1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <asm/pgalloc.h>
49 #include <asm/tlbflush.h>
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/filemap.h>
56 * FIXME: remove all knowledge of the buffer layer from the core VM
58 #include <linux/buffer_head.h> /* for try_to_free_buffers */
65 * Shared mappings implemented 30.11.1994. It's not fully working yet,
68 * Shared mappings now work. 15.8.1995 Bruno.
70 * finished 'unifying' the page and buffer cache and SMP-threaded the
79 * ->i_mmap_rwsem (truncate_pagecache)
80 * ->private_lock (__free_pte->block_dirty_folio)
81 * ->swap_lock (exclusive_swap_page, others)
85 * ->invalidate_lock (acquired by fs in truncate path)
86 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
90 * ->page_table_lock or pte_lock (various, mainly in memory.c)
91 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
94 * ->invalidate_lock (filemap_fault)
95 * ->lock_page (filemap_fault, access_process_vm)
97 * ->i_rwsem (generic_perform_write)
98 * ->mmap_lock (fault_in_readable->do_page_fault)
101 * sb_lock (fs/fs-writeback.c)
102 * ->i_pages lock (__sync_single_inode)
105 * ->anon_vma.lock (vma_merge)
108 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
110 * ->page_table_lock or pte_lock
111 * ->swap_lock (try_to_unmap_one)
112 * ->private_lock (try_to_unmap_one)
113 * ->i_pages lock (try_to_unmap_one)
114 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
115 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
116 * ->private_lock (page_remove_rmap->set_page_dirty)
117 * ->i_pages lock (page_remove_rmap->set_page_dirty)
118 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
119 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
120 * ->memcg->move_lock (page_remove_rmap->folio_memcg_lock)
121 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
122 * ->inode->i_lock (zap_pte_range->set_page_dirty)
123 * ->private_lock (zap_pte_range->block_dirty_folio)
126 static void page_cache_delete(struct address_space *mapping,
127 struct folio *folio, void *shadow)
129 XA_STATE(xas, &mapping->i_pages, folio->index);
132 mapping_set_update(&xas, mapping);
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
137 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139 xas_store(&xas, shadow);
140 xas_init_marks(&xas);
142 folio->mapping = NULL;
143 /* Leave page->index set: truncation lookup relies upon it */
144 mapping->nrpages -= nr;
147 static void filemap_unaccount_folio(struct address_space *mapping,
152 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
153 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
154 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
155 current->comm, folio_pfn(folio));
156 dump_page(&folio->page, "still mapped when deleted");
158 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
161 int mapcount = page_mapcount(&folio->page);
163 if (folio_ref_count(folio) >= mapcount + 2) {
165 * All vmas have already been torn down, so it's
166 * a good bet that actually the page is unmapped
167 * and we'd rather not leak it: if we're wrong,
168 * another bad page check should catch it later.
170 page_mapcount_reset(&folio->page);
171 folio_ref_sub(folio, mapcount);
176 /* hugetlb folios do not participate in page cache accounting. */
177 if (folio_test_hugetlb(folio))
180 nr = folio_nr_pages(folio);
182 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
183 if (folio_test_swapbacked(folio)) {
184 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
185 if (folio_test_pmd_mappable(folio))
186 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
187 } else if (folio_test_pmd_mappable(folio)) {
188 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
189 filemap_nr_thps_dec(mapping);
193 * At this point folio must be either written or cleaned by
194 * truncate. Dirty folio here signals a bug and loss of
195 * unwritten data - on ordinary filesystems.
197 * But it's harmless on in-memory filesystems like tmpfs; and can
198 * occur when a driver which did get_user_pages() sets page dirty
199 * before putting it, while the inode is being finally evicted.
201 * Below fixes dirty accounting after removing the folio entirely
202 * but leaves the dirty flag set: it has no effect for truncated
203 * folio and anyway will be cleared before returning folio to
206 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
207 mapping_can_writeback(mapping)))
208 folio_account_cleaned(folio, inode_to_wb(mapping->host));
212 * Delete a page from the page cache and free it. Caller has to make
213 * sure the page is locked and that nobody else uses it - or that usage
214 * is safe. The caller must hold the i_pages lock.
216 void __filemap_remove_folio(struct folio *folio, void *shadow)
218 struct address_space *mapping = folio->mapping;
220 trace_mm_filemap_delete_from_page_cache(folio);
221 filemap_unaccount_folio(mapping, folio);
222 page_cache_delete(mapping, folio, shadow);
225 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
227 void (*free_folio)(struct folio *);
230 free_folio = mapping->a_ops->free_folio;
234 if (folio_test_large(folio))
235 refs = folio_nr_pages(folio);
236 folio_put_refs(folio, refs);
240 * filemap_remove_folio - Remove folio from page cache.
243 * This must be called only on folios that are locked and have been
244 * verified to be in the page cache. It will never put the folio into
245 * the free list because the caller has a reference on the page.
247 void filemap_remove_folio(struct folio *folio)
249 struct address_space *mapping = folio->mapping;
251 BUG_ON(!folio_test_locked(folio));
252 spin_lock(&mapping->host->i_lock);
253 xa_lock_irq(&mapping->i_pages);
254 __filemap_remove_folio(folio, NULL);
255 xa_unlock_irq(&mapping->i_pages);
256 if (mapping_shrinkable(mapping))
257 inode_add_lru(mapping->host);
258 spin_unlock(&mapping->host->i_lock);
260 filemap_free_folio(mapping, folio);
264 * page_cache_delete_batch - delete several folios from page cache
265 * @mapping: the mapping to which folios belong
266 * @fbatch: batch of folios to delete
268 * The function walks over mapping->i_pages and removes folios passed in
269 * @fbatch from the mapping. The function expects @fbatch to be sorted
270 * by page index and is optimised for it to be dense.
271 * It tolerates holes in @fbatch (mapping entries at those indices are not
274 * The function expects the i_pages lock to be held.
276 static void page_cache_delete_batch(struct address_space *mapping,
277 struct folio_batch *fbatch)
279 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
280 long total_pages = 0;
284 mapping_set_update(&xas, mapping);
285 xas_for_each(&xas, folio, ULONG_MAX) {
286 if (i >= folio_batch_count(fbatch))
289 /* A swap/dax/shadow entry got inserted? Skip it. */
290 if (xa_is_value(folio))
293 * A page got inserted in our range? Skip it. We have our
294 * pages locked so they are protected from being removed.
295 * If we see a page whose index is higher than ours, it
296 * means our page has been removed, which shouldn't be
297 * possible because we're holding the PageLock.
299 if (folio != fbatch->folios[i]) {
300 VM_BUG_ON_FOLIO(folio->index >
301 fbatch->folios[i]->index, folio);
305 WARN_ON_ONCE(!folio_test_locked(folio));
307 folio->mapping = NULL;
308 /* Leave folio->index set: truncation lookup relies on it */
311 xas_store(&xas, NULL);
312 total_pages += folio_nr_pages(folio);
314 mapping->nrpages -= total_pages;
317 void delete_from_page_cache_batch(struct address_space *mapping,
318 struct folio_batch *fbatch)
322 if (!folio_batch_count(fbatch))
325 spin_lock(&mapping->host->i_lock);
326 xa_lock_irq(&mapping->i_pages);
327 for (i = 0; i < folio_batch_count(fbatch); i++) {
328 struct folio *folio = fbatch->folios[i];
330 trace_mm_filemap_delete_from_page_cache(folio);
331 filemap_unaccount_folio(mapping, folio);
333 page_cache_delete_batch(mapping, fbatch);
334 xa_unlock_irq(&mapping->i_pages);
335 if (mapping_shrinkable(mapping))
336 inode_add_lru(mapping->host);
337 spin_unlock(&mapping->host->i_lock);
339 for (i = 0; i < folio_batch_count(fbatch); i++)
340 filemap_free_folio(mapping, fbatch->folios[i]);
343 int filemap_check_errors(struct address_space *mapping)
346 /* Check for outstanding write errors */
347 if (test_bit(AS_ENOSPC, &mapping->flags) &&
348 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
350 if (test_bit(AS_EIO, &mapping->flags) &&
351 test_and_clear_bit(AS_EIO, &mapping->flags))
355 EXPORT_SYMBOL(filemap_check_errors);
357 static int filemap_check_and_keep_errors(struct address_space *mapping)
359 /* Check for outstanding write errors */
360 if (test_bit(AS_EIO, &mapping->flags))
362 if (test_bit(AS_ENOSPC, &mapping->flags))
368 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
369 * @mapping: address space structure to write
370 * @wbc: the writeback_control controlling the writeout
372 * Call writepages on the mapping using the provided wbc to control the
375 * Return: %0 on success, negative error code otherwise.
377 int filemap_fdatawrite_wbc(struct address_space *mapping,
378 struct writeback_control *wbc)
382 if (!mapping_can_writeback(mapping) ||
383 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
386 wbc_attach_fdatawrite_inode(wbc, mapping->host);
387 ret = do_writepages(mapping, wbc);
388 wbc_detach_inode(wbc);
391 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
394 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
395 * @mapping: address space structure to write
396 * @start: offset in bytes where the range starts
397 * @end: offset in bytes where the range ends (inclusive)
398 * @sync_mode: enable synchronous operation
400 * Start writeback against all of a mapping's dirty pages that lie
401 * within the byte offsets <start, end> inclusive.
403 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
404 * opposed to a regular memory cleansing writeback. The difference between
405 * these two operations is that if a dirty page/buffer is encountered, it must
406 * be waited upon, and not just skipped over.
408 * Return: %0 on success, negative error code otherwise.
410 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
411 loff_t end, int sync_mode)
413 struct writeback_control wbc = {
414 .sync_mode = sync_mode,
415 .nr_to_write = LONG_MAX,
416 .range_start = start,
420 return filemap_fdatawrite_wbc(mapping, &wbc);
423 static inline int __filemap_fdatawrite(struct address_space *mapping,
426 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
429 int filemap_fdatawrite(struct address_space *mapping)
431 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433 EXPORT_SYMBOL(filemap_fdatawrite);
435 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
438 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440 EXPORT_SYMBOL(filemap_fdatawrite_range);
443 * filemap_flush - mostly a non-blocking flush
444 * @mapping: target address_space
446 * This is a mostly non-blocking flush. Not suitable for data-integrity
447 * purposes - I/O may not be started against all dirty pages.
449 * Return: %0 on success, negative error code otherwise.
451 int filemap_flush(struct address_space *mapping)
453 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455 EXPORT_SYMBOL(filemap_flush);
458 * filemap_range_has_page - check if a page exists in range.
459 * @mapping: address space within which to check
460 * @start_byte: offset in bytes where the range starts
461 * @end_byte: offset in bytes where the range ends (inclusive)
463 * Find at least one page in the range supplied, usually used to check if
464 * direct writing in this range will trigger a writeback.
466 * Return: %true if at least one page exists in the specified range,
469 bool filemap_range_has_page(struct address_space *mapping,
470 loff_t start_byte, loff_t end_byte)
473 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
474 pgoff_t max = end_byte >> PAGE_SHIFT;
476 if (end_byte < start_byte)
481 folio = xas_find(&xas, max);
482 if (xas_retry(&xas, folio))
484 /* Shadow entries don't count */
485 if (xa_is_value(folio))
488 * We don't need to try to pin this page; we're about to
489 * release the RCU lock anyway. It is enough to know that
490 * there was a page here recently.
496 return folio != NULL;
498 EXPORT_SYMBOL(filemap_range_has_page);
500 static void __filemap_fdatawait_range(struct address_space *mapping,
501 loff_t start_byte, loff_t end_byte)
503 pgoff_t index = start_byte >> PAGE_SHIFT;
504 pgoff_t end = end_byte >> PAGE_SHIFT;
505 struct folio_batch fbatch;
508 folio_batch_init(&fbatch);
510 while (index <= end) {
513 nr_folios = filemap_get_folios_tag(mapping, &index, end,
514 PAGECACHE_TAG_WRITEBACK, &fbatch);
519 for (i = 0; i < nr_folios; i++) {
520 struct folio *folio = fbatch.folios[i];
522 folio_wait_writeback(folio);
523 folio_clear_error(folio);
525 folio_batch_release(&fbatch);
531 * filemap_fdatawait_range - wait for writeback to complete
532 * @mapping: address space structure to wait for
533 * @start_byte: offset in bytes where the range starts
534 * @end_byte: offset in bytes where the range ends (inclusive)
536 * Walk the list of under-writeback pages of the given address space
537 * in the given range and wait for all of them. Check error status of
538 * the address space and return it.
540 * Since the error status of the address space is cleared by this function,
541 * callers are responsible for checking the return value and handling and/or
542 * reporting the error.
544 * Return: error status of the address space.
546 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
549 __filemap_fdatawait_range(mapping, start_byte, end_byte);
550 return filemap_check_errors(mapping);
552 EXPORT_SYMBOL(filemap_fdatawait_range);
555 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
556 * @mapping: address space structure to wait for
557 * @start_byte: offset in bytes where the range starts
558 * @end_byte: offset in bytes where the range ends (inclusive)
560 * Walk the list of under-writeback pages of the given address space in the
561 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
562 * this function does not clear error status of the address space.
564 * Use this function if callers don't handle errors themselves. Expected
565 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
568 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
569 loff_t start_byte, loff_t end_byte)
571 __filemap_fdatawait_range(mapping, start_byte, end_byte);
572 return filemap_check_and_keep_errors(mapping);
574 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
577 * file_fdatawait_range - wait for writeback to complete
578 * @file: file pointing to address space structure to wait for
579 * @start_byte: offset in bytes where the range starts
580 * @end_byte: offset in bytes where the range ends (inclusive)
582 * Walk the list of under-writeback pages of the address space that file
583 * refers to, in the given range and wait for all of them. Check error
584 * status of the address space vs. the file->f_wb_err cursor and return it.
586 * Since the error status of the file is advanced by this function,
587 * callers are responsible for checking the return value and handling and/or
588 * reporting the error.
590 * Return: error status of the address space vs. the file->f_wb_err cursor.
592 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
594 struct address_space *mapping = file->f_mapping;
596 __filemap_fdatawait_range(mapping, start_byte, end_byte);
597 return file_check_and_advance_wb_err(file);
599 EXPORT_SYMBOL(file_fdatawait_range);
602 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
603 * @mapping: address space structure to wait for
605 * Walk the list of under-writeback pages of the given address space
606 * and wait for all of them. Unlike filemap_fdatawait(), this function
607 * does not clear error status of the address space.
609 * Use this function if callers don't handle errors themselves. Expected
610 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
613 * Return: error status of the address space.
615 int filemap_fdatawait_keep_errors(struct address_space *mapping)
617 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
618 return filemap_check_and_keep_errors(mapping);
620 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
622 /* Returns true if writeback might be needed or already in progress. */
623 static bool mapping_needs_writeback(struct address_space *mapping)
625 return mapping->nrpages;
628 bool filemap_range_has_writeback(struct address_space *mapping,
629 loff_t start_byte, loff_t end_byte)
631 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
632 pgoff_t max = end_byte >> PAGE_SHIFT;
635 if (end_byte < start_byte)
639 xas_for_each(&xas, folio, max) {
640 if (xas_retry(&xas, folio))
642 if (xa_is_value(folio))
644 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
645 folio_test_writeback(folio))
649 return folio != NULL;
651 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
654 * filemap_write_and_wait_range - write out & wait on a file range
655 * @mapping: the address_space for the pages
656 * @lstart: offset in bytes where the range starts
657 * @lend: offset in bytes where the range ends (inclusive)
659 * Write out and wait upon file offsets lstart->lend, inclusive.
661 * Note that @lend is inclusive (describes the last byte to be written) so
662 * that this function can be used to write to the very end-of-file (end = -1).
664 * Return: error status of the address space.
666 int filemap_write_and_wait_range(struct address_space *mapping,
667 loff_t lstart, loff_t lend)
674 if (mapping_needs_writeback(mapping)) {
675 err = __filemap_fdatawrite_range(mapping, lstart, lend,
678 * Even if the above returned error, the pages may be
679 * written partially (e.g. -ENOSPC), so we wait for it.
680 * But the -EIO is special case, it may indicate the worst
681 * thing (e.g. bug) happened, so we avoid waiting for it.
684 __filemap_fdatawait_range(mapping, lstart, lend);
686 err2 = filemap_check_errors(mapping);
691 EXPORT_SYMBOL(filemap_write_and_wait_range);
693 void __filemap_set_wb_err(struct address_space *mapping, int err)
695 errseq_t eseq = errseq_set(&mapping->wb_err, err);
697 trace_filemap_set_wb_err(mapping, eseq);
699 EXPORT_SYMBOL(__filemap_set_wb_err);
702 * file_check_and_advance_wb_err - report wb error (if any) that was previously
703 * and advance wb_err to current one
704 * @file: struct file on which the error is being reported
706 * When userland calls fsync (or something like nfsd does the equivalent), we
707 * want to report any writeback errors that occurred since the last fsync (or
708 * since the file was opened if there haven't been any).
710 * Grab the wb_err from the mapping. If it matches what we have in the file,
711 * then just quickly return 0. The file is all caught up.
713 * If it doesn't match, then take the mapping value, set the "seen" flag in
714 * it and try to swap it into place. If it works, or another task beat us
715 * to it with the new value, then update the f_wb_err and return the error
716 * portion. The error at this point must be reported via proper channels
717 * (a'la fsync, or NFS COMMIT operation, etc.).
719 * While we handle mapping->wb_err with atomic operations, the f_wb_err
720 * value is protected by the f_lock since we must ensure that it reflects
721 * the latest value swapped in for this file descriptor.
723 * Return: %0 on success, negative error code otherwise.
725 int file_check_and_advance_wb_err(struct file *file)
728 errseq_t old = READ_ONCE(file->f_wb_err);
729 struct address_space *mapping = file->f_mapping;
731 /* Locklessly handle the common case where nothing has changed */
732 if (errseq_check(&mapping->wb_err, old)) {
733 /* Something changed, must use slow path */
734 spin_lock(&file->f_lock);
735 old = file->f_wb_err;
736 err = errseq_check_and_advance(&mapping->wb_err,
738 trace_file_check_and_advance_wb_err(file, old);
739 spin_unlock(&file->f_lock);
743 * We're mostly using this function as a drop in replacement for
744 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
745 * that the legacy code would have had on these flags.
747 clear_bit(AS_EIO, &mapping->flags);
748 clear_bit(AS_ENOSPC, &mapping->flags);
751 EXPORT_SYMBOL(file_check_and_advance_wb_err);
754 * file_write_and_wait_range - write out & wait on a file range
755 * @file: file pointing to address_space with pages
756 * @lstart: offset in bytes where the range starts
757 * @lend: offset in bytes where the range ends (inclusive)
759 * Write out and wait upon file offsets lstart->lend, inclusive.
761 * Note that @lend is inclusive (describes the last byte to be written) so
762 * that this function can be used to write to the very end-of-file (end = -1).
764 * After writing out and waiting on the data, we check and advance the
765 * f_wb_err cursor to the latest value, and return any errors detected there.
767 * Return: %0 on success, negative error code otherwise.
769 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
772 struct address_space *mapping = file->f_mapping;
777 if (mapping_needs_writeback(mapping)) {
778 err = __filemap_fdatawrite_range(mapping, lstart, lend,
780 /* See comment of filemap_write_and_wait() */
782 __filemap_fdatawait_range(mapping, lstart, lend);
784 err2 = file_check_and_advance_wb_err(file);
789 EXPORT_SYMBOL(file_write_and_wait_range);
792 * replace_page_cache_folio - replace a pagecache folio with a new one
793 * @old: folio to be replaced
794 * @new: folio to replace with
796 * This function replaces a folio in the pagecache with a new one. On
797 * success it acquires the pagecache reference for the new folio and
798 * drops it for the old folio. Both the old and new folios must be
799 * locked. This function does not add the new folio to the LRU, the
800 * caller must do that.
802 * The remove + add is atomic. This function cannot fail.
804 void replace_page_cache_folio(struct folio *old, struct folio *new)
806 struct address_space *mapping = old->mapping;
807 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
808 pgoff_t offset = old->index;
809 XA_STATE(xas, &mapping->i_pages, offset);
811 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
812 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
813 VM_BUG_ON_FOLIO(new->mapping, new);
816 new->mapping = mapping;
819 mem_cgroup_replace_folio(old, new);
822 xas_store(&xas, new);
825 /* hugetlb pages do not participate in page cache accounting. */
826 if (!folio_test_hugetlb(old))
827 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
828 if (!folio_test_hugetlb(new))
829 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
830 if (folio_test_swapbacked(old))
831 __lruvec_stat_sub_folio(old, NR_SHMEM);
832 if (folio_test_swapbacked(new))
833 __lruvec_stat_add_folio(new, NR_SHMEM);
834 xas_unlock_irq(&xas);
839 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
841 noinline int __filemap_add_folio(struct address_space *mapping,
842 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
844 XA_STATE(xas, &mapping->i_pages, index);
845 int huge = folio_test_hugetlb(folio);
846 bool charged = false;
849 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
850 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
851 mapping_set_update(&xas, mapping);
854 int error = mem_cgroup_charge(folio, NULL, gfp);
860 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
861 xas_set_order(&xas, index, folio_order(folio));
862 nr = folio_nr_pages(folio);
864 gfp &= GFP_RECLAIM_MASK;
865 folio_ref_add(folio, nr);
866 folio->mapping = mapping;
867 folio->index = xas.xa_index;
870 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
871 void *entry, *old = NULL;
873 if (order > folio_order(folio))
874 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
877 xas_for_each_conflict(&xas, entry) {
879 if (!xa_is_value(entry)) {
880 xas_set_err(&xas, -EEXIST);
888 /* entry may have been split before we acquired lock */
889 order = xa_get_order(xas.xa, xas.xa_index);
890 if (order > folio_order(folio)) {
891 /* How to handle large swap entries? */
892 BUG_ON(shmem_mapping(mapping));
893 xas_split(&xas, old, order);
898 xas_store(&xas, folio);
902 mapping->nrpages += nr;
904 /* hugetlb pages do not participate in page cache accounting */
906 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
907 if (folio_test_pmd_mappable(folio))
908 __lruvec_stat_mod_folio(folio,
912 xas_unlock_irq(&xas);
913 } while (xas_nomem(&xas, gfp));
918 trace_mm_filemap_add_to_page_cache(folio);
922 mem_cgroup_uncharge(folio);
923 folio->mapping = NULL;
924 /* Leave page->index set: truncation relies upon it */
925 folio_put_refs(folio, nr);
926 return xas_error(&xas);
928 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
930 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
931 pgoff_t index, gfp_t gfp)
936 __folio_set_locked(folio);
937 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
939 __folio_clear_locked(folio);
942 * The folio might have been evicted from cache only
943 * recently, in which case it should be activated like
944 * any other repeatedly accessed folio.
945 * The exception is folios getting rewritten; evicting other
946 * data from the working set, only to cache data that will
947 * get overwritten with something else, is a waste of memory.
949 WARN_ON_ONCE(folio_test_active(folio));
950 if (!(gfp & __GFP_WRITE) && shadow)
951 workingset_refault(folio, shadow);
952 folio_add_lru(folio);
956 EXPORT_SYMBOL_GPL(filemap_add_folio);
959 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
964 if (cpuset_do_page_mem_spread()) {
965 unsigned int cpuset_mems_cookie;
967 cpuset_mems_cookie = read_mems_allowed_begin();
968 n = cpuset_mem_spread_node();
969 folio = __folio_alloc_node(gfp, order, n);
970 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
974 return folio_alloc(gfp, order);
976 EXPORT_SYMBOL(filemap_alloc_folio);
980 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
982 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
984 * @mapping1: the first mapping to lock
985 * @mapping2: the second mapping to lock
987 void filemap_invalidate_lock_two(struct address_space *mapping1,
988 struct address_space *mapping2)
990 if (mapping1 > mapping2)
991 swap(mapping1, mapping2);
993 down_write(&mapping1->invalidate_lock);
994 if (mapping2 && mapping1 != mapping2)
995 down_write_nested(&mapping2->invalidate_lock, 1);
997 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1000 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1002 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1004 * @mapping1: the first mapping to unlock
1005 * @mapping2: the second mapping to unlock
1007 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1008 struct address_space *mapping2)
1011 up_write(&mapping1->invalidate_lock);
1012 if (mapping2 && mapping1 != mapping2)
1013 up_write(&mapping2->invalidate_lock);
1015 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1018 * In order to wait for pages to become available there must be
1019 * waitqueues associated with pages. By using a hash table of
1020 * waitqueues where the bucket discipline is to maintain all
1021 * waiters on the same queue and wake all when any of the pages
1022 * become available, and for the woken contexts to check to be
1023 * sure the appropriate page became available, this saves space
1024 * at a cost of "thundering herd" phenomena during rare hash
1027 #define PAGE_WAIT_TABLE_BITS 8
1028 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1029 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1031 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1033 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1036 void __init pagecache_init(void)
1040 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1041 init_waitqueue_head(&folio_wait_table[i]);
1043 page_writeback_init();
1047 * The page wait code treats the "wait->flags" somewhat unusually, because
1048 * we have multiple different kinds of waits, not just the usual "exclusive"
1053 * (a) no special bits set:
1055 * We're just waiting for the bit to be released, and when a waker
1056 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1057 * and remove it from the wait queue.
1059 * Simple and straightforward.
1061 * (b) WQ_FLAG_EXCLUSIVE:
1063 * The waiter is waiting to get the lock, and only one waiter should
1064 * be woken up to avoid any thundering herd behavior. We'll set the
1065 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1067 * This is the traditional exclusive wait.
1069 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1071 * The waiter is waiting to get the bit, and additionally wants the
1072 * lock to be transferred to it for fair lock behavior. If the lock
1073 * cannot be taken, we stop walking the wait queue without waking
1076 * This is the "fair lock handoff" case, and in addition to setting
1077 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1078 * that it now has the lock.
1080 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1083 struct wait_page_key *key = arg;
1084 struct wait_page_queue *wait_page
1085 = container_of(wait, struct wait_page_queue, wait);
1087 if (!wake_page_match(wait_page, key))
1091 * If it's a lock handoff wait, we get the bit for it, and
1092 * stop walking (and do not wake it up) if we can't.
1094 flags = wait->flags;
1095 if (flags & WQ_FLAG_EXCLUSIVE) {
1096 if (test_bit(key->bit_nr, &key->folio->flags))
1098 if (flags & WQ_FLAG_CUSTOM) {
1099 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1101 flags |= WQ_FLAG_DONE;
1106 * We are holding the wait-queue lock, but the waiter that
1107 * is waiting for this will be checking the flags without
1110 * So update the flags atomically, and wake up the waiter
1111 * afterwards to avoid any races. This store-release pairs
1112 * with the load-acquire in folio_wait_bit_common().
1114 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1115 wake_up_state(wait->private, mode);
1118 * Ok, we have successfully done what we're waiting for,
1119 * and we can unconditionally remove the wait entry.
1121 * Note that this pairs with the "finish_wait()" in the
1122 * waiter, and has to be the absolute last thing we do.
1123 * After this list_del_init(&wait->entry) the wait entry
1124 * might be de-allocated and the process might even have
1127 list_del_init_careful(&wait->entry);
1128 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1131 static void folio_wake_bit(struct folio *folio, int bit_nr)
1133 wait_queue_head_t *q = folio_waitqueue(folio);
1134 struct wait_page_key key;
1135 unsigned long flags;
1136 wait_queue_entry_t bookmark;
1139 key.bit_nr = bit_nr;
1143 bookmark.private = NULL;
1144 bookmark.func = NULL;
1145 INIT_LIST_HEAD(&bookmark.entry);
1147 spin_lock_irqsave(&q->lock, flags);
1148 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1150 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1152 * Take a breather from holding the lock,
1153 * allow pages that finish wake up asynchronously
1154 * to acquire the lock and remove themselves
1157 spin_unlock_irqrestore(&q->lock, flags);
1159 spin_lock_irqsave(&q->lock, flags);
1160 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1164 * It's possible to miss clearing waiters here, when we woke our page
1165 * waiters, but the hashed waitqueue has waiters for other pages on it.
1166 * That's okay, it's a rare case. The next waker will clear it.
1168 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1169 * other), the flag may be cleared in the course of freeing the page;
1170 * but that is not required for correctness.
1172 if (!waitqueue_active(q) || !key.page_match)
1173 folio_clear_waiters(folio);
1175 spin_unlock_irqrestore(&q->lock, flags);
1179 * A choice of three behaviors for folio_wait_bit_common():
1182 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1183 * __folio_lock() waiting on then setting PG_locked.
1185 SHARED, /* Hold ref to page and check the bit when woken, like
1186 * folio_wait_writeback() waiting on PG_writeback.
1188 DROP, /* Drop ref to page before wait, no check when woken,
1189 * like folio_put_wait_locked() on PG_locked.
1194 * Attempt to check (or get) the folio flag, and mark us done
1197 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1198 struct wait_queue_entry *wait)
1200 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1201 if (test_and_set_bit(bit_nr, &folio->flags))
1203 } else if (test_bit(bit_nr, &folio->flags))
1206 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1210 /* How many times do we accept lock stealing from under a waiter? */
1211 int sysctl_page_lock_unfairness = 5;
1213 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1214 int state, enum behavior behavior)
1216 wait_queue_head_t *q = folio_waitqueue(folio);
1217 int unfairness = sysctl_page_lock_unfairness;
1218 struct wait_page_queue wait_page;
1219 wait_queue_entry_t *wait = &wait_page.wait;
1220 bool thrashing = false;
1221 unsigned long pflags;
1224 if (bit_nr == PG_locked &&
1225 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1226 delayacct_thrashing_start(&in_thrashing);
1227 psi_memstall_enter(&pflags);
1232 wait->func = wake_page_function;
1233 wait_page.folio = folio;
1234 wait_page.bit_nr = bit_nr;
1238 if (behavior == EXCLUSIVE) {
1239 wait->flags = WQ_FLAG_EXCLUSIVE;
1240 if (--unfairness < 0)
1241 wait->flags |= WQ_FLAG_CUSTOM;
1245 * Do one last check whether we can get the
1246 * page bit synchronously.
1248 * Do the folio_set_waiters() marking before that
1249 * to let any waker we _just_ missed know they
1250 * need to wake us up (otherwise they'll never
1251 * even go to the slow case that looks at the
1252 * page queue), and add ourselves to the wait
1253 * queue if we need to sleep.
1255 * This part needs to be done under the queue
1256 * lock to avoid races.
1258 spin_lock_irq(&q->lock);
1259 folio_set_waiters(folio);
1260 if (!folio_trylock_flag(folio, bit_nr, wait))
1261 __add_wait_queue_entry_tail(q, wait);
1262 spin_unlock_irq(&q->lock);
1265 * From now on, all the logic will be based on
1266 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1267 * see whether the page bit testing has already
1268 * been done by the wake function.
1270 * We can drop our reference to the folio.
1272 if (behavior == DROP)
1276 * Note that until the "finish_wait()", or until
1277 * we see the WQ_FLAG_WOKEN flag, we need to
1278 * be very careful with the 'wait->flags', because
1279 * we may race with a waker that sets them.
1284 set_current_state(state);
1286 /* Loop until we've been woken or interrupted */
1287 flags = smp_load_acquire(&wait->flags);
1288 if (!(flags & WQ_FLAG_WOKEN)) {
1289 if (signal_pending_state(state, current))
1296 /* If we were non-exclusive, we're done */
1297 if (behavior != EXCLUSIVE)
1300 /* If the waker got the lock for us, we're done */
1301 if (flags & WQ_FLAG_DONE)
1305 * Otherwise, if we're getting the lock, we need to
1306 * try to get it ourselves.
1308 * And if that fails, we'll have to retry this all.
1310 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1313 wait->flags |= WQ_FLAG_DONE;
1318 * If a signal happened, this 'finish_wait()' may remove the last
1319 * waiter from the wait-queues, but the folio waiters bit will remain
1320 * set. That's ok. The next wakeup will take care of it, and trying
1321 * to do it here would be difficult and prone to races.
1323 finish_wait(q, wait);
1326 delayacct_thrashing_end(&in_thrashing);
1327 psi_memstall_leave(&pflags);
1331 * NOTE! The wait->flags weren't stable until we've done the
1332 * 'finish_wait()', and we could have exited the loop above due
1333 * to a signal, and had a wakeup event happen after the signal
1334 * test but before the 'finish_wait()'.
1336 * So only after the finish_wait() can we reliably determine
1337 * if we got woken up or not, so we can now figure out the final
1338 * return value based on that state without races.
1340 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1341 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1343 if (behavior == EXCLUSIVE)
1344 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1346 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1349 #ifdef CONFIG_MIGRATION
1351 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1352 * @entry: migration swap entry.
1353 * @ptl: already locked ptl. This function will drop the lock.
1355 * Wait for a migration entry referencing the given page to be removed. This is
1356 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1357 * this can be called without taking a reference on the page. Instead this
1358 * should be called while holding the ptl for the migration entry referencing
1361 * Returns after unlocking the ptl.
1363 * This follows the same logic as folio_wait_bit_common() so see the comments
1366 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1369 struct wait_page_queue wait_page;
1370 wait_queue_entry_t *wait = &wait_page.wait;
1371 bool thrashing = false;
1372 unsigned long pflags;
1374 wait_queue_head_t *q;
1375 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1377 q = folio_waitqueue(folio);
1378 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1379 delayacct_thrashing_start(&in_thrashing);
1380 psi_memstall_enter(&pflags);
1385 wait->func = wake_page_function;
1386 wait_page.folio = folio;
1387 wait_page.bit_nr = PG_locked;
1390 spin_lock_irq(&q->lock);
1391 folio_set_waiters(folio);
1392 if (!folio_trylock_flag(folio, PG_locked, wait))
1393 __add_wait_queue_entry_tail(q, wait);
1394 spin_unlock_irq(&q->lock);
1397 * If a migration entry exists for the page the migration path must hold
1398 * a valid reference to the page, and it must take the ptl to remove the
1399 * migration entry. So the page is valid until the ptl is dropped.
1406 set_current_state(TASK_UNINTERRUPTIBLE);
1408 /* Loop until we've been woken or interrupted */
1409 flags = smp_load_acquire(&wait->flags);
1410 if (!(flags & WQ_FLAG_WOKEN)) {
1411 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1420 finish_wait(q, wait);
1423 delayacct_thrashing_end(&in_thrashing);
1424 psi_memstall_leave(&pflags);
1429 void folio_wait_bit(struct folio *folio, int bit_nr)
1431 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1433 EXPORT_SYMBOL(folio_wait_bit);
1435 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1437 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1439 EXPORT_SYMBOL(folio_wait_bit_killable);
1442 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1443 * @folio: The folio to wait for.
1444 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1446 * The caller should hold a reference on @folio. They expect the page to
1447 * become unlocked relatively soon, but do not wish to hold up migration
1448 * (for example) by holding the reference while waiting for the folio to
1449 * come unlocked. After this function returns, the caller should not
1450 * dereference @folio.
1452 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1454 static int folio_put_wait_locked(struct folio *folio, int state)
1456 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1460 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1461 * @folio: Folio defining the wait queue of interest
1462 * @waiter: Waiter to add to the queue
1464 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1466 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1468 wait_queue_head_t *q = folio_waitqueue(folio);
1469 unsigned long flags;
1471 spin_lock_irqsave(&q->lock, flags);
1472 __add_wait_queue_entry_tail(q, waiter);
1473 folio_set_waiters(folio);
1474 spin_unlock_irqrestore(&q->lock, flags);
1476 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1479 * folio_unlock - Unlock a locked folio.
1480 * @folio: The folio.
1482 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1484 * Context: May be called from interrupt or process context. May not be
1485 * called from NMI context.
1487 void folio_unlock(struct folio *folio)
1489 /* Bit 7 allows x86 to check the byte's sign bit */
1490 BUILD_BUG_ON(PG_waiters != 7);
1491 BUILD_BUG_ON(PG_locked > 7);
1492 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1493 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1494 folio_wake_bit(folio, PG_locked);
1496 EXPORT_SYMBOL(folio_unlock);
1499 * folio_end_read - End read on a folio.
1500 * @folio: The folio.
1501 * @success: True if all reads completed successfully.
1503 * When all reads against a folio have completed, filesystems should
1504 * call this function to let the pagecache know that no more reads
1505 * are outstanding. This will unlock the folio and wake up any thread
1506 * sleeping on the lock. The folio will also be marked uptodate if all
1509 * Context: May be called from interrupt or process context. May not be
1510 * called from NMI context.
1512 void folio_end_read(struct folio *folio, bool success)
1514 unsigned long mask = 1 << PG_locked;
1516 /* Must be in bottom byte for x86 to work */
1517 BUILD_BUG_ON(PG_uptodate > 7);
1518 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1519 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1521 if (likely(success))
1522 mask |= 1 << PG_uptodate;
1523 if (folio_xor_flags_has_waiters(folio, mask))
1524 folio_wake_bit(folio, PG_locked);
1526 EXPORT_SYMBOL(folio_end_read);
1529 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1530 * @folio: The folio.
1532 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1533 * it. The folio reference held for PG_private_2 being set is released.
1535 * This is, for example, used when a netfs folio is being written to a local
1536 * disk cache, thereby allowing writes to the cache for the same folio to be
1539 void folio_end_private_2(struct folio *folio)
1541 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1542 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1543 folio_wake_bit(folio, PG_private_2);
1546 EXPORT_SYMBOL(folio_end_private_2);
1549 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1550 * @folio: The folio to wait on.
1552 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1554 void folio_wait_private_2(struct folio *folio)
1556 while (folio_test_private_2(folio))
1557 folio_wait_bit(folio, PG_private_2);
1559 EXPORT_SYMBOL(folio_wait_private_2);
1562 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1563 * @folio: The folio to wait on.
1565 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1566 * fatal signal is received by the calling task.
1569 * - 0 if successful.
1570 * - -EINTR if a fatal signal was encountered.
1572 int folio_wait_private_2_killable(struct folio *folio)
1576 while (folio_test_private_2(folio)) {
1577 ret = folio_wait_bit_killable(folio, PG_private_2);
1584 EXPORT_SYMBOL(folio_wait_private_2_killable);
1587 * folio_end_writeback - End writeback against a folio.
1588 * @folio: The folio.
1590 * The folio must actually be under writeback.
1592 * Context: May be called from process or interrupt context.
1594 void folio_end_writeback(struct folio *folio)
1596 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1599 * folio_test_clear_reclaim() could be used here but it is an
1600 * atomic operation and overkill in this particular case. Failing
1601 * to shuffle a folio marked for immediate reclaim is too mild
1602 * a gain to justify taking an atomic operation penalty at the
1603 * end of every folio writeback.
1605 if (folio_test_reclaim(folio)) {
1606 folio_clear_reclaim(folio);
1607 folio_rotate_reclaimable(folio);
1611 * Writeback does not hold a folio reference of its own, relying
1612 * on truncation to wait for the clearing of PG_writeback.
1613 * But here we must make sure that the folio is not freed and
1614 * reused before the folio_wake_bit().
1617 if (__folio_end_writeback(folio))
1618 folio_wake_bit(folio, PG_writeback);
1619 acct_reclaim_writeback(folio);
1622 EXPORT_SYMBOL(folio_end_writeback);
1625 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1626 * @folio: The folio to lock
1628 void __folio_lock(struct folio *folio)
1630 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1633 EXPORT_SYMBOL(__folio_lock);
1635 int __folio_lock_killable(struct folio *folio)
1637 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1640 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1642 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1644 struct wait_queue_head *q = folio_waitqueue(folio);
1647 wait->folio = folio;
1648 wait->bit_nr = PG_locked;
1650 spin_lock_irq(&q->lock);
1651 __add_wait_queue_entry_tail(q, &wait->wait);
1652 folio_set_waiters(folio);
1653 ret = !folio_trylock(folio);
1655 * If we were successful now, we know we're still on the
1656 * waitqueue as we're still under the lock. This means it's
1657 * safe to remove and return success, we know the callback
1658 * isn't going to trigger.
1661 __remove_wait_queue(q, &wait->wait);
1664 spin_unlock_irq(&q->lock);
1670 * 0 - folio is locked.
1671 * non-zero - folio is not locked.
1672 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1673 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1674 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1676 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1677 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1679 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1681 unsigned int flags = vmf->flags;
1683 if (fault_flag_allow_retry_first(flags)) {
1685 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1686 * released even though returning VM_FAULT_RETRY.
1688 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1689 return VM_FAULT_RETRY;
1691 release_fault_lock(vmf);
1692 if (flags & FAULT_FLAG_KILLABLE)
1693 folio_wait_locked_killable(folio);
1695 folio_wait_locked(folio);
1696 return VM_FAULT_RETRY;
1698 if (flags & FAULT_FLAG_KILLABLE) {
1701 ret = __folio_lock_killable(folio);
1703 release_fault_lock(vmf);
1704 return VM_FAULT_RETRY;
1707 __folio_lock(folio);
1714 * page_cache_next_miss() - Find the next gap in the page cache.
1715 * @mapping: Mapping.
1717 * @max_scan: Maximum range to search.
1719 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1720 * gap with the lowest index.
1722 * This function may be called under the rcu_read_lock. However, this will
1723 * not atomically search a snapshot of the cache at a single point in time.
1724 * For example, if a gap is created at index 5, then subsequently a gap is
1725 * created at index 10, page_cache_next_miss covering both indices may
1726 * return 10 if called under the rcu_read_lock.
1728 * Return: The index of the gap if found, otherwise an index outside the
1729 * range specified (in which case 'return - index >= max_scan' will be true).
1730 * In the rare case of index wrap-around, 0 will be returned.
1732 pgoff_t page_cache_next_miss(struct address_space *mapping,
1733 pgoff_t index, unsigned long max_scan)
1735 XA_STATE(xas, &mapping->i_pages, index);
1737 while (max_scan--) {
1738 void *entry = xas_next(&xas);
1739 if (!entry || xa_is_value(entry))
1741 if (xas.xa_index == 0)
1745 return xas.xa_index;
1747 EXPORT_SYMBOL(page_cache_next_miss);
1750 * page_cache_prev_miss() - Find the previous gap in the page cache.
1751 * @mapping: Mapping.
1753 * @max_scan: Maximum range to search.
1755 * Search the range [max(index - max_scan + 1, 0), index] for the
1756 * gap with the highest index.
1758 * This function may be called under the rcu_read_lock. However, this will
1759 * not atomically search a snapshot of the cache at a single point in time.
1760 * For example, if a gap is created at index 10, then subsequently a gap is
1761 * created at index 5, page_cache_prev_miss() covering both indices may
1762 * return 5 if called under the rcu_read_lock.
1764 * Return: The index of the gap if found, otherwise an index outside the
1765 * range specified (in which case 'index - return >= max_scan' will be true).
1766 * In the rare case of wrap-around, ULONG_MAX will be returned.
1768 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1769 pgoff_t index, unsigned long max_scan)
1771 XA_STATE(xas, &mapping->i_pages, index);
1773 while (max_scan--) {
1774 void *entry = xas_prev(&xas);
1775 if (!entry || xa_is_value(entry))
1777 if (xas.xa_index == ULONG_MAX)
1781 return xas.xa_index;
1783 EXPORT_SYMBOL(page_cache_prev_miss);
1786 * Lockless page cache protocol:
1787 * On the lookup side:
1788 * 1. Load the folio from i_pages
1789 * 2. Increment the refcount if it's not zero
1790 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1792 * On the removal side:
1793 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1794 * B. Remove the page from i_pages
1795 * C. Return the page to the page allocator
1797 * This means that any page may have its reference count temporarily
1798 * increased by a speculative page cache (or fast GUP) lookup as it can
1799 * be allocated by another user before the RCU grace period expires.
1800 * Because the refcount temporarily acquired here may end up being the
1801 * last refcount on the page, any page allocation must be freeable by
1806 * filemap_get_entry - Get a page cache entry.
1807 * @mapping: the address_space to search
1808 * @index: The page cache index.
1810 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1811 * it is returned with an increased refcount. If it is a shadow entry
1812 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1813 * it is returned without further action.
1815 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1817 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1819 XA_STATE(xas, &mapping->i_pages, index);
1820 struct folio *folio;
1825 folio = xas_load(&xas);
1826 if (xas_retry(&xas, folio))
1829 * A shadow entry of a recently evicted page, or a swap entry from
1830 * shmem/tmpfs. Return it without attempting to raise page count.
1832 if (!folio || xa_is_value(folio))
1835 if (!folio_try_get_rcu(folio))
1838 if (unlikely(folio != xas_reload(&xas))) {
1849 * __filemap_get_folio - Find and get a reference to a folio.
1850 * @mapping: The address_space to search.
1851 * @index: The page index.
1852 * @fgp_flags: %FGP flags modify how the folio is returned.
1853 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1855 * Looks up the page cache entry at @mapping & @index.
1857 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1858 * if the %GFP flags specified for %FGP_CREAT are atomic.
1860 * If this function returns a folio, it is returned with an increased refcount.
1862 * Return: The found folio or an ERR_PTR() otherwise.
1864 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1865 fgf_t fgp_flags, gfp_t gfp)
1867 struct folio *folio;
1870 folio = filemap_get_entry(mapping, index);
1871 if (xa_is_value(folio))
1876 if (fgp_flags & FGP_LOCK) {
1877 if (fgp_flags & FGP_NOWAIT) {
1878 if (!folio_trylock(folio)) {
1880 return ERR_PTR(-EAGAIN);
1886 /* Has the page been truncated? */
1887 if (unlikely(folio->mapping != mapping)) {
1888 folio_unlock(folio);
1892 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1895 if (fgp_flags & FGP_ACCESSED)
1896 folio_mark_accessed(folio);
1897 else if (fgp_flags & FGP_WRITE) {
1898 /* Clear idle flag for buffer write */
1899 if (folio_test_idle(folio))
1900 folio_clear_idle(folio);
1903 if (fgp_flags & FGP_STABLE)
1904 folio_wait_stable(folio);
1906 if (!folio && (fgp_flags & FGP_CREAT)) {
1907 unsigned order = FGF_GET_ORDER(fgp_flags);
1910 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1912 if (fgp_flags & FGP_NOFS)
1914 if (fgp_flags & FGP_NOWAIT) {
1916 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1918 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1919 fgp_flags |= FGP_LOCK;
1921 if (!mapping_large_folio_support(mapping))
1923 if (order > MAX_PAGECACHE_ORDER)
1924 order = MAX_PAGECACHE_ORDER;
1925 /* If we're not aligned, allocate a smaller folio */
1926 if (index & ((1UL << order) - 1))
1927 order = __ffs(index);
1930 gfp_t alloc_gfp = gfp;
1936 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1937 folio = filemap_alloc_folio(alloc_gfp, order);
1941 /* Init accessed so avoid atomic mark_page_accessed later */
1942 if (fgp_flags & FGP_ACCESSED)
1943 __folio_set_referenced(folio);
1945 err = filemap_add_folio(mapping, folio, index, gfp);
1950 } while (order-- > 0);
1955 return ERR_PTR(err);
1957 * filemap_add_folio locks the page, and for mmap
1958 * we expect an unlocked page.
1960 if (folio && (fgp_flags & FGP_FOR_MMAP))
1961 folio_unlock(folio);
1965 return ERR_PTR(-ENOENT);
1968 EXPORT_SYMBOL(__filemap_get_folio);
1970 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1973 struct folio *folio;
1976 if (mark == XA_PRESENT)
1977 folio = xas_find(xas, max);
1979 folio = xas_find_marked(xas, max, mark);
1981 if (xas_retry(xas, folio))
1984 * A shadow entry of a recently evicted page, a swap
1985 * entry from shmem/tmpfs or a DAX entry. Return it
1986 * without attempting to raise page count.
1988 if (!folio || xa_is_value(folio))
1991 if (!folio_try_get_rcu(folio))
1994 if (unlikely(folio != xas_reload(xas))) {
2006 * find_get_entries - gang pagecache lookup
2007 * @mapping: The address_space to search
2008 * @start: The starting page cache index
2009 * @end: The final page index (inclusive).
2010 * @fbatch: Where the resulting entries are placed.
2011 * @indices: The cache indices corresponding to the entries in @entries
2013 * find_get_entries() will search for and return a batch of entries in
2014 * the mapping. The entries are placed in @fbatch. find_get_entries()
2015 * takes a reference on any actual folios it returns.
2017 * The entries have ascending indexes. The indices may not be consecutive
2018 * due to not-present entries or large folios.
2020 * Any shadow entries of evicted folios, or swap entries from
2021 * shmem/tmpfs, are included in the returned array.
2023 * Return: The number of entries which were found.
2025 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2026 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2028 XA_STATE(xas, &mapping->i_pages, *start);
2029 struct folio *folio;
2032 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2033 indices[fbatch->nr] = xas.xa_index;
2034 if (!folio_batch_add(fbatch, folio))
2039 if (folio_batch_count(fbatch)) {
2040 unsigned long nr = 1;
2041 int idx = folio_batch_count(fbatch) - 1;
2043 folio = fbatch->folios[idx];
2044 if (!xa_is_value(folio))
2045 nr = folio_nr_pages(folio);
2046 *start = indices[idx] + nr;
2048 return folio_batch_count(fbatch);
2052 * find_lock_entries - Find a batch of pagecache entries.
2053 * @mapping: The address_space to search.
2054 * @start: The starting page cache index.
2055 * @end: The final page index (inclusive).
2056 * @fbatch: Where the resulting entries are placed.
2057 * @indices: The cache indices of the entries in @fbatch.
2059 * find_lock_entries() will return a batch of entries from @mapping.
2060 * Swap, shadow and DAX entries are included. Folios are returned
2061 * locked and with an incremented refcount. Folios which are locked
2062 * by somebody else or under writeback are skipped. Folios which are
2063 * partially outside the range are not returned.
2065 * The entries have ascending indexes. The indices may not be consecutive
2066 * due to not-present entries, large folios, folios which could not be
2067 * locked or folios under writeback.
2069 * Return: The number of entries which were found.
2071 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2072 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2074 XA_STATE(xas, &mapping->i_pages, *start);
2075 struct folio *folio;
2078 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2079 if (!xa_is_value(folio)) {
2080 if (folio->index < *start)
2082 if (folio_next_index(folio) - 1 > end)
2084 if (!folio_trylock(folio))
2086 if (folio->mapping != mapping ||
2087 folio_test_writeback(folio))
2089 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2092 indices[fbatch->nr] = xas.xa_index;
2093 if (!folio_batch_add(fbatch, folio))
2097 folio_unlock(folio);
2103 if (folio_batch_count(fbatch)) {
2104 unsigned long nr = 1;
2105 int idx = folio_batch_count(fbatch) - 1;
2107 folio = fbatch->folios[idx];
2108 if (!xa_is_value(folio))
2109 nr = folio_nr_pages(folio);
2110 *start = indices[idx] + nr;
2112 return folio_batch_count(fbatch);
2116 * filemap_get_folios - Get a batch of folios
2117 * @mapping: The address_space to search
2118 * @start: The starting page index
2119 * @end: The final page index (inclusive)
2120 * @fbatch: The batch to fill.
2122 * Search for and return a batch of folios in the mapping starting at
2123 * index @start and up to index @end (inclusive). The folios are returned
2124 * in @fbatch with an elevated reference count.
2126 * Return: The number of folios which were found.
2127 * We also update @start to index the next folio for the traversal.
2129 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2130 pgoff_t end, struct folio_batch *fbatch)
2132 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2134 EXPORT_SYMBOL(filemap_get_folios);
2137 * filemap_get_folios_contig - Get a batch of contiguous folios
2138 * @mapping: The address_space to search
2139 * @start: The starting page index
2140 * @end: The final page index (inclusive)
2141 * @fbatch: The batch to fill
2143 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2144 * except the returned folios are guaranteed to be contiguous. This may
2145 * not return all contiguous folios if the batch gets filled up.
2147 * Return: The number of folios found.
2148 * Also update @start to be positioned for traversal of the next folio.
2151 unsigned filemap_get_folios_contig(struct address_space *mapping,
2152 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2154 XA_STATE(xas, &mapping->i_pages, *start);
2156 struct folio *folio;
2160 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2161 folio = xas_next(&xas)) {
2162 if (xas_retry(&xas, folio))
2165 * If the entry has been swapped out, we can stop looking.
2166 * No current caller is looking for DAX entries.
2168 if (xa_is_value(folio))
2171 if (!folio_try_get_rcu(folio))
2174 if (unlikely(folio != xas_reload(&xas)))
2177 if (!folio_batch_add(fbatch, folio)) {
2178 nr = folio_nr_pages(folio);
2179 *start = folio->index + nr;
2191 nr = folio_batch_count(fbatch);
2194 folio = fbatch->folios[nr - 1];
2195 *start = folio->index + folio_nr_pages(folio);
2199 return folio_batch_count(fbatch);
2201 EXPORT_SYMBOL(filemap_get_folios_contig);
2204 * filemap_get_folios_tag - Get a batch of folios matching @tag
2205 * @mapping: The address_space to search
2206 * @start: The starting page index
2207 * @end: The final page index (inclusive)
2208 * @tag: The tag index
2209 * @fbatch: The batch to fill
2211 * The first folio may start before @start; if it does, it will contain
2212 * @start. The final folio may extend beyond @end; if it does, it will
2213 * contain @end. The folios have ascending indices. There may be gaps
2214 * between the folios if there are indices which have no folio in the
2215 * page cache. If folios are added to or removed from the page cache
2216 * while this is running, they may or may not be found by this call.
2217 * Only returns folios that are tagged with @tag.
2219 * Return: The number of folios found.
2220 * Also update @start to index the next folio for traversal.
2222 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2223 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2225 XA_STATE(xas, &mapping->i_pages, *start);
2226 struct folio *folio;
2229 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2231 * Shadow entries should never be tagged, but this iteration
2232 * is lockless so there is a window for page reclaim to evict
2233 * a page we saw tagged. Skip over it.
2235 if (xa_is_value(folio))
2237 if (!folio_batch_add(fbatch, folio)) {
2238 unsigned long nr = folio_nr_pages(folio);
2239 *start = folio->index + nr;
2244 * We come here when there is no page beyond @end. We take care to not
2245 * overflow the index @start as it confuses some of the callers. This
2246 * breaks the iteration when there is a page at index -1 but that is
2247 * already broke anyway.
2249 if (end == (pgoff_t)-1)
2250 *start = (pgoff_t)-1;
2256 return folio_batch_count(fbatch);
2258 EXPORT_SYMBOL(filemap_get_folios_tag);
2261 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2262 * a _large_ part of the i/o request. Imagine the worst scenario:
2264 * ---R__________________________________________B__________
2265 * ^ reading here ^ bad block(assume 4k)
2267 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2268 * => failing the whole request => read(R) => read(R+1) =>
2269 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2270 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2271 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2273 * It is going insane. Fix it by quickly scaling down the readahead size.
2275 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2281 * filemap_get_read_batch - Get a batch of folios for read
2283 * Get a batch of folios which represent a contiguous range of bytes in
2284 * the file. No exceptional entries will be returned. If @index is in
2285 * the middle of a folio, the entire folio will be returned. The last
2286 * folio in the batch may have the readahead flag set or the uptodate flag
2287 * clear so that the caller can take the appropriate action.
2289 static void filemap_get_read_batch(struct address_space *mapping,
2290 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2292 XA_STATE(xas, &mapping->i_pages, index);
2293 struct folio *folio;
2296 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2297 if (xas_retry(&xas, folio))
2299 if (xas.xa_index > max || xa_is_value(folio))
2301 if (xa_is_sibling(folio))
2303 if (!folio_try_get_rcu(folio))
2306 if (unlikely(folio != xas_reload(&xas)))
2309 if (!folio_batch_add(fbatch, folio))
2311 if (!folio_test_uptodate(folio))
2313 if (folio_test_readahead(folio))
2315 xas_advance(&xas, folio_next_index(folio) - 1);
2325 static int filemap_read_folio(struct file *file, filler_t filler,
2326 struct folio *folio)
2328 bool workingset = folio_test_workingset(folio);
2329 unsigned long pflags;
2333 * A previous I/O error may have been due to temporary failures,
2334 * eg. multipath errors. PG_error will be set again if read_folio
2337 folio_clear_error(folio);
2339 /* Start the actual read. The read will unlock the page. */
2340 if (unlikely(workingset))
2341 psi_memstall_enter(&pflags);
2342 error = filler(file, folio);
2343 if (unlikely(workingset))
2344 psi_memstall_leave(&pflags);
2348 error = folio_wait_locked_killable(folio);
2351 if (folio_test_uptodate(folio))
2354 shrink_readahead_size_eio(&file->f_ra);
2358 static bool filemap_range_uptodate(struct address_space *mapping,
2359 loff_t pos, size_t count, struct folio *folio,
2362 if (folio_test_uptodate(folio))
2364 /* pipes can't handle partially uptodate pages */
2367 if (!mapping->a_ops->is_partially_uptodate)
2369 if (mapping->host->i_blkbits >= folio_shift(folio))
2372 if (folio_pos(folio) > pos) {
2373 count -= folio_pos(folio) - pos;
2376 pos -= folio_pos(folio);
2379 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2382 static int filemap_update_page(struct kiocb *iocb,
2383 struct address_space *mapping, size_t count,
2384 struct folio *folio, bool need_uptodate)
2388 if (iocb->ki_flags & IOCB_NOWAIT) {
2389 if (!filemap_invalidate_trylock_shared(mapping))
2392 filemap_invalidate_lock_shared(mapping);
2395 if (!folio_trylock(folio)) {
2397 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2398 goto unlock_mapping;
2399 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2400 filemap_invalidate_unlock_shared(mapping);
2402 * This is where we usually end up waiting for a
2403 * previously submitted readahead to finish.
2405 folio_put_wait_locked(folio, TASK_KILLABLE);
2406 return AOP_TRUNCATED_PAGE;
2408 error = __folio_lock_async(folio, iocb->ki_waitq);
2410 goto unlock_mapping;
2413 error = AOP_TRUNCATED_PAGE;
2414 if (!folio->mapping)
2418 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2423 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2426 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2428 goto unlock_mapping;
2430 folio_unlock(folio);
2432 filemap_invalidate_unlock_shared(mapping);
2433 if (error == AOP_TRUNCATED_PAGE)
2438 static int filemap_create_folio(struct file *file,
2439 struct address_space *mapping, pgoff_t index,
2440 struct folio_batch *fbatch)
2442 struct folio *folio;
2445 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2450 * Protect against truncate / hole punch. Grabbing invalidate_lock
2451 * here assures we cannot instantiate and bring uptodate new
2452 * pagecache folios after evicting page cache during truncate
2453 * and before actually freeing blocks. Note that we could
2454 * release invalidate_lock after inserting the folio into
2455 * the page cache as the locked folio would then be enough to
2456 * synchronize with hole punching. But there are code paths
2457 * such as filemap_update_page() filling in partially uptodate
2458 * pages or ->readahead() that need to hold invalidate_lock
2459 * while mapping blocks for IO so let's hold the lock here as
2460 * well to keep locking rules simple.
2462 filemap_invalidate_lock_shared(mapping);
2463 error = filemap_add_folio(mapping, folio, index,
2464 mapping_gfp_constraint(mapping, GFP_KERNEL));
2465 if (error == -EEXIST)
2466 error = AOP_TRUNCATED_PAGE;
2470 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2474 filemap_invalidate_unlock_shared(mapping);
2475 folio_batch_add(fbatch, folio);
2478 filemap_invalidate_unlock_shared(mapping);
2483 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2484 struct address_space *mapping, struct folio *folio,
2487 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2489 if (iocb->ki_flags & IOCB_NOIO)
2491 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2495 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2496 struct folio_batch *fbatch, bool need_uptodate)
2498 struct file *filp = iocb->ki_filp;
2499 struct address_space *mapping = filp->f_mapping;
2500 struct file_ra_state *ra = &filp->f_ra;
2501 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2503 struct folio *folio;
2506 /* "last_index" is the index of the page beyond the end of the read */
2507 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2509 if (fatal_signal_pending(current))
2512 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2513 if (!folio_batch_count(fbatch)) {
2514 if (iocb->ki_flags & IOCB_NOIO)
2516 page_cache_sync_readahead(mapping, ra, filp, index,
2517 last_index - index);
2518 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2520 if (!folio_batch_count(fbatch)) {
2521 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2523 err = filemap_create_folio(filp, mapping,
2524 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2525 if (err == AOP_TRUNCATED_PAGE)
2530 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2531 if (folio_test_readahead(folio)) {
2532 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2536 if (!folio_test_uptodate(folio)) {
2537 if ((iocb->ki_flags & IOCB_WAITQ) &&
2538 folio_batch_count(fbatch) > 1)
2539 iocb->ki_flags |= IOCB_NOWAIT;
2540 err = filemap_update_page(iocb, mapping, count, folio,
2550 if (likely(--fbatch->nr))
2552 if (err == AOP_TRUNCATED_PAGE)
2557 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2559 unsigned int shift = folio_shift(folio);
2561 return (pos1 >> shift == pos2 >> shift);
2565 * filemap_read - Read data from the page cache.
2566 * @iocb: The iocb to read.
2567 * @iter: Destination for the data.
2568 * @already_read: Number of bytes already read by the caller.
2570 * Copies data from the page cache. If the data is not currently present,
2571 * uses the readahead and read_folio address_space operations to fetch it.
2573 * Return: Total number of bytes copied, including those already read by
2574 * the caller. If an error happens before any bytes are copied, returns
2575 * a negative error number.
2577 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2578 ssize_t already_read)
2580 struct file *filp = iocb->ki_filp;
2581 struct file_ra_state *ra = &filp->f_ra;
2582 struct address_space *mapping = filp->f_mapping;
2583 struct inode *inode = mapping->host;
2584 struct folio_batch fbatch;
2586 bool writably_mapped;
2587 loff_t isize, end_offset;
2588 loff_t last_pos = ra->prev_pos;
2590 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2592 if (unlikely(!iov_iter_count(iter)))
2595 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2596 folio_batch_init(&fbatch);
2602 * If we've already successfully copied some data, then we
2603 * can no longer safely return -EIOCBQUEUED. Hence mark
2604 * an async read NOWAIT at that point.
2606 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2607 iocb->ki_flags |= IOCB_NOWAIT;
2609 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2612 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2617 * i_size must be checked after we know the pages are Uptodate.
2619 * Checking i_size after the check allows us to calculate
2620 * the correct value for "nr", which means the zero-filled
2621 * part of the page is not copied back to userspace (unless
2622 * another truncate extends the file - this is desired though).
2624 isize = i_size_read(inode);
2625 if (unlikely(iocb->ki_pos >= isize))
2627 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2630 * Once we start copying data, we don't want to be touching any
2631 * cachelines that might be contended:
2633 writably_mapped = mapping_writably_mapped(mapping);
2636 * When a read accesses the same folio several times, only
2637 * mark it as accessed the first time.
2639 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2641 folio_mark_accessed(fbatch.folios[0]);
2643 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2644 struct folio *folio = fbatch.folios[i];
2645 size_t fsize = folio_size(folio);
2646 size_t offset = iocb->ki_pos & (fsize - 1);
2647 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2651 if (end_offset < folio_pos(folio))
2654 folio_mark_accessed(folio);
2656 * If users can be writing to this folio using arbitrary
2657 * virtual addresses, take care of potential aliasing
2658 * before reading the folio on the kernel side.
2660 if (writably_mapped)
2661 flush_dcache_folio(folio);
2663 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2665 already_read += copied;
2666 iocb->ki_pos += copied;
2667 last_pos = iocb->ki_pos;
2669 if (copied < bytes) {
2675 for (i = 0; i < folio_batch_count(&fbatch); i++)
2676 folio_put(fbatch.folios[i]);
2677 folio_batch_init(&fbatch);
2678 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2680 file_accessed(filp);
2681 ra->prev_pos = last_pos;
2682 return already_read ? already_read : error;
2684 EXPORT_SYMBOL_GPL(filemap_read);
2686 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2688 struct address_space *mapping = iocb->ki_filp->f_mapping;
2689 loff_t pos = iocb->ki_pos;
2690 loff_t end = pos + count - 1;
2692 if (iocb->ki_flags & IOCB_NOWAIT) {
2693 if (filemap_range_needs_writeback(mapping, pos, end))
2698 return filemap_write_and_wait_range(mapping, pos, end);
2701 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2703 struct address_space *mapping = iocb->ki_filp->f_mapping;
2704 loff_t pos = iocb->ki_pos;
2705 loff_t end = pos + count - 1;
2708 if (iocb->ki_flags & IOCB_NOWAIT) {
2709 /* we could block if there are any pages in the range */
2710 if (filemap_range_has_page(mapping, pos, end))
2713 ret = filemap_write_and_wait_range(mapping, pos, end);
2719 * After a write we want buffered reads to be sure to go to disk to get
2720 * the new data. We invalidate clean cached page from the region we're
2721 * about to write. We do this *before* the write so that we can return
2722 * without clobbering -EIOCBQUEUED from ->direct_IO().
2724 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2729 * generic_file_read_iter - generic filesystem read routine
2730 * @iocb: kernel I/O control block
2731 * @iter: destination for the data read
2733 * This is the "read_iter()" routine for all filesystems
2734 * that can use the page cache directly.
2736 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2737 * be returned when no data can be read without waiting for I/O requests
2738 * to complete; it doesn't prevent readahead.
2740 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2741 * requests shall be made for the read or for readahead. When no data
2742 * can be read, -EAGAIN shall be returned. When readahead would be
2743 * triggered, a partial, possibly empty read shall be returned.
2746 * * number of bytes copied, even for partial reads
2747 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2750 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2752 size_t count = iov_iter_count(iter);
2756 return 0; /* skip atime */
2758 if (iocb->ki_flags & IOCB_DIRECT) {
2759 struct file *file = iocb->ki_filp;
2760 struct address_space *mapping = file->f_mapping;
2761 struct inode *inode = mapping->host;
2763 retval = kiocb_write_and_wait(iocb, count);
2766 file_accessed(file);
2768 retval = mapping->a_ops->direct_IO(iocb, iter);
2770 iocb->ki_pos += retval;
2773 if (retval != -EIOCBQUEUED)
2774 iov_iter_revert(iter, count - iov_iter_count(iter));
2777 * Btrfs can have a short DIO read if we encounter
2778 * compressed extents, so if there was an error, or if
2779 * we've already read everything we wanted to, or if
2780 * there was a short read because we hit EOF, go ahead
2781 * and return. Otherwise fallthrough to buffered io for
2782 * the rest of the read. Buffered reads will not work for
2783 * DAX files, so don't bother trying.
2785 if (retval < 0 || !count || IS_DAX(inode))
2787 if (iocb->ki_pos >= i_size_read(inode))
2791 return filemap_read(iocb, iter, retval);
2793 EXPORT_SYMBOL(generic_file_read_iter);
2796 * Splice subpages from a folio into a pipe.
2798 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2799 struct folio *folio, loff_t fpos, size_t size)
2802 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2804 page = folio_page(folio, offset / PAGE_SIZE);
2805 size = min(size, folio_size(folio) - offset);
2806 offset %= PAGE_SIZE;
2808 while (spliced < size &&
2809 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2810 struct pipe_buffer *buf = pipe_head_buf(pipe);
2811 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2813 *buf = (struct pipe_buffer) {
2814 .ops = &page_cache_pipe_buf_ops,
2830 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2831 * @in: The file to read from
2832 * @ppos: Pointer to the file position to read from
2833 * @pipe: The pipe to splice into
2834 * @len: The amount to splice
2835 * @flags: The SPLICE_F_* flags
2837 * This function gets folios from a file's pagecache and splices them into the
2838 * pipe. Readahead will be called as necessary to fill more folios. This may
2839 * be used for blockdevs also.
2841 * Return: On success, the number of bytes read will be returned and *@ppos
2842 * will be updated if appropriate; 0 will be returned if there is no more data
2843 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2844 * other negative error code will be returned on error. A short read may occur
2845 * if the pipe has insufficient space, we reach the end of the data or we hit a
2848 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2849 struct pipe_inode_info *pipe,
2850 size_t len, unsigned int flags)
2852 struct folio_batch fbatch;
2854 size_t total_spliced = 0, used, npages;
2855 loff_t isize, end_offset;
2856 bool writably_mapped;
2859 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2862 init_sync_kiocb(&iocb, in);
2863 iocb.ki_pos = *ppos;
2865 /* Work out how much data we can actually add into the pipe */
2866 used = pipe_occupancy(pipe->head, pipe->tail);
2867 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2868 len = min_t(size_t, len, npages * PAGE_SIZE);
2870 folio_batch_init(&fbatch);
2875 if (*ppos >= i_size_read(in->f_mapping->host))
2878 iocb.ki_pos = *ppos;
2879 error = filemap_get_pages(&iocb, len, &fbatch, true);
2884 * i_size must be checked after we know the pages are Uptodate.
2886 * Checking i_size after the check allows us to calculate
2887 * the correct value for "nr", which means the zero-filled
2888 * part of the page is not copied back to userspace (unless
2889 * another truncate extends the file - this is desired though).
2891 isize = i_size_read(in->f_mapping->host);
2892 if (unlikely(*ppos >= isize))
2894 end_offset = min_t(loff_t, isize, *ppos + len);
2897 * Once we start copying data, we don't want to be touching any
2898 * cachelines that might be contended:
2900 writably_mapped = mapping_writably_mapped(in->f_mapping);
2902 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2903 struct folio *folio = fbatch.folios[i];
2906 if (folio_pos(folio) >= end_offset)
2908 folio_mark_accessed(folio);
2911 * If users can be writing to this folio using arbitrary
2912 * virtual addresses, take care of potential aliasing
2913 * before reading the folio on the kernel side.
2915 if (writably_mapped)
2916 flush_dcache_folio(folio);
2918 n = min_t(loff_t, len, isize - *ppos);
2919 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2925 in->f_ra.prev_pos = *ppos;
2926 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2930 folio_batch_release(&fbatch);
2934 folio_batch_release(&fbatch);
2937 return total_spliced ? total_spliced : error;
2939 EXPORT_SYMBOL(filemap_splice_read);
2941 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2942 struct address_space *mapping, struct folio *folio,
2943 loff_t start, loff_t end, bool seek_data)
2945 const struct address_space_operations *ops = mapping->a_ops;
2946 size_t offset, bsz = i_blocksize(mapping->host);
2948 if (xa_is_value(folio) || folio_test_uptodate(folio))
2949 return seek_data ? start : end;
2950 if (!ops->is_partially_uptodate)
2951 return seek_data ? end : start;
2956 if (unlikely(folio->mapping != mapping))
2959 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2962 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2965 start = (start + bsz) & ~(bsz - 1);
2967 } while (offset < folio_size(folio));
2969 folio_unlock(folio);
2974 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2976 if (xa_is_value(folio))
2977 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2978 return folio_size(folio);
2982 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2983 * @mapping: Address space to search.
2984 * @start: First byte to consider.
2985 * @end: Limit of search (exclusive).
2986 * @whence: Either SEEK_HOLE or SEEK_DATA.
2988 * If the page cache knows which blocks contain holes and which blocks
2989 * contain data, your filesystem can use this function to implement
2990 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2991 * entirely memory-based such as tmpfs, and filesystems which support
2992 * unwritten extents.
2994 * Return: The requested offset on success, or -ENXIO if @whence specifies
2995 * SEEK_DATA and there is no data after @start. There is an implicit hole
2996 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2997 * and @end contain data.
2999 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3000 loff_t end, int whence)
3002 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3003 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3004 bool seek_data = (whence == SEEK_DATA);
3005 struct folio *folio;
3011 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3012 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3021 seek_size = seek_folio_size(&xas, folio);
3022 pos = round_up((u64)pos + 1, seek_size);
3023 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3029 if (seek_size > PAGE_SIZE)
3030 xas_set(&xas, pos >> PAGE_SHIFT);
3031 if (!xa_is_value(folio))
3038 if (folio && !xa_is_value(folio))
3046 #define MMAP_LOTSAMISS (100)
3048 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3049 * @vmf - the vm_fault for this fault.
3050 * @folio - the folio to lock.
3051 * @fpin - the pointer to the file we may pin (or is already pinned).
3053 * This works similar to lock_folio_or_retry in that it can drop the
3054 * mmap_lock. It differs in that it actually returns the folio locked
3055 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3056 * to drop the mmap_lock then fpin will point to the pinned file and
3057 * needs to be fput()'ed at a later point.
3059 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3062 if (folio_trylock(folio))
3066 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3067 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3068 * is supposed to work. We have way too many special cases..
3070 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3073 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3074 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3075 if (__folio_lock_killable(folio)) {
3077 * We didn't have the right flags to drop the
3078 * fault lock, but all fault_handlers only check
3079 * for fatal signals if we return VM_FAULT_RETRY,
3080 * so we need to drop the fault lock here and
3081 * return 0 if we don't have a fpin.
3084 release_fault_lock(vmf);
3088 __folio_lock(folio);
3094 * Synchronous readahead happens when we don't even find a page in the page
3095 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3096 * to drop the mmap sem we return the file that was pinned in order for us to do
3097 * that. If we didn't pin a file then we return NULL. The file that is
3098 * returned needs to be fput()'ed when we're done with it.
3100 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3102 struct file *file = vmf->vma->vm_file;
3103 struct file_ra_state *ra = &file->f_ra;
3104 struct address_space *mapping = file->f_mapping;
3105 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3106 struct file *fpin = NULL;
3107 unsigned long vm_flags = vmf->vma->vm_flags;
3108 unsigned int mmap_miss;
3110 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3111 /* Use the readahead code, even if readahead is disabled */
3112 if (vm_flags & VM_HUGEPAGE) {
3113 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3114 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3115 ra->size = HPAGE_PMD_NR;
3117 * Fetch two PMD folios, so we get the chance to actually
3118 * readahead, unless we've been told not to.
3120 if (!(vm_flags & VM_RAND_READ))
3122 ra->async_size = HPAGE_PMD_NR;
3123 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3128 /* If we don't want any read-ahead, don't bother */
3129 if (vm_flags & VM_RAND_READ)
3134 if (vm_flags & VM_SEQ_READ) {
3135 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3136 page_cache_sync_ra(&ractl, ra->ra_pages);
3140 /* Avoid banging the cache line if not needed */
3141 mmap_miss = READ_ONCE(ra->mmap_miss);
3142 if (mmap_miss < MMAP_LOTSAMISS * 10)
3143 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3146 * Do we miss much more than hit in this file? If so,
3147 * stop bothering with read-ahead. It will only hurt.
3149 if (mmap_miss > MMAP_LOTSAMISS)
3155 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3156 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3157 ra->size = ra->ra_pages;
3158 ra->async_size = ra->ra_pages / 4;
3159 ractl._index = ra->start;
3160 page_cache_ra_order(&ractl, ra, 0);
3165 * Asynchronous readahead happens when we find the page and PG_readahead,
3166 * so we want to possibly extend the readahead further. We return the file that
3167 * was pinned if we have to drop the mmap_lock in order to do IO.
3169 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3170 struct folio *folio)
3172 struct file *file = vmf->vma->vm_file;
3173 struct file_ra_state *ra = &file->f_ra;
3174 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3175 struct file *fpin = NULL;
3176 unsigned int mmap_miss;
3178 /* If we don't want any read-ahead, don't bother */
3179 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3182 mmap_miss = READ_ONCE(ra->mmap_miss);
3184 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3186 if (folio_test_readahead(folio)) {
3187 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3188 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3194 * filemap_fault - read in file data for page fault handling
3195 * @vmf: struct vm_fault containing details of the fault
3197 * filemap_fault() is invoked via the vma operations vector for a
3198 * mapped memory region to read in file data during a page fault.
3200 * The goto's are kind of ugly, but this streamlines the normal case of having
3201 * it in the page cache, and handles the special cases reasonably without
3202 * having a lot of duplicated code.
3204 * vma->vm_mm->mmap_lock must be held on entry.
3206 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3207 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3209 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3210 * has not been released.
3212 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3214 * Return: bitwise-OR of %VM_FAULT_ codes.
3216 vm_fault_t filemap_fault(struct vm_fault *vmf)
3219 struct file *file = vmf->vma->vm_file;
3220 struct file *fpin = NULL;
3221 struct address_space *mapping = file->f_mapping;
3222 struct inode *inode = mapping->host;
3223 pgoff_t max_idx, index = vmf->pgoff;
3224 struct folio *folio;
3226 bool mapping_locked = false;
3228 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3229 if (unlikely(index >= max_idx))
3230 return VM_FAULT_SIGBUS;
3233 * Do we have something in the page cache already?
3235 folio = filemap_get_folio(mapping, index);
3236 if (likely(!IS_ERR(folio))) {
3238 * We found the page, so try async readahead before waiting for
3241 if (!(vmf->flags & FAULT_FLAG_TRIED))
3242 fpin = do_async_mmap_readahead(vmf, folio);
3243 if (unlikely(!folio_test_uptodate(folio))) {
3244 filemap_invalidate_lock_shared(mapping);
3245 mapping_locked = true;
3248 /* No page in the page cache at all */
3249 count_vm_event(PGMAJFAULT);
3250 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3251 ret = VM_FAULT_MAJOR;
3252 fpin = do_sync_mmap_readahead(vmf);
3255 * See comment in filemap_create_folio() why we need
3258 if (!mapping_locked) {
3259 filemap_invalidate_lock_shared(mapping);
3260 mapping_locked = true;
3262 folio = __filemap_get_folio(mapping, index,
3263 FGP_CREAT|FGP_FOR_MMAP,
3265 if (IS_ERR(folio)) {
3268 filemap_invalidate_unlock_shared(mapping);
3269 return VM_FAULT_OOM;
3273 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3276 /* Did it get truncated? */
3277 if (unlikely(folio->mapping != mapping)) {
3278 folio_unlock(folio);
3282 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3285 * We have a locked folio in the page cache, now we need to check
3286 * that it's up-to-date. If not, it is going to be due to an error,
3287 * or because readahead was otherwise unable to retrieve it.
3289 if (unlikely(!folio_test_uptodate(folio))) {
3291 * If the invalidate lock is not held, the folio was in cache
3292 * and uptodate and now it is not. Strange but possible since we
3293 * didn't hold the page lock all the time. Let's drop
3294 * everything, get the invalidate lock and try again.
3296 if (!mapping_locked) {
3297 folio_unlock(folio);
3303 * OK, the folio is really not uptodate. This can be because the
3304 * VMA has the VM_RAND_READ flag set, or because an error
3305 * arose. Let's read it in directly.
3307 goto page_not_uptodate;
3311 * We've made it this far and we had to drop our mmap_lock, now is the
3312 * time to return to the upper layer and have it re-find the vma and
3316 folio_unlock(folio);
3320 filemap_invalidate_unlock_shared(mapping);
3323 * Found the page and have a reference on it.
3324 * We must recheck i_size under page lock.
3326 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3327 if (unlikely(index >= max_idx)) {
3328 folio_unlock(folio);
3330 return VM_FAULT_SIGBUS;
3333 vmf->page = folio_file_page(folio, index);
3334 return ret | VM_FAULT_LOCKED;
3338 * Umm, take care of errors if the page isn't up-to-date.
3339 * Try to re-read it _once_. We do this synchronously,
3340 * because there really aren't any performance issues here
3341 * and we need to check for errors.
3343 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3344 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3349 if (!error || error == AOP_TRUNCATED_PAGE)
3351 filemap_invalidate_unlock_shared(mapping);
3353 return VM_FAULT_SIGBUS;
3357 * We dropped the mmap_lock, we need to return to the fault handler to
3358 * re-find the vma and come back and find our hopefully still populated
3364 filemap_invalidate_unlock_shared(mapping);
3367 return ret | VM_FAULT_RETRY;
3369 EXPORT_SYMBOL(filemap_fault);
3371 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3374 struct mm_struct *mm = vmf->vma->vm_mm;
3376 /* Huge page is mapped? No need to proceed. */
3377 if (pmd_trans_huge(*vmf->pmd)) {
3378 folio_unlock(folio);
3383 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3384 struct page *page = folio_file_page(folio, start);
3385 vm_fault_t ret = do_set_pmd(vmf, page);
3387 /* The page is mapped successfully, reference consumed. */
3388 folio_unlock(folio);
3393 if (pmd_none(*vmf->pmd))
3394 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3399 static struct folio *next_uptodate_folio(struct xa_state *xas,
3400 struct address_space *mapping, pgoff_t end_pgoff)
3402 struct folio *folio = xas_next_entry(xas, end_pgoff);
3403 unsigned long max_idx;
3408 if (xas_retry(xas, folio))
3410 if (xa_is_value(folio))
3412 if (folio_test_locked(folio))
3414 if (!folio_try_get_rcu(folio))
3416 /* Has the page moved or been split? */
3417 if (unlikely(folio != xas_reload(xas)))
3419 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3421 if (!folio_trylock(folio))
3423 if (folio->mapping != mapping)
3425 if (!folio_test_uptodate(folio))
3427 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3428 if (xas->xa_index >= max_idx)
3432 folio_unlock(folio);
3435 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3441 * Map page range [start_page, start_page + nr_pages) of folio.
3442 * start_page is gotten from start by folio_page(folio, start)
3444 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3445 struct folio *folio, unsigned long start,
3446 unsigned long addr, unsigned int nr_pages,
3447 unsigned int *mmap_miss)
3450 struct page *page = folio_page(folio, start);
3451 unsigned int count = 0;
3452 pte_t *old_ptep = vmf->pte;
3455 if (PageHWPoison(page + count))
3461 * NOTE: If there're PTE markers, we'll leave them to be
3462 * handled in the specific fault path, and it'll prohibit the
3463 * fault-around logic.
3465 if (!pte_none(vmf->pte[count]))
3472 set_pte_range(vmf, folio, page, count, addr);
3473 folio_ref_add(folio, count);
3474 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3475 ret = VM_FAULT_NOPAGE;
3481 addr += count * PAGE_SIZE;
3483 } while (--nr_pages > 0);
3486 set_pte_range(vmf, folio, page, count, addr);
3487 folio_ref_add(folio, count);
3488 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3489 ret = VM_FAULT_NOPAGE;
3492 vmf->pte = old_ptep;
3497 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3498 struct folio *folio, unsigned long addr,
3499 unsigned int *mmap_miss)
3502 struct page *page = &folio->page;
3504 if (PageHWPoison(page))
3510 * NOTE: If there're PTE markers, we'll leave them to be
3511 * handled in the specific fault path, and it'll prohibit
3512 * the fault-around logic.
3514 if (!pte_none(ptep_get(vmf->pte)))
3517 if (vmf->address == addr)
3518 ret = VM_FAULT_NOPAGE;
3520 set_pte_range(vmf, folio, page, 1, addr);
3521 folio_ref_inc(folio);
3526 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3527 pgoff_t start_pgoff, pgoff_t end_pgoff)
3529 struct vm_area_struct *vma = vmf->vma;
3530 struct file *file = vma->vm_file;
3531 struct address_space *mapping = file->f_mapping;
3532 pgoff_t last_pgoff = start_pgoff;
3534 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3535 struct folio *folio;
3537 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3540 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3544 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3545 ret = VM_FAULT_NOPAGE;
3549 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3550 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3552 folio_unlock(folio);
3559 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3560 vmf->pte += xas.xa_index - last_pgoff;
3561 last_pgoff = xas.xa_index;
3562 end = folio_next_index(folio) - 1;
3563 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3565 if (!folio_test_large(folio))
3566 ret |= filemap_map_order0_folio(vmf,
3567 folio, addr, &mmap_miss);
3569 ret |= filemap_map_folio_range(vmf, folio,
3570 xas.xa_index - folio->index, addr,
3571 nr_pages, &mmap_miss);
3573 folio_unlock(folio);
3575 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3576 pte_unmap_unlock(vmf->pte, vmf->ptl);
3580 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3581 if (mmap_miss >= mmap_miss_saved)
3582 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3584 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3588 EXPORT_SYMBOL(filemap_map_pages);
3590 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3592 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3593 struct folio *folio = page_folio(vmf->page);
3594 vm_fault_t ret = VM_FAULT_LOCKED;
3596 sb_start_pagefault(mapping->host->i_sb);
3597 file_update_time(vmf->vma->vm_file);
3599 if (folio->mapping != mapping) {
3600 folio_unlock(folio);
3601 ret = VM_FAULT_NOPAGE;
3605 * We mark the folio dirty already here so that when freeze is in
3606 * progress, we are guaranteed that writeback during freezing will
3607 * see the dirty folio and writeprotect it again.
3609 folio_mark_dirty(folio);
3610 folio_wait_stable(folio);
3612 sb_end_pagefault(mapping->host->i_sb);
3616 const struct vm_operations_struct generic_file_vm_ops = {
3617 .fault = filemap_fault,
3618 .map_pages = filemap_map_pages,
3619 .page_mkwrite = filemap_page_mkwrite,
3622 /* This is used for a general mmap of a disk file */
3624 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3626 struct address_space *mapping = file->f_mapping;
3628 if (!mapping->a_ops->read_folio)
3630 file_accessed(file);
3631 vma->vm_ops = &generic_file_vm_ops;
3636 * This is for filesystems which do not implement ->writepage.
3638 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3640 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3642 return generic_file_mmap(file, vma);
3645 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3647 return VM_FAULT_SIGBUS;
3649 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3653 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3657 #endif /* CONFIG_MMU */
3659 EXPORT_SYMBOL(filemap_page_mkwrite);
3660 EXPORT_SYMBOL(generic_file_mmap);
3661 EXPORT_SYMBOL(generic_file_readonly_mmap);
3663 static struct folio *do_read_cache_folio(struct address_space *mapping,
3664 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3666 struct folio *folio;
3670 filler = mapping->a_ops->read_folio;
3672 folio = filemap_get_folio(mapping, index);
3673 if (IS_ERR(folio)) {
3674 folio = filemap_alloc_folio(gfp, 0);
3676 return ERR_PTR(-ENOMEM);
3677 err = filemap_add_folio(mapping, folio, index, gfp);
3678 if (unlikely(err)) {
3682 /* Presumably ENOMEM for xarray node */
3683 return ERR_PTR(err);
3688 if (folio_test_uptodate(folio))
3691 if (!folio_trylock(folio)) {
3692 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3696 /* Folio was truncated from mapping */
3697 if (!folio->mapping) {
3698 folio_unlock(folio);
3703 /* Someone else locked and filled the page in a very small window */
3704 if (folio_test_uptodate(folio)) {
3705 folio_unlock(folio);
3710 err = filemap_read_folio(file, filler, folio);
3713 if (err == AOP_TRUNCATED_PAGE)
3715 return ERR_PTR(err);
3719 folio_mark_accessed(folio);
3724 * read_cache_folio - Read into page cache, fill it if needed.
3725 * @mapping: The address_space to read from.
3726 * @index: The index to read.
3727 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3728 * @file: Passed to filler function, may be NULL if not required.
3730 * Read one page into the page cache. If it succeeds, the folio returned
3731 * will contain @index, but it may not be the first page of the folio.
3733 * If the filler function returns an error, it will be returned to the
3736 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3737 * Return: An uptodate folio on success, ERR_PTR() on failure.
3739 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3740 filler_t filler, struct file *file)
3742 return do_read_cache_folio(mapping, index, filler, file,
3743 mapping_gfp_mask(mapping));
3745 EXPORT_SYMBOL(read_cache_folio);
3748 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3749 * @mapping: The address_space for the folio.
3750 * @index: The index that the allocated folio will contain.
3751 * @gfp: The page allocator flags to use if allocating.
3753 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3754 * any new memory allocations done using the specified allocation flags.
3756 * The most likely error from this function is EIO, but ENOMEM is
3757 * possible and so is EINTR. If ->read_folio returns another error,
3758 * that will be returned to the caller.
3760 * The function expects mapping->invalidate_lock to be already held.
3762 * Return: Uptodate folio on success, ERR_PTR() on failure.
3764 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3765 pgoff_t index, gfp_t gfp)
3767 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3769 EXPORT_SYMBOL(mapping_read_folio_gfp);
3771 static struct page *do_read_cache_page(struct address_space *mapping,
3772 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3774 struct folio *folio;
3776 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3778 return &folio->page;
3779 return folio_file_page(folio, index);
3782 struct page *read_cache_page(struct address_space *mapping,
3783 pgoff_t index, filler_t *filler, struct file *file)
3785 return do_read_cache_page(mapping, index, filler, file,
3786 mapping_gfp_mask(mapping));
3788 EXPORT_SYMBOL(read_cache_page);
3791 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3792 * @mapping: the page's address_space
3793 * @index: the page index
3794 * @gfp: the page allocator flags to use if allocating
3796 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3797 * any new page allocations done using the specified allocation flags.
3799 * If the page does not get brought uptodate, return -EIO.
3801 * The function expects mapping->invalidate_lock to be already held.
3803 * Return: up to date page on success, ERR_PTR() on failure.
3805 struct page *read_cache_page_gfp(struct address_space *mapping,
3809 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3811 EXPORT_SYMBOL(read_cache_page_gfp);
3814 * Warn about a page cache invalidation failure during a direct I/O write.
3816 static void dio_warn_stale_pagecache(struct file *filp)
3818 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3822 errseq_set(&filp->f_mapping->wb_err, -EIO);
3823 if (__ratelimit(&_rs)) {
3824 path = file_path(filp, pathname, sizeof(pathname));
3827 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3828 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3833 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3835 struct address_space *mapping = iocb->ki_filp->f_mapping;
3837 if (mapping->nrpages &&
3838 invalidate_inode_pages2_range(mapping,
3839 iocb->ki_pos >> PAGE_SHIFT,
3840 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3841 dio_warn_stale_pagecache(iocb->ki_filp);
3845 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3847 struct address_space *mapping = iocb->ki_filp->f_mapping;
3848 size_t write_len = iov_iter_count(from);
3852 * If a page can not be invalidated, return 0 to fall back
3853 * to buffered write.
3855 written = kiocb_invalidate_pages(iocb, write_len);
3857 if (written == -EBUSY)
3862 written = mapping->a_ops->direct_IO(iocb, from);
3865 * Finally, try again to invalidate clean pages which might have been
3866 * cached by non-direct readahead, or faulted in by get_user_pages()
3867 * if the source of the write was an mmap'ed region of the file
3868 * we're writing. Either one is a pretty crazy thing to do,
3869 * so we don't support it 100%. If this invalidation
3870 * fails, tough, the write still worked...
3872 * Most of the time we do not need this since dio_complete() will do
3873 * the invalidation for us. However there are some file systems that
3874 * do not end up with dio_complete() being called, so let's not break
3875 * them by removing it completely.
3877 * Noticeable example is a blkdev_direct_IO().
3879 * Skip invalidation for async writes or if mapping has no pages.
3882 struct inode *inode = mapping->host;
3883 loff_t pos = iocb->ki_pos;
3885 kiocb_invalidate_post_direct_write(iocb, written);
3887 write_len -= written;
3888 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3889 i_size_write(inode, pos);
3890 mark_inode_dirty(inode);
3894 if (written != -EIOCBQUEUED)
3895 iov_iter_revert(from, write_len - iov_iter_count(from));
3898 EXPORT_SYMBOL(generic_file_direct_write);
3900 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3902 struct file *file = iocb->ki_filp;
3903 loff_t pos = iocb->ki_pos;
3904 struct address_space *mapping = file->f_mapping;
3905 const struct address_space_operations *a_ops = mapping->a_ops;
3907 ssize_t written = 0;
3911 unsigned long offset; /* Offset into pagecache page */
3912 unsigned long bytes; /* Bytes to write to page */
3913 size_t copied; /* Bytes copied from user */
3914 void *fsdata = NULL;
3916 offset = (pos & (PAGE_SIZE - 1));
3917 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3922 * Bring in the user page that we will copy from _first_.
3923 * Otherwise there's a nasty deadlock on copying from the
3924 * same page as we're writing to, without it being marked
3927 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3932 if (fatal_signal_pending(current)) {
3937 status = a_ops->write_begin(file, mapping, pos, bytes,
3939 if (unlikely(status < 0))
3942 if (mapping_writably_mapped(mapping))
3943 flush_dcache_page(page);
3945 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3946 flush_dcache_page(page);
3948 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3950 if (unlikely(status != copied)) {
3951 iov_iter_revert(i, copied - max(status, 0L));
3952 if (unlikely(status < 0))
3957 if (unlikely(status == 0)) {
3959 * A short copy made ->write_end() reject the
3960 * thing entirely. Might be memory poisoning
3961 * halfway through, might be a race with munmap,
3962 * might be severe memory pressure.
3971 balance_dirty_pages_ratelimited(mapping);
3972 } while (iov_iter_count(i));
3976 iocb->ki_pos += written;
3979 EXPORT_SYMBOL(generic_perform_write);
3982 * __generic_file_write_iter - write data to a file
3983 * @iocb: IO state structure (file, offset, etc.)
3984 * @from: iov_iter with data to write
3986 * This function does all the work needed for actually writing data to a
3987 * file. It does all basic checks, removes SUID from the file, updates
3988 * modification times and calls proper subroutines depending on whether we
3989 * do direct IO or a standard buffered write.
3991 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3992 * object which does not need locking at all.
3994 * This function does *not* take care of syncing data in case of O_SYNC write.
3995 * A caller has to handle it. This is mainly due to the fact that we want to
3996 * avoid syncing under i_rwsem.
3999 * * number of bytes written, even for truncated writes
4000 * * negative error code if no data has been written at all
4002 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4004 struct file *file = iocb->ki_filp;
4005 struct address_space *mapping = file->f_mapping;
4006 struct inode *inode = mapping->host;
4009 ret = file_remove_privs(file);
4013 ret = file_update_time(file);
4017 if (iocb->ki_flags & IOCB_DIRECT) {
4018 ret = generic_file_direct_write(iocb, from);
4020 * If the write stopped short of completing, fall back to
4021 * buffered writes. Some filesystems do this for writes to
4022 * holes, for example. For DAX files, a buffered write will
4023 * not succeed (even if it did, DAX does not handle dirty
4024 * page-cache pages correctly).
4026 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4028 return direct_write_fallback(iocb, from, ret,
4029 generic_perform_write(iocb, from));
4032 return generic_perform_write(iocb, from);
4034 EXPORT_SYMBOL(__generic_file_write_iter);
4037 * generic_file_write_iter - write data to a file
4038 * @iocb: IO state structure
4039 * @from: iov_iter with data to write
4041 * This is a wrapper around __generic_file_write_iter() to be used by most
4042 * filesystems. It takes care of syncing the file in case of O_SYNC file
4043 * and acquires i_rwsem as needed.
4045 * * negative error code if no data has been written at all of
4046 * vfs_fsync_range() failed for a synchronous write
4047 * * number of bytes written, even for truncated writes
4049 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4051 struct file *file = iocb->ki_filp;
4052 struct inode *inode = file->f_mapping->host;
4056 ret = generic_write_checks(iocb, from);
4058 ret = __generic_file_write_iter(iocb, from);
4059 inode_unlock(inode);
4062 ret = generic_write_sync(iocb, ret);
4065 EXPORT_SYMBOL(generic_file_write_iter);
4068 * filemap_release_folio() - Release fs-specific metadata on a folio.
4069 * @folio: The folio which the kernel is trying to free.
4070 * @gfp: Memory allocation flags (and I/O mode).
4072 * The address_space is trying to release any data attached to a folio
4073 * (presumably at folio->private).
4075 * This will also be called if the private_2 flag is set on a page,
4076 * indicating that the folio has other metadata associated with it.
4078 * The @gfp argument specifies whether I/O may be performed to release
4079 * this page (__GFP_IO), and whether the call may block
4080 * (__GFP_RECLAIM & __GFP_FS).
4082 * Return: %true if the release was successful, otherwise %false.
4084 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4086 struct address_space * const mapping = folio->mapping;
4088 BUG_ON(!folio_test_locked(folio));
4089 if (!folio_needs_release(folio))
4091 if (folio_test_writeback(folio))
4094 if (mapping && mapping->a_ops->release_folio)
4095 return mapping->a_ops->release_folio(folio, gfp);
4096 return try_to_free_buffers(folio);
4098 EXPORT_SYMBOL(filemap_release_folio);
4100 #ifdef CONFIG_CACHESTAT_SYSCALL
4102 * filemap_cachestat() - compute the page cache statistics of a mapping
4103 * @mapping: The mapping to compute the statistics for.
4104 * @first_index: The starting page cache index.
4105 * @last_index: The final page index (inclusive).
4106 * @cs: the cachestat struct to write the result to.
4108 * This will query the page cache statistics of a mapping in the
4109 * page range of [first_index, last_index] (inclusive). The statistics
4110 * queried include: number of dirty pages, number of pages marked for
4111 * writeback, and the number of (recently) evicted pages.
4113 static void filemap_cachestat(struct address_space *mapping,
4114 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4116 XA_STATE(xas, &mapping->i_pages, first_index);
4117 struct folio *folio;
4120 xas_for_each(&xas, folio, last_index) {
4121 unsigned long nr_pages;
4122 pgoff_t folio_first_index, folio_last_index;
4124 if (xas_retry(&xas, folio))
4127 if (xa_is_value(folio)) {
4128 /* page is evicted */
4129 void *shadow = (void *)folio;
4130 bool workingset; /* not used */
4131 int order = xa_get_order(xas.xa, xas.xa_index);
4133 nr_pages = 1 << order;
4134 folio_first_index = round_down(xas.xa_index, 1 << order);
4135 folio_last_index = folio_first_index + nr_pages - 1;
4137 /* Folios might straddle the range boundaries, only count covered pages */
4138 if (folio_first_index < first_index)
4139 nr_pages -= first_index - folio_first_index;
4141 if (folio_last_index > last_index)
4142 nr_pages -= folio_last_index - last_index;
4144 cs->nr_evicted += nr_pages;
4146 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4147 if (shmem_mapping(mapping)) {
4148 /* shmem file - in swap cache */
4149 swp_entry_t swp = radix_to_swp_entry(folio);
4151 shadow = get_shadow_from_swap_cache(swp);
4154 if (workingset_test_recent(shadow, true, &workingset))
4155 cs->nr_recently_evicted += nr_pages;
4160 nr_pages = folio_nr_pages(folio);
4161 folio_first_index = folio_pgoff(folio);
4162 folio_last_index = folio_first_index + nr_pages - 1;
4164 /* Folios might straddle the range boundaries, only count covered pages */
4165 if (folio_first_index < first_index)
4166 nr_pages -= first_index - folio_first_index;
4168 if (folio_last_index > last_index)
4169 nr_pages -= folio_last_index - last_index;
4171 /* page is in cache */
4172 cs->nr_cache += nr_pages;
4174 if (folio_test_dirty(folio))
4175 cs->nr_dirty += nr_pages;
4177 if (folio_test_writeback(folio))
4178 cs->nr_writeback += nr_pages;
4181 if (need_resched()) {
4190 * The cachestat(2) system call.
4192 * cachestat() returns the page cache statistics of a file in the
4193 * bytes range specified by `off` and `len`: number of cached pages,
4194 * number of dirty pages, number of pages marked for writeback,
4195 * number of evicted pages, and number of recently evicted pages.
4197 * An evicted page is a page that is previously in the page cache
4198 * but has been evicted since. A page is recently evicted if its last
4199 * eviction was recent enough that its reentry to the cache would
4200 * indicate that it is actively being used by the system, and that
4201 * there is memory pressure on the system.
4203 * `off` and `len` must be non-negative integers. If `len` > 0,
4204 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4205 * we will query in the range from `off` to the end of the file.
4207 * The `flags` argument is unused for now, but is included for future
4208 * extensibility. User should pass 0 (i.e no flag specified).
4210 * Currently, hugetlbfs is not supported.
4212 * Because the status of a page can change after cachestat() checks it
4213 * but before it returns to the application, the returned values may
4214 * contain stale information.
4218 * -EFAULT - cstat or cstat_range points to an illegal address
4219 * -EINVAL - invalid flags
4220 * -EBADF - invalid file descriptor
4221 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4223 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4224 struct cachestat_range __user *, cstat_range,
4225 struct cachestat __user *, cstat, unsigned int, flags)
4227 struct fd f = fdget(fd);
4228 struct address_space *mapping;
4229 struct cachestat_range csr;
4230 struct cachestat cs;
4231 pgoff_t first_index, last_index;
4236 if (copy_from_user(&csr, cstat_range,
4237 sizeof(struct cachestat_range))) {
4242 /* hugetlbfs is not supported */
4243 if (is_file_hugepages(f.file)) {
4253 first_index = csr.off >> PAGE_SHIFT;
4255 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4256 memset(&cs, 0, sizeof(struct cachestat));
4257 mapping = f.file->f_mapping;
4258 filemap_cachestat(mapping, first_index, last_index, &cs);
4261 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4266 #endif /* CONFIG_CACHESTAT_SYSCALL */