1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
20 #include <linux/module.h>
21 #include <linux/string.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104 * -> page lock -> i_data_sem (rw)
106 * buffered write path:
107 * sb_start_write -> i_mutex -> mmap_lock
108 * sb_start_write -> i_mutex -> transaction start -> page lock ->
112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
118 * sb_start_write -> i_mutex -> mmap_lock
119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
122 * transaction start -> page lock(s) -> i_data_sem (rw)
125 static const struct fs_context_operations ext4_context_ops = {
126 .parse_param = ext4_parse_param,
127 .get_tree = ext4_get_tree,
128 .reconfigure = ext4_reconfigure,
129 .free = ext4_fc_free,
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 .owner = THIS_MODULE,
137 .init_fs_context = ext4_init_fs_context,
138 .parameters = ext4_param_specs,
139 .kill_sb = ext4_kill_sb,
140 .fs_flags = FS_REQUIRES_DEV,
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
146 #define IS_EXT2_SB(sb) (0)
150 static struct file_system_type ext3_fs_type = {
151 .owner = THIS_MODULE,
153 .init_fs_context = ext4_init_fs_context,
154 .parameters = ext4_param_specs,
155 .kill_sb = ext4_kill_sb,
156 .fs_flags = FS_REQUIRES_DEV,
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
167 * buffer's verified bit is no longer valid after reading from
168 * disk again due to write out error, clear it to make sure we
169 * recheck the buffer contents.
171 clear_buffer_verified(bh);
173 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
175 submit_bh(REQ_OP_READ | op_flags, bh);
178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
181 BUG_ON(!buffer_locked(bh));
183 if (ext4_buffer_uptodate(bh)) {
187 __ext4_read_bh(bh, op_flags, end_io);
190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
192 BUG_ON(!buffer_locked(bh));
194 if (ext4_buffer_uptodate(bh)) {
199 __ext4_read_bh(bh, op_flags, end_io);
202 if (buffer_uptodate(bh))
207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
211 ext4_read_bh_nowait(bh, op_flags, NULL);
214 return ext4_read_bh(bh, op_flags, NULL);
218 * This works like __bread_gfp() except it uses ERR_PTR for error
219 * returns. Currently with sb_bread it's impossible to distinguish
220 * between ENOMEM and EIO situations (since both result in a NULL
223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
225 blk_opf_t op_flags, gfp_t gfp)
227 struct buffer_head *bh;
230 bh = sb_getblk_gfp(sb, block, gfp);
232 return ERR_PTR(-ENOMEM);
233 if (ext4_buffer_uptodate(bh))
236 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
247 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
248 ~__GFP_FS) | __GFP_MOVABLE;
250 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
253 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
256 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
259 return __ext4_sb_bread_gfp(sb, block, 0, gfp);
262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
264 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
265 sb->s_blocksize, GFP_NOWAIT);
268 if (trylock_buffer(bh))
269 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
274 static int ext4_verify_csum_type(struct super_block *sb,
275 struct ext4_super_block *es)
277 if (!ext4_has_feature_metadata_csum(sb))
280 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
283 __le32 ext4_superblock_csum(struct super_block *sb,
284 struct ext4_super_block *es)
286 struct ext4_sb_info *sbi = EXT4_SB(sb);
287 int offset = offsetof(struct ext4_super_block, s_checksum);
290 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
292 return cpu_to_le32(csum);
295 static int ext4_superblock_csum_verify(struct super_block *sb,
296 struct ext4_super_block *es)
298 if (!ext4_has_metadata_csum(sb))
301 return es->s_checksum == ext4_superblock_csum(sb, es);
304 void ext4_superblock_csum_set(struct super_block *sb)
306 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
308 if (!ext4_has_metadata_csum(sb))
311 es->s_checksum = ext4_superblock_csum(sb, es);
314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
315 struct ext4_group_desc *bg)
317 return le32_to_cpu(bg->bg_block_bitmap_lo) |
318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
323 struct ext4_group_desc *bg)
325 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
330 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
331 struct ext4_group_desc *bg)
333 return le32_to_cpu(bg->bg_inode_table_lo) |
334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
338 __u32 ext4_free_group_clusters(struct super_block *sb,
339 struct ext4_group_desc *bg)
341 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
346 __u32 ext4_free_inodes_count(struct super_block *sb,
347 struct ext4_group_desc *bg)
349 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
354 __u32 ext4_used_dirs_count(struct super_block *sb,
355 struct ext4_group_desc *bg)
357 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
362 __u32 ext4_itable_unused_count(struct super_block *sb,
363 struct ext4_group_desc *bg)
365 return le16_to_cpu(bg->bg_itable_unused_lo) |
366 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
367 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
370 void ext4_block_bitmap_set(struct super_block *sb,
371 struct ext4_group_desc *bg, ext4_fsblk_t blk)
373 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
378 void ext4_inode_bitmap_set(struct super_block *sb,
379 struct ext4_group_desc *bg, ext4_fsblk_t blk)
381 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
386 void ext4_inode_table_set(struct super_block *sb,
387 struct ext4_group_desc *bg, ext4_fsblk_t blk)
389 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
394 void ext4_free_group_clusters_set(struct super_block *sb,
395 struct ext4_group_desc *bg, __u32 count)
397 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
402 void ext4_free_inodes_set(struct super_block *sb,
403 struct ext4_group_desc *bg, __u32 count)
405 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
410 void ext4_used_dirs_set(struct super_block *sb,
411 struct ext4_group_desc *bg, __u32 count)
413 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
418 void ext4_itable_unused_set(struct super_block *sb,
419 struct ext4_group_desc *bg, __u32 count)
421 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
422 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
423 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
428 now = clamp_val(now, 0, (1ull << 40) - 1);
430 *lo = cpu_to_le32(lower_32_bits(now));
431 *hi = upper_32_bits(now);
434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
436 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
438 #define ext4_update_tstamp(es, tstamp) \
439 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
440 ktime_get_real_seconds())
441 #define ext4_get_tstamp(es, tstamp) \
442 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
448 * The ext4_maybe_update_superblock() function checks and updates the
449 * superblock if needed.
451 * This function is designed to update the on-disk superblock only under
452 * certain conditions to prevent excessive disk writes and unnecessary
453 * waking of the disk from sleep. The superblock will be updated if:
454 * 1. More than an hour has passed since the last superblock update, and
455 * 2. More than 16MB have been written since the last superblock update.
457 * @sb: The superblock
459 static void ext4_maybe_update_superblock(struct super_block *sb)
461 struct ext4_sb_info *sbi = EXT4_SB(sb);
462 struct ext4_super_block *es = sbi->s_es;
463 journal_t *journal = sbi->s_journal;
466 __u64 lifetime_write_kbytes;
469 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
470 !journal || (journal->j_flags & JBD2_UNMOUNT))
473 now = ktime_get_real_seconds();
474 last_update = ext4_get_tstamp(es, s_wtime);
476 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
479 lifetime_write_kbytes = sbi->s_kbytes_written +
480 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
481 sbi->s_sectors_written_start) >> 1);
483 /* Get the number of kilobytes not written to disk to account
484 * for statistics and compare with a multiple of 16 MB. This
485 * is used to determine when the next superblock commit should
486 * occur (i.e. not more often than once per 16MB if there was
487 * less written in an hour).
489 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
491 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
492 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
496 * The del_gendisk() function uninitializes the disk-specific data
497 * structures, including the bdi structure, without telling anyone
498 * else. Once this happens, any attempt to call mark_buffer_dirty()
499 * (for example, by ext4_commit_super), will cause a kernel OOPS.
500 * This is a kludge to prevent these oops until we can put in a proper
501 * hook in del_gendisk() to inform the VFS and file system layers.
503 static int block_device_ejected(struct super_block *sb)
505 struct inode *bd_inode = sb->s_bdev->bd_inode;
506 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
508 return bdi->dev == NULL;
511 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
513 struct super_block *sb = journal->j_private;
514 struct ext4_sb_info *sbi = EXT4_SB(sb);
515 int error = is_journal_aborted(journal);
516 struct ext4_journal_cb_entry *jce;
518 BUG_ON(txn->t_state == T_FINISHED);
520 ext4_process_freed_data(sb, txn->t_tid);
521 ext4_maybe_update_superblock(sb);
523 spin_lock(&sbi->s_md_lock);
524 while (!list_empty(&txn->t_private_list)) {
525 jce = list_entry(txn->t_private_list.next,
526 struct ext4_journal_cb_entry, jce_list);
527 list_del_init(&jce->jce_list);
528 spin_unlock(&sbi->s_md_lock);
529 jce->jce_func(sb, jce, error);
530 spin_lock(&sbi->s_md_lock);
532 spin_unlock(&sbi->s_md_lock);
536 * This writepage callback for write_cache_pages()
537 * takes care of a few cases after page cleaning.
539 * write_cache_pages() already checks for dirty pages
540 * and calls clear_page_dirty_for_io(), which we want,
541 * to write protect the pages.
543 * However, we may have to redirty a page (see below.)
545 static int ext4_journalled_writepage_callback(struct folio *folio,
546 struct writeback_control *wbc,
549 transaction_t *transaction = (transaction_t *) data;
550 struct buffer_head *bh, *head;
551 struct journal_head *jh;
553 bh = head = folio_buffers(folio);
556 * We have to redirty a page in these cases:
557 * 1) If buffer is dirty, it means the page was dirty because it
558 * contains a buffer that needs checkpointing. So the dirty bit
559 * needs to be preserved so that checkpointing writes the buffer
561 * 2) If buffer is not part of the committing transaction
562 * (we may have just accidentally come across this buffer because
563 * inode range tracking is not exact) or if the currently running
564 * transaction already contains this buffer as well, dirty bit
565 * needs to be preserved so that the buffer gets writeprotected
566 * properly on running transaction's commit.
569 if (buffer_dirty(bh) ||
570 (jh && (jh->b_transaction != transaction ||
571 jh->b_next_transaction))) {
572 folio_redirty_for_writepage(wbc, folio);
575 } while ((bh = bh->b_this_page) != head);
578 return AOP_WRITEPAGE_ACTIVATE;
581 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
583 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
584 struct writeback_control wbc = {
585 .sync_mode = WB_SYNC_ALL,
586 .nr_to_write = LONG_MAX,
587 .range_start = jinode->i_dirty_start,
588 .range_end = jinode->i_dirty_end,
591 return write_cache_pages(mapping, &wbc,
592 ext4_journalled_writepage_callback,
593 jinode->i_transaction);
596 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
600 if (ext4_should_journal_data(jinode->i_vfs_inode))
601 ret = ext4_journalled_submit_inode_data_buffers(jinode);
603 ret = ext4_normal_submit_inode_data_buffers(jinode);
607 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
611 if (!ext4_should_journal_data(jinode->i_vfs_inode))
612 ret = jbd2_journal_finish_inode_data_buffers(jinode);
617 static bool system_going_down(void)
619 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
620 || system_state == SYSTEM_RESTART;
623 struct ext4_err_translation {
628 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
630 static struct ext4_err_translation err_translation[] = {
631 EXT4_ERR_TRANSLATE(EIO),
632 EXT4_ERR_TRANSLATE(ENOMEM),
633 EXT4_ERR_TRANSLATE(EFSBADCRC),
634 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
635 EXT4_ERR_TRANSLATE(ENOSPC),
636 EXT4_ERR_TRANSLATE(ENOKEY),
637 EXT4_ERR_TRANSLATE(EROFS),
638 EXT4_ERR_TRANSLATE(EFBIG),
639 EXT4_ERR_TRANSLATE(EEXIST),
640 EXT4_ERR_TRANSLATE(ERANGE),
641 EXT4_ERR_TRANSLATE(EOVERFLOW),
642 EXT4_ERR_TRANSLATE(EBUSY),
643 EXT4_ERR_TRANSLATE(ENOTDIR),
644 EXT4_ERR_TRANSLATE(ENOTEMPTY),
645 EXT4_ERR_TRANSLATE(ESHUTDOWN),
646 EXT4_ERR_TRANSLATE(EFAULT),
649 static int ext4_errno_to_code(int errno)
653 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
654 if (err_translation[i].errno == errno)
655 return err_translation[i].code;
656 return EXT4_ERR_UNKNOWN;
659 static void save_error_info(struct super_block *sb, int error,
660 __u32 ino, __u64 block,
661 const char *func, unsigned int line)
663 struct ext4_sb_info *sbi = EXT4_SB(sb);
665 /* We default to EFSCORRUPTED error... */
667 error = EFSCORRUPTED;
669 spin_lock(&sbi->s_error_lock);
670 sbi->s_add_error_count++;
671 sbi->s_last_error_code = error;
672 sbi->s_last_error_line = line;
673 sbi->s_last_error_ino = ino;
674 sbi->s_last_error_block = block;
675 sbi->s_last_error_func = func;
676 sbi->s_last_error_time = ktime_get_real_seconds();
677 if (!sbi->s_first_error_time) {
678 sbi->s_first_error_code = error;
679 sbi->s_first_error_line = line;
680 sbi->s_first_error_ino = ino;
681 sbi->s_first_error_block = block;
682 sbi->s_first_error_func = func;
683 sbi->s_first_error_time = sbi->s_last_error_time;
685 spin_unlock(&sbi->s_error_lock);
688 /* Deal with the reporting of failure conditions on a filesystem such as
689 * inconsistencies detected or read IO failures.
691 * On ext2, we can store the error state of the filesystem in the
692 * superblock. That is not possible on ext4, because we may have other
693 * write ordering constraints on the superblock which prevent us from
694 * writing it out straight away; and given that the journal is about to
695 * be aborted, we can't rely on the current, or future, transactions to
696 * write out the superblock safely.
698 * We'll just use the jbd2_journal_abort() error code to record an error in
699 * the journal instead. On recovery, the journal will complain about
700 * that error until we've noted it down and cleared it.
702 * If force_ro is set, we unconditionally force the filesystem into an
703 * ABORT|READONLY state, unless the error response on the fs has been set to
704 * panic in which case we take the easy way out and panic immediately. This is
705 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
706 * at a critical moment in log management.
708 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
709 __u32 ino, __u64 block,
710 const char *func, unsigned int line)
712 journal_t *journal = EXT4_SB(sb)->s_journal;
713 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
715 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
716 if (test_opt(sb, WARN_ON_ERROR))
719 if (!continue_fs && !sb_rdonly(sb)) {
720 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
722 jbd2_journal_abort(journal, -EIO);
725 if (!bdev_read_only(sb->s_bdev)) {
726 save_error_info(sb, error, ino, block, func, line);
728 * In case the fs should keep running, we need to writeout
729 * superblock through the journal. Due to lock ordering
730 * constraints, it may not be safe to do it right here so we
731 * defer superblock flushing to a workqueue.
733 if (continue_fs && journal)
734 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
736 ext4_commit_super(sb);
740 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
741 * could panic during 'reboot -f' as the underlying device got already
744 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
745 panic("EXT4-fs (device %s): panic forced after error\n",
749 if (sb_rdonly(sb) || continue_fs)
752 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
754 * Make sure updated value of ->s_mount_flags will be visible before
758 sb->s_flags |= SB_RDONLY;
761 static void update_super_work(struct work_struct *work)
763 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
765 journal_t *journal = sbi->s_journal;
769 * If the journal is still running, we have to write out superblock
770 * through the journal to avoid collisions of other journalled sb
773 * We use directly jbd2 functions here to avoid recursing back into
774 * ext4 error handling code during handling of previous errors.
776 if (!sb_rdonly(sbi->s_sb) && journal) {
777 struct buffer_head *sbh = sbi->s_sbh;
778 bool call_notify_err;
779 handle = jbd2_journal_start(journal, 1);
782 if (jbd2_journal_get_write_access(handle, sbh)) {
783 jbd2_journal_stop(handle);
787 if (sbi->s_add_error_count > 0)
788 call_notify_err = true;
790 ext4_update_super(sbi->s_sb);
791 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
792 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
793 "superblock detected");
794 clear_buffer_write_io_error(sbh);
795 set_buffer_uptodate(sbh);
798 if (jbd2_journal_dirty_metadata(handle, sbh)) {
799 jbd2_journal_stop(handle);
802 jbd2_journal_stop(handle);
805 ext4_notify_error_sysfs(sbi);
811 * Write through journal failed. Write sb directly to get error info
812 * out and hope for the best.
814 ext4_commit_super(sbi->s_sb);
815 ext4_notify_error_sysfs(sbi);
818 #define ext4_error_ratelimit(sb) \
819 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
822 void __ext4_error(struct super_block *sb, const char *function,
823 unsigned int line, bool force_ro, int error, __u64 block,
824 const char *fmt, ...)
826 struct va_format vaf;
829 if (unlikely(ext4_forced_shutdown(sb)))
832 trace_ext4_error(sb, function, line);
833 if (ext4_error_ratelimit(sb)) {
838 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
839 sb->s_id, function, line, current->comm, &vaf);
842 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
844 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
847 void __ext4_error_inode(struct inode *inode, const char *function,
848 unsigned int line, ext4_fsblk_t block, int error,
849 const char *fmt, ...)
852 struct va_format vaf;
854 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
857 trace_ext4_error(inode->i_sb, function, line);
858 if (ext4_error_ratelimit(inode->i_sb)) {
863 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
864 "inode #%lu: block %llu: comm %s: %pV\n",
865 inode->i_sb->s_id, function, line, inode->i_ino,
866 block, current->comm, &vaf);
868 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
869 "inode #%lu: comm %s: %pV\n",
870 inode->i_sb->s_id, function, line, inode->i_ino,
871 current->comm, &vaf);
874 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
876 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
880 void __ext4_error_file(struct file *file, const char *function,
881 unsigned int line, ext4_fsblk_t block,
882 const char *fmt, ...)
885 struct va_format vaf;
886 struct inode *inode = file_inode(file);
887 char pathname[80], *path;
889 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
892 trace_ext4_error(inode->i_sb, function, line);
893 if (ext4_error_ratelimit(inode->i_sb)) {
894 path = file_path(file, pathname, sizeof(pathname));
902 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
903 "block %llu: comm %s: path %s: %pV\n",
904 inode->i_sb->s_id, function, line, inode->i_ino,
905 block, current->comm, path, &vaf);
908 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
909 "comm %s: path %s: %pV\n",
910 inode->i_sb->s_id, function, line, inode->i_ino,
911 current->comm, path, &vaf);
914 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
916 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
920 const char *ext4_decode_error(struct super_block *sb, int errno,
927 errstr = "Corrupt filesystem";
930 errstr = "Filesystem failed CRC";
933 errstr = "IO failure";
936 errstr = "Out of memory";
939 if (!sb || (EXT4_SB(sb)->s_journal &&
940 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
941 errstr = "Journal has aborted";
943 errstr = "Readonly filesystem";
946 /* If the caller passed in an extra buffer for unknown
947 * errors, textualise them now. Else we just return
950 /* Check for truncated error codes... */
951 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
960 /* __ext4_std_error decodes expected errors from journaling functions
961 * automatically and invokes the appropriate error response. */
963 void __ext4_std_error(struct super_block *sb, const char *function,
964 unsigned int line, int errno)
969 if (unlikely(ext4_forced_shutdown(sb)))
972 /* Special case: if the error is EROFS, and we're not already
973 * inside a transaction, then there's really no point in logging
975 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
978 if (ext4_error_ratelimit(sb)) {
979 errstr = ext4_decode_error(sb, errno, nbuf);
980 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
981 sb->s_id, function, line, errstr);
983 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
985 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
988 void __ext4_msg(struct super_block *sb,
989 const char *prefix, const char *fmt, ...)
991 struct va_format vaf;
995 atomic_inc(&EXT4_SB(sb)->s_msg_count);
996 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
1001 va_start(args, fmt);
1005 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1007 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1011 static int ext4_warning_ratelimit(struct super_block *sb)
1013 atomic_inc(&EXT4_SB(sb)->s_warning_count);
1014 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1018 void __ext4_warning(struct super_block *sb, const char *function,
1019 unsigned int line, const char *fmt, ...)
1021 struct va_format vaf;
1024 if (!ext4_warning_ratelimit(sb))
1027 va_start(args, fmt);
1030 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1031 sb->s_id, function, line, &vaf);
1035 void __ext4_warning_inode(const struct inode *inode, const char *function,
1036 unsigned int line, const char *fmt, ...)
1038 struct va_format vaf;
1041 if (!ext4_warning_ratelimit(inode->i_sb))
1044 va_start(args, fmt);
1047 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1048 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1049 function, line, inode->i_ino, current->comm, &vaf);
1053 void __ext4_grp_locked_error(const char *function, unsigned int line,
1054 struct super_block *sb, ext4_group_t grp,
1055 unsigned long ino, ext4_fsblk_t block,
1056 const char *fmt, ...)
1060 struct va_format vaf;
1063 if (unlikely(ext4_forced_shutdown(sb)))
1066 trace_ext4_error(sb, function, line);
1067 if (ext4_error_ratelimit(sb)) {
1068 va_start(args, fmt);
1071 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1072 sb->s_id, function, line, grp);
1074 printk(KERN_CONT "inode %lu: ", ino);
1076 printk(KERN_CONT "block %llu:",
1077 (unsigned long long) block);
1078 printk(KERN_CONT "%pV\n", &vaf);
1082 if (test_opt(sb, ERRORS_CONT)) {
1083 if (test_opt(sb, WARN_ON_ERROR))
1085 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1086 if (!bdev_read_only(sb->s_bdev)) {
1087 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1089 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1093 ext4_unlock_group(sb, grp);
1094 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1096 * We only get here in the ERRORS_RO case; relocking the group
1097 * may be dangerous, but nothing bad will happen since the
1098 * filesystem will have already been marked read/only and the
1099 * journal has been aborted. We return 1 as a hint to callers
1100 * who might what to use the return value from
1101 * ext4_grp_locked_error() to distinguish between the
1102 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1103 * aggressively from the ext4 function in question, with a
1104 * more appropriate error code.
1106 ext4_lock_group(sb, grp);
1110 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1114 struct ext4_sb_info *sbi = EXT4_SB(sb);
1115 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1116 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1121 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1122 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1125 percpu_counter_sub(&sbi->s_freeclusters_counter,
1129 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1130 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1135 count = ext4_free_inodes_count(sb, gdp);
1136 percpu_counter_sub(&sbi->s_freeinodes_counter,
1142 void ext4_update_dynamic_rev(struct super_block *sb)
1144 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1146 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1150 "updating to rev %d because of new feature flag, "
1151 "running e2fsck is recommended",
1154 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1155 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1156 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1157 /* leave es->s_feature_*compat flags alone */
1158 /* es->s_uuid will be set by e2fsck if empty */
1161 * The rest of the superblock fields should be zero, and if not it
1162 * means they are likely already in use, so leave them alone. We
1163 * can leave it up to e2fsck to clean up any inconsistencies there.
1167 static inline struct inode *orphan_list_entry(struct list_head *l)
1169 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1172 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1174 struct list_head *l;
1176 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1177 le32_to_cpu(sbi->s_es->s_last_orphan));
1179 printk(KERN_ERR "sb_info orphan list:\n");
1180 list_for_each(l, &sbi->s_orphan) {
1181 struct inode *inode = orphan_list_entry(l);
1183 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1184 inode->i_sb->s_id, inode->i_ino, inode,
1185 inode->i_mode, inode->i_nlink,
1186 NEXT_ORPHAN(inode));
1191 static int ext4_quota_off(struct super_block *sb, int type);
1193 static inline void ext4_quotas_off(struct super_block *sb, int type)
1195 BUG_ON(type > EXT4_MAXQUOTAS);
1197 /* Use our quota_off function to clear inode flags etc. */
1198 for (type--; type >= 0; type--)
1199 ext4_quota_off(sb, type);
1203 * This is a helper function which is used in the mount/remount
1204 * codepaths (which holds s_umount) to fetch the quota file name.
1206 static inline char *get_qf_name(struct super_block *sb,
1207 struct ext4_sb_info *sbi,
1210 return rcu_dereference_protected(sbi->s_qf_names[type],
1211 lockdep_is_held(&sb->s_umount));
1214 static inline void ext4_quotas_off(struct super_block *sb, int type)
1219 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1224 block = ext4_count_free_clusters(sbi->s_sb);
1225 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1226 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1229 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1230 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1231 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1235 err = percpu_counter_init(&sbi->s_dirs_counter,
1236 ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1238 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1241 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1244 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1247 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1252 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1254 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1255 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1256 percpu_counter_destroy(&sbi->s_dirs_counter);
1257 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1258 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1259 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1262 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1264 struct buffer_head **group_desc;
1268 group_desc = rcu_dereference(sbi->s_group_desc);
1269 for (i = 0; i < sbi->s_gdb_count; i++)
1270 brelse(group_desc[i]);
1275 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1277 struct flex_groups **flex_groups;
1281 flex_groups = rcu_dereference(sbi->s_flex_groups);
1283 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1284 kvfree(flex_groups[i]);
1285 kvfree(flex_groups);
1290 static void ext4_put_super(struct super_block *sb)
1292 struct ext4_sb_info *sbi = EXT4_SB(sb);
1293 struct ext4_super_block *es = sbi->s_es;
1298 * Unregister sysfs before destroying jbd2 journal.
1299 * Since we could still access attr_journal_task attribute via sysfs
1300 * path which could have sbi->s_journal->j_task as NULL
1301 * Unregister sysfs before flush sbi->s_sb_upd_work.
1302 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1303 * read metadata verify failed then will queue error work.
1304 * update_super_work will call start_this_handle may trigger
1307 ext4_unregister_sysfs(sb);
1309 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1310 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1313 ext4_unregister_li_request(sb);
1314 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1316 flush_work(&sbi->s_sb_upd_work);
1317 destroy_workqueue(sbi->rsv_conversion_wq);
1318 ext4_release_orphan_info(sb);
1320 if (sbi->s_journal) {
1321 aborted = is_journal_aborted(sbi->s_journal);
1322 err = jbd2_journal_destroy(sbi->s_journal);
1323 sbi->s_journal = NULL;
1324 if ((err < 0) && !aborted) {
1325 ext4_abort(sb, -err, "Couldn't clean up the journal");
1329 ext4_es_unregister_shrinker(sbi);
1330 timer_shutdown_sync(&sbi->s_err_report);
1331 ext4_release_system_zone(sb);
1332 ext4_mb_release(sb);
1333 ext4_ext_release(sb);
1335 if (!sb_rdonly(sb) && !aborted) {
1336 ext4_clear_feature_journal_needs_recovery(sb);
1337 ext4_clear_feature_orphan_present(sb);
1338 es->s_state = cpu_to_le16(sbi->s_mount_state);
1341 ext4_commit_super(sb);
1343 ext4_group_desc_free(sbi);
1344 ext4_flex_groups_free(sbi);
1345 ext4_percpu_param_destroy(sbi);
1347 for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1348 kfree(get_qf_name(sb, sbi, i));
1351 /* Debugging code just in case the in-memory inode orphan list
1352 * isn't empty. The on-disk one can be non-empty if we've
1353 * detected an error and taken the fs readonly, but the
1354 * in-memory list had better be clean by this point. */
1355 if (!list_empty(&sbi->s_orphan))
1356 dump_orphan_list(sb, sbi);
1357 ASSERT(list_empty(&sbi->s_orphan));
1359 sync_blockdev(sb->s_bdev);
1360 invalidate_bdev(sb->s_bdev);
1361 if (sbi->s_journal_bdev) {
1363 * Invalidate the journal device's buffers. We don't want them
1364 * floating about in memory - the physical journal device may
1365 * hotswapped, and it breaks the `ro-after' testing code.
1367 sync_blockdev(sbi->s_journal_bdev);
1368 invalidate_bdev(sbi->s_journal_bdev);
1371 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1372 sbi->s_ea_inode_cache = NULL;
1374 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1375 sbi->s_ea_block_cache = NULL;
1377 ext4_stop_mmpd(sbi);
1380 sb->s_fs_info = NULL;
1382 * Now that we are completely done shutting down the
1383 * superblock, we need to actually destroy the kobject.
1385 kobject_put(&sbi->s_kobj);
1386 wait_for_completion(&sbi->s_kobj_unregister);
1387 if (sbi->s_chksum_driver)
1388 crypto_free_shash(sbi->s_chksum_driver);
1389 kfree(sbi->s_blockgroup_lock);
1390 fs_put_dax(sbi->s_daxdev, NULL);
1391 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1392 #if IS_ENABLED(CONFIG_UNICODE)
1393 utf8_unload(sb->s_encoding);
1398 static struct kmem_cache *ext4_inode_cachep;
1401 * Called inside transaction, so use GFP_NOFS
1403 static struct inode *ext4_alloc_inode(struct super_block *sb)
1405 struct ext4_inode_info *ei;
1407 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1411 inode_set_iversion(&ei->vfs_inode, 1);
1413 spin_lock_init(&ei->i_raw_lock);
1414 ei->i_prealloc_node = RB_ROOT;
1415 atomic_set(&ei->i_prealloc_active, 0);
1416 rwlock_init(&ei->i_prealloc_lock);
1417 ext4_es_init_tree(&ei->i_es_tree);
1418 rwlock_init(&ei->i_es_lock);
1419 INIT_LIST_HEAD(&ei->i_es_list);
1420 ei->i_es_all_nr = 0;
1421 ei->i_es_shk_nr = 0;
1422 ei->i_es_shrink_lblk = 0;
1423 ei->i_reserved_data_blocks = 0;
1424 spin_lock_init(&(ei->i_block_reservation_lock));
1425 ext4_init_pending_tree(&ei->i_pending_tree);
1427 ei->i_reserved_quota = 0;
1428 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1431 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1432 spin_lock_init(&ei->i_completed_io_lock);
1434 ei->i_datasync_tid = 0;
1435 atomic_set(&ei->i_unwritten, 0);
1436 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1437 ext4_fc_init_inode(&ei->vfs_inode);
1438 mutex_init(&ei->i_fc_lock);
1439 return &ei->vfs_inode;
1442 static int ext4_drop_inode(struct inode *inode)
1444 int drop = generic_drop_inode(inode);
1447 drop = fscrypt_drop_inode(inode);
1449 trace_ext4_drop_inode(inode, drop);
1453 static void ext4_free_in_core_inode(struct inode *inode)
1455 fscrypt_free_inode(inode);
1456 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1457 pr_warn("%s: inode %ld still in fc list",
1458 __func__, inode->i_ino);
1460 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1463 static void ext4_destroy_inode(struct inode *inode)
1465 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1466 ext4_msg(inode->i_sb, KERN_ERR,
1467 "Inode %lu (%p): orphan list check failed!",
1468 inode->i_ino, EXT4_I(inode));
1469 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1470 EXT4_I(inode), sizeof(struct ext4_inode_info),
1475 if (EXT4_I(inode)->i_reserved_data_blocks)
1476 ext4_msg(inode->i_sb, KERN_ERR,
1477 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1478 inode->i_ino, EXT4_I(inode),
1479 EXT4_I(inode)->i_reserved_data_blocks);
1482 static void ext4_shutdown(struct super_block *sb)
1484 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1487 static void init_once(void *foo)
1489 struct ext4_inode_info *ei = foo;
1491 INIT_LIST_HEAD(&ei->i_orphan);
1492 init_rwsem(&ei->xattr_sem);
1493 init_rwsem(&ei->i_data_sem);
1494 inode_init_once(&ei->vfs_inode);
1495 ext4_fc_init_inode(&ei->vfs_inode);
1498 static int __init init_inodecache(void)
1500 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1501 sizeof(struct ext4_inode_info), 0,
1502 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1504 offsetof(struct ext4_inode_info, i_data),
1505 sizeof_field(struct ext4_inode_info, i_data),
1507 if (ext4_inode_cachep == NULL)
1512 static void destroy_inodecache(void)
1515 * Make sure all delayed rcu free inodes are flushed before we
1519 kmem_cache_destroy(ext4_inode_cachep);
1522 void ext4_clear_inode(struct inode *inode)
1525 invalidate_inode_buffers(inode);
1527 ext4_discard_preallocations(inode, 0);
1528 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1530 if (EXT4_I(inode)->jinode) {
1531 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1532 EXT4_I(inode)->jinode);
1533 jbd2_free_inode(EXT4_I(inode)->jinode);
1534 EXT4_I(inode)->jinode = NULL;
1536 fscrypt_put_encryption_info(inode);
1537 fsverity_cleanup_inode(inode);
1540 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1541 u64 ino, u32 generation)
1543 struct inode *inode;
1546 * Currently we don't know the generation for parent directory, so
1547 * a generation of 0 means "accept any"
1549 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1551 return ERR_CAST(inode);
1552 if (generation && inode->i_generation != generation) {
1554 return ERR_PTR(-ESTALE);
1560 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1561 int fh_len, int fh_type)
1563 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1564 ext4_nfs_get_inode);
1567 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1568 int fh_len, int fh_type)
1570 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1571 ext4_nfs_get_inode);
1574 static int ext4_nfs_commit_metadata(struct inode *inode)
1576 struct writeback_control wbc = {
1577 .sync_mode = WB_SYNC_ALL
1580 trace_ext4_nfs_commit_metadata(inode);
1581 return ext4_write_inode(inode, &wbc);
1585 static const char * const quotatypes[] = INITQFNAMES;
1586 #define QTYPE2NAME(t) (quotatypes[t])
1588 static int ext4_write_dquot(struct dquot *dquot);
1589 static int ext4_acquire_dquot(struct dquot *dquot);
1590 static int ext4_release_dquot(struct dquot *dquot);
1591 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1592 static int ext4_write_info(struct super_block *sb, int type);
1593 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1594 const struct path *path);
1595 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1596 size_t len, loff_t off);
1597 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1598 const char *data, size_t len, loff_t off);
1599 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1600 unsigned int flags);
1602 static struct dquot **ext4_get_dquots(struct inode *inode)
1604 return EXT4_I(inode)->i_dquot;
1607 static const struct dquot_operations ext4_quota_operations = {
1608 .get_reserved_space = ext4_get_reserved_space,
1609 .write_dquot = ext4_write_dquot,
1610 .acquire_dquot = ext4_acquire_dquot,
1611 .release_dquot = ext4_release_dquot,
1612 .mark_dirty = ext4_mark_dquot_dirty,
1613 .write_info = ext4_write_info,
1614 .alloc_dquot = dquot_alloc,
1615 .destroy_dquot = dquot_destroy,
1616 .get_projid = ext4_get_projid,
1617 .get_inode_usage = ext4_get_inode_usage,
1618 .get_next_id = dquot_get_next_id,
1621 static const struct quotactl_ops ext4_qctl_operations = {
1622 .quota_on = ext4_quota_on,
1623 .quota_off = ext4_quota_off,
1624 .quota_sync = dquot_quota_sync,
1625 .get_state = dquot_get_state,
1626 .set_info = dquot_set_dqinfo,
1627 .get_dqblk = dquot_get_dqblk,
1628 .set_dqblk = dquot_set_dqblk,
1629 .get_nextdqblk = dquot_get_next_dqblk,
1633 static const struct super_operations ext4_sops = {
1634 .alloc_inode = ext4_alloc_inode,
1635 .free_inode = ext4_free_in_core_inode,
1636 .destroy_inode = ext4_destroy_inode,
1637 .write_inode = ext4_write_inode,
1638 .dirty_inode = ext4_dirty_inode,
1639 .drop_inode = ext4_drop_inode,
1640 .evict_inode = ext4_evict_inode,
1641 .put_super = ext4_put_super,
1642 .sync_fs = ext4_sync_fs,
1643 .freeze_fs = ext4_freeze,
1644 .unfreeze_fs = ext4_unfreeze,
1645 .statfs = ext4_statfs,
1646 .show_options = ext4_show_options,
1647 .shutdown = ext4_shutdown,
1649 .quota_read = ext4_quota_read,
1650 .quota_write = ext4_quota_write,
1651 .get_dquots = ext4_get_dquots,
1655 static const struct export_operations ext4_export_ops = {
1656 .fh_to_dentry = ext4_fh_to_dentry,
1657 .fh_to_parent = ext4_fh_to_parent,
1658 .get_parent = ext4_get_parent,
1659 .commit_metadata = ext4_nfs_commit_metadata,
1663 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1664 Opt_resgid, Opt_resuid, Opt_sb,
1665 Opt_nouid32, Opt_debug, Opt_removed,
1666 Opt_user_xattr, Opt_acl,
1667 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1668 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1669 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1670 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1671 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1673 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1674 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1675 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1676 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1677 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1678 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1679 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1680 Opt_inode_readahead_blks, Opt_journal_ioprio,
1681 Opt_dioread_nolock, Opt_dioread_lock,
1682 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1683 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1684 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1685 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1686 #ifdef CONFIG_EXT4_DEBUG
1687 Opt_fc_debug_max_replay, Opt_fc_debug_force
1691 static const struct constant_table ext4_param_errors[] = {
1692 {"continue", EXT4_MOUNT_ERRORS_CONT},
1693 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1694 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1698 static const struct constant_table ext4_param_data[] = {
1699 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1700 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1701 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1705 static const struct constant_table ext4_param_data_err[] = {
1706 {"abort", Opt_data_err_abort},
1707 {"ignore", Opt_data_err_ignore},
1711 static const struct constant_table ext4_param_jqfmt[] = {
1712 {"vfsold", QFMT_VFS_OLD},
1713 {"vfsv0", QFMT_VFS_V0},
1714 {"vfsv1", QFMT_VFS_V1},
1718 static const struct constant_table ext4_param_dax[] = {
1719 {"always", Opt_dax_always},
1720 {"inode", Opt_dax_inode},
1721 {"never", Opt_dax_never},
1725 /* String parameter that allows empty argument */
1726 #define fsparam_string_empty(NAME, OPT) \
1727 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1730 * Mount option specification
1731 * We don't use fsparam_flag_no because of the way we set the
1732 * options and the way we show them in _ext4_show_options(). To
1733 * keep the changes to a minimum, let's keep the negative options
1736 static const struct fs_parameter_spec ext4_param_specs[] = {
1737 fsparam_flag ("bsddf", Opt_bsd_df),
1738 fsparam_flag ("minixdf", Opt_minix_df),
1739 fsparam_flag ("grpid", Opt_grpid),
1740 fsparam_flag ("bsdgroups", Opt_grpid),
1741 fsparam_flag ("nogrpid", Opt_nogrpid),
1742 fsparam_flag ("sysvgroups", Opt_nogrpid),
1743 fsparam_u32 ("resgid", Opt_resgid),
1744 fsparam_u32 ("resuid", Opt_resuid),
1745 fsparam_u32 ("sb", Opt_sb),
1746 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1747 fsparam_flag ("nouid32", Opt_nouid32),
1748 fsparam_flag ("debug", Opt_debug),
1749 fsparam_flag ("oldalloc", Opt_removed),
1750 fsparam_flag ("orlov", Opt_removed),
1751 fsparam_flag ("user_xattr", Opt_user_xattr),
1752 fsparam_flag ("acl", Opt_acl),
1753 fsparam_flag ("norecovery", Opt_noload),
1754 fsparam_flag ("noload", Opt_noload),
1755 fsparam_flag ("bh", Opt_removed),
1756 fsparam_flag ("nobh", Opt_removed),
1757 fsparam_u32 ("commit", Opt_commit),
1758 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1759 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1760 fsparam_u32 ("journal_dev", Opt_journal_dev),
1761 fsparam_bdev ("journal_path", Opt_journal_path),
1762 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1763 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1764 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1765 fsparam_flag ("abort", Opt_abort),
1766 fsparam_enum ("data", Opt_data, ext4_param_data),
1767 fsparam_enum ("data_err", Opt_data_err,
1768 ext4_param_data_err),
1769 fsparam_string_empty
1770 ("usrjquota", Opt_usrjquota),
1771 fsparam_string_empty
1772 ("grpjquota", Opt_grpjquota),
1773 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1774 fsparam_flag ("grpquota", Opt_grpquota),
1775 fsparam_flag ("quota", Opt_quota),
1776 fsparam_flag ("noquota", Opt_noquota),
1777 fsparam_flag ("usrquota", Opt_usrquota),
1778 fsparam_flag ("prjquota", Opt_prjquota),
1779 fsparam_flag ("barrier", Opt_barrier),
1780 fsparam_u32 ("barrier", Opt_barrier),
1781 fsparam_flag ("nobarrier", Opt_nobarrier),
1782 fsparam_flag ("i_version", Opt_removed),
1783 fsparam_flag ("dax", Opt_dax),
1784 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1785 fsparam_u32 ("stripe", Opt_stripe),
1786 fsparam_flag ("delalloc", Opt_delalloc),
1787 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1788 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1789 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1790 fsparam_u32 ("debug_want_extra_isize",
1791 Opt_debug_want_extra_isize),
1792 fsparam_flag ("mblk_io_submit", Opt_removed),
1793 fsparam_flag ("nomblk_io_submit", Opt_removed),
1794 fsparam_flag ("block_validity", Opt_block_validity),
1795 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1796 fsparam_u32 ("inode_readahead_blks",
1797 Opt_inode_readahead_blks),
1798 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1799 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1800 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1801 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1802 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1803 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1804 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1805 fsparam_flag ("discard", Opt_discard),
1806 fsparam_flag ("nodiscard", Opt_nodiscard),
1807 fsparam_u32 ("init_itable", Opt_init_itable),
1808 fsparam_flag ("init_itable", Opt_init_itable),
1809 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1810 #ifdef CONFIG_EXT4_DEBUG
1811 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1812 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1814 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1815 fsparam_flag ("test_dummy_encryption",
1816 Opt_test_dummy_encryption),
1817 fsparam_string ("test_dummy_encryption",
1818 Opt_test_dummy_encryption),
1819 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1820 fsparam_flag ("nombcache", Opt_nombcache),
1821 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1822 fsparam_flag ("prefetch_block_bitmaps",
1824 fsparam_flag ("no_prefetch_block_bitmaps",
1825 Opt_no_prefetch_block_bitmaps),
1826 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1827 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1828 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1829 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1830 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1831 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1835 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1837 #define MOPT_SET 0x0001
1838 #define MOPT_CLEAR 0x0002
1839 #define MOPT_NOSUPPORT 0x0004
1840 #define MOPT_EXPLICIT 0x0008
1843 #define MOPT_QFMT 0x0010
1845 #define MOPT_Q MOPT_NOSUPPORT
1846 #define MOPT_QFMT MOPT_NOSUPPORT
1848 #define MOPT_NO_EXT2 0x0020
1849 #define MOPT_NO_EXT3 0x0040
1850 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1851 #define MOPT_SKIP 0x0080
1852 #define MOPT_2 0x0100
1854 static const struct mount_opts {
1858 } ext4_mount_opts[] = {
1859 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1860 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1861 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1862 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1863 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1864 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1865 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1866 MOPT_EXT4_ONLY | MOPT_SET},
1867 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1868 MOPT_EXT4_ONLY | MOPT_CLEAR},
1869 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1870 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1871 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1872 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1873 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1874 MOPT_EXT4_ONLY | MOPT_CLEAR},
1875 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1876 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1877 {Opt_commit, 0, MOPT_NO_EXT2},
1878 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1879 MOPT_EXT4_ONLY | MOPT_CLEAR},
1880 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1881 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1882 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1883 EXT4_MOUNT_JOURNAL_CHECKSUM),
1884 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1885 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1886 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1887 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1888 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1889 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1890 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1891 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1892 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1893 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1894 {Opt_journal_path, 0, MOPT_NO_EXT2},
1895 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1896 {Opt_data, 0, MOPT_NO_EXT2},
1897 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1898 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1899 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1901 {Opt_acl, 0, MOPT_NOSUPPORT},
1903 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1904 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1905 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1906 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1908 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1910 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1912 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1913 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1914 MOPT_CLEAR | MOPT_Q},
1915 {Opt_usrjquota, 0, MOPT_Q},
1916 {Opt_grpjquota, 0, MOPT_Q},
1917 {Opt_jqfmt, 0, MOPT_QFMT},
1918 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1919 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1921 #ifdef CONFIG_EXT4_DEBUG
1922 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1923 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1925 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1929 #if IS_ENABLED(CONFIG_UNICODE)
1930 static const struct ext4_sb_encodings {
1933 unsigned int version;
1934 } ext4_sb_encoding_map[] = {
1935 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1938 static const struct ext4_sb_encodings *
1939 ext4_sb_read_encoding(const struct ext4_super_block *es)
1941 __u16 magic = le16_to_cpu(es->s_encoding);
1944 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1945 if (magic == ext4_sb_encoding_map[i].magic)
1946 return &ext4_sb_encoding_map[i];
1952 #define EXT4_SPEC_JQUOTA (1 << 0)
1953 #define EXT4_SPEC_JQFMT (1 << 1)
1954 #define EXT4_SPEC_DATAJ (1 << 2)
1955 #define EXT4_SPEC_SB_BLOCK (1 << 3)
1956 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1957 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1958 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
1959 #define EXT4_SPEC_s_max_batch_time (1 << 8)
1960 #define EXT4_SPEC_s_min_batch_time (1 << 9)
1961 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1962 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
1963 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1964 #define EXT4_SPEC_s_stripe (1 << 13)
1965 #define EXT4_SPEC_s_resuid (1 << 14)
1966 #define EXT4_SPEC_s_resgid (1 << 15)
1967 #define EXT4_SPEC_s_commit_interval (1 << 16)
1968 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1969 #define EXT4_SPEC_s_sb_block (1 << 18)
1970 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
1972 struct ext4_fs_context {
1973 char *s_qf_names[EXT4_MAXQUOTAS];
1974 struct fscrypt_dummy_policy dummy_enc_policy;
1975 int s_jquota_fmt; /* Format of quota to use */
1976 #ifdef CONFIG_EXT4_DEBUG
1977 int s_fc_debug_max_replay;
1979 unsigned short qname_spec;
1980 unsigned long vals_s_flags; /* Bits to set in s_flags */
1981 unsigned long mask_s_flags; /* Bits changed in s_flags */
1982 unsigned long journal_devnum;
1983 unsigned long s_commit_interval;
1984 unsigned long s_stripe;
1985 unsigned int s_inode_readahead_blks;
1986 unsigned int s_want_extra_isize;
1987 unsigned int s_li_wait_mult;
1988 unsigned int s_max_dir_size_kb;
1989 unsigned int journal_ioprio;
1990 unsigned int vals_s_mount_opt;
1991 unsigned int mask_s_mount_opt;
1992 unsigned int vals_s_mount_opt2;
1993 unsigned int mask_s_mount_opt2;
1994 unsigned int opt_flags; /* MOPT flags */
1996 u32 s_max_batch_time;
1997 u32 s_min_batch_time;
2000 ext4_fsblk_t s_sb_block;
2003 static void ext4_fc_free(struct fs_context *fc)
2005 struct ext4_fs_context *ctx = fc->fs_private;
2011 for (i = 0; i < EXT4_MAXQUOTAS; i++)
2012 kfree(ctx->s_qf_names[i]);
2014 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2018 int ext4_init_fs_context(struct fs_context *fc)
2020 struct ext4_fs_context *ctx;
2022 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2026 fc->fs_private = ctx;
2027 fc->ops = &ext4_context_ops;
2034 * Note the name of the specified quota file.
2036 static int note_qf_name(struct fs_context *fc, int qtype,
2037 struct fs_parameter *param)
2039 struct ext4_fs_context *ctx = fc->fs_private;
2042 if (param->size < 1) {
2043 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2046 if (strchr(param->string, '/')) {
2047 ext4_msg(NULL, KERN_ERR,
2048 "quotafile must be on filesystem root");
2051 if (ctx->s_qf_names[qtype]) {
2052 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2053 ext4_msg(NULL, KERN_ERR,
2054 "%s quota file already specified",
2061 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2063 ext4_msg(NULL, KERN_ERR,
2064 "Not enough memory for storing quotafile name");
2067 ctx->s_qf_names[qtype] = qname;
2068 ctx->qname_spec |= 1 << qtype;
2069 ctx->spec |= EXT4_SPEC_JQUOTA;
2074 * Clear the name of the specified quota file.
2076 static int unnote_qf_name(struct fs_context *fc, int qtype)
2078 struct ext4_fs_context *ctx = fc->fs_private;
2080 if (ctx->s_qf_names[qtype])
2081 kfree(ctx->s_qf_names[qtype]);
2083 ctx->s_qf_names[qtype] = NULL;
2084 ctx->qname_spec |= 1 << qtype;
2085 ctx->spec |= EXT4_SPEC_JQUOTA;
2090 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2091 struct ext4_fs_context *ctx)
2095 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2096 ext4_msg(NULL, KERN_WARNING,
2097 "test_dummy_encryption option not supported");
2100 err = fscrypt_parse_test_dummy_encryption(param,
2101 &ctx->dummy_enc_policy);
2102 if (err == -EINVAL) {
2103 ext4_msg(NULL, KERN_WARNING,
2104 "Value of option \"%s\" is unrecognized", param->key);
2105 } else if (err == -EEXIST) {
2106 ext4_msg(NULL, KERN_WARNING,
2107 "Conflicting test_dummy_encryption options");
2113 #define EXT4_SET_CTX(name) \
2114 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2115 unsigned long flag) \
2117 ctx->mask_s_##name |= flag; \
2118 ctx->vals_s_##name |= flag; \
2121 #define EXT4_CLEAR_CTX(name) \
2122 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2123 unsigned long flag) \
2125 ctx->mask_s_##name |= flag; \
2126 ctx->vals_s_##name &= ~flag; \
2129 #define EXT4_TEST_CTX(name) \
2130 static inline unsigned long \
2131 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2133 return (ctx->vals_s_##name & flag); \
2136 EXT4_SET_CTX(flags); /* set only */
2137 EXT4_SET_CTX(mount_opt);
2138 EXT4_CLEAR_CTX(mount_opt);
2139 EXT4_TEST_CTX(mount_opt);
2140 EXT4_SET_CTX(mount_opt2);
2141 EXT4_CLEAR_CTX(mount_opt2);
2142 EXT4_TEST_CTX(mount_opt2);
2144 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2146 struct ext4_fs_context *ctx = fc->fs_private;
2147 struct fs_parse_result result;
2148 const struct mount_opts *m;
2154 token = fs_parse(fc, ext4_param_specs, param, &result);
2157 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2159 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2160 if (token == m->token)
2163 ctx->opt_flags |= m->flags;
2165 if (m->flags & MOPT_EXPLICIT) {
2166 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2167 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2168 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2169 ctx_set_mount_opt2(ctx,
2170 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2175 if (m->flags & MOPT_NOSUPPORT) {
2176 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2184 if (!*param->string)
2185 return unnote_qf_name(fc, USRQUOTA);
2187 return note_qf_name(fc, USRQUOTA, param);
2189 if (!*param->string)
2190 return unnote_qf_name(fc, GRPQUOTA);
2192 return note_qf_name(fc, GRPQUOTA, param);
2195 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2196 ext4_msg(NULL, KERN_WARNING,
2197 "Ignoring %s option on remount", param->key);
2199 ctx->s_sb_block = result.uint_32;
2200 ctx->spec |= EXT4_SPEC_s_sb_block;
2204 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2207 case Opt_inlinecrypt:
2208 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2209 ctx_set_flags(ctx, SB_INLINECRYPT);
2211 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2215 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2216 ctx_set_mount_opt(ctx, result.uint_32);
2220 ctx->s_jquota_fmt = result.uint_32;
2221 ctx->spec |= EXT4_SPEC_JQFMT;
2225 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2226 ctx_set_mount_opt(ctx, result.uint_32);
2227 ctx->spec |= EXT4_SPEC_DATAJ;
2230 if (result.uint_32 == 0)
2231 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2232 else if (result.uint_32 > INT_MAX / HZ) {
2233 ext4_msg(NULL, KERN_ERR,
2234 "Invalid commit interval %d, "
2235 "must be smaller than %d",
2236 result.uint_32, INT_MAX / HZ);
2239 ctx->s_commit_interval = HZ * result.uint_32;
2240 ctx->spec |= EXT4_SPEC_s_commit_interval;
2242 case Opt_debug_want_extra_isize:
2243 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2244 ext4_msg(NULL, KERN_ERR,
2245 "Invalid want_extra_isize %d", result.uint_32);
2248 ctx->s_want_extra_isize = result.uint_32;
2249 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2251 case Opt_max_batch_time:
2252 ctx->s_max_batch_time = result.uint_32;
2253 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2255 case Opt_min_batch_time:
2256 ctx->s_min_batch_time = result.uint_32;
2257 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2259 case Opt_inode_readahead_blks:
2260 if (result.uint_32 &&
2261 (result.uint_32 > (1 << 30) ||
2262 !is_power_of_2(result.uint_32))) {
2263 ext4_msg(NULL, KERN_ERR,
2264 "EXT4-fs: inode_readahead_blks must be "
2265 "0 or a power of 2 smaller than 2^31");
2268 ctx->s_inode_readahead_blks = result.uint_32;
2269 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2271 case Opt_init_itable:
2272 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2273 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2274 if (param->type == fs_value_is_string)
2275 ctx->s_li_wait_mult = result.uint_32;
2276 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2278 case Opt_max_dir_size_kb:
2279 ctx->s_max_dir_size_kb = result.uint_32;
2280 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2282 #ifdef CONFIG_EXT4_DEBUG
2283 case Opt_fc_debug_max_replay:
2284 ctx->s_fc_debug_max_replay = result.uint_32;
2285 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2289 ctx->s_stripe = result.uint_32;
2290 ctx->spec |= EXT4_SPEC_s_stripe;
2293 uid = make_kuid(current_user_ns(), result.uint_32);
2294 if (!uid_valid(uid)) {
2295 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2299 ctx->s_resuid = uid;
2300 ctx->spec |= EXT4_SPEC_s_resuid;
2303 gid = make_kgid(current_user_ns(), result.uint_32);
2304 if (!gid_valid(gid)) {
2305 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2309 ctx->s_resgid = gid;
2310 ctx->spec |= EXT4_SPEC_s_resgid;
2312 case Opt_journal_dev:
2314 ext4_msg(NULL, KERN_ERR,
2315 "Cannot specify journal on remount");
2318 ctx->journal_devnum = result.uint_32;
2319 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2321 case Opt_journal_path:
2323 struct inode *journal_inode;
2328 ext4_msg(NULL, KERN_ERR,
2329 "Cannot specify journal on remount");
2333 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2335 ext4_msg(NULL, KERN_ERR, "error: could not find "
2336 "journal device path");
2340 journal_inode = d_inode(path.dentry);
2341 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2342 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2346 case Opt_journal_ioprio:
2347 if (result.uint_32 > 7) {
2348 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2352 ctx->journal_ioprio =
2353 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2354 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2356 case Opt_test_dummy_encryption:
2357 return ext4_parse_test_dummy_encryption(param, ctx);
2360 #ifdef CONFIG_FS_DAX
2362 int type = (token == Opt_dax) ?
2363 Opt_dax : result.uint_32;
2367 case Opt_dax_always:
2368 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2369 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2372 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2373 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2376 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2377 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2378 /* Strictly for printing options */
2379 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2385 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2389 if (result.uint_32 == Opt_data_err_abort)
2390 ctx_set_mount_opt(ctx, m->mount_opt);
2391 else if (result.uint_32 == Opt_data_err_ignore)
2392 ctx_clear_mount_opt(ctx, m->mount_opt);
2394 case Opt_mb_optimize_scan:
2395 if (result.int_32 == 1) {
2396 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2397 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2398 } else if (result.int_32 == 0) {
2399 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2400 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2402 ext4_msg(NULL, KERN_WARNING,
2403 "mb_optimize_scan should be set to 0 or 1.");
2410 * At this point we should only be getting options requiring MOPT_SET,
2411 * or MOPT_CLEAR. Anything else is a bug
2413 if (m->token == Opt_err) {
2414 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2421 unsigned int set = 0;
2423 if ((param->type == fs_value_is_flag) ||
2427 if (m->flags & MOPT_CLEAR)
2429 else if (unlikely(!(m->flags & MOPT_SET))) {
2430 ext4_msg(NULL, KERN_WARNING,
2431 "buggy handling of option %s",
2436 if (m->flags & MOPT_2) {
2438 ctx_set_mount_opt2(ctx, m->mount_opt);
2440 ctx_clear_mount_opt2(ctx, m->mount_opt);
2443 ctx_set_mount_opt(ctx, m->mount_opt);
2445 ctx_clear_mount_opt(ctx, m->mount_opt);
2452 static int parse_options(struct fs_context *fc, char *options)
2454 struct fs_parameter param;
2461 while ((key = strsep(&options, ",")) != NULL) {
2464 char *value = strchr(key, '=');
2466 param.type = fs_value_is_flag;
2467 param.string = NULL;
2474 v_len = strlen(value);
2475 param.string = kmemdup_nul(value, v_len,
2479 param.type = fs_value_is_string;
2485 ret = ext4_parse_param(fc, ¶m);
2487 kfree(param.string);
2493 ret = ext4_validate_options(fc);
2500 static int parse_apply_sb_mount_options(struct super_block *sb,
2501 struct ext4_fs_context *m_ctx)
2503 struct ext4_sb_info *sbi = EXT4_SB(sb);
2504 char *s_mount_opts = NULL;
2505 struct ext4_fs_context *s_ctx = NULL;
2506 struct fs_context *fc = NULL;
2509 if (!sbi->s_es->s_mount_opts[0])
2512 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2513 sizeof(sbi->s_es->s_mount_opts),
2518 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2522 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2526 fc->fs_private = s_ctx;
2527 fc->s_fs_info = sbi;
2529 ret = parse_options(fc, s_mount_opts);
2533 ret = ext4_check_opt_consistency(fc, sb);
2536 ext4_msg(sb, KERN_WARNING,
2537 "failed to parse options in superblock: %s",
2543 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2544 m_ctx->journal_devnum = s_ctx->journal_devnum;
2545 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2546 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2548 ext4_apply_options(fc, sb);
2556 kfree(s_mount_opts);
2560 static void ext4_apply_quota_options(struct fs_context *fc,
2561 struct super_block *sb)
2564 bool quota_feature = ext4_has_feature_quota(sb);
2565 struct ext4_fs_context *ctx = fc->fs_private;
2566 struct ext4_sb_info *sbi = EXT4_SB(sb);
2573 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2574 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2575 if (!(ctx->qname_spec & (1 << i)))
2578 qname = ctx->s_qf_names[i]; /* May be NULL */
2581 ctx->s_qf_names[i] = NULL;
2582 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2583 lockdep_is_held(&sb->s_umount));
2585 kfree_rcu_mightsleep(qname);
2589 if (ctx->spec & EXT4_SPEC_JQFMT)
2590 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2595 * Check quota settings consistency.
2597 static int ext4_check_quota_consistency(struct fs_context *fc,
2598 struct super_block *sb)
2601 struct ext4_fs_context *ctx = fc->fs_private;
2602 struct ext4_sb_info *sbi = EXT4_SB(sb);
2603 bool quota_feature = ext4_has_feature_quota(sb);
2604 bool quota_loaded = sb_any_quota_loaded(sb);
2605 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2609 * We do the test below only for project quotas. 'usrquota' and
2610 * 'grpquota' mount options are allowed even without quota feature
2611 * to support legacy quotas in quota files.
2613 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2614 !ext4_has_feature_project(sb)) {
2615 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2616 "Cannot enable project quota enforcement.");
2620 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2621 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2623 ctx->mask_s_mount_opt & quota_flags &&
2624 !ctx_test_mount_opt(ctx, quota_flags))
2625 goto err_quota_change;
2627 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2629 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2630 if (!(ctx->qname_spec & (1 << i)))
2634 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2635 goto err_jquota_change;
2637 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2638 strcmp(get_qf_name(sb, sbi, i),
2639 ctx->s_qf_names[i]) != 0)
2640 goto err_jquota_specified;
2643 if (quota_feature) {
2644 ext4_msg(NULL, KERN_INFO,
2645 "Journaled quota options ignored when "
2646 "QUOTA feature is enabled");
2651 if (ctx->spec & EXT4_SPEC_JQFMT) {
2652 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2653 goto err_jquota_change;
2654 if (quota_feature) {
2655 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2656 "ignored when QUOTA feature is enabled");
2661 /* Make sure we don't mix old and new quota format */
2662 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2663 ctx->s_qf_names[USRQUOTA]);
2664 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2665 ctx->s_qf_names[GRPQUOTA]);
2667 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2668 test_opt(sb, USRQUOTA));
2670 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2671 test_opt(sb, GRPQUOTA));
2674 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2678 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2682 if (usr_qf_name || grp_qf_name) {
2683 if (usrquota || grpquota) {
2684 ext4_msg(NULL, KERN_ERR, "old and new quota "
2689 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2690 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2699 ext4_msg(NULL, KERN_ERR,
2700 "Cannot change quota options when quota turned on");
2703 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2704 "options when quota turned on");
2706 err_jquota_specified:
2707 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2715 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2716 struct super_block *sb)
2718 const struct ext4_fs_context *ctx = fc->fs_private;
2719 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2721 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2724 if (!ext4_has_feature_encrypt(sb)) {
2725 ext4_msg(NULL, KERN_WARNING,
2726 "test_dummy_encryption requires encrypt feature");
2730 * This mount option is just for testing, and it's not worthwhile to
2731 * implement the extra complexity (e.g. RCU protection) that would be
2732 * needed to allow it to be set or changed during remount. We do allow
2733 * it to be specified during remount, but only if there is no change.
2735 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2736 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2737 &ctx->dummy_enc_policy))
2739 ext4_msg(NULL, KERN_WARNING,
2740 "Can't set or change test_dummy_encryption on remount");
2743 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2744 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2745 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2746 &ctx->dummy_enc_policy))
2748 ext4_msg(NULL, KERN_WARNING,
2749 "Conflicting test_dummy_encryption options");
2755 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2756 struct super_block *sb)
2758 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2759 /* if already set, it was already verified to be the same */
2760 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2762 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2763 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2764 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2767 static int ext4_check_opt_consistency(struct fs_context *fc,
2768 struct super_block *sb)
2770 struct ext4_fs_context *ctx = fc->fs_private;
2771 struct ext4_sb_info *sbi = fc->s_fs_info;
2772 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2775 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2776 ext4_msg(NULL, KERN_ERR,
2777 "Mount option(s) incompatible with ext2");
2780 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2781 ext4_msg(NULL, KERN_ERR,
2782 "Mount option(s) incompatible with ext3");
2786 if (ctx->s_want_extra_isize >
2787 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2788 ext4_msg(NULL, KERN_ERR,
2789 "Invalid want_extra_isize %d",
2790 ctx->s_want_extra_isize);
2794 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2796 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2797 if (blocksize < PAGE_SIZE)
2798 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2799 "experimental mount option 'dioread_nolock' "
2800 "for blocksize < PAGE_SIZE");
2803 err = ext4_check_test_dummy_encryption(fc, sb);
2807 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2808 if (!sbi->s_journal) {
2809 ext4_msg(NULL, KERN_WARNING,
2810 "Remounting file system with no journal "
2811 "so ignoring journalled data option");
2812 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2813 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2814 test_opt(sb, DATA_FLAGS)) {
2815 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2822 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2823 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2824 ext4_msg(NULL, KERN_ERR, "can't mount with "
2825 "both data=journal and dax");
2829 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2830 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2831 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2832 fail_dax_change_remount:
2833 ext4_msg(NULL, KERN_ERR, "can't change "
2834 "dax mount option while remounting");
2836 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2837 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2838 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2839 goto fail_dax_change_remount;
2840 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2841 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2842 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2843 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2844 goto fail_dax_change_remount;
2848 return ext4_check_quota_consistency(fc, sb);
2851 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2853 struct ext4_fs_context *ctx = fc->fs_private;
2854 struct ext4_sb_info *sbi = fc->s_fs_info;
2856 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2857 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2858 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2859 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2860 sb->s_flags &= ~ctx->mask_s_flags;
2861 sb->s_flags |= ctx->vals_s_flags;
2863 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2864 APPLY(s_commit_interval);
2866 APPLY(s_max_batch_time);
2867 APPLY(s_min_batch_time);
2868 APPLY(s_want_extra_isize);
2869 APPLY(s_inode_readahead_blks);
2870 APPLY(s_max_dir_size_kb);
2871 APPLY(s_li_wait_mult);
2875 #ifdef CONFIG_EXT4_DEBUG
2876 APPLY(s_fc_debug_max_replay);
2879 ext4_apply_quota_options(fc, sb);
2880 ext4_apply_test_dummy_encryption(ctx, sb);
2884 static int ext4_validate_options(struct fs_context *fc)
2887 struct ext4_fs_context *ctx = fc->fs_private;
2888 char *usr_qf_name, *grp_qf_name;
2890 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2891 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2893 if (usr_qf_name || grp_qf_name) {
2894 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2895 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2897 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2898 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2900 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2901 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2902 ext4_msg(NULL, KERN_ERR, "old and new quota "
2911 static inline void ext4_show_quota_options(struct seq_file *seq,
2912 struct super_block *sb)
2914 #if defined(CONFIG_QUOTA)
2915 struct ext4_sb_info *sbi = EXT4_SB(sb);
2916 char *usr_qf_name, *grp_qf_name;
2918 if (sbi->s_jquota_fmt) {
2921 switch (sbi->s_jquota_fmt) {
2932 seq_printf(seq, ",jqfmt=%s", fmtname);
2936 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2937 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2939 seq_show_option(seq, "usrjquota", usr_qf_name);
2941 seq_show_option(seq, "grpjquota", grp_qf_name);
2946 static const char *token2str(int token)
2948 const struct fs_parameter_spec *spec;
2950 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2951 if (spec->opt == token && !spec->type)
2958 * - it's set to a non-default value OR
2959 * - if the per-sb default is different from the global default
2961 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2964 struct ext4_sb_info *sbi = EXT4_SB(sb);
2965 struct ext4_super_block *es = sbi->s_es;
2967 const struct mount_opts *m;
2968 char sep = nodefs ? '\n' : ',';
2970 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2971 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2973 if (sbi->s_sb_block != 1)
2974 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2976 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2977 int want_set = m->flags & MOPT_SET;
2978 int opt_2 = m->flags & MOPT_2;
2979 unsigned int mount_opt, def_mount_opt;
2981 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2982 m->flags & MOPT_SKIP)
2986 mount_opt = sbi->s_mount_opt2;
2987 def_mount_opt = sbi->s_def_mount_opt2;
2989 mount_opt = sbi->s_mount_opt;
2990 def_mount_opt = sbi->s_def_mount_opt;
2992 /* skip if same as the default */
2993 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2995 /* select Opt_noFoo vs Opt_Foo */
2997 (mount_opt & m->mount_opt) != m->mount_opt) ||
2998 (!want_set && (mount_opt & m->mount_opt)))
3000 SEQ_OPTS_PRINT("%s", token2str(m->token));
3003 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
3004 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
3005 SEQ_OPTS_PRINT("resuid=%u",
3006 from_kuid_munged(&init_user_ns, sbi->s_resuid));
3007 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3008 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3009 SEQ_OPTS_PRINT("resgid=%u",
3010 from_kgid_munged(&init_user_ns, sbi->s_resgid));
3011 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3012 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3013 SEQ_OPTS_PUTS("errors=remount-ro");
3014 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3015 SEQ_OPTS_PUTS("errors=continue");
3016 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3017 SEQ_OPTS_PUTS("errors=panic");
3018 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3019 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3020 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3021 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3022 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3023 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3024 if (nodefs || sbi->s_stripe)
3025 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3026 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3027 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3028 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3029 SEQ_OPTS_PUTS("data=journal");
3030 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3031 SEQ_OPTS_PUTS("data=ordered");
3032 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3033 SEQ_OPTS_PUTS("data=writeback");
3036 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3037 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3038 sbi->s_inode_readahead_blks);
3040 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3041 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3042 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3043 if (nodefs || sbi->s_max_dir_size_kb)
3044 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3045 if (test_opt(sb, DATA_ERR_ABORT))
3046 SEQ_OPTS_PUTS("data_err=abort");
3048 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3050 if (sb->s_flags & SB_INLINECRYPT)
3051 SEQ_OPTS_PUTS("inlinecrypt");
3053 if (test_opt(sb, DAX_ALWAYS)) {
3055 SEQ_OPTS_PUTS("dax");
3057 SEQ_OPTS_PUTS("dax=always");
3058 } else if (test_opt2(sb, DAX_NEVER)) {
3059 SEQ_OPTS_PUTS("dax=never");
3060 } else if (test_opt2(sb, DAX_INODE)) {
3061 SEQ_OPTS_PUTS("dax=inode");
3064 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3065 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3066 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3067 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3068 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3069 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3072 ext4_show_quota_options(seq, sb);
3076 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3078 return _ext4_show_options(seq, root->d_sb, 0);
3081 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3083 struct super_block *sb = seq->private;
3086 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3087 rc = _ext4_show_options(seq, sb, 1);
3088 seq_puts(seq, "\n");
3092 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3095 struct ext4_sb_info *sbi = EXT4_SB(sb);
3098 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3099 ext4_msg(sb, KERN_ERR, "revision level too high, "
3100 "forcing read-only mode");
3106 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3107 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3108 "running e2fsck is recommended");
3109 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3110 ext4_msg(sb, KERN_WARNING,
3111 "warning: mounting fs with errors, "
3112 "running e2fsck is recommended");
3113 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3114 le16_to_cpu(es->s_mnt_count) >=
3115 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3116 ext4_msg(sb, KERN_WARNING,
3117 "warning: maximal mount count reached, "
3118 "running e2fsck is recommended");
3119 else if (le32_to_cpu(es->s_checkinterval) &&
3120 (ext4_get_tstamp(es, s_lastcheck) +
3121 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3122 ext4_msg(sb, KERN_WARNING,
3123 "warning: checktime reached, "
3124 "running e2fsck is recommended");
3125 if (!sbi->s_journal)
3126 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3127 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3128 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3129 le16_add_cpu(&es->s_mnt_count, 1);
3130 ext4_update_tstamp(es, s_mtime);
3131 if (sbi->s_journal) {
3132 ext4_set_feature_journal_needs_recovery(sb);
3133 if (ext4_has_feature_orphan_file(sb))
3134 ext4_set_feature_orphan_present(sb);
3137 err = ext4_commit_super(sb);
3139 if (test_opt(sb, DEBUG))
3140 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3141 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3143 sbi->s_groups_count,
3144 EXT4_BLOCKS_PER_GROUP(sb),
3145 EXT4_INODES_PER_GROUP(sb),
3146 sbi->s_mount_opt, sbi->s_mount_opt2);
3150 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3152 struct ext4_sb_info *sbi = EXT4_SB(sb);
3153 struct flex_groups **old_groups, **new_groups;
3156 if (!sbi->s_log_groups_per_flex)
3159 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3160 if (size <= sbi->s_flex_groups_allocated)
3163 new_groups = kvzalloc(roundup_pow_of_two(size *
3164 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3166 ext4_msg(sb, KERN_ERR,
3167 "not enough memory for %d flex group pointers", size);
3170 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3171 new_groups[i] = kvzalloc(roundup_pow_of_two(
3172 sizeof(struct flex_groups)),
3174 if (!new_groups[i]) {
3175 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3176 kvfree(new_groups[j]);
3178 ext4_msg(sb, KERN_ERR,
3179 "not enough memory for %d flex groups", size);
3184 old_groups = rcu_dereference(sbi->s_flex_groups);
3186 memcpy(new_groups, old_groups,
3187 (sbi->s_flex_groups_allocated *
3188 sizeof(struct flex_groups *)));
3190 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3191 sbi->s_flex_groups_allocated = size;
3193 ext4_kvfree_array_rcu(old_groups);
3197 static int ext4_fill_flex_info(struct super_block *sb)
3199 struct ext4_sb_info *sbi = EXT4_SB(sb);
3200 struct ext4_group_desc *gdp = NULL;
3201 struct flex_groups *fg;
3202 ext4_group_t flex_group;
3205 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3206 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3207 sbi->s_log_groups_per_flex = 0;
3211 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3215 for (i = 0; i < sbi->s_groups_count; i++) {
3216 gdp = ext4_get_group_desc(sb, i, NULL);
3218 flex_group = ext4_flex_group(sbi, i);
3219 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3220 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3221 atomic64_add(ext4_free_group_clusters(sb, gdp),
3222 &fg->free_clusters);
3223 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3231 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3232 struct ext4_group_desc *gdp)
3234 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3236 __le32 le_group = cpu_to_le32(block_group);
3237 struct ext4_sb_info *sbi = EXT4_SB(sb);
3239 if (ext4_has_metadata_csum(sbi->s_sb)) {
3240 /* Use new metadata_csum algorithm */
3242 __u16 dummy_csum = 0;
3244 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3246 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3247 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3248 sizeof(dummy_csum));
3249 offset += sizeof(dummy_csum);
3250 if (offset < sbi->s_desc_size)
3251 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3252 sbi->s_desc_size - offset);
3254 crc = csum32 & 0xFFFF;
3258 /* old crc16 code */
3259 if (!ext4_has_feature_gdt_csum(sb))
3262 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3263 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3264 crc = crc16(crc, (__u8 *)gdp, offset);
3265 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3266 /* for checksum of struct ext4_group_desc do the rest...*/
3267 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3268 crc = crc16(crc, (__u8 *)gdp + offset,
3269 sbi->s_desc_size - offset);
3272 return cpu_to_le16(crc);
3275 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3276 struct ext4_group_desc *gdp)
3278 if (ext4_has_group_desc_csum(sb) &&
3279 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3285 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3286 struct ext4_group_desc *gdp)
3288 if (!ext4_has_group_desc_csum(sb))
3290 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3293 /* Called at mount-time, super-block is locked */
3294 static int ext4_check_descriptors(struct super_block *sb,
3295 ext4_fsblk_t sb_block,
3296 ext4_group_t *first_not_zeroed)
3298 struct ext4_sb_info *sbi = EXT4_SB(sb);
3299 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3300 ext4_fsblk_t last_block;
3301 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3302 ext4_fsblk_t block_bitmap;
3303 ext4_fsblk_t inode_bitmap;
3304 ext4_fsblk_t inode_table;
3305 int flexbg_flag = 0;
3306 ext4_group_t i, grp = sbi->s_groups_count;
3308 if (ext4_has_feature_flex_bg(sb))
3311 ext4_debug("Checking group descriptors");
3313 for (i = 0; i < sbi->s_groups_count; i++) {
3314 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3316 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3317 last_block = ext4_blocks_count(sbi->s_es) - 1;
3319 last_block = first_block +
3320 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3322 if ((grp == sbi->s_groups_count) &&
3323 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3326 block_bitmap = ext4_block_bitmap(sb, gdp);
3327 if (block_bitmap == sb_block) {
3328 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3329 "Block bitmap for group %u overlaps "
3334 if (block_bitmap >= sb_block + 1 &&
3335 block_bitmap <= last_bg_block) {
3336 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3337 "Block bitmap for group %u overlaps "
3338 "block group descriptors", i);
3342 if (block_bitmap < first_block || block_bitmap > last_block) {
3343 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3344 "Block bitmap for group %u not in group "
3345 "(block %llu)!", i, block_bitmap);
3348 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3349 if (inode_bitmap == sb_block) {
3350 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3351 "Inode bitmap for group %u overlaps "
3356 if (inode_bitmap >= sb_block + 1 &&
3357 inode_bitmap <= last_bg_block) {
3358 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3359 "Inode bitmap for group %u overlaps "
3360 "block group descriptors", i);
3364 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3365 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3366 "Inode bitmap for group %u not in group "
3367 "(block %llu)!", i, inode_bitmap);
3370 inode_table = ext4_inode_table(sb, gdp);
3371 if (inode_table == sb_block) {
3372 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3373 "Inode table for group %u overlaps "
3378 if (inode_table >= sb_block + 1 &&
3379 inode_table <= last_bg_block) {
3380 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3381 "Inode table for group %u overlaps "
3382 "block group descriptors", i);
3386 if (inode_table < first_block ||
3387 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3388 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3389 "Inode table for group %u not in group "
3390 "(block %llu)!", i, inode_table);
3393 ext4_lock_group(sb, i);
3394 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3395 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3396 "Checksum for group %u failed (%u!=%u)",
3397 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3398 gdp)), le16_to_cpu(gdp->bg_checksum));
3399 if (!sb_rdonly(sb)) {
3400 ext4_unlock_group(sb, i);
3404 ext4_unlock_group(sb, i);
3406 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3408 if (NULL != first_not_zeroed)
3409 *first_not_zeroed = grp;
3414 * Maximal extent format file size.
3415 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3416 * extent format containers, within a sector_t, and within i_blocks
3417 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3418 * so that won't be a limiting factor.
3420 * However there is other limiting factor. We do store extents in the form
3421 * of starting block and length, hence the resulting length of the extent
3422 * covering maximum file size must fit into on-disk format containers as
3423 * well. Given that length is always by 1 unit bigger than max unit (because
3424 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3426 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3428 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3431 loff_t upper_limit = MAX_LFS_FILESIZE;
3433 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3435 if (!has_huge_files) {
3436 upper_limit = (1LL << 32) - 1;
3438 /* total blocks in file system block size */
3439 upper_limit >>= (blkbits - 9);
3440 upper_limit <<= blkbits;
3444 * 32-bit extent-start container, ee_block. We lower the maxbytes
3445 * by one fs block, so ee_len can cover the extent of maximum file
3448 res = (1LL << 32) - 1;
3451 /* Sanity check against vm- & vfs- imposed limits */
3452 if (res > upper_limit)
3459 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3460 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3461 * We need to be 1 filesystem block less than the 2^48 sector limit.
3463 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3465 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3467 unsigned int ppb = 1 << (bits - 2);
3470 * This is calculated to be the largest file size for a dense, block
3471 * mapped file such that the file's total number of 512-byte sectors,
3472 * including data and all indirect blocks, does not exceed (2^48 - 1).
3474 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3475 * number of 512-byte sectors of the file.
3477 if (!has_huge_files) {
3479 * !has_huge_files or implies that the inode i_block field
3480 * represents total file blocks in 2^32 512-byte sectors ==
3481 * size of vfs inode i_blocks * 8
3483 upper_limit = (1LL << 32) - 1;
3485 /* total blocks in file system block size */
3486 upper_limit >>= (bits - 9);
3490 * We use 48 bit ext4_inode i_blocks
3491 * With EXT4_HUGE_FILE_FL set the i_blocks
3492 * represent total number of blocks in
3493 * file system block size
3495 upper_limit = (1LL << 48) - 1;
3499 /* Compute how many blocks we can address by block tree */
3502 res += ((loff_t)ppb) * ppb * ppb;
3503 /* Compute how many metadata blocks are needed */
3505 meta_blocks += 1 + ppb;
3506 meta_blocks += 1 + ppb + ppb * ppb;
3507 /* Does block tree limit file size? */
3508 if (res + meta_blocks <= upper_limit)
3512 /* How many metadata blocks are needed for addressing upper_limit? */
3513 upper_limit -= EXT4_NDIR_BLOCKS;
3514 /* indirect blocks */
3517 /* double indirect blocks */
3518 if (upper_limit < ppb * ppb) {
3519 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3523 meta_blocks += 1 + ppb;
3524 upper_limit -= ppb * ppb;
3525 /* tripple indirect blocks for the rest */
3526 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3527 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3531 if (res > MAX_LFS_FILESIZE)
3532 res = MAX_LFS_FILESIZE;
3537 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3538 ext4_fsblk_t logical_sb_block, int nr)
3540 struct ext4_sb_info *sbi = EXT4_SB(sb);
3541 ext4_group_t bg, first_meta_bg;
3544 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3546 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3547 return logical_sb_block + nr + 1;
3548 bg = sbi->s_desc_per_block * nr;
3549 if (ext4_bg_has_super(sb, bg))
3553 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3554 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3555 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3558 if (sb->s_blocksize == 1024 && nr == 0 &&
3559 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3562 return (has_super + ext4_group_first_block_no(sb, bg));
3566 * ext4_get_stripe_size: Get the stripe size.
3567 * @sbi: In memory super block info
3569 * If we have specified it via mount option, then
3570 * use the mount option value. If the value specified at mount time is
3571 * greater than the blocks per group use the super block value.
3572 * If the super block value is greater than blocks per group return 0.
3573 * Allocator needs it be less than blocks per group.
3576 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3578 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3579 unsigned long stripe_width =
3580 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3583 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3584 ret = sbi->s_stripe;
3585 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3587 else if (stride && stride <= sbi->s_blocks_per_group)
3593 * If the stripe width is 1, this makes no sense and
3594 * we set it to 0 to turn off stripe handling code.
3603 * Check whether this filesystem can be mounted based on
3604 * the features present and the RDONLY/RDWR mount requested.
3605 * Returns 1 if this filesystem can be mounted as requested,
3606 * 0 if it cannot be.
3608 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3610 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3611 ext4_msg(sb, KERN_ERR,
3612 "Couldn't mount because of "
3613 "unsupported optional features (%x)",
3614 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3615 ~EXT4_FEATURE_INCOMPAT_SUPP));
3619 #if !IS_ENABLED(CONFIG_UNICODE)
3620 if (ext4_has_feature_casefold(sb)) {
3621 ext4_msg(sb, KERN_ERR,
3622 "Filesystem with casefold feature cannot be "
3623 "mounted without CONFIG_UNICODE");
3631 if (ext4_has_feature_readonly(sb)) {
3632 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3633 sb->s_flags |= SB_RDONLY;
3637 /* Check that feature set is OK for a read-write mount */
3638 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3639 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3640 "unsupported optional features (%x)",
3641 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3642 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3645 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3646 ext4_msg(sb, KERN_ERR,
3647 "Can't support bigalloc feature without "
3648 "extents feature\n");
3652 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3653 if (!readonly && (ext4_has_feature_quota(sb) ||
3654 ext4_has_feature_project(sb))) {
3655 ext4_msg(sb, KERN_ERR,
3656 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3659 #endif /* CONFIG_QUOTA */
3664 * This function is called once a day if we have errors logged
3665 * on the file system
3667 static void print_daily_error_info(struct timer_list *t)
3669 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3670 struct super_block *sb = sbi->s_sb;
3671 struct ext4_super_block *es = sbi->s_es;
3673 if (es->s_error_count)
3674 /* fsck newer than v1.41.13 is needed to clean this condition. */
3675 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3676 le32_to_cpu(es->s_error_count));
3677 if (es->s_first_error_time) {
3678 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3680 ext4_get_tstamp(es, s_first_error_time),
3681 (int) sizeof(es->s_first_error_func),
3682 es->s_first_error_func,
3683 le32_to_cpu(es->s_first_error_line));
3684 if (es->s_first_error_ino)
3685 printk(KERN_CONT ": inode %u",
3686 le32_to_cpu(es->s_first_error_ino));
3687 if (es->s_first_error_block)
3688 printk(KERN_CONT ": block %llu", (unsigned long long)
3689 le64_to_cpu(es->s_first_error_block));
3690 printk(KERN_CONT "\n");
3692 if (es->s_last_error_time) {
3693 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3695 ext4_get_tstamp(es, s_last_error_time),
3696 (int) sizeof(es->s_last_error_func),
3697 es->s_last_error_func,
3698 le32_to_cpu(es->s_last_error_line));
3699 if (es->s_last_error_ino)
3700 printk(KERN_CONT ": inode %u",
3701 le32_to_cpu(es->s_last_error_ino));
3702 if (es->s_last_error_block)
3703 printk(KERN_CONT ": block %llu", (unsigned long long)
3704 le64_to_cpu(es->s_last_error_block));
3705 printk(KERN_CONT "\n");
3707 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3710 /* Find next suitable group and run ext4_init_inode_table */
3711 static int ext4_run_li_request(struct ext4_li_request *elr)
3713 struct ext4_group_desc *gdp = NULL;
3714 struct super_block *sb = elr->lr_super;
3715 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3716 ext4_group_t group = elr->lr_next_group;
3717 unsigned int prefetch_ios = 0;
3719 int nr = EXT4_SB(sb)->s_mb_prefetch;
3722 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3723 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3724 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3725 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3726 if (group >= elr->lr_next_group) {
3728 if (elr->lr_first_not_zeroed != ngroups &&
3729 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3730 elr->lr_next_group = elr->lr_first_not_zeroed;
3731 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3738 for (; group < ngroups; group++) {
3739 gdp = ext4_get_group_desc(sb, group, NULL);
3745 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3749 if (group >= ngroups)
3753 start_time = ktime_get_real_ns();
3754 ret = ext4_init_inode_table(sb, group,
3755 elr->lr_timeout ? 0 : 1);
3756 trace_ext4_lazy_itable_init(sb, group);
3757 if (elr->lr_timeout == 0) {
3758 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3759 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3761 elr->lr_next_sched = jiffies + elr->lr_timeout;
3762 elr->lr_next_group = group + 1;
3768 * Remove lr_request from the list_request and free the
3769 * request structure. Should be called with li_list_mtx held
3771 static void ext4_remove_li_request(struct ext4_li_request *elr)
3776 list_del(&elr->lr_request);
3777 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3781 static void ext4_unregister_li_request(struct super_block *sb)
3783 mutex_lock(&ext4_li_mtx);
3784 if (!ext4_li_info) {
3785 mutex_unlock(&ext4_li_mtx);
3789 mutex_lock(&ext4_li_info->li_list_mtx);
3790 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3791 mutex_unlock(&ext4_li_info->li_list_mtx);
3792 mutex_unlock(&ext4_li_mtx);
3795 static struct task_struct *ext4_lazyinit_task;
3798 * This is the function where ext4lazyinit thread lives. It walks
3799 * through the request list searching for next scheduled filesystem.
3800 * When such a fs is found, run the lazy initialization request
3801 * (ext4_rn_li_request) and keep track of the time spend in this
3802 * function. Based on that time we compute next schedule time of
3803 * the request. When walking through the list is complete, compute
3804 * next waking time and put itself into sleep.
3806 static int ext4_lazyinit_thread(void *arg)
3808 struct ext4_lazy_init *eli = arg;
3809 struct list_head *pos, *n;
3810 struct ext4_li_request *elr;
3811 unsigned long next_wakeup, cur;
3813 BUG_ON(NULL == eli);
3818 next_wakeup = MAX_JIFFY_OFFSET;
3820 mutex_lock(&eli->li_list_mtx);
3821 if (list_empty(&eli->li_request_list)) {
3822 mutex_unlock(&eli->li_list_mtx);
3825 list_for_each_safe(pos, n, &eli->li_request_list) {
3828 elr = list_entry(pos, struct ext4_li_request,
3831 if (time_before(jiffies, elr->lr_next_sched)) {
3832 if (time_before(elr->lr_next_sched, next_wakeup))
3833 next_wakeup = elr->lr_next_sched;
3836 if (down_read_trylock(&elr->lr_super->s_umount)) {
3837 if (sb_start_write_trylock(elr->lr_super)) {
3840 * We hold sb->s_umount, sb can not
3841 * be removed from the list, it is
3842 * now safe to drop li_list_mtx
3844 mutex_unlock(&eli->li_list_mtx);
3845 err = ext4_run_li_request(elr);
3846 sb_end_write(elr->lr_super);
3847 mutex_lock(&eli->li_list_mtx);
3850 up_read((&elr->lr_super->s_umount));
3852 /* error, remove the lazy_init job */
3854 ext4_remove_li_request(elr);
3858 elr->lr_next_sched = jiffies +
3859 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3861 if (time_before(elr->lr_next_sched, next_wakeup))
3862 next_wakeup = elr->lr_next_sched;
3864 mutex_unlock(&eli->li_list_mtx);
3869 if ((time_after_eq(cur, next_wakeup)) ||
3870 (MAX_JIFFY_OFFSET == next_wakeup)) {
3875 schedule_timeout_interruptible(next_wakeup - cur);
3877 if (kthread_should_stop()) {
3878 ext4_clear_request_list();
3885 * It looks like the request list is empty, but we need
3886 * to check it under the li_list_mtx lock, to prevent any
3887 * additions into it, and of course we should lock ext4_li_mtx
3888 * to atomically free the list and ext4_li_info, because at
3889 * this point another ext4 filesystem could be registering
3892 mutex_lock(&ext4_li_mtx);
3893 mutex_lock(&eli->li_list_mtx);
3894 if (!list_empty(&eli->li_request_list)) {
3895 mutex_unlock(&eli->li_list_mtx);
3896 mutex_unlock(&ext4_li_mtx);
3899 mutex_unlock(&eli->li_list_mtx);
3900 kfree(ext4_li_info);
3901 ext4_li_info = NULL;
3902 mutex_unlock(&ext4_li_mtx);
3907 static void ext4_clear_request_list(void)
3909 struct list_head *pos, *n;
3910 struct ext4_li_request *elr;
3912 mutex_lock(&ext4_li_info->li_list_mtx);
3913 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3914 elr = list_entry(pos, struct ext4_li_request,
3916 ext4_remove_li_request(elr);
3918 mutex_unlock(&ext4_li_info->li_list_mtx);
3921 static int ext4_run_lazyinit_thread(void)
3923 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3924 ext4_li_info, "ext4lazyinit");
3925 if (IS_ERR(ext4_lazyinit_task)) {
3926 int err = PTR_ERR(ext4_lazyinit_task);
3927 ext4_clear_request_list();
3928 kfree(ext4_li_info);
3929 ext4_li_info = NULL;
3930 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3931 "initialization thread\n",
3935 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3940 * Check whether it make sense to run itable init. thread or not.
3941 * If there is at least one uninitialized inode table, return
3942 * corresponding group number, else the loop goes through all
3943 * groups and return total number of groups.
3945 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3947 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3948 struct ext4_group_desc *gdp = NULL;
3950 if (!ext4_has_group_desc_csum(sb))
3953 for (group = 0; group < ngroups; group++) {
3954 gdp = ext4_get_group_desc(sb, group, NULL);
3958 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3965 static int ext4_li_info_new(void)
3967 struct ext4_lazy_init *eli = NULL;
3969 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3973 INIT_LIST_HEAD(&eli->li_request_list);
3974 mutex_init(&eli->li_list_mtx);
3976 eli->li_state |= EXT4_LAZYINIT_QUIT;
3983 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3986 struct ext4_li_request *elr;
3988 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3993 elr->lr_first_not_zeroed = start;
3994 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3995 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3996 elr->lr_next_group = start;
3998 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
4002 * Randomize first schedule time of the request to
4003 * spread the inode table initialization requests
4006 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
4010 int ext4_register_li_request(struct super_block *sb,
4011 ext4_group_t first_not_zeroed)
4013 struct ext4_sb_info *sbi = EXT4_SB(sb);
4014 struct ext4_li_request *elr = NULL;
4015 ext4_group_t ngroups = sbi->s_groups_count;
4018 mutex_lock(&ext4_li_mtx);
4019 if (sbi->s_li_request != NULL) {
4021 * Reset timeout so it can be computed again, because
4022 * s_li_wait_mult might have changed.
4024 sbi->s_li_request->lr_timeout = 0;
4028 if (sb_rdonly(sb) ||
4029 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4030 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4033 elr = ext4_li_request_new(sb, first_not_zeroed);
4039 if (NULL == ext4_li_info) {
4040 ret = ext4_li_info_new();
4045 mutex_lock(&ext4_li_info->li_list_mtx);
4046 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4047 mutex_unlock(&ext4_li_info->li_list_mtx);
4049 sbi->s_li_request = elr;
4051 * set elr to NULL here since it has been inserted to
4052 * the request_list and the removal and free of it is
4053 * handled by ext4_clear_request_list from now on.
4057 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4058 ret = ext4_run_lazyinit_thread();
4063 mutex_unlock(&ext4_li_mtx);
4070 * We do not need to lock anything since this is called on
4073 static void ext4_destroy_lazyinit_thread(void)
4076 * If thread exited earlier
4077 * there's nothing to be done.
4079 if (!ext4_li_info || !ext4_lazyinit_task)
4082 kthread_stop(ext4_lazyinit_task);
4085 static int set_journal_csum_feature_set(struct super_block *sb)
4088 int compat, incompat;
4089 struct ext4_sb_info *sbi = EXT4_SB(sb);
4091 if (ext4_has_metadata_csum(sb)) {
4092 /* journal checksum v3 */
4094 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4096 /* journal checksum v1 */
4097 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4101 jbd2_journal_clear_features(sbi->s_journal,
4102 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4103 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4104 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4105 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4106 ret = jbd2_journal_set_features(sbi->s_journal,
4108 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4110 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4111 ret = jbd2_journal_set_features(sbi->s_journal,
4114 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4115 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4117 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4118 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4125 * Note: calculating the overhead so we can be compatible with
4126 * historical BSD practice is quite difficult in the face of
4127 * clusters/bigalloc. This is because multiple metadata blocks from
4128 * different block group can end up in the same allocation cluster.
4129 * Calculating the exact overhead in the face of clustered allocation
4130 * requires either O(all block bitmaps) in memory or O(number of block
4131 * groups**2) in time. We will still calculate the superblock for
4132 * older file systems --- and if we come across with a bigalloc file
4133 * system with zero in s_overhead_clusters the estimate will be close to
4134 * correct especially for very large cluster sizes --- but for newer
4135 * file systems, it's better to calculate this figure once at mkfs
4136 * time, and store it in the superblock. If the superblock value is
4137 * present (even for non-bigalloc file systems), we will use it.
4139 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4142 struct ext4_sb_info *sbi = EXT4_SB(sb);
4143 struct ext4_group_desc *gdp;
4144 ext4_fsblk_t first_block, last_block, b;
4145 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4146 int s, j, count = 0;
4147 int has_super = ext4_bg_has_super(sb, grp);
4149 if (!ext4_has_feature_bigalloc(sb))
4150 return (has_super + ext4_bg_num_gdb(sb, grp) +
4151 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4152 sbi->s_itb_per_group + 2);
4154 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4155 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4156 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4157 for (i = 0; i < ngroups; i++) {
4158 gdp = ext4_get_group_desc(sb, i, NULL);
4159 b = ext4_block_bitmap(sb, gdp);
4160 if (b >= first_block && b <= last_block) {
4161 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4164 b = ext4_inode_bitmap(sb, gdp);
4165 if (b >= first_block && b <= last_block) {
4166 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4169 b = ext4_inode_table(sb, gdp);
4170 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4171 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4172 int c = EXT4_B2C(sbi, b - first_block);
4173 ext4_set_bit(c, buf);
4179 if (ext4_bg_has_super(sb, grp)) {
4180 ext4_set_bit(s++, buf);
4183 j = ext4_bg_num_gdb(sb, grp);
4184 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4185 ext4_error(sb, "Invalid number of block group "
4186 "descriptor blocks: %d", j);
4187 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4191 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4195 return EXT4_CLUSTERS_PER_GROUP(sb) -
4196 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4200 * Compute the overhead and stash it in sbi->s_overhead
4202 int ext4_calculate_overhead(struct super_block *sb)
4204 struct ext4_sb_info *sbi = EXT4_SB(sb);
4205 struct ext4_super_block *es = sbi->s_es;
4206 struct inode *j_inode;
4207 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4208 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4209 ext4_fsblk_t overhead = 0;
4210 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4216 * Compute the overhead (FS structures). This is constant
4217 * for a given filesystem unless the number of block groups
4218 * changes so we cache the previous value until it does.
4222 * All of the blocks before first_data_block are overhead
4224 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4227 * Add the overhead found in each block group
4229 for (i = 0; i < ngroups; i++) {
4232 blks = count_overhead(sb, i, buf);
4235 memset(buf, 0, PAGE_SIZE);
4240 * Add the internal journal blocks whether the journal has been
4243 if (sbi->s_journal && !sbi->s_journal_bdev)
4244 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4245 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4246 /* j_inum for internal journal is non-zero */
4247 j_inode = ext4_get_journal_inode(sb, j_inum);
4248 if (!IS_ERR(j_inode)) {
4249 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4250 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4253 ext4_msg(sb, KERN_ERR, "can't get journal size");
4256 sbi->s_overhead = overhead;
4258 free_page((unsigned long) buf);
4262 static void ext4_set_resv_clusters(struct super_block *sb)
4264 ext4_fsblk_t resv_clusters;
4265 struct ext4_sb_info *sbi = EXT4_SB(sb);
4268 * There's no need to reserve anything when we aren't using extents.
4269 * The space estimates are exact, there are no unwritten extents,
4270 * hole punching doesn't need new metadata... This is needed especially
4271 * to keep ext2/3 backward compatibility.
4273 if (!ext4_has_feature_extents(sb))
4276 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4277 * This should cover the situations where we can not afford to run
4278 * out of space like for example punch hole, or converting
4279 * unwritten extents in delalloc path. In most cases such
4280 * allocation would require 1, or 2 blocks, higher numbers are
4283 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4284 sbi->s_cluster_bits);
4286 do_div(resv_clusters, 50);
4287 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4289 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4292 static const char *ext4_quota_mode(struct super_block *sb)
4295 if (!ext4_quota_capable(sb))
4298 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4299 return "journalled";
4307 static void ext4_setup_csum_trigger(struct super_block *sb,
4308 enum ext4_journal_trigger_type type,
4310 struct jbd2_buffer_trigger_type *type,
4311 struct buffer_head *bh,
4315 struct ext4_sb_info *sbi = EXT4_SB(sb);
4317 sbi->s_journal_triggers[type].sb = sb;
4318 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4321 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4326 kfree(sbi->s_blockgroup_lock);
4327 fs_put_dax(sbi->s_daxdev, NULL);
4331 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4333 struct ext4_sb_info *sbi;
4335 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4339 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4342 sbi->s_blockgroup_lock =
4343 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4345 if (!sbi->s_blockgroup_lock)
4348 sb->s_fs_info = sbi;
4352 fs_put_dax(sbi->s_daxdev, NULL);
4357 static void ext4_set_def_opts(struct super_block *sb,
4358 struct ext4_super_block *es)
4360 unsigned long def_mount_opts;
4362 /* Set defaults before we parse the mount options */
4363 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4364 set_opt(sb, INIT_INODE_TABLE);
4365 if (def_mount_opts & EXT4_DEFM_DEBUG)
4367 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4369 if (def_mount_opts & EXT4_DEFM_UID16)
4370 set_opt(sb, NO_UID32);
4371 /* xattr user namespace & acls are now defaulted on */
4372 set_opt(sb, XATTR_USER);
4373 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4374 set_opt(sb, POSIX_ACL);
4376 if (ext4_has_feature_fast_commit(sb))
4377 set_opt2(sb, JOURNAL_FAST_COMMIT);
4378 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4379 if (ext4_has_metadata_csum(sb))
4380 set_opt(sb, JOURNAL_CHECKSUM);
4382 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4383 set_opt(sb, JOURNAL_DATA);
4384 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4385 set_opt(sb, ORDERED_DATA);
4386 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4387 set_opt(sb, WRITEBACK_DATA);
4389 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4390 set_opt(sb, ERRORS_PANIC);
4391 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4392 set_opt(sb, ERRORS_CONT);
4394 set_opt(sb, ERRORS_RO);
4395 /* block_validity enabled by default; disable with noblock_validity */
4396 set_opt(sb, BLOCK_VALIDITY);
4397 if (def_mount_opts & EXT4_DEFM_DISCARD)
4398 set_opt(sb, DISCARD);
4400 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4401 set_opt(sb, BARRIER);
4404 * enable delayed allocation by default
4405 * Use -o nodelalloc to turn it off
4407 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4408 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4409 set_opt(sb, DELALLOC);
4411 if (sb->s_blocksize == PAGE_SIZE)
4412 set_opt(sb, DIOREAD_NOLOCK);
4415 static int ext4_handle_clustersize(struct super_block *sb)
4417 struct ext4_sb_info *sbi = EXT4_SB(sb);
4418 struct ext4_super_block *es = sbi->s_es;
4421 /* Handle clustersize */
4422 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4423 if (ext4_has_feature_bigalloc(sb)) {
4424 if (clustersize < sb->s_blocksize) {
4425 ext4_msg(sb, KERN_ERR,
4426 "cluster size (%d) smaller than "
4427 "block size (%lu)", clustersize, sb->s_blocksize);
4430 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4431 le32_to_cpu(es->s_log_block_size);
4432 sbi->s_clusters_per_group =
4433 le32_to_cpu(es->s_clusters_per_group);
4434 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4435 ext4_msg(sb, KERN_ERR,
4436 "#clusters per group too big: %lu",
4437 sbi->s_clusters_per_group);
4440 if (sbi->s_blocks_per_group !=
4441 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4442 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4443 "clusters per group (%lu) inconsistent",
4444 sbi->s_blocks_per_group,
4445 sbi->s_clusters_per_group);
4449 if (clustersize != sb->s_blocksize) {
4450 ext4_msg(sb, KERN_ERR,
4451 "fragment/cluster size (%d) != "
4452 "block size (%lu)", clustersize, sb->s_blocksize);
4455 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4456 ext4_msg(sb, KERN_ERR,
4457 "#blocks per group too big: %lu",
4458 sbi->s_blocks_per_group);
4461 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4462 sbi->s_cluster_bits = 0;
4464 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4466 /* Do we have standard group size of clustersize * 8 blocks ? */
4467 if (sbi->s_blocks_per_group == clustersize << 3)
4468 set_opt2(sb, STD_GROUP_SIZE);
4473 static void ext4_fast_commit_init(struct super_block *sb)
4475 struct ext4_sb_info *sbi = EXT4_SB(sb);
4477 /* Initialize fast commit stuff */
4478 atomic_set(&sbi->s_fc_subtid, 0);
4479 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4480 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4481 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4482 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4483 sbi->s_fc_bytes = 0;
4484 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4485 sbi->s_fc_ineligible_tid = 0;
4486 spin_lock_init(&sbi->s_fc_lock);
4487 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4488 sbi->s_fc_replay_state.fc_regions = NULL;
4489 sbi->s_fc_replay_state.fc_regions_size = 0;
4490 sbi->s_fc_replay_state.fc_regions_used = 0;
4491 sbi->s_fc_replay_state.fc_regions_valid = 0;
4492 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4493 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4494 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4497 static int ext4_inode_info_init(struct super_block *sb,
4498 struct ext4_super_block *es)
4500 struct ext4_sb_info *sbi = EXT4_SB(sb);
4502 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4503 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4504 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4506 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4507 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4508 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4509 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4513 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4514 (!is_power_of_2(sbi->s_inode_size)) ||
4515 (sbi->s_inode_size > sb->s_blocksize)) {
4516 ext4_msg(sb, KERN_ERR,
4517 "unsupported inode size: %d",
4519 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4523 * i_atime_extra is the last extra field available for
4524 * [acm]times in struct ext4_inode. Checking for that
4525 * field should suffice to ensure we have extra space
4528 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4529 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4530 sb->s_time_gran = 1;
4531 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4533 sb->s_time_gran = NSEC_PER_SEC;
4534 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4536 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4539 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4540 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4541 EXT4_GOOD_OLD_INODE_SIZE;
4542 if (ext4_has_feature_extra_isize(sb)) {
4543 unsigned v, max = (sbi->s_inode_size -
4544 EXT4_GOOD_OLD_INODE_SIZE);
4546 v = le16_to_cpu(es->s_want_extra_isize);
4548 ext4_msg(sb, KERN_ERR,
4549 "bad s_want_extra_isize: %d", v);
4552 if (sbi->s_want_extra_isize < v)
4553 sbi->s_want_extra_isize = v;
4555 v = le16_to_cpu(es->s_min_extra_isize);
4557 ext4_msg(sb, KERN_ERR,
4558 "bad s_min_extra_isize: %d", v);
4561 if (sbi->s_want_extra_isize < v)
4562 sbi->s_want_extra_isize = v;
4569 #if IS_ENABLED(CONFIG_UNICODE)
4570 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4572 const struct ext4_sb_encodings *encoding_info;
4573 struct unicode_map *encoding;
4574 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4576 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4579 encoding_info = ext4_sb_read_encoding(es);
4580 if (!encoding_info) {
4581 ext4_msg(sb, KERN_ERR,
4582 "Encoding requested by superblock is unknown");
4586 encoding = utf8_load(encoding_info->version);
4587 if (IS_ERR(encoding)) {
4588 ext4_msg(sb, KERN_ERR,
4589 "can't mount with superblock charset: %s-%u.%u.%u "
4590 "not supported by the kernel. flags: 0x%x.",
4591 encoding_info->name,
4592 unicode_major(encoding_info->version),
4593 unicode_minor(encoding_info->version),
4594 unicode_rev(encoding_info->version),
4598 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4599 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4600 unicode_major(encoding_info->version),
4601 unicode_minor(encoding_info->version),
4602 unicode_rev(encoding_info->version),
4605 sb->s_encoding = encoding;
4606 sb->s_encoding_flags = encoding_flags;
4611 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4617 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4619 struct ext4_sb_info *sbi = EXT4_SB(sb);
4621 /* Warn if metadata_csum and gdt_csum are both set. */
4622 if (ext4_has_feature_metadata_csum(sb) &&
4623 ext4_has_feature_gdt_csum(sb))
4624 ext4_warning(sb, "metadata_csum and uninit_bg are "
4625 "redundant flags; please run fsck.");
4627 /* Check for a known checksum algorithm */
4628 if (!ext4_verify_csum_type(sb, es)) {
4629 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4630 "unknown checksum algorithm.");
4633 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4634 ext4_orphan_file_block_trigger);
4636 /* Load the checksum driver */
4637 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4638 if (IS_ERR(sbi->s_chksum_driver)) {
4639 int ret = PTR_ERR(sbi->s_chksum_driver);
4640 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4641 sbi->s_chksum_driver = NULL;
4645 /* Check superblock checksum */
4646 if (!ext4_superblock_csum_verify(sb, es)) {
4647 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4648 "invalid superblock checksum. Run e2fsck?");
4652 /* Precompute checksum seed for all metadata */
4653 if (ext4_has_feature_csum_seed(sb))
4654 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4655 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4656 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4657 sizeof(es->s_uuid));
4661 static int ext4_check_feature_compatibility(struct super_block *sb,
4662 struct ext4_super_block *es,
4665 struct ext4_sb_info *sbi = EXT4_SB(sb);
4667 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4668 (ext4_has_compat_features(sb) ||
4669 ext4_has_ro_compat_features(sb) ||
4670 ext4_has_incompat_features(sb)))
4671 ext4_msg(sb, KERN_WARNING,
4672 "feature flags set on rev 0 fs, "
4673 "running e2fsck is recommended");
4675 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4676 set_opt2(sb, HURD_COMPAT);
4677 if (ext4_has_feature_64bit(sb)) {
4678 ext4_msg(sb, KERN_ERR,
4679 "The Hurd can't support 64-bit file systems");
4684 * ea_inode feature uses l_i_version field which is not
4685 * available in HURD_COMPAT mode.
4687 if (ext4_has_feature_ea_inode(sb)) {
4688 ext4_msg(sb, KERN_ERR,
4689 "ea_inode feature is not supported for Hurd");
4694 if (IS_EXT2_SB(sb)) {
4695 if (ext2_feature_set_ok(sb))
4696 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4697 "using the ext4 subsystem");
4700 * If we're probing be silent, if this looks like
4701 * it's actually an ext[34] filesystem.
4703 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4705 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4706 "to feature incompatibilities");
4711 if (IS_EXT3_SB(sb)) {
4712 if (ext3_feature_set_ok(sb))
4713 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4714 "using the ext4 subsystem");
4717 * If we're probing be silent, if this looks like
4718 * it's actually an ext4 filesystem.
4720 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4722 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4723 "to feature incompatibilities");
4729 * Check feature flags regardless of the revision level, since we
4730 * previously didn't change the revision level when setting the flags,
4731 * so there is a chance incompat flags are set on a rev 0 filesystem.
4733 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4736 if (sbi->s_daxdev) {
4737 if (sb->s_blocksize == PAGE_SIZE)
4738 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4740 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4743 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4744 if (ext4_has_feature_inline_data(sb)) {
4745 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4746 " that may contain inline data");
4749 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4750 ext4_msg(sb, KERN_ERR,
4751 "DAX unsupported by block device.");
4756 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4757 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4758 es->s_encryption_level);
4765 static int ext4_check_geometry(struct super_block *sb,
4766 struct ext4_super_block *es)
4768 struct ext4_sb_info *sbi = EXT4_SB(sb);
4772 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4773 ext4_msg(sb, KERN_ERR,
4774 "Number of reserved GDT blocks insanely large: %d",
4775 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4779 * Test whether we have more sectors than will fit in sector_t,
4780 * and whether the max offset is addressable by the page cache.
4782 err = generic_check_addressable(sb->s_blocksize_bits,
4783 ext4_blocks_count(es));
4785 ext4_msg(sb, KERN_ERR, "filesystem"
4786 " too large to mount safely on this system");
4790 /* check blocks count against device size */
4791 blocks_count = sb_bdev_nr_blocks(sb);
4792 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4793 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4794 "exceeds size of device (%llu blocks)",
4795 ext4_blocks_count(es), blocks_count);
4800 * It makes no sense for the first data block to be beyond the end
4801 * of the filesystem.
4803 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4804 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4805 "block %u is beyond end of filesystem (%llu)",
4806 le32_to_cpu(es->s_first_data_block),
4807 ext4_blocks_count(es));
4810 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4811 (sbi->s_cluster_ratio == 1)) {
4812 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4813 "block is 0 with a 1k block and cluster size");
4817 blocks_count = (ext4_blocks_count(es) -
4818 le32_to_cpu(es->s_first_data_block) +
4819 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4820 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4821 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4822 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4823 "(block count %llu, first data block %u, "
4824 "blocks per group %lu)", blocks_count,
4825 ext4_blocks_count(es),
4826 le32_to_cpu(es->s_first_data_block),
4827 EXT4_BLOCKS_PER_GROUP(sb));
4830 sbi->s_groups_count = blocks_count;
4831 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4832 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4833 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4834 le32_to_cpu(es->s_inodes_count)) {
4835 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4836 le32_to_cpu(es->s_inodes_count),
4837 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4844 static int ext4_group_desc_init(struct super_block *sb,
4845 struct ext4_super_block *es,
4846 ext4_fsblk_t logical_sb_block,
4847 ext4_group_t *first_not_zeroed)
4849 struct ext4_sb_info *sbi = EXT4_SB(sb);
4850 unsigned int db_count;
4854 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4855 EXT4_DESC_PER_BLOCK(sb);
4856 if (ext4_has_feature_meta_bg(sb)) {
4857 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4858 ext4_msg(sb, KERN_WARNING,
4859 "first meta block group too large: %u "
4860 "(group descriptor block count %u)",
4861 le32_to_cpu(es->s_first_meta_bg), db_count);
4865 rcu_assign_pointer(sbi->s_group_desc,
4866 kvmalloc_array(db_count,
4867 sizeof(struct buffer_head *),
4869 if (sbi->s_group_desc == NULL) {
4870 ext4_msg(sb, KERN_ERR, "not enough memory");
4874 bgl_lock_init(sbi->s_blockgroup_lock);
4876 /* Pre-read the descriptors into the buffer cache */
4877 for (i = 0; i < db_count; i++) {
4878 block = descriptor_loc(sb, logical_sb_block, i);
4879 ext4_sb_breadahead_unmovable(sb, block);
4882 for (i = 0; i < db_count; i++) {
4883 struct buffer_head *bh;
4885 block = descriptor_loc(sb, logical_sb_block, i);
4886 bh = ext4_sb_bread_unmovable(sb, block);
4888 ext4_msg(sb, KERN_ERR,
4889 "can't read group descriptor %d", i);
4890 sbi->s_gdb_count = i;
4894 rcu_dereference(sbi->s_group_desc)[i] = bh;
4897 sbi->s_gdb_count = db_count;
4898 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4899 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4900 return -EFSCORRUPTED;
4906 static int ext4_load_and_init_journal(struct super_block *sb,
4907 struct ext4_super_block *es,
4908 struct ext4_fs_context *ctx)
4910 struct ext4_sb_info *sbi = EXT4_SB(sb);
4913 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4917 if (ext4_has_feature_64bit(sb) &&
4918 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4919 JBD2_FEATURE_INCOMPAT_64BIT)) {
4920 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4924 if (!set_journal_csum_feature_set(sb)) {
4925 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4930 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4931 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4932 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4933 ext4_msg(sb, KERN_ERR,
4934 "Failed to set fast commit journal feature");
4938 /* We have now updated the journal if required, so we can
4939 * validate the data journaling mode. */
4940 switch (test_opt(sb, DATA_FLAGS)) {
4942 /* No mode set, assume a default based on the journal
4943 * capabilities: ORDERED_DATA if the journal can
4944 * cope, else JOURNAL_DATA
4946 if (jbd2_journal_check_available_features
4947 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4948 set_opt(sb, ORDERED_DATA);
4949 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4951 set_opt(sb, JOURNAL_DATA);
4952 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4956 case EXT4_MOUNT_ORDERED_DATA:
4957 case EXT4_MOUNT_WRITEBACK_DATA:
4958 if (!jbd2_journal_check_available_features
4959 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4960 ext4_msg(sb, KERN_ERR, "Journal does not support "
4961 "requested data journaling mode");
4969 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4970 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4971 ext4_msg(sb, KERN_ERR, "can't mount with "
4972 "journal_async_commit in data=ordered mode");
4976 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4978 sbi->s_journal->j_submit_inode_data_buffers =
4979 ext4_journal_submit_inode_data_buffers;
4980 sbi->s_journal->j_finish_inode_data_buffers =
4981 ext4_journal_finish_inode_data_buffers;
4986 /* flush s_sb_upd_work before destroying the journal. */
4987 flush_work(&sbi->s_sb_upd_work);
4988 jbd2_journal_destroy(sbi->s_journal);
4989 sbi->s_journal = NULL;
4993 static int ext4_check_journal_data_mode(struct super_block *sb)
4995 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4996 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4997 "data=journal disables delayed allocation, "
4998 "dioread_nolock, O_DIRECT and fast_commit support!\n");
4999 /* can't mount with both data=journal and dioread_nolock. */
5000 clear_opt(sb, DIOREAD_NOLOCK);
5001 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5002 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5003 ext4_msg(sb, KERN_ERR, "can't mount with "
5004 "both data=journal and delalloc");
5007 if (test_opt(sb, DAX_ALWAYS)) {
5008 ext4_msg(sb, KERN_ERR, "can't mount with "
5009 "both data=journal and dax");
5012 if (ext4_has_feature_encrypt(sb)) {
5013 ext4_msg(sb, KERN_WARNING,
5014 "encrypted files will use data=ordered "
5015 "instead of data journaling mode");
5017 if (test_opt(sb, DELALLOC))
5018 clear_opt(sb, DELALLOC);
5020 sb->s_iflags |= SB_I_CGROUPWB;
5026 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5029 struct ext4_sb_info *sbi = EXT4_SB(sb);
5030 struct ext4_super_block *es;
5031 ext4_fsblk_t logical_sb_block;
5032 unsigned long offset = 0;
5033 struct buffer_head *bh;
5037 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5039 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5044 * The ext4 superblock will not be buffer aligned for other than 1kB
5045 * block sizes. We need to calculate the offset from buffer start.
5047 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5048 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5049 offset = do_div(logical_sb_block, blocksize);
5051 logical_sb_block = sbi->s_sb_block;
5054 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5056 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5060 * Note: s_es must be initialized as soon as possible because
5061 * some ext4 macro-instructions depend on its value
5063 es = (struct ext4_super_block *) (bh->b_data + offset);
5065 sb->s_magic = le16_to_cpu(es->s_magic);
5066 if (sb->s_magic != EXT4_SUPER_MAGIC) {
5068 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5072 if (le32_to_cpu(es->s_log_block_size) >
5073 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5074 ext4_msg(sb, KERN_ERR,
5075 "Invalid log block size: %u",
5076 le32_to_cpu(es->s_log_block_size));
5079 if (le32_to_cpu(es->s_log_cluster_size) >
5080 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5081 ext4_msg(sb, KERN_ERR,
5082 "Invalid log cluster size: %u",
5083 le32_to_cpu(es->s_log_cluster_size));
5087 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5090 * If the default block size is not the same as the real block size,
5091 * we need to reload it.
5093 if (sb->s_blocksize == blocksize) {
5094 *lsb = logical_sb_block;
5100 * bh must be released before kill_bdev(), otherwise
5101 * it won't be freed and its page also. kill_bdev()
5102 * is called by sb_set_blocksize().
5105 /* Validate the filesystem blocksize */
5106 if (!sb_set_blocksize(sb, blocksize)) {
5107 ext4_msg(sb, KERN_ERR, "bad block size %d",
5113 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5114 offset = do_div(logical_sb_block, blocksize);
5115 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5117 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5122 es = (struct ext4_super_block *)(bh->b_data + offset);
5124 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5125 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5128 *lsb = logical_sb_block;
5136 static void ext4_hash_info_init(struct super_block *sb)
5138 struct ext4_sb_info *sbi = EXT4_SB(sb);
5139 struct ext4_super_block *es = sbi->s_es;
5142 for (i = 0; i < 4; i++)
5143 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5145 sbi->s_def_hash_version = es->s_def_hash_version;
5146 if (ext4_has_feature_dir_index(sb)) {
5147 i = le32_to_cpu(es->s_flags);
5148 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5149 sbi->s_hash_unsigned = 3;
5150 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5151 #ifdef __CHAR_UNSIGNED__
5154 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5155 sbi->s_hash_unsigned = 3;
5159 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5165 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5167 struct ext4_sb_info *sbi = EXT4_SB(sb);
5168 struct ext4_super_block *es = sbi->s_es;
5171 has_huge_files = ext4_has_feature_huge_file(sb);
5172 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5174 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5176 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5177 if (ext4_has_feature_64bit(sb)) {
5178 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5179 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5180 !is_power_of_2(sbi->s_desc_size)) {
5181 ext4_msg(sb, KERN_ERR,
5182 "unsupported descriptor size %lu",
5187 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5189 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5190 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5192 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5193 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5195 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5198 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5199 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5200 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5201 sbi->s_inodes_per_group);
5204 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5205 sbi->s_inodes_per_block;
5206 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5207 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5208 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5209 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5214 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5216 struct ext4_super_block *es = NULL;
5217 struct ext4_sb_info *sbi = EXT4_SB(sb);
5218 ext4_fsblk_t logical_sb_block;
5222 ext4_group_t first_not_zeroed;
5223 struct ext4_fs_context *ctx = fc->fs_private;
5224 int silent = fc->sb_flags & SB_SILENT;
5226 /* Set defaults for the variables that will be set during parsing */
5227 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5228 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5230 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5231 sbi->s_sectors_written_start =
5232 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5234 err = ext4_load_super(sb, &logical_sb_block, silent);
5239 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5241 err = ext4_init_metadata_csum(sb, es);
5245 ext4_set_def_opts(sb, es);
5247 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5248 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5249 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5250 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5251 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5254 * set default s_li_wait_mult for lazyinit, for the case there is
5255 * no mount option specified.
5257 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5259 err = ext4_inode_info_init(sb, es);
5263 err = parse_apply_sb_mount_options(sb, ctx);
5267 sbi->s_def_mount_opt = sbi->s_mount_opt;
5268 sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5270 err = ext4_check_opt_consistency(fc, sb);
5274 ext4_apply_options(fc, sb);
5276 err = ext4_encoding_init(sb, es);
5280 err = ext4_check_journal_data_mode(sb);
5284 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5285 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5287 /* i_version is always enabled now */
5288 sb->s_flags |= SB_I_VERSION;
5290 err = ext4_check_feature_compatibility(sb, es, silent);
5294 err = ext4_block_group_meta_init(sb, silent);
5298 ext4_hash_info_init(sb);
5300 err = ext4_handle_clustersize(sb);
5304 err = ext4_check_geometry(sb, es);
5308 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5309 spin_lock_init(&sbi->s_error_lock);
5310 INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5312 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5316 err = ext4_es_register_shrinker(sbi);
5320 sbi->s_stripe = ext4_get_stripe_size(sbi);
5322 * It's hard to get stripe aligned blocks if stripe is not aligned with
5323 * cluster, just disable stripe and alert user to simpfy code and avoid
5324 * stripe aligned allocation which will rarely successes.
5326 if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 &&
5327 sbi->s_stripe % sbi->s_cluster_ratio != 0) {
5328 ext4_msg(sb, KERN_WARNING,
5329 "stripe (%lu) is not aligned with cluster size (%u), "
5330 "stripe is disabled",
5331 sbi->s_stripe, sbi->s_cluster_ratio);
5334 sbi->s_extent_max_zeroout_kb = 32;
5337 * set up enough so that it can read an inode
5339 sb->s_op = &ext4_sops;
5340 sb->s_export_op = &ext4_export_ops;
5341 sb->s_xattr = ext4_xattr_handlers;
5342 #ifdef CONFIG_FS_ENCRYPTION
5343 sb->s_cop = &ext4_cryptops;
5345 #ifdef CONFIG_FS_VERITY
5346 sb->s_vop = &ext4_verityops;
5349 sb->dq_op = &ext4_quota_operations;
5350 if (ext4_has_feature_quota(sb))
5351 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5353 sb->s_qcop = &ext4_qctl_operations;
5354 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5356 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5358 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5359 mutex_init(&sbi->s_orphan_lock);
5361 ext4_fast_commit_init(sb);
5365 needs_recovery = (es->s_last_orphan != 0 ||
5366 ext4_has_feature_orphan_present(sb) ||
5367 ext4_has_feature_journal_needs_recovery(sb));
5369 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5370 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5372 goto failed_mount3a;
5377 * The first inode we look at is the journal inode. Don't try
5378 * root first: it may be modified in the journal!
5380 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5381 err = ext4_load_and_init_journal(sb, es, ctx);
5383 goto failed_mount3a;
5384 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5385 ext4_has_feature_journal_needs_recovery(sb)) {
5386 ext4_msg(sb, KERN_ERR, "required journal recovery "
5387 "suppressed and not mounted read-only");
5388 goto failed_mount3a;
5390 /* Nojournal mode, all journal mount options are illegal */
5391 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5392 ext4_msg(sb, KERN_ERR, "can't mount with "
5393 "journal_async_commit, fs mounted w/o journal");
5394 goto failed_mount3a;
5397 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5398 ext4_msg(sb, KERN_ERR, "can't mount with "
5399 "journal_checksum, fs mounted w/o journal");
5400 goto failed_mount3a;
5402 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5403 ext4_msg(sb, KERN_ERR, "can't mount with "
5404 "commit=%lu, fs mounted w/o journal",
5405 sbi->s_commit_interval / HZ);
5406 goto failed_mount3a;
5408 if (EXT4_MOUNT_DATA_FLAGS &
5409 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5410 ext4_msg(sb, KERN_ERR, "can't mount with "
5411 "data=, fs mounted w/o journal");
5412 goto failed_mount3a;
5414 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5415 clear_opt(sb, JOURNAL_CHECKSUM);
5416 clear_opt(sb, DATA_FLAGS);
5417 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5418 sbi->s_journal = NULL;
5422 if (!test_opt(sb, NO_MBCACHE)) {
5423 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5424 if (!sbi->s_ea_block_cache) {
5425 ext4_msg(sb, KERN_ERR,
5426 "Failed to create ea_block_cache");
5428 goto failed_mount_wq;
5431 if (ext4_has_feature_ea_inode(sb)) {
5432 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5433 if (!sbi->s_ea_inode_cache) {
5434 ext4_msg(sb, KERN_ERR,
5435 "Failed to create ea_inode_cache");
5437 goto failed_mount_wq;
5443 * Get the # of file system overhead blocks from the
5444 * superblock if present.
5446 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5447 /* ignore the precalculated value if it is ridiculous */
5448 if (sbi->s_overhead > ext4_blocks_count(es))
5449 sbi->s_overhead = 0;
5451 * If the bigalloc feature is not enabled recalculating the
5452 * overhead doesn't take long, so we might as well just redo
5453 * it to make sure we are using the correct value.
5455 if (!ext4_has_feature_bigalloc(sb))
5456 sbi->s_overhead = 0;
5457 if (sbi->s_overhead == 0) {
5458 err = ext4_calculate_overhead(sb);
5460 goto failed_mount_wq;
5464 * The maximum number of concurrent works can be high and
5465 * concurrency isn't really necessary. Limit it to 1.
5467 EXT4_SB(sb)->rsv_conversion_wq =
5468 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5469 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5470 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5476 * The jbd2_journal_load will have done any necessary log recovery,
5477 * so we can safely mount the rest of the filesystem now.
5480 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5482 ext4_msg(sb, KERN_ERR, "get root inode failed");
5483 err = PTR_ERR(root);
5487 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5488 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5490 err = -EFSCORRUPTED;
5494 sb->s_root = d_make_root(root);
5496 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5501 err = ext4_setup_super(sb, es, sb_rdonly(sb));
5502 if (err == -EROFS) {
5503 sb->s_flags |= SB_RDONLY;
5505 goto failed_mount4a;
5507 ext4_set_resv_clusters(sb);
5509 if (test_opt(sb, BLOCK_VALIDITY)) {
5510 err = ext4_setup_system_zone(sb);
5512 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5514 goto failed_mount4a;
5517 ext4_fc_replay_cleanup(sb);
5522 * Enable optimize_scan if number of groups is > threshold. This can be
5523 * turned off by passing "mb_optimize_scan=0". This can also be
5524 * turned on forcefully by passing "mb_optimize_scan=1".
5526 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5527 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5528 set_opt2(sb, MB_OPTIMIZE_SCAN);
5530 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5533 err = ext4_mb_init(sb);
5535 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5541 * We can only set up the journal commit callback once
5542 * mballoc is initialized
5545 sbi->s_journal->j_commit_callback =
5546 ext4_journal_commit_callback;
5548 err = ext4_percpu_param_init(sbi);
5552 if (ext4_has_feature_flex_bg(sb))
5553 if (!ext4_fill_flex_info(sb)) {
5554 ext4_msg(sb, KERN_ERR,
5555 "unable to initialize "
5556 "flex_bg meta info!");
5561 err = ext4_register_li_request(sb, first_not_zeroed);
5565 err = ext4_register_sysfs(sb);
5569 err = ext4_init_orphan_info(sb);
5573 /* Enable quota usage during mount. */
5574 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5575 err = ext4_enable_quotas(sb);
5579 #endif /* CONFIG_QUOTA */
5582 * Save the original bdev mapping's wb_err value which could be
5583 * used to detect the metadata async write error.
5585 spin_lock_init(&sbi->s_bdev_wb_lock);
5586 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5587 &sbi->s_bdev_wb_err);
5588 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5589 ext4_orphan_cleanup(sb, es);
5590 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5592 * Update the checksum after updating free space/inode counters and
5593 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5594 * checksum in the buffer cache until it is written out and
5595 * e2fsprogs programs trying to open a file system immediately
5596 * after it is mounted can fail.
5598 ext4_superblock_csum_set(sb);
5599 if (needs_recovery) {
5600 ext4_msg(sb, KERN_INFO, "recovery complete");
5601 err = ext4_mark_recovery_complete(sb, es);
5603 goto failed_mount10;
5606 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5607 ext4_msg(sb, KERN_WARNING,
5608 "mounting with \"discard\" option, but the device does not support discard");
5610 if (es->s_error_count)
5611 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5613 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5614 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5615 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5616 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5617 atomic_set(&sbi->s_warning_count, 0);
5618 atomic_set(&sbi->s_msg_count, 0);
5623 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5624 failed_mount9: __maybe_unused
5625 ext4_release_orphan_info(sb);
5627 ext4_unregister_sysfs(sb);
5628 kobject_put(&sbi->s_kobj);
5630 ext4_unregister_li_request(sb);
5632 ext4_mb_release(sb);
5633 ext4_flex_groups_free(sbi);
5634 ext4_percpu_param_destroy(sbi);
5636 ext4_ext_release(sb);
5637 ext4_release_system_zone(sb);
5642 ext4_msg(sb, KERN_ERR, "mount failed");
5643 if (EXT4_SB(sb)->rsv_conversion_wq)
5644 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5646 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5647 sbi->s_ea_inode_cache = NULL;
5649 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5650 sbi->s_ea_block_cache = NULL;
5652 if (sbi->s_journal) {
5653 /* flush s_sb_upd_work before journal destroy. */
5654 flush_work(&sbi->s_sb_upd_work);
5655 jbd2_journal_destroy(sbi->s_journal);
5656 sbi->s_journal = NULL;
5659 ext4_es_unregister_shrinker(sbi);
5661 /* flush s_sb_upd_work before sbi destroy */
5662 flush_work(&sbi->s_sb_upd_work);
5663 del_timer_sync(&sbi->s_err_report);
5664 ext4_stop_mmpd(sbi);
5665 ext4_group_desc_free(sbi);
5667 if (sbi->s_chksum_driver)
5668 crypto_free_shash(sbi->s_chksum_driver);
5670 #if IS_ENABLED(CONFIG_UNICODE)
5671 utf8_unload(sb->s_encoding);
5675 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5676 kfree(get_qf_name(sb, sbi, i));
5678 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5680 if (sbi->s_journal_bdev) {
5681 invalidate_bdev(sbi->s_journal_bdev);
5682 blkdev_put(sbi->s_journal_bdev, sb);
5685 invalidate_bdev(sb->s_bdev);
5686 sb->s_fs_info = NULL;
5690 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5692 struct ext4_fs_context *ctx = fc->fs_private;
5693 struct ext4_sb_info *sbi;
5697 sbi = ext4_alloc_sbi(sb);
5701 fc->s_fs_info = sbi;
5703 /* Cleanup superblock name */
5704 strreplace(sb->s_id, '/', '!');
5706 sbi->s_sb_block = 1; /* Default super block location */
5707 if (ctx->spec & EXT4_SPEC_s_sb_block)
5708 sbi->s_sb_block = ctx->s_sb_block;
5710 ret = __ext4_fill_super(fc, sb);
5714 if (sbi->s_journal) {
5715 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5716 descr = " journalled data mode";
5717 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5718 descr = " ordered data mode";
5720 descr = " writeback data mode";
5722 descr = "out journal";
5724 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5725 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5726 "Quota mode: %s.", &sb->s_uuid,
5727 sb_rdonly(sb) ? "ro" : "r/w", descr,
5728 ext4_quota_mode(sb));
5730 /* Update the s_overhead_clusters if necessary */
5731 ext4_update_overhead(sb, false);
5736 fc->s_fs_info = NULL;
5740 static int ext4_get_tree(struct fs_context *fc)
5742 return get_tree_bdev(fc, ext4_fill_super);
5746 * Setup any per-fs journal parameters now. We'll do this both on
5747 * initial mount, once the journal has been initialised but before we've
5748 * done any recovery; and again on any subsequent remount.
5750 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5752 struct ext4_sb_info *sbi = EXT4_SB(sb);
5754 journal->j_commit_interval = sbi->s_commit_interval;
5755 journal->j_min_batch_time = sbi->s_min_batch_time;
5756 journal->j_max_batch_time = sbi->s_max_batch_time;
5757 ext4_fc_init(sb, journal);
5759 write_lock(&journal->j_state_lock);
5760 if (test_opt(sb, BARRIER))
5761 journal->j_flags |= JBD2_BARRIER;
5763 journal->j_flags &= ~JBD2_BARRIER;
5764 if (test_opt(sb, DATA_ERR_ABORT))
5765 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5767 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5769 * Always enable journal cycle record option, letting the journal
5770 * records log transactions continuously between each mount.
5772 journal->j_flags |= JBD2_CYCLE_RECORD;
5773 write_unlock(&journal->j_state_lock);
5776 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5777 unsigned int journal_inum)
5779 struct inode *journal_inode;
5782 * Test for the existence of a valid inode on disk. Bad things
5783 * happen if we iget() an unused inode, as the subsequent iput()
5784 * will try to delete it.
5786 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5787 if (IS_ERR(journal_inode)) {
5788 ext4_msg(sb, KERN_ERR, "no journal found");
5789 return ERR_CAST(journal_inode);
5791 if (!journal_inode->i_nlink) {
5792 make_bad_inode(journal_inode);
5793 iput(journal_inode);
5794 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5795 return ERR_PTR(-EFSCORRUPTED);
5797 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5798 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5799 iput(journal_inode);
5800 return ERR_PTR(-EFSCORRUPTED);
5803 ext4_debug("Journal inode found at %p: %lld bytes\n",
5804 journal_inode, journal_inode->i_size);
5805 return journal_inode;
5808 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5810 struct ext4_map_blocks map;
5813 if (journal->j_inode == NULL)
5816 map.m_lblk = *block;
5818 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5820 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5821 "journal bmap failed: block %llu ret %d\n",
5823 jbd2_journal_abort(journal, ret ? ret : -EIO);
5826 *block = map.m_pblk;
5830 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5831 unsigned int journal_inum)
5833 struct inode *journal_inode;
5836 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5837 if (IS_ERR(journal_inode))
5838 return ERR_CAST(journal_inode);
5840 journal = jbd2_journal_init_inode(journal_inode);
5841 if (IS_ERR(journal)) {
5842 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5843 iput(journal_inode);
5844 return ERR_CAST(journal);
5846 journal->j_private = sb;
5847 journal->j_bmap = ext4_journal_bmap;
5848 ext4_init_journal_params(sb, journal);
5852 static struct block_device *ext4_get_journal_blkdev(struct super_block *sb,
5853 dev_t j_dev, ext4_fsblk_t *j_start,
5854 ext4_fsblk_t *j_len)
5856 struct buffer_head *bh;
5857 struct block_device *bdev;
5858 int hblock, blocksize;
5859 ext4_fsblk_t sb_block;
5860 unsigned long offset;
5861 struct ext4_super_block *es;
5864 /* see get_tree_bdev why this is needed and safe */
5865 up_write(&sb->s_umount);
5866 bdev = blkdev_get_by_dev(j_dev, BLK_OPEN_READ | BLK_OPEN_WRITE, sb,
5868 down_write(&sb->s_umount);
5870 ext4_msg(sb, KERN_ERR,
5871 "failed to open journal device unknown-block(%u,%u) %ld",
5872 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev));
5873 return ERR_CAST(bdev);
5876 blocksize = sb->s_blocksize;
5877 hblock = bdev_logical_block_size(bdev);
5878 if (blocksize < hblock) {
5879 ext4_msg(sb, KERN_ERR,
5880 "blocksize too small for journal device");
5885 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5886 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5887 set_blocksize(bdev, blocksize);
5888 bh = __bread(bdev, sb_block, blocksize);
5890 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5891 "external journal");
5896 es = (struct ext4_super_block *) (bh->b_data + offset);
5897 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5898 !(le32_to_cpu(es->s_feature_incompat) &
5899 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5900 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5901 errno = -EFSCORRUPTED;
5905 if ((le32_to_cpu(es->s_feature_ro_compat) &
5906 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5907 es->s_checksum != ext4_superblock_csum(sb, es)) {
5908 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5909 errno = -EFSCORRUPTED;
5913 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5914 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5915 errno = -EFSCORRUPTED;
5919 *j_start = sb_block + 1;
5920 *j_len = ext4_blocks_count(es);
5927 blkdev_put(bdev, sb);
5928 return ERR_PTR(errno);
5931 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5935 ext4_fsblk_t j_start;
5937 struct block_device *journal_bdev;
5940 journal_bdev = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5941 if (IS_ERR(journal_bdev))
5942 return ERR_CAST(journal_bdev);
5944 journal = jbd2_journal_init_dev(journal_bdev, sb->s_bdev, j_start,
5945 j_len, sb->s_blocksize);
5946 if (IS_ERR(journal)) {
5947 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5948 errno = PTR_ERR(journal);
5951 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5952 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5953 "user (unsupported) - %d",
5954 be32_to_cpu(journal->j_superblock->s_nr_users));
5958 journal->j_private = sb;
5959 EXT4_SB(sb)->s_journal_bdev = journal_bdev;
5960 ext4_init_journal_params(sb, journal);
5964 jbd2_journal_destroy(journal);
5966 blkdev_put(journal_bdev, sb);
5967 return ERR_PTR(errno);
5970 static int ext4_load_journal(struct super_block *sb,
5971 struct ext4_super_block *es,
5972 unsigned long journal_devnum)
5975 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5978 int really_read_only;
5981 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5982 return -EFSCORRUPTED;
5984 if (journal_devnum &&
5985 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5986 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5987 "numbers have changed");
5988 journal_dev = new_decode_dev(journal_devnum);
5990 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5992 if (journal_inum && journal_dev) {
5993 ext4_msg(sb, KERN_ERR,
5994 "filesystem has both journal inode and journal device!");
5999 journal = ext4_open_inode_journal(sb, journal_inum);
6000 if (IS_ERR(journal))
6001 return PTR_ERR(journal);
6003 journal = ext4_open_dev_journal(sb, journal_dev);
6004 if (IS_ERR(journal))
6005 return PTR_ERR(journal);
6008 journal_dev_ro = bdev_read_only(journal->j_dev);
6009 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6011 if (journal_dev_ro && !sb_rdonly(sb)) {
6012 ext4_msg(sb, KERN_ERR,
6013 "journal device read-only, try mounting with '-o ro'");
6019 * Are we loading a blank journal or performing recovery after a
6020 * crash? For recovery, we need to check in advance whether we
6021 * can get read-write access to the device.
6023 if (ext4_has_feature_journal_needs_recovery(sb)) {
6024 if (sb_rdonly(sb)) {
6025 ext4_msg(sb, KERN_INFO, "INFO: recovery "
6026 "required on readonly filesystem");
6027 if (really_read_only) {
6028 ext4_msg(sb, KERN_ERR, "write access "
6029 "unavailable, cannot proceed "
6030 "(try mounting with noload)");
6034 ext4_msg(sb, KERN_INFO, "write access will "
6035 "be enabled during recovery");
6039 if (!(journal->j_flags & JBD2_BARRIER))
6040 ext4_msg(sb, KERN_INFO, "barriers disabled");
6042 if (!ext4_has_feature_journal_needs_recovery(sb))
6043 err = jbd2_journal_wipe(journal, !really_read_only);
6045 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6047 bool changed = false;
6050 memcpy(save, ((char *) es) +
6051 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6052 err = jbd2_journal_load(journal);
6053 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6054 save, EXT4_S_ERR_LEN)) {
6055 memcpy(((char *) es) + EXT4_S_ERR_START,
6056 save, EXT4_S_ERR_LEN);
6060 orig_state = es->s_state;
6061 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6063 if (orig_state != es->s_state)
6065 /* Write out restored error information to the superblock */
6066 if (changed && !really_read_only) {
6068 err2 = ext4_commit_super(sb);
6074 ext4_msg(sb, KERN_ERR, "error loading journal");
6078 EXT4_SB(sb)->s_journal = journal;
6079 err = ext4_clear_journal_err(sb, es);
6081 EXT4_SB(sb)->s_journal = NULL;
6082 jbd2_journal_destroy(journal);
6086 if (!really_read_only && journal_devnum &&
6087 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6088 es->s_journal_dev = cpu_to_le32(journal_devnum);
6089 ext4_commit_super(sb);
6091 if (!really_read_only && journal_inum &&
6092 journal_inum != le32_to_cpu(es->s_journal_inum)) {
6093 es->s_journal_inum = cpu_to_le32(journal_inum);
6094 ext4_commit_super(sb);
6100 jbd2_journal_destroy(journal);
6104 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6105 static void ext4_update_super(struct super_block *sb)
6107 struct ext4_sb_info *sbi = EXT4_SB(sb);
6108 struct ext4_super_block *es = sbi->s_es;
6109 struct buffer_head *sbh = sbi->s_sbh;
6113 * If the file system is mounted read-only, don't update the
6114 * superblock write time. This avoids updating the superblock
6115 * write time when we are mounting the root file system
6116 * read/only but we need to replay the journal; at that point,
6117 * for people who are east of GMT and who make their clock
6118 * tick in localtime for Windows bug-for-bug compatibility,
6119 * the clock is set in the future, and this will cause e2fsck
6120 * to complain and force a full file system check.
6123 ext4_update_tstamp(es, s_wtime);
6124 es->s_kbytes_written =
6125 cpu_to_le64(sbi->s_kbytes_written +
6126 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6127 sbi->s_sectors_written_start) >> 1));
6128 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6129 ext4_free_blocks_count_set(es,
6130 EXT4_C2B(sbi, percpu_counter_sum_positive(
6131 &sbi->s_freeclusters_counter)));
6132 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6133 es->s_free_inodes_count =
6134 cpu_to_le32(percpu_counter_sum_positive(
6135 &sbi->s_freeinodes_counter));
6136 /* Copy error information to the on-disk superblock */
6137 spin_lock(&sbi->s_error_lock);
6138 if (sbi->s_add_error_count > 0) {
6139 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6140 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6141 __ext4_update_tstamp(&es->s_first_error_time,
6142 &es->s_first_error_time_hi,
6143 sbi->s_first_error_time);
6144 strncpy(es->s_first_error_func, sbi->s_first_error_func,
6145 sizeof(es->s_first_error_func));
6146 es->s_first_error_line =
6147 cpu_to_le32(sbi->s_first_error_line);
6148 es->s_first_error_ino =
6149 cpu_to_le32(sbi->s_first_error_ino);
6150 es->s_first_error_block =
6151 cpu_to_le64(sbi->s_first_error_block);
6152 es->s_first_error_errcode =
6153 ext4_errno_to_code(sbi->s_first_error_code);
6155 __ext4_update_tstamp(&es->s_last_error_time,
6156 &es->s_last_error_time_hi,
6157 sbi->s_last_error_time);
6158 strncpy(es->s_last_error_func, sbi->s_last_error_func,
6159 sizeof(es->s_last_error_func));
6160 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6161 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6162 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6163 es->s_last_error_errcode =
6164 ext4_errno_to_code(sbi->s_last_error_code);
6166 * Start the daily error reporting function if it hasn't been
6169 if (!es->s_error_count)
6170 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6171 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6172 sbi->s_add_error_count = 0;
6174 spin_unlock(&sbi->s_error_lock);
6176 ext4_superblock_csum_set(sb);
6180 static int ext4_commit_super(struct super_block *sb)
6182 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6186 if (block_device_ejected(sb))
6189 ext4_update_super(sb);
6192 /* Buffer got discarded which means block device got invalidated */
6193 if (!buffer_mapped(sbh)) {
6198 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6200 * Oh, dear. A previous attempt to write the
6201 * superblock failed. This could happen because the
6202 * USB device was yanked out. Or it could happen to
6203 * be a transient write error and maybe the block will
6204 * be remapped. Nothing we can do but to retry the
6205 * write and hope for the best.
6207 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6208 "superblock detected");
6209 clear_buffer_write_io_error(sbh);
6210 set_buffer_uptodate(sbh);
6213 /* Clear potential dirty bit if it was journalled update */
6214 clear_buffer_dirty(sbh);
6215 sbh->b_end_io = end_buffer_write_sync;
6216 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6217 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6218 wait_on_buffer(sbh);
6219 if (buffer_write_io_error(sbh)) {
6220 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6222 clear_buffer_write_io_error(sbh);
6223 set_buffer_uptodate(sbh);
6230 * Have we just finished recovery? If so, and if we are mounting (or
6231 * remounting) the filesystem readonly, then we will end up with a
6232 * consistent fs on disk. Record that fact.
6234 static int ext4_mark_recovery_complete(struct super_block *sb,
6235 struct ext4_super_block *es)
6238 journal_t *journal = EXT4_SB(sb)->s_journal;
6240 if (!ext4_has_feature_journal(sb)) {
6241 if (journal != NULL) {
6242 ext4_error(sb, "Journal got removed while the fs was "
6244 return -EFSCORRUPTED;
6248 jbd2_journal_lock_updates(journal);
6249 err = jbd2_journal_flush(journal, 0);
6253 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6254 ext4_has_feature_orphan_present(sb))) {
6255 if (!ext4_orphan_file_empty(sb)) {
6256 ext4_error(sb, "Orphan file not empty on read-only fs.");
6257 err = -EFSCORRUPTED;
6260 ext4_clear_feature_journal_needs_recovery(sb);
6261 ext4_clear_feature_orphan_present(sb);
6262 ext4_commit_super(sb);
6265 jbd2_journal_unlock_updates(journal);
6270 * If we are mounting (or read-write remounting) a filesystem whose journal
6271 * has recorded an error from a previous lifetime, move that error to the
6272 * main filesystem now.
6274 static int ext4_clear_journal_err(struct super_block *sb,
6275 struct ext4_super_block *es)
6281 if (!ext4_has_feature_journal(sb)) {
6282 ext4_error(sb, "Journal got removed while the fs was mounted!");
6283 return -EFSCORRUPTED;
6286 journal = EXT4_SB(sb)->s_journal;
6289 * Now check for any error status which may have been recorded in the
6290 * journal by a prior ext4_error() or ext4_abort()
6293 j_errno = jbd2_journal_errno(journal);
6297 errstr = ext4_decode_error(sb, j_errno, nbuf);
6298 ext4_warning(sb, "Filesystem error recorded "
6299 "from previous mount: %s", errstr);
6301 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6302 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6303 j_errno = ext4_commit_super(sb);
6306 ext4_warning(sb, "Marked fs in need of filesystem check.");
6308 jbd2_journal_clear_err(journal);
6309 jbd2_journal_update_sb_errno(journal);
6315 * Force the running and committing transactions to commit,
6316 * and wait on the commit.
6318 int ext4_force_commit(struct super_block *sb)
6320 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6323 static int ext4_sync_fs(struct super_block *sb, int wait)
6327 bool needs_barrier = false;
6328 struct ext4_sb_info *sbi = EXT4_SB(sb);
6330 if (unlikely(ext4_forced_shutdown(sb)))
6333 trace_ext4_sync_fs(sb, wait);
6334 flush_workqueue(sbi->rsv_conversion_wq);
6336 * Writeback quota in non-journalled quota case - journalled quota has
6339 dquot_writeback_dquots(sb, -1);
6341 * Data writeback is possible w/o journal transaction, so barrier must
6342 * being sent at the end of the function. But we can skip it if
6343 * transaction_commit will do it for us.
6345 if (sbi->s_journal) {
6346 target = jbd2_get_latest_transaction(sbi->s_journal);
6347 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6348 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6349 needs_barrier = true;
6351 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6353 ret = jbd2_log_wait_commit(sbi->s_journal,
6356 } else if (wait && test_opt(sb, BARRIER))
6357 needs_barrier = true;
6358 if (needs_barrier) {
6360 err = blkdev_issue_flush(sb->s_bdev);
6369 * LVM calls this function before a (read-only) snapshot is created. This
6370 * gives us a chance to flush the journal completely and mark the fs clean.
6372 * Note that only this function cannot bring a filesystem to be in a clean
6373 * state independently. It relies on upper layer to stop all data & metadata
6376 static int ext4_freeze(struct super_block *sb)
6379 journal_t *journal = EXT4_SB(sb)->s_journal;
6382 /* Now we set up the journal barrier. */
6383 jbd2_journal_lock_updates(journal);
6386 * Don't clear the needs_recovery flag if we failed to
6387 * flush the journal.
6389 error = jbd2_journal_flush(journal, 0);
6393 /* Journal blocked and flushed, clear needs_recovery flag. */
6394 ext4_clear_feature_journal_needs_recovery(sb);
6395 if (ext4_orphan_file_empty(sb))
6396 ext4_clear_feature_orphan_present(sb);
6399 error = ext4_commit_super(sb);
6402 /* we rely on upper layer to stop further updates */
6403 jbd2_journal_unlock_updates(journal);
6408 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6409 * flag here, even though the filesystem is not technically dirty yet.
6411 static int ext4_unfreeze(struct super_block *sb)
6413 if (ext4_forced_shutdown(sb))
6416 if (EXT4_SB(sb)->s_journal) {
6417 /* Reset the needs_recovery flag before the fs is unlocked. */
6418 ext4_set_feature_journal_needs_recovery(sb);
6419 if (ext4_has_feature_orphan_file(sb))
6420 ext4_set_feature_orphan_present(sb);
6423 ext4_commit_super(sb);
6428 * Structure to save mount options for ext4_remount's benefit
6430 struct ext4_mount_options {
6431 unsigned long s_mount_opt;
6432 unsigned long s_mount_opt2;
6435 unsigned long s_commit_interval;
6436 u32 s_min_batch_time, s_max_batch_time;
6439 char *s_qf_names[EXT4_MAXQUOTAS];
6443 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6445 struct ext4_fs_context *ctx = fc->fs_private;
6446 struct ext4_super_block *es;
6447 struct ext4_sb_info *sbi = EXT4_SB(sb);
6448 unsigned long old_sb_flags;
6449 struct ext4_mount_options old_opts;
6453 int enable_quota = 0;
6455 char *to_free[EXT4_MAXQUOTAS];
6459 /* Store the original options */
6460 old_sb_flags = sb->s_flags;
6461 old_opts.s_mount_opt = sbi->s_mount_opt;
6462 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6463 old_opts.s_resuid = sbi->s_resuid;
6464 old_opts.s_resgid = sbi->s_resgid;
6465 old_opts.s_commit_interval = sbi->s_commit_interval;
6466 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6467 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6469 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6470 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6471 if (sbi->s_qf_names[i]) {
6472 char *qf_name = get_qf_name(sb, sbi, i);
6474 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6475 if (!old_opts.s_qf_names[i]) {
6476 for (j = 0; j < i; j++)
6477 kfree(old_opts.s_qf_names[j]);
6481 old_opts.s_qf_names[i] = NULL;
6483 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6484 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6485 ctx->journal_ioprio =
6486 sbi->s_journal->j_task->io_context->ioprio;
6488 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6492 ext4_apply_options(fc, sb);
6494 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6495 test_opt(sb, JOURNAL_CHECKSUM)) {
6496 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6497 "during remount not supported; ignoring");
6498 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6501 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6502 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6503 ext4_msg(sb, KERN_ERR, "can't mount with "
6504 "both data=journal and delalloc");
6508 if (test_opt(sb, DIOREAD_NOLOCK)) {
6509 ext4_msg(sb, KERN_ERR, "can't mount with "
6510 "both data=journal and dioread_nolock");
6514 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6515 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6516 ext4_msg(sb, KERN_ERR, "can't mount with "
6517 "journal_async_commit in data=ordered mode");
6523 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6524 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6529 if (test_opt2(sb, ABORT))
6530 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6532 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6533 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6537 if (sbi->s_journal) {
6538 ext4_init_journal_params(sb, sbi->s_journal);
6539 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6542 /* Flush outstanding errors before changing fs state */
6543 flush_work(&sbi->s_sb_upd_work);
6545 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6546 if (ext4_forced_shutdown(sb)) {
6551 if (fc->sb_flags & SB_RDONLY) {
6552 err = sync_filesystem(sb);
6555 err = dquot_suspend(sb, -1);
6560 * First of all, the unconditional stuff we have to do
6561 * to disable replay of the journal when we next remount
6563 sb->s_flags |= SB_RDONLY;
6566 * OK, test if we are remounting a valid rw partition
6567 * readonly, and if so set the rdonly flag and then
6568 * mark the partition as valid again.
6570 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6571 (sbi->s_mount_state & EXT4_VALID_FS))
6572 es->s_state = cpu_to_le16(sbi->s_mount_state);
6574 if (sbi->s_journal) {
6576 * We let remount-ro finish even if marking fs
6577 * as clean failed...
6579 ext4_mark_recovery_complete(sb, es);
6582 /* Make sure we can mount this feature set readwrite */
6583 if (ext4_has_feature_readonly(sb) ||
6584 !ext4_feature_set_ok(sb, 0)) {
6589 * Make sure the group descriptor checksums
6590 * are sane. If they aren't, refuse to remount r/w.
6592 for (g = 0; g < sbi->s_groups_count; g++) {
6593 struct ext4_group_desc *gdp =
6594 ext4_get_group_desc(sb, g, NULL);
6596 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6597 ext4_msg(sb, KERN_ERR,
6598 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6599 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6600 le16_to_cpu(gdp->bg_checksum));
6607 * If we have an unprocessed orphan list hanging
6608 * around from a previously readonly bdev mount,
6609 * require a full umount/remount for now.
6611 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6612 ext4_msg(sb, KERN_WARNING, "Couldn't "
6613 "remount RDWR because of unprocessed "
6614 "orphan inode list. Please "
6615 "umount/remount instead");
6621 * Mounting a RDONLY partition read-write, so reread
6622 * and store the current valid flag. (It may have
6623 * been changed by e2fsck since we originally mounted
6626 if (sbi->s_journal) {
6627 err = ext4_clear_journal_err(sb, es);
6631 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6634 err = ext4_setup_super(sb, es, 0);
6638 sb->s_flags &= ~SB_RDONLY;
6639 if (ext4_has_feature_mmp(sb)) {
6640 err = ext4_multi_mount_protect(sb,
6641 le64_to_cpu(es->s_mmp_block));
6652 * Handle creation of system zone data early because it can fail.
6653 * Releasing of existing data is done when we are sure remount will
6656 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6657 err = ext4_setup_system_zone(sb);
6662 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6663 err = ext4_commit_super(sb);
6670 if (sb_any_quota_suspended(sb))
6671 dquot_resume(sb, -1);
6672 else if (ext4_has_feature_quota(sb)) {
6673 err = ext4_enable_quotas(sb);
6678 /* Release old quota file names */
6679 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6680 kfree(old_opts.s_qf_names[i]);
6682 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6683 ext4_release_system_zone(sb);
6686 * Reinitialize lazy itable initialization thread based on
6689 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6690 ext4_unregister_li_request(sb);
6692 ext4_group_t first_not_zeroed;
6693 first_not_zeroed = ext4_has_uninit_itable(sb);
6694 ext4_register_li_request(sb, first_not_zeroed);
6697 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6698 ext4_stop_mmpd(sbi);
6704 * If there was a failing r/w to ro transition, we may need to
6707 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6708 sb_any_quota_suspended(sb))
6709 dquot_resume(sb, -1);
6710 sb->s_flags = old_sb_flags;
6711 sbi->s_mount_opt = old_opts.s_mount_opt;
6712 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6713 sbi->s_resuid = old_opts.s_resuid;
6714 sbi->s_resgid = old_opts.s_resgid;
6715 sbi->s_commit_interval = old_opts.s_commit_interval;
6716 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6717 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6718 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6719 ext4_release_system_zone(sb);
6721 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6722 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6723 to_free[i] = get_qf_name(sb, sbi, i);
6724 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6727 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6730 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6731 ext4_stop_mmpd(sbi);
6735 static int ext4_reconfigure(struct fs_context *fc)
6737 struct super_block *sb = fc->root->d_sb;
6740 fc->s_fs_info = EXT4_SB(sb);
6742 ret = ext4_check_opt_consistency(fc, sb);
6746 ret = __ext4_remount(fc, sb);
6750 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6751 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6752 ext4_quota_mode(sb));
6758 static int ext4_statfs_project(struct super_block *sb,
6759 kprojid_t projid, struct kstatfs *buf)
6762 struct dquot *dquot;
6766 qid = make_kqid_projid(projid);
6767 dquot = dqget(sb, qid);
6769 return PTR_ERR(dquot);
6770 spin_lock(&dquot->dq_dqb_lock);
6772 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6773 dquot->dq_dqb.dqb_bhardlimit);
6774 limit >>= sb->s_blocksize_bits;
6776 if (limit && buf->f_blocks > limit) {
6777 curblock = (dquot->dq_dqb.dqb_curspace +
6778 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6779 buf->f_blocks = limit;
6780 buf->f_bfree = buf->f_bavail =
6781 (buf->f_blocks > curblock) ?
6782 (buf->f_blocks - curblock) : 0;
6785 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6786 dquot->dq_dqb.dqb_ihardlimit);
6787 if (limit && buf->f_files > limit) {
6788 buf->f_files = limit;
6790 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6791 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6794 spin_unlock(&dquot->dq_dqb_lock);
6800 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6802 struct super_block *sb = dentry->d_sb;
6803 struct ext4_sb_info *sbi = EXT4_SB(sb);
6804 struct ext4_super_block *es = sbi->s_es;
6805 ext4_fsblk_t overhead = 0, resv_blocks;
6807 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6809 if (!test_opt(sb, MINIX_DF))
6810 overhead = sbi->s_overhead;
6812 buf->f_type = EXT4_SUPER_MAGIC;
6813 buf->f_bsize = sb->s_blocksize;
6814 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6815 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6816 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6817 /* prevent underflow in case that few free space is available */
6818 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6819 buf->f_bavail = buf->f_bfree -
6820 (ext4_r_blocks_count(es) + resv_blocks);
6821 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6823 buf->f_files = le32_to_cpu(es->s_inodes_count);
6824 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6825 buf->f_namelen = EXT4_NAME_LEN;
6826 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6829 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6830 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6831 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6840 * Helper functions so that transaction is started before we acquire dqio_sem
6841 * to keep correct lock ordering of transaction > dqio_sem
6843 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6845 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6848 static int ext4_write_dquot(struct dquot *dquot)
6852 struct inode *inode;
6854 inode = dquot_to_inode(dquot);
6855 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6856 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6858 return PTR_ERR(handle);
6859 ret = dquot_commit(dquot);
6860 err = ext4_journal_stop(handle);
6866 static int ext4_acquire_dquot(struct dquot *dquot)
6871 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6872 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6874 return PTR_ERR(handle);
6875 ret = dquot_acquire(dquot);
6876 err = ext4_journal_stop(handle);
6882 static int ext4_release_dquot(struct dquot *dquot)
6887 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6888 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6889 if (IS_ERR(handle)) {
6890 /* Release dquot anyway to avoid endless cycle in dqput() */
6891 dquot_release(dquot);
6892 return PTR_ERR(handle);
6894 ret = dquot_release(dquot);
6895 err = ext4_journal_stop(handle);
6901 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6903 struct super_block *sb = dquot->dq_sb;
6905 if (ext4_is_quota_journalled(sb)) {
6906 dquot_mark_dquot_dirty(dquot);
6907 return ext4_write_dquot(dquot);
6909 return dquot_mark_dquot_dirty(dquot);
6913 static int ext4_write_info(struct super_block *sb, int type)
6918 /* Data block + inode block */
6919 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6921 return PTR_ERR(handle);
6922 ret = dquot_commit_info(sb, type);
6923 err = ext4_journal_stop(handle);
6929 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6931 struct ext4_inode_info *ei = EXT4_I(inode);
6933 /* The first argument of lockdep_set_subclass has to be
6934 * *exactly* the same as the argument to init_rwsem() --- in
6935 * this case, in init_once() --- or lockdep gets unhappy
6936 * because the name of the lock is set using the
6937 * stringification of the argument to init_rwsem().
6939 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6940 lockdep_set_subclass(&ei->i_data_sem, subclass);
6944 * Standard function to be called on quota_on
6946 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6947 const struct path *path)
6951 if (!test_opt(sb, QUOTA))
6954 /* Quotafile not on the same filesystem? */
6955 if (path->dentry->d_sb != sb)
6958 /* Quota already enabled for this file? */
6959 if (IS_NOQUOTA(d_inode(path->dentry)))
6962 /* Journaling quota? */
6963 if (EXT4_SB(sb)->s_qf_names[type]) {
6964 /* Quotafile not in fs root? */
6965 if (path->dentry->d_parent != sb->s_root)
6966 ext4_msg(sb, KERN_WARNING,
6967 "Quota file not on filesystem root. "
6968 "Journaled quota will not work");
6969 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6972 * Clear the flag just in case mount options changed since
6975 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6978 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6979 err = dquot_quota_on(sb, type, format_id, path);
6981 struct inode *inode = d_inode(path->dentry);
6985 * Set inode flags to prevent userspace from messing with quota
6986 * files. If this fails, we return success anyway since quotas
6987 * are already enabled and this is not a hard failure.
6990 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6993 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6994 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6995 S_NOATIME | S_IMMUTABLE);
6996 err = ext4_mark_inode_dirty(handle, inode);
6997 ext4_journal_stop(handle);
6999 inode_unlock(inode);
7001 dquot_quota_off(sb, type);
7004 lockdep_set_quota_inode(path->dentry->d_inode,
7009 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7013 return qf_inum == EXT4_USR_QUOTA_INO;
7015 return qf_inum == EXT4_GRP_QUOTA_INO;
7017 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7023 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7027 struct inode *qf_inode;
7028 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7029 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7030 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7031 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7034 BUG_ON(!ext4_has_feature_quota(sb));
7036 if (!qf_inums[type])
7039 if (!ext4_check_quota_inum(type, qf_inums[type])) {
7040 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7041 qf_inums[type], type);
7045 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7046 if (IS_ERR(qf_inode)) {
7047 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7048 qf_inums[type], type);
7049 return PTR_ERR(qf_inode);
7052 /* Don't account quota for quota files to avoid recursion */
7053 qf_inode->i_flags |= S_NOQUOTA;
7054 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7055 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7057 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7063 /* Enable usage tracking for all quota types. */
7064 int ext4_enable_quotas(struct super_block *sb)
7067 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7068 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7069 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7070 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7072 bool quota_mopt[EXT4_MAXQUOTAS] = {
7073 test_opt(sb, USRQUOTA),
7074 test_opt(sb, GRPQUOTA),
7075 test_opt(sb, PRJQUOTA),
7078 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7079 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7080 if (qf_inums[type]) {
7081 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7082 DQUOT_USAGE_ENABLED |
7083 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7086 "Failed to enable quota tracking "
7087 "(type=%d, err=%d, ino=%lu). "
7088 "Please run e2fsck to fix.", type,
7089 err, qf_inums[type]);
7091 ext4_quotas_off(sb, type);
7099 static int ext4_quota_off(struct super_block *sb, int type)
7101 struct inode *inode = sb_dqopt(sb)->files[type];
7105 /* Force all delayed allocation blocks to be allocated.
7106 * Caller already holds s_umount sem */
7107 if (test_opt(sb, DELALLOC))
7108 sync_filesystem(sb);
7110 if (!inode || !igrab(inode))
7113 err = dquot_quota_off(sb, type);
7114 if (err || ext4_has_feature_quota(sb))
7117 * When the filesystem was remounted read-only first, we cannot cleanup
7118 * inode flags here. Bad luck but people should be using QUOTA feature
7119 * these days anyway.
7126 * Update modification times of quota files when userspace can
7127 * start looking at them. If we fail, we return success anyway since
7128 * this is not a hard failure and quotas are already disabled.
7130 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7131 if (IS_ERR(handle)) {
7132 err = PTR_ERR(handle);
7135 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7136 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7137 inode->i_mtime = inode_set_ctime_current(inode);
7138 err = ext4_mark_inode_dirty(handle, inode);
7139 ext4_journal_stop(handle);
7141 inode_unlock(inode);
7143 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7147 return dquot_quota_off(sb, type);
7150 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7151 * acquiring the locks... As quota files are never truncated and quota code
7152 * itself serializes the operations (and no one else should touch the files)
7153 * we don't have to be afraid of races */
7154 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7155 size_t len, loff_t off)
7157 struct inode *inode = sb_dqopt(sb)->files[type];
7158 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7159 int offset = off & (sb->s_blocksize - 1);
7162 struct buffer_head *bh;
7163 loff_t i_size = i_size_read(inode);
7167 if (off+len > i_size)
7170 while (toread > 0) {
7171 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7172 bh = ext4_bread(NULL, inode, blk, 0);
7175 if (!bh) /* A hole? */
7176 memset(data, 0, tocopy);
7178 memcpy(data, bh->b_data+offset, tocopy);
7188 /* Write to quotafile (we know the transaction is already started and has
7189 * enough credits) */
7190 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7191 const char *data, size_t len, loff_t off)
7193 struct inode *inode = sb_dqopt(sb)->files[type];
7194 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7195 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7197 struct buffer_head *bh;
7198 handle_t *handle = journal_current_handle();
7201 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7202 " cancelled because transaction is not started",
7203 (unsigned long long)off, (unsigned long long)len);
7207 * Since we account only one data block in transaction credits,
7208 * then it is impossible to cross a block boundary.
7210 if (sb->s_blocksize - offset < len) {
7211 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7212 " cancelled because not block aligned",
7213 (unsigned long long)off, (unsigned long long)len);
7218 bh = ext4_bread(handle, inode, blk,
7219 EXT4_GET_BLOCKS_CREATE |
7220 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7221 } while (PTR_ERR(bh) == -ENOSPC &&
7222 ext4_should_retry_alloc(inode->i_sb, &retries));
7227 BUFFER_TRACE(bh, "get write access");
7228 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7234 memcpy(bh->b_data+offset, data, len);
7235 flush_dcache_page(bh->b_page);
7237 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7240 if (inode->i_size < off + len) {
7241 i_size_write(inode, off + len);
7242 EXT4_I(inode)->i_disksize = inode->i_size;
7243 err2 = ext4_mark_inode_dirty(handle, inode);
7244 if (unlikely(err2 && !err))
7247 return err ? err : len;
7251 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7252 static inline void register_as_ext2(void)
7254 int err = register_filesystem(&ext2_fs_type);
7257 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7260 static inline void unregister_as_ext2(void)
7262 unregister_filesystem(&ext2_fs_type);
7265 static inline int ext2_feature_set_ok(struct super_block *sb)
7267 if (ext4_has_unknown_ext2_incompat_features(sb))
7271 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7276 static inline void register_as_ext2(void) { }
7277 static inline void unregister_as_ext2(void) { }
7278 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7281 static inline void register_as_ext3(void)
7283 int err = register_filesystem(&ext3_fs_type);
7286 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7289 static inline void unregister_as_ext3(void)
7291 unregister_filesystem(&ext3_fs_type);
7294 static inline int ext3_feature_set_ok(struct super_block *sb)
7296 if (ext4_has_unknown_ext3_incompat_features(sb))
7298 if (!ext4_has_feature_journal(sb))
7302 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7307 static void ext4_kill_sb(struct super_block *sb)
7309 struct ext4_sb_info *sbi = EXT4_SB(sb);
7310 struct block_device *journal_bdev = sbi ? sbi->s_journal_bdev : NULL;
7312 kill_block_super(sb);
7315 blkdev_put(journal_bdev, sb);
7318 static struct file_system_type ext4_fs_type = {
7319 .owner = THIS_MODULE,
7321 .init_fs_context = ext4_init_fs_context,
7322 .parameters = ext4_param_specs,
7323 .kill_sb = ext4_kill_sb,
7324 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7326 MODULE_ALIAS_FS("ext4");
7328 /* Shared across all ext4 file systems */
7329 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7331 static int __init ext4_init_fs(void)
7335 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7336 ext4_li_info = NULL;
7338 /* Build-time check for flags consistency */
7339 ext4_check_flag_values();
7341 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7342 init_waitqueue_head(&ext4__ioend_wq[i]);
7344 err = ext4_init_es();
7348 err = ext4_init_pending();
7352 err = ext4_init_post_read_processing();
7356 err = ext4_init_pageio();
7360 err = ext4_init_system_zone();
7364 err = ext4_init_sysfs();
7368 err = ext4_init_mballoc();
7371 err = init_inodecache();
7375 err = ext4_fc_init_dentry_cache();
7381 err = register_filesystem(&ext4_fs_type);
7387 unregister_as_ext2();
7388 unregister_as_ext3();
7389 ext4_fc_destroy_dentry_cache();
7391 destroy_inodecache();
7393 ext4_exit_mballoc();
7397 ext4_exit_system_zone();
7401 ext4_exit_post_read_processing();
7403 ext4_exit_pending();
7410 static void __exit ext4_exit_fs(void)
7412 ext4_destroy_lazyinit_thread();
7413 unregister_as_ext2();
7414 unregister_as_ext3();
7415 unregister_filesystem(&ext4_fs_type);
7416 ext4_fc_destroy_dentry_cache();
7417 destroy_inodecache();
7418 ext4_exit_mballoc();
7420 ext4_exit_system_zone();
7422 ext4_exit_post_read_processing();
7424 ext4_exit_pending();
7427 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7428 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7429 MODULE_LICENSE("GPL");
7430 MODULE_SOFTDEP("pre: crc32c");
7431 module_init(ext4_init_fs)
7432 module_exit(ext4_exit_fs)