2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
44 static struct vfsmount *shm_mnt;
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
103 struct shmem_falloc {
104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
111 struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
126 static unsigned long shmem_default_max_blocks(void)
128 return totalram_pages() / 2;
131 static unsigned long shmem_default_max_inodes(void)
133 unsigned long nr_pages = totalram_pages();
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp,
148 gfp_t gfp, struct vm_area_struct *vma,
149 struct vm_fault *vmf, vm_fault_t *fault_type);
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152 struct page **pagep, enum sgp_type sgp)
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 return sb->s_fs_info;
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 return (flags & VM_NORESERVE) ?
172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 if (!(flags & VM_NORESERVE))
178 vm_unacct_memory(VM_ACCT(size));
181 static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
195 * ... whereas tmpfs objects are accounted incrementally as
196 * pages are allocated, in order to allow large sparse files.
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 static inline int shmem_acct_block(unsigned long flags, long pages)
202 if (!(flags & VM_NORESERVE))
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 if (flags & VM_NORESERVE)
212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 if (shmem_acct_block(info->flags, pages))
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
227 percpu_counter_add(&sbinfo->used_blocks, pages);
233 shmem_unacct_blocks(info->flags, pages);
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
256 bool vma_is_shmem(struct vm_area_struct *vma)
258 return vma->vm_ops == &shmem_vm_ops;
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
264 static int shmem_reserve_inode(struct super_block *sb)
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
279 static void shmem_free_inode(struct super_block *sb)
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
290 * shmem_recalc_inode - recalculate the block usage of an inode
291 * @inode: inode to recalc
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
299 * It has to be called with the spinlock held.
301 static void shmem_recalc_inode(struct inode *inode)
303 struct shmem_inode_info *info = SHMEM_I(inode);
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
308 info->alloced -= freed;
309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 shmem_inode_unacct_blocks(inode, freed);
314 bool shmem_charge(struct inode *inode, long pages)
316 struct shmem_inode_info *info = SHMEM_I(inode);
319 if (!shmem_inode_acct_block(inode, pages))
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
325 spin_lock_irqsave(&info->lock, flags);
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
329 spin_unlock_irqrestore(&info->lock, flags);
334 void shmem_uncharge(struct inode *inode, long pages)
336 struct shmem_inode_info *info = SHMEM_I(inode);
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
341 spin_lock_irqsave(&info->lock, flags);
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
345 spin_unlock_irqrestore(&info->lock, flags);
347 shmem_inode_unacct_blocks(inode, pages);
351 * Replace item expected in xarray by a new item, while holding xa_lock.
353 static int shmem_replace_entry(struct address_space *mapping,
354 pgoff_t index, void *expected, void *replacement)
356 XA_STATE(xas, &mapping->i_pages, index);
359 VM_BUG_ON(!expected);
360 VM_BUG_ON(!replacement);
361 item = xas_load(&xas);
362 if (item != expected)
364 xas_store(&xas, replacement);
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
375 static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
385 * disables huge pages for the mount;
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
392 * only allocate huge pages if requested with fadvise()/madvise();
395 #define SHMEM_HUGE_NEVER 0
396 #define SHMEM_HUGE_ALWAYS 1
397 #define SHMEM_HUGE_WITHIN_SIZE 2
398 #define SHMEM_HUGE_ADVISE 3
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
405 * disables huge on shm_mnt and all mounts, for emergency use;
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
410 #define SHMEM_HUGE_DENY (-1)
411 #define SHMEM_HUGE_FORCE (-2)
413 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
416 static int shmem_huge __read_mostly;
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
441 case SHMEM_HUGE_NEVER:
443 case SHMEM_HUGE_ALWAYS:
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
449 case SHMEM_HUGE_DENY:
451 case SHMEM_HUGE_FORCE:
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
463 LIST_HEAD(list), *pos, *next;
464 LIST_HEAD(to_remove);
466 struct shmem_inode_info *info;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int removed = 0, split = 0;
471 if (list_empty(&sbinfo->shrinklist))
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
479 inode = igrab(&info->vfs_inode);
481 /* inode is about to be evicted */
483 list_del_init(&info->shrinklist);
488 /* Check if there's anything to gain */
489 if (round_up(inode->i_size, PAGE_SIZE) ==
490 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491 list_move(&info->shrinklist, &to_remove);
496 list_move(&info->shrinklist, &list);
501 spin_unlock(&sbinfo->shrinklist_lock);
503 list_for_each_safe(pos, next, &to_remove) {
504 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 inode = &info->vfs_inode;
506 list_del_init(&info->shrinklist);
510 list_for_each_safe(pos, next, &list) {
513 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 inode = &info->vfs_inode;
516 if (nr_to_split && split >= nr_to_split)
519 page = find_get_page(inode->i_mapping,
520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
524 /* No huge page at the end of the file: nothing to split */
525 if (!PageTransHuge(page)) {
531 * Leave the inode on the list if we failed to lock
532 * the page at this time.
534 * Waiting for the lock may lead to deadlock in the
537 if (!trylock_page(page)) {
542 ret = split_huge_page(page);
546 /* If split failed leave the inode on the list */
552 list_del_init(&info->shrinklist);
558 spin_lock(&sbinfo->shrinklist_lock);
559 list_splice_tail(&list, &sbinfo->shrinklist);
560 sbinfo->shrinklist_len -= removed;
561 spin_unlock(&sbinfo->shrinklist_lock);
566 static long shmem_unused_huge_scan(struct super_block *sb,
567 struct shrink_control *sc)
569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
571 if (!READ_ONCE(sbinfo->shrinklist_len))
574 return shmem_unused_huge_shrink(sbinfo, sc, 0);
577 static long shmem_unused_huge_count(struct super_block *sb,
578 struct shrink_control *sc)
580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 return READ_ONCE(sbinfo->shrinklist_len);
583 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
585 #define shmem_huge SHMEM_HUGE_DENY
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 struct shrink_control *sc, unsigned long nr_to_split)
592 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 shmem_huge != SHMEM_HUGE_DENY)
604 * Like add_to_page_cache_locked, but error if expected item has gone.
606 static int shmem_add_to_page_cache(struct page *page,
607 struct address_space *mapping,
608 pgoff_t index, void *expected, gfp_t gfp)
610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
612 unsigned long nr = compound_nr(page);
614 VM_BUG_ON_PAGE(PageTail(page), page);
615 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
618 VM_BUG_ON(expected && PageTransHuge(page));
620 page_ref_add(page, nr);
621 page->mapping = mapping;
627 entry = xas_find_conflict(&xas);
628 if (entry != expected)
629 xas_set_err(&xas, -EEXIST);
630 xas_create_range(&xas);
634 xas_store(&xas, page);
639 if (PageTransHuge(page)) {
640 count_vm_event(THP_FILE_ALLOC);
641 __inc_node_page_state(page, NR_SHMEM_THPS);
643 mapping->nrpages += nr;
644 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
647 xas_unlock_irq(&xas);
648 } while (xas_nomem(&xas, gfp));
650 if (xas_error(&xas)) {
651 page->mapping = NULL;
652 page_ref_sub(page, nr);
653 return xas_error(&xas);
660 * Like delete_from_page_cache, but substitutes swap for page.
662 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
664 struct address_space *mapping = page->mapping;
667 VM_BUG_ON_PAGE(PageCompound(page), page);
669 xa_lock_irq(&mapping->i_pages);
670 error = shmem_replace_entry(mapping, page->index, page, radswap);
671 page->mapping = NULL;
673 __dec_node_page_state(page, NR_FILE_PAGES);
674 __dec_node_page_state(page, NR_SHMEM);
675 xa_unlock_irq(&mapping->i_pages);
681 * Remove swap entry from page cache, free the swap and its page cache.
683 static int shmem_free_swap(struct address_space *mapping,
684 pgoff_t index, void *radswap)
688 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
691 free_swap_and_cache(radix_to_swp_entry(radswap));
696 * Determine (in bytes) how many of the shmem object's pages mapped by the
697 * given offsets are swapped out.
699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
700 * as long as the inode doesn't go away and racy results are not a problem.
702 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703 pgoff_t start, pgoff_t end)
705 XA_STATE(xas, &mapping->i_pages, start);
707 unsigned long swapped = 0;
710 xas_for_each(&xas, page, end - 1) {
711 if (xas_retry(&xas, page))
713 if (xa_is_value(page))
716 if (need_resched()) {
724 return swapped << PAGE_SHIFT;
728 * Determine (in bytes) how many of the shmem object's pages mapped by the
729 * given vma is swapped out.
731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
732 * as long as the inode doesn't go away and racy results are not a problem.
734 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
736 struct inode *inode = file_inode(vma->vm_file);
737 struct shmem_inode_info *info = SHMEM_I(inode);
738 struct address_space *mapping = inode->i_mapping;
739 unsigned long swapped;
741 /* Be careful as we don't hold info->lock */
742 swapped = READ_ONCE(info->swapped);
745 * The easier cases are when the shmem object has nothing in swap, or
746 * the vma maps it whole. Then we can simply use the stats that we
752 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753 return swapped << PAGE_SHIFT;
755 /* Here comes the more involved part */
756 return shmem_partial_swap_usage(mapping,
757 linear_page_index(vma, vma->vm_start),
758 linear_page_index(vma, vma->vm_end));
762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
764 void shmem_unlock_mapping(struct address_space *mapping)
767 pgoff_t indices[PAGEVEC_SIZE];
772 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
774 while (!mapping_unevictable(mapping)) {
776 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
779 pvec.nr = find_get_entries(mapping, index,
780 PAGEVEC_SIZE, pvec.pages, indices);
783 index = indices[pvec.nr - 1] + 1;
784 pagevec_remove_exceptionals(&pvec);
785 check_move_unevictable_pages(&pvec);
786 pagevec_release(&pvec);
792 * Remove range of pages and swap entries from page cache, and free them.
793 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
795 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
798 struct address_space *mapping = inode->i_mapping;
799 struct shmem_inode_info *info = SHMEM_I(inode);
800 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
801 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
802 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
803 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
805 pgoff_t indices[PAGEVEC_SIZE];
806 long nr_swaps_freed = 0;
811 end = -1; /* unsigned, so actually very big */
815 while (index < end) {
816 pvec.nr = find_get_entries(mapping, index,
817 min(end - index, (pgoff_t)PAGEVEC_SIZE),
818 pvec.pages, indices);
821 for (i = 0; i < pagevec_count(&pvec); i++) {
822 struct page *page = pvec.pages[i];
828 if (xa_is_value(page)) {
831 nr_swaps_freed += !shmem_free_swap(mapping,
836 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
838 if (!trylock_page(page))
841 if (PageTransTail(page)) {
842 /* Middle of THP: zero out the page */
843 clear_highpage(page);
846 } else if (PageTransHuge(page)) {
847 if (index == round_down(end, HPAGE_PMD_NR)) {
849 * Range ends in the middle of THP:
852 clear_highpage(page);
856 index += HPAGE_PMD_NR - 1;
857 i += HPAGE_PMD_NR - 1;
860 if (!unfalloc || !PageUptodate(page)) {
861 VM_BUG_ON_PAGE(PageTail(page), page);
862 if (page_mapping(page) == mapping) {
863 VM_BUG_ON_PAGE(PageWriteback(page), page);
864 truncate_inode_page(mapping, page);
869 pagevec_remove_exceptionals(&pvec);
870 pagevec_release(&pvec);
876 struct page *page = NULL;
877 shmem_getpage(inode, start - 1, &page, SGP_READ);
879 unsigned int top = PAGE_SIZE;
884 zero_user_segment(page, partial_start, top);
885 set_page_dirty(page);
891 struct page *page = NULL;
892 shmem_getpage(inode, end, &page, SGP_READ);
894 zero_user_segment(page, 0, partial_end);
895 set_page_dirty(page);
904 while (index < end) {
907 pvec.nr = find_get_entries(mapping, index,
908 min(end - index, (pgoff_t)PAGEVEC_SIZE),
909 pvec.pages, indices);
911 /* If all gone or hole-punch or unfalloc, we're done */
912 if (index == start || end != -1)
914 /* But if truncating, restart to make sure all gone */
918 for (i = 0; i < pagevec_count(&pvec); i++) {
919 struct page *page = pvec.pages[i];
925 if (xa_is_value(page)) {
928 if (shmem_free_swap(mapping, index, page)) {
929 /* Swap was replaced by page: retry */
939 if (PageTransTail(page)) {
940 /* Middle of THP: zero out the page */
941 clear_highpage(page);
944 * Partial thp truncate due 'start' in middle
945 * of THP: don't need to look on these pages
946 * again on !pvec.nr restart.
948 if (index != round_down(end, HPAGE_PMD_NR))
951 } else if (PageTransHuge(page)) {
952 if (index == round_down(end, HPAGE_PMD_NR)) {
954 * Range ends in the middle of THP:
957 clear_highpage(page);
961 index += HPAGE_PMD_NR - 1;
962 i += HPAGE_PMD_NR - 1;
965 if (!unfalloc || !PageUptodate(page)) {
966 VM_BUG_ON_PAGE(PageTail(page), page);
967 if (page_mapping(page) == mapping) {
968 VM_BUG_ON_PAGE(PageWriteback(page), page);
969 truncate_inode_page(mapping, page);
971 /* Page was replaced by swap: retry */
979 pagevec_remove_exceptionals(&pvec);
980 pagevec_release(&pvec);
984 spin_lock_irq(&info->lock);
985 info->swapped -= nr_swaps_freed;
986 shmem_recalc_inode(inode);
987 spin_unlock_irq(&info->lock);
990 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
992 shmem_undo_range(inode, lstart, lend, false);
993 inode->i_ctime = inode->i_mtime = current_time(inode);
995 EXPORT_SYMBOL_GPL(shmem_truncate_range);
997 static int shmem_getattr(const struct path *path, struct kstat *stat,
998 u32 request_mask, unsigned int query_flags)
1000 struct inode *inode = path->dentry->d_inode;
1001 struct shmem_inode_info *info = SHMEM_I(inode);
1002 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1004 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1005 spin_lock_irq(&info->lock);
1006 shmem_recalc_inode(inode);
1007 spin_unlock_irq(&info->lock);
1009 generic_fillattr(inode, stat);
1011 if (is_huge_enabled(sb_info))
1012 stat->blksize = HPAGE_PMD_SIZE;
1017 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1019 struct inode *inode = d_inode(dentry);
1020 struct shmem_inode_info *info = SHMEM_I(inode);
1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1024 error = setattr_prepare(dentry, attr);
1028 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1029 loff_t oldsize = inode->i_size;
1030 loff_t newsize = attr->ia_size;
1032 /* protected by i_mutex */
1033 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1034 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1037 if (newsize != oldsize) {
1038 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1042 i_size_write(inode, newsize);
1043 inode->i_ctime = inode->i_mtime = current_time(inode);
1045 if (newsize <= oldsize) {
1046 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1047 if (oldsize > holebegin)
1048 unmap_mapping_range(inode->i_mapping,
1051 shmem_truncate_range(inode,
1052 newsize, (loff_t)-1);
1053 /* unmap again to remove racily COWed private pages */
1054 if (oldsize > holebegin)
1055 unmap_mapping_range(inode->i_mapping,
1059 * Part of the huge page can be beyond i_size: subject
1060 * to shrink under memory pressure.
1062 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1063 spin_lock(&sbinfo->shrinklist_lock);
1065 * _careful to defend against unlocked access to
1066 * ->shrink_list in shmem_unused_huge_shrink()
1068 if (list_empty_careful(&info->shrinklist)) {
1069 list_add_tail(&info->shrinklist,
1070 &sbinfo->shrinklist);
1071 sbinfo->shrinklist_len++;
1073 spin_unlock(&sbinfo->shrinklist_lock);
1078 setattr_copy(inode, attr);
1079 if (attr->ia_valid & ATTR_MODE)
1080 error = posix_acl_chmod(inode, inode->i_mode);
1084 static void shmem_evict_inode(struct inode *inode)
1086 struct shmem_inode_info *info = SHMEM_I(inode);
1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1089 if (inode->i_mapping->a_ops == &shmem_aops) {
1090 shmem_unacct_size(info->flags, inode->i_size);
1092 shmem_truncate_range(inode, 0, (loff_t)-1);
1093 if (!list_empty(&info->shrinklist)) {
1094 spin_lock(&sbinfo->shrinklist_lock);
1095 if (!list_empty(&info->shrinklist)) {
1096 list_del_init(&info->shrinklist);
1097 sbinfo->shrinklist_len--;
1099 spin_unlock(&sbinfo->shrinklist_lock);
1101 while (!list_empty(&info->swaplist)) {
1102 /* Wait while shmem_unuse() is scanning this inode... */
1103 wait_var_event(&info->stop_eviction,
1104 !atomic_read(&info->stop_eviction));
1105 mutex_lock(&shmem_swaplist_mutex);
1106 /* ...but beware of the race if we peeked too early */
1107 if (!atomic_read(&info->stop_eviction))
1108 list_del_init(&info->swaplist);
1109 mutex_unlock(&shmem_swaplist_mutex);
1113 simple_xattrs_free(&info->xattrs);
1114 WARN_ON(inode->i_blocks);
1115 shmem_free_inode(inode->i_sb);
1119 extern struct swap_info_struct *swap_info[];
1121 static int shmem_find_swap_entries(struct address_space *mapping,
1122 pgoff_t start, unsigned int nr_entries,
1123 struct page **entries, pgoff_t *indices,
1124 unsigned int type, bool frontswap)
1126 XA_STATE(xas, &mapping->i_pages, start);
1129 unsigned int ret = 0;
1135 xas_for_each(&xas, page, ULONG_MAX) {
1136 if (xas_retry(&xas, page))
1139 if (!xa_is_value(page))
1142 entry = radix_to_swp_entry(page);
1143 if (swp_type(entry) != type)
1146 !frontswap_test(swap_info[type], swp_offset(entry)))
1149 indices[ret] = xas.xa_index;
1150 entries[ret] = page;
1152 if (need_resched()) {
1156 if (++ret == nr_entries)
1165 * Move the swapped pages for an inode to page cache. Returns the count
1166 * of pages swapped in, or the error in case of failure.
1168 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1174 struct address_space *mapping = inode->i_mapping;
1176 for (i = 0; i < pvec.nr; i++) {
1177 struct page *page = pvec.pages[i];
1179 if (!xa_is_value(page))
1181 error = shmem_swapin_page(inode, indices[i],
1183 mapping_gfp_mask(mapping),
1190 if (error == -ENOMEM)
1194 return error ? error : ret;
1198 * If swap found in inode, free it and move page from swapcache to filecache.
1200 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1201 bool frontswap, unsigned long *fs_pages_to_unuse)
1203 struct address_space *mapping = inode->i_mapping;
1205 struct pagevec pvec;
1206 pgoff_t indices[PAGEVEC_SIZE];
1207 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1210 pagevec_init(&pvec);
1212 unsigned int nr_entries = PAGEVEC_SIZE;
1214 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1215 nr_entries = *fs_pages_to_unuse;
1217 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1218 pvec.pages, indices,
1225 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1229 if (frontswap_partial) {
1230 *fs_pages_to_unuse -= ret;
1231 if (*fs_pages_to_unuse == 0) {
1232 ret = FRONTSWAP_PAGES_UNUSED;
1237 start = indices[pvec.nr - 1];
1244 * Read all the shared memory data that resides in the swap
1245 * device 'type' back into memory, so the swap device can be
1248 int shmem_unuse(unsigned int type, bool frontswap,
1249 unsigned long *fs_pages_to_unuse)
1251 struct shmem_inode_info *info, *next;
1254 if (list_empty(&shmem_swaplist))
1257 mutex_lock(&shmem_swaplist_mutex);
1258 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1259 if (!info->swapped) {
1260 list_del_init(&info->swaplist);
1264 * Drop the swaplist mutex while searching the inode for swap;
1265 * but before doing so, make sure shmem_evict_inode() will not
1266 * remove placeholder inode from swaplist, nor let it be freed
1267 * (igrab() would protect from unlink, but not from unmount).
1269 atomic_inc(&info->stop_eviction);
1270 mutex_unlock(&shmem_swaplist_mutex);
1272 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1276 mutex_lock(&shmem_swaplist_mutex);
1277 next = list_next_entry(info, swaplist);
1279 list_del_init(&info->swaplist);
1280 if (atomic_dec_and_test(&info->stop_eviction))
1281 wake_up_var(&info->stop_eviction);
1285 mutex_unlock(&shmem_swaplist_mutex);
1291 * Move the page from the page cache to the swap cache.
1293 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1295 struct shmem_inode_info *info;
1296 struct address_space *mapping;
1297 struct inode *inode;
1301 VM_BUG_ON_PAGE(PageCompound(page), page);
1302 BUG_ON(!PageLocked(page));
1303 mapping = page->mapping;
1304 index = page->index;
1305 inode = mapping->host;
1306 info = SHMEM_I(inode);
1307 if (info->flags & VM_LOCKED)
1309 if (!total_swap_pages)
1313 * Our capabilities prevent regular writeback or sync from ever calling
1314 * shmem_writepage; but a stacking filesystem might use ->writepage of
1315 * its underlying filesystem, in which case tmpfs should write out to
1316 * swap only in response to memory pressure, and not for the writeback
1319 if (!wbc->for_reclaim) {
1320 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1325 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1326 * value into swapfile.c, the only way we can correctly account for a
1327 * fallocated page arriving here is now to initialize it and write it.
1329 * That's okay for a page already fallocated earlier, but if we have
1330 * not yet completed the fallocation, then (a) we want to keep track
1331 * of this page in case we have to undo it, and (b) it may not be a
1332 * good idea to continue anyway, once we're pushing into swap. So
1333 * reactivate the page, and let shmem_fallocate() quit when too many.
1335 if (!PageUptodate(page)) {
1336 if (inode->i_private) {
1337 struct shmem_falloc *shmem_falloc;
1338 spin_lock(&inode->i_lock);
1339 shmem_falloc = inode->i_private;
1341 !shmem_falloc->waitq &&
1342 index >= shmem_falloc->start &&
1343 index < shmem_falloc->next)
1344 shmem_falloc->nr_unswapped++;
1346 shmem_falloc = NULL;
1347 spin_unlock(&inode->i_lock);
1351 clear_highpage(page);
1352 flush_dcache_page(page);
1353 SetPageUptodate(page);
1356 swap = get_swap_page(page);
1361 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1362 * if it's not already there. Do it now before the page is
1363 * moved to swap cache, when its pagelock no longer protects
1364 * the inode from eviction. But don't unlock the mutex until
1365 * we've incremented swapped, because shmem_unuse_inode() will
1366 * prune a !swapped inode from the swaplist under this mutex.
1368 mutex_lock(&shmem_swaplist_mutex);
1369 if (list_empty(&info->swaplist))
1370 list_add(&info->swaplist, &shmem_swaplist);
1372 if (add_to_swap_cache(page, swap,
1373 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1374 spin_lock_irq(&info->lock);
1375 shmem_recalc_inode(inode);
1377 spin_unlock_irq(&info->lock);
1379 swap_shmem_alloc(swap);
1380 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1382 mutex_unlock(&shmem_swaplist_mutex);
1383 BUG_ON(page_mapped(page));
1384 swap_writepage(page, wbc);
1388 mutex_unlock(&shmem_swaplist_mutex);
1389 put_swap_page(page, swap);
1391 set_page_dirty(page);
1392 if (wbc->for_reclaim)
1393 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1398 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1399 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1403 if (!mpol || mpol->mode == MPOL_DEFAULT)
1404 return; /* show nothing */
1406 mpol_to_str(buffer, sizeof(buffer), mpol);
1408 seq_printf(seq, ",mpol=%s", buffer);
1411 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1413 struct mempolicy *mpol = NULL;
1415 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1416 mpol = sbinfo->mpol;
1418 spin_unlock(&sbinfo->stat_lock);
1422 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1423 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1426 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1430 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1432 #define vm_policy vm_private_data
1435 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1436 struct shmem_inode_info *info, pgoff_t index)
1438 /* Create a pseudo vma that just contains the policy */
1439 vma_init(vma, NULL);
1440 /* Bias interleave by inode number to distribute better across nodes */
1441 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1442 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1445 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1447 /* Drop reference taken by mpol_shared_policy_lookup() */
1448 mpol_cond_put(vma->vm_policy);
1451 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1452 struct shmem_inode_info *info, pgoff_t index)
1454 struct vm_area_struct pvma;
1456 struct vm_fault vmf;
1458 shmem_pseudo_vma_init(&pvma, info, index);
1461 page = swap_cluster_readahead(swap, gfp, &vmf);
1462 shmem_pseudo_vma_destroy(&pvma);
1467 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1468 struct shmem_inode_info *info, pgoff_t index)
1470 struct vm_area_struct pvma;
1471 struct address_space *mapping = info->vfs_inode.i_mapping;
1475 hindex = round_down(index, HPAGE_PMD_NR);
1476 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1480 shmem_pseudo_vma_init(&pvma, info, hindex);
1481 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1482 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1483 shmem_pseudo_vma_destroy(&pvma);
1485 prep_transhuge_page(page);
1487 count_vm_event(THP_FILE_FALLBACK);
1491 static struct page *shmem_alloc_page(gfp_t gfp,
1492 struct shmem_inode_info *info, pgoff_t index)
1494 struct vm_area_struct pvma;
1497 shmem_pseudo_vma_init(&pvma, info, index);
1498 page = alloc_page_vma(gfp, &pvma, 0);
1499 shmem_pseudo_vma_destroy(&pvma);
1504 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1505 struct inode *inode,
1506 pgoff_t index, bool huge)
1508 struct shmem_inode_info *info = SHMEM_I(inode);
1513 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1515 nr = huge ? HPAGE_PMD_NR : 1;
1517 if (!shmem_inode_acct_block(inode, nr))
1521 page = shmem_alloc_hugepage(gfp, info, index);
1523 page = shmem_alloc_page(gfp, info, index);
1525 __SetPageLocked(page);
1526 __SetPageSwapBacked(page);
1531 shmem_inode_unacct_blocks(inode, nr);
1533 return ERR_PTR(err);
1537 * When a page is moved from swapcache to shmem filecache (either by the
1538 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1539 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1540 * ignorance of the mapping it belongs to. If that mapping has special
1541 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1542 * we may need to copy to a suitable page before moving to filecache.
1544 * In a future release, this may well be extended to respect cpuset and
1545 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1546 * but for now it is a simple matter of zone.
1548 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1550 return page_zonenum(page) > gfp_zone(gfp);
1553 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1554 struct shmem_inode_info *info, pgoff_t index)
1556 struct page *oldpage, *newpage;
1557 struct address_space *swap_mapping;
1563 entry.val = page_private(oldpage);
1564 swap_index = swp_offset(entry);
1565 swap_mapping = page_mapping(oldpage);
1568 * We have arrived here because our zones are constrained, so don't
1569 * limit chance of success by further cpuset and node constraints.
1571 gfp &= ~GFP_CONSTRAINT_MASK;
1572 newpage = shmem_alloc_page(gfp, info, index);
1577 copy_highpage(newpage, oldpage);
1578 flush_dcache_page(newpage);
1580 __SetPageLocked(newpage);
1581 __SetPageSwapBacked(newpage);
1582 SetPageUptodate(newpage);
1583 set_page_private(newpage, entry.val);
1584 SetPageSwapCache(newpage);
1587 * Our caller will very soon move newpage out of swapcache, but it's
1588 * a nice clean interface for us to replace oldpage by newpage there.
1590 xa_lock_irq(&swap_mapping->i_pages);
1591 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1593 __inc_node_page_state(newpage, NR_FILE_PAGES);
1594 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1596 xa_unlock_irq(&swap_mapping->i_pages);
1598 if (unlikely(error)) {
1600 * Is this possible? I think not, now that our callers check
1601 * both PageSwapCache and page_private after getting page lock;
1602 * but be defensive. Reverse old to newpage for clear and free.
1606 mem_cgroup_migrate(oldpage, newpage);
1607 lru_cache_add_anon(newpage);
1611 ClearPageSwapCache(oldpage);
1612 set_page_private(oldpage, 0);
1614 unlock_page(oldpage);
1621 * Swap in the page pointed to by *pagep.
1622 * Caller has to make sure that *pagep contains a valid swapped page.
1623 * Returns 0 and the page in pagep if success. On failure, returns the
1624 * the error code and NULL in *pagep.
1626 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1627 struct page **pagep, enum sgp_type sgp,
1628 gfp_t gfp, struct vm_area_struct *vma,
1629 vm_fault_t *fault_type)
1631 struct address_space *mapping = inode->i_mapping;
1632 struct shmem_inode_info *info = SHMEM_I(inode);
1633 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1634 struct mem_cgroup *memcg;
1639 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1640 swap = radix_to_swp_entry(*pagep);
1643 /* Look it up and read it in.. */
1644 page = lookup_swap_cache(swap, NULL, 0);
1646 /* Or update major stats only when swapin succeeds?? */
1648 *fault_type |= VM_FAULT_MAJOR;
1649 count_vm_event(PGMAJFAULT);
1650 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1652 /* Here we actually start the io */
1653 page = shmem_swapin(swap, gfp, info, index);
1660 /* We have to do this with page locked to prevent races */
1662 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1663 !shmem_confirm_swap(mapping, index, swap)) {
1667 if (!PageUptodate(page)) {
1671 wait_on_page_writeback(page);
1673 if (shmem_should_replace_page(page, gfp)) {
1674 error = shmem_replace_page(&page, gfp, info, index);
1679 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1682 error = shmem_add_to_page_cache(page, mapping, index,
1683 swp_to_radix_entry(swap), gfp);
1685 * We already confirmed swap under page lock, and make
1686 * no memory allocation here, so usually no possibility
1687 * of error; but free_swap_and_cache() only trylocks a
1688 * page, so it is just possible that the entry has been
1689 * truncated or holepunched since swap was confirmed.
1690 * shmem_undo_range() will have done some of the
1691 * unaccounting, now delete_from_swap_cache() will do
1695 mem_cgroup_cancel_charge(page, memcg, false);
1696 delete_from_swap_cache(page);
1702 mem_cgroup_commit_charge(page, memcg, true, false);
1704 spin_lock_irq(&info->lock);
1706 shmem_recalc_inode(inode);
1707 spin_unlock_irq(&info->lock);
1709 if (sgp == SGP_WRITE)
1710 mark_page_accessed(page);
1712 delete_from_swap_cache(page);
1713 set_page_dirty(page);
1719 if (!shmem_confirm_swap(mapping, index, swap))
1731 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1733 * If we allocate a new one we do not mark it dirty. That's up to the
1734 * vm. If we swap it in we mark it dirty since we also free the swap
1735 * entry since a page cannot live in both the swap and page cache.
1737 * vmf and fault_type are only supplied by shmem_fault:
1738 * otherwise they are NULL.
1740 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1741 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1742 struct vm_area_struct *vma, struct vm_fault *vmf,
1743 vm_fault_t *fault_type)
1745 struct address_space *mapping = inode->i_mapping;
1746 struct shmem_inode_info *info = SHMEM_I(inode);
1747 struct shmem_sb_info *sbinfo;
1748 struct mm_struct *charge_mm;
1749 struct mem_cgroup *memcg;
1751 enum sgp_type sgp_huge = sgp;
1752 pgoff_t hindex = index;
1757 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1759 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1762 if (sgp <= SGP_CACHE &&
1763 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1767 sbinfo = SHMEM_SB(inode->i_sb);
1768 charge_mm = vma ? vma->vm_mm : current->mm;
1770 page = find_lock_entry(mapping, index);
1771 if (xa_is_value(page)) {
1772 error = shmem_swapin_page(inode, index, &page,
1773 sgp, gfp, vma, fault_type);
1774 if (error == -EEXIST)
1781 if (page && sgp == SGP_WRITE)
1782 mark_page_accessed(page);
1784 /* fallocated page? */
1785 if (page && !PageUptodate(page)) {
1786 if (sgp != SGP_READ)
1792 if (page || sgp == SGP_READ) {
1798 * Fast cache lookup did not find it:
1799 * bring it back from swap or allocate.
1802 if (vma && userfaultfd_missing(vma)) {
1803 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1807 /* shmem_symlink() */
1808 if (mapping->a_ops != &shmem_aops)
1810 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1812 if (shmem_huge == SHMEM_HUGE_FORCE)
1814 switch (sbinfo->huge) {
1817 case SHMEM_HUGE_NEVER:
1819 case SHMEM_HUGE_WITHIN_SIZE:
1820 off = round_up(index, HPAGE_PMD_NR);
1821 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1822 if (i_size >= HPAGE_PMD_SIZE &&
1823 i_size >> PAGE_SHIFT >= off)
1826 case SHMEM_HUGE_ADVISE:
1827 if (sgp_huge == SGP_HUGE)
1829 /* TODO: implement fadvise() hints */
1834 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1837 page = shmem_alloc_and_acct_page(gfp, inode,
1843 error = PTR_ERR(page);
1845 if (error != -ENOSPC)
1848 * Try to reclaim some space by splitting a huge page
1849 * beyond i_size on the filesystem.
1854 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1855 if (ret == SHRINK_STOP)
1863 if (PageTransHuge(page))
1864 hindex = round_down(index, HPAGE_PMD_NR);
1868 if (sgp == SGP_WRITE)
1869 __SetPageReferenced(page);
1871 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1872 PageTransHuge(page));
1874 if (PageTransHuge(page)) {
1875 count_vm_event(THP_FILE_FALLBACK);
1876 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1880 error = shmem_add_to_page_cache(page, mapping, hindex,
1881 NULL, gfp & GFP_RECLAIM_MASK);
1883 mem_cgroup_cancel_charge(page, memcg,
1884 PageTransHuge(page));
1887 mem_cgroup_commit_charge(page, memcg, false,
1888 PageTransHuge(page));
1889 lru_cache_add_anon(page);
1891 spin_lock_irq(&info->lock);
1892 info->alloced += compound_nr(page);
1893 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1894 shmem_recalc_inode(inode);
1895 spin_unlock_irq(&info->lock);
1898 if (PageTransHuge(page) &&
1899 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1900 hindex + HPAGE_PMD_NR - 1) {
1902 * Part of the huge page is beyond i_size: subject
1903 * to shrink under memory pressure.
1905 spin_lock(&sbinfo->shrinklist_lock);
1907 * _careful to defend against unlocked access to
1908 * ->shrink_list in shmem_unused_huge_shrink()
1910 if (list_empty_careful(&info->shrinklist)) {
1911 list_add_tail(&info->shrinklist,
1912 &sbinfo->shrinklist);
1913 sbinfo->shrinklist_len++;
1915 spin_unlock(&sbinfo->shrinklist_lock);
1919 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1921 if (sgp == SGP_FALLOC)
1925 * Let SGP_WRITE caller clear ends if write does not fill page;
1926 * but SGP_FALLOC on a page fallocated earlier must initialize
1927 * it now, lest undo on failure cancel our earlier guarantee.
1929 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1930 struct page *head = compound_head(page);
1933 for (i = 0; i < compound_nr(head); i++) {
1934 clear_highpage(head + i);
1935 flush_dcache_page(head + i);
1937 SetPageUptodate(head);
1940 /* Perhaps the file has been truncated since we checked */
1941 if (sgp <= SGP_CACHE &&
1942 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1944 ClearPageDirty(page);
1945 delete_from_page_cache(page);
1946 spin_lock_irq(&info->lock);
1947 shmem_recalc_inode(inode);
1948 spin_unlock_irq(&info->lock);
1953 *pagep = page + index - hindex;
1960 shmem_inode_unacct_blocks(inode, compound_nr(page));
1962 if (PageTransHuge(page)) {
1972 if (error == -ENOSPC && !once++) {
1973 spin_lock_irq(&info->lock);
1974 shmem_recalc_inode(inode);
1975 spin_unlock_irq(&info->lock);
1978 if (error == -EEXIST)
1984 * This is like autoremove_wake_function, but it removes the wait queue
1985 * entry unconditionally - even if something else had already woken the
1988 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1990 int ret = default_wake_function(wait, mode, sync, key);
1991 list_del_init(&wait->entry);
1995 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1997 struct vm_area_struct *vma = vmf->vma;
1998 struct inode *inode = file_inode(vma->vm_file);
1999 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2002 vm_fault_t ret = VM_FAULT_LOCKED;
2005 * Trinity finds that probing a hole which tmpfs is punching can
2006 * prevent the hole-punch from ever completing: which in turn
2007 * locks writers out with its hold on i_mutex. So refrain from
2008 * faulting pages into the hole while it's being punched. Although
2009 * shmem_undo_range() does remove the additions, it may be unable to
2010 * keep up, as each new page needs its own unmap_mapping_range() call,
2011 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2013 * It does not matter if we sometimes reach this check just before the
2014 * hole-punch begins, so that one fault then races with the punch:
2015 * we just need to make racing faults a rare case.
2017 * The implementation below would be much simpler if we just used a
2018 * standard mutex or completion: but we cannot take i_mutex in fault,
2019 * and bloating every shmem inode for this unlikely case would be sad.
2021 if (unlikely(inode->i_private)) {
2022 struct shmem_falloc *shmem_falloc;
2024 spin_lock(&inode->i_lock);
2025 shmem_falloc = inode->i_private;
2027 shmem_falloc->waitq &&
2028 vmf->pgoff >= shmem_falloc->start &&
2029 vmf->pgoff < shmem_falloc->next) {
2031 wait_queue_head_t *shmem_falloc_waitq;
2032 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2034 ret = VM_FAULT_NOPAGE;
2035 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2037 ret = VM_FAULT_RETRY;
2039 shmem_falloc_waitq = shmem_falloc->waitq;
2040 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2041 TASK_UNINTERRUPTIBLE);
2042 spin_unlock(&inode->i_lock);
2046 * shmem_falloc_waitq points into the shmem_fallocate()
2047 * stack of the hole-punching task: shmem_falloc_waitq
2048 * is usually invalid by the time we reach here, but
2049 * finish_wait() does not dereference it in that case;
2050 * though i_lock needed lest racing with wake_up_all().
2052 spin_lock(&inode->i_lock);
2053 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2054 spin_unlock(&inode->i_lock);
2060 spin_unlock(&inode->i_lock);
2065 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2066 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2068 else if (vma->vm_flags & VM_HUGEPAGE)
2071 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2072 gfp, vma, vmf, &ret);
2074 return vmf_error(err);
2078 unsigned long shmem_get_unmapped_area(struct file *file,
2079 unsigned long uaddr, unsigned long len,
2080 unsigned long pgoff, unsigned long flags)
2082 unsigned long (*get_area)(struct file *,
2083 unsigned long, unsigned long, unsigned long, unsigned long);
2085 unsigned long offset;
2086 unsigned long inflated_len;
2087 unsigned long inflated_addr;
2088 unsigned long inflated_offset;
2090 if (len > TASK_SIZE)
2093 get_area = current->mm->get_unmapped_area;
2094 addr = get_area(file, uaddr, len, pgoff, flags);
2096 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2098 if (IS_ERR_VALUE(addr))
2100 if (addr & ~PAGE_MASK)
2102 if (addr > TASK_SIZE - len)
2105 if (shmem_huge == SHMEM_HUGE_DENY)
2107 if (len < HPAGE_PMD_SIZE)
2109 if (flags & MAP_FIXED)
2112 * Our priority is to support MAP_SHARED mapped hugely;
2113 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2114 * But if caller specified an address hint and we allocated area there
2115 * successfully, respect that as before.
2120 if (shmem_huge != SHMEM_HUGE_FORCE) {
2121 struct super_block *sb;
2124 VM_BUG_ON(file->f_op != &shmem_file_operations);
2125 sb = file_inode(file)->i_sb;
2128 * Called directly from mm/mmap.c, or drivers/char/mem.c
2129 * for "/dev/zero", to create a shared anonymous object.
2131 if (IS_ERR(shm_mnt))
2133 sb = shm_mnt->mnt_sb;
2135 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2139 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2140 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2142 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2145 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2146 if (inflated_len > TASK_SIZE)
2148 if (inflated_len < len)
2151 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2152 if (IS_ERR_VALUE(inflated_addr))
2154 if (inflated_addr & ~PAGE_MASK)
2157 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2158 inflated_addr += offset - inflated_offset;
2159 if (inflated_offset > offset)
2160 inflated_addr += HPAGE_PMD_SIZE;
2162 if (inflated_addr > TASK_SIZE - len)
2164 return inflated_addr;
2168 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2170 struct inode *inode = file_inode(vma->vm_file);
2171 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2174 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2177 struct inode *inode = file_inode(vma->vm_file);
2180 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2181 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2185 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2187 struct inode *inode = file_inode(file);
2188 struct shmem_inode_info *info = SHMEM_I(inode);
2189 int retval = -ENOMEM;
2191 spin_lock_irq(&info->lock);
2192 if (lock && !(info->flags & VM_LOCKED)) {
2193 if (!user_shm_lock(inode->i_size, user))
2195 info->flags |= VM_LOCKED;
2196 mapping_set_unevictable(file->f_mapping);
2198 if (!lock && (info->flags & VM_LOCKED) && user) {
2199 user_shm_unlock(inode->i_size, user);
2200 info->flags &= ~VM_LOCKED;
2201 mapping_clear_unevictable(file->f_mapping);
2206 spin_unlock_irq(&info->lock);
2210 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2212 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2214 if (info->seals & F_SEAL_FUTURE_WRITE) {
2216 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2217 * "future write" seal active.
2219 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2223 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2224 * MAP_SHARED and read-only, take care to not allow mprotect to
2225 * revert protections on such mappings. Do this only for shared
2226 * mappings. For private mappings, don't need to mask
2227 * VM_MAYWRITE as we still want them to be COW-writable.
2229 if (vma->vm_flags & VM_SHARED)
2230 vma->vm_flags &= ~(VM_MAYWRITE);
2233 file_accessed(file);
2234 vma->vm_ops = &shmem_vm_ops;
2235 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2236 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2237 (vma->vm_end & HPAGE_PMD_MASK)) {
2238 khugepaged_enter(vma, vma->vm_flags);
2243 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2244 umode_t mode, dev_t dev, unsigned long flags)
2246 struct inode *inode;
2247 struct shmem_inode_info *info;
2248 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2250 if (shmem_reserve_inode(sb))
2253 inode = new_inode(sb);
2255 inode->i_ino = get_next_ino();
2256 inode_init_owner(inode, dir, mode);
2257 inode->i_blocks = 0;
2258 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2259 inode->i_generation = prandom_u32();
2260 info = SHMEM_I(inode);
2261 memset(info, 0, (char *)inode - (char *)info);
2262 spin_lock_init(&info->lock);
2263 atomic_set(&info->stop_eviction, 0);
2264 info->seals = F_SEAL_SEAL;
2265 info->flags = flags & VM_NORESERVE;
2266 INIT_LIST_HEAD(&info->shrinklist);
2267 INIT_LIST_HEAD(&info->swaplist);
2268 simple_xattrs_init(&info->xattrs);
2269 cache_no_acl(inode);
2271 switch (mode & S_IFMT) {
2273 inode->i_op = &shmem_special_inode_operations;
2274 init_special_inode(inode, mode, dev);
2277 inode->i_mapping->a_ops = &shmem_aops;
2278 inode->i_op = &shmem_inode_operations;
2279 inode->i_fop = &shmem_file_operations;
2280 mpol_shared_policy_init(&info->policy,
2281 shmem_get_sbmpol(sbinfo));
2285 /* Some things misbehave if size == 0 on a directory */
2286 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2287 inode->i_op = &shmem_dir_inode_operations;
2288 inode->i_fop = &simple_dir_operations;
2292 * Must not load anything in the rbtree,
2293 * mpol_free_shared_policy will not be called.
2295 mpol_shared_policy_init(&info->policy, NULL);
2299 lockdep_annotate_inode_mutex_key(inode);
2301 shmem_free_inode(sb);
2305 bool shmem_mapping(struct address_space *mapping)
2307 return mapping->a_ops == &shmem_aops;
2310 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2312 struct vm_area_struct *dst_vma,
2313 unsigned long dst_addr,
2314 unsigned long src_addr,
2316 struct page **pagep)
2318 struct inode *inode = file_inode(dst_vma->vm_file);
2319 struct shmem_inode_info *info = SHMEM_I(inode);
2320 struct address_space *mapping = inode->i_mapping;
2321 gfp_t gfp = mapping_gfp_mask(mapping);
2322 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2323 struct mem_cgroup *memcg;
2327 pte_t _dst_pte, *dst_pte;
2329 pgoff_t offset, max_off;
2332 if (!shmem_inode_acct_block(inode, 1))
2336 page = shmem_alloc_page(gfp, info, pgoff);
2338 goto out_unacct_blocks;
2340 if (!zeropage) { /* mcopy_atomic */
2341 page_kaddr = kmap_atomic(page);
2342 ret = copy_from_user(page_kaddr,
2343 (const void __user *)src_addr,
2345 kunmap_atomic(page_kaddr);
2347 /* fallback to copy_from_user outside mmap_sem */
2348 if (unlikely(ret)) {
2350 shmem_inode_unacct_blocks(inode, 1);
2351 /* don't free the page */
2354 } else { /* mfill_zeropage_atomic */
2355 clear_highpage(page);
2362 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2363 __SetPageLocked(page);
2364 __SetPageSwapBacked(page);
2365 __SetPageUptodate(page);
2368 offset = linear_page_index(dst_vma, dst_addr);
2369 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2370 if (unlikely(offset >= max_off))
2373 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2377 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2378 gfp & GFP_RECLAIM_MASK);
2380 goto out_release_uncharge;
2382 mem_cgroup_commit_charge(page, memcg, false, false);
2384 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2385 if (dst_vma->vm_flags & VM_WRITE)
2386 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2389 * We don't set the pte dirty if the vma has no
2390 * VM_WRITE permission, so mark the page dirty or it
2391 * could be freed from under us. We could do it
2392 * unconditionally before unlock_page(), but doing it
2393 * only if VM_WRITE is not set is faster.
2395 set_page_dirty(page);
2398 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2401 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2402 if (unlikely(offset >= max_off))
2403 goto out_release_uncharge_unlock;
2406 if (!pte_none(*dst_pte))
2407 goto out_release_uncharge_unlock;
2409 lru_cache_add_anon(page);
2411 spin_lock(&info->lock);
2413 inode->i_blocks += BLOCKS_PER_PAGE;
2414 shmem_recalc_inode(inode);
2415 spin_unlock(&info->lock);
2417 inc_mm_counter(dst_mm, mm_counter_file(page));
2418 page_add_file_rmap(page, false);
2419 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2421 /* No need to invalidate - it was non-present before */
2422 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2423 pte_unmap_unlock(dst_pte, ptl);
2428 out_release_uncharge_unlock:
2429 pte_unmap_unlock(dst_pte, ptl);
2430 ClearPageDirty(page);
2431 delete_from_page_cache(page);
2432 out_release_uncharge:
2433 mem_cgroup_cancel_charge(page, memcg, false);
2438 shmem_inode_unacct_blocks(inode, 1);
2442 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2444 struct vm_area_struct *dst_vma,
2445 unsigned long dst_addr,
2446 unsigned long src_addr,
2447 struct page **pagep)
2449 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2450 dst_addr, src_addr, false, pagep);
2453 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2455 struct vm_area_struct *dst_vma,
2456 unsigned long dst_addr)
2458 struct page *page = NULL;
2460 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2461 dst_addr, 0, true, &page);
2465 static const struct inode_operations shmem_symlink_inode_operations;
2466 static const struct inode_operations shmem_short_symlink_operations;
2468 #ifdef CONFIG_TMPFS_XATTR
2469 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2471 #define shmem_initxattrs NULL
2475 shmem_write_begin(struct file *file, struct address_space *mapping,
2476 loff_t pos, unsigned len, unsigned flags,
2477 struct page **pagep, void **fsdata)
2479 struct inode *inode = mapping->host;
2480 struct shmem_inode_info *info = SHMEM_I(inode);
2481 pgoff_t index = pos >> PAGE_SHIFT;
2483 /* i_mutex is held by caller */
2484 if (unlikely(info->seals & (F_SEAL_GROW |
2485 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2486 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2488 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2492 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2496 shmem_write_end(struct file *file, struct address_space *mapping,
2497 loff_t pos, unsigned len, unsigned copied,
2498 struct page *page, void *fsdata)
2500 struct inode *inode = mapping->host;
2502 if (pos + copied > inode->i_size)
2503 i_size_write(inode, pos + copied);
2505 if (!PageUptodate(page)) {
2506 struct page *head = compound_head(page);
2507 if (PageTransCompound(page)) {
2510 for (i = 0; i < HPAGE_PMD_NR; i++) {
2511 if (head + i == page)
2513 clear_highpage(head + i);
2514 flush_dcache_page(head + i);
2517 if (copied < PAGE_SIZE) {
2518 unsigned from = pos & (PAGE_SIZE - 1);
2519 zero_user_segments(page, 0, from,
2520 from + copied, PAGE_SIZE);
2522 SetPageUptodate(head);
2524 set_page_dirty(page);
2531 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2533 struct file *file = iocb->ki_filp;
2534 struct inode *inode = file_inode(file);
2535 struct address_space *mapping = inode->i_mapping;
2537 unsigned long offset;
2538 enum sgp_type sgp = SGP_READ;
2541 loff_t *ppos = &iocb->ki_pos;
2544 * Might this read be for a stacking filesystem? Then when reading
2545 * holes of a sparse file, we actually need to allocate those pages,
2546 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2548 if (!iter_is_iovec(to))
2551 index = *ppos >> PAGE_SHIFT;
2552 offset = *ppos & ~PAGE_MASK;
2555 struct page *page = NULL;
2557 unsigned long nr, ret;
2558 loff_t i_size = i_size_read(inode);
2560 end_index = i_size >> PAGE_SHIFT;
2561 if (index > end_index)
2563 if (index == end_index) {
2564 nr = i_size & ~PAGE_MASK;
2569 error = shmem_getpage(inode, index, &page, sgp);
2571 if (error == -EINVAL)
2576 if (sgp == SGP_CACHE)
2577 set_page_dirty(page);
2582 * We must evaluate after, since reads (unlike writes)
2583 * are called without i_mutex protection against truncate
2586 i_size = i_size_read(inode);
2587 end_index = i_size >> PAGE_SHIFT;
2588 if (index == end_index) {
2589 nr = i_size & ~PAGE_MASK;
2600 * If users can be writing to this page using arbitrary
2601 * virtual addresses, take care about potential aliasing
2602 * before reading the page on the kernel side.
2604 if (mapping_writably_mapped(mapping))
2605 flush_dcache_page(page);
2607 * Mark the page accessed if we read the beginning.
2610 mark_page_accessed(page);
2612 page = ZERO_PAGE(0);
2617 * Ok, we have the page, and it's up-to-date, so
2618 * now we can copy it to user space...
2620 ret = copy_page_to_iter(page, offset, nr, to);
2623 index += offset >> PAGE_SHIFT;
2624 offset &= ~PAGE_MASK;
2627 if (!iov_iter_count(to))
2636 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2637 file_accessed(file);
2638 return retval ? retval : error;
2642 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2644 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2645 pgoff_t index, pgoff_t end, int whence)
2648 struct pagevec pvec;
2649 pgoff_t indices[PAGEVEC_SIZE];
2653 pagevec_init(&pvec);
2654 pvec.nr = 1; /* start small: we may be there already */
2656 pvec.nr = find_get_entries(mapping, index,
2657 pvec.nr, pvec.pages, indices);
2659 if (whence == SEEK_DATA)
2663 for (i = 0; i < pvec.nr; i++, index++) {
2664 if (index < indices[i]) {
2665 if (whence == SEEK_HOLE) {
2671 page = pvec.pages[i];
2672 if (page && !xa_is_value(page)) {
2673 if (!PageUptodate(page))
2677 (page && whence == SEEK_DATA) ||
2678 (!page && whence == SEEK_HOLE)) {
2683 pagevec_remove_exceptionals(&pvec);
2684 pagevec_release(&pvec);
2685 pvec.nr = PAGEVEC_SIZE;
2691 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2693 struct address_space *mapping = file->f_mapping;
2694 struct inode *inode = mapping->host;
2698 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2699 return generic_file_llseek_size(file, offset, whence,
2700 MAX_LFS_FILESIZE, i_size_read(inode));
2702 /* We're holding i_mutex so we can access i_size directly */
2704 if (offset < 0 || offset >= inode->i_size)
2707 start = offset >> PAGE_SHIFT;
2708 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2709 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2710 new_offset <<= PAGE_SHIFT;
2711 if (new_offset > offset) {
2712 if (new_offset < inode->i_size)
2713 offset = new_offset;
2714 else if (whence == SEEK_DATA)
2717 offset = inode->i_size;
2722 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2723 inode_unlock(inode);
2727 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2730 struct inode *inode = file_inode(file);
2731 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2732 struct shmem_inode_info *info = SHMEM_I(inode);
2733 struct shmem_falloc shmem_falloc;
2734 pgoff_t start, index, end;
2737 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2742 if (mode & FALLOC_FL_PUNCH_HOLE) {
2743 struct address_space *mapping = file->f_mapping;
2744 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2745 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2746 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2748 /* protected by i_mutex */
2749 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2754 shmem_falloc.waitq = &shmem_falloc_waitq;
2755 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2756 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2757 spin_lock(&inode->i_lock);
2758 inode->i_private = &shmem_falloc;
2759 spin_unlock(&inode->i_lock);
2761 if ((u64)unmap_end > (u64)unmap_start)
2762 unmap_mapping_range(mapping, unmap_start,
2763 1 + unmap_end - unmap_start, 0);
2764 shmem_truncate_range(inode, offset, offset + len - 1);
2765 /* No need to unmap again: hole-punching leaves COWed pages */
2767 spin_lock(&inode->i_lock);
2768 inode->i_private = NULL;
2769 wake_up_all(&shmem_falloc_waitq);
2770 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2771 spin_unlock(&inode->i_lock);
2776 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2777 error = inode_newsize_ok(inode, offset + len);
2781 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2786 start = offset >> PAGE_SHIFT;
2787 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2788 /* Try to avoid a swapstorm if len is impossible to satisfy */
2789 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2794 shmem_falloc.waitq = NULL;
2795 shmem_falloc.start = start;
2796 shmem_falloc.next = start;
2797 shmem_falloc.nr_falloced = 0;
2798 shmem_falloc.nr_unswapped = 0;
2799 spin_lock(&inode->i_lock);
2800 inode->i_private = &shmem_falloc;
2801 spin_unlock(&inode->i_lock);
2803 for (index = start; index < end; index++) {
2807 * Good, the fallocate(2) manpage permits EINTR: we may have
2808 * been interrupted because we are using up too much memory.
2810 if (signal_pending(current))
2812 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2815 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2817 /* Remove the !PageUptodate pages we added */
2818 if (index > start) {
2819 shmem_undo_range(inode,
2820 (loff_t)start << PAGE_SHIFT,
2821 ((loff_t)index << PAGE_SHIFT) - 1, true);
2827 * Inform shmem_writepage() how far we have reached.
2828 * No need for lock or barrier: we have the page lock.
2830 shmem_falloc.next++;
2831 if (!PageUptodate(page))
2832 shmem_falloc.nr_falloced++;
2835 * If !PageUptodate, leave it that way so that freeable pages
2836 * can be recognized if we need to rollback on error later.
2837 * But set_page_dirty so that memory pressure will swap rather
2838 * than free the pages we are allocating (and SGP_CACHE pages
2839 * might still be clean: we now need to mark those dirty too).
2841 set_page_dirty(page);
2847 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2848 i_size_write(inode, offset + len);
2849 inode->i_ctime = current_time(inode);
2851 spin_lock(&inode->i_lock);
2852 inode->i_private = NULL;
2853 spin_unlock(&inode->i_lock);
2855 inode_unlock(inode);
2859 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2861 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2863 buf->f_type = TMPFS_MAGIC;
2864 buf->f_bsize = PAGE_SIZE;
2865 buf->f_namelen = NAME_MAX;
2866 if (sbinfo->max_blocks) {
2867 buf->f_blocks = sbinfo->max_blocks;
2869 buf->f_bfree = sbinfo->max_blocks -
2870 percpu_counter_sum(&sbinfo->used_blocks);
2872 if (sbinfo->max_inodes) {
2873 buf->f_files = sbinfo->max_inodes;
2874 buf->f_ffree = sbinfo->free_inodes;
2876 /* else leave those fields 0 like simple_statfs */
2881 * File creation. Allocate an inode, and we're done..
2884 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2886 struct inode *inode;
2887 int error = -ENOSPC;
2889 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2891 error = simple_acl_create(dir, inode);
2894 error = security_inode_init_security(inode, dir,
2896 shmem_initxattrs, NULL);
2897 if (error && error != -EOPNOTSUPP)
2901 dir->i_size += BOGO_DIRENT_SIZE;
2902 dir->i_ctime = dir->i_mtime = current_time(dir);
2903 d_instantiate(dentry, inode);
2904 dget(dentry); /* Extra count - pin the dentry in core */
2913 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2915 struct inode *inode;
2916 int error = -ENOSPC;
2918 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2920 error = security_inode_init_security(inode, dir,
2922 shmem_initxattrs, NULL);
2923 if (error && error != -EOPNOTSUPP)
2925 error = simple_acl_create(dir, inode);
2928 d_tmpfile(dentry, inode);
2936 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2940 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2946 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2949 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2955 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2957 struct inode *inode = d_inode(old_dentry);
2961 * No ordinary (disk based) filesystem counts links as inodes;
2962 * but each new link needs a new dentry, pinning lowmem, and
2963 * tmpfs dentries cannot be pruned until they are unlinked.
2964 * But if an O_TMPFILE file is linked into the tmpfs, the
2965 * first link must skip that, to get the accounting right.
2967 if (inode->i_nlink) {
2968 ret = shmem_reserve_inode(inode->i_sb);
2973 dir->i_size += BOGO_DIRENT_SIZE;
2974 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2976 ihold(inode); /* New dentry reference */
2977 dget(dentry); /* Extra pinning count for the created dentry */
2978 d_instantiate(dentry, inode);
2983 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2985 struct inode *inode = d_inode(dentry);
2987 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2988 shmem_free_inode(inode->i_sb);
2990 dir->i_size -= BOGO_DIRENT_SIZE;
2991 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2993 dput(dentry); /* Undo the count from "create" - this does all the work */
2997 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2999 if (!simple_empty(dentry))
3002 drop_nlink(d_inode(dentry));
3004 return shmem_unlink(dir, dentry);
3007 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3009 bool old_is_dir = d_is_dir(old_dentry);
3010 bool new_is_dir = d_is_dir(new_dentry);
3012 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3014 drop_nlink(old_dir);
3017 drop_nlink(new_dir);
3021 old_dir->i_ctime = old_dir->i_mtime =
3022 new_dir->i_ctime = new_dir->i_mtime =
3023 d_inode(old_dentry)->i_ctime =
3024 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3029 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3031 struct dentry *whiteout;
3034 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3038 error = shmem_mknod(old_dir, whiteout,
3039 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3045 * Cheat and hash the whiteout while the old dentry is still in
3046 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3048 * d_lookup() will consistently find one of them at this point,
3049 * not sure which one, but that isn't even important.
3056 * The VFS layer already does all the dentry stuff for rename,
3057 * we just have to decrement the usage count for the target if
3058 * it exists so that the VFS layer correctly free's it when it
3061 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3063 struct inode *inode = d_inode(old_dentry);
3064 int they_are_dirs = S_ISDIR(inode->i_mode);
3066 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3069 if (flags & RENAME_EXCHANGE)
3070 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3072 if (!simple_empty(new_dentry))
3075 if (flags & RENAME_WHITEOUT) {
3078 error = shmem_whiteout(old_dir, old_dentry);
3083 if (d_really_is_positive(new_dentry)) {
3084 (void) shmem_unlink(new_dir, new_dentry);
3085 if (they_are_dirs) {
3086 drop_nlink(d_inode(new_dentry));
3087 drop_nlink(old_dir);
3089 } else if (they_are_dirs) {
3090 drop_nlink(old_dir);
3094 old_dir->i_size -= BOGO_DIRENT_SIZE;
3095 new_dir->i_size += BOGO_DIRENT_SIZE;
3096 old_dir->i_ctime = old_dir->i_mtime =
3097 new_dir->i_ctime = new_dir->i_mtime =
3098 inode->i_ctime = current_time(old_dir);
3102 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3106 struct inode *inode;
3109 len = strlen(symname) + 1;
3110 if (len > PAGE_SIZE)
3111 return -ENAMETOOLONG;
3113 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3118 error = security_inode_init_security(inode, dir, &dentry->d_name,
3119 shmem_initxattrs, NULL);
3121 if (error != -EOPNOTSUPP) {
3128 inode->i_size = len-1;
3129 if (len <= SHORT_SYMLINK_LEN) {
3130 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3131 if (!inode->i_link) {
3135 inode->i_op = &shmem_short_symlink_operations;
3137 inode_nohighmem(inode);
3138 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3143 inode->i_mapping->a_ops = &shmem_aops;
3144 inode->i_op = &shmem_symlink_inode_operations;
3145 memcpy(page_address(page), symname, len);
3146 SetPageUptodate(page);
3147 set_page_dirty(page);
3151 dir->i_size += BOGO_DIRENT_SIZE;
3152 dir->i_ctime = dir->i_mtime = current_time(dir);
3153 d_instantiate(dentry, inode);
3158 static void shmem_put_link(void *arg)
3160 mark_page_accessed(arg);
3164 static const char *shmem_get_link(struct dentry *dentry,
3165 struct inode *inode,
3166 struct delayed_call *done)
3168 struct page *page = NULL;
3171 page = find_get_page(inode->i_mapping, 0);
3173 return ERR_PTR(-ECHILD);
3174 if (!PageUptodate(page)) {
3176 return ERR_PTR(-ECHILD);
3179 error = shmem_getpage(inode, 0, &page, SGP_READ);
3181 return ERR_PTR(error);
3184 set_delayed_call(done, shmem_put_link, page);
3185 return page_address(page);
3188 #ifdef CONFIG_TMPFS_XATTR
3190 * Superblocks without xattr inode operations may get some security.* xattr
3191 * support from the LSM "for free". As soon as we have any other xattrs
3192 * like ACLs, we also need to implement the security.* handlers at
3193 * filesystem level, though.
3197 * Callback for security_inode_init_security() for acquiring xattrs.
3199 static int shmem_initxattrs(struct inode *inode,
3200 const struct xattr *xattr_array,
3203 struct shmem_inode_info *info = SHMEM_I(inode);
3204 const struct xattr *xattr;
3205 struct simple_xattr *new_xattr;
3208 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3209 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3213 len = strlen(xattr->name) + 1;
3214 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3216 if (!new_xattr->name) {
3221 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3222 XATTR_SECURITY_PREFIX_LEN);
3223 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3226 simple_xattr_list_add(&info->xattrs, new_xattr);
3232 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3233 struct dentry *unused, struct inode *inode,
3234 const char *name, void *buffer, size_t size)
3236 struct shmem_inode_info *info = SHMEM_I(inode);
3238 name = xattr_full_name(handler, name);
3239 return simple_xattr_get(&info->xattrs, name, buffer, size);
3242 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3243 struct dentry *unused, struct inode *inode,
3244 const char *name, const void *value,
3245 size_t size, int flags)
3247 struct shmem_inode_info *info = SHMEM_I(inode);
3249 name = xattr_full_name(handler, name);
3250 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3253 static const struct xattr_handler shmem_security_xattr_handler = {
3254 .prefix = XATTR_SECURITY_PREFIX,
3255 .get = shmem_xattr_handler_get,
3256 .set = shmem_xattr_handler_set,
3259 static const struct xattr_handler shmem_trusted_xattr_handler = {
3260 .prefix = XATTR_TRUSTED_PREFIX,
3261 .get = shmem_xattr_handler_get,
3262 .set = shmem_xattr_handler_set,
3265 static const struct xattr_handler *shmem_xattr_handlers[] = {
3266 #ifdef CONFIG_TMPFS_POSIX_ACL
3267 &posix_acl_access_xattr_handler,
3268 &posix_acl_default_xattr_handler,
3270 &shmem_security_xattr_handler,
3271 &shmem_trusted_xattr_handler,
3275 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3277 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3278 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3280 #endif /* CONFIG_TMPFS_XATTR */
3282 static const struct inode_operations shmem_short_symlink_operations = {
3283 .get_link = simple_get_link,
3284 #ifdef CONFIG_TMPFS_XATTR
3285 .listxattr = shmem_listxattr,
3289 static const struct inode_operations shmem_symlink_inode_operations = {
3290 .get_link = shmem_get_link,
3291 #ifdef CONFIG_TMPFS_XATTR
3292 .listxattr = shmem_listxattr,
3296 static struct dentry *shmem_get_parent(struct dentry *child)
3298 return ERR_PTR(-ESTALE);
3301 static int shmem_match(struct inode *ino, void *vfh)
3305 inum = (inum << 32) | fh[1];
3306 return ino->i_ino == inum && fh[0] == ino->i_generation;
3309 /* Find any alias of inode, but prefer a hashed alias */
3310 static struct dentry *shmem_find_alias(struct inode *inode)
3312 struct dentry *alias = d_find_alias(inode);
3314 return alias ?: d_find_any_alias(inode);
3318 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3319 struct fid *fid, int fh_len, int fh_type)
3321 struct inode *inode;
3322 struct dentry *dentry = NULL;
3329 inum = (inum << 32) | fid->raw[1];
3331 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3332 shmem_match, fid->raw);
3334 dentry = shmem_find_alias(inode);
3341 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3342 struct inode *parent)
3346 return FILEID_INVALID;
3349 if (inode_unhashed(inode)) {
3350 /* Unfortunately insert_inode_hash is not idempotent,
3351 * so as we hash inodes here rather than at creation
3352 * time, we need a lock to ensure we only try
3355 static DEFINE_SPINLOCK(lock);
3357 if (inode_unhashed(inode))
3358 __insert_inode_hash(inode,
3359 inode->i_ino + inode->i_generation);
3363 fh[0] = inode->i_generation;
3364 fh[1] = inode->i_ino;
3365 fh[2] = ((__u64)inode->i_ino) >> 32;
3371 static const struct export_operations shmem_export_ops = {
3372 .get_parent = shmem_get_parent,
3373 .encode_fh = shmem_encode_fh,
3374 .fh_to_dentry = shmem_fh_to_dentry,
3388 static const struct constant_table shmem_param_enums_huge[] = {
3389 {"never", SHMEM_HUGE_NEVER },
3390 {"always", SHMEM_HUGE_ALWAYS },
3391 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3392 {"advise", SHMEM_HUGE_ADVISE },
3396 const struct fs_parameter_spec shmem_fs_parameters[] = {
3397 fsparam_u32 ("gid", Opt_gid),
3398 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3399 fsparam_u32oct("mode", Opt_mode),
3400 fsparam_string("mpol", Opt_mpol),
3401 fsparam_string("nr_blocks", Opt_nr_blocks),
3402 fsparam_string("nr_inodes", Opt_nr_inodes),
3403 fsparam_string("size", Opt_size),
3404 fsparam_u32 ("uid", Opt_uid),
3408 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3410 struct shmem_options *ctx = fc->fs_private;
3411 struct fs_parse_result result;
3412 unsigned long long size;
3416 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3422 size = memparse(param->string, &rest);
3424 size <<= PAGE_SHIFT;
3425 size *= totalram_pages();
3431 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3432 ctx->seen |= SHMEM_SEEN_BLOCKS;
3435 ctx->blocks = memparse(param->string, &rest);
3438 ctx->seen |= SHMEM_SEEN_BLOCKS;
3441 ctx->inodes = memparse(param->string, &rest);
3444 ctx->seen |= SHMEM_SEEN_INODES;
3447 ctx->mode = result.uint_32 & 07777;
3450 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3451 if (!uid_valid(ctx->uid))
3455 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3456 if (!gid_valid(ctx->gid))
3460 ctx->huge = result.uint_32;
3461 if (ctx->huge != SHMEM_HUGE_NEVER &&
3462 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3463 has_transparent_hugepage()))
3464 goto unsupported_parameter;
3465 ctx->seen |= SHMEM_SEEN_HUGE;
3468 if (IS_ENABLED(CONFIG_NUMA)) {
3469 mpol_put(ctx->mpol);
3471 if (mpol_parse_str(param->string, &ctx->mpol))
3475 goto unsupported_parameter;
3479 unsupported_parameter:
3480 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3482 return invalfc(fc, "Bad value for '%s'", param->key);
3485 static int shmem_parse_options(struct fs_context *fc, void *data)
3487 char *options = data;
3490 int err = security_sb_eat_lsm_opts(options, &fc->security);
3495 while (options != NULL) {
3496 char *this_char = options;
3499 * NUL-terminate this option: unfortunately,
3500 * mount options form a comma-separated list,
3501 * but mpol's nodelist may also contain commas.
3503 options = strchr(options, ',');
3504 if (options == NULL)
3507 if (!isdigit(*options)) {
3513 char *value = strchr(this_char,'=');
3519 len = strlen(value);
3521 err = vfs_parse_fs_string(fc, this_char, value, len);
3530 * Reconfigure a shmem filesystem.
3532 * Note that we disallow change from limited->unlimited blocks/inodes while any
3533 * are in use; but we must separately disallow unlimited->limited, because in
3534 * that case we have no record of how much is already in use.
3536 static int shmem_reconfigure(struct fs_context *fc)
3538 struct shmem_options *ctx = fc->fs_private;
3539 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3540 unsigned long inodes;
3543 spin_lock(&sbinfo->stat_lock);
3544 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3545 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3546 if (!sbinfo->max_blocks) {
3547 err = "Cannot retroactively limit size";
3550 if (percpu_counter_compare(&sbinfo->used_blocks,
3552 err = "Too small a size for current use";
3556 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3557 if (!sbinfo->max_inodes) {
3558 err = "Cannot retroactively limit inodes";
3561 if (ctx->inodes < inodes) {
3562 err = "Too few inodes for current use";
3567 if (ctx->seen & SHMEM_SEEN_HUGE)
3568 sbinfo->huge = ctx->huge;
3569 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3570 sbinfo->max_blocks = ctx->blocks;
3571 if (ctx->seen & SHMEM_SEEN_INODES) {
3572 sbinfo->max_inodes = ctx->inodes;
3573 sbinfo->free_inodes = ctx->inodes - inodes;
3577 * Preserve previous mempolicy unless mpol remount option was specified.
3580 mpol_put(sbinfo->mpol);
3581 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3584 spin_unlock(&sbinfo->stat_lock);
3587 spin_unlock(&sbinfo->stat_lock);
3588 return invalfc(fc, "%s", err);
3591 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3593 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3595 if (sbinfo->max_blocks != shmem_default_max_blocks())
3596 seq_printf(seq, ",size=%luk",
3597 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3598 if (sbinfo->max_inodes != shmem_default_max_inodes())
3599 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3600 if (sbinfo->mode != (0777 | S_ISVTX))
3601 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3602 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3603 seq_printf(seq, ",uid=%u",
3604 from_kuid_munged(&init_user_ns, sbinfo->uid));
3605 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3606 seq_printf(seq, ",gid=%u",
3607 from_kgid_munged(&init_user_ns, sbinfo->gid));
3608 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3609 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3611 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3613 shmem_show_mpol(seq, sbinfo->mpol);
3617 #endif /* CONFIG_TMPFS */
3619 static void shmem_put_super(struct super_block *sb)
3621 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3623 percpu_counter_destroy(&sbinfo->used_blocks);
3624 mpol_put(sbinfo->mpol);
3626 sb->s_fs_info = NULL;
3629 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3631 struct shmem_options *ctx = fc->fs_private;
3632 struct inode *inode;
3633 struct shmem_sb_info *sbinfo;
3636 /* Round up to L1_CACHE_BYTES to resist false sharing */
3637 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3638 L1_CACHE_BYTES), GFP_KERNEL);
3642 sb->s_fs_info = sbinfo;
3646 * Per default we only allow half of the physical ram per
3647 * tmpfs instance, limiting inodes to one per page of lowmem;
3648 * but the internal instance is left unlimited.
3650 if (!(sb->s_flags & SB_KERNMOUNT)) {
3651 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3652 ctx->blocks = shmem_default_max_blocks();
3653 if (!(ctx->seen & SHMEM_SEEN_INODES))
3654 ctx->inodes = shmem_default_max_inodes();
3656 sb->s_flags |= SB_NOUSER;
3658 sb->s_export_op = &shmem_export_ops;
3659 sb->s_flags |= SB_NOSEC;
3661 sb->s_flags |= SB_NOUSER;
3663 sbinfo->max_blocks = ctx->blocks;
3664 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3665 sbinfo->uid = ctx->uid;
3666 sbinfo->gid = ctx->gid;
3667 sbinfo->mode = ctx->mode;
3668 sbinfo->huge = ctx->huge;
3669 sbinfo->mpol = ctx->mpol;
3672 spin_lock_init(&sbinfo->stat_lock);
3673 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3675 spin_lock_init(&sbinfo->shrinklist_lock);
3676 INIT_LIST_HEAD(&sbinfo->shrinklist);
3678 sb->s_maxbytes = MAX_LFS_FILESIZE;
3679 sb->s_blocksize = PAGE_SIZE;
3680 sb->s_blocksize_bits = PAGE_SHIFT;
3681 sb->s_magic = TMPFS_MAGIC;
3682 sb->s_op = &shmem_ops;
3683 sb->s_time_gran = 1;
3684 #ifdef CONFIG_TMPFS_XATTR
3685 sb->s_xattr = shmem_xattr_handlers;
3687 #ifdef CONFIG_TMPFS_POSIX_ACL
3688 sb->s_flags |= SB_POSIXACL;
3690 uuid_gen(&sb->s_uuid);
3692 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3695 inode->i_uid = sbinfo->uid;
3696 inode->i_gid = sbinfo->gid;
3697 sb->s_root = d_make_root(inode);
3703 shmem_put_super(sb);
3707 static int shmem_get_tree(struct fs_context *fc)
3709 return get_tree_nodev(fc, shmem_fill_super);
3712 static void shmem_free_fc(struct fs_context *fc)
3714 struct shmem_options *ctx = fc->fs_private;
3717 mpol_put(ctx->mpol);
3722 static const struct fs_context_operations shmem_fs_context_ops = {
3723 .free = shmem_free_fc,
3724 .get_tree = shmem_get_tree,
3726 .parse_monolithic = shmem_parse_options,
3727 .parse_param = shmem_parse_one,
3728 .reconfigure = shmem_reconfigure,
3732 static struct kmem_cache *shmem_inode_cachep;
3734 static struct inode *shmem_alloc_inode(struct super_block *sb)
3736 struct shmem_inode_info *info;
3737 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3740 return &info->vfs_inode;
3743 static void shmem_free_in_core_inode(struct inode *inode)
3745 if (S_ISLNK(inode->i_mode))
3746 kfree(inode->i_link);
3747 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3750 static void shmem_destroy_inode(struct inode *inode)
3752 if (S_ISREG(inode->i_mode))
3753 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3756 static void shmem_init_inode(void *foo)
3758 struct shmem_inode_info *info = foo;
3759 inode_init_once(&info->vfs_inode);
3762 static void shmem_init_inodecache(void)
3764 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3765 sizeof(struct shmem_inode_info),
3766 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3769 static void shmem_destroy_inodecache(void)
3771 kmem_cache_destroy(shmem_inode_cachep);
3774 static const struct address_space_operations shmem_aops = {
3775 .writepage = shmem_writepage,
3776 .set_page_dirty = __set_page_dirty_no_writeback,
3778 .write_begin = shmem_write_begin,
3779 .write_end = shmem_write_end,
3781 #ifdef CONFIG_MIGRATION
3782 .migratepage = migrate_page,
3784 .error_remove_page = generic_error_remove_page,
3787 static const struct file_operations shmem_file_operations = {
3789 .get_unmapped_area = shmem_get_unmapped_area,
3791 .llseek = shmem_file_llseek,
3792 .read_iter = shmem_file_read_iter,
3793 .write_iter = generic_file_write_iter,
3794 .fsync = noop_fsync,
3795 .splice_read = generic_file_splice_read,
3796 .splice_write = iter_file_splice_write,
3797 .fallocate = shmem_fallocate,
3801 static const struct inode_operations shmem_inode_operations = {
3802 .getattr = shmem_getattr,
3803 .setattr = shmem_setattr,
3804 #ifdef CONFIG_TMPFS_XATTR
3805 .listxattr = shmem_listxattr,
3806 .set_acl = simple_set_acl,
3810 static const struct inode_operations shmem_dir_inode_operations = {
3812 .create = shmem_create,
3813 .lookup = simple_lookup,
3815 .unlink = shmem_unlink,
3816 .symlink = shmem_symlink,
3817 .mkdir = shmem_mkdir,
3818 .rmdir = shmem_rmdir,
3819 .mknod = shmem_mknod,
3820 .rename = shmem_rename2,
3821 .tmpfile = shmem_tmpfile,
3823 #ifdef CONFIG_TMPFS_XATTR
3824 .listxattr = shmem_listxattr,
3826 #ifdef CONFIG_TMPFS_POSIX_ACL
3827 .setattr = shmem_setattr,
3828 .set_acl = simple_set_acl,
3832 static const struct inode_operations shmem_special_inode_operations = {
3833 #ifdef CONFIG_TMPFS_XATTR
3834 .listxattr = shmem_listxattr,
3836 #ifdef CONFIG_TMPFS_POSIX_ACL
3837 .setattr = shmem_setattr,
3838 .set_acl = simple_set_acl,
3842 static const struct super_operations shmem_ops = {
3843 .alloc_inode = shmem_alloc_inode,
3844 .free_inode = shmem_free_in_core_inode,
3845 .destroy_inode = shmem_destroy_inode,
3847 .statfs = shmem_statfs,
3848 .show_options = shmem_show_options,
3850 .evict_inode = shmem_evict_inode,
3851 .drop_inode = generic_delete_inode,
3852 .put_super = shmem_put_super,
3853 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3854 .nr_cached_objects = shmem_unused_huge_count,
3855 .free_cached_objects = shmem_unused_huge_scan,
3859 static const struct vm_operations_struct shmem_vm_ops = {
3860 .fault = shmem_fault,
3861 .map_pages = filemap_map_pages,
3863 .set_policy = shmem_set_policy,
3864 .get_policy = shmem_get_policy,
3868 int shmem_init_fs_context(struct fs_context *fc)
3870 struct shmem_options *ctx;
3872 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3876 ctx->mode = 0777 | S_ISVTX;
3877 ctx->uid = current_fsuid();
3878 ctx->gid = current_fsgid();
3880 fc->fs_private = ctx;
3881 fc->ops = &shmem_fs_context_ops;
3885 static struct file_system_type shmem_fs_type = {
3886 .owner = THIS_MODULE,
3888 .init_fs_context = shmem_init_fs_context,
3890 .parameters = shmem_fs_parameters,
3892 .kill_sb = kill_litter_super,
3893 .fs_flags = FS_USERNS_MOUNT,
3896 int __init shmem_init(void)
3900 shmem_init_inodecache();
3902 error = register_filesystem(&shmem_fs_type);
3904 pr_err("Could not register tmpfs\n");
3908 shm_mnt = kern_mount(&shmem_fs_type);
3909 if (IS_ERR(shm_mnt)) {
3910 error = PTR_ERR(shm_mnt);
3911 pr_err("Could not kern_mount tmpfs\n");
3915 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3916 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3917 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3919 shmem_huge = 0; /* just in case it was patched */
3924 unregister_filesystem(&shmem_fs_type);
3926 shmem_destroy_inodecache();
3927 shm_mnt = ERR_PTR(error);
3931 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3932 static ssize_t shmem_enabled_show(struct kobject *kobj,
3933 struct kobj_attribute *attr, char *buf)
3935 static const int values[] = {
3937 SHMEM_HUGE_WITHIN_SIZE,
3945 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3946 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3948 count += sprintf(buf + count, fmt,
3949 shmem_format_huge(values[i]));
3951 buf[count - 1] = '\n';
3955 static ssize_t shmem_enabled_store(struct kobject *kobj,
3956 struct kobj_attribute *attr, const char *buf, size_t count)
3961 if (count + 1 > sizeof(tmp))
3963 memcpy(tmp, buf, count);
3965 if (count && tmp[count - 1] == '\n')
3966 tmp[count - 1] = '\0';
3968 huge = shmem_parse_huge(tmp);
3969 if (huge == -EINVAL)
3971 if (!has_transparent_hugepage() &&
3972 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3976 if (shmem_huge > SHMEM_HUGE_DENY)
3977 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3981 struct kobj_attribute shmem_enabled_attr =
3982 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3983 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3985 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3986 bool shmem_huge_enabled(struct vm_area_struct *vma)
3988 struct inode *inode = file_inode(vma->vm_file);
3989 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3993 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3994 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3996 if (shmem_huge == SHMEM_HUGE_FORCE)
3998 if (shmem_huge == SHMEM_HUGE_DENY)
4000 switch (sbinfo->huge) {
4001 case SHMEM_HUGE_NEVER:
4003 case SHMEM_HUGE_ALWAYS:
4005 case SHMEM_HUGE_WITHIN_SIZE:
4006 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4007 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4008 if (i_size >= HPAGE_PMD_SIZE &&
4009 i_size >> PAGE_SHIFT >= off)
4012 case SHMEM_HUGE_ADVISE:
4013 /* TODO: implement fadvise() hints */
4014 return (vma->vm_flags & VM_HUGEPAGE);
4020 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4022 #else /* !CONFIG_SHMEM */
4025 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4027 * This is intended for small system where the benefits of the full
4028 * shmem code (swap-backed and resource-limited) are outweighed by
4029 * their complexity. On systems without swap this code should be
4030 * effectively equivalent, but much lighter weight.
4033 static struct file_system_type shmem_fs_type = {
4035 .init_fs_context = ramfs_init_fs_context,
4036 .parameters = ramfs_fs_parameters,
4037 .kill_sb = kill_litter_super,
4038 .fs_flags = FS_USERNS_MOUNT,
4041 int __init shmem_init(void)
4043 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4045 shm_mnt = kern_mount(&shmem_fs_type);
4046 BUG_ON(IS_ERR(shm_mnt));
4051 int shmem_unuse(unsigned int type, bool frontswap,
4052 unsigned long *fs_pages_to_unuse)
4057 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4062 void shmem_unlock_mapping(struct address_space *mapping)
4067 unsigned long shmem_get_unmapped_area(struct file *file,
4068 unsigned long addr, unsigned long len,
4069 unsigned long pgoff, unsigned long flags)
4071 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4075 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4077 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4079 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4081 #define shmem_vm_ops generic_file_vm_ops
4082 #define shmem_file_operations ramfs_file_operations
4083 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4084 #define shmem_acct_size(flags, size) 0
4085 #define shmem_unacct_size(flags, size) do {} while (0)
4087 #endif /* CONFIG_SHMEM */
4091 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4092 unsigned long flags, unsigned int i_flags)
4094 struct inode *inode;
4098 return ERR_CAST(mnt);
4100 if (size < 0 || size > MAX_LFS_FILESIZE)
4101 return ERR_PTR(-EINVAL);
4103 if (shmem_acct_size(flags, size))
4104 return ERR_PTR(-ENOMEM);
4106 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4108 if (unlikely(!inode)) {
4109 shmem_unacct_size(flags, size);
4110 return ERR_PTR(-ENOSPC);
4112 inode->i_flags |= i_flags;
4113 inode->i_size = size;
4114 clear_nlink(inode); /* It is unlinked */
4115 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4117 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4118 &shmem_file_operations);
4125 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4126 * kernel internal. There will be NO LSM permission checks against the
4127 * underlying inode. So users of this interface must do LSM checks at a
4128 * higher layer. The users are the big_key and shm implementations. LSM
4129 * checks are provided at the key or shm level rather than the inode.
4130 * @name: name for dentry (to be seen in /proc/<pid>/maps
4131 * @size: size to be set for the file
4132 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4134 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4136 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4140 * shmem_file_setup - get an unlinked file living in tmpfs
4141 * @name: name for dentry (to be seen in /proc/<pid>/maps
4142 * @size: size to be set for the file
4143 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4145 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4147 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4149 EXPORT_SYMBOL_GPL(shmem_file_setup);
4152 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4153 * @mnt: the tmpfs mount where the file will be created
4154 * @name: name for dentry (to be seen in /proc/<pid>/maps
4155 * @size: size to be set for the file
4156 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4158 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4159 loff_t size, unsigned long flags)
4161 return __shmem_file_setup(mnt, name, size, flags, 0);
4163 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4166 * shmem_zero_setup - setup a shared anonymous mapping
4167 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4169 int shmem_zero_setup(struct vm_area_struct *vma)
4172 loff_t size = vma->vm_end - vma->vm_start;
4175 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4176 * between XFS directory reading and selinux: since this file is only
4177 * accessible to the user through its mapping, use S_PRIVATE flag to
4178 * bypass file security, in the same way as shmem_kernel_file_setup().
4180 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4182 return PTR_ERR(file);
4186 vma->vm_file = file;
4187 vma->vm_ops = &shmem_vm_ops;
4189 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4190 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4191 (vma->vm_end & HPAGE_PMD_MASK)) {
4192 khugepaged_enter(vma, vma->vm_flags);
4199 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4200 * @mapping: the page's address_space
4201 * @index: the page index
4202 * @gfp: the page allocator flags to use if allocating
4204 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4205 * with any new page allocations done using the specified allocation flags.
4206 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4207 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4208 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4210 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4211 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4213 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4214 pgoff_t index, gfp_t gfp)
4217 struct inode *inode = mapping->host;
4221 BUG_ON(mapping->a_ops != &shmem_aops);
4222 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4223 gfp, NULL, NULL, NULL);
4225 page = ERR_PTR(error);
4231 * The tiny !SHMEM case uses ramfs without swap
4233 return read_cache_page_gfp(mapping, index, gfp);
4236 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);