2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
49 struct hugetlbfs_fs_context {
50 struct hstate *hstate;
51 unsigned long long max_size_opt;
52 unsigned long long min_size_opt;
56 enum hugetlbfs_size_type max_val_type;
57 enum hugetlbfs_size_type min_val_type;
63 int sysctl_hugetlb_shm_group;
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 fsparam_u32 ("gid", Opt_gid),
77 fsparam_string("min_size", Opt_min_size),
78 fsparam_u32oct("mode", Opt_mode),
79 fsparam_string("nr_inodes", Opt_nr_inodes),
80 fsparam_string("pagesize", Opt_pagesize),
81 fsparam_string("size", Opt_size),
82 fsparam_u32 ("uid", Opt_uid),
87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
88 struct inode *inode, pgoff_t index)
90 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
96 mpol_cond_put(vma->vm_policy);
99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
100 struct inode *inode, pgoff_t index)
104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
110 * Mask used when checking the page offset value passed in via system
111 * calls. This value will be converted to a loff_t which is signed.
112 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
113 * value. The extra bit (- 1 in the shift value) is to take the sign
116 #define PGOFF_LOFFT_MAX \
117 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
121 struct inode *inode = file_inode(file);
122 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
125 struct hstate *h = hstate_file(file);
128 * vma address alignment (but not the pgoff alignment) has
129 * already been checked by prepare_hugepage_range. If you add
130 * any error returns here, do so after setting VM_HUGETLB, so
131 * is_vm_hugetlb_page tests below unmap_region go the right
132 * way when do_mmap unwinds (may be important on powerpc
135 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
136 vma->vm_ops = &hugetlb_vm_ops;
138 ret = seal_check_future_write(info->seals, vma);
143 * page based offset in vm_pgoff could be sufficiently large to
144 * overflow a loff_t when converted to byte offset. This can
145 * only happen on architectures where sizeof(loff_t) ==
146 * sizeof(unsigned long). So, only check in those instances.
148 if (sizeof(unsigned long) == sizeof(loff_t)) {
149 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
153 /* must be huge page aligned */
154 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
157 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
158 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
159 /* check for overflow */
167 if (!hugetlb_reserve_pages(inode,
168 vma->vm_pgoff >> huge_page_order(h),
169 len >> huge_page_shift(h), vma,
174 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
175 i_size_write(inode, len);
183 * Called under mmap_write_lock(mm).
187 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
188 unsigned long len, unsigned long pgoff, unsigned long flags)
190 struct hstate *h = hstate_file(file);
191 struct vm_unmapped_area_info info;
195 info.low_limit = current->mm->mmap_base;
196 info.high_limit = arch_get_mmap_end(addr, len, flags);
197 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
198 info.align_offset = 0;
199 return vm_unmapped_area(&info);
203 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
204 unsigned long len, unsigned long pgoff, unsigned long flags)
206 struct hstate *h = hstate_file(file);
207 struct vm_unmapped_area_info info;
209 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
211 info.low_limit = PAGE_SIZE;
212 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
213 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
214 info.align_offset = 0;
215 addr = vm_unmapped_area(&info);
218 * A failed mmap() very likely causes application failure,
219 * so fall back to the bottom-up function here. This scenario
220 * can happen with large stack limits and large mmap()
223 if (unlikely(offset_in_page(addr))) {
224 VM_BUG_ON(addr != -ENOMEM);
226 info.low_limit = current->mm->mmap_base;
227 info.high_limit = arch_get_mmap_end(addr, len, flags);
228 addr = vm_unmapped_area(&info);
235 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
236 unsigned long len, unsigned long pgoff,
239 struct mm_struct *mm = current->mm;
240 struct vm_area_struct *vma;
241 struct hstate *h = hstate_file(file);
242 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
244 if (len & ~huge_page_mask(h))
249 if (flags & MAP_FIXED) {
250 if (prepare_hugepage_range(file, addr, len))
256 addr = ALIGN(addr, huge_page_size(h));
257 vma = find_vma(mm, addr);
258 if (mmap_end - len >= addr &&
259 (!vma || addr + len <= vm_start_gap(vma)))
264 * Use mm->get_unmapped_area value as a hint to use topdown routine.
265 * If architectures have special needs, they should define their own
266 * version of hugetlb_get_unmapped_area.
268 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
269 return hugetlb_get_unmapped_area_topdown(file, addr, len,
271 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
275 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
277 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
278 unsigned long len, unsigned long pgoff,
281 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
286 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
287 * Returns the maximum number of bytes one can read without touching the 1st raw
290 * The implementation borrows the iteration logic from copy_page_to_iter*.
292 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
297 /* First subpage to start the loop. */
298 page = nth_page(page, offset / PAGE_SIZE);
301 if (is_raw_hwpoison_page_in_hugepage(page))
304 /* Safe to read n bytes without touching HWPOISON subpage. */
305 n = min(bytes, (size_t)PAGE_SIZE - offset);
311 if (offset == PAGE_SIZE) {
312 page = nth_page(page, 1);
321 * Support for read() - Find the page attached to f_mapping and copy out the
322 * data. This provides functionality similar to filemap_read().
324 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
326 struct file *file = iocb->ki_filp;
327 struct hstate *h = hstate_file(file);
328 struct address_space *mapping = file->f_mapping;
329 struct inode *inode = mapping->host;
330 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
331 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
332 unsigned long end_index;
336 while (iov_iter_count(to)) {
338 size_t nr, copied, want;
340 /* nr is the maximum number of bytes to copy from this page */
341 nr = huge_page_size(h);
342 isize = i_size_read(inode);
345 end_index = (isize - 1) >> huge_page_shift(h);
346 if (index > end_index)
348 if (index == end_index) {
349 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
356 folio = filemap_lock_hugetlb_folio(h, mapping, index);
359 * We have a HOLE, zero out the user-buffer for the
360 * length of the hole or request.
362 copied = iov_iter_zero(nr, to);
366 if (!folio_test_has_hwpoisoned(folio))
370 * Adjust how many bytes safe to read without
371 * touching the 1st raw HWPOISON subpage after
374 want = adjust_range_hwpoison(&folio->page, offset, nr);
383 * We have the folio, copy it to user space buffer.
385 copied = copy_folio_to_iter(folio, offset, want, to);
390 if (copied != nr && iov_iter_count(to)) {
395 index += offset >> huge_page_shift(h);
396 offset &= ~huge_page_mask(h);
398 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
402 static int hugetlbfs_write_begin(struct file *file,
403 struct address_space *mapping,
404 loff_t pos, unsigned len,
405 struct page **pagep, void **fsdata)
410 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
411 loff_t pos, unsigned len, unsigned copied,
412 struct page *page, void *fsdata)
418 static void hugetlb_delete_from_page_cache(struct folio *folio)
420 folio_clear_dirty(folio);
421 folio_clear_uptodate(folio);
422 filemap_remove_folio(folio);
426 * Called with i_mmap_rwsem held for inode based vma maps. This makes
427 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
428 * mutex for the page in the mapping. So, we can not race with page being
429 * faulted into the vma.
431 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
432 unsigned long addr, struct page *page)
436 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
440 pte = huge_ptep_get(ptep);
441 if (huge_pte_none(pte) || !pte_present(pte))
444 if (pte_page(pte) == page)
451 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
452 * No, because the interval tree returns us only those vmas
453 * which overlap the truncated area starting at pgoff,
454 * and no vma on a 32-bit arch can span beyond the 4GB.
456 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
458 unsigned long offset = 0;
460 if (vma->vm_pgoff < start)
461 offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
463 return vma->vm_start + offset;
466 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
473 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
474 if (t_end > vma->vm_end)
480 * Called with hugetlb fault mutex held. Therefore, no more mappings to
481 * this folio can be created while executing the routine.
483 static void hugetlb_unmap_file_folio(struct hstate *h,
484 struct address_space *mapping,
485 struct folio *folio, pgoff_t index)
487 struct rb_root_cached *root = &mapping->i_mmap;
488 struct hugetlb_vma_lock *vma_lock;
489 struct page *page = &folio->page;
490 struct vm_area_struct *vma;
491 unsigned long v_start;
495 start = index * pages_per_huge_page(h);
496 end = (index + 1) * pages_per_huge_page(h);
498 i_mmap_lock_write(mapping);
501 vma_interval_tree_foreach(vma, root, start, end - 1) {
502 v_start = vma_offset_start(vma, start);
503 v_end = vma_offset_end(vma, end);
505 if (!hugetlb_vma_maps_page(vma, v_start, page))
508 if (!hugetlb_vma_trylock_write(vma)) {
509 vma_lock = vma->vm_private_data;
511 * If we can not get vma lock, we need to drop
512 * immap_sema and take locks in order. First,
513 * take a ref on the vma_lock structure so that
514 * we can be guaranteed it will not go away when
515 * dropping immap_sema.
517 kref_get(&vma_lock->refs);
521 unmap_hugepage_range(vma, v_start, v_end, NULL,
522 ZAP_FLAG_DROP_MARKER);
523 hugetlb_vma_unlock_write(vma);
526 i_mmap_unlock_write(mapping);
530 * Wait on vma_lock. We know it is still valid as we have
531 * a reference. We must 'open code' vma locking as we do
532 * not know if vma_lock is still attached to vma.
534 down_write(&vma_lock->rw_sema);
535 i_mmap_lock_write(mapping);
540 * If lock is no longer attached to vma, then just
541 * unlock, drop our reference and retry looking for
544 up_write(&vma_lock->rw_sema);
545 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
550 * vma_lock is still attached to vma. Check to see if vma
551 * still maps page and if so, unmap.
553 v_start = vma_offset_start(vma, start);
554 v_end = vma_offset_end(vma, end);
555 if (hugetlb_vma_maps_page(vma, v_start, page))
556 unmap_hugepage_range(vma, v_start, v_end, NULL,
557 ZAP_FLAG_DROP_MARKER);
559 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
560 hugetlb_vma_unlock_write(vma);
567 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
568 zap_flags_t zap_flags)
570 struct vm_area_struct *vma;
573 * end == 0 indicates that the entire range after start should be
574 * unmapped. Note, end is exclusive, whereas the interval tree takes
575 * an inclusive "last".
577 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
578 unsigned long v_start;
581 if (!hugetlb_vma_trylock_write(vma))
584 v_start = vma_offset_start(vma, start);
585 v_end = vma_offset_end(vma, end);
587 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
590 * Note that vma lock only exists for shared/non-private
591 * vmas. Therefore, lock is not held when calling
592 * unmap_hugepage_range for private vmas.
594 hugetlb_vma_unlock_write(vma);
599 * Called with hugetlb fault mutex held.
600 * Returns true if page was actually removed, false otherwise.
602 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
603 struct address_space *mapping,
604 struct folio *folio, pgoff_t index,
610 * If folio is mapped, it was faulted in after being
611 * unmapped in caller. Unmap (again) while holding
612 * the fault mutex. The mutex will prevent faults
613 * until we finish removing the folio.
615 if (unlikely(folio_mapped(folio)))
616 hugetlb_unmap_file_folio(h, mapping, folio, index);
620 * We must remove the folio from page cache before removing
621 * the region/ reserve map (hugetlb_unreserve_pages). In
622 * rare out of memory conditions, removal of the region/reserve
623 * map could fail. Correspondingly, the subpool and global
624 * reserve usage count can need to be adjusted.
626 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
627 hugetlb_delete_from_page_cache(folio);
630 if (unlikely(hugetlb_unreserve_pages(inode, index,
632 hugetlb_fix_reserve_counts(inode);
640 * remove_inode_hugepages handles two distinct cases: truncation and hole
641 * punch. There are subtle differences in operation for each case.
643 * truncation is indicated by end of range being LLONG_MAX
644 * In this case, we first scan the range and release found pages.
645 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
646 * maps and global counts. Page faults can race with truncation.
647 * During faults, hugetlb_no_page() checks i_size before page allocation,
648 * and again after obtaining page table lock. It will 'back out'
649 * allocations in the truncated range.
650 * hole punch is indicated if end is not LLONG_MAX
651 * In the hole punch case we scan the range and release found pages.
652 * Only when releasing a page is the associated region/reserve map
653 * deleted. The region/reserve map for ranges without associated
654 * pages are not modified. Page faults can race with hole punch.
655 * This is indicated if we find a mapped page.
656 * Note: If the passed end of range value is beyond the end of file, but
657 * not LLONG_MAX this routine still performs a hole punch operation.
659 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
662 struct hstate *h = hstate_inode(inode);
663 struct address_space *mapping = &inode->i_data;
664 const pgoff_t end = lend >> PAGE_SHIFT;
665 struct folio_batch fbatch;
668 bool truncate_op = (lend == LLONG_MAX);
670 folio_batch_init(&fbatch);
671 next = lstart >> PAGE_SHIFT;
672 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
673 for (i = 0; i < folio_batch_count(&fbatch); ++i) {
674 struct folio *folio = fbatch.folios[i];
677 index = folio->index >> huge_page_order(h);
678 hash = hugetlb_fault_mutex_hash(mapping, index);
679 mutex_lock(&hugetlb_fault_mutex_table[hash]);
682 * Remove folio that was part of folio_batch.
684 if (remove_inode_single_folio(h, inode, mapping, folio,
688 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
690 folio_batch_release(&fbatch);
695 (void)hugetlb_unreserve_pages(inode,
696 lstart >> huge_page_shift(h),
700 static void hugetlbfs_evict_inode(struct inode *inode)
702 struct resv_map *resv_map;
704 remove_inode_hugepages(inode, 0, LLONG_MAX);
707 * Get the resv_map from the address space embedded in the inode.
708 * This is the address space which points to any resv_map allocated
709 * at inode creation time. If this is a device special inode,
710 * i_mapping may not point to the original address space.
712 resv_map = (struct resv_map *)(&inode->i_data)->private_data;
713 /* Only regular and link inodes have associated reserve maps */
715 resv_map_release(&resv_map->refs);
719 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
722 struct address_space *mapping = inode->i_mapping;
723 struct hstate *h = hstate_inode(inode);
725 BUG_ON(offset & ~huge_page_mask(h));
726 pgoff = offset >> PAGE_SHIFT;
728 i_size_write(inode, offset);
729 i_mmap_lock_write(mapping);
730 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
731 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
732 ZAP_FLAG_DROP_MARKER);
733 i_mmap_unlock_write(mapping);
734 remove_inode_hugepages(inode, offset, LLONG_MAX);
737 static void hugetlbfs_zero_partial_page(struct hstate *h,
738 struct address_space *mapping,
742 pgoff_t idx = start >> huge_page_shift(h);
745 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
749 start = start & ~huge_page_mask(h);
750 end = end & ~huge_page_mask(h);
752 end = huge_page_size(h);
754 folio_zero_segment(folio, (size_t)start, (size_t)end);
760 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
762 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
763 struct address_space *mapping = inode->i_mapping;
764 struct hstate *h = hstate_inode(inode);
765 loff_t hpage_size = huge_page_size(h);
766 loff_t hole_start, hole_end;
769 * hole_start and hole_end indicate the full pages within the hole.
771 hole_start = round_up(offset, hpage_size);
772 hole_end = round_down(offset + len, hpage_size);
776 /* protected by i_rwsem */
777 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
782 i_mmap_lock_write(mapping);
784 /* If range starts before first full page, zero partial page. */
785 if (offset < hole_start)
786 hugetlbfs_zero_partial_page(h, mapping,
787 offset, min(offset + len, hole_start));
789 /* Unmap users of full pages in the hole. */
790 if (hole_end > hole_start) {
791 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
792 hugetlb_vmdelete_list(&mapping->i_mmap,
793 hole_start >> PAGE_SHIFT,
794 hole_end >> PAGE_SHIFT, 0);
797 /* If range extends beyond last full page, zero partial page. */
798 if ((offset + len) > hole_end && (offset + len) > hole_start)
799 hugetlbfs_zero_partial_page(h, mapping,
800 hole_end, offset + len);
802 i_mmap_unlock_write(mapping);
804 /* Remove full pages from the file. */
805 if (hole_end > hole_start)
806 remove_inode_hugepages(inode, hole_start, hole_end);
813 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
816 struct inode *inode = file_inode(file);
817 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
818 struct address_space *mapping = inode->i_mapping;
819 struct hstate *h = hstate_inode(inode);
820 struct vm_area_struct pseudo_vma;
821 struct mm_struct *mm = current->mm;
822 loff_t hpage_size = huge_page_size(h);
823 unsigned long hpage_shift = huge_page_shift(h);
824 pgoff_t start, index, end;
828 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
831 if (mode & FALLOC_FL_PUNCH_HOLE)
832 return hugetlbfs_punch_hole(inode, offset, len);
835 * Default preallocate case.
836 * For this range, start is rounded down and end is rounded up
837 * as well as being converted to page offsets.
839 start = offset >> hpage_shift;
840 end = (offset + len + hpage_size - 1) >> hpage_shift;
844 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
845 error = inode_newsize_ok(inode, offset + len);
849 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
855 * Initialize a pseudo vma as this is required by the huge page
856 * allocation routines. If NUMA is configured, use page index
857 * as input to create an allocation policy.
859 vma_init(&pseudo_vma, mm);
860 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
861 pseudo_vma.vm_file = file;
863 for (index = start; index < end; index++) {
865 * This is supposed to be the vaddr where the page is being
866 * faulted in, but we have no vaddr here.
874 * fallocate(2) manpage permits EINTR; we may have been
875 * interrupted because we are using up too much memory.
877 if (signal_pending(current)) {
882 /* addr is the offset within the file (zero based) */
883 addr = index * hpage_size;
885 /* mutex taken here, fault path and hole punch */
886 hash = hugetlb_fault_mutex_hash(mapping, index);
887 mutex_lock(&hugetlb_fault_mutex_table[hash]);
889 /* See if already present in mapping to avoid alloc/free */
890 folio = filemap_get_folio(mapping, index << huge_page_order(h));
891 if (!IS_ERR(folio)) {
893 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
898 * Allocate folio without setting the avoid_reserve argument.
899 * There certainly are no reserves associated with the
900 * pseudo_vma. However, there could be shared mappings with
901 * reserves for the file at the inode level. If we fallocate
902 * folios in these areas, we need to consume the reserves
903 * to keep reservation accounting consistent.
905 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
906 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
907 hugetlb_drop_vma_policy(&pseudo_vma);
909 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
910 error = PTR_ERR(folio);
913 clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
914 __folio_mark_uptodate(folio);
915 error = hugetlb_add_to_page_cache(folio, mapping, index);
916 if (unlikely(error)) {
917 restore_reserve_on_error(h, &pseudo_vma, addr, folio);
919 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
923 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
925 folio_set_hugetlb_migratable(folio);
927 * folio_unlock because locked by hugetlb_add_to_page_cache()
928 * folio_put() due to reference from alloc_hugetlb_folio()
934 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
935 i_size_write(inode, offset + len);
936 inode_set_ctime_current(inode);
942 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
943 struct dentry *dentry, struct iattr *attr)
945 struct inode *inode = d_inode(dentry);
946 struct hstate *h = hstate_inode(inode);
948 unsigned int ia_valid = attr->ia_valid;
949 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
951 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
955 if (ia_valid & ATTR_SIZE) {
956 loff_t oldsize = inode->i_size;
957 loff_t newsize = attr->ia_size;
959 if (newsize & ~huge_page_mask(h))
961 /* protected by i_rwsem */
962 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
963 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
965 hugetlb_vmtruncate(inode, newsize);
968 setattr_copy(&nop_mnt_idmap, inode, attr);
969 mark_inode_dirty(inode);
973 static struct inode *hugetlbfs_get_root(struct super_block *sb,
974 struct hugetlbfs_fs_context *ctx)
978 inode = new_inode(sb);
980 inode->i_ino = get_next_ino();
981 inode->i_mode = S_IFDIR | ctx->mode;
982 inode->i_uid = ctx->uid;
983 inode->i_gid = ctx->gid;
984 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
985 inode->i_op = &hugetlbfs_dir_inode_operations;
986 inode->i_fop = &simple_dir_operations;
987 /* directory inodes start off with i_nlink == 2 (for "." entry) */
989 lockdep_annotate_inode_mutex_key(inode);
995 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
996 * be taken from reclaim -- unlike regular filesystems. This needs an
997 * annotation because huge_pmd_share() does an allocation under hugetlb's
1000 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
1002 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
1004 umode_t mode, dev_t dev)
1006 struct inode *inode;
1007 struct resv_map *resv_map = NULL;
1010 * Reserve maps are only needed for inodes that can have associated
1013 if (S_ISREG(mode) || S_ISLNK(mode)) {
1014 resv_map = resv_map_alloc();
1019 inode = new_inode(sb);
1021 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1023 inode->i_ino = get_next_ino();
1024 inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
1025 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1026 &hugetlbfs_i_mmap_rwsem_key);
1027 inode->i_mapping->a_ops = &hugetlbfs_aops;
1028 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
1029 inode->i_mapping->private_data = resv_map;
1030 info->seals = F_SEAL_SEAL;
1031 switch (mode & S_IFMT) {
1033 init_special_inode(inode, mode, dev);
1036 inode->i_op = &hugetlbfs_inode_operations;
1037 inode->i_fop = &hugetlbfs_file_operations;
1040 inode->i_op = &hugetlbfs_dir_inode_operations;
1041 inode->i_fop = &simple_dir_operations;
1043 /* directory inodes start off with i_nlink == 2 (for "." entry) */
1047 inode->i_op = &page_symlink_inode_operations;
1048 inode_nohighmem(inode);
1051 lockdep_annotate_inode_mutex_key(inode);
1054 kref_put(&resv_map->refs, resv_map_release);
1061 * File creation. Allocate an inode, and we're done..
1063 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
1064 struct dentry *dentry, umode_t mode, dev_t dev)
1066 struct inode *inode;
1068 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
1071 dir->i_mtime = inode_set_ctime_current(dir);
1072 d_instantiate(dentry, inode);
1073 dget(dentry);/* Extra count - pin the dentry in core */
1077 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1078 struct dentry *dentry, umode_t mode)
1080 int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry,
1087 static int hugetlbfs_create(struct mnt_idmap *idmap,
1088 struct inode *dir, struct dentry *dentry,
1089 umode_t mode, bool excl)
1091 return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0);
1094 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1095 struct inode *dir, struct file *file,
1098 struct inode *inode;
1100 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
1103 dir->i_mtime = inode_set_ctime_current(dir);
1104 d_tmpfile(file, inode);
1105 return finish_open_simple(file, 0);
1108 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1109 struct inode *dir, struct dentry *dentry,
1110 const char *symname)
1112 struct inode *inode;
1113 int error = -ENOSPC;
1115 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1117 int l = strlen(symname)+1;
1118 error = page_symlink(inode, symname, l);
1120 d_instantiate(dentry, inode);
1125 dir->i_mtime = inode_set_ctime_current(dir);
1130 #ifdef CONFIG_MIGRATION
1131 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1132 struct folio *dst, struct folio *src,
1133 enum migrate_mode mode)
1137 rc = migrate_huge_page_move_mapping(mapping, dst, src);
1138 if (rc != MIGRATEPAGE_SUCCESS)
1141 if (hugetlb_folio_subpool(src)) {
1142 hugetlb_set_folio_subpool(dst,
1143 hugetlb_folio_subpool(src));
1144 hugetlb_set_folio_subpool(src, NULL);
1147 if (mode != MIGRATE_SYNC_NO_COPY)
1148 folio_migrate_copy(dst, src);
1150 folio_migrate_flags(dst, src);
1152 return MIGRATEPAGE_SUCCESS;
1155 #define hugetlbfs_migrate_folio NULL
1158 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1165 * Display the mount options in /proc/mounts.
1167 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1169 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1170 struct hugepage_subpool *spool = sbinfo->spool;
1171 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1172 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1175 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1176 seq_printf(m, ",uid=%u",
1177 from_kuid_munged(&init_user_ns, sbinfo->uid));
1178 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1179 seq_printf(m, ",gid=%u",
1180 from_kgid_munged(&init_user_ns, sbinfo->gid));
1181 if (sbinfo->mode != 0755)
1182 seq_printf(m, ",mode=%o", sbinfo->mode);
1183 if (sbinfo->max_inodes != -1)
1184 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1188 if (hpage_size >= 1024) {
1192 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1194 if (spool->max_hpages != -1)
1195 seq_printf(m, ",size=%llu",
1196 (unsigned long long)spool->max_hpages << hpage_shift);
1197 if (spool->min_hpages != -1)
1198 seq_printf(m, ",min_size=%llu",
1199 (unsigned long long)spool->min_hpages << hpage_shift);
1204 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1206 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1207 struct hstate *h = hstate_inode(d_inode(dentry));
1209 buf->f_type = HUGETLBFS_MAGIC;
1210 buf->f_bsize = huge_page_size(h);
1212 spin_lock(&sbinfo->stat_lock);
1213 /* If no limits set, just report 0 or -1 for max/free/used
1214 * blocks, like simple_statfs() */
1215 if (sbinfo->spool) {
1218 spin_lock_irq(&sbinfo->spool->lock);
1219 buf->f_blocks = sbinfo->spool->max_hpages;
1220 free_pages = sbinfo->spool->max_hpages
1221 - sbinfo->spool->used_hpages;
1222 buf->f_bavail = buf->f_bfree = free_pages;
1223 spin_unlock_irq(&sbinfo->spool->lock);
1224 buf->f_files = sbinfo->max_inodes;
1225 buf->f_ffree = sbinfo->free_inodes;
1227 spin_unlock(&sbinfo->stat_lock);
1229 buf->f_namelen = NAME_MAX;
1233 static void hugetlbfs_put_super(struct super_block *sb)
1235 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1238 sb->s_fs_info = NULL;
1241 hugepage_put_subpool(sbi->spool);
1247 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1249 if (sbinfo->free_inodes >= 0) {
1250 spin_lock(&sbinfo->stat_lock);
1251 if (unlikely(!sbinfo->free_inodes)) {
1252 spin_unlock(&sbinfo->stat_lock);
1255 sbinfo->free_inodes--;
1256 spin_unlock(&sbinfo->stat_lock);
1262 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1264 if (sbinfo->free_inodes >= 0) {
1265 spin_lock(&sbinfo->stat_lock);
1266 sbinfo->free_inodes++;
1267 spin_unlock(&sbinfo->stat_lock);
1272 static struct kmem_cache *hugetlbfs_inode_cachep;
1274 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1276 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1277 struct hugetlbfs_inode_info *p;
1279 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1281 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1283 hugetlbfs_inc_free_inodes(sbinfo);
1288 * Any time after allocation, hugetlbfs_destroy_inode can be called
1289 * for the inode. mpol_free_shared_policy is unconditionally called
1290 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1291 * in case of a quick call to destroy.
1293 * Note that the policy is initialized even if we are creating a
1294 * private inode. This simplifies hugetlbfs_destroy_inode.
1296 mpol_shared_policy_init(&p->policy, NULL);
1298 return &p->vfs_inode;
1301 static void hugetlbfs_free_inode(struct inode *inode)
1303 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1306 static void hugetlbfs_destroy_inode(struct inode *inode)
1308 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1309 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1312 static const struct address_space_operations hugetlbfs_aops = {
1313 .write_begin = hugetlbfs_write_begin,
1314 .write_end = hugetlbfs_write_end,
1315 .dirty_folio = noop_dirty_folio,
1316 .migrate_folio = hugetlbfs_migrate_folio,
1317 .error_remove_page = hugetlbfs_error_remove_page,
1321 static void init_once(void *foo)
1323 struct hugetlbfs_inode_info *ei = foo;
1325 inode_init_once(&ei->vfs_inode);
1328 const struct file_operations hugetlbfs_file_operations = {
1329 .read_iter = hugetlbfs_read_iter,
1330 .mmap = hugetlbfs_file_mmap,
1331 .fsync = noop_fsync,
1332 .get_unmapped_area = hugetlb_get_unmapped_area,
1333 .llseek = default_llseek,
1334 .fallocate = hugetlbfs_fallocate,
1337 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1338 .create = hugetlbfs_create,
1339 .lookup = simple_lookup,
1340 .link = simple_link,
1341 .unlink = simple_unlink,
1342 .symlink = hugetlbfs_symlink,
1343 .mkdir = hugetlbfs_mkdir,
1344 .rmdir = simple_rmdir,
1345 .mknod = hugetlbfs_mknod,
1346 .rename = simple_rename,
1347 .setattr = hugetlbfs_setattr,
1348 .tmpfile = hugetlbfs_tmpfile,
1351 static const struct inode_operations hugetlbfs_inode_operations = {
1352 .setattr = hugetlbfs_setattr,
1355 static const struct super_operations hugetlbfs_ops = {
1356 .alloc_inode = hugetlbfs_alloc_inode,
1357 .free_inode = hugetlbfs_free_inode,
1358 .destroy_inode = hugetlbfs_destroy_inode,
1359 .evict_inode = hugetlbfs_evict_inode,
1360 .statfs = hugetlbfs_statfs,
1361 .put_super = hugetlbfs_put_super,
1362 .show_options = hugetlbfs_show_options,
1366 * Convert size option passed from command line to number of huge pages
1367 * in the pool specified by hstate. Size option could be in bytes
1368 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1371 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1372 enum hugetlbfs_size_type val_type)
1374 if (val_type == NO_SIZE)
1377 if (val_type == SIZE_PERCENT) {
1378 size_opt <<= huge_page_shift(h);
1379 size_opt *= h->max_huge_pages;
1380 do_div(size_opt, 100);
1383 size_opt >>= huge_page_shift(h);
1388 * Parse one mount parameter.
1390 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1392 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1393 struct fs_parse_result result;
1398 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1404 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1405 if (!uid_valid(ctx->uid))
1410 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1411 if (!gid_valid(ctx->gid))
1416 ctx->mode = result.uint_32 & 01777U;
1420 /* memparse() will accept a K/M/G without a digit */
1421 if (!param->string || !isdigit(param->string[0]))
1423 ctx->max_size_opt = memparse(param->string, &rest);
1424 ctx->max_val_type = SIZE_STD;
1426 ctx->max_val_type = SIZE_PERCENT;
1430 /* memparse() will accept a K/M/G without a digit */
1431 if (!param->string || !isdigit(param->string[0]))
1433 ctx->nr_inodes = memparse(param->string, &rest);
1437 ps = memparse(param->string, &rest);
1438 ctx->hstate = size_to_hstate(ps);
1440 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1446 /* memparse() will accept a K/M/G without a digit */
1447 if (!param->string || !isdigit(param->string[0]))
1449 ctx->min_size_opt = memparse(param->string, &rest);
1450 ctx->min_val_type = SIZE_STD;
1452 ctx->min_val_type = SIZE_PERCENT;
1460 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1461 param->string, param->key);
1465 * Validate the parsed options.
1467 static int hugetlbfs_validate(struct fs_context *fc)
1469 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1472 * Use huge page pool size (in hstate) to convert the size
1473 * options to number of huge pages. If NO_SIZE, -1 is returned.
1475 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1478 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1483 * If max_size was specified, then min_size must be smaller
1485 if (ctx->max_val_type > NO_SIZE &&
1486 ctx->min_hpages > ctx->max_hpages) {
1487 pr_err("Minimum size can not be greater than maximum size\n");
1495 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1497 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1498 struct hugetlbfs_sb_info *sbinfo;
1500 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1503 sb->s_fs_info = sbinfo;
1504 spin_lock_init(&sbinfo->stat_lock);
1505 sbinfo->hstate = ctx->hstate;
1506 sbinfo->max_inodes = ctx->nr_inodes;
1507 sbinfo->free_inodes = ctx->nr_inodes;
1508 sbinfo->spool = NULL;
1509 sbinfo->uid = ctx->uid;
1510 sbinfo->gid = ctx->gid;
1511 sbinfo->mode = ctx->mode;
1514 * Allocate and initialize subpool if maximum or minimum size is
1515 * specified. Any needed reservations (for minimum size) are taken
1516 * when the subpool is created.
1518 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1519 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1525 sb->s_maxbytes = MAX_LFS_FILESIZE;
1526 sb->s_blocksize = huge_page_size(ctx->hstate);
1527 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1528 sb->s_magic = HUGETLBFS_MAGIC;
1529 sb->s_op = &hugetlbfs_ops;
1530 sb->s_time_gran = 1;
1533 * Due to the special and limited functionality of hugetlbfs, it does
1534 * not work well as a stacking filesystem.
1536 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1537 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1542 kfree(sbinfo->spool);
1547 static int hugetlbfs_get_tree(struct fs_context *fc)
1549 int err = hugetlbfs_validate(fc);
1552 return get_tree_nodev(fc, hugetlbfs_fill_super);
1555 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1557 kfree(fc->fs_private);
1560 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1561 .free = hugetlbfs_fs_context_free,
1562 .parse_param = hugetlbfs_parse_param,
1563 .get_tree = hugetlbfs_get_tree,
1566 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1568 struct hugetlbfs_fs_context *ctx;
1570 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1574 ctx->max_hpages = -1; /* No limit on size by default */
1575 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1576 ctx->uid = current_fsuid();
1577 ctx->gid = current_fsgid();
1579 ctx->hstate = &default_hstate;
1580 ctx->min_hpages = -1; /* No default minimum size */
1581 ctx->max_val_type = NO_SIZE;
1582 ctx->min_val_type = NO_SIZE;
1583 fc->fs_private = ctx;
1584 fc->ops = &hugetlbfs_fs_context_ops;
1588 static struct file_system_type hugetlbfs_fs_type = {
1589 .name = "hugetlbfs",
1590 .init_fs_context = hugetlbfs_init_fs_context,
1591 .parameters = hugetlb_fs_parameters,
1592 .kill_sb = kill_litter_super,
1595 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1597 static int can_do_hugetlb_shm(void)
1600 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1601 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1604 static int get_hstate_idx(int page_size_log)
1606 struct hstate *h = hstate_sizelog(page_size_log);
1610 return hstate_index(h);
1614 * Note that size should be aligned to proper hugepage size in caller side,
1615 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1617 struct file *hugetlb_file_setup(const char *name, size_t size,
1618 vm_flags_t acctflag, int creat_flags,
1621 struct inode *inode;
1622 struct vfsmount *mnt;
1626 hstate_idx = get_hstate_idx(page_size_log);
1628 return ERR_PTR(-ENODEV);
1630 mnt = hugetlbfs_vfsmount[hstate_idx];
1632 return ERR_PTR(-ENOENT);
1634 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1635 struct ucounts *ucounts = current_ucounts();
1637 if (user_shm_lock(size, ucounts)) {
1638 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1639 current->comm, current->pid);
1640 user_shm_unlock(size, ucounts);
1642 return ERR_PTR(-EPERM);
1645 file = ERR_PTR(-ENOSPC);
1646 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1649 if (creat_flags == HUGETLB_SHMFS_INODE)
1650 inode->i_flags |= S_PRIVATE;
1652 inode->i_size = size;
1655 if (!hugetlb_reserve_pages(inode, 0,
1656 size >> huge_page_shift(hstate_inode(inode)), NULL,
1658 file = ERR_PTR(-ENOMEM);
1660 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1661 &hugetlbfs_file_operations);
1670 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1672 struct fs_context *fc;
1673 struct vfsmount *mnt;
1675 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1679 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1685 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1686 huge_page_size(h) / SZ_1K);
1690 static int __init init_hugetlbfs_fs(void)
1692 struct vfsmount *mnt;
1697 if (!hugepages_supported()) {
1698 pr_info("disabling because there are no supported hugepage sizes\n");
1703 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1704 sizeof(struct hugetlbfs_inode_info),
1705 0, SLAB_ACCOUNT, init_once);
1706 if (hugetlbfs_inode_cachep == NULL)
1709 error = register_filesystem(&hugetlbfs_fs_type);
1713 /* default hstate mount is required */
1714 mnt = mount_one_hugetlbfs(&default_hstate);
1716 error = PTR_ERR(mnt);
1719 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1721 /* other hstates are optional */
1723 for_each_hstate(h) {
1724 if (i == default_hstate_idx) {
1729 mnt = mount_one_hugetlbfs(h);
1731 hugetlbfs_vfsmount[i] = NULL;
1733 hugetlbfs_vfsmount[i] = mnt;
1740 (void)unregister_filesystem(&hugetlbfs_fs_type);
1742 kmem_cache_destroy(hugetlbfs_inode_cachep);
1746 fs_initcall(init_hugetlbfs_fs)