1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2010,2015 Broadcom
4 * Copyright (C) 2012 Stephen Warren
8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
10 * The clock tree on the 2835 has several levels. There's a root
11 * oscillator running at 19.2Mhz. After the oscillator there are 5
12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13 * and "HDMI displays". Those 5 PLLs each can divide their output to
14 * produce up to 4 channels. Finally, there is the level of clocks to
15 * be consumed by other hardware components (like "H264" or "HDMI
16 * state machine"), which divide off of some subset of the PLL
19 * All of the clocks in the tree are exposed in the DT, because the DT
20 * may want to make assignments of the final layer of clocks to the
21 * PLL channels, and some components of the hardware will actually
22 * skip layers of the tree (for example, the pixel clock comes
23 * directly from the PLLH PIX channel without using a CM_*CTL clock
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
33 #include <linux/module.h>
34 #include <linux/of_device.h>
35 #include <linux/platform_device.h>
36 #include <linux/slab.h>
37 #include <dt-bindings/clock/bcm2835.h>
39 #define CM_PASSWORD 0x5a000000
41 #define CM_GNRICCTL 0x000
42 #define CM_GNRICDIV 0x004
43 # define CM_DIV_FRAC_BITS 12
44 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
46 #define CM_VPUCTL 0x008
47 #define CM_VPUDIV 0x00c
48 #define CM_SYSCTL 0x010
49 #define CM_SYSDIV 0x014
50 #define CM_PERIACTL 0x018
51 #define CM_PERIADIV 0x01c
52 #define CM_PERIICTL 0x020
53 #define CM_PERIIDIV 0x024
54 #define CM_H264CTL 0x028
55 #define CM_H264DIV 0x02c
56 #define CM_ISPCTL 0x030
57 #define CM_ISPDIV 0x034
58 #define CM_V3DCTL 0x038
59 #define CM_V3DDIV 0x03c
60 #define CM_CAM0CTL 0x040
61 #define CM_CAM0DIV 0x044
62 #define CM_CAM1CTL 0x048
63 #define CM_CAM1DIV 0x04c
64 #define CM_CCP2CTL 0x050
65 #define CM_CCP2DIV 0x054
66 #define CM_DSI0ECTL 0x058
67 #define CM_DSI0EDIV 0x05c
68 #define CM_DSI0PCTL 0x060
69 #define CM_DSI0PDIV 0x064
70 #define CM_DPICTL 0x068
71 #define CM_DPIDIV 0x06c
72 #define CM_GP0CTL 0x070
73 #define CM_GP0DIV 0x074
74 #define CM_GP1CTL 0x078
75 #define CM_GP1DIV 0x07c
76 #define CM_GP2CTL 0x080
77 #define CM_GP2DIV 0x084
78 #define CM_HSMCTL 0x088
79 #define CM_HSMDIV 0x08c
80 #define CM_OTPCTL 0x090
81 #define CM_OTPDIV 0x094
82 #define CM_PCMCTL 0x098
83 #define CM_PCMDIV 0x09c
84 #define CM_PWMCTL 0x0a0
85 #define CM_PWMDIV 0x0a4
86 #define CM_SLIMCTL 0x0a8
87 #define CM_SLIMDIV 0x0ac
88 #define CM_SMICTL 0x0b0
89 #define CM_SMIDIV 0x0b4
90 /* no definition for 0x0b8 and 0x0bc */
91 #define CM_TCNTCTL 0x0c0
92 # define CM_TCNT_SRC1_SHIFT 12
93 #define CM_TCNTCNT 0x0c4
94 #define CM_TECCTL 0x0c8
95 #define CM_TECDIV 0x0cc
96 #define CM_TD0CTL 0x0d0
97 #define CM_TD0DIV 0x0d4
98 #define CM_TD1CTL 0x0d8
99 #define CM_TD1DIV 0x0dc
100 #define CM_TSENSCTL 0x0e0
101 #define CM_TSENSDIV 0x0e4
102 #define CM_TIMERCTL 0x0e8
103 #define CM_TIMERDIV 0x0ec
104 #define CM_UARTCTL 0x0f0
105 #define CM_UARTDIV 0x0f4
106 #define CM_VECCTL 0x0f8
107 #define CM_VECDIV 0x0fc
108 #define CM_PULSECTL 0x190
109 #define CM_PULSEDIV 0x194
110 #define CM_SDCCTL 0x1a8
111 #define CM_SDCDIV 0x1ac
112 #define CM_ARMCTL 0x1b0
113 #define CM_AVEOCTL 0x1b8
114 #define CM_AVEODIV 0x1bc
115 #define CM_EMMCCTL 0x1c0
116 #define CM_EMMCDIV 0x1c4
117 #define CM_EMMC2CTL 0x1d0
118 #define CM_EMMC2DIV 0x1d4
120 /* General bits for the CM_*CTL regs */
121 # define CM_ENABLE BIT(4)
122 # define CM_KILL BIT(5)
123 # define CM_GATE_BIT 6
124 # define CM_GATE BIT(CM_GATE_BIT)
125 # define CM_BUSY BIT(7)
126 # define CM_BUSYD BIT(8)
127 # define CM_FRAC BIT(9)
128 # define CM_SRC_SHIFT 0
129 # define CM_SRC_BITS 4
130 # define CM_SRC_MASK 0xf
131 # define CM_SRC_GND 0
132 # define CM_SRC_OSC 1
133 # define CM_SRC_TESTDEBUG0 2
134 # define CM_SRC_TESTDEBUG1 3
135 # define CM_SRC_PLLA_CORE 4
136 # define CM_SRC_PLLA_PER 4
137 # define CM_SRC_PLLC_CORE0 5
138 # define CM_SRC_PLLC_PER 5
139 # define CM_SRC_PLLC_CORE1 8
140 # define CM_SRC_PLLD_CORE 6
141 # define CM_SRC_PLLD_PER 6
142 # define CM_SRC_PLLH_AUX 7
143 # define CM_SRC_PLLC_CORE1 8
144 # define CM_SRC_PLLC_CORE2 9
146 #define CM_OSCCOUNT 0x100
148 #define CM_PLLA 0x104
149 # define CM_PLL_ANARST BIT(8)
150 # define CM_PLLA_HOLDPER BIT(7)
151 # define CM_PLLA_LOADPER BIT(6)
152 # define CM_PLLA_HOLDCORE BIT(5)
153 # define CM_PLLA_LOADCORE BIT(4)
154 # define CM_PLLA_HOLDCCP2 BIT(3)
155 # define CM_PLLA_LOADCCP2 BIT(2)
156 # define CM_PLLA_HOLDDSI0 BIT(1)
157 # define CM_PLLA_LOADDSI0 BIT(0)
159 #define CM_PLLC 0x108
160 # define CM_PLLC_HOLDPER BIT(7)
161 # define CM_PLLC_LOADPER BIT(6)
162 # define CM_PLLC_HOLDCORE2 BIT(5)
163 # define CM_PLLC_LOADCORE2 BIT(4)
164 # define CM_PLLC_HOLDCORE1 BIT(3)
165 # define CM_PLLC_LOADCORE1 BIT(2)
166 # define CM_PLLC_HOLDCORE0 BIT(1)
167 # define CM_PLLC_LOADCORE0 BIT(0)
169 #define CM_PLLD 0x10c
170 # define CM_PLLD_HOLDPER BIT(7)
171 # define CM_PLLD_LOADPER BIT(6)
172 # define CM_PLLD_HOLDCORE BIT(5)
173 # define CM_PLLD_LOADCORE BIT(4)
174 # define CM_PLLD_HOLDDSI1 BIT(3)
175 # define CM_PLLD_LOADDSI1 BIT(2)
176 # define CM_PLLD_HOLDDSI0 BIT(1)
177 # define CM_PLLD_LOADDSI0 BIT(0)
179 #define CM_PLLH 0x110
180 # define CM_PLLH_LOADRCAL BIT(2)
181 # define CM_PLLH_LOADAUX BIT(1)
182 # define CM_PLLH_LOADPIX BIT(0)
184 #define CM_LOCK 0x114
185 # define CM_LOCK_FLOCKH BIT(12)
186 # define CM_LOCK_FLOCKD BIT(11)
187 # define CM_LOCK_FLOCKC BIT(10)
188 # define CM_LOCK_FLOCKB BIT(9)
189 # define CM_LOCK_FLOCKA BIT(8)
191 #define CM_EVENT 0x118
192 #define CM_DSI1ECTL 0x158
193 #define CM_DSI1EDIV 0x15c
194 #define CM_DSI1PCTL 0x160
195 #define CM_DSI1PDIV 0x164
196 #define CM_DFTCTL 0x168
197 #define CM_DFTDIV 0x16c
199 #define CM_PLLB 0x170
200 # define CM_PLLB_HOLDARM BIT(1)
201 # define CM_PLLB_LOADARM BIT(0)
203 #define A2W_PLLA_CTRL 0x1100
204 #define A2W_PLLC_CTRL 0x1120
205 #define A2W_PLLD_CTRL 0x1140
206 #define A2W_PLLH_CTRL 0x1160
207 #define A2W_PLLB_CTRL 0x11e0
208 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
209 # define A2W_PLL_CTRL_PWRDN BIT(16)
210 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
211 # define A2W_PLL_CTRL_PDIV_SHIFT 12
212 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
213 # define A2W_PLL_CTRL_NDIV_SHIFT 0
215 #define A2W_PLLA_ANA0 0x1010
216 #define A2W_PLLC_ANA0 0x1030
217 #define A2W_PLLD_ANA0 0x1050
218 #define A2W_PLLH_ANA0 0x1070
219 #define A2W_PLLB_ANA0 0x10f0
221 #define A2W_PLL_KA_SHIFT 7
222 #define A2W_PLL_KA_MASK GENMASK(9, 7)
223 #define A2W_PLL_KI_SHIFT 19
224 #define A2W_PLL_KI_MASK GENMASK(21, 19)
225 #define A2W_PLL_KP_SHIFT 15
226 #define A2W_PLL_KP_MASK GENMASK(18, 15)
228 #define A2W_PLLH_KA_SHIFT 19
229 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
230 #define A2W_PLLH_KI_LOW_SHIFT 22
231 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
232 #define A2W_PLLH_KI_HIGH_SHIFT 0
233 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
234 #define A2W_PLLH_KP_SHIFT 1
235 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
237 #define A2W_XOSC_CTRL 0x1190
238 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
239 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
240 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
241 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
242 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
243 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
244 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
245 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
247 #define A2W_PLLA_FRAC 0x1200
248 #define A2W_PLLC_FRAC 0x1220
249 #define A2W_PLLD_FRAC 0x1240
250 #define A2W_PLLH_FRAC 0x1260
251 #define A2W_PLLB_FRAC 0x12e0
252 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
253 # define A2W_PLL_FRAC_BITS 20
255 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
256 #define A2W_PLL_DIV_BITS 8
257 #define A2W_PLL_DIV_SHIFT 0
259 #define A2W_PLLA_DSI0 0x1300
260 #define A2W_PLLA_CORE 0x1400
261 #define A2W_PLLA_PER 0x1500
262 #define A2W_PLLA_CCP2 0x1600
264 #define A2W_PLLC_CORE2 0x1320
265 #define A2W_PLLC_CORE1 0x1420
266 #define A2W_PLLC_PER 0x1520
267 #define A2W_PLLC_CORE0 0x1620
269 #define A2W_PLLD_DSI0 0x1340
270 #define A2W_PLLD_CORE 0x1440
271 #define A2W_PLLD_PER 0x1540
272 #define A2W_PLLD_DSI1 0x1640
274 #define A2W_PLLH_AUX 0x1360
275 #define A2W_PLLH_RCAL 0x1460
276 #define A2W_PLLH_PIX 0x1560
277 #define A2W_PLLH_STS 0x1660
279 #define A2W_PLLH_CTRLR 0x1960
280 #define A2W_PLLH_FRACR 0x1a60
281 #define A2W_PLLH_AUXR 0x1b60
282 #define A2W_PLLH_RCALR 0x1c60
283 #define A2W_PLLH_PIXR 0x1d60
284 #define A2W_PLLH_STSR 0x1e60
286 #define A2W_PLLB_ARM 0x13e0
287 #define A2W_PLLB_SP0 0x14e0
288 #define A2W_PLLB_SP1 0x15e0
289 #define A2W_PLLB_SP2 0x16e0
291 #define LOCK_TIMEOUT_NS 100000000
292 #define BCM2835_MAX_FB_RATE 1750000000u
294 #define SOC_BCM2835 BIT(0)
295 #define SOC_BCM2711 BIT(1)
296 #define SOC_ALL (SOC_BCM2835 | SOC_BCM2711)
299 * Names of clocks used within the driver that need to be replaced
300 * with an external parent's name. This array is in the order that
301 * the clocks node in the DT references external clocks.
303 static const char *const cprman_parent_names[] = {
313 struct bcm2835_cprman {
316 spinlock_t regs_lock; /* spinlock for all clocks */
319 * Real names of cprman clock parents looked up through
320 * of_clk_get_parent_name(), which will be used in the
321 * parent_names[] arrays for clock registration.
323 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
326 struct clk_hw_onecell_data onecell;
329 struct cprman_plat_data {
333 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
335 writel(CM_PASSWORD | val, cprman->regs + reg);
338 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
340 return readl(cprman->regs + reg);
343 /* Does a cycle of measuring a clock through the TCNT clock, which may
344 * source from many other clocks in the system.
346 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
349 u32 osccount = 19200; /* 1ms */
353 spin_lock(&cprman->regs_lock);
355 cprman_write(cprman, CM_TCNTCTL, CM_KILL);
357 cprman_write(cprman, CM_TCNTCTL,
358 (tcnt_mux & CM_SRC_MASK) |
359 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
361 cprman_write(cprman, CM_OSCCOUNT, osccount);
363 /* do a kind delay at the start */
366 /* Finish off whatever is left of OSCCOUNT */
367 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
368 while (cprman_read(cprman, CM_OSCCOUNT)) {
369 if (ktime_after(ktime_get(), timeout)) {
370 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
377 /* Wait for BUSY to clear. */
378 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
379 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
380 if (ktime_after(ktime_get(), timeout)) {
381 dev_err(cprman->dev, "timeout waiting for !BUSY\n");
388 count = cprman_read(cprman, CM_TCNTCNT);
390 cprman_write(cprman, CM_TCNTCTL, 0);
393 spin_unlock(&cprman->regs_lock);
398 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
399 struct debugfs_reg32 *regs, size_t nregs,
400 struct dentry *dentry)
402 struct debugfs_regset32 *regset;
404 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
409 regset->nregs = nregs;
410 regset->base = cprman->regs + base;
412 debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
415 struct bcm2835_pll_data {
421 u32 reference_enable_mask;
422 /* Bit in CM_LOCK to indicate when the PLL has locked. */
425 const struct bcm2835_pll_ana_bits *ana;
427 unsigned long min_rate;
428 unsigned long max_rate;
430 * Highest rate for the VCO before we have to use the
433 unsigned long max_fb_rate;
436 struct bcm2835_pll_ana_bits {
446 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
449 .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
450 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
451 .mask3 = A2W_PLL_KA_MASK,
452 .set3 = (2 << A2W_PLL_KA_SHIFT),
453 .fb_prediv_mask = BIT(14),
456 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
457 .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
458 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
459 .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
460 .set1 = (6 << A2W_PLLH_KP_SHIFT),
463 .fb_prediv_mask = BIT(11),
466 struct bcm2835_pll_divider_data {
468 const char *source_pll;
479 struct bcm2835_clock_data {
482 const char *const *parents;
485 /* Bitmap encoding which parents accept rate change propagation. */
486 unsigned int set_rate_parent;
491 /* Number of integer bits in the divider */
493 /* Number of fractional bits in the divider */
505 struct bcm2835_gate_data {
514 struct bcm2835_cprman *cprman;
515 const struct bcm2835_pll_data *data;
518 static int bcm2835_pll_is_on(struct clk_hw *hw)
520 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
521 struct bcm2835_cprman *cprman = pll->cprman;
522 const struct bcm2835_pll_data *data = pll->data;
524 return cprman_read(cprman, data->a2w_ctrl_reg) &
525 A2W_PLL_CTRL_PRST_DISABLE;
528 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
529 unsigned long parent_rate,
530 u32 *ndiv, u32 *fdiv)
534 div = (u64)rate << A2W_PLL_FRAC_BITS;
535 do_div(div, parent_rate);
537 *ndiv = div >> A2W_PLL_FRAC_BITS;
538 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
541 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
542 u32 ndiv, u32 fdiv, u32 pdiv)
549 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
551 return rate >> A2W_PLL_FRAC_BITS;
554 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
555 unsigned long *parent_rate)
557 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
558 const struct bcm2835_pll_data *data = pll->data;
561 rate = clamp(rate, data->min_rate, data->max_rate);
563 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
565 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
568 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
569 unsigned long parent_rate)
571 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
572 struct bcm2835_cprman *cprman = pll->cprman;
573 const struct bcm2835_pll_data *data = pll->data;
574 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
575 u32 ndiv, pdiv, fdiv;
578 if (parent_rate == 0)
581 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
582 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
583 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
584 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
585 data->ana->fb_prediv_mask;
592 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
595 static void bcm2835_pll_off(struct clk_hw *hw)
597 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
598 struct bcm2835_cprman *cprman = pll->cprman;
599 const struct bcm2835_pll_data *data = pll->data;
601 spin_lock(&cprman->regs_lock);
602 cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
603 cprman_write(cprman, data->a2w_ctrl_reg,
604 cprman_read(cprman, data->a2w_ctrl_reg) |
606 spin_unlock(&cprman->regs_lock);
609 static int bcm2835_pll_on(struct clk_hw *hw)
611 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
612 struct bcm2835_cprman *cprman = pll->cprman;
613 const struct bcm2835_pll_data *data = pll->data;
616 cprman_write(cprman, data->a2w_ctrl_reg,
617 cprman_read(cprman, data->a2w_ctrl_reg) &
618 ~A2W_PLL_CTRL_PWRDN);
620 /* Take the PLL out of reset. */
621 spin_lock(&cprman->regs_lock);
622 cprman_write(cprman, data->cm_ctrl_reg,
623 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
624 spin_unlock(&cprman->regs_lock);
626 /* Wait for the PLL to lock. */
627 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
628 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
629 if (ktime_after(ktime_get(), timeout)) {
630 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
631 clk_hw_get_name(hw));
638 cprman_write(cprman, data->a2w_ctrl_reg,
639 cprman_read(cprman, data->a2w_ctrl_reg) |
640 A2W_PLL_CTRL_PRST_DISABLE);
646 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
651 * ANA register setup is done as a series of writes to
652 * ANA3-ANA0, in that order. This lets us write all 4
653 * registers as a single cycle of the serdes interface (taking
654 * 100 xosc clocks), whereas if we were to update ana0, 1, and
655 * 3 individually through their partial-write registers, each
656 * would be their own serdes cycle.
658 for (i = 3; i >= 0; i--)
659 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
662 static int bcm2835_pll_set_rate(struct clk_hw *hw,
663 unsigned long rate, unsigned long parent_rate)
665 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
666 struct bcm2835_cprman *cprman = pll->cprman;
667 const struct bcm2835_pll_data *data = pll->data;
668 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
669 u32 ndiv, fdiv, a2w_ctl;
673 if (rate > data->max_fb_rate) {
674 use_fb_prediv = true;
677 use_fb_prediv = false;
680 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
682 for (i = 3; i >= 0; i--)
683 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
685 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
687 ana[0] &= ~data->ana->mask0;
688 ana[0] |= data->ana->set0;
689 ana[1] &= ~data->ana->mask1;
690 ana[1] |= data->ana->set1;
691 ana[3] &= ~data->ana->mask3;
692 ana[3] |= data->ana->set3;
694 if (was_using_prediv && !use_fb_prediv) {
695 ana[1] &= ~data->ana->fb_prediv_mask;
696 do_ana_setup_first = true;
697 } else if (!was_using_prediv && use_fb_prediv) {
698 ana[1] |= data->ana->fb_prediv_mask;
699 do_ana_setup_first = false;
701 do_ana_setup_first = true;
704 /* Unmask the reference clock from the oscillator. */
705 spin_lock(&cprman->regs_lock);
706 cprman_write(cprman, A2W_XOSC_CTRL,
707 cprman_read(cprman, A2W_XOSC_CTRL) |
708 data->reference_enable_mask);
709 spin_unlock(&cprman->regs_lock);
711 if (do_ana_setup_first)
712 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
714 /* Set the PLL multiplier from the oscillator. */
715 cprman_write(cprman, data->frac_reg, fdiv);
717 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
718 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
719 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
720 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
721 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
722 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
724 if (!do_ana_setup_first)
725 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
730 static void bcm2835_pll_debug_init(struct clk_hw *hw,
731 struct dentry *dentry)
733 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
734 struct bcm2835_cprman *cprman = pll->cprman;
735 const struct bcm2835_pll_data *data = pll->data;
736 struct debugfs_reg32 *regs;
738 regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
742 regs[0].name = "cm_ctrl";
743 regs[0].offset = data->cm_ctrl_reg;
744 regs[1].name = "a2w_ctrl";
745 regs[1].offset = data->a2w_ctrl_reg;
746 regs[2].name = "frac";
747 regs[2].offset = data->frac_reg;
748 regs[3].name = "ana0";
749 regs[3].offset = data->ana_reg_base + 0 * 4;
750 regs[4].name = "ana1";
751 regs[4].offset = data->ana_reg_base + 1 * 4;
752 regs[5].name = "ana2";
753 regs[5].offset = data->ana_reg_base + 2 * 4;
754 regs[6].name = "ana3";
755 regs[6].offset = data->ana_reg_base + 3 * 4;
757 bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
760 static const struct clk_ops bcm2835_pll_clk_ops = {
761 .is_prepared = bcm2835_pll_is_on,
762 .prepare = bcm2835_pll_on,
763 .unprepare = bcm2835_pll_off,
764 .recalc_rate = bcm2835_pll_get_rate,
765 .set_rate = bcm2835_pll_set_rate,
766 .round_rate = bcm2835_pll_round_rate,
767 .debug_init = bcm2835_pll_debug_init,
770 struct bcm2835_pll_divider {
771 struct clk_divider div;
772 struct bcm2835_cprman *cprman;
773 const struct bcm2835_pll_divider_data *data;
776 static struct bcm2835_pll_divider *
777 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
779 return container_of(hw, struct bcm2835_pll_divider, div.hw);
782 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
784 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
785 struct bcm2835_cprman *cprman = divider->cprman;
786 const struct bcm2835_pll_divider_data *data = divider->data;
788 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
791 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
793 unsigned long *parent_rate)
795 return clk_divider_ops.round_rate(hw, rate, parent_rate);
798 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
799 unsigned long parent_rate)
801 return clk_divider_ops.recalc_rate(hw, parent_rate);
804 static void bcm2835_pll_divider_off(struct clk_hw *hw)
806 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
807 struct bcm2835_cprman *cprman = divider->cprman;
808 const struct bcm2835_pll_divider_data *data = divider->data;
810 spin_lock(&cprman->regs_lock);
811 cprman_write(cprman, data->cm_reg,
812 (cprman_read(cprman, data->cm_reg) &
813 ~data->load_mask) | data->hold_mask);
814 cprman_write(cprman, data->a2w_reg,
815 cprman_read(cprman, data->a2w_reg) |
816 A2W_PLL_CHANNEL_DISABLE);
817 spin_unlock(&cprman->regs_lock);
820 static int bcm2835_pll_divider_on(struct clk_hw *hw)
822 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
823 struct bcm2835_cprman *cprman = divider->cprman;
824 const struct bcm2835_pll_divider_data *data = divider->data;
826 spin_lock(&cprman->regs_lock);
827 cprman_write(cprman, data->a2w_reg,
828 cprman_read(cprman, data->a2w_reg) &
829 ~A2W_PLL_CHANNEL_DISABLE);
831 cprman_write(cprman, data->cm_reg,
832 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
833 spin_unlock(&cprman->regs_lock);
838 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
840 unsigned long parent_rate)
842 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
843 struct bcm2835_cprman *cprman = divider->cprman;
844 const struct bcm2835_pll_divider_data *data = divider->data;
845 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
847 div = DIV_ROUND_UP_ULL(parent_rate, rate);
849 div = min(div, max_div);
853 cprman_write(cprman, data->a2w_reg, div);
854 cm = cprman_read(cprman, data->cm_reg);
855 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
856 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
861 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
862 struct dentry *dentry)
864 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
865 struct bcm2835_cprman *cprman = divider->cprman;
866 const struct bcm2835_pll_divider_data *data = divider->data;
867 struct debugfs_reg32 *regs;
869 regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
874 regs[0].offset = data->cm_reg;
875 regs[1].name = "a2w";
876 regs[1].offset = data->a2w_reg;
878 bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
881 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
882 .is_prepared = bcm2835_pll_divider_is_on,
883 .prepare = bcm2835_pll_divider_on,
884 .unprepare = bcm2835_pll_divider_off,
885 .recalc_rate = bcm2835_pll_divider_get_rate,
886 .set_rate = bcm2835_pll_divider_set_rate,
887 .round_rate = bcm2835_pll_divider_round_rate,
888 .debug_init = bcm2835_pll_divider_debug_init,
892 * The CM dividers do fixed-point division, so we can't use the
893 * generic integer divider code like the PLL dividers do (and we can't
894 * fake it by having some fixed shifts preceding it in the clock tree,
895 * because we'd run out of bits in a 32-bit unsigned long).
897 struct bcm2835_clock {
899 struct bcm2835_cprman *cprman;
900 const struct bcm2835_clock_data *data;
903 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
905 return container_of(hw, struct bcm2835_clock, hw);
908 static int bcm2835_clock_is_on(struct clk_hw *hw)
910 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
911 struct bcm2835_cprman *cprman = clock->cprman;
912 const struct bcm2835_clock_data *data = clock->data;
914 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
917 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
919 unsigned long parent_rate,
922 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
923 const struct bcm2835_clock_data *data = clock->data;
924 u32 unused_frac_mask =
925 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
926 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
928 u32 div, mindiv, maxdiv;
930 rem = do_div(temp, rate);
933 /* Round up and mask off the unused bits */
934 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
935 div += unused_frac_mask + 1;
936 div &= ~unused_frac_mask;
938 /* different clamping limits apply for a mash clock */
939 if (data->is_mash_clock) {
940 /* clamp to min divider of 2 */
941 mindiv = 2 << CM_DIV_FRAC_BITS;
942 /* clamp to the highest possible integer divider */
943 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
945 /* clamp to min divider of 1 */
946 mindiv = 1 << CM_DIV_FRAC_BITS;
947 /* clamp to the highest possible fractional divider */
948 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
949 CM_DIV_FRAC_BITS - data->frac_bits);
952 /* apply the clamping limits */
953 div = max_t(u32, div, mindiv);
954 div = min_t(u32, div, maxdiv);
959 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
960 unsigned long parent_rate,
963 const struct bcm2835_clock_data *data = clock->data;
966 if (data->int_bits == 0 && data->frac_bits == 0)
970 * The divisor is a 12.12 fixed point field, but only some of
971 * the bits are populated in any given clock.
973 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
974 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
979 temp = (u64)parent_rate << data->frac_bits;
986 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
987 unsigned long parent_rate)
989 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
990 struct bcm2835_cprman *cprman = clock->cprman;
991 const struct bcm2835_clock_data *data = clock->data;
994 if (data->int_bits == 0 && data->frac_bits == 0)
997 div = cprman_read(cprman, data->div_reg);
999 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1002 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1004 struct bcm2835_cprman *cprman = clock->cprman;
1005 const struct bcm2835_clock_data *data = clock->data;
1006 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1008 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1009 if (ktime_after(ktime_get(), timeout)) {
1010 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1011 clk_hw_get_name(&clock->hw));
1018 static void bcm2835_clock_off(struct clk_hw *hw)
1020 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1021 struct bcm2835_cprman *cprman = clock->cprman;
1022 const struct bcm2835_clock_data *data = clock->data;
1024 spin_lock(&cprman->regs_lock);
1025 cprman_write(cprman, data->ctl_reg,
1026 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1027 spin_unlock(&cprman->regs_lock);
1029 /* BUSY will remain high until the divider completes its cycle. */
1030 bcm2835_clock_wait_busy(clock);
1033 static int bcm2835_clock_on(struct clk_hw *hw)
1035 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1036 struct bcm2835_cprman *cprman = clock->cprman;
1037 const struct bcm2835_clock_data *data = clock->data;
1039 spin_lock(&cprman->regs_lock);
1040 cprman_write(cprman, data->ctl_reg,
1041 cprman_read(cprman, data->ctl_reg) |
1044 spin_unlock(&cprman->regs_lock);
1046 /* Debug code to measure the clock once it's turned on to see
1047 * if it's ticking at the rate we expect.
1049 if (data->tcnt_mux && false) {
1050 dev_info(cprman->dev,
1051 "clk %s: rate %ld, measure %ld\n",
1053 clk_hw_get_rate(hw),
1054 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1060 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1061 unsigned long rate, unsigned long parent_rate)
1063 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1064 struct bcm2835_cprman *cprman = clock->cprman;
1065 const struct bcm2835_clock_data *data = clock->data;
1066 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1069 spin_lock(&cprman->regs_lock);
1072 * Setting up frac support
1074 * In principle it is recommended to stop/start the clock first,
1075 * but as we set CLK_SET_RATE_GATE during registration of the
1076 * clock this requirement should be take care of by the
1079 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1080 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1081 cprman_write(cprman, data->ctl_reg, ctl);
1083 cprman_write(cprman, data->div_reg, div);
1085 spin_unlock(&cprman->regs_lock);
1091 bcm2835_clk_is_pllc(struct clk_hw *hw)
1096 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1099 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1103 unsigned long *prate,
1104 unsigned long *avgrate)
1106 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1107 struct bcm2835_cprman *cprman = clock->cprman;
1108 const struct bcm2835_clock_data *data = clock->data;
1109 unsigned long best_rate = 0;
1110 u32 curdiv, mindiv, maxdiv;
1111 struct clk_hw *parent;
1113 parent = clk_hw_get_parent_by_index(hw, parent_idx);
1115 if (!(BIT(parent_idx) & data->set_rate_parent)) {
1116 *prate = clk_hw_get_rate(parent);
1117 *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1119 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1121 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1122 unsigned long high, low;
1123 u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1125 high = bcm2835_clock_rate_from_divisor(clock, *prate,
1127 int_div += CM_DIV_FRAC_MASK + 1;
1128 low = bcm2835_clock_rate_from_divisor(clock, *prate,
1132 * Return a value which is the maximum deviation
1133 * below the ideal rate, for use as a metric.
1135 return *avgrate - max(*avgrate - low, high - *avgrate);
1140 if (data->frac_bits)
1141 dev_warn(cprman->dev,
1142 "frac bits are not used when propagating rate change");
1144 /* clamp to min divider of 2 if we're dealing with a mash clock */
1145 mindiv = data->is_mash_clock ? 2 : 1;
1146 maxdiv = BIT(data->int_bits) - 1;
1148 /* TODO: Be smart, and only test a subset of the available divisors. */
1149 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1150 unsigned long tmp_rate;
1152 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1154 if (curdiv == mindiv ||
1155 (tmp_rate > best_rate && tmp_rate <= rate))
1156 best_rate = tmp_rate;
1158 if (best_rate == rate)
1162 *div = curdiv << CM_DIV_FRAC_BITS;
1163 *prate = curdiv * best_rate;
1164 *avgrate = best_rate;
1169 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1170 struct clk_rate_request *req)
1172 struct clk_hw *parent, *best_parent = NULL;
1173 bool current_parent_is_pllc;
1174 unsigned long rate, best_rate = 0;
1175 unsigned long prate, best_prate = 0;
1176 unsigned long avgrate, best_avgrate = 0;
1180 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1183 * Select parent clock that results in the closest but lower rate
1185 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1186 parent = clk_hw_get_parent_by_index(hw, i);
1191 * Don't choose a PLLC-derived clock as our parent
1192 * unless it had been manually set that way. PLLC's
1193 * frequency gets adjusted by the firmware due to
1194 * over-temp or under-voltage conditions, without
1195 * prior notification to our clock consumer.
1197 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1200 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1203 if (rate > best_rate && rate <= req->rate) {
1204 best_parent = parent;
1207 best_avgrate = avgrate;
1214 req->best_parent_hw = best_parent;
1215 req->best_parent_rate = best_prate;
1217 req->rate = best_avgrate;
1222 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1224 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1225 struct bcm2835_cprman *cprman = clock->cprman;
1226 const struct bcm2835_clock_data *data = clock->data;
1227 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1229 cprman_write(cprman, data->ctl_reg, src);
1233 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1235 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1236 struct bcm2835_cprman *cprman = clock->cprman;
1237 const struct bcm2835_clock_data *data = clock->data;
1238 u32 src = cprman_read(cprman, data->ctl_reg);
1240 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1243 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1254 static void bcm2835_clock_debug_init(struct clk_hw *hw,
1255 struct dentry *dentry)
1257 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1258 struct bcm2835_cprman *cprman = clock->cprman;
1259 const struct bcm2835_clock_data *data = clock->data;
1261 bcm2835_debugfs_regset(cprman, data->ctl_reg,
1262 bcm2835_debugfs_clock_reg32,
1263 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1267 static const struct clk_ops bcm2835_clock_clk_ops = {
1268 .is_prepared = bcm2835_clock_is_on,
1269 .prepare = bcm2835_clock_on,
1270 .unprepare = bcm2835_clock_off,
1271 .recalc_rate = bcm2835_clock_get_rate,
1272 .set_rate = bcm2835_clock_set_rate,
1273 .determine_rate = bcm2835_clock_determine_rate,
1274 .set_parent = bcm2835_clock_set_parent,
1275 .get_parent = bcm2835_clock_get_parent,
1276 .debug_init = bcm2835_clock_debug_init,
1279 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1285 * The VPU clock can never be disabled (it doesn't have an ENABLE
1286 * bit), so it gets its own set of clock ops.
1288 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1289 .is_prepared = bcm2835_vpu_clock_is_on,
1290 .recalc_rate = bcm2835_clock_get_rate,
1291 .set_rate = bcm2835_clock_set_rate,
1292 .determine_rate = bcm2835_clock_determine_rate,
1293 .set_parent = bcm2835_clock_set_parent,
1294 .get_parent = bcm2835_clock_get_parent,
1295 .debug_init = bcm2835_clock_debug_init,
1298 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1299 const struct bcm2835_pll_data *data)
1301 struct bcm2835_pll *pll;
1302 struct clk_init_data init;
1305 memset(&init, 0, sizeof(init));
1307 /* All of the PLLs derive from the external oscillator. */
1308 init.parent_names = &cprman->real_parent_names[0];
1309 init.num_parents = 1;
1310 init.name = data->name;
1311 init.ops = &bcm2835_pll_clk_ops;
1312 init.flags = CLK_IGNORE_UNUSED;
1314 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1318 pll->cprman = cprman;
1320 pll->hw.init = &init;
1322 ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1328 static struct clk_hw *
1329 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1330 const struct bcm2835_pll_divider_data *data)
1332 struct bcm2835_pll_divider *divider;
1333 struct clk_init_data init;
1334 const char *divider_name;
1337 if (data->fixed_divider != 1) {
1338 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1339 "%s_prediv", data->name);
1343 divider_name = data->name;
1346 memset(&init, 0, sizeof(init));
1348 init.parent_names = &data->source_pll;
1349 init.num_parents = 1;
1350 init.name = divider_name;
1351 init.ops = &bcm2835_pll_divider_clk_ops;
1352 init.flags = data->flags | CLK_IGNORE_UNUSED;
1354 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1358 divider->div.reg = cprman->regs + data->a2w_reg;
1359 divider->div.shift = A2W_PLL_DIV_SHIFT;
1360 divider->div.width = A2W_PLL_DIV_BITS;
1361 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1362 divider->div.lock = &cprman->regs_lock;
1363 divider->div.hw.init = &init;
1364 divider->div.table = NULL;
1366 divider->cprman = cprman;
1367 divider->data = data;
1369 ret = devm_clk_hw_register(cprman->dev, ÷r->div.hw);
1371 return ERR_PTR(ret);
1374 * PLLH's channels have a fixed divide by 10 afterwards, which
1375 * is what our consumers are actually using.
1377 if (data->fixed_divider != 1) {
1378 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1380 CLK_SET_RATE_PARENT,
1382 data->fixed_divider);
1385 return ÷r->div.hw;
1388 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1389 const struct bcm2835_clock_data *data)
1391 struct bcm2835_clock *clock;
1392 struct clk_init_data init;
1393 const char *parents[1 << CM_SRC_BITS];
1398 * Replace our strings referencing parent clocks with the
1399 * actual clock-output-name of the parent.
1401 for (i = 0; i < data->num_mux_parents; i++) {
1402 parents[i] = data->parents[i];
1404 ret = match_string(cprman_parent_names,
1405 ARRAY_SIZE(cprman_parent_names),
1408 parents[i] = cprman->real_parent_names[ret];
1411 memset(&init, 0, sizeof(init));
1412 init.parent_names = parents;
1413 init.num_parents = data->num_mux_parents;
1414 init.name = data->name;
1415 init.flags = data->flags | CLK_IGNORE_UNUSED;
1418 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1419 * rate changes on at least of the parents.
1421 if (data->set_rate_parent)
1422 init.flags |= CLK_SET_RATE_PARENT;
1424 if (data->is_vpu_clock) {
1425 init.ops = &bcm2835_vpu_clock_clk_ops;
1427 init.ops = &bcm2835_clock_clk_ops;
1428 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1430 /* If the clock wasn't actually enabled at boot, it's not
1433 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1434 init.flags &= ~CLK_IS_CRITICAL;
1437 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1441 clock->cprman = cprman;
1443 clock->hw.init = &init;
1445 ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1447 return ERR_PTR(ret);
1451 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1452 const struct bcm2835_gate_data *data)
1454 return clk_register_gate(cprman->dev, data->name, data->parent,
1455 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1456 cprman->regs + data->ctl_reg,
1457 CM_GATE_BIT, 0, &cprman->regs_lock);
1460 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1462 struct bcm2835_clk_desc {
1463 bcm2835_clk_register clk_register;
1464 unsigned int supported;
1468 /* assignment helper macros for different clock types */
1469 #define _REGISTER(f, s, ...) { .clk_register = (bcm2835_clk_register)f, \
1471 .data = __VA_ARGS__ }
1472 #define REGISTER_PLL(s, ...) _REGISTER(&bcm2835_register_pll, \
1474 &(struct bcm2835_pll_data) \
1476 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1478 &(struct bcm2835_pll_divider_data) \
1480 #define REGISTER_CLK(s, ...) _REGISTER(&bcm2835_register_clock, \
1482 &(struct bcm2835_clock_data) \
1484 #define REGISTER_GATE(s, ...) _REGISTER(&bcm2835_register_gate, \
1486 &(struct bcm2835_gate_data) \
1489 /* parent mux arrays plus helper macros */
1491 /* main oscillator parent mux */
1492 static const char *const bcm2835_clock_osc_parents[] = {
1499 #define REGISTER_OSC_CLK(s, ...) REGISTER_CLK( \
1501 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1502 .parents = bcm2835_clock_osc_parents, \
1505 /* main peripherial parent mux */
1506 static const char *const bcm2835_clock_per_parents[] = {
1517 #define REGISTER_PER_CLK(s, ...) REGISTER_CLK( \
1519 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1520 .parents = bcm2835_clock_per_parents, \
1524 * Restrict clock sources for the PCM peripheral to the oscillator and
1525 * PLLD_PER because other source may have varying rates or be switched
1528 * Prevent other sources from being selected by replacing their names in
1529 * the list of potential parents with dummy entries (entry index is
1532 static const char *const bcm2835_pcm_per_parents[] = {
1543 #define REGISTER_PCM_CLK(s, ...) REGISTER_CLK( \
1545 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
1546 .parents = bcm2835_pcm_per_parents, \
1549 /* main vpu parent mux */
1550 static const char *const bcm2835_clock_vpu_parents[] = {
1563 #define REGISTER_VPU_CLK(s, ...) REGISTER_CLK( \
1565 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1566 .parents = bcm2835_clock_vpu_parents, \
1570 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1571 * analog PHY. The _inv variants are generated internally to cprman,
1572 * but we don't use them so they aren't hooked up.
1574 static const char *const bcm2835_clock_dsi0_parents[] = {
1587 static const char *const bcm2835_clock_dsi1_parents[] = {
1600 #define REGISTER_DSI0_CLK(s, ...) REGISTER_CLK( \
1602 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1603 .parents = bcm2835_clock_dsi0_parents, \
1606 #define REGISTER_DSI1_CLK(s, ...) REGISTER_CLK( \
1608 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1609 .parents = bcm2835_clock_dsi1_parents, \
1613 * the real definition of all the pll, pll_dividers and clocks
1614 * these make use of the above REGISTER_* macros
1616 static const struct bcm2835_clk_desc clk_desc_array[] = {
1617 /* the PLL + PLL dividers */
1620 * PLLA is the auxiliary PLL, used to drive the CCP2
1621 * (Compact Camera Port 2) transmitter clock.
1623 * It is in the PX LDO power domain, which is on when the
1624 * AUDIO domain is on.
1626 [BCM2835_PLLA] = REGISTER_PLL(
1629 .cm_ctrl_reg = CM_PLLA,
1630 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1631 .frac_reg = A2W_PLLA_FRAC,
1632 .ana_reg_base = A2W_PLLA_ANA0,
1633 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1634 .lock_mask = CM_LOCK_FLOCKA,
1636 .ana = &bcm2835_ana_default,
1638 .min_rate = 600000000u,
1639 .max_rate = 2400000000u,
1640 .max_fb_rate = BCM2835_MAX_FB_RATE),
1641 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1643 .name = "plla_core",
1644 .source_pll = "plla",
1646 .a2w_reg = A2W_PLLA_CORE,
1647 .load_mask = CM_PLLA_LOADCORE,
1648 .hold_mask = CM_PLLA_HOLDCORE,
1650 .flags = CLK_SET_RATE_PARENT),
1651 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1654 .source_pll = "plla",
1656 .a2w_reg = A2W_PLLA_PER,
1657 .load_mask = CM_PLLA_LOADPER,
1658 .hold_mask = CM_PLLA_HOLDPER,
1660 .flags = CLK_SET_RATE_PARENT),
1661 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1663 .name = "plla_dsi0",
1664 .source_pll = "plla",
1666 .a2w_reg = A2W_PLLA_DSI0,
1667 .load_mask = CM_PLLA_LOADDSI0,
1668 .hold_mask = CM_PLLA_HOLDDSI0,
1669 .fixed_divider = 1),
1670 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1672 .name = "plla_ccp2",
1673 .source_pll = "plla",
1675 .a2w_reg = A2W_PLLA_CCP2,
1676 .load_mask = CM_PLLA_LOADCCP2,
1677 .hold_mask = CM_PLLA_HOLDCCP2,
1679 .flags = CLK_SET_RATE_PARENT),
1682 * PLLB is used for the ARM's clock. Controlled by firmware, see
1683 * clk-raspberrypi.c.
1687 * PLLC is the core PLL, used to drive the core VPU clock.
1689 * It is in the PX LDO power domain, which is on when the
1690 * AUDIO domain is on.
1692 [BCM2835_PLLC] = REGISTER_PLL(
1695 .cm_ctrl_reg = CM_PLLC,
1696 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1697 .frac_reg = A2W_PLLC_FRAC,
1698 .ana_reg_base = A2W_PLLC_ANA0,
1699 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1700 .lock_mask = CM_LOCK_FLOCKC,
1702 .ana = &bcm2835_ana_default,
1704 .min_rate = 600000000u,
1705 .max_rate = 3000000000u,
1706 .max_fb_rate = BCM2835_MAX_FB_RATE),
1707 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1709 .name = "pllc_core0",
1710 .source_pll = "pllc",
1712 .a2w_reg = A2W_PLLC_CORE0,
1713 .load_mask = CM_PLLC_LOADCORE0,
1714 .hold_mask = CM_PLLC_HOLDCORE0,
1716 .flags = CLK_SET_RATE_PARENT),
1717 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1719 .name = "pllc_core1",
1720 .source_pll = "pllc",
1722 .a2w_reg = A2W_PLLC_CORE1,
1723 .load_mask = CM_PLLC_LOADCORE1,
1724 .hold_mask = CM_PLLC_HOLDCORE1,
1726 .flags = CLK_SET_RATE_PARENT),
1727 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1729 .name = "pllc_core2",
1730 .source_pll = "pllc",
1732 .a2w_reg = A2W_PLLC_CORE2,
1733 .load_mask = CM_PLLC_LOADCORE2,
1734 .hold_mask = CM_PLLC_HOLDCORE2,
1736 .flags = CLK_SET_RATE_PARENT),
1737 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1740 .source_pll = "pllc",
1742 .a2w_reg = A2W_PLLC_PER,
1743 .load_mask = CM_PLLC_LOADPER,
1744 .hold_mask = CM_PLLC_HOLDPER,
1746 .flags = CLK_SET_RATE_PARENT),
1749 * PLLD is the display PLL, used to drive DSI display panels.
1751 * It is in the PX LDO power domain, which is on when the
1752 * AUDIO domain is on.
1754 [BCM2835_PLLD] = REGISTER_PLL(
1757 .cm_ctrl_reg = CM_PLLD,
1758 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1759 .frac_reg = A2W_PLLD_FRAC,
1760 .ana_reg_base = A2W_PLLD_ANA0,
1761 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1762 .lock_mask = CM_LOCK_FLOCKD,
1764 .ana = &bcm2835_ana_default,
1766 .min_rate = 600000000u,
1767 .max_rate = 2400000000u,
1768 .max_fb_rate = BCM2835_MAX_FB_RATE),
1769 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1771 .name = "plld_core",
1772 .source_pll = "plld",
1774 .a2w_reg = A2W_PLLD_CORE,
1775 .load_mask = CM_PLLD_LOADCORE,
1776 .hold_mask = CM_PLLD_HOLDCORE,
1778 .flags = CLK_SET_RATE_PARENT),
1780 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1781 * Otherwise this could cause firmware lookups. That's why we mark
1784 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1787 .source_pll = "plld",
1789 .a2w_reg = A2W_PLLD_PER,
1790 .load_mask = CM_PLLD_LOADPER,
1791 .hold_mask = CM_PLLD_HOLDPER,
1793 .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1794 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1796 .name = "plld_dsi0",
1797 .source_pll = "plld",
1799 .a2w_reg = A2W_PLLD_DSI0,
1800 .load_mask = CM_PLLD_LOADDSI0,
1801 .hold_mask = CM_PLLD_HOLDDSI0,
1802 .fixed_divider = 1),
1803 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1805 .name = "plld_dsi1",
1806 .source_pll = "plld",
1808 .a2w_reg = A2W_PLLD_DSI1,
1809 .load_mask = CM_PLLD_LOADDSI1,
1810 .hold_mask = CM_PLLD_HOLDDSI1,
1811 .fixed_divider = 1),
1814 * PLLH is used to supply the pixel clock or the AUX clock for the
1817 * It is in the HDMI power domain.
1819 [BCM2835_PLLH] = REGISTER_PLL(
1822 .cm_ctrl_reg = CM_PLLH,
1823 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1824 .frac_reg = A2W_PLLH_FRAC,
1825 .ana_reg_base = A2W_PLLH_ANA0,
1826 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1827 .lock_mask = CM_LOCK_FLOCKH,
1829 .ana = &bcm2835_ana_pllh,
1831 .min_rate = 600000000u,
1832 .max_rate = 3000000000u,
1833 .max_fb_rate = BCM2835_MAX_FB_RATE),
1834 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1836 .name = "pllh_rcal",
1837 .source_pll = "pllh",
1839 .a2w_reg = A2W_PLLH_RCAL,
1840 .load_mask = CM_PLLH_LOADRCAL,
1842 .fixed_divider = 10,
1843 .flags = CLK_SET_RATE_PARENT),
1844 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1847 .source_pll = "pllh",
1849 .a2w_reg = A2W_PLLH_AUX,
1850 .load_mask = CM_PLLH_LOADAUX,
1853 .flags = CLK_SET_RATE_PARENT),
1854 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1857 .source_pll = "pllh",
1859 .a2w_reg = A2W_PLLH_PIX,
1860 .load_mask = CM_PLLH_LOADPIX,
1862 .fixed_divider = 10,
1863 .flags = CLK_SET_RATE_PARENT),
1867 /* clocks with oscillator parent mux */
1869 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1870 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1873 .ctl_reg = CM_OTPCTL,
1874 .div_reg = CM_OTPDIV,
1879 * Used for a 1Mhz clock for the system clocksource, and also used
1880 * bythe watchdog timer and the camera pulse generator.
1882 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1885 .ctl_reg = CM_TIMERCTL,
1886 .div_reg = CM_TIMERDIV,
1890 * Clock for the temperature sensor.
1891 * Generally run at 2Mhz, max 5Mhz.
1893 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1896 .ctl_reg = CM_TSENSCTL,
1897 .div_reg = CM_TSENSDIV,
1900 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1903 .ctl_reg = CM_TECCTL,
1904 .div_reg = CM_TECDIV,
1908 /* clocks with vpu parent mux */
1909 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1912 .ctl_reg = CM_H264CTL,
1913 .div_reg = CM_H264DIV,
1917 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1920 .ctl_reg = CM_ISPCTL,
1921 .div_reg = CM_ISPDIV,
1927 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1928 * in the SDRAM controller can't be used.
1930 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
1933 .ctl_reg = CM_SDCCTL,
1934 .div_reg = CM_SDCDIV,
1938 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
1941 .ctl_reg = CM_V3DCTL,
1942 .div_reg = CM_V3DDIV,
1947 * VPU clock. This doesn't have an enable bit, since it drives
1948 * the bus for everything else, and is special so it doesn't need
1949 * to be gated for rate changes. It is also known as "clk_audio"
1950 * in various hardware documentation.
1952 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
1955 .ctl_reg = CM_VPUCTL,
1956 .div_reg = CM_VPUDIV,
1959 .flags = CLK_IS_CRITICAL,
1960 .is_vpu_clock = true,
1963 /* clocks with per parent mux */
1964 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
1967 .ctl_reg = CM_AVEOCTL,
1968 .div_reg = CM_AVEODIV,
1972 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
1975 .ctl_reg = CM_CAM0CTL,
1976 .div_reg = CM_CAM0DIV,
1980 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
1983 .ctl_reg = CM_CAM1CTL,
1984 .div_reg = CM_CAM1DIV,
1988 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
1991 .ctl_reg = CM_DFTCTL,
1992 .div_reg = CM_DFTDIV,
1995 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
1998 .ctl_reg = CM_DPICTL,
1999 .div_reg = CM_DPIDIV,
2004 /* Arasan EMMC clock */
2005 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
2008 .ctl_reg = CM_EMMCCTL,
2009 .div_reg = CM_EMMCDIV,
2014 /* EMMC2 clock (only available for BCM2711) */
2015 [BCM2711_CLOCK_EMMC2] = REGISTER_PER_CLK(
2018 .ctl_reg = CM_EMMC2CTL,
2019 .div_reg = CM_EMMC2DIV,
2024 /* General purpose (GPIO) clocks */
2025 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
2028 .ctl_reg = CM_GP0CTL,
2029 .div_reg = CM_GP0DIV,
2032 .is_mash_clock = true,
2034 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
2037 .ctl_reg = CM_GP1CTL,
2038 .div_reg = CM_GP1DIV,
2041 .flags = CLK_IS_CRITICAL,
2042 .is_mash_clock = true,
2044 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
2047 .ctl_reg = CM_GP2CTL,
2048 .div_reg = CM_GP2DIV,
2051 .flags = CLK_IS_CRITICAL),
2053 /* HDMI state machine */
2054 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
2057 .ctl_reg = CM_HSMCTL,
2058 .div_reg = CM_HSMDIV,
2062 [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK(
2065 .ctl_reg = CM_PCMCTL,
2066 .div_reg = CM_PCMDIV,
2069 .is_mash_clock = true,
2072 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
2075 .ctl_reg = CM_PWMCTL,
2076 .div_reg = CM_PWMDIV,
2079 .is_mash_clock = true,
2081 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
2084 .ctl_reg = CM_SLIMCTL,
2085 .div_reg = CM_SLIMDIV,
2088 .is_mash_clock = true,
2090 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
2093 .ctl_reg = CM_SMICTL,
2094 .div_reg = CM_SMIDIV,
2098 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
2101 .ctl_reg = CM_UARTCTL,
2102 .div_reg = CM_UARTDIV,
2107 /* TV encoder clock. Only operating frequency is 108Mhz. */
2108 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
2111 .ctl_reg = CM_VECCTL,
2112 .div_reg = CM_VECDIV,
2116 * Allow rate change propagation only on PLLH_AUX which is
2117 * assigned index 7 in the parent array.
2119 .set_rate_parent = BIT(7),
2123 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
2126 .ctl_reg = CM_DSI0ECTL,
2127 .div_reg = CM_DSI0EDIV,
2131 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
2134 .ctl_reg = CM_DSI1ECTL,
2135 .div_reg = CM_DSI1EDIV,
2139 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
2142 .ctl_reg = CM_DSI0PCTL,
2143 .div_reg = CM_DSI0PDIV,
2147 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
2150 .ctl_reg = CM_DSI1PCTL,
2151 .div_reg = CM_DSI1PDIV,
2159 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2160 * you have the debug bit set in the power manager, which we
2161 * don't bother exposing) are individual gates off of the
2162 * non-stop vpu clock.
2164 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2166 .name = "peri_image",
2168 .ctl_reg = CM_PERIICTL),
2172 * Permanently take a reference on the parent of the SDRAM clock.
2174 * While the SDRAM is being driven by its dedicated PLL most of the
2175 * time, there is a little loop running in the firmware that
2176 * periodically switches the SDRAM to using our CM clock to do PVT
2177 * recalibration, with the assumption that the previously configured
2178 * SDRAM parent is still enabled and running.
2180 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2182 struct clk *parent = clk_get_parent(sdc);
2185 return PTR_ERR(parent);
2187 return clk_prepare_enable(parent);
2190 static int bcm2835_clk_probe(struct platform_device *pdev)
2192 struct device *dev = &pdev->dev;
2193 struct clk_hw **hws;
2194 struct bcm2835_cprman *cprman;
2195 struct resource *res;
2196 const struct bcm2835_clk_desc *desc;
2197 const size_t asize = ARRAY_SIZE(clk_desc_array);
2198 const struct cprman_plat_data *pdata;
2202 pdata = of_device_get_match_data(&pdev->dev);
2206 cprman = devm_kzalloc(dev,
2207 struct_size(cprman, onecell.hws, asize),
2212 spin_lock_init(&cprman->regs_lock);
2214 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2215 cprman->regs = devm_ioremap_resource(dev, res);
2216 if (IS_ERR(cprman->regs))
2217 return PTR_ERR(cprman->regs);
2219 memcpy(cprman->real_parent_names, cprman_parent_names,
2220 sizeof(cprman_parent_names));
2221 of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2222 ARRAY_SIZE(cprman_parent_names));
2225 * Make sure the external oscillator has been registered.
2227 * The other (DSI) clocks are not present on older device
2228 * trees, which we still need to support for backwards
2231 if (!cprman->real_parent_names[0])
2234 platform_set_drvdata(pdev, cprman);
2236 cprman->onecell.num = asize;
2237 hws = cprman->onecell.hws;
2239 for (i = 0; i < asize; i++) {
2240 desc = &clk_desc_array[i];
2241 if (desc->clk_register && desc->data &&
2242 (desc->supported & pdata->soc)) {
2243 hws[i] = desc->clk_register(cprman, desc->data);
2247 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2251 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2255 static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2259 static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2263 static const struct of_device_id bcm2835_clk_of_match[] = {
2264 { .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2265 { .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2268 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2270 static struct platform_driver bcm2835_clk_driver = {
2272 .name = "bcm2835-clk",
2273 .of_match_table = bcm2835_clk_of_match,
2275 .probe = bcm2835_clk_probe,
2278 builtin_platform_driver(bcm2835_clk_driver);
2281 MODULE_DESCRIPTION("BCM2835 clock driver");
2282 MODULE_LICENSE("GPL");