2 * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34 #include <linux/slab.h>
35 #include <rdma/ib_user_verbs.h>
39 static u32 convert_access(int acc)
41 return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC : 0) |
42 (acc & IB_ACCESS_REMOTE_WRITE ? MLX4_PERM_REMOTE_WRITE : 0) |
43 (acc & IB_ACCESS_REMOTE_READ ? MLX4_PERM_REMOTE_READ : 0) |
44 (acc & IB_ACCESS_LOCAL_WRITE ? MLX4_PERM_LOCAL_WRITE : 0) |
45 (acc & IB_ACCESS_MW_BIND ? MLX4_PERM_BIND_MW : 0) |
49 static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type)
52 case IB_MW_TYPE_1: return MLX4_MW_TYPE_1;
53 case IB_MW_TYPE_2: return MLX4_MW_TYPE_2;
58 struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
60 struct mlx4_ib_mr *mr;
63 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
65 return ERR_PTR(-ENOMEM);
67 err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
68 ~0ull, convert_access(acc), 0, 0, &mr->mmr);
72 err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
76 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
82 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
91 MLX4_MAX_MTT_SHIFT = 31
94 static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev,
96 u64 mtt_size, u64 mtt_shift, u64 len,
97 u64 cur_start_addr, u64 *pages,
98 int *start_index, int *npages)
100 u64 cur_end_addr = cur_start_addr + len;
101 u64 cur_end_addr_aligned = 0;
106 len += (cur_start_addr & (mtt_size - 1ULL));
107 cur_end_addr_aligned = round_up(cur_end_addr, mtt_size);
108 len += (cur_end_addr_aligned - cur_end_addr);
109 if (len & (mtt_size - 1ULL)) {
110 pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n",
115 mtt_entries = (len >> mtt_shift);
118 * Align the MTT start address to the mtt_size.
119 * Required to handle cases when the MR starts in the middle of an MTT
120 * record. Was not required in old code since the physical addresses
121 * provided by the dma subsystem were page aligned, which was also the
124 cur_start_addr = round_down(cur_start_addr, mtt_size);
125 /* A new block is started ... */
126 for (k = 0; k < mtt_entries; ++k) {
127 pages[*npages] = cur_start_addr + (mtt_size * k);
130 * Be friendly to mlx4_write_mtt() and pass it chunks of
133 if (*npages == PAGE_SIZE / sizeof(u64)) {
134 err = mlx4_write_mtt(dev->dev, mtt, *start_index,
139 (*start_index) += *npages;
147 static inline u64 alignment_of(u64 ptr)
149 return ilog2(ptr & (~(ptr - 1)));
152 static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start,
153 u64 current_block_end,
156 /* Check whether the alignment of the new block is aligned as well as
157 * the previous block.
158 * Block address must start with zeros till size of entity_size.
160 if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0)
162 * It is not as well aligned as the previous block-reduce the
163 * mtt size accordingly. Here we take the last right bit which
166 block_shift = alignment_of(next_block_start);
169 * Check whether the alignment of the end of previous block - is it
170 * aligned as well as the start of the block
172 if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0)
174 * It is not as well aligned as the start of the block -
175 * reduce the mtt size accordingly.
177 block_shift = alignment_of(current_block_end);
182 int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
183 struct ib_umem *umem)
189 u64 cur_start_addr = 0;
193 struct scatterlist *sg;
196 pages = (u64 *) __get_free_page(GFP_KERNEL);
200 mtt_shift = mtt->page_shift;
201 mtt_size = 1ULL << mtt_shift;
203 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
204 if (cur_start_addr + len == sg_dma_address(sg)) {
205 /* still the same block */
206 len += sg_dma_len(sg);
210 * A new block is started ...
211 * If len is malaligned, write an extra mtt entry to cover the
212 * misaligned area (round up the division)
214 err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
222 cur_start_addr = sg_dma_address(sg);
223 len = sg_dma_len(sg);
226 /* Handle the last block */
229 * If len is malaligned, write an extra mtt entry to cover
230 * the misaligned area (round up the division)
232 err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
234 cur_start_addr, pages,
235 &start_index, &npages);
241 err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages);
244 free_page((unsigned long) pages);
249 * Calculate optimal mtt size based on contiguous pages.
250 * Function will return also the number of pages that are not aligned to the
251 * calculated mtt_size to be added to total number of pages. For that we should
252 * check the first chunk length & last chunk length and if not aligned to
253 * mtt_size we should increment the non_aligned_pages number. All chunks in the
254 * middle already handled as part of mtt shift calculation for both their start
257 int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va,
260 u64 block_shift = MLX4_MAX_MTT_SHIFT;
261 u64 min_shift = PAGE_SHIFT;
262 u64 last_block_aligned_end = 0;
263 u64 current_block_start = 0;
264 u64 first_block_start = 0;
265 u64 current_block_len = 0;
266 u64 last_block_end = 0;
267 struct scatterlist *sg;
268 u64 current_block_end;
269 u64 misalignment_bits;
270 u64 next_block_start;
274 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
276 * Initialization - save the first chunk start as the
277 * current_block_start - block means contiguous pages.
279 if (current_block_len == 0 && current_block_start == 0) {
280 current_block_start = sg_dma_address(sg);
281 first_block_start = current_block_start;
283 * Find the bits that are different between the physical
284 * address and the virtual address for the start of the
286 * umem_get aligned the start_va to a page boundary.
287 * Therefore, we need to align the start va to the same
289 * misalignment_bits is needed to handle the case of a
290 * single memory region. In this case, the rest of the
291 * logic will not reduce the block size. If we use a
292 * block size which is bigger than the alignment of the
293 * misalignment bits, we might use the virtual page
294 * number instead of the physical page number, resulting
295 * in access to the wrong data.
298 (start_va & (~(((u64)(PAGE_SIZE)) - 1ULL))) ^
300 block_shift = min(alignment_of(misalignment_bits),
305 * Go over the scatter entries and check if they continue the
306 * previous scatter entry.
308 next_block_start = sg_dma_address(sg);
309 current_block_end = current_block_start + current_block_len;
310 /* If we have a split (non-contig.) between two blocks */
311 if (current_block_end != next_block_start) {
312 block_shift = mlx4_ib_umem_calc_block_mtt
318 * If we reached the minimum shift for 4k page we stop
321 if (block_shift <= min_shift)
325 * If not saved yet we are in first block - we save the
326 * length of first block to calculate the
327 * non_aligned_pages number at the end.
329 total_len += current_block_len;
331 /* Start a new block */
332 current_block_start = next_block_start;
333 current_block_len = sg_dma_len(sg);
336 /* The scatter entry is another part of the current block,
337 * increase the block size.
338 * An entry in the scatter can be larger than 4k (page) as of
339 * dma mapping which merge some blocks together.
341 current_block_len += sg_dma_len(sg);
344 /* Account for the last block in the total len */
345 total_len += current_block_len;
346 /* Add to the first block the misalignment that it suffers from. */
347 total_len += (first_block_start & ((1ULL << block_shift) - 1ULL));
348 last_block_end = current_block_start + current_block_len;
349 last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift);
350 total_len += (last_block_aligned_end - last_block_end);
352 if (total_len & ((1ULL << block_shift) - 1ULL))
353 pr_warn("misaligned total length detected (%llu, %llu)!",
354 total_len, block_shift);
356 *num_of_mtts = total_len >> block_shift;
358 if (block_shift < min_shift) {
360 * If shift is less than the min we set a warning and return the
363 pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift);
365 block_shift = min_shift;
370 static struct ib_umem *mlx4_get_umem_mr(struct ib_udata *udata, u64 start,
371 u64 length, int access_flags)
374 * Force registering the memory as writable if the underlying pages
375 * are writable. This is so rereg can change the access permissions
376 * from readable to writable without having to run through ib_umem_get
379 if (!ib_access_writable(access_flags)) {
380 unsigned long untagged_start = untagged_addr(start);
381 struct vm_area_struct *vma;
383 down_read(¤t->mm->mmap_sem);
385 * FIXME: Ideally this would iterate over all the vmas that
386 * cover the memory, but for now it requires a single vma to
387 * entirely cover the MR to support RO mappings.
389 vma = find_vma(current->mm, untagged_start);
390 if (vma && vma->vm_end >= untagged_start + length &&
391 vma->vm_start <= untagged_start) {
392 if (vma->vm_flags & VM_WRITE)
393 access_flags |= IB_ACCESS_LOCAL_WRITE;
395 access_flags |= IB_ACCESS_LOCAL_WRITE;
398 up_read(¤t->mm->mmap_sem);
401 return ib_umem_get(udata, start, length, access_flags, 0);
404 struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
405 u64 virt_addr, int access_flags,
406 struct ib_udata *udata)
408 struct mlx4_ib_dev *dev = to_mdev(pd->device);
409 struct mlx4_ib_mr *mr;
414 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
416 return ERR_PTR(-ENOMEM);
418 mr->umem = mlx4_get_umem_mr(udata, start, length, access_flags);
419 if (IS_ERR(mr->umem)) {
420 err = PTR_ERR(mr->umem);
424 n = ib_umem_page_count(mr->umem);
425 shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n);
427 err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
428 convert_access(access_flags), n, shift, &mr->mmr);
432 err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
436 err = mlx4_mr_enable(dev->dev, &mr->mmr);
440 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
441 mr->ibmr.length = length;
442 mr->ibmr.iova = virt_addr;
443 mr->ibmr.page_size = 1U << shift;
448 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
451 ib_umem_release(mr->umem);
459 int mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags,
460 u64 start, u64 length, u64 virt_addr,
461 int mr_access_flags, struct ib_pd *pd,
462 struct ib_udata *udata)
464 struct mlx4_ib_dev *dev = to_mdev(mr->device);
465 struct mlx4_ib_mr *mmr = to_mmr(mr);
466 struct mlx4_mpt_entry *mpt_entry;
467 struct mlx4_mpt_entry **pmpt_entry = &mpt_entry;
470 /* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs,
471 * we assume that the calls can't run concurrently. Otherwise, a
474 err = mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry);
479 if (flags & IB_MR_REREG_PD) {
480 err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry,
484 goto release_mpt_entry;
487 if (flags & IB_MR_REREG_ACCESS) {
488 if (ib_access_writable(mr_access_flags) &&
489 !mmr->umem->writable) {
491 goto release_mpt_entry;
494 err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry,
495 convert_access(mr_access_flags));
498 goto release_mpt_entry;
501 if (flags & IB_MR_REREG_TRANS) {
505 mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
506 ib_umem_release(mmr->umem);
507 mmr->umem = mlx4_get_umem_mr(udata, start, length,
509 if (IS_ERR(mmr->umem)) {
510 err = PTR_ERR(mmr->umem);
511 /* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */
513 goto release_mpt_entry;
515 n = ib_umem_page_count(mmr->umem);
518 err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr,
519 virt_addr, length, n, shift,
522 ib_umem_release(mmr->umem);
523 goto release_mpt_entry;
525 mmr->mmr.iova = virt_addr;
526 mmr->mmr.size = length;
528 err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem);
530 mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
531 ib_umem_release(mmr->umem);
532 goto release_mpt_entry;
536 /* If we couldn't transfer the MR to the HCA, just remember to
537 * return a failure. But dereg_mr will free the resources.
539 err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry);
540 if (!err && flags & IB_MR_REREG_ACCESS)
541 mmr->mmr.access = mr_access_flags;
544 mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry);
550 mlx4_alloc_priv_pages(struct ib_device *device,
551 struct mlx4_ib_mr *mr,
556 /* Ensure that size is aligned to DMA cacheline
558 * max_pages is limited to MLX4_MAX_FAST_REG_PAGES
559 * so page_map_size will never cross PAGE_SIZE.
561 mr->page_map_size = roundup(max_pages * sizeof(u64),
562 MLX4_MR_PAGES_ALIGN);
564 /* Prevent cross page boundary allocation. */
565 mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
569 mr->page_map = dma_map_single(device->dev.parent, mr->pages,
570 mr->page_map_size, DMA_TO_DEVICE);
572 if (dma_mapping_error(device->dev.parent, mr->page_map)) {
580 free_page((unsigned long)mr->pages);
585 mlx4_free_priv_pages(struct mlx4_ib_mr *mr)
588 struct ib_device *device = mr->ibmr.device;
590 dma_unmap_single(device->dev.parent, mr->page_map,
591 mr->page_map_size, DMA_TO_DEVICE);
592 free_page((unsigned long)mr->pages);
597 int mlx4_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
599 struct mlx4_ib_mr *mr = to_mmr(ibmr);
602 mlx4_free_priv_pages(mr);
604 ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
608 ib_umem_release(mr->umem);
614 struct ib_mw *mlx4_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
615 struct ib_udata *udata)
617 struct mlx4_ib_dev *dev = to_mdev(pd->device);
618 struct mlx4_ib_mw *mw;
621 mw = kmalloc(sizeof(*mw), GFP_KERNEL);
623 return ERR_PTR(-ENOMEM);
625 err = mlx4_mw_alloc(dev->dev, to_mpd(pd)->pdn,
626 to_mlx4_type(type), &mw->mmw);
630 err = mlx4_mw_enable(dev->dev, &mw->mmw);
634 mw->ibmw.rkey = mw->mmw.key;
639 mlx4_mw_free(dev->dev, &mw->mmw);
647 int mlx4_ib_dealloc_mw(struct ib_mw *ibmw)
649 struct mlx4_ib_mw *mw = to_mmw(ibmw);
651 mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw);
657 struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
658 u32 max_num_sg, struct ib_udata *udata)
660 struct mlx4_ib_dev *dev = to_mdev(pd->device);
661 struct mlx4_ib_mr *mr;
664 if (mr_type != IB_MR_TYPE_MEM_REG ||
665 max_num_sg > MLX4_MAX_FAST_REG_PAGES)
666 return ERR_PTR(-EINVAL);
668 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
670 return ERR_PTR(-ENOMEM);
672 err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
673 max_num_sg, 0, &mr->mmr);
677 err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg);
681 mr->max_pages = max_num_sg;
682 err = mlx4_mr_enable(dev->dev, &mr->mmr);
686 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
692 mr->ibmr.device = pd->device;
693 mlx4_free_priv_pages(mr);
695 (void) mlx4_mr_free(dev->dev, &mr->mmr);
701 struct ib_fmr *mlx4_ib_fmr_alloc(struct ib_pd *pd, int acc,
702 struct ib_fmr_attr *fmr_attr)
704 struct mlx4_ib_dev *dev = to_mdev(pd->device);
705 struct mlx4_ib_fmr *fmr;
708 fmr = kmalloc(sizeof *fmr, GFP_KERNEL);
710 return ERR_PTR(-ENOMEM);
712 err = mlx4_fmr_alloc(dev->dev, to_mpd(pd)->pdn, convert_access(acc),
713 fmr_attr->max_pages, fmr_attr->max_maps,
714 fmr_attr->page_shift, &fmr->mfmr);
718 err = mlx4_fmr_enable(to_mdev(pd->device)->dev, &fmr->mfmr);
722 fmr->ibfmr.rkey = fmr->ibfmr.lkey = fmr->mfmr.mr.key;
727 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &fmr->mfmr.mr);
735 int mlx4_ib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
736 int npages, u64 iova)
738 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
739 struct mlx4_ib_dev *dev = to_mdev(ifmr->ibfmr.device);
741 return mlx4_map_phys_fmr(dev->dev, &ifmr->mfmr, page_list, npages, iova,
742 &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
745 int mlx4_ib_unmap_fmr(struct list_head *fmr_list)
747 struct ib_fmr *ibfmr;
749 struct mlx4_dev *mdev = NULL;
751 list_for_each_entry(ibfmr, fmr_list, list) {
752 if (mdev && to_mdev(ibfmr->device)->dev != mdev)
754 mdev = to_mdev(ibfmr->device)->dev;
760 list_for_each_entry(ibfmr, fmr_list, list) {
761 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
763 mlx4_fmr_unmap(mdev, &ifmr->mfmr, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
767 * Make sure all MPT status updates are visible before issuing
768 * SYNC_TPT firmware command.
772 err = mlx4_SYNC_TPT(mdev);
774 pr_warn("SYNC_TPT error %d when "
775 "unmapping FMRs\n", err);
780 int mlx4_ib_fmr_dealloc(struct ib_fmr *ibfmr)
782 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
783 struct mlx4_ib_dev *dev = to_mdev(ibfmr->device);
786 err = mlx4_fmr_free(dev->dev, &ifmr->mfmr);
794 static int mlx4_set_page(struct ib_mr *ibmr, u64 addr)
796 struct mlx4_ib_mr *mr = to_mmr(ibmr);
798 if (unlikely(mr->npages == mr->max_pages))
801 mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT);
806 int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
807 unsigned int *sg_offset)
809 struct mlx4_ib_mr *mr = to_mmr(ibmr);
814 ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
815 mr->page_map_size, DMA_TO_DEVICE);
817 rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
819 ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
820 mr->page_map_size, DMA_TO_DEVICE);