2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
146 .unlocked_ioctl = sock_ioctl,
148 .compat_ioctl = compat_sock_ioctl,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use);
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 if (copy_from_user(kaddr, uaddr, ulen))
196 return audit_sockaddr(ulen, kaddr);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
231 if (audit_sockaddr(klen, kaddr))
233 if (copy_to_user(uaddr, kaddr, len))
237 * "fromlen shall refer to the value before truncation.."
240 return __put_user(klen, ulen);
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
245 static struct inode *sock_alloc_inode(struct super_block *sb)
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 kmem_cache_free(sock_inode_cachep, ei);
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
269 return &ei->vfs_inode;
272 static void sock_destroy_inode(struct inode *inode)
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kmem_cache_free(sock_inode_cachep, ei);
283 static void init_once(void *foo)
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
287 inode_init_once(&ei->vfs_inode);
290 static int init_inodecache(void)
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
299 if (sock_inode_cachep == NULL)
304 static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
311 * sockfs_dname() is called from d_path().
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 d_inode(dentry)->i_ino);
319 static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
323 static int sockfs_xattr_get(const struct xattr_handler *handler,
324 struct dentry *dentry, struct inode *inode,
325 const char *suffix, void *value, size_t size)
328 if (dentry->d_name.len + 1 > size)
330 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
332 return dentry->d_name.len + 1;
335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
339 static const struct xattr_handler sockfs_xattr_handler = {
340 .name = XATTR_NAME_SOCKPROTONAME,
341 .get = sockfs_xattr_get,
344 static const struct xattr_handler *sockfs_xattr_handlers[] = {
345 &sockfs_xattr_handler,
349 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
350 int flags, const char *dev_name, void *data)
352 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
353 sockfs_xattr_handlers,
354 &sockfs_dentry_operations, SOCKFS_MAGIC);
357 static struct vfsmount *sock_mnt __read_mostly;
359 static struct file_system_type sock_fs_type = {
361 .mount = sockfs_mount,
362 .kill_sb = kill_anon_super,
366 * Obtains the first available file descriptor and sets it up for use.
368 * These functions create file structures and maps them to fd space
369 * of the current process. On success it returns file descriptor
370 * and file struct implicitly stored in sock->file.
371 * Note that another thread may close file descriptor before we return
372 * from this function. We use the fact that now we do not refer
373 * to socket after mapping. If one day we will need it, this
374 * function will increment ref. count on file by 1.
376 * In any case returned fd MAY BE not valid!
377 * This race condition is unavoidable
378 * with shared fd spaces, we cannot solve it inside kernel,
379 * but we take care of internal coherence yet.
382 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
384 struct qstr name = { .name = "" };
390 name.len = strlen(name.name);
391 } else if (sock->sk) {
392 name.name = sock->sk->sk_prot_creator->name;
393 name.len = strlen(name.name);
395 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
396 if (unlikely(!path.dentry))
397 return ERR_PTR(-ENOMEM);
398 path.mnt = mntget(sock_mnt);
400 d_instantiate(path.dentry, SOCK_INODE(sock));
402 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
405 /* drop dentry, keep inode */
406 ihold(d_inode(path.dentry));
412 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
413 file->private_data = sock;
416 EXPORT_SYMBOL(sock_alloc_file);
418 static int sock_map_fd(struct socket *sock, int flags)
420 struct file *newfile;
421 int fd = get_unused_fd_flags(flags);
422 if (unlikely(fd < 0))
425 newfile = sock_alloc_file(sock, flags, NULL);
426 if (likely(!IS_ERR(newfile))) {
427 fd_install(fd, newfile);
432 return PTR_ERR(newfile);
435 struct socket *sock_from_file(struct file *file, int *err)
437 if (file->f_op == &socket_file_ops)
438 return file->private_data; /* set in sock_map_fd */
443 EXPORT_SYMBOL(sock_from_file);
446 * sockfd_lookup - Go from a file number to its socket slot
448 * @err: pointer to an error code return
450 * The file handle passed in is locked and the socket it is bound
451 * too is returned. If an error occurs the err pointer is overwritten
452 * with a negative errno code and NULL is returned. The function checks
453 * for both invalid handles and passing a handle which is not a socket.
455 * On a success the socket object pointer is returned.
458 struct socket *sockfd_lookup(int fd, int *err)
469 sock = sock_from_file(file, err);
474 EXPORT_SYMBOL(sockfd_lookup);
476 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
478 struct fd f = fdget(fd);
483 sock = sock_from_file(f.file, err);
485 *fput_needed = f.flags;
493 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
499 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
509 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
514 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521 int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
523 int err = simple_setattr(dentry, iattr);
526 struct socket *sock = SOCKET_I(d_inode(dentry));
528 sock->sk->sk_uid = iattr->ia_uid;
534 static const struct inode_operations sockfs_inode_ops = {
535 .listxattr = sockfs_listxattr,
536 .setattr = sockfs_setattr,
540 * sock_alloc - allocate a socket
542 * Allocate a new inode and socket object. The two are bound together
543 * and initialised. The socket is then returned. If we are out of inodes
547 struct socket *sock_alloc(void)
552 inode = new_inode_pseudo(sock_mnt->mnt_sb);
556 sock = SOCKET_I(inode);
558 kmemcheck_annotate_bitfield(sock, type);
559 inode->i_ino = get_next_ino();
560 inode->i_mode = S_IFSOCK | S_IRWXUGO;
561 inode->i_uid = current_fsuid();
562 inode->i_gid = current_fsgid();
563 inode->i_op = &sockfs_inode_ops;
565 this_cpu_add(sockets_in_use, 1);
568 EXPORT_SYMBOL(sock_alloc);
571 * sock_release - close a socket
572 * @sock: socket to close
574 * The socket is released from the protocol stack if it has a release
575 * callback, and the inode is then released if the socket is bound to
576 * an inode not a file.
579 void sock_release(struct socket *sock)
582 struct module *owner = sock->ops->owner;
584 sock->ops->release(sock);
589 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
590 pr_err("%s: fasync list not empty!\n", __func__);
592 this_cpu_sub(sockets_in_use, 1);
594 iput(SOCK_INODE(sock));
599 EXPORT_SYMBOL(sock_release);
601 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
603 u8 flags = *tx_flags;
605 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
606 flags |= SKBTX_HW_TSTAMP;
608 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
609 flags |= SKBTX_SW_TSTAMP;
611 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
612 flags |= SKBTX_SCHED_TSTAMP;
616 EXPORT_SYMBOL(__sock_tx_timestamp);
618 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
620 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
621 BUG_ON(ret == -EIOCBQUEUED);
625 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
627 int err = security_socket_sendmsg(sock, msg,
630 return err ?: sock_sendmsg_nosec(sock, msg);
632 EXPORT_SYMBOL(sock_sendmsg);
634 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
635 struct kvec *vec, size_t num, size_t size)
637 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
638 return sock_sendmsg(sock, msg);
640 EXPORT_SYMBOL(kernel_sendmsg);
643 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
645 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
648 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
649 struct scm_timestamping tss;
651 struct skb_shared_hwtstamps *shhwtstamps =
654 /* Race occurred between timestamp enabling and packet
655 receiving. Fill in the current time for now. */
656 if (need_software_tstamp && skb->tstamp.tv64 == 0)
657 __net_timestamp(skb);
659 if (need_software_tstamp) {
660 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
662 skb_get_timestamp(skb, &tv);
663 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
667 skb_get_timestampns(skb, &ts);
668 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
673 memset(&tss, 0, sizeof(tss));
674 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
675 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
678 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
679 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
682 put_cmsg(msg, SOL_SOCKET,
683 SCM_TIMESTAMPING, sizeof(tss), &tss);
685 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
687 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
692 if (!sock_flag(sk, SOCK_WIFI_STATUS))
694 if (!skb->wifi_acked_valid)
697 ack = skb->wifi_acked;
699 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
701 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
703 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
706 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
707 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
708 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
711 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
714 sock_recv_timestamp(msg, sk, skb);
715 sock_recv_drops(msg, sk, skb);
717 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
719 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
722 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
725 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
727 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
729 return err ?: sock_recvmsg_nosec(sock, msg, flags);
731 EXPORT_SYMBOL(sock_recvmsg);
734 * kernel_recvmsg - Receive a message from a socket (kernel space)
735 * @sock: The socket to receive the message from
736 * @msg: Received message
737 * @vec: Input s/g array for message data
738 * @num: Size of input s/g array
739 * @size: Number of bytes to read
740 * @flags: Message flags (MSG_DONTWAIT, etc...)
742 * On return the msg structure contains the scatter/gather array passed in the
743 * vec argument. The array is modified so that it consists of the unfilled
744 * portion of the original array.
746 * The returned value is the total number of bytes received, or an error.
748 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
749 struct kvec *vec, size_t num, size_t size, int flags)
751 mm_segment_t oldfs = get_fs();
754 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
756 result = sock_recvmsg(sock, msg, flags);
760 EXPORT_SYMBOL(kernel_recvmsg);
762 static ssize_t sock_sendpage(struct file *file, struct page *page,
763 int offset, size_t size, loff_t *ppos, int more)
768 sock = file->private_data;
770 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
771 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
774 return kernel_sendpage(sock, page, offset, size, flags);
777 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
778 struct pipe_inode_info *pipe, size_t len,
781 struct socket *sock = file->private_data;
783 if (unlikely(!sock->ops->splice_read))
786 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
789 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
791 struct file *file = iocb->ki_filp;
792 struct socket *sock = file->private_data;
793 struct msghdr msg = {.msg_iter = *to,
797 if (file->f_flags & O_NONBLOCK)
798 msg.msg_flags = MSG_DONTWAIT;
800 if (iocb->ki_pos != 0)
803 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
806 res = sock_recvmsg(sock, &msg, msg.msg_flags);
811 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
813 struct file *file = iocb->ki_filp;
814 struct socket *sock = file->private_data;
815 struct msghdr msg = {.msg_iter = *from,
819 if (iocb->ki_pos != 0)
822 if (file->f_flags & O_NONBLOCK)
823 msg.msg_flags = MSG_DONTWAIT;
825 if (sock->type == SOCK_SEQPACKET)
826 msg.msg_flags |= MSG_EOR;
828 res = sock_sendmsg(sock, &msg);
829 *from = msg.msg_iter;
834 * Atomic setting of ioctl hooks to avoid race
835 * with module unload.
838 static DEFINE_MUTEX(br_ioctl_mutex);
839 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
841 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
843 mutex_lock(&br_ioctl_mutex);
844 br_ioctl_hook = hook;
845 mutex_unlock(&br_ioctl_mutex);
847 EXPORT_SYMBOL(brioctl_set);
849 static DEFINE_MUTEX(vlan_ioctl_mutex);
850 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
852 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
854 mutex_lock(&vlan_ioctl_mutex);
855 vlan_ioctl_hook = hook;
856 mutex_unlock(&vlan_ioctl_mutex);
858 EXPORT_SYMBOL(vlan_ioctl_set);
860 static DEFINE_MUTEX(dlci_ioctl_mutex);
861 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
863 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
865 mutex_lock(&dlci_ioctl_mutex);
866 dlci_ioctl_hook = hook;
867 mutex_unlock(&dlci_ioctl_mutex);
869 EXPORT_SYMBOL(dlci_ioctl_set);
871 static long sock_do_ioctl(struct net *net, struct socket *sock,
872 unsigned int cmd, unsigned long arg)
875 void __user *argp = (void __user *)arg;
877 err = sock->ops->ioctl(sock, cmd, arg);
880 * If this ioctl is unknown try to hand it down
883 if (err == -ENOIOCTLCMD)
884 err = dev_ioctl(net, cmd, argp);
890 * With an ioctl, arg may well be a user mode pointer, but we don't know
891 * what to do with it - that's up to the protocol still.
894 static struct ns_common *get_net_ns(struct ns_common *ns)
896 return &get_net(container_of(ns, struct net, ns))->ns;
899 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
903 void __user *argp = (void __user *)arg;
907 sock = file->private_data;
910 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
911 err = dev_ioctl(net, cmd, argp);
913 #ifdef CONFIG_WEXT_CORE
914 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
915 err = dev_ioctl(net, cmd, argp);
922 if (get_user(pid, (int __user *)argp))
924 f_setown(sock->file, pid, 1);
929 err = put_user(f_getown(sock->file),
938 request_module("bridge");
940 mutex_lock(&br_ioctl_mutex);
942 err = br_ioctl_hook(net, cmd, argp);
943 mutex_unlock(&br_ioctl_mutex);
948 if (!vlan_ioctl_hook)
949 request_module("8021q");
951 mutex_lock(&vlan_ioctl_mutex);
953 err = vlan_ioctl_hook(net, argp);
954 mutex_unlock(&vlan_ioctl_mutex);
959 if (!dlci_ioctl_hook)
960 request_module("dlci");
962 mutex_lock(&dlci_ioctl_mutex);
964 err = dlci_ioctl_hook(cmd, argp);
965 mutex_unlock(&dlci_ioctl_mutex);
969 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
972 err = open_related_ns(&net->ns, get_net_ns);
975 err = sock_do_ioctl(net, sock, cmd, arg);
981 int sock_create_lite(int family, int type, int protocol, struct socket **res)
984 struct socket *sock = NULL;
986 err = security_socket_create(family, type, protocol, 1);
997 err = security_socket_post_create(sock, family, type, protocol, 1);
1009 EXPORT_SYMBOL(sock_create_lite);
1011 /* No kernel lock held - perfect */
1012 static unsigned int sock_poll(struct file *file, poll_table *wait)
1014 unsigned int busy_flag = 0;
1015 struct socket *sock;
1018 * We can't return errors to poll, so it's either yes or no.
1020 sock = file->private_data;
1022 if (sk_can_busy_loop(sock->sk)) {
1023 /* this socket can poll_ll so tell the system call */
1024 busy_flag = POLL_BUSY_LOOP;
1026 /* once, only if requested by syscall */
1027 if (wait && (wait->_key & POLL_BUSY_LOOP))
1028 sk_busy_loop(sock->sk, 1);
1031 return busy_flag | sock->ops->poll(file, sock, wait);
1034 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1036 struct socket *sock = file->private_data;
1038 return sock->ops->mmap(file, sock, vma);
1041 static int sock_close(struct inode *inode, struct file *filp)
1043 sock_release(SOCKET_I(inode));
1048 * Update the socket async list
1050 * Fasync_list locking strategy.
1052 * 1. fasync_list is modified only under process context socket lock
1053 * i.e. under semaphore.
1054 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1055 * or under socket lock
1058 static int sock_fasync(int fd, struct file *filp, int on)
1060 struct socket *sock = filp->private_data;
1061 struct sock *sk = sock->sk;
1062 struct socket_wq *wq;
1068 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1069 fasync_helper(fd, filp, on, &wq->fasync_list);
1071 if (!wq->fasync_list)
1072 sock_reset_flag(sk, SOCK_FASYNC);
1074 sock_set_flag(sk, SOCK_FASYNC);
1080 /* This function may be called only under rcu_lock */
1082 int sock_wake_async(struct socket_wq *wq, int how, int band)
1084 if (!wq || !wq->fasync_list)
1088 case SOCK_WAKE_WAITD:
1089 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1092 case SOCK_WAKE_SPACE:
1093 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1098 kill_fasync(&wq->fasync_list, SIGIO, band);
1101 kill_fasync(&wq->fasync_list, SIGURG, band);
1106 EXPORT_SYMBOL(sock_wake_async);
1108 int __sock_create(struct net *net, int family, int type, int protocol,
1109 struct socket **res, int kern)
1112 struct socket *sock;
1113 const struct net_proto_family *pf;
1116 * Check protocol is in range
1118 if (family < 0 || family >= NPROTO)
1119 return -EAFNOSUPPORT;
1120 if (type < 0 || type >= SOCK_MAX)
1125 This uglymoron is moved from INET layer to here to avoid
1126 deadlock in module load.
1128 if (family == PF_INET && type == SOCK_PACKET) {
1129 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1134 err = security_socket_create(family, type, protocol, kern);
1139 * Allocate the socket and allow the family to set things up. if
1140 * the protocol is 0, the family is instructed to select an appropriate
1143 sock = sock_alloc();
1145 net_warn_ratelimited("socket: no more sockets\n");
1146 return -ENFILE; /* Not exactly a match, but its the
1147 closest posix thing */
1152 #ifdef CONFIG_MODULES
1153 /* Attempt to load a protocol module if the find failed.
1155 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1156 * requested real, full-featured networking support upon configuration.
1157 * Otherwise module support will break!
1159 if (rcu_access_pointer(net_families[family]) == NULL)
1160 request_module("net-pf-%d", family);
1164 pf = rcu_dereference(net_families[family]);
1165 err = -EAFNOSUPPORT;
1170 * We will call the ->create function, that possibly is in a loadable
1171 * module, so we have to bump that loadable module refcnt first.
1173 if (!try_module_get(pf->owner))
1176 /* Now protected by module ref count */
1179 err = pf->create(net, sock, protocol, kern);
1181 goto out_module_put;
1184 * Now to bump the refcnt of the [loadable] module that owns this
1185 * socket at sock_release time we decrement its refcnt.
1187 if (!try_module_get(sock->ops->owner))
1188 goto out_module_busy;
1191 * Now that we're done with the ->create function, the [loadable]
1192 * module can have its refcnt decremented
1194 module_put(pf->owner);
1195 err = security_socket_post_create(sock, family, type, protocol, kern);
1197 goto out_sock_release;
1203 err = -EAFNOSUPPORT;
1206 module_put(pf->owner);
1213 goto out_sock_release;
1215 EXPORT_SYMBOL(__sock_create);
1217 int sock_create(int family, int type, int protocol, struct socket **res)
1219 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1221 EXPORT_SYMBOL(sock_create);
1223 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1225 return __sock_create(net, family, type, protocol, res, 1);
1227 EXPORT_SYMBOL(sock_create_kern);
1229 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1232 struct socket *sock;
1235 /* Check the SOCK_* constants for consistency. */
1236 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1237 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1238 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1239 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1241 flags = type & ~SOCK_TYPE_MASK;
1242 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1244 type &= SOCK_TYPE_MASK;
1246 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1247 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1249 retval = sock_create(family, type, protocol, &sock);
1253 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1258 /* It may be already another descriptor 8) Not kernel problem. */
1267 * Create a pair of connected sockets.
1270 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1271 int __user *, usockvec)
1273 struct socket *sock1, *sock2;
1275 struct file *newfile1, *newfile2;
1278 flags = type & ~SOCK_TYPE_MASK;
1279 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1281 type &= SOCK_TYPE_MASK;
1283 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1284 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1287 * Obtain the first socket and check if the underlying protocol
1288 * supports the socketpair call.
1291 err = sock_create(family, type, protocol, &sock1);
1295 err = sock_create(family, type, protocol, &sock2);
1299 err = sock1->ops->socketpair(sock1, sock2);
1301 goto out_release_both;
1303 fd1 = get_unused_fd_flags(flags);
1304 if (unlikely(fd1 < 0)) {
1306 goto out_release_both;
1309 fd2 = get_unused_fd_flags(flags);
1310 if (unlikely(fd2 < 0)) {
1312 goto out_put_unused_1;
1315 newfile1 = sock_alloc_file(sock1, flags, NULL);
1316 if (IS_ERR(newfile1)) {
1317 err = PTR_ERR(newfile1);
1318 goto out_put_unused_both;
1321 newfile2 = sock_alloc_file(sock2, flags, NULL);
1322 if (IS_ERR(newfile2)) {
1323 err = PTR_ERR(newfile2);
1327 err = put_user(fd1, &usockvec[0]);
1331 err = put_user(fd2, &usockvec[1]);
1335 audit_fd_pair(fd1, fd2);
1337 fd_install(fd1, newfile1);
1338 fd_install(fd2, newfile2);
1339 /* fd1 and fd2 may be already another descriptors.
1340 * Not kernel problem.
1356 sock_release(sock2);
1359 out_put_unused_both:
1364 sock_release(sock2);
1366 sock_release(sock1);
1372 * Bind a name to a socket. Nothing much to do here since it's
1373 * the protocol's responsibility to handle the local address.
1375 * We move the socket address to kernel space before we call
1376 * the protocol layer (having also checked the address is ok).
1379 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1381 struct socket *sock;
1382 struct sockaddr_storage address;
1383 int err, fput_needed;
1385 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1387 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1389 err = security_socket_bind(sock,
1390 (struct sockaddr *)&address,
1393 err = sock->ops->bind(sock,
1397 fput_light(sock->file, fput_needed);
1403 * Perform a listen. Basically, we allow the protocol to do anything
1404 * necessary for a listen, and if that works, we mark the socket as
1405 * ready for listening.
1408 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1410 struct socket *sock;
1411 int err, fput_needed;
1414 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1416 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1417 if ((unsigned int)backlog > somaxconn)
1418 backlog = somaxconn;
1420 err = security_socket_listen(sock, backlog);
1422 err = sock->ops->listen(sock, backlog);
1424 fput_light(sock->file, fput_needed);
1430 * For accept, we attempt to create a new socket, set up the link
1431 * with the client, wake up the client, then return the new
1432 * connected fd. We collect the address of the connector in kernel
1433 * space and move it to user at the very end. This is unclean because
1434 * we open the socket then return an error.
1436 * 1003.1g adds the ability to recvmsg() to query connection pending
1437 * status to recvmsg. We need to add that support in a way thats
1438 * clean when we restucture accept also.
1441 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1442 int __user *, upeer_addrlen, int, flags)
1444 struct socket *sock, *newsock;
1445 struct file *newfile;
1446 int err, len, newfd, fput_needed;
1447 struct sockaddr_storage address;
1449 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1452 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1453 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1455 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1460 newsock = sock_alloc();
1464 newsock->type = sock->type;
1465 newsock->ops = sock->ops;
1468 * We don't need try_module_get here, as the listening socket (sock)
1469 * has the protocol module (sock->ops->owner) held.
1471 __module_get(newsock->ops->owner);
1473 newfd = get_unused_fd_flags(flags);
1474 if (unlikely(newfd < 0)) {
1476 sock_release(newsock);
1479 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1480 if (IS_ERR(newfile)) {
1481 err = PTR_ERR(newfile);
1482 put_unused_fd(newfd);
1483 sock_release(newsock);
1487 err = security_socket_accept(sock, newsock);
1491 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1495 if (upeer_sockaddr) {
1496 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1498 err = -ECONNABORTED;
1501 err = move_addr_to_user(&address,
1502 len, upeer_sockaddr, upeer_addrlen);
1507 /* File flags are not inherited via accept() unlike another OSes. */
1509 fd_install(newfd, newfile);
1513 fput_light(sock->file, fput_needed);
1518 put_unused_fd(newfd);
1522 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1523 int __user *, upeer_addrlen)
1525 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1529 * Attempt to connect to a socket with the server address. The address
1530 * is in user space so we verify it is OK and move it to kernel space.
1532 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1535 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1536 * other SEQPACKET protocols that take time to connect() as it doesn't
1537 * include the -EINPROGRESS status for such sockets.
1540 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1543 struct socket *sock;
1544 struct sockaddr_storage address;
1545 int err, fput_needed;
1547 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1550 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1555 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1559 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1560 sock->file->f_flags);
1562 fput_light(sock->file, fput_needed);
1568 * Get the local address ('name') of a socket object. Move the obtained
1569 * name to user space.
1572 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1573 int __user *, usockaddr_len)
1575 struct socket *sock;
1576 struct sockaddr_storage address;
1577 int len, err, fput_needed;
1579 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1583 err = security_socket_getsockname(sock);
1587 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1590 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1593 fput_light(sock->file, fput_needed);
1599 * Get the remote address ('name') of a socket object. Move the obtained
1600 * name to user space.
1603 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1604 int __user *, usockaddr_len)
1606 struct socket *sock;
1607 struct sockaddr_storage address;
1608 int len, err, fput_needed;
1610 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1612 err = security_socket_getpeername(sock);
1614 fput_light(sock->file, fput_needed);
1619 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1622 err = move_addr_to_user(&address, len, usockaddr,
1624 fput_light(sock->file, fput_needed);
1630 * Send a datagram to a given address. We move the address into kernel
1631 * space and check the user space data area is readable before invoking
1635 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1636 unsigned int, flags, struct sockaddr __user *, addr,
1639 struct socket *sock;
1640 struct sockaddr_storage address;
1646 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1649 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1653 msg.msg_name = NULL;
1654 msg.msg_control = NULL;
1655 msg.msg_controllen = 0;
1656 msg.msg_namelen = 0;
1658 err = move_addr_to_kernel(addr, addr_len, &address);
1661 msg.msg_name = (struct sockaddr *)&address;
1662 msg.msg_namelen = addr_len;
1664 if (sock->file->f_flags & O_NONBLOCK)
1665 flags |= MSG_DONTWAIT;
1666 msg.msg_flags = flags;
1667 err = sock_sendmsg(sock, &msg);
1670 fput_light(sock->file, fput_needed);
1676 * Send a datagram down a socket.
1679 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1680 unsigned int, flags)
1682 return sys_sendto(fd, buff, len, flags, NULL, 0);
1686 * Receive a frame from the socket and optionally record the address of the
1687 * sender. We verify the buffers are writable and if needed move the
1688 * sender address from kernel to user space.
1691 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1692 unsigned int, flags, struct sockaddr __user *, addr,
1693 int __user *, addr_len)
1695 struct socket *sock;
1698 struct sockaddr_storage address;
1702 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1705 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1709 msg.msg_control = NULL;
1710 msg.msg_controllen = 0;
1711 /* Save some cycles and don't copy the address if not needed */
1712 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1713 /* We assume all kernel code knows the size of sockaddr_storage */
1714 msg.msg_namelen = 0;
1715 msg.msg_iocb = NULL;
1716 if (sock->file->f_flags & O_NONBLOCK)
1717 flags |= MSG_DONTWAIT;
1718 err = sock_recvmsg(sock, &msg, flags);
1720 if (err >= 0 && addr != NULL) {
1721 err2 = move_addr_to_user(&address,
1722 msg.msg_namelen, addr, addr_len);
1727 fput_light(sock->file, fput_needed);
1733 * Receive a datagram from a socket.
1736 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1737 unsigned int, flags)
1739 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1743 * Set a socket option. Because we don't know the option lengths we have
1744 * to pass the user mode parameter for the protocols to sort out.
1747 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1748 char __user *, optval, int, optlen)
1750 int err, fput_needed;
1751 struct socket *sock;
1756 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1758 err = security_socket_setsockopt(sock, level, optname);
1762 if (level == SOL_SOCKET)
1764 sock_setsockopt(sock, level, optname, optval,
1768 sock->ops->setsockopt(sock, level, optname, optval,
1771 fput_light(sock->file, fput_needed);
1777 * Get a socket option. Because we don't know the option lengths we have
1778 * to pass a user mode parameter for the protocols to sort out.
1781 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1782 char __user *, optval, int __user *, optlen)
1784 int err, fput_needed;
1785 struct socket *sock;
1787 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1789 err = security_socket_getsockopt(sock, level, optname);
1793 if (level == SOL_SOCKET)
1795 sock_getsockopt(sock, level, optname, optval,
1799 sock->ops->getsockopt(sock, level, optname, optval,
1802 fput_light(sock->file, fput_needed);
1808 * Shutdown a socket.
1811 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1813 int err, fput_needed;
1814 struct socket *sock;
1816 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 err = security_socket_shutdown(sock, how);
1820 err = sock->ops->shutdown(sock, how);
1821 fput_light(sock->file, fput_needed);
1826 /* A couple of helpful macros for getting the address of the 32/64 bit
1827 * fields which are the same type (int / unsigned) on our platforms.
1829 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1830 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1831 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1833 struct used_address {
1834 struct sockaddr_storage name;
1835 unsigned int name_len;
1838 static int copy_msghdr_from_user(struct msghdr *kmsg,
1839 struct user_msghdr __user *umsg,
1840 struct sockaddr __user **save_addr,
1843 struct sockaddr __user *uaddr;
1844 struct iovec __user *uiov;
1848 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1849 __get_user(uaddr, &umsg->msg_name) ||
1850 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1851 __get_user(uiov, &umsg->msg_iov) ||
1852 __get_user(nr_segs, &umsg->msg_iovlen) ||
1853 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1854 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1855 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1859 kmsg->msg_namelen = 0;
1861 if (kmsg->msg_namelen < 0)
1864 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1865 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1870 if (uaddr && kmsg->msg_namelen) {
1872 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1878 kmsg->msg_name = NULL;
1879 kmsg->msg_namelen = 0;
1882 if (nr_segs > UIO_MAXIOV)
1885 kmsg->msg_iocb = NULL;
1887 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1888 UIO_FASTIOV, iov, &kmsg->msg_iter);
1891 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1892 struct msghdr *msg_sys, unsigned int flags,
1893 struct used_address *used_address,
1894 unsigned int allowed_msghdr_flags)
1896 struct compat_msghdr __user *msg_compat =
1897 (struct compat_msghdr __user *)msg;
1898 struct sockaddr_storage address;
1899 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1900 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1901 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1902 /* 20 is size of ipv6_pktinfo */
1903 unsigned char *ctl_buf = ctl;
1907 msg_sys->msg_name = &address;
1909 if (MSG_CMSG_COMPAT & flags)
1910 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1912 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1918 if (msg_sys->msg_controllen > INT_MAX)
1920 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1921 ctl_len = msg_sys->msg_controllen;
1922 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1924 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1928 ctl_buf = msg_sys->msg_control;
1929 ctl_len = msg_sys->msg_controllen;
1930 } else if (ctl_len) {
1931 if (ctl_len > sizeof(ctl)) {
1932 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1933 if (ctl_buf == NULL)
1938 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1939 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1940 * checking falls down on this.
1942 if (copy_from_user(ctl_buf,
1943 (void __user __force *)msg_sys->msg_control,
1946 msg_sys->msg_control = ctl_buf;
1948 msg_sys->msg_flags = flags;
1950 if (sock->file->f_flags & O_NONBLOCK)
1951 msg_sys->msg_flags |= MSG_DONTWAIT;
1953 * If this is sendmmsg() and current destination address is same as
1954 * previously succeeded address, omit asking LSM's decision.
1955 * used_address->name_len is initialized to UINT_MAX so that the first
1956 * destination address never matches.
1958 if (used_address && msg_sys->msg_name &&
1959 used_address->name_len == msg_sys->msg_namelen &&
1960 !memcmp(&used_address->name, msg_sys->msg_name,
1961 used_address->name_len)) {
1962 err = sock_sendmsg_nosec(sock, msg_sys);
1965 err = sock_sendmsg(sock, msg_sys);
1967 * If this is sendmmsg() and sending to current destination address was
1968 * successful, remember it.
1970 if (used_address && err >= 0) {
1971 used_address->name_len = msg_sys->msg_namelen;
1972 if (msg_sys->msg_name)
1973 memcpy(&used_address->name, msg_sys->msg_name,
1974 used_address->name_len);
1979 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1986 * BSD sendmsg interface
1989 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1991 int fput_needed, err;
1992 struct msghdr msg_sys;
1993 struct socket *sock;
1995 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1999 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2001 fput_light(sock->file, fput_needed);
2006 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2008 if (flags & MSG_CMSG_COMPAT)
2010 return __sys_sendmsg(fd, msg, flags);
2014 * Linux sendmmsg interface
2017 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2020 int fput_needed, err, datagrams;
2021 struct socket *sock;
2022 struct mmsghdr __user *entry;
2023 struct compat_mmsghdr __user *compat_entry;
2024 struct msghdr msg_sys;
2025 struct used_address used_address;
2026 unsigned int oflags = flags;
2028 if (vlen > UIO_MAXIOV)
2033 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2037 used_address.name_len = UINT_MAX;
2039 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2043 while (datagrams < vlen) {
2044 if (datagrams == vlen - 1)
2047 if (MSG_CMSG_COMPAT & flags) {
2048 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2049 &msg_sys, flags, &used_address, MSG_EOR);
2052 err = __put_user(err, &compat_entry->msg_len);
2055 err = ___sys_sendmsg(sock,
2056 (struct user_msghdr __user *)entry,
2057 &msg_sys, flags, &used_address, MSG_EOR);
2060 err = put_user(err, &entry->msg_len);
2070 fput_light(sock->file, fput_needed);
2072 /* We only return an error if no datagrams were able to be sent */
2079 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2080 unsigned int, vlen, unsigned int, flags)
2082 if (flags & MSG_CMSG_COMPAT)
2084 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2087 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2088 struct msghdr *msg_sys, unsigned int flags, int nosec)
2090 struct compat_msghdr __user *msg_compat =
2091 (struct compat_msghdr __user *)msg;
2092 struct iovec iovstack[UIO_FASTIOV];
2093 struct iovec *iov = iovstack;
2094 unsigned long cmsg_ptr;
2098 /* kernel mode address */
2099 struct sockaddr_storage addr;
2101 /* user mode address pointers */
2102 struct sockaddr __user *uaddr;
2103 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2105 msg_sys->msg_name = &addr;
2107 if (MSG_CMSG_COMPAT & flags)
2108 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2110 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2114 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2115 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2117 /* We assume all kernel code knows the size of sockaddr_storage */
2118 msg_sys->msg_namelen = 0;
2120 if (sock->file->f_flags & O_NONBLOCK)
2121 flags |= MSG_DONTWAIT;
2122 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2127 if (uaddr != NULL) {
2128 err = move_addr_to_user(&addr,
2129 msg_sys->msg_namelen, uaddr,
2134 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2138 if (MSG_CMSG_COMPAT & flags)
2139 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2140 &msg_compat->msg_controllen);
2142 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2143 &msg->msg_controllen);
2154 * BSD recvmsg interface
2157 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2159 int fput_needed, err;
2160 struct msghdr msg_sys;
2161 struct socket *sock;
2163 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2167 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2169 fput_light(sock->file, fput_needed);
2174 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2175 unsigned int, flags)
2177 if (flags & MSG_CMSG_COMPAT)
2179 return __sys_recvmsg(fd, msg, flags);
2183 * Linux recvmmsg interface
2186 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2187 unsigned int flags, struct timespec *timeout)
2189 int fput_needed, err, datagrams;
2190 struct socket *sock;
2191 struct mmsghdr __user *entry;
2192 struct compat_mmsghdr __user *compat_entry;
2193 struct msghdr msg_sys;
2194 struct timespec64 end_time;
2195 struct timespec64 timeout64;
2198 poll_select_set_timeout(&end_time, timeout->tv_sec,
2204 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2208 err = sock_error(sock->sk);
2213 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2215 while (datagrams < vlen) {
2217 * No need to ask LSM for more than the first datagram.
2219 if (MSG_CMSG_COMPAT & flags) {
2220 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2221 &msg_sys, flags & ~MSG_WAITFORONE,
2225 err = __put_user(err, &compat_entry->msg_len);
2228 err = ___sys_recvmsg(sock,
2229 (struct user_msghdr __user *)entry,
2230 &msg_sys, flags & ~MSG_WAITFORONE,
2234 err = put_user(err, &entry->msg_len);
2242 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2243 if (flags & MSG_WAITFORONE)
2244 flags |= MSG_DONTWAIT;
2247 ktime_get_ts64(&timeout64);
2248 *timeout = timespec64_to_timespec(
2249 timespec64_sub(end_time, timeout64));
2250 if (timeout->tv_sec < 0) {
2251 timeout->tv_sec = timeout->tv_nsec = 0;
2255 /* Timeout, return less than vlen datagrams */
2256 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2260 /* Out of band data, return right away */
2261 if (msg_sys.msg_flags & MSG_OOB)
2269 if (datagrams == 0) {
2275 * We may return less entries than requested (vlen) if the
2276 * sock is non block and there aren't enough datagrams...
2278 if (err != -EAGAIN) {
2280 * ... or if recvmsg returns an error after we
2281 * received some datagrams, where we record the
2282 * error to return on the next call or if the
2283 * app asks about it using getsockopt(SO_ERROR).
2285 sock->sk->sk_err = -err;
2288 fput_light(sock->file, fput_needed);
2293 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2294 unsigned int, vlen, unsigned int, flags,
2295 struct timespec __user *, timeout)
2298 struct timespec timeout_sys;
2300 if (flags & MSG_CMSG_COMPAT)
2304 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2306 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2309 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2311 if (datagrams > 0 &&
2312 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2313 datagrams = -EFAULT;
2318 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2319 /* Argument list sizes for sys_socketcall */
2320 #define AL(x) ((x) * sizeof(unsigned long))
2321 static const unsigned char nargs[21] = {
2322 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2323 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2324 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2331 * System call vectors.
2333 * Argument checking cleaned up. Saved 20% in size.
2334 * This function doesn't need to set the kernel lock because
2335 * it is set by the callees.
2338 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2340 unsigned long a[AUDITSC_ARGS];
2341 unsigned long a0, a1;
2345 if (call < 1 || call > SYS_SENDMMSG)
2349 if (len > sizeof(a))
2352 /* copy_from_user should be SMP safe. */
2353 if (copy_from_user(a, args, len))
2356 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2365 err = sys_socket(a0, a1, a[2]);
2368 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2371 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2374 err = sys_listen(a0, a1);
2377 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2378 (int __user *)a[2], 0);
2380 case SYS_GETSOCKNAME:
2382 sys_getsockname(a0, (struct sockaddr __user *)a1,
2383 (int __user *)a[2]);
2385 case SYS_GETPEERNAME:
2387 sys_getpeername(a0, (struct sockaddr __user *)a1,
2388 (int __user *)a[2]);
2390 case SYS_SOCKETPAIR:
2391 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2394 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2397 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2398 (struct sockaddr __user *)a[4], a[5]);
2401 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2404 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2405 (struct sockaddr __user *)a[4],
2406 (int __user *)a[5]);
2409 err = sys_shutdown(a0, a1);
2411 case SYS_SETSOCKOPT:
2412 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2414 case SYS_GETSOCKOPT:
2416 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2417 (int __user *)a[4]);
2420 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2423 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2426 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2429 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2430 (struct timespec __user *)a[4]);
2433 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2434 (int __user *)a[2], a[3]);
2443 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2446 * sock_register - add a socket protocol handler
2447 * @ops: description of protocol
2449 * This function is called by a protocol handler that wants to
2450 * advertise its address family, and have it linked into the
2451 * socket interface. The value ops->family corresponds to the
2452 * socket system call protocol family.
2454 int sock_register(const struct net_proto_family *ops)
2458 if (ops->family >= NPROTO) {
2459 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2463 spin_lock(&net_family_lock);
2464 if (rcu_dereference_protected(net_families[ops->family],
2465 lockdep_is_held(&net_family_lock)))
2468 rcu_assign_pointer(net_families[ops->family], ops);
2471 spin_unlock(&net_family_lock);
2473 pr_info("NET: Registered protocol family %d\n", ops->family);
2476 EXPORT_SYMBOL(sock_register);
2479 * sock_unregister - remove a protocol handler
2480 * @family: protocol family to remove
2482 * This function is called by a protocol handler that wants to
2483 * remove its address family, and have it unlinked from the
2484 * new socket creation.
2486 * If protocol handler is a module, then it can use module reference
2487 * counts to protect against new references. If protocol handler is not
2488 * a module then it needs to provide its own protection in
2489 * the ops->create routine.
2491 void sock_unregister(int family)
2493 BUG_ON(family < 0 || family >= NPROTO);
2495 spin_lock(&net_family_lock);
2496 RCU_INIT_POINTER(net_families[family], NULL);
2497 spin_unlock(&net_family_lock);
2501 pr_info("NET: Unregistered protocol family %d\n", family);
2503 EXPORT_SYMBOL(sock_unregister);
2505 static int __init sock_init(void)
2509 * Initialize the network sysctl infrastructure.
2511 err = net_sysctl_init();
2516 * Initialize skbuff SLAB cache
2521 * Initialize the protocols module.
2526 err = register_filesystem(&sock_fs_type);
2529 sock_mnt = kern_mount(&sock_fs_type);
2530 if (IS_ERR(sock_mnt)) {
2531 err = PTR_ERR(sock_mnt);
2535 /* The real protocol initialization is performed in later initcalls.
2538 #ifdef CONFIG_NETFILTER
2539 err = netfilter_init();
2544 ptp_classifier_init();
2550 unregister_filesystem(&sock_fs_type);
2555 core_initcall(sock_init); /* early initcall */
2557 #ifdef CONFIG_PROC_FS
2558 void socket_seq_show(struct seq_file *seq)
2563 for_each_possible_cpu(cpu)
2564 counter += per_cpu(sockets_in_use, cpu);
2566 /* It can be negative, by the way. 8) */
2570 seq_printf(seq, "sockets: used %d\n", counter);
2572 #endif /* CONFIG_PROC_FS */
2574 #ifdef CONFIG_COMPAT
2575 static int do_siocgstamp(struct net *net, struct socket *sock,
2576 unsigned int cmd, void __user *up)
2578 mm_segment_t old_fs = get_fs();
2583 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2586 err = compat_put_timeval(&ktv, up);
2591 static int do_siocgstampns(struct net *net, struct socket *sock,
2592 unsigned int cmd, void __user *up)
2594 mm_segment_t old_fs = get_fs();
2595 struct timespec kts;
2599 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2602 err = compat_put_timespec(&kts, up);
2607 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2609 struct ifreq __user *uifr;
2612 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2613 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2616 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2620 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2626 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2628 struct compat_ifconf ifc32;
2630 struct ifconf __user *uifc;
2631 struct compat_ifreq __user *ifr32;
2632 struct ifreq __user *ifr;
2636 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2639 memset(&ifc, 0, sizeof(ifc));
2640 if (ifc32.ifcbuf == 0) {
2644 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2646 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2647 sizeof(struct ifreq);
2648 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2650 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2651 ifr32 = compat_ptr(ifc32.ifcbuf);
2652 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2653 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2659 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2662 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2666 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2670 ifr32 = compat_ptr(ifc32.ifcbuf);
2672 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2673 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2674 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2680 if (ifc32.ifcbuf == 0) {
2681 /* Translate from 64-bit structure multiple to
2685 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2690 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2696 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2698 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2699 bool convert_in = false, convert_out = false;
2700 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2701 struct ethtool_rxnfc __user *rxnfc;
2702 struct ifreq __user *ifr;
2703 u32 rule_cnt = 0, actual_rule_cnt;
2708 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2711 compat_rxnfc = compat_ptr(data);
2713 if (get_user(ethcmd, &compat_rxnfc->cmd))
2716 /* Most ethtool structures are defined without padding.
2717 * Unfortunately struct ethtool_rxnfc is an exception.
2722 case ETHTOOL_GRXCLSRLALL:
2723 /* Buffer size is variable */
2724 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2726 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2728 buf_size += rule_cnt * sizeof(u32);
2730 case ETHTOOL_GRXRINGS:
2731 case ETHTOOL_GRXCLSRLCNT:
2732 case ETHTOOL_GRXCLSRULE:
2733 case ETHTOOL_SRXCLSRLINS:
2736 case ETHTOOL_SRXCLSRLDEL:
2737 buf_size += sizeof(struct ethtool_rxnfc);
2742 ifr = compat_alloc_user_space(buf_size);
2743 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2745 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2748 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2749 &ifr->ifr_ifru.ifru_data))
2753 /* We expect there to be holes between fs.m_ext and
2754 * fs.ring_cookie and at the end of fs, but nowhere else.
2756 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2757 sizeof(compat_rxnfc->fs.m_ext) !=
2758 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2759 sizeof(rxnfc->fs.m_ext));
2761 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2762 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2763 offsetof(struct ethtool_rxnfc, fs.location) -
2764 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2766 if (copy_in_user(rxnfc, compat_rxnfc,
2767 (void __user *)(&rxnfc->fs.m_ext + 1) -
2768 (void __user *)rxnfc) ||
2769 copy_in_user(&rxnfc->fs.ring_cookie,
2770 &compat_rxnfc->fs.ring_cookie,
2771 (void __user *)(&rxnfc->fs.location + 1) -
2772 (void __user *)&rxnfc->fs.ring_cookie) ||
2773 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2774 sizeof(rxnfc->rule_cnt)))
2778 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2783 if (copy_in_user(compat_rxnfc, rxnfc,
2784 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2785 (const void __user *)rxnfc) ||
2786 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2787 &rxnfc->fs.ring_cookie,
2788 (const void __user *)(&rxnfc->fs.location + 1) -
2789 (const void __user *)&rxnfc->fs.ring_cookie) ||
2790 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2791 sizeof(rxnfc->rule_cnt)))
2794 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2795 /* As an optimisation, we only copy the actual
2796 * number of rules that the underlying
2797 * function returned. Since Mallory might
2798 * change the rule count in user memory, we
2799 * check that it is less than the rule count
2800 * originally given (as the user buffer size),
2801 * which has been range-checked.
2803 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2805 if (actual_rule_cnt < rule_cnt)
2806 rule_cnt = actual_rule_cnt;
2807 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2808 &rxnfc->rule_locs[0],
2809 rule_cnt * sizeof(u32)))
2817 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2820 compat_uptr_t uptr32;
2821 struct ifreq __user *uifr;
2823 uifr = compat_alloc_user_space(sizeof(*uifr));
2824 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2827 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2830 uptr = compat_ptr(uptr32);
2832 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2835 return dev_ioctl(net, SIOCWANDEV, uifr);
2838 static int bond_ioctl(struct net *net, unsigned int cmd,
2839 struct compat_ifreq __user *ifr32)
2842 mm_segment_t old_fs;
2846 case SIOCBONDENSLAVE:
2847 case SIOCBONDRELEASE:
2848 case SIOCBONDSETHWADDR:
2849 case SIOCBONDCHANGEACTIVE:
2850 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2855 err = dev_ioctl(net, cmd,
2856 (struct ifreq __user __force *) &kifr);
2861 return -ENOIOCTLCMD;
2865 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2866 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2867 struct compat_ifreq __user *u_ifreq32)
2869 struct ifreq __user *u_ifreq64;
2870 char tmp_buf[IFNAMSIZ];
2871 void __user *data64;
2874 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2877 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2879 data64 = compat_ptr(data32);
2881 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2883 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2886 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2889 return dev_ioctl(net, cmd, u_ifreq64);
2892 static int dev_ifsioc(struct net *net, struct socket *sock,
2893 unsigned int cmd, struct compat_ifreq __user *uifr32)
2895 struct ifreq __user *uifr;
2898 uifr = compat_alloc_user_space(sizeof(*uifr));
2899 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2902 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2913 case SIOCGIFBRDADDR:
2914 case SIOCGIFDSTADDR:
2915 case SIOCGIFNETMASK:
2920 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2928 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2929 struct compat_ifreq __user *uifr32)
2932 struct compat_ifmap __user *uifmap32;
2933 mm_segment_t old_fs;
2936 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2937 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2938 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2939 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2940 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2941 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2942 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2943 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2949 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2952 if (cmd == SIOCGIFMAP && !err) {
2953 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2954 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2955 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2956 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2957 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2958 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2959 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2968 struct sockaddr rt_dst; /* target address */
2969 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2970 struct sockaddr rt_genmask; /* target network mask (IP) */
2971 unsigned short rt_flags;
2974 unsigned char rt_tos;
2975 unsigned char rt_class;
2977 short rt_metric; /* +1 for binary compatibility! */
2978 /* char * */ u32 rt_dev; /* forcing the device at add */
2979 u32 rt_mtu; /* per route MTU/Window */
2980 u32 rt_window; /* Window clamping */
2981 unsigned short rt_irtt; /* Initial RTT */
2984 struct in6_rtmsg32 {
2985 struct in6_addr rtmsg_dst;
2986 struct in6_addr rtmsg_src;
2987 struct in6_addr rtmsg_gateway;
2997 static int routing_ioctl(struct net *net, struct socket *sock,
2998 unsigned int cmd, void __user *argp)
3002 struct in6_rtmsg r6;
3006 mm_segment_t old_fs = get_fs();
3008 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3009 struct in6_rtmsg32 __user *ur6 = argp;
3010 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3011 3 * sizeof(struct in6_addr));
3012 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3013 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3014 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3015 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3016 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3017 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3018 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3022 struct rtentry32 __user *ur4 = argp;
3023 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3024 3 * sizeof(struct sockaddr));
3025 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3026 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3027 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3028 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3029 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3030 ret |= get_user(rtdev, &(ur4->rt_dev));
3032 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3033 r4.rt_dev = (char __user __force *)devname;
3047 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3054 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3055 * for some operations; this forces use of the newer bridge-utils that
3056 * use compatible ioctls
3058 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3062 if (get_user(tmp, argp))
3064 if (tmp == BRCTL_GET_VERSION)
3065 return BRCTL_VERSION + 1;
3069 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3070 unsigned int cmd, unsigned long arg)
3072 void __user *argp = compat_ptr(arg);
3073 struct sock *sk = sock->sk;
3074 struct net *net = sock_net(sk);
3076 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3077 return compat_ifr_data_ioctl(net, cmd, argp);
3082 return old_bridge_ioctl(argp);
3084 return dev_ifname32(net, argp);
3086 return dev_ifconf(net, argp);
3088 return ethtool_ioctl(net, argp);
3090 return compat_siocwandev(net, argp);
3093 return compat_sioc_ifmap(net, cmd, argp);
3094 case SIOCBONDENSLAVE:
3095 case SIOCBONDRELEASE:
3096 case SIOCBONDSETHWADDR:
3097 case SIOCBONDCHANGEACTIVE:
3098 return bond_ioctl(net, cmd, argp);
3101 return routing_ioctl(net, sock, cmd, argp);
3103 return do_siocgstamp(net, sock, cmd, argp);
3105 return do_siocgstampns(net, sock, cmd, argp);
3106 case SIOCBONDSLAVEINFOQUERY:
3107 case SIOCBONDINFOQUERY:
3110 return compat_ifr_data_ioctl(net, cmd, argp);
3123 return sock_ioctl(file, cmd, arg);
3140 case SIOCSIFHWBROADCAST:
3142 case SIOCGIFBRDADDR:
3143 case SIOCSIFBRDADDR:
3144 case SIOCGIFDSTADDR:
3145 case SIOCSIFDSTADDR:
3146 case SIOCGIFNETMASK:
3147 case SIOCSIFNETMASK:
3158 return dev_ifsioc(net, sock, cmd, argp);
3164 return sock_do_ioctl(net, sock, cmd, arg);
3167 return -ENOIOCTLCMD;
3170 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3173 struct socket *sock = file->private_data;
3174 int ret = -ENOIOCTLCMD;
3181 if (sock->ops->compat_ioctl)
3182 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3184 if (ret == -ENOIOCTLCMD &&
3185 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3186 ret = compat_wext_handle_ioctl(net, cmd, arg);
3188 if (ret == -ENOIOCTLCMD)
3189 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3195 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3197 return sock->ops->bind(sock, addr, addrlen);
3199 EXPORT_SYMBOL(kernel_bind);
3201 int kernel_listen(struct socket *sock, int backlog)
3203 return sock->ops->listen(sock, backlog);
3205 EXPORT_SYMBOL(kernel_listen);
3207 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3209 struct sock *sk = sock->sk;
3212 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3217 err = sock->ops->accept(sock, *newsock, flags);
3219 sock_release(*newsock);
3224 (*newsock)->ops = sock->ops;
3225 __module_get((*newsock)->ops->owner);
3230 EXPORT_SYMBOL(kernel_accept);
3232 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3235 return sock->ops->connect(sock, addr, addrlen, flags);
3237 EXPORT_SYMBOL(kernel_connect);
3239 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3242 return sock->ops->getname(sock, addr, addrlen, 0);
3244 EXPORT_SYMBOL(kernel_getsockname);
3246 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3249 return sock->ops->getname(sock, addr, addrlen, 1);
3251 EXPORT_SYMBOL(kernel_getpeername);
3253 int kernel_getsockopt(struct socket *sock, int level, int optname,
3254 char *optval, int *optlen)
3256 mm_segment_t oldfs = get_fs();
3257 char __user *uoptval;
3258 int __user *uoptlen;
3261 uoptval = (char __user __force *) optval;
3262 uoptlen = (int __user __force *) optlen;
3265 if (level == SOL_SOCKET)
3266 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3268 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3273 EXPORT_SYMBOL(kernel_getsockopt);
3275 int kernel_setsockopt(struct socket *sock, int level, int optname,
3276 char *optval, unsigned int optlen)
3278 mm_segment_t oldfs = get_fs();
3279 char __user *uoptval;
3282 uoptval = (char __user __force *) optval;
3285 if (level == SOL_SOCKET)
3286 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3288 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3293 EXPORT_SYMBOL(kernel_setsockopt);
3295 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3296 size_t size, int flags)
3298 if (sock->ops->sendpage)
3299 return sock->ops->sendpage(sock, page, offset, size, flags);
3301 return sock_no_sendpage(sock, page, offset, size, flags);
3303 EXPORT_SYMBOL(kernel_sendpage);
3305 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3307 mm_segment_t oldfs = get_fs();
3311 err = sock->ops->ioctl(sock, cmd, arg);
3316 EXPORT_SYMBOL(kernel_sock_ioctl);
3318 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3320 return sock->ops->shutdown(sock, how);
3322 EXPORT_SYMBOL(kernel_sock_shutdown);