2 * random.c -- A strong random number generator
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
43 * (now, with legal B.S. out of the way.....)
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
98 * Exported interfaces ---- output
99 * ===============================
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
104 * void get_random_bytes(void *buf, int nbytes);
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
122 * Exported interfaces ---- input
123 * ==============================
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
159 * Ensuring unpredictability at system startup
160 * ============================================
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/kthread.h>
254 #include <linux/percpu.h>
255 #include <linux/cryptohash.h>
256 #include <linux/fips.h>
257 #include <linux/ptrace.h>
258 #include <linux/kmemcheck.h>
259 #include <linux/workqueue.h>
260 #include <linux/irq.h>
261 #include <linux/syscalls.h>
262 #include <linux/completion.h>
263 #include <linux/uuid.h>
264 #include <crypto/chacha20.h>
266 #include <asm/processor.h>
267 #include <asm/uaccess.h>
269 #include <asm/irq_regs.h>
272 #define CREATE_TRACE_POINTS
273 #include <trace/events/random.h>
275 /* #define ADD_INTERRUPT_BENCH */
278 * Configuration information
280 #define INPUT_POOL_SHIFT 12
281 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
282 #define OUTPUT_POOL_SHIFT 10
283 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
284 #define SEC_XFER_SIZE 512
285 #define EXTRACT_SIZE 10
287 #define DEBUG_RANDOM_BOOT 0
289 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
292 * To allow fractional bits to be tracked, the entropy_count field is
293 * denominated in units of 1/8th bits.
295 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
296 * credit_entropy_bits() needs to be 64 bits wide.
298 #define ENTROPY_SHIFT 3
299 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
302 * The minimum number of bits of entropy before we wake up a read on
303 * /dev/random. Should be enough to do a significant reseed.
305 static int random_read_wakeup_bits = 64;
308 * If the entropy count falls under this number of bits, then we
309 * should wake up processes which are selecting or polling on write
310 * access to /dev/random.
312 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
315 * The minimum number of seconds between urandom pool reseeding. We
316 * do this to limit the amount of entropy that can be drained from the
317 * input pool even if there are heavy demands on /dev/urandom.
319 static int random_min_urandom_seed = 60;
322 * Originally, we used a primitive polynomial of degree .poolwords
323 * over GF(2). The taps for various sizes are defined below. They
324 * were chosen to be evenly spaced except for the last tap, which is 1
325 * to get the twisting happening as fast as possible.
327 * For the purposes of better mixing, we use the CRC-32 polynomial as
328 * well to make a (modified) twisted Generalized Feedback Shift
329 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
330 * generators. ACM Transactions on Modeling and Computer Simulation
331 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
332 * GFSR generators II. ACM Transactions on Modeling and Computer
333 * Simulation 4:254-266)
335 * Thanks to Colin Plumb for suggesting this.
337 * The mixing operation is much less sensitive than the output hash,
338 * where we use SHA-1. All that we want of mixing operation is that
339 * it be a good non-cryptographic hash; i.e. it not produce collisions
340 * when fed "random" data of the sort we expect to see. As long as
341 * the pool state differs for different inputs, we have preserved the
342 * input entropy and done a good job. The fact that an intelligent
343 * attacker can construct inputs that will produce controlled
344 * alterations to the pool's state is not important because we don't
345 * consider such inputs to contribute any randomness. The only
346 * property we need with respect to them is that the attacker can't
347 * increase his/her knowledge of the pool's state. Since all
348 * additions are reversible (knowing the final state and the input,
349 * you can reconstruct the initial state), if an attacker has any
350 * uncertainty about the initial state, he/she can only shuffle that
351 * uncertainty about, but never cause any collisions (which would
352 * decrease the uncertainty).
354 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
355 * Videau in their paper, "The Linux Pseudorandom Number Generator
356 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
357 * paper, they point out that we are not using a true Twisted GFSR,
358 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
359 * is, with only three taps, instead of the six that we are using).
360 * As a result, the resulting polynomial is neither primitive nor
361 * irreducible, and hence does not have a maximal period over
362 * GF(2**32). They suggest a slight change to the generator
363 * polynomial which improves the resulting TGFSR polynomial to be
364 * irreducible, which we have made here.
366 static struct poolinfo {
367 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
368 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
369 int tap1, tap2, tap3, tap4, tap5;
370 } poolinfo_table[] = {
371 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
372 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
373 { S(128), 104, 76, 51, 25, 1 },
374 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
375 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
376 { S(32), 26, 19, 14, 7, 1 },
378 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
379 { S(2048), 1638, 1231, 819, 411, 1 },
381 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
382 { S(1024), 817, 615, 412, 204, 1 },
384 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
385 { S(1024), 819, 616, 410, 207, 2 },
387 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
388 { S(512), 411, 308, 208, 104, 1 },
390 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
391 { S(512), 409, 307, 206, 102, 2 },
392 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
393 { S(512), 409, 309, 205, 103, 2 },
395 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
396 { S(256), 205, 155, 101, 52, 1 },
398 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
399 { S(128), 103, 78, 51, 27, 2 },
401 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
402 { S(64), 52, 39, 26, 14, 1 },
407 * Static global variables
409 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
410 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
411 static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
412 static struct fasync_struct *fasync;
414 static DEFINE_SPINLOCK(random_ready_list_lock);
415 static LIST_HEAD(random_ready_list);
419 unsigned long init_time;
423 struct crng_state primary_crng = {
424 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
428 * crng_init = 0 --> Uninitialized
430 * 2 --> Initialized from input_pool
432 * crng_init is protected by primary_crng->lock, and only increases
433 * its value (from 0->1->2).
435 static int crng_init = 0;
436 #define crng_ready() (likely(crng_init > 0))
437 static int crng_init_cnt = 0;
438 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
439 static void _extract_crng(struct crng_state *crng,
440 __u8 out[CHACHA20_BLOCK_SIZE]);
441 static void _crng_backtrack_protect(struct crng_state *crng,
442 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
443 static void process_random_ready_list(void);
445 /**********************************************************************
447 * OS independent entropy store. Here are the functions which handle
448 * storing entropy in an entropy pool.
450 **********************************************************************/
452 struct entropy_store;
453 struct entropy_store {
454 /* read-only data: */
455 const struct poolinfo *poolinfo;
458 struct entropy_store *pull;
459 struct work_struct push_work;
461 /* read-write data: */
462 unsigned long last_pulled;
464 unsigned short add_ptr;
465 unsigned short input_rotate;
468 unsigned int initialized:1;
469 unsigned int limit:1;
470 unsigned int last_data_init:1;
471 __u8 last_data[EXTRACT_SIZE];
474 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
475 size_t nbytes, int min, int rsvd);
476 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
477 size_t nbytes, int fips);
479 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
480 static void push_to_pool(struct work_struct *work);
481 static __u32 input_pool_data[INPUT_POOL_WORDS];
482 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
484 static struct entropy_store input_pool = {
485 .poolinfo = &poolinfo_table[0],
488 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
489 .pool = input_pool_data
492 static struct entropy_store blocking_pool = {
493 .poolinfo = &poolinfo_table[1],
497 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
498 .pool = blocking_pool_data,
499 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
503 static __u32 const twist_table[8] = {
504 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
505 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
508 * This function adds bytes into the entropy "pool". It does not
509 * update the entropy estimate. The caller should call
510 * credit_entropy_bits if this is appropriate.
512 * The pool is stirred with a primitive polynomial of the appropriate
513 * degree, and then twisted. We twist by three bits at a time because
514 * it's cheap to do so and helps slightly in the expected case where
515 * the entropy is concentrated in the low-order bits.
517 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
520 unsigned long i, tap1, tap2, tap3, tap4, tap5;
522 int wordmask = r->poolinfo->poolwords - 1;
523 const char *bytes = in;
526 tap1 = r->poolinfo->tap1;
527 tap2 = r->poolinfo->tap2;
528 tap3 = r->poolinfo->tap3;
529 tap4 = r->poolinfo->tap4;
530 tap5 = r->poolinfo->tap5;
532 input_rotate = r->input_rotate;
535 /* mix one byte at a time to simplify size handling and churn faster */
537 w = rol32(*bytes++, input_rotate);
538 i = (i - 1) & wordmask;
540 /* XOR in the various taps */
542 w ^= r->pool[(i + tap1) & wordmask];
543 w ^= r->pool[(i + tap2) & wordmask];
544 w ^= r->pool[(i + tap3) & wordmask];
545 w ^= r->pool[(i + tap4) & wordmask];
546 w ^= r->pool[(i + tap5) & wordmask];
548 /* Mix the result back in with a twist */
549 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
552 * Normally, we add 7 bits of rotation to the pool.
553 * At the beginning of the pool, add an extra 7 bits
554 * rotation, so that successive passes spread the
555 * input bits across the pool evenly.
557 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
560 r->input_rotate = input_rotate;
564 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
567 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
568 _mix_pool_bytes(r, in, nbytes);
571 static void mix_pool_bytes(struct entropy_store *r, const void *in,
576 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
577 spin_lock_irqsave(&r->lock, flags);
578 _mix_pool_bytes(r, in, nbytes);
579 spin_unlock_irqrestore(&r->lock, flags);
585 unsigned short reg_idx;
590 * This is a fast mixing routine used by the interrupt randomness
591 * collector. It's hardcoded for an 128 bit pool and assumes that any
592 * locks that might be needed are taken by the caller.
594 static void fast_mix(struct fast_pool *f)
596 __u32 a = f->pool[0], b = f->pool[1];
597 __u32 c = f->pool[2], d = f->pool[3];
600 b = rol32(b, 6); d = rol32(d, 27);
604 b = rol32(b, 16); d = rol32(d, 14);
608 b = rol32(b, 6); d = rol32(d, 27);
612 b = rol32(b, 16); d = rol32(d, 14);
615 f->pool[0] = a; f->pool[1] = b;
616 f->pool[2] = c; f->pool[3] = d;
620 static void process_random_ready_list(void)
623 struct random_ready_callback *rdy, *tmp;
625 spin_lock_irqsave(&random_ready_list_lock, flags);
626 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
627 struct module *owner = rdy->owner;
629 list_del_init(&rdy->list);
633 spin_unlock_irqrestore(&random_ready_list_lock, flags);
637 * Credit (or debit) the entropy store with n bits of entropy.
638 * Use credit_entropy_bits_safe() if the value comes from userspace
639 * or otherwise should be checked for extreme values.
641 static void credit_entropy_bits(struct entropy_store *r, int nbits)
643 int entropy_count, orig;
644 const int pool_size = r->poolinfo->poolfracbits;
645 int nfrac = nbits << ENTROPY_SHIFT;
651 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
654 entropy_count += nfrac;
657 * Credit: we have to account for the possibility of
658 * overwriting already present entropy. Even in the
659 * ideal case of pure Shannon entropy, new contributions
660 * approach the full value asymptotically:
662 * entropy <- entropy + (pool_size - entropy) *
663 * (1 - exp(-add_entropy/pool_size))
665 * For add_entropy <= pool_size/2 then
666 * (1 - exp(-add_entropy/pool_size)) >=
667 * (add_entropy/pool_size)*0.7869...
668 * so we can approximate the exponential with
669 * 3/4*add_entropy/pool_size and still be on the
670 * safe side by adding at most pool_size/2 at a time.
672 * The use of pool_size-2 in the while statement is to
673 * prevent rounding artifacts from making the loop
674 * arbitrarily long; this limits the loop to log2(pool_size)*2
675 * turns no matter how large nbits is.
678 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
679 /* The +2 corresponds to the /4 in the denominator */
682 unsigned int anfrac = min(pnfrac, pool_size/2);
684 ((pool_size - entropy_count)*anfrac*3) >> s;
686 entropy_count += add;
688 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
691 if (unlikely(entropy_count < 0)) {
692 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
693 r->name, entropy_count);
696 } else if (entropy_count > pool_size)
697 entropy_count = pool_size;
698 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
701 r->entropy_total += nbits;
702 if (!r->initialized && r->entropy_total > 128) {
704 r->entropy_total = 0;
707 trace_credit_entropy_bits(r->name, nbits,
708 entropy_count >> ENTROPY_SHIFT,
709 r->entropy_total, _RET_IP_);
711 if (r == &input_pool) {
712 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
714 if (crng_init < 2 && entropy_bits >= 128) {
715 crng_reseed(&primary_crng, r);
716 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
719 /* should we wake readers? */
720 if (entropy_bits >= random_read_wakeup_bits) {
721 wake_up_interruptible(&random_read_wait);
722 kill_fasync(&fasync, SIGIO, POLL_IN);
724 /* If the input pool is getting full, send some
725 * entropy to the blocking pool until it is 75% full.
727 if (entropy_bits > random_write_wakeup_bits &&
729 r->entropy_total >= 2*random_read_wakeup_bits) {
730 struct entropy_store *other = &blocking_pool;
732 if (other->entropy_count <=
733 3 * other->poolinfo->poolfracbits / 4) {
734 schedule_work(&other->push_work);
735 r->entropy_total = 0;
741 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
743 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
748 /* Cap the value to avoid overflows */
749 nbits = min(nbits, nbits_max);
751 credit_entropy_bits(r, nbits);
755 /*********************************************************************
757 * CRNG using CHACHA20
759 *********************************************************************/
761 #define CRNG_RESEED_INTERVAL (300*HZ)
763 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
767 * Hack to deal with crazy userspace progams when they are all trying
768 * to access /dev/urandom in parallel. The programs are almost
769 * certainly doing something terribly wrong, but we'll work around
770 * their brain damage.
772 static struct crng_state **crng_node_pool __read_mostly;
775 static void crng_initialize(struct crng_state *crng)
780 memcpy(&crng->state[0], "expand 32-byte k", 16);
781 if (crng == &primary_crng)
782 _extract_entropy(&input_pool, &crng->state[4],
783 sizeof(__u32) * 12, 0);
785 get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
786 for (i = 4; i < 16; i++) {
787 if (!arch_get_random_seed_long(&rv) &&
788 !arch_get_random_long(&rv))
789 rv = random_get_entropy();
790 crng->state[i] ^= rv;
792 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
795 static int crng_fast_load(const char *cp, size_t len)
800 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
803 spin_unlock_irqrestore(&primary_crng.lock, flags);
806 p = (unsigned char *) &primary_crng.state[4];
807 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
808 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
809 cp++; crng_init_cnt++; len--;
811 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
813 wake_up_interruptible(&crng_init_wait);
814 pr_notice("random: fast init done\n");
816 spin_unlock_irqrestore(&primary_crng.lock, flags);
820 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
825 __u8 block[CHACHA20_BLOCK_SIZE];
830 num = extract_entropy(r, &buf, 32, 16, 0);
834 _extract_crng(&primary_crng, buf.block);
835 _crng_backtrack_protect(&primary_crng, buf.block,
838 spin_lock_irqsave(&primary_crng.lock, flags);
839 for (i = 0; i < 8; i++) {
841 if (!arch_get_random_seed_long(&rv) &&
842 !arch_get_random_long(&rv))
843 rv = random_get_entropy();
844 crng->state[i+4] ^= buf.key[i] ^ rv;
846 memzero_explicit(&buf, sizeof(buf));
847 crng->init_time = jiffies;
848 if (crng == &primary_crng && crng_init < 2) {
850 process_random_ready_list();
851 wake_up_interruptible(&crng_init_wait);
852 pr_notice("random: crng init done\n");
854 spin_unlock_irqrestore(&primary_crng.lock, flags);
857 static inline void maybe_reseed_primary_crng(void)
860 time_after(jiffies, primary_crng.init_time + CRNG_RESEED_INTERVAL))
861 crng_reseed(&primary_crng, &input_pool);
864 static inline void crng_wait_ready(void)
866 wait_event_interruptible(crng_init_wait, crng_ready());
869 static void _extract_crng(struct crng_state *crng,
870 __u8 out[CHACHA20_BLOCK_SIZE])
872 unsigned long v, flags;
875 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
876 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
877 spin_lock_irqsave(&crng->lock, flags);
878 if (arch_get_random_long(&v))
879 crng->state[14] ^= v;
880 chacha20_block(&crng->state[0], out);
881 if (crng->state[12] == 0)
883 spin_unlock_irqrestore(&crng->lock, flags);
886 static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
888 struct crng_state *crng = NULL;
892 crng = crng_node_pool[numa_node_id()];
895 crng = &primary_crng;
896 _extract_crng(crng, out);
900 * Use the leftover bytes from the CRNG block output (if there is
901 * enough) to mutate the CRNG key to provide backtracking protection.
903 static void _crng_backtrack_protect(struct crng_state *crng,
904 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
910 used = round_up(used, sizeof(__u32));
911 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
915 spin_lock_irqsave(&crng->lock, flags);
916 s = (__u32 *) &tmp[used];
918 for (i=0; i < 8; i++)
920 spin_unlock_irqrestore(&crng->lock, flags);
923 static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
925 struct crng_state *crng = NULL;
929 crng = crng_node_pool[numa_node_id()];
932 crng = &primary_crng;
933 _crng_backtrack_protect(crng, tmp, used);
936 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
938 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
939 __u8 tmp[CHACHA20_BLOCK_SIZE];
940 int large_request = (nbytes > 256);
943 if (large_request && need_resched()) {
944 if (signal_pending(current)) {
953 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
954 if (copy_to_user(buf, tmp, i)) {
963 crng_backtrack_protect(tmp, i);
965 /* Wipe data just written to memory */
966 memzero_explicit(tmp, sizeof(tmp));
972 /*********************************************************************
974 * Entropy input management
976 *********************************************************************/
978 /* There is one of these per entropy source */
979 struct timer_rand_state {
981 long last_delta, last_delta2;
982 unsigned dont_count_entropy:1;
985 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
988 * Add device- or boot-specific data to the input pool to help
991 * None of this adds any entropy; it is meant to avoid the problem of
992 * the entropy pool having similar initial state across largely
995 void add_device_randomness(const void *buf, unsigned int size)
997 unsigned long time = random_get_entropy() ^ jiffies;
1000 trace_add_device_randomness(size, _RET_IP_);
1001 spin_lock_irqsave(&input_pool.lock, flags);
1002 _mix_pool_bytes(&input_pool, buf, size);
1003 _mix_pool_bytes(&input_pool, &time, sizeof(time));
1004 spin_unlock_irqrestore(&input_pool.lock, flags);
1006 EXPORT_SYMBOL(add_device_randomness);
1008 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1011 * This function adds entropy to the entropy "pool" by using timing
1012 * delays. It uses the timer_rand_state structure to make an estimate
1013 * of how many bits of entropy this call has added to the pool.
1015 * The number "num" is also added to the pool - it should somehow describe
1016 * the type of event which just happened. This is currently 0-255 for
1017 * keyboard scan codes, and 256 upwards for interrupts.
1020 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1022 struct entropy_store *r;
1028 long delta, delta2, delta3;
1032 sample.jiffies = jiffies;
1033 sample.cycles = random_get_entropy();
1036 mix_pool_bytes(r, &sample, sizeof(sample));
1039 * Calculate number of bits of randomness we probably added.
1040 * We take into account the first, second and third-order deltas
1041 * in order to make our estimate.
1044 if (!state->dont_count_entropy) {
1045 delta = sample.jiffies - state->last_time;
1046 state->last_time = sample.jiffies;
1048 delta2 = delta - state->last_delta;
1049 state->last_delta = delta;
1051 delta3 = delta2 - state->last_delta2;
1052 state->last_delta2 = delta2;
1066 * delta is now minimum absolute delta.
1067 * Round down by 1 bit on general principles,
1068 * and limit entropy entimate to 12 bits.
1070 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1075 void add_input_randomness(unsigned int type, unsigned int code,
1078 static unsigned char last_value;
1080 /* ignore autorepeat and the like */
1081 if (value == last_value)
1085 add_timer_randomness(&input_timer_state,
1086 (type << 4) ^ code ^ (code >> 4) ^ value);
1087 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1089 EXPORT_SYMBOL_GPL(add_input_randomness);
1091 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1093 #ifdef ADD_INTERRUPT_BENCH
1094 static unsigned long avg_cycles, avg_deviation;
1096 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1097 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1099 static void add_interrupt_bench(cycles_t start)
1101 long delta = random_get_entropy() - start;
1103 /* Use a weighted moving average */
1104 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1105 avg_cycles += delta;
1106 /* And average deviation */
1107 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1108 avg_deviation += delta;
1111 #define add_interrupt_bench(x)
1114 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1116 __u32 *ptr = (__u32 *) regs;
1120 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
1122 return *(ptr + f->reg_idx++);
1125 void add_interrupt_randomness(int irq, int irq_flags)
1127 struct entropy_store *r;
1128 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1129 struct pt_regs *regs = get_irq_regs();
1130 unsigned long now = jiffies;
1131 cycles_t cycles = random_get_entropy();
1132 __u32 c_high, j_high;
1138 cycles = get_reg(fast_pool, regs);
1139 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1140 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1141 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1142 fast_pool->pool[1] ^= now ^ c_high;
1143 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1144 fast_pool->pool[2] ^= ip;
1145 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1146 get_reg(fast_pool, regs);
1148 fast_mix(fast_pool);
1149 add_interrupt_bench(cycles);
1151 if (!crng_ready()) {
1152 if ((fast_pool->count >= 64) &&
1153 crng_fast_load((char *) fast_pool->pool,
1154 sizeof(fast_pool->pool))) {
1155 fast_pool->count = 0;
1156 fast_pool->last = now;
1161 if ((fast_pool->count < 64) &&
1162 !time_after(now, fast_pool->last + HZ))
1166 if (!spin_trylock(&r->lock))
1169 fast_pool->last = now;
1170 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1173 * If we have architectural seed generator, produce a seed and
1174 * add it to the pool. For the sake of paranoia don't let the
1175 * architectural seed generator dominate the input from the
1178 if (arch_get_random_seed_long(&seed)) {
1179 __mix_pool_bytes(r, &seed, sizeof(seed));
1182 spin_unlock(&r->lock);
1184 fast_pool->count = 0;
1186 /* award one bit for the contents of the fast pool */
1187 credit_entropy_bits(r, credit + 1);
1189 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1192 void add_disk_randomness(struct gendisk *disk)
1194 if (!disk || !disk->random)
1196 /* first major is 1, so we get >= 0x200 here */
1197 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1198 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1200 EXPORT_SYMBOL_GPL(add_disk_randomness);
1203 /*********************************************************************
1205 * Entropy extraction routines
1207 *********************************************************************/
1210 * This utility inline function is responsible for transferring entropy
1211 * from the primary pool to the secondary extraction pool. We make
1212 * sure we pull enough for a 'catastrophic reseed'.
1214 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1215 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1218 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1219 r->entropy_count > r->poolinfo->poolfracbits)
1222 if (r->limit == 0 && random_min_urandom_seed) {
1223 unsigned long now = jiffies;
1225 if (time_before(now,
1226 r->last_pulled + random_min_urandom_seed * HZ))
1228 r->last_pulled = now;
1231 _xfer_secondary_pool(r, nbytes);
1234 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1236 __u32 tmp[OUTPUT_POOL_WORDS];
1238 /* For /dev/random's pool, always leave two wakeups' worth */
1239 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
1242 /* pull at least as much as a wakeup */
1243 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1244 /* but never more than the buffer size */
1245 bytes = min_t(int, bytes, sizeof(tmp));
1247 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1248 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1249 bytes = extract_entropy(r->pull, tmp, bytes,
1250 random_read_wakeup_bits / 8, rsvd_bytes);
1251 mix_pool_bytes(r, tmp, bytes);
1252 credit_entropy_bits(r, bytes*8);
1256 * Used as a workqueue function so that when the input pool is getting
1257 * full, we can "spill over" some entropy to the output pools. That
1258 * way the output pools can store some of the excess entropy instead
1259 * of letting it go to waste.
1261 static void push_to_pool(struct work_struct *work)
1263 struct entropy_store *r = container_of(work, struct entropy_store,
1266 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1267 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1268 r->pull->entropy_count >> ENTROPY_SHIFT);
1272 * This function decides how many bytes to actually take from the
1273 * given pool, and also debits the entropy count accordingly.
1275 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1278 int entropy_count, orig;
1279 size_t ibytes, nfrac;
1281 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1283 /* Can we pull enough? */
1285 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1287 /* If limited, never pull more than available */
1289 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1291 if ((have_bytes -= reserved) < 0)
1293 ibytes = min_t(size_t, ibytes, have_bytes);
1298 if (unlikely(entropy_count < 0)) {
1299 pr_warn("random: negative entropy count: pool %s count %d\n",
1300 r->name, entropy_count);
1304 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1305 if ((size_t) entropy_count > nfrac)
1306 entropy_count -= nfrac;
1310 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1313 trace_debit_entropy(r->name, 8 * ibytes);
1315 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1316 wake_up_interruptible(&random_write_wait);
1317 kill_fasync(&fasync, SIGIO, POLL_OUT);
1324 * This function does the actual extraction for extract_entropy and
1325 * extract_entropy_user.
1327 * Note: we assume that .poolwords is a multiple of 16 words.
1329 static void extract_buf(struct entropy_store *r, __u8 *out)
1334 unsigned long l[LONGS(20)];
1336 __u32 workspace[SHA_WORKSPACE_WORDS];
1337 unsigned long flags;
1340 * If we have an architectural hardware random number
1341 * generator, use it for SHA's initial vector
1344 for (i = 0; i < LONGS(20); i++) {
1346 if (!arch_get_random_long(&v))
1351 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1352 spin_lock_irqsave(&r->lock, flags);
1353 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1354 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1357 * We mix the hash back into the pool to prevent backtracking
1358 * attacks (where the attacker knows the state of the pool
1359 * plus the current outputs, and attempts to find previous
1360 * ouputs), unless the hash function can be inverted. By
1361 * mixing at least a SHA1 worth of hash data back, we make
1362 * brute-forcing the feedback as hard as brute-forcing the
1365 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1366 spin_unlock_irqrestore(&r->lock, flags);
1368 memzero_explicit(workspace, sizeof(workspace));
1371 * In case the hash function has some recognizable output
1372 * pattern, we fold it in half. Thus, we always feed back
1373 * twice as much data as we output.
1375 hash.w[0] ^= hash.w[3];
1376 hash.w[1] ^= hash.w[4];
1377 hash.w[2] ^= rol32(hash.w[2], 16);
1379 memcpy(out, &hash, EXTRACT_SIZE);
1380 memzero_explicit(&hash, sizeof(hash));
1383 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1384 size_t nbytes, int fips)
1387 __u8 tmp[EXTRACT_SIZE];
1388 unsigned long flags;
1391 extract_buf(r, tmp);
1394 spin_lock_irqsave(&r->lock, flags);
1395 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1396 panic("Hardware RNG duplicated output!\n");
1397 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1398 spin_unlock_irqrestore(&r->lock, flags);
1400 i = min_t(int, nbytes, EXTRACT_SIZE);
1401 memcpy(buf, tmp, i);
1407 /* Wipe data just returned from memory */
1408 memzero_explicit(tmp, sizeof(tmp));
1414 * This function extracts randomness from the "entropy pool", and
1415 * returns it in a buffer.
1417 * The min parameter specifies the minimum amount we can pull before
1418 * failing to avoid races that defeat catastrophic reseeding while the
1419 * reserved parameter indicates how much entropy we must leave in the
1420 * pool after each pull to avoid starving other readers.
1422 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1423 size_t nbytes, int min, int reserved)
1425 __u8 tmp[EXTRACT_SIZE];
1426 unsigned long flags;
1428 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1430 spin_lock_irqsave(&r->lock, flags);
1431 if (!r->last_data_init) {
1432 r->last_data_init = 1;
1433 spin_unlock_irqrestore(&r->lock, flags);
1434 trace_extract_entropy(r->name, EXTRACT_SIZE,
1435 ENTROPY_BITS(r), _RET_IP_);
1436 xfer_secondary_pool(r, EXTRACT_SIZE);
1437 extract_buf(r, tmp);
1438 spin_lock_irqsave(&r->lock, flags);
1439 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1441 spin_unlock_irqrestore(&r->lock, flags);
1444 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1445 xfer_secondary_pool(r, nbytes);
1446 nbytes = account(r, nbytes, min, reserved);
1448 return _extract_entropy(r, buf, nbytes, fips_enabled);
1452 * This function extracts randomness from the "entropy pool", and
1453 * returns it in a userspace buffer.
1455 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1459 __u8 tmp[EXTRACT_SIZE];
1460 int large_request = (nbytes > 256);
1462 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1463 xfer_secondary_pool(r, nbytes);
1464 nbytes = account(r, nbytes, 0, 0);
1467 if (large_request && need_resched()) {
1468 if (signal_pending(current)) {
1476 extract_buf(r, tmp);
1477 i = min_t(int, nbytes, EXTRACT_SIZE);
1478 if (copy_to_user(buf, tmp, i)) {
1488 /* Wipe data just returned from memory */
1489 memzero_explicit(tmp, sizeof(tmp));
1495 * This function is the exported kernel interface. It returns some
1496 * number of good random numbers, suitable for key generation, seeding
1497 * TCP sequence numbers, etc. It does not rely on the hardware random
1498 * number generator. For random bytes direct from the hardware RNG
1499 * (when available), use get_random_bytes_arch().
1501 void get_random_bytes(void *buf, int nbytes)
1503 __u8 tmp[CHACHA20_BLOCK_SIZE];
1505 #if DEBUG_RANDOM_BOOT > 0
1507 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1508 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
1510 trace_get_random_bytes(nbytes, _RET_IP_);
1512 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1514 buf += CHACHA20_BLOCK_SIZE;
1515 nbytes -= CHACHA20_BLOCK_SIZE;
1520 memcpy(buf, tmp, nbytes);
1521 crng_backtrack_protect(tmp, nbytes);
1523 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1524 memzero_explicit(tmp, sizeof(tmp));
1526 EXPORT_SYMBOL(get_random_bytes);
1529 * Add a callback function that will be invoked when the nonblocking
1530 * pool is initialised.
1532 * returns: 0 if callback is successfully added
1533 * -EALREADY if pool is already initialised (callback not called)
1534 * -ENOENT if module for callback is not alive
1536 int add_random_ready_callback(struct random_ready_callback *rdy)
1538 struct module *owner;
1539 unsigned long flags;
1540 int err = -EALREADY;
1546 if (!try_module_get(owner))
1549 spin_lock_irqsave(&random_ready_list_lock, flags);
1555 list_add(&rdy->list, &random_ready_list);
1559 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1565 EXPORT_SYMBOL(add_random_ready_callback);
1568 * Delete a previously registered readiness callback function.
1570 void del_random_ready_callback(struct random_ready_callback *rdy)
1572 unsigned long flags;
1573 struct module *owner = NULL;
1575 spin_lock_irqsave(&random_ready_list_lock, flags);
1576 if (!list_empty(&rdy->list)) {
1577 list_del_init(&rdy->list);
1580 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1584 EXPORT_SYMBOL(del_random_ready_callback);
1587 * This function will use the architecture-specific hardware random
1588 * number generator if it is available. The arch-specific hw RNG will
1589 * almost certainly be faster than what we can do in software, but it
1590 * is impossible to verify that it is implemented securely (as
1591 * opposed, to, say, the AES encryption of a sequence number using a
1592 * key known by the NSA). So it's useful if we need the speed, but
1593 * only if we're willing to trust the hardware manufacturer not to
1594 * have put in a back door.
1596 void get_random_bytes_arch(void *buf, int nbytes)
1600 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1603 int chunk = min(nbytes, (int)sizeof(unsigned long));
1605 if (!arch_get_random_long(&v))
1608 memcpy(p, &v, chunk);
1614 get_random_bytes(p, nbytes);
1616 EXPORT_SYMBOL(get_random_bytes_arch);
1620 * init_std_data - initialize pool with system data
1622 * @r: pool to initialize
1624 * This function clears the pool's entropy count and mixes some system
1625 * data into the pool to prepare it for use. The pool is not cleared
1626 * as that can only decrease the entropy in the pool.
1628 static void init_std_data(struct entropy_store *r)
1631 ktime_t now = ktime_get_real();
1634 r->last_pulled = jiffies;
1635 mix_pool_bytes(r, &now, sizeof(now));
1636 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1637 if (!arch_get_random_seed_long(&rv) &&
1638 !arch_get_random_long(&rv))
1639 rv = random_get_entropy();
1640 mix_pool_bytes(r, &rv, sizeof(rv));
1642 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1646 * Note that setup_arch() may call add_device_randomness()
1647 * long before we get here. This allows seeding of the pools
1648 * with some platform dependent data very early in the boot
1649 * process. But it limits our options here. We must use
1650 * statically allocated structures that already have all
1651 * initializations complete at compile time. We should also
1652 * take care not to overwrite the precious per platform data
1655 static int rand_initialize(void)
1659 int num_nodes = num_possible_nodes();
1660 struct crng_state *crng;
1661 struct crng_state **pool;
1664 init_std_data(&input_pool);
1665 init_std_data(&blocking_pool);
1666 crng_initialize(&primary_crng);
1669 pool = kmalloc(num_nodes * sizeof(void *),
1670 GFP_KERNEL|__GFP_NOFAIL|__GFP_ZERO);
1671 for (i=0; i < num_nodes; i++) {
1672 crng = kmalloc_node(sizeof(struct crng_state),
1673 GFP_KERNEL | __GFP_NOFAIL, i);
1674 spin_lock_init(&crng->lock);
1675 crng_initialize(crng);
1680 crng_node_pool = pool;
1684 early_initcall(rand_initialize);
1687 void rand_initialize_disk(struct gendisk *disk)
1689 struct timer_rand_state *state;
1692 * If kzalloc returns null, we just won't use that entropy
1695 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1697 state->last_time = INITIAL_JIFFIES;
1698 disk->random = state;
1704 _random_read(int nonblock, char __user *buf, size_t nbytes)
1711 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1713 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1716 trace_random_read(n*8, (nbytes-n)*8,
1717 ENTROPY_BITS(&blocking_pool),
1718 ENTROPY_BITS(&input_pool));
1722 /* Pool is (near) empty. Maybe wait and retry. */
1726 wait_event_interruptible(random_read_wait,
1727 ENTROPY_BITS(&input_pool) >=
1728 random_read_wakeup_bits);
1729 if (signal_pending(current))
1730 return -ERESTARTSYS;
1735 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1737 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1741 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1743 unsigned long flags;
1744 static int maxwarn = 10;
1747 if (!crng_ready() && maxwarn > 0) {
1749 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
1750 "(%zd bytes read)\n",
1751 current->comm, nbytes);
1752 spin_lock_irqsave(&primary_crng.lock, flags);
1754 spin_unlock_irqrestore(&primary_crng.lock, flags);
1756 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1757 ret = extract_crng_user(buf, nbytes);
1758 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1763 random_poll(struct file *file, poll_table * wait)
1767 poll_wait(file, &random_read_wait, wait);
1768 poll_wait(file, &random_write_wait, wait);
1770 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1771 mask |= POLLIN | POLLRDNORM;
1772 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1773 mask |= POLLOUT | POLLWRNORM;
1778 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1782 const char __user *p = buffer;
1785 bytes = min(count, sizeof(buf));
1786 if (copy_from_user(&buf, p, bytes))
1792 mix_pool_bytes(r, buf, bytes);
1799 static ssize_t random_write(struct file *file, const char __user *buffer,
1800 size_t count, loff_t *ppos)
1804 ret = write_pool(&input_pool, buffer, count);
1808 return (ssize_t)count;
1811 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1813 int size, ent_count;
1814 int __user *p = (int __user *)arg;
1819 /* inherently racy, no point locking */
1820 ent_count = ENTROPY_BITS(&input_pool);
1821 if (put_user(ent_count, p))
1824 case RNDADDTOENTCNT:
1825 if (!capable(CAP_SYS_ADMIN))
1827 if (get_user(ent_count, p))
1829 return credit_entropy_bits_safe(&input_pool, ent_count);
1831 if (!capable(CAP_SYS_ADMIN))
1833 if (get_user(ent_count, p++))
1837 if (get_user(size, p++))
1839 retval = write_pool(&input_pool, (const char __user *)p,
1843 return credit_entropy_bits_safe(&input_pool, ent_count);
1847 * Clear the entropy pool counters. We no longer clear
1848 * the entropy pool, as that's silly.
1850 if (!capable(CAP_SYS_ADMIN))
1852 input_pool.entropy_count = 0;
1853 blocking_pool.entropy_count = 0;
1860 static int random_fasync(int fd, struct file *filp, int on)
1862 return fasync_helper(fd, filp, on, &fasync);
1865 const struct file_operations random_fops = {
1866 .read = random_read,
1867 .write = random_write,
1868 .poll = random_poll,
1869 .unlocked_ioctl = random_ioctl,
1870 .fasync = random_fasync,
1871 .llseek = noop_llseek,
1874 const struct file_operations urandom_fops = {
1875 .read = urandom_read,
1876 .write = random_write,
1877 .unlocked_ioctl = random_ioctl,
1878 .fasync = random_fasync,
1879 .llseek = noop_llseek,
1882 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1883 unsigned int, flags)
1885 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1888 if (count > INT_MAX)
1891 if (flags & GRND_RANDOM)
1892 return _random_read(flags & GRND_NONBLOCK, buf, count);
1894 if (!crng_ready()) {
1895 if (flags & GRND_NONBLOCK)
1898 if (signal_pending(current))
1899 return -ERESTARTSYS;
1901 return urandom_read(NULL, buf, count, NULL);
1904 /********************************************************************
1908 ********************************************************************/
1910 #ifdef CONFIG_SYSCTL
1912 #include <linux/sysctl.h>
1914 static int min_read_thresh = 8, min_write_thresh;
1915 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1916 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1917 static char sysctl_bootid[16];
1920 * This function is used to return both the bootid UUID, and random
1921 * UUID. The difference is in whether table->data is NULL; if it is,
1922 * then a new UUID is generated and returned to the user.
1924 * If the user accesses this via the proc interface, the UUID will be
1925 * returned as an ASCII string in the standard UUID format; if via the
1926 * sysctl system call, as 16 bytes of binary data.
1928 static int proc_do_uuid(struct ctl_table *table, int write,
1929 void __user *buffer, size_t *lenp, loff_t *ppos)
1931 struct ctl_table fake_table;
1932 unsigned char buf[64], tmp_uuid[16], *uuid;
1937 generate_random_uuid(uuid);
1939 static DEFINE_SPINLOCK(bootid_spinlock);
1941 spin_lock(&bootid_spinlock);
1943 generate_random_uuid(uuid);
1944 spin_unlock(&bootid_spinlock);
1947 sprintf(buf, "%pU", uuid);
1949 fake_table.data = buf;
1950 fake_table.maxlen = sizeof(buf);
1952 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1956 * Return entropy available scaled to integral bits
1958 static int proc_do_entropy(struct ctl_table *table, int write,
1959 void __user *buffer, size_t *lenp, loff_t *ppos)
1961 struct ctl_table fake_table;
1964 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1966 fake_table.data = &entropy_count;
1967 fake_table.maxlen = sizeof(entropy_count);
1969 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1972 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1973 extern struct ctl_table random_table[];
1974 struct ctl_table random_table[] = {
1976 .procname = "poolsize",
1977 .data = &sysctl_poolsize,
1978 .maxlen = sizeof(int),
1980 .proc_handler = proc_dointvec,
1983 .procname = "entropy_avail",
1984 .maxlen = sizeof(int),
1986 .proc_handler = proc_do_entropy,
1987 .data = &input_pool.entropy_count,
1990 .procname = "read_wakeup_threshold",
1991 .data = &random_read_wakeup_bits,
1992 .maxlen = sizeof(int),
1994 .proc_handler = proc_dointvec_minmax,
1995 .extra1 = &min_read_thresh,
1996 .extra2 = &max_read_thresh,
1999 .procname = "write_wakeup_threshold",
2000 .data = &random_write_wakeup_bits,
2001 .maxlen = sizeof(int),
2003 .proc_handler = proc_dointvec_minmax,
2004 .extra1 = &min_write_thresh,
2005 .extra2 = &max_write_thresh,
2008 .procname = "urandom_min_reseed_secs",
2009 .data = &random_min_urandom_seed,
2010 .maxlen = sizeof(int),
2012 .proc_handler = proc_dointvec,
2015 .procname = "boot_id",
2016 .data = &sysctl_bootid,
2019 .proc_handler = proc_do_uuid,
2025 .proc_handler = proc_do_uuid,
2027 #ifdef ADD_INTERRUPT_BENCH
2029 .procname = "add_interrupt_avg_cycles",
2030 .data = &avg_cycles,
2031 .maxlen = sizeof(avg_cycles),
2033 .proc_handler = proc_doulongvec_minmax,
2036 .procname = "add_interrupt_avg_deviation",
2037 .data = &avg_deviation,
2038 .maxlen = sizeof(avg_deviation),
2040 .proc_handler = proc_doulongvec_minmax,
2045 #endif /* CONFIG_SYSCTL */
2047 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
2049 int random_int_secret_init(void)
2051 get_random_bytes(random_int_secret, sizeof(random_int_secret));
2055 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
2056 __aligned(sizeof(unsigned long));
2059 * Get a random word for internal kernel use only. Similar to urandom but
2060 * with the goal of minimal entropy pool depletion. As a result, the random
2061 * value is not cryptographically secure but for several uses the cost of
2062 * depleting entropy is too high
2064 unsigned int get_random_int(void)
2069 if (arch_get_random_int(&ret))
2072 hash = get_cpu_var(get_random_int_hash);
2074 hash[0] += current->pid + jiffies + random_get_entropy();
2075 md5_transform(hash, random_int_secret);
2077 put_cpu_var(get_random_int_hash);
2081 EXPORT_SYMBOL(get_random_int);
2084 * Same as get_random_int(), but returns unsigned long.
2086 unsigned long get_random_long(void)
2091 if (arch_get_random_long(&ret))
2094 hash = get_cpu_var(get_random_int_hash);
2096 hash[0] += current->pid + jiffies + random_get_entropy();
2097 md5_transform(hash, random_int_secret);
2098 ret = *(unsigned long *)hash;
2099 put_cpu_var(get_random_int_hash);
2103 EXPORT_SYMBOL(get_random_long);
2106 * randomize_range() returns a start address such that
2108 * [...... <range> .....]
2111 * a <range> with size "len" starting at the return value is inside in the
2112 * area defined by [start, end], but is otherwise randomized.
2115 randomize_range(unsigned long start, unsigned long end, unsigned long len)
2117 unsigned long range = end - len - start;
2119 if (end <= start + len)
2121 return PAGE_ALIGN(get_random_int() % range + start);
2124 /* Interface for in-kernel drivers of true hardware RNGs.
2125 * Those devices may produce endless random bits and will be throttled
2126 * when our pool is full.
2128 void add_hwgenerator_randomness(const char *buffer, size_t count,
2131 struct entropy_store *poolp = &input_pool;
2133 if (!crng_ready()) {
2134 crng_fast_load(buffer, count);
2138 /* Suspend writing if we're above the trickle threshold.
2139 * We'll be woken up again once below random_write_wakeup_thresh,
2140 * or when the calling thread is about to terminate.
2142 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2143 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2144 mix_pool_bytes(poolp, buffer, count);
2145 credit_entropy_bits(poolp, entropy);
2147 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);