq = &qp->r_rq;
2412                 ip = qp->ip;
2413         }
2414
2415         spin_lock_irqsave(&rq->kwq->c_lock, flags);
2416         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2417                 ret = 0;
2418                 goto unlock;
2419         }
2420         kwq = rq->kwq;
2421         if (ip) {
2422                 wq = rq->wq;
2423                 tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2424         } else {
2425                 tail = kwq->tail;
2426         }
2427
2428         /* Validate tail before using it since it is user writable. */
2429         if (tail >= rq->size)
2430                 tail = 0;
2431
2432         if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2433                 head = get_rvt_head(rq, ip);
2434                 kwq->count = get_count(rq, tail, head);
2435         }
2436         if (unlikely(kwq->count == 0)) {
2437                 ret = 0;
2438                 goto unlock;
2439         }
2440         /* Make sure entry is read after the count is read. */
2441         smp_rmb();
2442         wqe = rvt_get_rwqe_ptr(rq, tail);
2443         /*
2444          * Even though we update the tail index in memory, the verbs
2445          * consumer is not supposed to post more entries until a
2446          * completion is generated.
2447          */
2448         if (++tail >= rq->size)
2449                 tail = 0;
2450         if (ip)
2451                 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2452         else
2453                 kwq->tail = tail;
2454         if (!wr_id_only && !init_sge(qp, wqe)) {
2455                 ret = -1;
2456                 goto unlock;
2457         }
2458         qp->r_wr_id = wqe->wr_id;
2459
2460         kwq->count--;
2461         ret = 1;
2462         set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2463         if (handler) {
2464                 /*
2465                  * Validate head pointer value and compute
2466                  * the number of remaining WQEs.
2467                  */
2468                 if (kwq->count < srq->limit) {
2469                         kwq->count = get_count(rq, tail, get_rvt_head(rq, ip));
2470                         if (kwq->count < srq->limit) {
2471                                 struct ib_event ev;
2472
2473                                 srq->limit = 0;
2474                                 spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2475                                 ev.device = qp->ibqp.device;
2476                                 ev.element.srq = qp->ibqp.srq;
2477                                 ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2478                                 handler(&ev, srq->ibsrq.srq_context);
2479                                 goto bail;
2480                         }
2481                 }
2482         }
2483 unlock:
2484         spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2485 bail:
2486         return ret;
2487 }
2488 EXPORT_SYMBOL(rvt_get_rwqe);
2489
2490 /**
2491  * qp_comm_est - handle trap with QP established
2492  * @qp: the QP
2493  */
2494 void rvt_comm_est(struct rvt_qp *qp)
2495 {
2496         qp->r_flags |= RVT_R_COMM_EST;
2497         if (qp->ibqp.event_handler) {
2498                 struct ib_event ev;
2499
2500                 ev.device = qp->ibqp.device;
2501                 ev.element.qp = &qp->ibqp;
2502                 ev.event = IB_EVENT_COMM_EST;
2503                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2504         }
2505 }
2506 EXPORT_SYMBOL(rvt_comm_est);
2507
2508 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2509 {
2510         unsigned long flags;
2511         int lastwqe;
2512
2513         spin_lock_irqsave(&qp->s_lock, flags);
2514         lastwqe = rvt_error_qp(qp, err);
2515         spin_unlock_irqrestore(&qp->s_lock, flags);
2516
2517         if (lastwqe) {
2518                 struct ib_event ev;
2519
2520                 ev.device = qp->ibqp.device;
2521                 ev.element.qp = &qp->ibqp;
2522                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2523                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2524         }
2525 }
2526 EXPORT_SYMBOL(rvt_rc_error);
2527
2528 /*
2529  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2530  *  @index - the index
2531  *  return usec from an index into ib_rvt_rnr_table
2532  */
2533 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2534 {
2535         return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2536 }
2537 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2538
2539 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2540 {
2541         return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2542                                   IB_AETH_CREDIT_MASK];
2543 }
2544
2545 /*
2546  *  rvt_add_retry_timer_ext - add/start a retry timer
2547  *  @qp - the QP
2548  *  @shift - timeout shift to wait for multiple packets
2549  *  add a retry timer on the QP
2550  */
2551 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2552 {
2553         struct ib_qp *ibqp = &qp->ibqp;
2554         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2555
2556         lockdep_assert_held(&qp->s_lock);
2557         qp->s_flags |= RVT_S_TIMER;
2558        /* 4.096 usec. * (1 << qp->timeout) */
2559         qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2560                               (qp->timeout_jiffies << shift);
2561         add_timer(&qp->s_timer);
2562 }
2563 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2564
2565 /**
2566  * rvt_add_rnr_timer - add/start an rnr timer
2567  * @qp - the QP
2568  * @aeth - aeth of RNR timeout, simulated aeth for loopback
2569  * add an rnr timer on the QP
2570  */
2571 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2572 {
2573         u32 to;
2574
2575         lockdep_assert_held(&qp->s_lock);
2576         qp->s_flags |= RVT_S_WAIT_RNR;
2577         to = rvt_aeth_to_usec(aeth);
2578         trace_rvt_rnrnak_add(qp, to);
2579         hrtimer_start(&qp->s_rnr_timer,
2580                       ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2581 }
2582 EXPORT_SYMBOL(rvt_add_rnr_timer);
2583
2584 /**
2585  * rvt_stop_rc_timers - stop all timers
2586  * @qp - the QP
2587  * stop any pending timers
2588  */
2589 void rvt_stop_rc_timers(struct rvt_qp *qp)
2590 {
2591         lockdep_assert_held(&qp->s_lock);
2592         /* Remove QP from all timers */
2593         if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2594                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2595                 del_timer(&qp->s_timer);
2596                 hrtimer_try_to_cancel(&qp->s_rnr_timer);
2597         }
2598 }
2599 EXPORT_SYMBOL(rvt_stop_rc_timers);
2600
2601 /**
2602  * rvt_stop_rnr_timer - stop an rnr timer
2603  * @qp - the QP
2604  *
2605  * stop an rnr timer and return if the timer
2606  * had been pending.
2607  */
2608 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2609 {
2610         lockdep_assert_held(&qp->s_lock);
2611         /* Remove QP from rnr timer */
2612         if (qp->s_flags & RVT_S_WAIT_RNR) {
2613                 qp->s_flags &= ~RVT_S_WAIT_RNR;
2614                 trace_rvt_rnrnak_stop(qp, 0);
2615         }
2616 }
2617
2618 /**
2619  * rvt_del_timers_sync - wait for any timeout routines to exit
2620  * @qp - the QP
2621  */
2622 void rvt_del_timers_sync(struct rvt_qp *qp)
2623 {
2624         del_timer_sync(&qp->s_timer);
2625         hrtimer_cancel(&qp->s_rnr_timer);
2626 }
2627 EXPORT_SYMBOL(rvt_del_timers_sync);
2628
2629 /**
2630  * This is called from s_timer for missing responses.
2631  */
2632 static void rvt_rc_timeout(struct timer_list *t)
2633 {
2634         struct rvt_qp *qp = from_timer(qp, t, s_timer);
2635         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2636         unsigned long flags;
2637
2638         spin_lock_irqsave(&qp->r_lock, flags);
2639         spin_lock(&qp->s_lock);
2640         if (qp->s_flags & RVT_S_TIMER) {
2641                 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2642
2643                 qp->s_flags &= ~RVT_S_TIMER;
2644                 rvp->n_rc_timeouts++;
2645                 del_timer(&qp->s_timer);
2646                 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2647                 if (rdi->driver_f.notify_restart_rc)
2648                         rdi->driver_f.notify_restart_rc(qp,
2649                                                         qp->s_last_psn + 1,
2650                                                         1);
2651                 rdi->driver_f.schedule_send(qp);
2652         }
2653         spin_unlock(&qp->s_lock);
2654         spin_unlock_irqrestore(&qp->r_lock, flags);
2655 }
2656
2657 /*
2658  * This is called from s_timer for RNR timeouts.
2659  */
2660 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2661 {
2662         struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2663         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2664         unsigned long flags;
2665
2666         spin_lock_irqsave(&qp->s_lock, flags);
2667         rvt_stop_rnr_timer(qp);
2668         trace_rvt_rnrnak_timeout(qp, 0);
2669         rdi->driver_f.schedule_send(qp);
2670         spin_unlock_irqrestore(&qp->s_lock, flags);
2671         return HRTIMER_NORESTART;
2672 }
2673 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2674
2675 /**
2676  * rvt_qp_iter_init - initial for QP iteration
2677  * @rdi: rvt devinfo
2678  * @v: u64 value
2679  *
2680  * This returns an iterator suitable for iterating QPs
2681  * in the system.
2682  *
2683  * The @cb is a user defined callback and @v is a 64
2684  * bit value passed to and relevant for processing in the
2685  * @cb.  An example use case would be to alter QP processing
2686  * based on criteria not part of the rvt_qp.
2687  *
2688  * Use cases that require memory allocation to succeed
2689  * must preallocate appropriately.
2690  *
2691  * Return: a pointer to an rvt_qp_iter or NULL
2692  */
2693 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2694                                      u64 v,
2695                                      void (*cb)(struct rvt_qp *qp, u64 v))
2696 {
2697         struct rvt_qp_iter *i;
2698
2699         i = kzalloc(sizeof(*i), GFP_KERNEL);
2700         if (!i)
2701                 return NULL;
2702
2703         i->rdi = rdi;
2704         /* number of special QPs (SMI/GSI) for device */
2705         i->specials = rdi->ibdev.phys_port_cnt * 2;
2706         i->v = v;
2707         i->cb = cb;
2708
2709         return i;
2710 }
2711 EXPORT_SYMBOL(rvt_qp_iter_init);
2712
2713 /**
2714  * rvt_qp_iter_next - return the next QP in iter
2715  * @iter - the iterator
2716  *
2717  * Fine grained QP iterator suitable for use
2718  * with debugfs seq_file mechanisms.
2719  *
2720  * Updates iter->qp with the current QP when the return
2721  * value is 0.
2722  *
2723  * Return: 0 - iter->qp is valid 1 - no more QPs
2724  */
2725 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2726         __must_hold(RCU)
2727 {
2728         int n = iter->n;
2729         int ret = 1;
2730         struct rvt_qp *pqp = iter->qp;
2731         struct rvt_qp *qp;
2732         struct rvt_dev_info *rdi = iter->rdi;
2733
2734         /*
2735          * The approach is to consider the special qps
2736          * as additional table entries before the
2737          * real hash table.  Since the qp code sets
2738          * the qp->next hash link to NULL, this works just fine.
2739          *
2740          * iter->specials is 2 * # ports
2741          *
2742          * n = 0..iter->specials is the special qp indices
2743          *
2744          * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2745          * the potential hash bucket entries
2746          *
2747          */
2748         for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2749                 if (pqp) {
2750                         qp = rcu_dereference(pqp->next);
2751                 } else {
2752                         if (n < iter->specials) {
2753                                 struct rvt_ibport *rvp;
2754                                 int pidx;
2755
2756                                 pidx = n % rdi->ibdev.phys_port_cnt;
2757                                 rvp = rdi->ports[pidx];
2758                                 qp = rcu_dereference(rvp->qp[n & 1]);
2759                         } else {
2760                                 qp = rcu_dereference(
2761                                         rdi->qp_dev->qp_table[
2762                                                 (n - iter->specials)]);
2763                         }
2764                 }
2765                 pqp = qp;
2766                 if (qp) {
2767                         iter->qp = qp;
2768                         iter->n = n;
2769                         return 0;
2770                 }
2771         }
2772         return ret;
2773 }
2774 EXPORT_SYMBOL(rvt_qp_iter_next);
2775
2776 /**
2777  * rvt_qp_iter - iterate all QPs
2778  * @rdi - rvt devinfo
2779  * @v - a 64 bit value
2780  * @cb - a callback
2781  *
2782  * This provides a way for iterating all QPs.
2783  *
2784  * The @cb is a user defined callback and @v is a 64
2785  * bit value passed to and relevant for processing in the
2786  * cb.  An example use case would be to alter QP processing
2787  * based on criteria not part of the rvt_qp.
2788  *
2789  * The code has an internal iterator to simplify
2790  * non seq_file use cases.
2791  */
2792 void rvt_qp_iter(struct rvt_dev_info *rdi,
2793                  u64 v,
2794                  void (*cb)(struct rvt_qp *qp, u64 v))
2795 {
2796         int ret;
2797         struct rvt_qp_iter i = {
2798                 .rdi = rdi,
2799                 .specials = rdi->ibdev.phys_port_cnt * 2,
2800                 .v = v,
2801                 .cb = cb
2802         };
2803
2804         rcu_read_lock();
2805         do {
2806                 ret = rvt_qp_iter_next(&i);
2807                 if (!ret) {
2808                         rvt_get_qp(i.qp);
2809                         rcu_read_unlock();
2810                         i.cb(i.qp, i.v);
2811                         rcu_read_lock();
2812                         rvt_put_qp(i.qp);
2813                 }
2814         } while (!ret);
2815         rcu_read_unlock();
2816 }
2817 EXPORT_SYMBOL(rvt_qp_iter);
2818
2819 /*
2820  * This should be called with s_lock held.
2821  */
2822 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2823                        enum ib_wc_status status)
2824 {
2825         u32 old_last, last;
2826         struct rvt_dev_info *rdi;
2827
2828         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2829                 return;
2830         rdi = ib_to_rvt(qp->ibqp.device);
2831
2832         old_last = qp->s_last;
2833         trace_rvt_qp_send_completion(qp, wqe, old_last);
2834         last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2835                                     status);
2836         if (qp->s_acked == old_last)
2837                 qp->s_acked = last;
2838         if (qp->s_cur == old_last)
2839                 qp->s_cur = last;
2840         if (qp->s_tail == old_last)
2841                 qp->s_tail = last;
2842         if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2843                 qp->s_draining = 0;
2844 }
2845 EXPORT_SYMBOL(rvt_send_complete);
2846
2847 /**
2848  * rvt_copy_sge - copy data to SGE memory
2849  * @qp: associated QP
2850  * @ss: the SGE state
2851  * @data: the data to copy
2852  * @length: the length of the data
2853  * @release: boolean to release MR
2854  * @copy_last: do a separate copy of the last 8 bytes
2855  */
2856 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2857                   void *data, u32 length,
2858                   bool release, bool copy_last)
2859 {
2860         struct rvt_sge *sge = &ss->sge;
2861         int i;
2862         bool in_last = false;
2863         bool cacheless_copy = false;
2864         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2865         struct rvt_wss *wss = rdi->wss;
2866         unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2867
2868         if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2869                 cacheless_copy = length >= PAGE_SIZE;
2870         } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2871                 if (length >= PAGE_SIZE) {
2872                         /*
2873                          * NOTE: this *assumes*:
2874                          * o The first vaddr is the dest.
2875                          * o If multiple pages, then vaddr is sequential.
2876                          */
2877                         wss_insert(wss, sge->vaddr);
2878                         if (length >= (2 * PAGE_SIZE))
2879                                 wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2880
2881                         cacheless_copy = wss_exceeds_threshold(wss);
2882                 } else {
2883                         wss_advance_clean_counter(wss);
2884                 }
2885         }
2886
2887         if (copy_last) {
2888                 if (length > 8) {
2889                         length -= 8;
2890                 } else {
2891                         copy_last = false;
2892                         in_last = true;
2893                 }
2894         }
2895
2896 again:
2897         while (length) {
2898                 u32 len = rvt_get_sge_length(sge, length);
2899
2900                 WARN_ON_ONCE(len == 0);
2901                 if (unlikely(in_last)) {
2902                         /* enforce byte transfer ordering */
2903                         for (i = 0; i < len; i++)
2904                                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2905                 } else if (cacheless_copy) {
2906                         cacheless_memcpy(sge->vaddr, data, len);
2907                 } else {
2908                         memcpy(sge->vaddr, data, len);
2909                 }
2910                 rvt_update_sge(ss, len, release);
2911                 data += len;
2912                 length -= len;
2913         }
2914
2915         if (copy_last) {
2916                 copy_last = false;
2917                 in_last = true;
2918                 length = 8;
2919                 goto again;
2920         }
2921 }
2922 EXPORT_SYMBOL(rvt_copy_sge);
2923
2924 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2925                                           struct rvt_qp *sqp)
2926 {
2927         rvp->n_pkt_drops++;
2928         /*
2929          * For RC, the requester would timeout and retry so
2930          * shortcut the timeouts and just signal too many retries.
2931          */
2932         return sqp->ibqp.qp_type == IB_QPT_RC ?
2933                 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2934 }
2935
2936 /**
2937  * ruc_loopback - handle UC and RC loopback requests
2938  * @sqp: the sending QP
2939  *
2940  * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2941  * Note that although we are single threaded due to the send engine, we still
2942  * have to protect against post_send().  We don't have to worry about
2943  * receive interrupts since this is a connected protocol and all packets
2944  * will pass through here.
2945  */
2946 void rvt_ruc_loopback(struct rvt_qp *sqp)
2947 {
2948         struct rvt_ibport *rvp =  NULL;
2949         struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2950         struct rvt_qp *qp;
2951         struct rvt_swqe *wqe;
2952         struct rvt_sge *sge;
2953         unsigned long flags;
2954         struct ib_wc wc;
2955         u64 sdata;
2956         atomic64_t *maddr;
2957         enum ib_wc_status send_status;
2958         bool release;
2959         int ret;
2960         bool copy_last = false;
2961         int local_ops = 0;
2962
2963         rcu_read_lock();
2964         rvp = rdi->ports[sqp->port_num - 1];
2965
2966         /*
2967          * Note that we check the responder QP state after
2968          * checking the requester's state.
2969          */
2970
2971         qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2972                             sqp->remote_qpn);
2973
2974         spin_lock_irqsave(&sqp->s_lock, flags);
2975
2976         /* Return if we are already busy processing a work request. */
2977         if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2978             !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2979                 goto unlock;
2980
2981         sqp->s_flags |= RVT_S_BUSY;
2982
2983 again:
2984         if (sqp->s_last == READ_ONCE(sqp->s_head))
2985                 goto clr_busy;
2986         wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2987
2988         /* Return if it is not OK to start a new work request. */
2989         if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2990                 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2991                         goto clr_busy;
2992                 /* We are in the error state, flush the work request. */
2993                 send_status = IB_WC_WR_FLUSH_ERR;
2994                 goto flush_send;
2995         }
2996
2997         /*
2998          * We can rely on the entry not changing without the s_lock
2999          * being held until we update s_last.
3000          * We increment s_cur to indicate s_last is in progress.
3001          */
3002         if (sqp->s_last == sqp->s_cur) {
3003                 if (++sqp->s_cur >= sqp->s_size)
3004                         sqp->s_cur = 0;
3005         }
3006         spin_unlock_irqrestore(&sqp->s_lock, flags);
3007
3008         if (!qp) {
3009                 send_status = loopback_qp_drop(rvp, sqp);
3010                 goto serr_no_r_lock;
3011         }
3012         spin_lock_irqsave(&qp->r_lock, flags);
3013         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
3014             qp->ibqp.qp_type != sqp->ibqp.qp_type) {
3015                 send_status = loopback_qp_drop(rvp, sqp);
3016                 goto serr;
3017         }
3018
3019         memset(&wc, 0, sizeof(wc));
3020         send_status = IB_WC_SUCCESS;
3021
3022         release = true;
3023         sqp->s_sge.sge = wqe->sg_list[0];
3024         sqp->s_sge.sg_list = wqe->sg_list + 1;
3025         sqp->s_sge.num_sge = wqe->wr.num_sge;
3026         sqp->s_len = wqe->length;
3027         switch (wqe->wr.opcode) {
3028         case IB_WR_REG_MR:
3029                 goto send_comp;
3030
3031         case IB_WR_LOCAL_INV:
3032                 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
3033                         if (rvt_invalidate_rkey(sqp,
3034                                                 wqe->wr.ex.invalidate_rkey))
3035                                 send_status = IB_WC_LOC_PROT_ERR;
3036                         local_ops = 1;
3037                 }
3038                 goto send_comp;
3039
3040         case IB_WR_SEND_WITH_INV:
3041         case IB_WR_SEND_WITH_IMM:
3042         case IB_WR_SEND:
3043                 ret = rvt_get_rwqe(qp, false);
3044                 if (ret < 0)
3045                         goto op_err;
3046                 if (!ret)
3047                         goto rnr_nak;
3048                 if (wqe->length > qp->r_len)
3049                         goto inv_err;
3050                 switch (wqe->wr.opcode) {
3051                 case IB_WR_SEND_WITH_INV:
3052                         if (!rvt_invalidate_rkey(qp,
3053                                                  wqe->wr.ex.invalidate_rkey)) {
3054                                 wc.wc_flags = IB_WC_WITH_INVALIDATE;
3055                                 wc.ex.invalidate_rkey =
3056                                         wqe->wr.ex.invalidate_rkey;
3057                         }
3058                         break;
3059                 case IB_WR_SEND_WITH_IMM:
3060                         wc.wc_flags = IB_WC_WITH_IMM;
3061                         wc.ex.imm_data = wqe->wr.ex.imm_data;
3062                         break;
3063                 default:
3064                         break;
3065                 }
3066                 break;
3067
3068         case IB_WR_RDMA_WRITE_WITH_IMM:
3069                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3070                         goto inv_err;
3071                 wc.wc_flags = IB_WC_WITH_IMM;
3072                 wc.ex.imm_data = wqe->wr.ex.imm_data;
3073                 ret = rvt_get_rwqe(qp, true);
3074                 if (ret < 0)
3075                         goto op_err;
3076                 if (!ret)
3077                         goto rnr_nak;
3078                 /* skip copy_last set and qp_access_flags recheck */
3079                 goto do_write;
3080         case IB_WR_RDMA_WRITE:
3081                 copy_last = rvt_is_user_qp(qp);
3082                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3083                         goto inv_err;
3084 do_write:
3085                 if (wqe->length == 0)
3086                         break;
3087                 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3088                                           wqe->rdma_wr.remote_addr,
3089                                           wqe->rdma_wr.rkey,
3090                                           IB_ACCESS_REMOTE_WRITE)))
3091                         goto acc_err;
3092                 qp->r_sge.sg_list = NULL;
3093                 qp->r_sge.num_sge = 1;
3094                 qp->r_sge.total_len = wqe->length;
3095                 break;
3096
3097         case IB_WR_RDMA_READ:
3098                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3099                         goto inv_err;
3100                 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3101                                           wqe->rdma_wr.remote_addr,
3102                                           wqe->rdma_wr.rkey,
3103                                           IB_ACCESS_REMOTE_READ)))
3104                         goto acc_err;
3105                 release = false;
3106                 sqp->s_sge.sg_list = NULL;
3107                 sqp->s_sge.num_sge = 1;
3108                 qp->r_sge.sge = wqe->sg_list[0];
3109                 qp->r_sge.sg_list = wqe->sg_list + 1;
3110                 qp->r_sge.num_sge = wqe->wr.num_sge;
3111                 qp->r_sge.total_len = wqe->length;
3112                 break;
3113
3114         case IB_WR_ATOMIC_CMP_AND_SWP:
3115         case IB_WR_ATOMIC_FETCH_AND_ADD:
3116                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3117                         goto inv_err;
3118                 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3119                                           wqe->atomic_wr.remote_addr,
3120                                           wqe->atomic_wr.rkey,
3121                                           IB_ACCESS_REMOTE_ATOMIC)))
3122                         goto acc_err;
3123                 /* Perform atomic OP and save result. */
3124                 maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3125                 sdata = wqe->atomic_wr.compare_add;
3126                 *(u64 *)sqp->s_sge.sge.vaddr =
3127                         (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3128                         (u64)atomic64_add_return(sdata, maddr) - sdata :
3129                         (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3130                                       sdata, wqe->atomic_wr.swap);
3131                 rvt_put_mr(qp->r_sge.sge.mr);
3132                 qp->r_sge.num_sge = 0;
3133                 goto send_comp;
3134
3135         default:
3136                 send_status = IB_WC_LOC_QP_OP_ERR;
3137                 goto serr;
3138         }
3139
3140         sge = &sqp->s_sge.sge;
3141         while (sqp->s_len) {
3142                 u32 len = rvt_get_sge_length(sge, sqp->s_len);
3143
3144                 WARN_ON_ONCE(len == 0);
3145                 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3146                              len, release, copy_last);
3147                 rvt_update_sge(&sqp->s_sge, len, !release);
3148                 sqp->s_len -= len;
3149         }
3150         if (release)
3151                 rvt_put_ss(&qp->r_sge);
3152
3153         if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3154                 goto send_comp;
3155
3156         if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3157                 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3158         else
3159                 wc.opcode = IB_WC_RECV;
3160         wc.wr_id = qp->r_wr_id;
3161         wc.status = IB_WC_SUCCESS;
3162         wc.byte_len = wqe->length;
3163         wc.qp = &qp->ibqp;
3164         wc.src_qp = qp->remote_qpn;
3165         wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3166         wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3167         wc.port_num = 1;
3168         /* Signal completion event if the solicited bit is set. */
3169         rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3170
3171 send_comp:
3172         spin_unlock_irqrestore(&qp->r_lock, flags);
3173         spin_lock_irqsave(&sqp->s_lock, flags);
3174         rvp->n_loop_pkts++;
3175 flush_send:
3176         sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3177         rvt_send_complete(sqp, wqe, send_status);
3178         if (local_ops) {
3179                 atomic_dec(&sqp->local_ops_pending);
3180                 local_ops = 0;
3181         }
3182         goto again;
3183
3184 rnr_nak:
3185         /* Handle RNR NAK */
3186         if (qp->ibqp.qp_type == IB_QPT_UC)
3187                 goto send_comp;
3188         rvp->n_rnr_naks++;
3189         /*
3190          * Note: we don't need the s_lock held since the BUSY flag
3191          * makes this single threaded.
3192          */
3193         if (sqp->s_rnr_retry == 0) {
3194                 send_status = IB_WC_RNR_RETRY_EXC_ERR;
3195                 goto serr;
3196         }
3197         if (sqp->s_rnr_retry_cnt < 7)
3198                 sqp->s_rnr_retry--;
3199         spin_unlock_irqrestore(&qp->r_lock, flags);
3200         spin_lock_irqsave(&sqp->s_lock, flags);
3201         if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3202                 goto clr_busy;
3203         rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3204                                 IB_AETH_CREDIT_SHIFT);
3205         goto clr_busy;
3206
3207 op_err:
3208         send_status = IB_WC_REM_OP_ERR;
3209         wc.status = IB_WC_LOC_QP_OP_ERR;
3210         goto err;
3211
3212 inv_err:
3213         send_status =
3214                 sqp->ibqp.qp_type == IB_QPT_RC ?
3215                         IB_WC_REM_INV_REQ_ERR :
3216                         IB_WC_SUCCESS;
3217         wc.status = IB_WC_LOC_QP_OP_ERR;
3218         goto err;
3219
3220 acc_err:
3221         send_status = IB_WC_REM_ACCESS_ERR;
3222         wc.status = IB_WC_LOC_PROT_ERR;
3223 err:
3224         /* responder goes to error state */
3225         rvt_rc_error(qp, wc.status);
3226
3227 serr:
3228         spin_unlock_irqrestore(&qp->r_lock, flags);
3229 serr_no_r_lock:
3230         spin_lock_irqsave(&sqp->s_lock, flags);
3231         rvt_send_complete(sqp, wqe, send_status);
3232         if (sqp->ibqp.qp_type == IB_QPT_RC) {
3233                 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3234
3235                 sqp->s_flags &= ~RVT_S_BUSY;
3236                 spin_unlock_irqrestore(&sqp->s_lock, flags);
3237                 if (lastwqe) {
3238                         struct ib_event ev;
3239
3240                         ev.device = sqp->ibqp.device;
3241                         ev.element.qp = &sqp->ibqp;
3242                         ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3243                         sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3244                 }
3245                 goto done;
3246         }
3247 clr_busy:
3248         sqp->s_flags &= ~RVT_S_BUSY;
3249 unlock:
3250         spin_unlock_irqrestore(&sqp->s_lock, flags);
3251 done:
3252         rcu_read_unlock();
3253 }
3254 EXPORT_SYMBOL(rvt_ruc_loopback);
This page took 0.236392 seconds and 4 git commands to generate.