]> Git Repo - linux.git/blob - mm/shmem.c
mm, thp: track fallbacks due to failed memcg charges separately
[linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <[email protected]>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <[email protected]>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <[email protected]>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97
98 /*
99  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100  * inode->i_private (with i_mutex making sure that it has only one user at
101  * a time): we would prefer not to enlarge the shmem inode just for that.
102  */
103 struct shmem_falloc {
104         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105         pgoff_t start;          /* start of range currently being fallocated */
106         pgoff_t next;           /* the next page offset to be fallocated */
107         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
108         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
109 };
110
111 struct shmem_options {
112         unsigned long long blocks;
113         unsigned long long inodes;
114         struct mempolicy *mpol;
115         kuid_t uid;
116         kgid_t gid;
117         umode_t mode;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128         return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133         unsigned long nr_pages = totalram_pages();
134
135         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141                                 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143                              struct page **pagep, enum sgp_type sgp,
144                              gfp_t gfp, struct vm_area_struct *vma,
145                              vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147                 struct page **pagep, enum sgp_type sgp,
148                 gfp_t gfp, struct vm_area_struct *vma,
149                 struct vm_fault *vmf, vm_fault_t *fault_type);
150
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152                 struct page **pagep, enum sgp_type sgp)
153 {
154         return shmem_getpage_gfp(inode, index, pagep, sgp,
155                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160         return sb->s_fs_info;
161 }
162
163 /*
164  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165  * for shared memory and for shared anonymous (/dev/zero) mappings
166  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167  * consistent with the pre-accounting of private mappings ...
168  */
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171         return (flags & VM_NORESERVE) ?
172                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177         if (!(flags & VM_NORESERVE))
178                 vm_unacct_memory(VM_ACCT(size));
179 }
180
181 static inline int shmem_reacct_size(unsigned long flags,
182                 loff_t oldsize, loff_t newsize)
183 {
184         if (!(flags & VM_NORESERVE)) {
185                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186                         return security_vm_enough_memory_mm(current->mm,
187                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
188                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190         }
191         return 0;
192 }
193
194 /*
195  * ... whereas tmpfs objects are accounted incrementally as
196  * pages are allocated, in order to allow large sparse files.
197  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199  */
200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202         if (!(flags & VM_NORESERVE))
203                 return 0;
204
205         return security_vm_enough_memory_mm(current->mm,
206                         pages * VM_ACCT(PAGE_SIZE));
207 }
208
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211         if (flags & VM_NORESERVE)
212                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217         struct shmem_inode_info *info = SHMEM_I(inode);
218         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220         if (shmem_acct_block(info->flags, pages))
221                 return false;
222
223         if (sbinfo->max_blocks) {
224                 if (percpu_counter_compare(&sbinfo->used_blocks,
225                                            sbinfo->max_blocks - pages) > 0)
226                         goto unacct;
227                 percpu_counter_add(&sbinfo->used_blocks, pages);
228         }
229
230         return true;
231
232 unacct:
233         shmem_unacct_blocks(info->flags, pages);
234         return false;
235 }
236
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239         struct shmem_inode_info *info = SHMEM_I(inode);
240         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242         if (sbinfo->max_blocks)
243                 percpu_counter_sub(&sbinfo->used_blocks, pages);
244         shmem_unacct_blocks(info->flags, pages);
245 }
246
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255
256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258         return vma->vm_ops == &shmem_vm_ops;
259 }
260
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263
264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267         if (sbinfo->max_inodes) {
268                 spin_lock(&sbinfo->stat_lock);
269                 if (!sbinfo->free_inodes) {
270                         spin_unlock(&sbinfo->stat_lock);
271                         return -ENOSPC;
272                 }
273                 sbinfo->free_inodes--;
274                 spin_unlock(&sbinfo->stat_lock);
275         }
276         return 0;
277 }
278
279 static void shmem_free_inode(struct super_block *sb)
280 {
281         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282         if (sbinfo->max_inodes) {
283                 spin_lock(&sbinfo->stat_lock);
284                 sbinfo->free_inodes++;
285                 spin_unlock(&sbinfo->stat_lock);
286         }
287 }
288
289 /**
290  * shmem_recalc_inode - recalculate the block usage of an inode
291  * @inode: inode to recalc
292  *
293  * We have to calculate the free blocks since the mm can drop
294  * undirtied hole pages behind our back.
295  *
296  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
297  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298  *
299  * It has to be called with the spinlock held.
300  */
301 static void shmem_recalc_inode(struct inode *inode)
302 {
303         struct shmem_inode_info *info = SHMEM_I(inode);
304         long freed;
305
306         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307         if (freed > 0) {
308                 info->alloced -= freed;
309                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310                 shmem_inode_unacct_blocks(inode, freed);
311         }
312 }
313
314 bool shmem_charge(struct inode *inode, long pages)
315 {
316         struct shmem_inode_info *info = SHMEM_I(inode);
317         unsigned long flags;
318
319         if (!shmem_inode_acct_block(inode, pages))
320                 return false;
321
322         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323         inode->i_mapping->nrpages += pages;
324
325         spin_lock_irqsave(&info->lock, flags);
326         info->alloced += pages;
327         inode->i_blocks += pages * BLOCKS_PER_PAGE;
328         shmem_recalc_inode(inode);
329         spin_unlock_irqrestore(&info->lock, flags);
330
331         return true;
332 }
333
334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336         struct shmem_inode_info *info = SHMEM_I(inode);
337         unsigned long flags;
338
339         /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341         spin_lock_irqsave(&info->lock, flags);
342         info->alloced -= pages;
343         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344         shmem_recalc_inode(inode);
345         spin_unlock_irqrestore(&info->lock, flags);
346
347         shmem_inode_unacct_blocks(inode, pages);
348 }
349
350 /*
351  * Replace item expected in xarray by a new item, while holding xa_lock.
352  */
353 static int shmem_replace_entry(struct address_space *mapping,
354                         pgoff_t index, void *expected, void *replacement)
355 {
356         XA_STATE(xas, &mapping->i_pages, index);
357         void *item;
358
359         VM_BUG_ON(!expected);
360         VM_BUG_ON(!replacement);
361         item = xas_load(&xas);
362         if (item != expected)
363                 return -ENOENT;
364         xas_store(&xas, replacement);
365         return 0;
366 }
367
368 /*
369  * Sometimes, before we decide whether to proceed or to fail, we must check
370  * that an entry was not already brought back from swap by a racing thread.
371  *
372  * Checking page is not enough: by the time a SwapCache page is locked, it
373  * might be reused, and again be SwapCache, using the same swap as before.
374  */
375 static bool shmem_confirm_swap(struct address_space *mapping,
376                                pgoff_t index, swp_entry_t swap)
377 {
378         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380
381 /*
382  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383  *
384  * SHMEM_HUGE_NEVER:
385  *      disables huge pages for the mount;
386  * SHMEM_HUGE_ALWAYS:
387  *      enables huge pages for the mount;
388  * SHMEM_HUGE_WITHIN_SIZE:
389  *      only allocate huge pages if the page will be fully within i_size,
390  *      also respect fadvise()/madvise() hints;
391  * SHMEM_HUGE_ADVISE:
392  *      only allocate huge pages if requested with fadvise()/madvise();
393  */
394
395 #define SHMEM_HUGE_NEVER        0
396 #define SHMEM_HUGE_ALWAYS       1
397 #define SHMEM_HUGE_WITHIN_SIZE  2
398 #define SHMEM_HUGE_ADVISE       3
399
400 /*
401  * Special values.
402  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403  *
404  * SHMEM_HUGE_DENY:
405  *      disables huge on shm_mnt and all mounts, for emergency use;
406  * SHMEM_HUGE_FORCE:
407  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408  *
409  */
410 #define SHMEM_HUGE_DENY         (-1)
411 #define SHMEM_HUGE_FORCE        (-2)
412
413 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415
416 static int shmem_huge __read_mostly;
417
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
420 {
421         if (!strcmp(str, "never"))
422                 return SHMEM_HUGE_NEVER;
423         if (!strcmp(str, "always"))
424                 return SHMEM_HUGE_ALWAYS;
425         if (!strcmp(str, "within_size"))
426                 return SHMEM_HUGE_WITHIN_SIZE;
427         if (!strcmp(str, "advise"))
428                 return SHMEM_HUGE_ADVISE;
429         if (!strcmp(str, "deny"))
430                 return SHMEM_HUGE_DENY;
431         if (!strcmp(str, "force"))
432                 return SHMEM_HUGE_FORCE;
433         return -EINVAL;
434 }
435 #endif
436
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
439 {
440         switch (huge) {
441         case SHMEM_HUGE_NEVER:
442                 return "never";
443         case SHMEM_HUGE_ALWAYS:
444                 return "always";
445         case SHMEM_HUGE_WITHIN_SIZE:
446                 return "within_size";
447         case SHMEM_HUGE_ADVISE:
448                 return "advise";
449         case SHMEM_HUGE_DENY:
450                 return "deny";
451         case SHMEM_HUGE_FORCE:
452                 return "force";
453         default:
454                 VM_BUG_ON(1);
455                 return "bad_val";
456         }
457 }
458 #endif
459
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461                 struct shrink_control *sc, unsigned long nr_to_split)
462 {
463         LIST_HEAD(list), *pos, *next;
464         LIST_HEAD(to_remove);
465         struct inode *inode;
466         struct shmem_inode_info *info;
467         struct page *page;
468         unsigned long batch = sc ? sc->nr_to_scan : 128;
469         int removed = 0, split = 0;
470
471         if (list_empty(&sbinfo->shrinklist))
472                 return SHRINK_STOP;
473
474         spin_lock(&sbinfo->shrinklist_lock);
475         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478                 /* pin the inode */
479                 inode = igrab(&info->vfs_inode);
480
481                 /* inode is about to be evicted */
482                 if (!inode) {
483                         list_del_init(&info->shrinklist);
484                         removed++;
485                         goto next;
486                 }
487
488                 /* Check if there's anything to gain */
489                 if (round_up(inode->i_size, PAGE_SIZE) ==
490                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491                         list_move(&info->shrinklist, &to_remove);
492                         removed++;
493                         goto next;
494                 }
495
496                 list_move(&info->shrinklist, &list);
497 next:
498                 if (!--batch)
499                         break;
500         }
501         spin_unlock(&sbinfo->shrinklist_lock);
502
503         list_for_each_safe(pos, next, &to_remove) {
504                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505                 inode = &info->vfs_inode;
506                 list_del_init(&info->shrinklist);
507                 iput(inode);
508         }
509
510         list_for_each_safe(pos, next, &list) {
511                 int ret;
512
513                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514                 inode = &info->vfs_inode;
515
516                 if (nr_to_split && split >= nr_to_split)
517                         goto leave;
518
519                 page = find_get_page(inode->i_mapping,
520                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521                 if (!page)
522                         goto drop;
523
524                 /* No huge page at the end of the file: nothing to split */
525                 if (!PageTransHuge(page)) {
526                         put_page(page);
527                         goto drop;
528                 }
529
530                 /*
531                  * Leave the inode on the list if we failed to lock
532                  * the page at this time.
533                  *
534                  * Waiting for the lock may lead to deadlock in the
535                  * reclaim path.
536                  */
537                 if (!trylock_page(page)) {
538                         put_page(page);
539                         goto leave;
540                 }
541
542                 ret = split_huge_page(page);
543                 unlock_page(page);
544                 put_page(page);
545
546                 /* If split failed leave the inode on the list */
547                 if (ret)
548                         goto leave;
549
550                 split++;
551 drop:
552                 list_del_init(&info->shrinklist);
553                 removed++;
554 leave:
555                 iput(inode);
556         }
557
558         spin_lock(&sbinfo->shrinklist_lock);
559         list_splice_tail(&list, &sbinfo->shrinklist);
560         sbinfo->shrinklist_len -= removed;
561         spin_unlock(&sbinfo->shrinklist_lock);
562
563         return split;
564 }
565
566 static long shmem_unused_huge_scan(struct super_block *sb,
567                 struct shrink_control *sc)
568 {
569         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571         if (!READ_ONCE(sbinfo->shrinklist_len))
572                 return SHRINK_STOP;
573
574         return shmem_unused_huge_shrink(sbinfo, sc, 0);
575 }
576
577 static long shmem_unused_huge_count(struct super_block *sb,
578                 struct shrink_control *sc)
579 {
580         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581         return READ_ONCE(sbinfo->shrinklist_len);
582 }
583 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
584
585 #define shmem_huge SHMEM_HUGE_DENY
586
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588                 struct shrink_control *sc, unsigned long nr_to_split)
589 {
590         return 0;
591 }
592 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
593
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595 {
596         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
597             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598             shmem_huge != SHMEM_HUGE_DENY)
599                 return true;
600         return false;
601 }
602
603 /*
604  * Like add_to_page_cache_locked, but error if expected item has gone.
605  */
606 static int shmem_add_to_page_cache(struct page *page,
607                                    struct address_space *mapping,
608                                    pgoff_t index, void *expected, gfp_t gfp)
609 {
610         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611         unsigned long i = 0;
612         unsigned long nr = compound_nr(page);
613
614         VM_BUG_ON_PAGE(PageTail(page), page);
615         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
616         VM_BUG_ON_PAGE(!PageLocked(page), page);
617         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
618         VM_BUG_ON(expected && PageTransHuge(page));
619
620         page_ref_add(page, nr);
621         page->mapping = mapping;
622         page->index = index;
623
624         do {
625                 void *entry;
626                 xas_lock_irq(&xas);
627                 entry = xas_find_conflict(&xas);
628                 if (entry != expected)
629                         xas_set_err(&xas, -EEXIST);
630                 xas_create_range(&xas);
631                 if (xas_error(&xas))
632                         goto unlock;
633 next:
634                 xas_store(&xas, page);
635                 if (++i < nr) {
636                         xas_next(&xas);
637                         goto next;
638                 }
639                 if (PageTransHuge(page)) {
640                         count_vm_event(THP_FILE_ALLOC);
641                         __inc_node_page_state(page, NR_SHMEM_THPS);
642                 }
643                 mapping->nrpages += nr;
644                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
646 unlock:
647                 xas_unlock_irq(&xas);
648         } while (xas_nomem(&xas, gfp));
649
650         if (xas_error(&xas)) {
651                 page->mapping = NULL;
652                 page_ref_sub(page, nr);
653                 return xas_error(&xas);
654         }
655
656         return 0;
657 }
658
659 /*
660  * Like delete_from_page_cache, but substitutes swap for page.
661  */
662 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
663 {
664         struct address_space *mapping = page->mapping;
665         int error;
666
667         VM_BUG_ON_PAGE(PageCompound(page), page);
668
669         xa_lock_irq(&mapping->i_pages);
670         error = shmem_replace_entry(mapping, page->index, page, radswap);
671         page->mapping = NULL;
672         mapping->nrpages--;
673         __dec_node_page_state(page, NR_FILE_PAGES);
674         __dec_node_page_state(page, NR_SHMEM);
675         xa_unlock_irq(&mapping->i_pages);
676         put_page(page);
677         BUG_ON(error);
678 }
679
680 /*
681  * Remove swap entry from page cache, free the swap and its page cache.
682  */
683 static int shmem_free_swap(struct address_space *mapping,
684                            pgoff_t index, void *radswap)
685 {
686         void *old;
687
688         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
689         if (old != radswap)
690                 return -ENOENT;
691         free_swap_and_cache(radix_to_swp_entry(radswap));
692         return 0;
693 }
694
695 /*
696  * Determine (in bytes) how many of the shmem object's pages mapped by the
697  * given offsets are swapped out.
698  *
699  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
700  * as long as the inode doesn't go away and racy results are not a problem.
701  */
702 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703                                                 pgoff_t start, pgoff_t end)
704 {
705         XA_STATE(xas, &mapping->i_pages, start);
706         struct page *page;
707         unsigned long swapped = 0;
708
709         rcu_read_lock();
710         xas_for_each(&xas, page, end - 1) {
711                 if (xas_retry(&xas, page))
712                         continue;
713                 if (xa_is_value(page))
714                         swapped++;
715
716                 if (need_resched()) {
717                         xas_pause(&xas);
718                         cond_resched_rcu();
719                 }
720         }
721
722         rcu_read_unlock();
723
724         return swapped << PAGE_SHIFT;
725 }
726
727 /*
728  * Determine (in bytes) how many of the shmem object's pages mapped by the
729  * given vma is swapped out.
730  *
731  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
732  * as long as the inode doesn't go away and racy results are not a problem.
733  */
734 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
735 {
736         struct inode *inode = file_inode(vma->vm_file);
737         struct shmem_inode_info *info = SHMEM_I(inode);
738         struct address_space *mapping = inode->i_mapping;
739         unsigned long swapped;
740
741         /* Be careful as we don't hold info->lock */
742         swapped = READ_ONCE(info->swapped);
743
744         /*
745          * The easier cases are when the shmem object has nothing in swap, or
746          * the vma maps it whole. Then we can simply use the stats that we
747          * already track.
748          */
749         if (!swapped)
750                 return 0;
751
752         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753                 return swapped << PAGE_SHIFT;
754
755         /* Here comes the more involved part */
756         return shmem_partial_swap_usage(mapping,
757                         linear_page_index(vma, vma->vm_start),
758                         linear_page_index(vma, vma->vm_end));
759 }
760
761 /*
762  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
763  */
764 void shmem_unlock_mapping(struct address_space *mapping)
765 {
766         struct pagevec pvec;
767         pgoff_t indices[PAGEVEC_SIZE];
768         pgoff_t index = 0;
769
770         pagevec_init(&pvec);
771         /*
772          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
773          */
774         while (!mapping_unevictable(mapping)) {
775                 /*
776                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
778                  */
779                 pvec.nr = find_get_entries(mapping, index,
780                                            PAGEVEC_SIZE, pvec.pages, indices);
781                 if (!pvec.nr)
782                         break;
783                 index = indices[pvec.nr - 1] + 1;
784                 pagevec_remove_exceptionals(&pvec);
785                 check_move_unevictable_pages(&pvec);
786                 pagevec_release(&pvec);
787                 cond_resched();
788         }
789 }
790
791 /*
792  * Remove range of pages and swap entries from page cache, and free them.
793  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
794  */
795 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
796                                                                  bool unfalloc)
797 {
798         struct address_space *mapping = inode->i_mapping;
799         struct shmem_inode_info *info = SHMEM_I(inode);
800         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
801         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
802         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
803         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
804         struct pagevec pvec;
805         pgoff_t indices[PAGEVEC_SIZE];
806         long nr_swaps_freed = 0;
807         pgoff_t index;
808         int i;
809
810         if (lend == -1)
811                 end = -1;       /* unsigned, so actually very big */
812
813         pagevec_init(&pvec);
814         index = start;
815         while (index < end) {
816                 pvec.nr = find_get_entries(mapping, index,
817                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
818                         pvec.pages, indices);
819                 if (!pvec.nr)
820                         break;
821                 for (i = 0; i < pagevec_count(&pvec); i++) {
822                         struct page *page = pvec.pages[i];
823
824                         index = indices[i];
825                         if (index >= end)
826                                 break;
827
828                         if (xa_is_value(page)) {
829                                 if (unfalloc)
830                                         continue;
831                                 nr_swaps_freed += !shmem_free_swap(mapping,
832                                                                 index, page);
833                                 continue;
834                         }
835
836                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
837
838                         if (!trylock_page(page))
839                                 continue;
840
841                         if (PageTransTail(page)) {
842                                 /* Middle of THP: zero out the page */
843                                 clear_highpage(page);
844                                 unlock_page(page);
845                                 continue;
846                         } else if (PageTransHuge(page)) {
847                                 if (index == round_down(end, HPAGE_PMD_NR)) {
848                                         /*
849                                          * Range ends in the middle of THP:
850                                          * zero out the page
851                                          */
852                                         clear_highpage(page);
853                                         unlock_page(page);
854                                         continue;
855                                 }
856                                 index += HPAGE_PMD_NR - 1;
857                                 i += HPAGE_PMD_NR - 1;
858                         }
859
860                         if (!unfalloc || !PageUptodate(page)) {
861                                 VM_BUG_ON_PAGE(PageTail(page), page);
862                                 if (page_mapping(page) == mapping) {
863                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
864                                         truncate_inode_page(mapping, page);
865                                 }
866                         }
867                         unlock_page(page);
868                 }
869                 pagevec_remove_exceptionals(&pvec);
870                 pagevec_release(&pvec);
871                 cond_resched();
872                 index++;
873         }
874
875         if (partial_start) {
876                 struct page *page = NULL;
877                 shmem_getpage(inode, start - 1, &page, SGP_READ);
878                 if (page) {
879                         unsigned int top = PAGE_SIZE;
880                         if (start > end) {
881                                 top = partial_end;
882                                 partial_end = 0;
883                         }
884                         zero_user_segment(page, partial_start, top);
885                         set_page_dirty(page);
886                         unlock_page(page);
887                         put_page(page);
888                 }
889         }
890         if (partial_end) {
891                 struct page *page = NULL;
892                 shmem_getpage(inode, end, &page, SGP_READ);
893                 if (page) {
894                         zero_user_segment(page, 0, partial_end);
895                         set_page_dirty(page);
896                         unlock_page(page);
897                         put_page(page);
898                 }
899         }
900         if (start >= end)
901                 return;
902
903         index = start;
904         while (index < end) {
905                 cond_resched();
906
907                 pvec.nr = find_get_entries(mapping, index,
908                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
909                                 pvec.pages, indices);
910                 if (!pvec.nr) {
911                         /* If all gone or hole-punch or unfalloc, we're done */
912                         if (index == start || end != -1)
913                                 break;
914                         /* But if truncating, restart to make sure all gone */
915                         index = start;
916                         continue;
917                 }
918                 for (i = 0; i < pagevec_count(&pvec); i++) {
919                         struct page *page = pvec.pages[i];
920
921                         index = indices[i];
922                         if (index >= end)
923                                 break;
924
925                         if (xa_is_value(page)) {
926                                 if (unfalloc)
927                                         continue;
928                                 if (shmem_free_swap(mapping, index, page)) {
929                                         /* Swap was replaced by page: retry */
930                                         index--;
931                                         break;
932                                 }
933                                 nr_swaps_freed++;
934                                 continue;
935                         }
936
937                         lock_page(page);
938
939                         if (PageTransTail(page)) {
940                                 /* Middle of THP: zero out the page */
941                                 clear_highpage(page);
942                                 unlock_page(page);
943                                 /*
944                                  * Partial thp truncate due 'start' in middle
945                                  * of THP: don't need to look on these pages
946                                  * again on !pvec.nr restart.
947                                  */
948                                 if (index != round_down(end, HPAGE_PMD_NR))
949                                         start++;
950                                 continue;
951                         } else if (PageTransHuge(page)) {
952                                 if (index == round_down(end, HPAGE_PMD_NR)) {
953                                         /*
954                                          * Range ends in the middle of THP:
955                                          * zero out the page
956                                          */
957                                         clear_highpage(page);
958                                         unlock_page(page);
959                                         continue;
960                                 }
961                                 index += HPAGE_PMD_NR - 1;
962                                 i += HPAGE_PMD_NR - 1;
963                         }
964
965                         if (!unfalloc || !PageUptodate(page)) {
966                                 VM_BUG_ON_PAGE(PageTail(page), page);
967                                 if (page_mapping(page) == mapping) {
968                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
969                                         truncate_inode_page(mapping, page);
970                                 } else {
971                                         /* Page was replaced by swap: retry */
972                                         unlock_page(page);
973                                         index--;
974                                         break;
975                                 }
976                         }
977                         unlock_page(page);
978                 }
979                 pagevec_remove_exceptionals(&pvec);
980                 pagevec_release(&pvec);
981                 index++;
982         }
983
984         spin_lock_irq(&info->lock);
985         info->swapped -= nr_swaps_freed;
986         shmem_recalc_inode(inode);
987         spin_unlock_irq(&info->lock);
988 }
989
990 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
991 {
992         shmem_undo_range(inode, lstart, lend, false);
993         inode->i_ctime = inode->i_mtime = current_time(inode);
994 }
995 EXPORT_SYMBOL_GPL(shmem_truncate_range);
996
997 static int shmem_getattr(const struct path *path, struct kstat *stat,
998                          u32 request_mask, unsigned int query_flags)
999 {
1000         struct inode *inode = path->dentry->d_inode;
1001         struct shmem_inode_info *info = SHMEM_I(inode);
1002         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1003
1004         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1005                 spin_lock_irq(&info->lock);
1006                 shmem_recalc_inode(inode);
1007                 spin_unlock_irq(&info->lock);
1008         }
1009         generic_fillattr(inode, stat);
1010
1011         if (is_huge_enabled(sb_info))
1012                 stat->blksize = HPAGE_PMD_SIZE;
1013
1014         return 0;
1015 }
1016
1017 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1018 {
1019         struct inode *inode = d_inode(dentry);
1020         struct shmem_inode_info *info = SHMEM_I(inode);
1021         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022         int error;
1023
1024         error = setattr_prepare(dentry, attr);
1025         if (error)
1026                 return error;
1027
1028         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1029                 loff_t oldsize = inode->i_size;
1030                 loff_t newsize = attr->ia_size;
1031
1032                 /* protected by i_mutex */
1033                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1034                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1035                         return -EPERM;
1036
1037                 if (newsize != oldsize) {
1038                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1039                                         oldsize, newsize);
1040                         if (error)
1041                                 return error;
1042                         i_size_write(inode, newsize);
1043                         inode->i_ctime = inode->i_mtime = current_time(inode);
1044                 }
1045                 if (newsize <= oldsize) {
1046                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1047                         if (oldsize > holebegin)
1048                                 unmap_mapping_range(inode->i_mapping,
1049                                                         holebegin, 0, 1);
1050                         if (info->alloced)
1051                                 shmem_truncate_range(inode,
1052                                                         newsize, (loff_t)-1);
1053                         /* unmap again to remove racily COWed private pages */
1054                         if (oldsize > holebegin)
1055                                 unmap_mapping_range(inode->i_mapping,
1056                                                         holebegin, 0, 1);
1057
1058                         /*
1059                          * Part of the huge page can be beyond i_size: subject
1060                          * to shrink under memory pressure.
1061                          */
1062                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1063                                 spin_lock(&sbinfo->shrinklist_lock);
1064                                 /*
1065                                  * _careful to defend against unlocked access to
1066                                  * ->shrink_list in shmem_unused_huge_shrink()
1067                                  */
1068                                 if (list_empty_careful(&info->shrinklist)) {
1069                                         list_add_tail(&info->shrinklist,
1070                                                         &sbinfo->shrinklist);
1071                                         sbinfo->shrinklist_len++;
1072                                 }
1073                                 spin_unlock(&sbinfo->shrinklist_lock);
1074                         }
1075                 }
1076         }
1077
1078         setattr_copy(inode, attr);
1079         if (attr->ia_valid & ATTR_MODE)
1080                 error = posix_acl_chmod(inode, inode->i_mode);
1081         return error;
1082 }
1083
1084 static void shmem_evict_inode(struct inode *inode)
1085 {
1086         struct shmem_inode_info *info = SHMEM_I(inode);
1087         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088
1089         if (inode->i_mapping->a_ops == &shmem_aops) {
1090                 shmem_unacct_size(info->flags, inode->i_size);
1091                 inode->i_size = 0;
1092                 shmem_truncate_range(inode, 0, (loff_t)-1);
1093                 if (!list_empty(&info->shrinklist)) {
1094                         spin_lock(&sbinfo->shrinklist_lock);
1095                         if (!list_empty(&info->shrinklist)) {
1096                                 list_del_init(&info->shrinklist);
1097                                 sbinfo->shrinklist_len--;
1098                         }
1099                         spin_unlock(&sbinfo->shrinklist_lock);
1100                 }
1101                 while (!list_empty(&info->swaplist)) {
1102                         /* Wait while shmem_unuse() is scanning this inode... */
1103                         wait_var_event(&info->stop_eviction,
1104                                        !atomic_read(&info->stop_eviction));
1105                         mutex_lock(&shmem_swaplist_mutex);
1106                         /* ...but beware of the race if we peeked too early */
1107                         if (!atomic_read(&info->stop_eviction))
1108                                 list_del_init(&info->swaplist);
1109                         mutex_unlock(&shmem_swaplist_mutex);
1110                 }
1111         }
1112
1113         simple_xattrs_free(&info->xattrs);
1114         WARN_ON(inode->i_blocks);
1115         shmem_free_inode(inode->i_sb);
1116         clear_inode(inode);
1117 }
1118
1119 extern struct swap_info_struct *swap_info[];
1120
1121 static int shmem_find_swap_entries(struct address_space *mapping,
1122                                    pgoff_t start, unsigned int nr_entries,
1123                                    struct page **entries, pgoff_t *indices,
1124                                    unsigned int type, bool frontswap)
1125 {
1126         XA_STATE(xas, &mapping->i_pages, start);
1127         struct page *page;
1128         swp_entry_t entry;
1129         unsigned int ret = 0;
1130
1131         if (!nr_entries)
1132                 return 0;
1133
1134         rcu_read_lock();
1135         xas_for_each(&xas, page, ULONG_MAX) {
1136                 if (xas_retry(&xas, page))
1137                         continue;
1138
1139                 if (!xa_is_value(page))
1140                         continue;
1141
1142                 entry = radix_to_swp_entry(page);
1143                 if (swp_type(entry) != type)
1144                         continue;
1145                 if (frontswap &&
1146                     !frontswap_test(swap_info[type], swp_offset(entry)))
1147                         continue;
1148
1149                 indices[ret] = xas.xa_index;
1150                 entries[ret] = page;
1151
1152                 if (need_resched()) {
1153                         xas_pause(&xas);
1154                         cond_resched_rcu();
1155                 }
1156                 if (++ret == nr_entries)
1157                         break;
1158         }
1159         rcu_read_unlock();
1160
1161         return ret;
1162 }
1163
1164 /*
1165  * Move the swapped pages for an inode to page cache. Returns the count
1166  * of pages swapped in, or the error in case of failure.
1167  */
1168 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1169                                     pgoff_t *indices)
1170 {
1171         int i = 0;
1172         int ret = 0;
1173         int error = 0;
1174         struct address_space *mapping = inode->i_mapping;
1175
1176         for (i = 0; i < pvec.nr; i++) {
1177                 struct page *page = pvec.pages[i];
1178
1179                 if (!xa_is_value(page))
1180                         continue;
1181                 error = shmem_swapin_page(inode, indices[i],
1182                                           &page, SGP_CACHE,
1183                                           mapping_gfp_mask(mapping),
1184                                           NULL, NULL);
1185                 if (error == 0) {
1186                         unlock_page(page);
1187                         put_page(page);
1188                         ret++;
1189                 }
1190                 if (error == -ENOMEM)
1191                         break;
1192                 error = 0;
1193         }
1194         return error ? error : ret;
1195 }
1196
1197 /*
1198  * If swap found in inode, free it and move page from swapcache to filecache.
1199  */
1200 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1201                              bool frontswap, unsigned long *fs_pages_to_unuse)
1202 {
1203         struct address_space *mapping = inode->i_mapping;
1204         pgoff_t start = 0;
1205         struct pagevec pvec;
1206         pgoff_t indices[PAGEVEC_SIZE];
1207         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1208         int ret = 0;
1209
1210         pagevec_init(&pvec);
1211         do {
1212                 unsigned int nr_entries = PAGEVEC_SIZE;
1213
1214                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1215                         nr_entries = *fs_pages_to_unuse;
1216
1217                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1218                                                   pvec.pages, indices,
1219                                                   type, frontswap);
1220                 if (pvec.nr == 0) {
1221                         ret = 0;
1222                         break;
1223                 }
1224
1225                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1226                 if (ret < 0)
1227                         break;
1228
1229                 if (frontswap_partial) {
1230                         *fs_pages_to_unuse -= ret;
1231                         if (*fs_pages_to_unuse == 0) {
1232                                 ret = FRONTSWAP_PAGES_UNUSED;
1233                                 break;
1234                         }
1235                 }
1236
1237                 start = indices[pvec.nr - 1];
1238         } while (true);
1239
1240         return ret;
1241 }
1242
1243 /*
1244  * Read all the shared memory data that resides in the swap
1245  * device 'type' back into memory, so the swap device can be
1246  * unused.
1247  */
1248 int shmem_unuse(unsigned int type, bool frontswap,
1249                 unsigned long *fs_pages_to_unuse)
1250 {
1251         struct shmem_inode_info *info, *next;
1252         int error = 0;
1253
1254         if (list_empty(&shmem_swaplist))
1255                 return 0;
1256
1257         mutex_lock(&shmem_swaplist_mutex);
1258         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1259                 if (!info->swapped) {
1260                         list_del_init(&info->swaplist);
1261                         continue;
1262                 }
1263                 /*
1264                  * Drop the swaplist mutex while searching the inode for swap;
1265                  * but before doing so, make sure shmem_evict_inode() will not
1266                  * remove placeholder inode from swaplist, nor let it be freed
1267                  * (igrab() would protect from unlink, but not from unmount).
1268                  */
1269                 atomic_inc(&info->stop_eviction);
1270                 mutex_unlock(&shmem_swaplist_mutex);
1271
1272                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1273                                           fs_pages_to_unuse);
1274                 cond_resched();
1275
1276                 mutex_lock(&shmem_swaplist_mutex);
1277                 next = list_next_entry(info, swaplist);
1278                 if (!info->swapped)
1279                         list_del_init(&info->swaplist);
1280                 if (atomic_dec_and_test(&info->stop_eviction))
1281                         wake_up_var(&info->stop_eviction);
1282                 if (error)
1283                         break;
1284         }
1285         mutex_unlock(&shmem_swaplist_mutex);
1286
1287         return error;
1288 }
1289
1290 /*
1291  * Move the page from the page cache to the swap cache.
1292  */
1293 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1294 {
1295         struct shmem_inode_info *info;
1296         struct address_space *mapping;
1297         struct inode *inode;
1298         swp_entry_t swap;
1299         pgoff_t index;
1300
1301         VM_BUG_ON_PAGE(PageCompound(page), page);
1302         BUG_ON(!PageLocked(page));
1303         mapping = page->mapping;
1304         index = page->index;
1305         inode = mapping->host;
1306         info = SHMEM_I(inode);
1307         if (info->flags & VM_LOCKED)
1308                 goto redirty;
1309         if (!total_swap_pages)
1310                 goto redirty;
1311
1312         /*
1313          * Our capabilities prevent regular writeback or sync from ever calling
1314          * shmem_writepage; but a stacking filesystem might use ->writepage of
1315          * its underlying filesystem, in which case tmpfs should write out to
1316          * swap only in response to memory pressure, and not for the writeback
1317          * threads or sync.
1318          */
1319         if (!wbc->for_reclaim) {
1320                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1321                 goto redirty;
1322         }
1323
1324         /*
1325          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1326          * value into swapfile.c, the only way we can correctly account for a
1327          * fallocated page arriving here is now to initialize it and write it.
1328          *
1329          * That's okay for a page already fallocated earlier, but if we have
1330          * not yet completed the fallocation, then (a) we want to keep track
1331          * of this page in case we have to undo it, and (b) it may not be a
1332          * good idea to continue anyway, once we're pushing into swap.  So
1333          * reactivate the page, and let shmem_fallocate() quit when too many.
1334          */
1335         if (!PageUptodate(page)) {
1336                 if (inode->i_private) {
1337                         struct shmem_falloc *shmem_falloc;
1338                         spin_lock(&inode->i_lock);
1339                         shmem_falloc = inode->i_private;
1340                         if (shmem_falloc &&
1341                             !shmem_falloc->waitq &&
1342                             index >= shmem_falloc->start &&
1343                             index < shmem_falloc->next)
1344                                 shmem_falloc->nr_unswapped++;
1345                         else
1346                                 shmem_falloc = NULL;
1347                         spin_unlock(&inode->i_lock);
1348                         if (shmem_falloc)
1349                                 goto redirty;
1350                 }
1351                 clear_highpage(page);
1352                 flush_dcache_page(page);
1353                 SetPageUptodate(page);
1354         }
1355
1356         swap = get_swap_page(page);
1357         if (!swap.val)
1358                 goto redirty;
1359
1360         /*
1361          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1362          * if it's not already there.  Do it now before the page is
1363          * moved to swap cache, when its pagelock no longer protects
1364          * the inode from eviction.  But don't unlock the mutex until
1365          * we've incremented swapped, because shmem_unuse_inode() will
1366          * prune a !swapped inode from the swaplist under this mutex.
1367          */
1368         mutex_lock(&shmem_swaplist_mutex);
1369         if (list_empty(&info->swaplist))
1370                 list_add(&info->swaplist, &shmem_swaplist);
1371
1372         if (add_to_swap_cache(page, swap,
1373                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1374                 spin_lock_irq(&info->lock);
1375                 shmem_recalc_inode(inode);
1376                 info->swapped++;
1377                 spin_unlock_irq(&info->lock);
1378
1379                 swap_shmem_alloc(swap);
1380                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1381
1382                 mutex_unlock(&shmem_swaplist_mutex);
1383                 BUG_ON(page_mapped(page));
1384                 swap_writepage(page, wbc);
1385                 return 0;
1386         }
1387
1388         mutex_unlock(&shmem_swaplist_mutex);
1389         put_swap_page(page, swap);
1390 redirty:
1391         set_page_dirty(page);
1392         if (wbc->for_reclaim)
1393                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1394         unlock_page(page);
1395         return 0;
1396 }
1397
1398 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1399 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1400 {
1401         char buffer[64];
1402
1403         if (!mpol || mpol->mode == MPOL_DEFAULT)
1404                 return;         /* show nothing */
1405
1406         mpol_to_str(buffer, sizeof(buffer), mpol);
1407
1408         seq_printf(seq, ",mpol=%s", buffer);
1409 }
1410
1411 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1412 {
1413         struct mempolicy *mpol = NULL;
1414         if (sbinfo->mpol) {
1415                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1416                 mpol = sbinfo->mpol;
1417                 mpol_get(mpol);
1418                 spin_unlock(&sbinfo->stat_lock);
1419         }
1420         return mpol;
1421 }
1422 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1423 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1424 {
1425 }
1426 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1427 {
1428         return NULL;
1429 }
1430 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1431 #ifndef CONFIG_NUMA
1432 #define vm_policy vm_private_data
1433 #endif
1434
1435 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1436                 struct shmem_inode_info *info, pgoff_t index)
1437 {
1438         /* Create a pseudo vma that just contains the policy */
1439         vma_init(vma, NULL);
1440         /* Bias interleave by inode number to distribute better across nodes */
1441         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1442         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1443 }
1444
1445 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1446 {
1447         /* Drop reference taken by mpol_shared_policy_lookup() */
1448         mpol_cond_put(vma->vm_policy);
1449 }
1450
1451 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1452                         struct shmem_inode_info *info, pgoff_t index)
1453 {
1454         struct vm_area_struct pvma;
1455         struct page *page;
1456         struct vm_fault vmf;
1457
1458         shmem_pseudo_vma_init(&pvma, info, index);
1459         vmf.vma = &pvma;
1460         vmf.address = 0;
1461         page = swap_cluster_readahead(swap, gfp, &vmf);
1462         shmem_pseudo_vma_destroy(&pvma);
1463
1464         return page;
1465 }
1466
1467 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1468                 struct shmem_inode_info *info, pgoff_t index)
1469 {
1470         struct vm_area_struct pvma;
1471         struct address_space *mapping = info->vfs_inode.i_mapping;
1472         pgoff_t hindex;
1473         struct page *page;
1474
1475         hindex = round_down(index, HPAGE_PMD_NR);
1476         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1477                                                                 XA_PRESENT))
1478                 return NULL;
1479
1480         shmem_pseudo_vma_init(&pvma, info, hindex);
1481         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1482                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1483         shmem_pseudo_vma_destroy(&pvma);
1484         if (page)
1485                 prep_transhuge_page(page);
1486         else
1487                 count_vm_event(THP_FILE_FALLBACK);
1488         return page;
1489 }
1490
1491 static struct page *shmem_alloc_page(gfp_t gfp,
1492                         struct shmem_inode_info *info, pgoff_t index)
1493 {
1494         struct vm_area_struct pvma;
1495         struct page *page;
1496
1497         shmem_pseudo_vma_init(&pvma, info, index);
1498         page = alloc_page_vma(gfp, &pvma, 0);
1499         shmem_pseudo_vma_destroy(&pvma);
1500
1501         return page;
1502 }
1503
1504 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1505                 struct inode *inode,
1506                 pgoff_t index, bool huge)
1507 {
1508         struct shmem_inode_info *info = SHMEM_I(inode);
1509         struct page *page;
1510         int nr;
1511         int err = -ENOSPC;
1512
1513         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1514                 huge = false;
1515         nr = huge ? HPAGE_PMD_NR : 1;
1516
1517         if (!shmem_inode_acct_block(inode, nr))
1518                 goto failed;
1519
1520         if (huge)
1521                 page = shmem_alloc_hugepage(gfp, info, index);
1522         else
1523                 page = shmem_alloc_page(gfp, info, index);
1524         if (page) {
1525                 __SetPageLocked(page);
1526                 __SetPageSwapBacked(page);
1527                 return page;
1528         }
1529
1530         err = -ENOMEM;
1531         shmem_inode_unacct_blocks(inode, nr);
1532 failed:
1533         return ERR_PTR(err);
1534 }
1535
1536 /*
1537  * When a page is moved from swapcache to shmem filecache (either by the
1538  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1539  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1540  * ignorance of the mapping it belongs to.  If that mapping has special
1541  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1542  * we may need to copy to a suitable page before moving to filecache.
1543  *
1544  * In a future release, this may well be extended to respect cpuset and
1545  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1546  * but for now it is a simple matter of zone.
1547  */
1548 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1549 {
1550         return page_zonenum(page) > gfp_zone(gfp);
1551 }
1552
1553 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1554                                 struct shmem_inode_info *info, pgoff_t index)
1555 {
1556         struct page *oldpage, *newpage;
1557         struct address_space *swap_mapping;
1558         swp_entry_t entry;
1559         pgoff_t swap_index;
1560         int error;
1561
1562         oldpage = *pagep;
1563         entry.val = page_private(oldpage);
1564         swap_index = swp_offset(entry);
1565         swap_mapping = page_mapping(oldpage);
1566
1567         /*
1568          * We have arrived here because our zones are constrained, so don't
1569          * limit chance of success by further cpuset and node constraints.
1570          */
1571         gfp &= ~GFP_CONSTRAINT_MASK;
1572         newpage = shmem_alloc_page(gfp, info, index);
1573         if (!newpage)
1574                 return -ENOMEM;
1575
1576         get_page(newpage);
1577         copy_highpage(newpage, oldpage);
1578         flush_dcache_page(newpage);
1579
1580         __SetPageLocked(newpage);
1581         __SetPageSwapBacked(newpage);
1582         SetPageUptodate(newpage);
1583         set_page_private(newpage, entry.val);
1584         SetPageSwapCache(newpage);
1585
1586         /*
1587          * Our caller will very soon move newpage out of swapcache, but it's
1588          * a nice clean interface for us to replace oldpage by newpage there.
1589          */
1590         xa_lock_irq(&swap_mapping->i_pages);
1591         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1592         if (!error) {
1593                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1594                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1595         }
1596         xa_unlock_irq(&swap_mapping->i_pages);
1597
1598         if (unlikely(error)) {
1599                 /*
1600                  * Is this possible?  I think not, now that our callers check
1601                  * both PageSwapCache and page_private after getting page lock;
1602                  * but be defensive.  Reverse old to newpage for clear and free.
1603                  */
1604                 oldpage = newpage;
1605         } else {
1606                 mem_cgroup_migrate(oldpage, newpage);
1607                 lru_cache_add_anon(newpage);
1608                 *pagep = newpage;
1609         }
1610
1611         ClearPageSwapCache(oldpage);
1612         set_page_private(oldpage, 0);
1613
1614         unlock_page(oldpage);
1615         put_page(oldpage);
1616         put_page(oldpage);
1617         return error;
1618 }
1619
1620 /*
1621  * Swap in the page pointed to by *pagep.
1622  * Caller has to make sure that *pagep contains a valid swapped page.
1623  * Returns 0 and the page in pagep if success. On failure, returns the
1624  * the error code and NULL in *pagep.
1625  */
1626 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1627                              struct page **pagep, enum sgp_type sgp,
1628                              gfp_t gfp, struct vm_area_struct *vma,
1629                              vm_fault_t *fault_type)
1630 {
1631         struct address_space *mapping = inode->i_mapping;
1632         struct shmem_inode_info *info = SHMEM_I(inode);
1633         struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1634         struct mem_cgroup *memcg;
1635         struct page *page;
1636         swp_entry_t swap;
1637         int error;
1638
1639         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1640         swap = radix_to_swp_entry(*pagep);
1641         *pagep = NULL;
1642
1643         /* Look it up and read it in.. */
1644         page = lookup_swap_cache(swap, NULL, 0);
1645         if (!page) {
1646                 /* Or update major stats only when swapin succeeds?? */
1647                 if (fault_type) {
1648                         *fault_type |= VM_FAULT_MAJOR;
1649                         count_vm_event(PGMAJFAULT);
1650                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1651                 }
1652                 /* Here we actually start the io */
1653                 page = shmem_swapin(swap, gfp, info, index);
1654                 if (!page) {
1655                         error = -ENOMEM;
1656                         goto failed;
1657                 }
1658         }
1659
1660         /* We have to do this with page locked to prevent races */
1661         lock_page(page);
1662         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1663             !shmem_confirm_swap(mapping, index, swap)) {
1664                 error = -EEXIST;
1665                 goto unlock;
1666         }
1667         if (!PageUptodate(page)) {
1668                 error = -EIO;
1669                 goto failed;
1670         }
1671         wait_on_page_writeback(page);
1672
1673         if (shmem_should_replace_page(page, gfp)) {
1674                 error = shmem_replace_page(&page, gfp, info, index);
1675                 if (error)
1676                         goto failed;
1677         }
1678
1679         error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1680                                             false);
1681         if (!error) {
1682                 error = shmem_add_to_page_cache(page, mapping, index,
1683                                                 swp_to_radix_entry(swap), gfp);
1684                 /*
1685                  * We already confirmed swap under page lock, and make
1686                  * no memory allocation here, so usually no possibility
1687                  * of error; but free_swap_and_cache() only trylocks a
1688                  * page, so it is just possible that the entry has been
1689                  * truncated or holepunched since swap was confirmed.
1690                  * shmem_undo_range() will have done some of the
1691                  * unaccounting, now delete_from_swap_cache() will do
1692                  * the rest.
1693                  */
1694                 if (error) {
1695                         mem_cgroup_cancel_charge(page, memcg, false);
1696                         delete_from_swap_cache(page);
1697                 }
1698         }
1699         if (error)
1700                 goto failed;
1701
1702         mem_cgroup_commit_charge(page, memcg, true, false);
1703
1704         spin_lock_irq(&info->lock);
1705         info->swapped--;
1706         shmem_recalc_inode(inode);
1707         spin_unlock_irq(&info->lock);
1708
1709         if (sgp == SGP_WRITE)
1710                 mark_page_accessed(page);
1711
1712         delete_from_swap_cache(page);
1713         set_page_dirty(page);
1714         swap_free(swap);
1715
1716         *pagep = page;
1717         return 0;
1718 failed:
1719         if (!shmem_confirm_swap(mapping, index, swap))
1720                 error = -EEXIST;
1721 unlock:
1722         if (page) {
1723                 unlock_page(page);
1724                 put_page(page);
1725         }
1726
1727         return error;
1728 }
1729
1730 /*
1731  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1732  *
1733  * If we allocate a new one we do not mark it dirty. That's up to the
1734  * vm. If we swap it in we mark it dirty since we also free the swap
1735  * entry since a page cannot live in both the swap and page cache.
1736  *
1737  * vmf and fault_type are only supplied by shmem_fault:
1738  * otherwise they are NULL.
1739  */
1740 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1741         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1742         struct vm_area_struct *vma, struct vm_fault *vmf,
1743                         vm_fault_t *fault_type)
1744 {
1745         struct address_space *mapping = inode->i_mapping;
1746         struct shmem_inode_info *info = SHMEM_I(inode);
1747         struct shmem_sb_info *sbinfo;
1748         struct mm_struct *charge_mm;
1749         struct mem_cgroup *memcg;
1750         struct page *page;
1751         enum sgp_type sgp_huge = sgp;
1752         pgoff_t hindex = index;
1753         int error;
1754         int once = 0;
1755         int alloced = 0;
1756
1757         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1758                 return -EFBIG;
1759         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1760                 sgp = SGP_CACHE;
1761 repeat:
1762         if (sgp <= SGP_CACHE &&
1763             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1764                 return -EINVAL;
1765         }
1766
1767         sbinfo = SHMEM_SB(inode->i_sb);
1768         charge_mm = vma ? vma->vm_mm : current->mm;
1769
1770         page = find_lock_entry(mapping, index);
1771         if (xa_is_value(page)) {
1772                 error = shmem_swapin_page(inode, index, &page,
1773                                           sgp, gfp, vma, fault_type);
1774                 if (error == -EEXIST)
1775                         goto repeat;
1776
1777                 *pagep = page;
1778                 return error;
1779         }
1780
1781         if (page && sgp == SGP_WRITE)
1782                 mark_page_accessed(page);
1783
1784         /* fallocated page? */
1785         if (page && !PageUptodate(page)) {
1786                 if (sgp != SGP_READ)
1787                         goto clear;
1788                 unlock_page(page);
1789                 put_page(page);
1790                 page = NULL;
1791         }
1792         if (page || sgp == SGP_READ) {
1793                 *pagep = page;
1794                 return 0;
1795         }
1796
1797         /*
1798          * Fast cache lookup did not find it:
1799          * bring it back from swap or allocate.
1800          */
1801
1802         if (vma && userfaultfd_missing(vma)) {
1803                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1804                 return 0;
1805         }
1806
1807         /* shmem_symlink() */
1808         if (mapping->a_ops != &shmem_aops)
1809                 goto alloc_nohuge;
1810         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1811                 goto alloc_nohuge;
1812         if (shmem_huge == SHMEM_HUGE_FORCE)
1813                 goto alloc_huge;
1814         switch (sbinfo->huge) {
1815                 loff_t i_size;
1816                 pgoff_t off;
1817         case SHMEM_HUGE_NEVER:
1818                 goto alloc_nohuge;
1819         case SHMEM_HUGE_WITHIN_SIZE:
1820                 off = round_up(index, HPAGE_PMD_NR);
1821                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1822                 if (i_size >= HPAGE_PMD_SIZE &&
1823                     i_size >> PAGE_SHIFT >= off)
1824                         goto alloc_huge;
1825                 /* fallthrough */
1826         case SHMEM_HUGE_ADVISE:
1827                 if (sgp_huge == SGP_HUGE)
1828                         goto alloc_huge;
1829                 /* TODO: implement fadvise() hints */
1830                 goto alloc_nohuge;
1831         }
1832
1833 alloc_huge:
1834         page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1835         if (IS_ERR(page)) {
1836 alloc_nohuge:
1837                 page = shmem_alloc_and_acct_page(gfp, inode,
1838                                                  index, false);
1839         }
1840         if (IS_ERR(page)) {
1841                 int retry = 5;
1842
1843                 error = PTR_ERR(page);
1844                 page = NULL;
1845                 if (error != -ENOSPC)
1846                         goto unlock;
1847                 /*
1848                  * Try to reclaim some space by splitting a huge page
1849                  * beyond i_size on the filesystem.
1850                  */
1851                 while (retry--) {
1852                         int ret;
1853
1854                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1855                         if (ret == SHRINK_STOP)
1856                                 break;
1857                         if (ret)
1858                                 goto alloc_nohuge;
1859                 }
1860                 goto unlock;
1861         }
1862
1863         if (PageTransHuge(page))
1864                 hindex = round_down(index, HPAGE_PMD_NR);
1865         else
1866                 hindex = index;
1867
1868         if (sgp == SGP_WRITE)
1869                 __SetPageReferenced(page);
1870
1871         error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1872                                             PageTransHuge(page));
1873         if (error) {
1874                 if (PageTransHuge(page)) {
1875                         count_vm_event(THP_FILE_FALLBACK);
1876                         count_vm_event(THP_FILE_FALLBACK_CHARGE);
1877                 }
1878                 goto unacct;
1879         }
1880         error = shmem_add_to_page_cache(page, mapping, hindex,
1881                                         NULL, gfp & GFP_RECLAIM_MASK);
1882         if (error) {
1883                 mem_cgroup_cancel_charge(page, memcg,
1884                                          PageTransHuge(page));
1885                 goto unacct;
1886         }
1887         mem_cgroup_commit_charge(page, memcg, false,
1888                                  PageTransHuge(page));
1889         lru_cache_add_anon(page);
1890
1891         spin_lock_irq(&info->lock);
1892         info->alloced += compound_nr(page);
1893         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1894         shmem_recalc_inode(inode);
1895         spin_unlock_irq(&info->lock);
1896         alloced = true;
1897
1898         if (PageTransHuge(page) &&
1899             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1900                         hindex + HPAGE_PMD_NR - 1) {
1901                 /*
1902                  * Part of the huge page is beyond i_size: subject
1903                  * to shrink under memory pressure.
1904                  */
1905                 spin_lock(&sbinfo->shrinklist_lock);
1906                 /*
1907                  * _careful to defend against unlocked access to
1908                  * ->shrink_list in shmem_unused_huge_shrink()
1909                  */
1910                 if (list_empty_careful(&info->shrinklist)) {
1911                         list_add_tail(&info->shrinklist,
1912                                       &sbinfo->shrinklist);
1913                         sbinfo->shrinklist_len++;
1914                 }
1915                 spin_unlock(&sbinfo->shrinklist_lock);
1916         }
1917
1918         /*
1919          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1920          */
1921         if (sgp == SGP_FALLOC)
1922                 sgp = SGP_WRITE;
1923 clear:
1924         /*
1925          * Let SGP_WRITE caller clear ends if write does not fill page;
1926          * but SGP_FALLOC on a page fallocated earlier must initialize
1927          * it now, lest undo on failure cancel our earlier guarantee.
1928          */
1929         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1930                 struct page *head = compound_head(page);
1931                 int i;
1932
1933                 for (i = 0; i < compound_nr(head); i++) {
1934                         clear_highpage(head + i);
1935                         flush_dcache_page(head + i);
1936                 }
1937                 SetPageUptodate(head);
1938         }
1939
1940         /* Perhaps the file has been truncated since we checked */
1941         if (sgp <= SGP_CACHE &&
1942             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1943                 if (alloced) {
1944                         ClearPageDirty(page);
1945                         delete_from_page_cache(page);
1946                         spin_lock_irq(&info->lock);
1947                         shmem_recalc_inode(inode);
1948                         spin_unlock_irq(&info->lock);
1949                 }
1950                 error = -EINVAL;
1951                 goto unlock;
1952         }
1953         *pagep = page + index - hindex;
1954         return 0;
1955
1956         /*
1957          * Error recovery.
1958          */
1959 unacct:
1960         shmem_inode_unacct_blocks(inode, compound_nr(page));
1961
1962         if (PageTransHuge(page)) {
1963                 unlock_page(page);
1964                 put_page(page);
1965                 goto alloc_nohuge;
1966         }
1967 unlock:
1968         if (page) {
1969                 unlock_page(page);
1970                 put_page(page);
1971         }
1972         if (error == -ENOSPC && !once++) {
1973                 spin_lock_irq(&info->lock);
1974                 shmem_recalc_inode(inode);
1975                 spin_unlock_irq(&info->lock);
1976                 goto repeat;
1977         }
1978         if (error == -EEXIST)
1979                 goto repeat;
1980         return error;
1981 }
1982
1983 /*
1984  * This is like autoremove_wake_function, but it removes the wait queue
1985  * entry unconditionally - even if something else had already woken the
1986  * target.
1987  */
1988 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1989 {
1990         int ret = default_wake_function(wait, mode, sync, key);
1991         list_del_init(&wait->entry);
1992         return ret;
1993 }
1994
1995 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1996 {
1997         struct vm_area_struct *vma = vmf->vma;
1998         struct inode *inode = file_inode(vma->vm_file);
1999         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2000         enum sgp_type sgp;
2001         int err;
2002         vm_fault_t ret = VM_FAULT_LOCKED;
2003
2004         /*
2005          * Trinity finds that probing a hole which tmpfs is punching can
2006          * prevent the hole-punch from ever completing: which in turn
2007          * locks writers out with its hold on i_mutex.  So refrain from
2008          * faulting pages into the hole while it's being punched.  Although
2009          * shmem_undo_range() does remove the additions, it may be unable to
2010          * keep up, as each new page needs its own unmap_mapping_range() call,
2011          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2012          *
2013          * It does not matter if we sometimes reach this check just before the
2014          * hole-punch begins, so that one fault then races with the punch:
2015          * we just need to make racing faults a rare case.
2016          *
2017          * The implementation below would be much simpler if we just used a
2018          * standard mutex or completion: but we cannot take i_mutex in fault,
2019          * and bloating every shmem inode for this unlikely case would be sad.
2020          */
2021         if (unlikely(inode->i_private)) {
2022                 struct shmem_falloc *shmem_falloc;
2023
2024                 spin_lock(&inode->i_lock);
2025                 shmem_falloc = inode->i_private;
2026                 if (shmem_falloc &&
2027                     shmem_falloc->waitq &&
2028                     vmf->pgoff >= shmem_falloc->start &&
2029                     vmf->pgoff < shmem_falloc->next) {
2030                         struct file *fpin;
2031                         wait_queue_head_t *shmem_falloc_waitq;
2032                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2033
2034                         ret = VM_FAULT_NOPAGE;
2035                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2036                         if (fpin)
2037                                 ret = VM_FAULT_RETRY;
2038
2039                         shmem_falloc_waitq = shmem_falloc->waitq;
2040                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2041                                         TASK_UNINTERRUPTIBLE);
2042                         spin_unlock(&inode->i_lock);
2043                         schedule();
2044
2045                         /*
2046                          * shmem_falloc_waitq points into the shmem_fallocate()
2047                          * stack of the hole-punching task: shmem_falloc_waitq
2048                          * is usually invalid by the time we reach here, but
2049                          * finish_wait() does not dereference it in that case;
2050                          * though i_lock needed lest racing with wake_up_all().
2051                          */
2052                         spin_lock(&inode->i_lock);
2053                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2054                         spin_unlock(&inode->i_lock);
2055
2056                         if (fpin)
2057                                 fput(fpin);
2058                         return ret;
2059                 }
2060                 spin_unlock(&inode->i_lock);
2061         }
2062
2063         sgp = SGP_CACHE;
2064
2065         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2066             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2067                 sgp = SGP_NOHUGE;
2068         else if (vma->vm_flags & VM_HUGEPAGE)
2069                 sgp = SGP_HUGE;
2070
2071         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2072                                   gfp, vma, vmf, &ret);
2073         if (err)
2074                 return vmf_error(err);
2075         return ret;
2076 }
2077
2078 unsigned long shmem_get_unmapped_area(struct file *file,
2079                                       unsigned long uaddr, unsigned long len,
2080                                       unsigned long pgoff, unsigned long flags)
2081 {
2082         unsigned long (*get_area)(struct file *,
2083                 unsigned long, unsigned long, unsigned long, unsigned long);
2084         unsigned long addr;
2085         unsigned long offset;
2086         unsigned long inflated_len;
2087         unsigned long inflated_addr;
2088         unsigned long inflated_offset;
2089
2090         if (len > TASK_SIZE)
2091                 return -ENOMEM;
2092
2093         get_area = current->mm->get_unmapped_area;
2094         addr = get_area(file, uaddr, len, pgoff, flags);
2095
2096         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2097                 return addr;
2098         if (IS_ERR_VALUE(addr))
2099                 return addr;
2100         if (addr & ~PAGE_MASK)
2101                 return addr;
2102         if (addr > TASK_SIZE - len)
2103                 return addr;
2104
2105         if (shmem_huge == SHMEM_HUGE_DENY)
2106                 return addr;
2107         if (len < HPAGE_PMD_SIZE)
2108                 return addr;
2109         if (flags & MAP_FIXED)
2110                 return addr;
2111         /*
2112          * Our priority is to support MAP_SHARED mapped hugely;
2113          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2114          * But if caller specified an address hint and we allocated area there
2115          * successfully, respect that as before.
2116          */
2117         if (uaddr == addr)
2118                 return addr;
2119
2120         if (shmem_huge != SHMEM_HUGE_FORCE) {
2121                 struct super_block *sb;
2122
2123                 if (file) {
2124                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2125                         sb = file_inode(file)->i_sb;
2126                 } else {
2127                         /*
2128                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2129                          * for "/dev/zero", to create a shared anonymous object.
2130                          */
2131                         if (IS_ERR(shm_mnt))
2132                                 return addr;
2133                         sb = shm_mnt->mnt_sb;
2134                 }
2135                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2136                         return addr;
2137         }
2138
2139         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2140         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2141                 return addr;
2142         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2143                 return addr;
2144
2145         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2146         if (inflated_len > TASK_SIZE)
2147                 return addr;
2148         if (inflated_len < len)
2149                 return addr;
2150
2151         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2152         if (IS_ERR_VALUE(inflated_addr))
2153                 return addr;
2154         if (inflated_addr & ~PAGE_MASK)
2155                 return addr;
2156
2157         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2158         inflated_addr += offset - inflated_offset;
2159         if (inflated_offset > offset)
2160                 inflated_addr += HPAGE_PMD_SIZE;
2161
2162         if (inflated_addr > TASK_SIZE - len)
2163                 return addr;
2164         return inflated_addr;
2165 }
2166
2167 #ifdef CONFIG_NUMA
2168 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2169 {
2170         struct inode *inode = file_inode(vma->vm_file);
2171         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2172 }
2173
2174 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2175                                           unsigned long addr)
2176 {
2177         struct inode *inode = file_inode(vma->vm_file);
2178         pgoff_t index;
2179
2180         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2181         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2182 }
2183 #endif
2184
2185 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2186 {
2187         struct inode *inode = file_inode(file);
2188         struct shmem_inode_info *info = SHMEM_I(inode);
2189         int retval = -ENOMEM;
2190
2191         spin_lock_irq(&info->lock);
2192         if (lock && !(info->flags & VM_LOCKED)) {
2193                 if (!user_shm_lock(inode->i_size, user))
2194                         goto out_nomem;
2195                 info->flags |= VM_LOCKED;
2196                 mapping_set_unevictable(file->f_mapping);
2197         }
2198         if (!lock && (info->flags & VM_LOCKED) && user) {
2199                 user_shm_unlock(inode->i_size, user);
2200                 info->flags &= ~VM_LOCKED;
2201                 mapping_clear_unevictable(file->f_mapping);
2202         }
2203         retval = 0;
2204
2205 out_nomem:
2206         spin_unlock_irq(&info->lock);
2207         return retval;
2208 }
2209
2210 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2211 {
2212         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2213
2214         if (info->seals & F_SEAL_FUTURE_WRITE) {
2215                 /*
2216                  * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2217                  * "future write" seal active.
2218                  */
2219                 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2220                         return -EPERM;
2221
2222                 /*
2223                  * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2224                  * MAP_SHARED and read-only, take care to not allow mprotect to
2225                  * revert protections on such mappings. Do this only for shared
2226                  * mappings. For private mappings, don't need to mask
2227                  * VM_MAYWRITE as we still want them to be COW-writable.
2228                  */
2229                 if (vma->vm_flags & VM_SHARED)
2230                         vma->vm_flags &= ~(VM_MAYWRITE);
2231         }
2232
2233         file_accessed(file);
2234         vma->vm_ops = &shmem_vm_ops;
2235         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2236                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2237                         (vma->vm_end & HPAGE_PMD_MASK)) {
2238                 khugepaged_enter(vma, vma->vm_flags);
2239         }
2240         return 0;
2241 }
2242
2243 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2244                                      umode_t mode, dev_t dev, unsigned long flags)
2245 {
2246         struct inode *inode;
2247         struct shmem_inode_info *info;
2248         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2249
2250         if (shmem_reserve_inode(sb))
2251                 return NULL;
2252
2253         inode = new_inode(sb);
2254         if (inode) {
2255                 inode->i_ino = get_next_ino();
2256                 inode_init_owner(inode, dir, mode);
2257                 inode->i_blocks = 0;
2258                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2259                 inode->i_generation = prandom_u32();
2260                 info = SHMEM_I(inode);
2261                 memset(info, 0, (char *)inode - (char *)info);
2262                 spin_lock_init(&info->lock);
2263                 atomic_set(&info->stop_eviction, 0);
2264                 info->seals = F_SEAL_SEAL;
2265                 info->flags = flags & VM_NORESERVE;
2266                 INIT_LIST_HEAD(&info->shrinklist);
2267                 INIT_LIST_HEAD(&info->swaplist);
2268                 simple_xattrs_init(&info->xattrs);
2269                 cache_no_acl(inode);
2270
2271                 switch (mode & S_IFMT) {
2272                 default:
2273                         inode->i_op = &shmem_special_inode_operations;
2274                         init_special_inode(inode, mode, dev);
2275                         break;
2276                 case S_IFREG:
2277                         inode->i_mapping->a_ops = &shmem_aops;
2278                         inode->i_op = &shmem_inode_operations;
2279                         inode->i_fop = &shmem_file_operations;
2280                         mpol_shared_policy_init(&info->policy,
2281                                                  shmem_get_sbmpol(sbinfo));
2282                         break;
2283                 case S_IFDIR:
2284                         inc_nlink(inode);
2285                         /* Some things misbehave if size == 0 on a directory */
2286                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2287                         inode->i_op = &shmem_dir_inode_operations;
2288                         inode->i_fop = &simple_dir_operations;
2289                         break;
2290                 case S_IFLNK:
2291                         /*
2292                          * Must not load anything in the rbtree,
2293                          * mpol_free_shared_policy will not be called.
2294                          */
2295                         mpol_shared_policy_init(&info->policy, NULL);
2296                         break;
2297                 }
2298
2299                 lockdep_annotate_inode_mutex_key(inode);
2300         } else
2301                 shmem_free_inode(sb);
2302         return inode;
2303 }
2304
2305 bool shmem_mapping(struct address_space *mapping)
2306 {
2307         return mapping->a_ops == &shmem_aops;
2308 }
2309
2310 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2311                                   pmd_t *dst_pmd,
2312                                   struct vm_area_struct *dst_vma,
2313                                   unsigned long dst_addr,
2314                                   unsigned long src_addr,
2315                                   bool zeropage,
2316                                   struct page **pagep)
2317 {
2318         struct inode *inode = file_inode(dst_vma->vm_file);
2319         struct shmem_inode_info *info = SHMEM_I(inode);
2320         struct address_space *mapping = inode->i_mapping;
2321         gfp_t gfp = mapping_gfp_mask(mapping);
2322         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2323         struct mem_cgroup *memcg;
2324         spinlock_t *ptl;
2325         void *page_kaddr;
2326         struct page *page;
2327         pte_t _dst_pte, *dst_pte;
2328         int ret;
2329         pgoff_t offset, max_off;
2330
2331         ret = -ENOMEM;
2332         if (!shmem_inode_acct_block(inode, 1))
2333                 goto out;
2334
2335         if (!*pagep) {
2336                 page = shmem_alloc_page(gfp, info, pgoff);
2337                 if (!page)
2338                         goto out_unacct_blocks;
2339
2340                 if (!zeropage) {        /* mcopy_atomic */
2341                         page_kaddr = kmap_atomic(page);
2342                         ret = copy_from_user(page_kaddr,
2343                                              (const void __user *)src_addr,
2344                                              PAGE_SIZE);
2345                         kunmap_atomic(page_kaddr);
2346
2347                         /* fallback to copy_from_user outside mmap_sem */
2348                         if (unlikely(ret)) {
2349                                 *pagep = page;
2350                                 shmem_inode_unacct_blocks(inode, 1);
2351                                 /* don't free the page */
2352                                 return -ENOENT;
2353                         }
2354                 } else {                /* mfill_zeropage_atomic */
2355                         clear_highpage(page);
2356                 }
2357         } else {
2358                 page = *pagep;
2359                 *pagep = NULL;
2360         }
2361
2362         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2363         __SetPageLocked(page);
2364         __SetPageSwapBacked(page);
2365         __SetPageUptodate(page);
2366
2367         ret = -EFAULT;
2368         offset = linear_page_index(dst_vma, dst_addr);
2369         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2370         if (unlikely(offset >= max_off))
2371                 goto out_release;
2372
2373         ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2374         if (ret)
2375                 goto out_release;
2376
2377         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2378                                                 gfp & GFP_RECLAIM_MASK);
2379         if (ret)
2380                 goto out_release_uncharge;
2381
2382         mem_cgroup_commit_charge(page, memcg, false, false);
2383
2384         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2385         if (dst_vma->vm_flags & VM_WRITE)
2386                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2387         else {
2388                 /*
2389                  * We don't set the pte dirty if the vma has no
2390                  * VM_WRITE permission, so mark the page dirty or it
2391                  * could be freed from under us. We could do it
2392                  * unconditionally before unlock_page(), but doing it
2393                  * only if VM_WRITE is not set is faster.
2394                  */
2395                 set_page_dirty(page);
2396         }
2397
2398         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2399
2400         ret = -EFAULT;
2401         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2402         if (unlikely(offset >= max_off))
2403                 goto out_release_uncharge_unlock;
2404
2405         ret = -EEXIST;
2406         if (!pte_none(*dst_pte))
2407                 goto out_release_uncharge_unlock;
2408
2409         lru_cache_add_anon(page);
2410
2411         spin_lock(&info->lock);
2412         info->alloced++;
2413         inode->i_blocks += BLOCKS_PER_PAGE;
2414         shmem_recalc_inode(inode);
2415         spin_unlock(&info->lock);
2416
2417         inc_mm_counter(dst_mm, mm_counter_file(page));
2418         page_add_file_rmap(page, false);
2419         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2420
2421         /* No need to invalidate - it was non-present before */
2422         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2423         pte_unmap_unlock(dst_pte, ptl);
2424         unlock_page(page);
2425         ret = 0;
2426 out:
2427         return ret;
2428 out_release_uncharge_unlock:
2429         pte_unmap_unlock(dst_pte, ptl);
2430         ClearPageDirty(page);
2431         delete_from_page_cache(page);
2432 out_release_uncharge:
2433         mem_cgroup_cancel_charge(page, memcg, false);
2434 out_release:
2435         unlock_page(page);
2436         put_page(page);
2437 out_unacct_blocks:
2438         shmem_inode_unacct_blocks(inode, 1);
2439         goto out;
2440 }
2441
2442 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2443                            pmd_t *dst_pmd,
2444                            struct vm_area_struct *dst_vma,
2445                            unsigned long dst_addr,
2446                            unsigned long src_addr,
2447                            struct page **pagep)
2448 {
2449         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2450                                       dst_addr, src_addr, false, pagep);
2451 }
2452
2453 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2454                              pmd_t *dst_pmd,
2455                              struct vm_area_struct *dst_vma,
2456                              unsigned long dst_addr)
2457 {
2458         struct page *page = NULL;
2459
2460         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2461                                       dst_addr, 0, true, &page);
2462 }
2463
2464 #ifdef CONFIG_TMPFS
2465 static const struct inode_operations shmem_symlink_inode_operations;
2466 static const struct inode_operations shmem_short_symlink_operations;
2467
2468 #ifdef CONFIG_TMPFS_XATTR
2469 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2470 #else
2471 #define shmem_initxattrs NULL
2472 #endif
2473
2474 static int
2475 shmem_write_begin(struct file *file, struct address_space *mapping,
2476                         loff_t pos, unsigned len, unsigned flags,
2477                         struct page **pagep, void **fsdata)
2478 {
2479         struct inode *inode = mapping->host;
2480         struct shmem_inode_info *info = SHMEM_I(inode);
2481         pgoff_t index = pos >> PAGE_SHIFT;
2482
2483         /* i_mutex is held by caller */
2484         if (unlikely(info->seals & (F_SEAL_GROW |
2485                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2486                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2487                         return -EPERM;
2488                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2489                         return -EPERM;
2490         }
2491
2492         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2493 }
2494
2495 static int
2496 shmem_write_end(struct file *file, struct address_space *mapping,
2497                         loff_t pos, unsigned len, unsigned copied,
2498                         struct page *page, void *fsdata)
2499 {
2500         struct inode *inode = mapping->host;
2501
2502         if (pos + copied > inode->i_size)
2503                 i_size_write(inode, pos + copied);
2504
2505         if (!PageUptodate(page)) {
2506                 struct page *head = compound_head(page);
2507                 if (PageTransCompound(page)) {
2508                         int i;
2509
2510                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2511                                 if (head + i == page)
2512                                         continue;
2513                                 clear_highpage(head + i);
2514                                 flush_dcache_page(head + i);
2515                         }
2516                 }
2517                 if (copied < PAGE_SIZE) {
2518                         unsigned from = pos & (PAGE_SIZE - 1);
2519                         zero_user_segments(page, 0, from,
2520                                         from + copied, PAGE_SIZE);
2521                 }
2522                 SetPageUptodate(head);
2523         }
2524         set_page_dirty(page);
2525         unlock_page(page);
2526         put_page(page);
2527
2528         return copied;
2529 }
2530
2531 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2532 {
2533         struct file *file = iocb->ki_filp;
2534         struct inode *inode = file_inode(file);
2535         struct address_space *mapping = inode->i_mapping;
2536         pgoff_t index;
2537         unsigned long offset;
2538         enum sgp_type sgp = SGP_READ;
2539         int error = 0;
2540         ssize_t retval = 0;
2541         loff_t *ppos = &iocb->ki_pos;
2542
2543         /*
2544          * Might this read be for a stacking filesystem?  Then when reading
2545          * holes of a sparse file, we actually need to allocate those pages,
2546          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2547          */
2548         if (!iter_is_iovec(to))
2549                 sgp = SGP_CACHE;
2550
2551         index = *ppos >> PAGE_SHIFT;
2552         offset = *ppos & ~PAGE_MASK;
2553
2554         for (;;) {
2555                 struct page *page = NULL;
2556                 pgoff_t end_index;
2557                 unsigned long nr, ret;
2558                 loff_t i_size = i_size_read(inode);
2559
2560                 end_index = i_size >> PAGE_SHIFT;
2561                 if (index > end_index)
2562                         break;
2563                 if (index == end_index) {
2564                         nr = i_size & ~PAGE_MASK;
2565                         if (nr <= offset)
2566                                 break;
2567                 }
2568
2569                 error = shmem_getpage(inode, index, &page, sgp);
2570                 if (error) {
2571                         if (error == -EINVAL)
2572                                 error = 0;
2573                         break;
2574                 }
2575                 if (page) {
2576                         if (sgp == SGP_CACHE)
2577                                 set_page_dirty(page);
2578                         unlock_page(page);
2579                 }
2580
2581                 /*
2582                  * We must evaluate after, since reads (unlike writes)
2583                  * are called without i_mutex protection against truncate
2584                  */
2585                 nr = PAGE_SIZE;
2586                 i_size = i_size_read(inode);
2587                 end_index = i_size >> PAGE_SHIFT;
2588                 if (index == end_index) {
2589                         nr = i_size & ~PAGE_MASK;
2590                         if (nr <= offset) {
2591                                 if (page)
2592                                         put_page(page);
2593                                 break;
2594                         }
2595                 }
2596                 nr -= offset;
2597
2598                 if (page) {
2599                         /*
2600                          * If users can be writing to this page using arbitrary
2601                          * virtual addresses, take care about potential aliasing
2602                          * before reading the page on the kernel side.
2603                          */
2604                         if (mapping_writably_mapped(mapping))
2605                                 flush_dcache_page(page);
2606                         /*
2607                          * Mark the page accessed if we read the beginning.
2608                          */
2609                         if (!offset)
2610                                 mark_page_accessed(page);
2611                 } else {
2612                         page = ZERO_PAGE(0);
2613                         get_page(page);
2614                 }
2615
2616                 /*
2617                  * Ok, we have the page, and it's up-to-date, so
2618                  * now we can copy it to user space...
2619                  */
2620                 ret = copy_page_to_iter(page, offset, nr, to);
2621                 retval += ret;
2622                 offset += ret;
2623                 index += offset >> PAGE_SHIFT;
2624                 offset &= ~PAGE_MASK;
2625
2626                 put_page(page);
2627                 if (!iov_iter_count(to))
2628                         break;
2629                 if (ret < nr) {
2630                         error = -EFAULT;
2631                         break;
2632                 }
2633                 cond_resched();
2634         }
2635
2636         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2637         file_accessed(file);
2638         return retval ? retval : error;
2639 }
2640
2641 /*
2642  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2643  */
2644 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2645                                     pgoff_t index, pgoff_t end, int whence)
2646 {
2647         struct page *page;
2648         struct pagevec pvec;
2649         pgoff_t indices[PAGEVEC_SIZE];
2650         bool done = false;
2651         int i;
2652
2653         pagevec_init(&pvec);
2654         pvec.nr = 1;            /* start small: we may be there already */
2655         while (!done) {
2656                 pvec.nr = find_get_entries(mapping, index,
2657                                         pvec.nr, pvec.pages, indices);
2658                 if (!pvec.nr) {
2659                         if (whence == SEEK_DATA)
2660                                 index = end;
2661                         break;
2662                 }
2663                 for (i = 0; i < pvec.nr; i++, index++) {
2664                         if (index < indices[i]) {
2665                                 if (whence == SEEK_HOLE) {
2666                                         done = true;
2667                                         break;
2668                                 }
2669                                 index = indices[i];
2670                         }
2671                         page = pvec.pages[i];
2672                         if (page && !xa_is_value(page)) {
2673                                 if (!PageUptodate(page))
2674                                         page = NULL;
2675                         }
2676                         if (index >= end ||
2677                             (page && whence == SEEK_DATA) ||
2678                             (!page && whence == SEEK_HOLE)) {
2679                                 done = true;
2680                                 break;
2681                         }
2682                 }
2683                 pagevec_remove_exceptionals(&pvec);
2684                 pagevec_release(&pvec);
2685                 pvec.nr = PAGEVEC_SIZE;
2686                 cond_resched();
2687         }
2688         return index;
2689 }
2690
2691 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2692 {
2693         struct address_space *mapping = file->f_mapping;
2694         struct inode *inode = mapping->host;
2695         pgoff_t start, end;
2696         loff_t new_offset;
2697
2698         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2699                 return generic_file_llseek_size(file, offset, whence,
2700                                         MAX_LFS_FILESIZE, i_size_read(inode));
2701         inode_lock(inode);
2702         /* We're holding i_mutex so we can access i_size directly */
2703
2704         if (offset < 0 || offset >= inode->i_size)
2705                 offset = -ENXIO;
2706         else {
2707                 start = offset >> PAGE_SHIFT;
2708                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2709                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2710                 new_offset <<= PAGE_SHIFT;
2711                 if (new_offset > offset) {
2712                         if (new_offset < inode->i_size)
2713                                 offset = new_offset;
2714                         else if (whence == SEEK_DATA)
2715                                 offset = -ENXIO;
2716                         else
2717                                 offset = inode->i_size;
2718                 }
2719         }
2720
2721         if (offset >= 0)
2722                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2723         inode_unlock(inode);
2724         return offset;
2725 }
2726
2727 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2728                                                          loff_t len)
2729 {
2730         struct inode *inode = file_inode(file);
2731         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2732         struct shmem_inode_info *info = SHMEM_I(inode);
2733         struct shmem_falloc shmem_falloc;
2734         pgoff_t start, index, end;
2735         int error;
2736
2737         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2738                 return -EOPNOTSUPP;
2739
2740         inode_lock(inode);
2741
2742         if (mode & FALLOC_FL_PUNCH_HOLE) {
2743                 struct address_space *mapping = file->f_mapping;
2744                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2745                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2746                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2747
2748                 /* protected by i_mutex */
2749                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2750                         error = -EPERM;
2751                         goto out;
2752                 }
2753
2754                 shmem_falloc.waitq = &shmem_falloc_waitq;
2755                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2756                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2757                 spin_lock(&inode->i_lock);
2758                 inode->i_private = &shmem_falloc;
2759                 spin_unlock(&inode->i_lock);
2760
2761                 if ((u64)unmap_end > (u64)unmap_start)
2762                         unmap_mapping_range(mapping, unmap_start,
2763                                             1 + unmap_end - unmap_start, 0);
2764                 shmem_truncate_range(inode, offset, offset + len - 1);
2765                 /* No need to unmap again: hole-punching leaves COWed pages */
2766
2767                 spin_lock(&inode->i_lock);
2768                 inode->i_private = NULL;
2769                 wake_up_all(&shmem_falloc_waitq);
2770                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2771                 spin_unlock(&inode->i_lock);
2772                 error = 0;
2773                 goto out;
2774         }
2775
2776         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2777         error = inode_newsize_ok(inode, offset + len);
2778         if (error)
2779                 goto out;
2780
2781         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2782                 error = -EPERM;
2783                 goto out;
2784         }
2785
2786         start = offset >> PAGE_SHIFT;
2787         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2788         /* Try to avoid a swapstorm if len is impossible to satisfy */
2789         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2790                 error = -ENOSPC;
2791                 goto out;
2792         }
2793
2794         shmem_falloc.waitq = NULL;
2795         shmem_falloc.start = start;
2796         shmem_falloc.next  = start;
2797         shmem_falloc.nr_falloced = 0;
2798         shmem_falloc.nr_unswapped = 0;
2799         spin_lock(&inode->i_lock);
2800         inode->i_private = &shmem_falloc;
2801         spin_unlock(&inode->i_lock);
2802
2803         for (index = start; index < end; index++) {
2804                 struct page *page;
2805
2806                 /*
2807                  * Good, the fallocate(2) manpage permits EINTR: we may have
2808                  * been interrupted because we are using up too much memory.
2809                  */
2810                 if (signal_pending(current))
2811                         error = -EINTR;
2812                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2813                         error = -ENOMEM;
2814                 else
2815                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2816                 if (error) {
2817                         /* Remove the !PageUptodate pages we added */
2818                         if (index > start) {
2819                                 shmem_undo_range(inode,
2820                                     (loff_t)start << PAGE_SHIFT,
2821                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2822                         }
2823                         goto undone;
2824                 }
2825
2826                 /*
2827                  * Inform shmem_writepage() how far we have reached.
2828                  * No need for lock or barrier: we have the page lock.
2829                  */
2830                 shmem_falloc.next++;
2831                 if (!PageUptodate(page))
2832                         shmem_falloc.nr_falloced++;
2833
2834                 /*
2835                  * If !PageUptodate, leave it that way so that freeable pages
2836                  * can be recognized if we need to rollback on error later.
2837                  * But set_page_dirty so that memory pressure will swap rather
2838                  * than free the pages we are allocating (and SGP_CACHE pages
2839                  * might still be clean: we now need to mark those dirty too).
2840                  */
2841                 set_page_dirty(page);
2842                 unlock_page(page);
2843                 put_page(page);
2844                 cond_resched();
2845         }
2846
2847         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2848                 i_size_write(inode, offset + len);
2849         inode->i_ctime = current_time(inode);
2850 undone:
2851         spin_lock(&inode->i_lock);
2852         inode->i_private = NULL;
2853         spin_unlock(&inode->i_lock);
2854 out:
2855         inode_unlock(inode);
2856         return error;
2857 }
2858
2859 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2860 {
2861         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2862
2863         buf->f_type = TMPFS_MAGIC;
2864         buf->f_bsize = PAGE_SIZE;
2865         buf->f_namelen = NAME_MAX;
2866         if (sbinfo->max_blocks) {
2867                 buf->f_blocks = sbinfo->max_blocks;
2868                 buf->f_bavail =
2869                 buf->f_bfree  = sbinfo->max_blocks -
2870                                 percpu_counter_sum(&sbinfo->used_blocks);
2871         }
2872         if (sbinfo->max_inodes) {
2873                 buf->f_files = sbinfo->max_inodes;
2874                 buf->f_ffree = sbinfo->free_inodes;
2875         }
2876         /* else leave those fields 0 like simple_statfs */
2877         return 0;
2878 }
2879
2880 /*
2881  * File creation. Allocate an inode, and we're done..
2882  */
2883 static int
2884 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2885 {
2886         struct inode *inode;
2887         int error = -ENOSPC;
2888
2889         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2890         if (inode) {
2891                 error = simple_acl_create(dir, inode);
2892                 if (error)
2893                         goto out_iput;
2894                 error = security_inode_init_security(inode, dir,
2895                                                      &dentry->d_name,
2896                                                      shmem_initxattrs, NULL);
2897                 if (error && error != -EOPNOTSUPP)
2898                         goto out_iput;
2899
2900                 error = 0;
2901                 dir->i_size += BOGO_DIRENT_SIZE;
2902                 dir->i_ctime = dir->i_mtime = current_time(dir);
2903                 d_instantiate(dentry, inode);
2904                 dget(dentry); /* Extra count - pin the dentry in core */
2905         }
2906         return error;
2907 out_iput:
2908         iput(inode);
2909         return error;
2910 }
2911
2912 static int
2913 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2914 {
2915         struct inode *inode;
2916         int error = -ENOSPC;
2917
2918         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2919         if (inode) {
2920                 error = security_inode_init_security(inode, dir,
2921                                                      NULL,
2922                                                      shmem_initxattrs, NULL);
2923                 if (error && error != -EOPNOTSUPP)
2924                         goto out_iput;
2925                 error = simple_acl_create(dir, inode);
2926                 if (error)
2927                         goto out_iput;
2928                 d_tmpfile(dentry, inode);
2929         }
2930         return error;
2931 out_iput:
2932         iput(inode);
2933         return error;
2934 }
2935
2936 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2937 {
2938         int error;
2939
2940         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2941                 return error;
2942         inc_nlink(dir);
2943         return 0;
2944 }
2945
2946 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2947                 bool excl)
2948 {
2949         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2950 }
2951
2952 /*
2953  * Link a file..
2954  */
2955 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2956 {
2957         struct inode *inode = d_inode(old_dentry);
2958         int ret = 0;
2959
2960         /*
2961          * No ordinary (disk based) filesystem counts links as inodes;
2962          * but each new link needs a new dentry, pinning lowmem, and
2963          * tmpfs dentries cannot be pruned until they are unlinked.
2964          * But if an O_TMPFILE file is linked into the tmpfs, the
2965          * first link must skip that, to get the accounting right.
2966          */
2967         if (inode->i_nlink) {
2968                 ret = shmem_reserve_inode(inode->i_sb);
2969                 if (ret)
2970                         goto out;
2971         }
2972
2973         dir->i_size += BOGO_DIRENT_SIZE;
2974         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2975         inc_nlink(inode);
2976         ihold(inode);   /* New dentry reference */
2977         dget(dentry);           /* Extra pinning count for the created dentry */
2978         d_instantiate(dentry, inode);
2979 out:
2980         return ret;
2981 }
2982
2983 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2984 {
2985         struct inode *inode = d_inode(dentry);
2986
2987         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2988                 shmem_free_inode(inode->i_sb);
2989
2990         dir->i_size -= BOGO_DIRENT_SIZE;
2991         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2992         drop_nlink(inode);
2993         dput(dentry);   /* Undo the count from "create" - this does all the work */
2994         return 0;
2995 }
2996
2997 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2998 {
2999         if (!simple_empty(dentry))
3000                 return -ENOTEMPTY;
3001
3002         drop_nlink(d_inode(dentry));
3003         drop_nlink(dir);
3004         return shmem_unlink(dir, dentry);
3005 }
3006
3007 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3008 {
3009         bool old_is_dir = d_is_dir(old_dentry);
3010         bool new_is_dir = d_is_dir(new_dentry);
3011
3012         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3013                 if (old_is_dir) {
3014                         drop_nlink(old_dir);
3015                         inc_nlink(new_dir);
3016                 } else {
3017                         drop_nlink(new_dir);
3018                         inc_nlink(old_dir);
3019                 }
3020         }
3021         old_dir->i_ctime = old_dir->i_mtime =
3022         new_dir->i_ctime = new_dir->i_mtime =
3023         d_inode(old_dentry)->i_ctime =
3024         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3025
3026         return 0;
3027 }
3028
3029 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3030 {
3031         struct dentry *whiteout;
3032         int error;
3033
3034         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3035         if (!whiteout)
3036                 return -ENOMEM;
3037
3038         error = shmem_mknod(old_dir, whiteout,
3039                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3040         dput(whiteout);
3041         if (error)
3042                 return error;
3043
3044         /*
3045          * Cheat and hash the whiteout while the old dentry is still in
3046          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3047          *
3048          * d_lookup() will consistently find one of them at this point,
3049          * not sure which one, but that isn't even important.
3050          */
3051         d_rehash(whiteout);
3052         return 0;
3053 }
3054
3055 /*
3056  * The VFS layer already does all the dentry stuff for rename,
3057  * we just have to decrement the usage count for the target if
3058  * it exists so that the VFS layer correctly free's it when it
3059  * gets overwritten.
3060  */
3061 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3062 {
3063         struct inode *inode = d_inode(old_dentry);
3064         int they_are_dirs = S_ISDIR(inode->i_mode);
3065
3066         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3067                 return -EINVAL;
3068
3069         if (flags & RENAME_EXCHANGE)
3070                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3071
3072         if (!simple_empty(new_dentry))
3073                 return -ENOTEMPTY;
3074
3075         if (flags & RENAME_WHITEOUT) {
3076                 int error;
3077
3078                 error = shmem_whiteout(old_dir, old_dentry);
3079                 if (error)
3080                         return error;
3081         }
3082
3083         if (d_really_is_positive(new_dentry)) {
3084                 (void) shmem_unlink(new_dir, new_dentry);
3085                 if (they_are_dirs) {
3086                         drop_nlink(d_inode(new_dentry));
3087                         drop_nlink(old_dir);
3088                 }
3089         } else if (they_are_dirs) {
3090                 drop_nlink(old_dir);
3091                 inc_nlink(new_dir);
3092         }
3093
3094         old_dir->i_size -= BOGO_DIRENT_SIZE;
3095         new_dir->i_size += BOGO_DIRENT_SIZE;
3096         old_dir->i_ctime = old_dir->i_mtime =
3097         new_dir->i_ctime = new_dir->i_mtime =
3098         inode->i_ctime = current_time(old_dir);
3099         return 0;
3100 }
3101
3102 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3103 {
3104         int error;
3105         int len;
3106         struct inode *inode;
3107         struct page *page;
3108
3109         len = strlen(symname) + 1;
3110         if (len > PAGE_SIZE)
3111                 return -ENAMETOOLONG;
3112
3113         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3114                                 VM_NORESERVE);
3115         if (!inode)
3116                 return -ENOSPC;
3117
3118         error = security_inode_init_security(inode, dir, &dentry->d_name,
3119                                              shmem_initxattrs, NULL);
3120         if (error) {
3121                 if (error != -EOPNOTSUPP) {
3122                         iput(inode);
3123                         return error;
3124                 }
3125                 error = 0;
3126         }
3127
3128         inode->i_size = len-1;
3129         if (len <= SHORT_SYMLINK_LEN) {
3130                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3131                 if (!inode->i_link) {
3132                         iput(inode);
3133                         return -ENOMEM;
3134                 }
3135                 inode->i_op = &shmem_short_symlink_operations;
3136         } else {
3137                 inode_nohighmem(inode);
3138                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3139                 if (error) {
3140                         iput(inode);
3141                         return error;
3142                 }
3143                 inode->i_mapping->a_ops = &shmem_aops;
3144                 inode->i_op = &shmem_symlink_inode_operations;
3145                 memcpy(page_address(page), symname, len);
3146                 SetPageUptodate(page);
3147                 set_page_dirty(page);
3148                 unlock_page(page);
3149                 put_page(page);
3150         }
3151         dir->i_size += BOGO_DIRENT_SIZE;
3152         dir->i_ctime = dir->i_mtime = current_time(dir);
3153         d_instantiate(dentry, inode);
3154         dget(dentry);
3155         return 0;
3156 }
3157
3158 static void shmem_put_link(void *arg)
3159 {
3160         mark_page_accessed(arg);
3161         put_page(arg);
3162 }
3163
3164 static const char *shmem_get_link(struct dentry *dentry,
3165                                   struct inode *inode,
3166                                   struct delayed_call *done)
3167 {
3168         struct page *page = NULL;
3169         int error;
3170         if (!dentry) {
3171                 page = find_get_page(inode->i_mapping, 0);
3172                 if (!page)
3173                         return ERR_PTR(-ECHILD);
3174                 if (!PageUptodate(page)) {
3175                         put_page(page);
3176                         return ERR_PTR(-ECHILD);
3177                 }
3178         } else {
3179                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3180                 if (error)
3181                         return ERR_PTR(error);
3182                 unlock_page(page);
3183         }
3184         set_delayed_call(done, shmem_put_link, page);
3185         return page_address(page);
3186 }
3187
3188 #ifdef CONFIG_TMPFS_XATTR
3189 /*
3190  * Superblocks without xattr inode operations may get some security.* xattr
3191  * support from the LSM "for free". As soon as we have any other xattrs
3192  * like ACLs, we also need to implement the security.* handlers at
3193  * filesystem level, though.
3194  */
3195
3196 /*
3197  * Callback for security_inode_init_security() for acquiring xattrs.
3198  */
3199 static int shmem_initxattrs(struct inode *inode,
3200                             const struct xattr *xattr_array,
3201                             void *fs_info)
3202 {
3203         struct shmem_inode_info *info = SHMEM_I(inode);
3204         const struct xattr *xattr;
3205         struct simple_xattr *new_xattr;
3206         size_t len;
3207
3208         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3209                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3210                 if (!new_xattr)
3211                         return -ENOMEM;
3212
3213                 len = strlen(xattr->name) + 1;
3214                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3215                                           GFP_KERNEL);
3216                 if (!new_xattr->name) {
3217                         kfree(new_xattr);
3218                         return -ENOMEM;
3219                 }
3220
3221                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3222                        XATTR_SECURITY_PREFIX_LEN);
3223                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3224                        xattr->name, len);
3225
3226                 simple_xattr_list_add(&info->xattrs, new_xattr);
3227         }
3228
3229         return 0;
3230 }
3231
3232 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3233                                    struct dentry *unused, struct inode *inode,
3234                                    const char *name, void *buffer, size_t size)
3235 {
3236         struct shmem_inode_info *info = SHMEM_I(inode);
3237
3238         name = xattr_full_name(handler, name);
3239         return simple_xattr_get(&info->xattrs, name, buffer, size);
3240 }
3241
3242 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3243                                    struct dentry *unused, struct inode *inode,
3244                                    const char *name, const void *value,
3245                                    size_t size, int flags)
3246 {
3247         struct shmem_inode_info *info = SHMEM_I(inode);
3248
3249         name = xattr_full_name(handler, name);
3250         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3251 }
3252
3253 static const struct xattr_handler shmem_security_xattr_handler = {
3254         .prefix = XATTR_SECURITY_PREFIX,
3255         .get = shmem_xattr_handler_get,
3256         .set = shmem_xattr_handler_set,
3257 };
3258
3259 static const struct xattr_handler shmem_trusted_xattr_handler = {
3260         .prefix = XATTR_TRUSTED_PREFIX,
3261         .get = shmem_xattr_handler_get,
3262         .set = shmem_xattr_handler_set,
3263 };
3264
3265 static const struct xattr_handler *shmem_xattr_handlers[] = {
3266 #ifdef CONFIG_TMPFS_POSIX_ACL
3267         &posix_acl_access_xattr_handler,
3268         &posix_acl_default_xattr_handler,
3269 #endif
3270         &shmem_security_xattr_handler,
3271         &shmem_trusted_xattr_handler,
3272         NULL
3273 };
3274
3275 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3276 {
3277         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3278         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3279 }
3280 #endif /* CONFIG_TMPFS_XATTR */
3281
3282 static const struct inode_operations shmem_short_symlink_operations = {
3283         .get_link       = simple_get_link,
3284 #ifdef CONFIG_TMPFS_XATTR
3285         .listxattr      = shmem_listxattr,
3286 #endif
3287 };
3288
3289 static const struct inode_operations shmem_symlink_inode_operations = {
3290         .get_link       = shmem_get_link,
3291 #ifdef CONFIG_TMPFS_XATTR
3292         .listxattr      = shmem_listxattr,
3293 #endif
3294 };
3295
3296 static struct dentry *shmem_get_parent(struct dentry *child)
3297 {
3298         return ERR_PTR(-ESTALE);
3299 }
3300
3301 static int shmem_match(struct inode *ino, void *vfh)
3302 {
3303         __u32 *fh = vfh;
3304         __u64 inum = fh[2];
3305         inum = (inum << 32) | fh[1];
3306         return ino->i_ino == inum && fh[0] == ino->i_generation;
3307 }
3308
3309 /* Find any alias of inode, but prefer a hashed alias */
3310 static struct dentry *shmem_find_alias(struct inode *inode)
3311 {
3312         struct dentry *alias = d_find_alias(inode);
3313
3314         return alias ?: d_find_any_alias(inode);
3315 }
3316
3317
3318 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3319                 struct fid *fid, int fh_len, int fh_type)
3320 {
3321         struct inode *inode;
3322         struct dentry *dentry = NULL;
3323         u64 inum;
3324
3325         if (fh_len < 3)
3326                 return NULL;
3327
3328         inum = fid->raw[2];
3329         inum = (inum << 32) | fid->raw[1];
3330
3331         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3332                         shmem_match, fid->raw);
3333         if (inode) {
3334                 dentry = shmem_find_alias(inode);
3335                 iput(inode);
3336         }
3337
3338         return dentry;
3339 }
3340
3341 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3342                                 struct inode *parent)
3343 {
3344         if (*len < 3) {
3345                 *len = 3;
3346                 return FILEID_INVALID;
3347         }
3348
3349         if (inode_unhashed(inode)) {
3350                 /* Unfortunately insert_inode_hash is not idempotent,
3351                  * so as we hash inodes here rather than at creation
3352                  * time, we need a lock to ensure we only try
3353                  * to do it once
3354                  */
3355                 static DEFINE_SPINLOCK(lock);
3356                 spin_lock(&lock);
3357                 if (inode_unhashed(inode))
3358                         __insert_inode_hash(inode,
3359                                             inode->i_ino + inode->i_generation);
3360                 spin_unlock(&lock);
3361         }
3362
3363         fh[0] = inode->i_generation;
3364         fh[1] = inode->i_ino;
3365         fh[2] = ((__u64)inode->i_ino) >> 32;
3366
3367         *len = 3;
3368         return 1;
3369 }
3370
3371 static const struct export_operations shmem_export_ops = {
3372         .get_parent     = shmem_get_parent,
3373         .encode_fh      = shmem_encode_fh,
3374         .fh_to_dentry   = shmem_fh_to_dentry,
3375 };
3376
3377 enum shmem_param {
3378         Opt_gid,
3379         Opt_huge,
3380         Opt_mode,
3381         Opt_mpol,
3382         Opt_nr_blocks,
3383         Opt_nr_inodes,
3384         Opt_size,
3385         Opt_uid,
3386 };
3387
3388 static const struct constant_table shmem_param_enums_huge[] = {
3389         {"never",       SHMEM_HUGE_NEVER },
3390         {"always",      SHMEM_HUGE_ALWAYS },
3391         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3392         {"advise",      SHMEM_HUGE_ADVISE },
3393         {}
3394 };
3395
3396 const struct fs_parameter_spec shmem_fs_parameters[] = {
3397         fsparam_u32   ("gid",           Opt_gid),
3398         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3399         fsparam_u32oct("mode",          Opt_mode),
3400         fsparam_string("mpol",          Opt_mpol),
3401         fsparam_string("nr_blocks",     Opt_nr_blocks),
3402         fsparam_string("nr_inodes",     Opt_nr_inodes),
3403         fsparam_string("size",          Opt_size),
3404         fsparam_u32   ("uid",           Opt_uid),
3405         {}
3406 };
3407
3408 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3409 {
3410         struct shmem_options *ctx = fc->fs_private;
3411         struct fs_parse_result result;
3412         unsigned long long size;
3413         char *rest;
3414         int opt;
3415
3416         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3417         if (opt < 0)
3418                 return opt;
3419
3420         switch (opt) {
3421         case Opt_size:
3422                 size = memparse(param->string, &rest);
3423                 if (*rest == '%') {
3424                         size <<= PAGE_SHIFT;
3425                         size *= totalram_pages();
3426                         do_div(size, 100);
3427                         rest++;
3428                 }
3429                 if (*rest)
3430                         goto bad_value;
3431                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3432                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3433                 break;
3434         case Opt_nr_blocks:
3435                 ctx->blocks = memparse(param->string, &rest);
3436                 if (*rest)
3437                         goto bad_value;
3438                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3439                 break;
3440         case Opt_nr_inodes:
3441                 ctx->inodes = memparse(param->string, &rest);
3442                 if (*rest)
3443                         goto bad_value;
3444                 ctx->seen |= SHMEM_SEEN_INODES;
3445                 break;
3446         case Opt_mode:
3447                 ctx->mode = result.uint_32 & 07777;
3448                 break;
3449         case Opt_uid:
3450                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3451                 if (!uid_valid(ctx->uid))
3452                         goto bad_value;
3453                 break;
3454         case Opt_gid:
3455                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3456                 if (!gid_valid(ctx->gid))
3457                         goto bad_value;
3458                 break;
3459         case Opt_huge:
3460                 ctx->huge = result.uint_32;
3461                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3462                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3463                       has_transparent_hugepage()))
3464                         goto unsupported_parameter;
3465                 ctx->seen |= SHMEM_SEEN_HUGE;
3466                 break;
3467         case Opt_mpol:
3468                 if (IS_ENABLED(CONFIG_NUMA)) {
3469                         mpol_put(ctx->mpol);
3470                         ctx->mpol = NULL;
3471                         if (mpol_parse_str(param->string, &ctx->mpol))
3472                                 goto bad_value;
3473                         break;
3474                 }
3475                 goto unsupported_parameter;
3476         }
3477         return 0;
3478
3479 unsupported_parameter:
3480         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3481 bad_value:
3482         return invalfc(fc, "Bad value for '%s'", param->key);
3483 }
3484
3485 static int shmem_parse_options(struct fs_context *fc, void *data)
3486 {
3487         char *options = data;
3488
3489         if (options) {
3490                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3491                 if (err)
3492                         return err;
3493         }
3494
3495         while (options != NULL) {
3496                 char *this_char = options;
3497                 for (;;) {
3498                         /*
3499                          * NUL-terminate this option: unfortunately,
3500                          * mount options form a comma-separated list,
3501                          * but mpol's nodelist may also contain commas.
3502                          */
3503                         options = strchr(options, ',');
3504                         if (options == NULL)
3505                                 break;
3506                         options++;
3507                         if (!isdigit(*options)) {
3508                                 options[-1] = '\0';
3509                                 break;
3510                         }
3511                 }
3512                 if (*this_char) {
3513                         char *value = strchr(this_char,'=');
3514                         size_t len = 0;
3515                         int err;
3516
3517                         if (value) {
3518                                 *value++ = '\0';
3519                                 len = strlen(value);
3520                         }
3521                         err = vfs_parse_fs_string(fc, this_char, value, len);
3522                         if (err < 0)
3523                                 return err;
3524                 }
3525         }
3526         return 0;
3527 }
3528
3529 /*
3530  * Reconfigure a shmem filesystem.
3531  *
3532  * Note that we disallow change from limited->unlimited blocks/inodes while any
3533  * are in use; but we must separately disallow unlimited->limited, because in
3534  * that case we have no record of how much is already in use.
3535  */
3536 static int shmem_reconfigure(struct fs_context *fc)
3537 {
3538         struct shmem_options *ctx = fc->fs_private;
3539         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3540         unsigned long inodes;
3541         const char *err;
3542
3543         spin_lock(&sbinfo->stat_lock);
3544         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3545         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3546                 if (!sbinfo->max_blocks) {
3547                         err = "Cannot retroactively limit size";
3548                         goto out;
3549                 }
3550                 if (percpu_counter_compare(&sbinfo->used_blocks,
3551                                            ctx->blocks) > 0) {
3552                         err = "Too small a size for current use";
3553                         goto out;
3554                 }
3555         }
3556         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3557                 if (!sbinfo->max_inodes) {
3558                         err = "Cannot retroactively limit inodes";
3559                         goto out;
3560                 }
3561                 if (ctx->inodes < inodes) {
3562                         err = "Too few inodes for current use";
3563                         goto out;
3564                 }
3565         }
3566
3567         if (ctx->seen & SHMEM_SEEN_HUGE)
3568                 sbinfo->huge = ctx->huge;
3569         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3570                 sbinfo->max_blocks  = ctx->blocks;
3571         if (ctx->seen & SHMEM_SEEN_INODES) {
3572                 sbinfo->max_inodes  = ctx->inodes;
3573                 sbinfo->free_inodes = ctx->inodes - inodes;
3574         }
3575
3576         /*
3577          * Preserve previous mempolicy unless mpol remount option was specified.
3578          */
3579         if (ctx->mpol) {
3580                 mpol_put(sbinfo->mpol);
3581                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3582                 ctx->mpol = NULL;
3583         }
3584         spin_unlock(&sbinfo->stat_lock);
3585         return 0;
3586 out:
3587         spin_unlock(&sbinfo->stat_lock);
3588         return invalfc(fc, "%s", err);
3589 }
3590
3591 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3592 {
3593         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3594
3595         if (sbinfo->max_blocks != shmem_default_max_blocks())
3596                 seq_printf(seq, ",size=%luk",
3597                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3598         if (sbinfo->max_inodes != shmem_default_max_inodes())
3599                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3600         if (sbinfo->mode != (0777 | S_ISVTX))
3601                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3602         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3603                 seq_printf(seq, ",uid=%u",
3604                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3605         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3606                 seq_printf(seq, ",gid=%u",
3607                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3608 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3609         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3610         if (sbinfo->huge)
3611                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3612 #endif
3613         shmem_show_mpol(seq, sbinfo->mpol);
3614         return 0;
3615 }
3616
3617 #endif /* CONFIG_TMPFS */
3618
3619 static void shmem_put_super(struct super_block *sb)
3620 {
3621         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3622
3623         percpu_counter_destroy(&sbinfo->used_blocks);
3624         mpol_put(sbinfo->mpol);
3625         kfree(sbinfo);
3626         sb->s_fs_info = NULL;
3627 }
3628
3629 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3630 {
3631         struct shmem_options *ctx = fc->fs_private;
3632         struct inode *inode;
3633         struct shmem_sb_info *sbinfo;
3634         int err = -ENOMEM;
3635
3636         /* Round up to L1_CACHE_BYTES to resist false sharing */
3637         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3638                                 L1_CACHE_BYTES), GFP_KERNEL);
3639         if (!sbinfo)
3640                 return -ENOMEM;
3641
3642         sb->s_fs_info = sbinfo;
3643
3644 #ifdef CONFIG_TMPFS
3645         /*
3646          * Per default we only allow half of the physical ram per
3647          * tmpfs instance, limiting inodes to one per page of lowmem;
3648          * but the internal instance is left unlimited.
3649          */
3650         if (!(sb->s_flags & SB_KERNMOUNT)) {
3651                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3652                         ctx->blocks = shmem_default_max_blocks();
3653                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3654                         ctx->inodes = shmem_default_max_inodes();
3655         } else {
3656                 sb->s_flags |= SB_NOUSER;
3657         }
3658         sb->s_export_op = &shmem_export_ops;
3659         sb->s_flags |= SB_NOSEC;
3660 #else
3661         sb->s_flags |= SB_NOUSER;
3662 #endif
3663         sbinfo->max_blocks = ctx->blocks;
3664         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3665         sbinfo->uid = ctx->uid;
3666         sbinfo->gid = ctx->gid;
3667         sbinfo->mode = ctx->mode;
3668         sbinfo->huge = ctx->huge;
3669         sbinfo->mpol = ctx->mpol;
3670         ctx->mpol = NULL;
3671
3672         spin_lock_init(&sbinfo->stat_lock);
3673         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3674                 goto failed;
3675         spin_lock_init(&sbinfo->shrinklist_lock);
3676         INIT_LIST_HEAD(&sbinfo->shrinklist);
3677
3678         sb->s_maxbytes = MAX_LFS_FILESIZE;
3679         sb->s_blocksize = PAGE_SIZE;
3680         sb->s_blocksize_bits = PAGE_SHIFT;
3681         sb->s_magic = TMPFS_MAGIC;
3682         sb->s_op = &shmem_ops;
3683         sb->s_time_gran = 1;
3684 #ifdef CONFIG_TMPFS_XATTR
3685         sb->s_xattr = shmem_xattr_handlers;
3686 #endif
3687 #ifdef CONFIG_TMPFS_POSIX_ACL
3688         sb->s_flags |= SB_POSIXACL;
3689 #endif
3690         uuid_gen(&sb->s_uuid);
3691
3692         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3693         if (!inode)
3694                 goto failed;
3695         inode->i_uid = sbinfo->uid;
3696         inode->i_gid = sbinfo->gid;
3697         sb->s_root = d_make_root(inode);
3698         if (!sb->s_root)
3699                 goto failed;
3700         return 0;
3701
3702 failed:
3703         shmem_put_super(sb);
3704         return err;
3705 }
3706
3707 static int shmem_get_tree(struct fs_context *fc)
3708 {
3709         return get_tree_nodev(fc, shmem_fill_super);
3710 }
3711
3712 static void shmem_free_fc(struct fs_context *fc)
3713 {
3714         struct shmem_options *ctx = fc->fs_private;
3715
3716         if (ctx) {
3717                 mpol_put(ctx->mpol);
3718                 kfree(ctx);
3719         }
3720 }
3721
3722 static const struct fs_context_operations shmem_fs_context_ops = {
3723         .free                   = shmem_free_fc,
3724         .get_tree               = shmem_get_tree,
3725 #ifdef CONFIG_TMPFS
3726         .parse_monolithic       = shmem_parse_options,
3727         .parse_param            = shmem_parse_one,
3728         .reconfigure            = shmem_reconfigure,
3729 #endif
3730 };
3731
3732 static struct kmem_cache *shmem_inode_cachep;
3733
3734 static struct inode *shmem_alloc_inode(struct super_block *sb)
3735 {
3736         struct shmem_inode_info *info;
3737         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3738         if (!info)
3739                 return NULL;
3740         return &info->vfs_inode;
3741 }
3742
3743 static void shmem_free_in_core_inode(struct inode *inode)
3744 {
3745         if (S_ISLNK(inode->i_mode))
3746                 kfree(inode->i_link);
3747         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3748 }
3749
3750 static void shmem_destroy_inode(struct inode *inode)
3751 {
3752         if (S_ISREG(inode->i_mode))
3753                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3754 }
3755
3756 static void shmem_init_inode(void *foo)
3757 {
3758         struct shmem_inode_info *info = foo;
3759         inode_init_once(&info->vfs_inode);
3760 }
3761
3762 static void shmem_init_inodecache(void)
3763 {
3764         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3765                                 sizeof(struct shmem_inode_info),
3766                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3767 }
3768
3769 static void shmem_destroy_inodecache(void)
3770 {
3771         kmem_cache_destroy(shmem_inode_cachep);
3772 }
3773
3774 static const struct address_space_operations shmem_aops = {
3775         .writepage      = shmem_writepage,
3776         .set_page_dirty = __set_page_dirty_no_writeback,
3777 #ifdef CONFIG_TMPFS
3778         .write_begin    = shmem_write_begin,
3779         .write_end      = shmem_write_end,
3780 #endif
3781 #ifdef CONFIG_MIGRATION
3782         .migratepage    = migrate_page,
3783 #endif
3784         .error_remove_page = generic_error_remove_page,
3785 };
3786
3787 static const struct file_operations shmem_file_operations = {
3788         .mmap           = shmem_mmap,
3789         .get_unmapped_area = shmem_get_unmapped_area,
3790 #ifdef CONFIG_TMPFS
3791         .llseek         = shmem_file_llseek,
3792         .read_iter      = shmem_file_read_iter,
3793         .write_iter     = generic_file_write_iter,
3794         .fsync          = noop_fsync,
3795         .splice_read    = generic_file_splice_read,
3796         .splice_write   = iter_file_splice_write,
3797         .fallocate      = shmem_fallocate,
3798 #endif
3799 };
3800
3801 static const struct inode_operations shmem_inode_operations = {
3802         .getattr        = shmem_getattr,
3803         .setattr        = shmem_setattr,
3804 #ifdef CONFIG_TMPFS_XATTR
3805         .listxattr      = shmem_listxattr,
3806         .set_acl        = simple_set_acl,
3807 #endif
3808 };
3809
3810 static const struct inode_operations shmem_dir_inode_operations = {
3811 #ifdef CONFIG_TMPFS
3812         .create         = shmem_create,
3813         .lookup         = simple_lookup,
3814         .link           = shmem_link,
3815         .unlink         = shmem_unlink,
3816         .symlink        = shmem_symlink,
3817         .mkdir          = shmem_mkdir,
3818         .rmdir          = shmem_rmdir,
3819         .mknod          = shmem_mknod,
3820         .rename         = shmem_rename2,
3821         .tmpfile        = shmem_tmpfile,
3822 #endif
3823 #ifdef CONFIG_TMPFS_XATTR
3824         .listxattr      = shmem_listxattr,
3825 #endif
3826 #ifdef CONFIG_TMPFS_POSIX_ACL
3827         .setattr        = shmem_setattr,
3828         .set_acl        = simple_set_acl,
3829 #endif
3830 };
3831
3832 static const struct inode_operations shmem_special_inode_operations = {
3833 #ifdef CONFIG_TMPFS_XATTR
3834         .listxattr      = shmem_listxattr,
3835 #endif
3836 #ifdef CONFIG_TMPFS_POSIX_ACL
3837         .setattr        = shmem_setattr,
3838         .set_acl        = simple_set_acl,
3839 #endif
3840 };
3841
3842 static const struct super_operations shmem_ops = {
3843         .alloc_inode    = shmem_alloc_inode,
3844         .free_inode     = shmem_free_in_core_inode,
3845         .destroy_inode  = shmem_destroy_inode,
3846 #ifdef CONFIG_TMPFS
3847         .statfs         = shmem_statfs,
3848         .show_options   = shmem_show_options,
3849 #endif
3850         .evict_inode    = shmem_evict_inode,
3851         .drop_inode     = generic_delete_inode,
3852         .put_super      = shmem_put_super,
3853 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3854         .nr_cached_objects      = shmem_unused_huge_count,
3855         .free_cached_objects    = shmem_unused_huge_scan,
3856 #endif
3857 };
3858
3859 static const struct vm_operations_struct shmem_vm_ops = {
3860         .fault          = shmem_fault,
3861         .map_pages      = filemap_map_pages,
3862 #ifdef CONFIG_NUMA
3863         .set_policy     = shmem_set_policy,
3864         .get_policy     = shmem_get_policy,
3865 #endif
3866 };
3867
3868 int shmem_init_fs_context(struct fs_context *fc)
3869 {
3870         struct shmem_options *ctx;
3871
3872         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3873         if (!ctx)
3874                 return -ENOMEM;
3875
3876         ctx->mode = 0777 | S_ISVTX;
3877         ctx->uid = current_fsuid();
3878         ctx->gid = current_fsgid();
3879
3880         fc->fs_private = ctx;
3881         fc->ops = &shmem_fs_context_ops;
3882         return 0;
3883 }
3884
3885 static struct file_system_type shmem_fs_type = {
3886         .owner          = THIS_MODULE,
3887         .name           = "tmpfs",
3888         .init_fs_context = shmem_init_fs_context,
3889 #ifdef CONFIG_TMPFS
3890         .parameters     = shmem_fs_parameters,
3891 #endif
3892         .kill_sb        = kill_litter_super,
3893         .fs_flags       = FS_USERNS_MOUNT,
3894 };
3895
3896 int __init shmem_init(void)
3897 {
3898         int error;
3899
3900         shmem_init_inodecache();
3901
3902         error = register_filesystem(&shmem_fs_type);
3903         if (error) {
3904                 pr_err("Could not register tmpfs\n");
3905                 goto out2;
3906         }
3907
3908         shm_mnt = kern_mount(&shmem_fs_type);
3909         if (IS_ERR(shm_mnt)) {
3910                 error = PTR_ERR(shm_mnt);
3911                 pr_err("Could not kern_mount tmpfs\n");
3912                 goto out1;
3913         }
3914
3915 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3916         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3917                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3918         else
3919                 shmem_huge = 0; /* just in case it was patched */
3920 #endif
3921         return 0;
3922
3923 out1:
3924         unregister_filesystem(&shmem_fs_type);
3925 out2:
3926         shmem_destroy_inodecache();
3927         shm_mnt = ERR_PTR(error);
3928         return error;
3929 }
3930
3931 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3932 static ssize_t shmem_enabled_show(struct kobject *kobj,
3933                 struct kobj_attribute *attr, char *buf)
3934 {
3935         static const int values[] = {
3936                 SHMEM_HUGE_ALWAYS,
3937                 SHMEM_HUGE_WITHIN_SIZE,
3938                 SHMEM_HUGE_ADVISE,
3939                 SHMEM_HUGE_NEVER,
3940                 SHMEM_HUGE_DENY,
3941                 SHMEM_HUGE_FORCE,
3942         };
3943         int i, count;
3944
3945         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3946                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3947
3948                 count += sprintf(buf + count, fmt,
3949                                 shmem_format_huge(values[i]));
3950         }
3951         buf[count - 1] = '\n';
3952         return count;
3953 }
3954
3955 static ssize_t shmem_enabled_store(struct kobject *kobj,
3956                 struct kobj_attribute *attr, const char *buf, size_t count)
3957 {
3958         char tmp[16];
3959         int huge;
3960
3961         if (count + 1 > sizeof(tmp))
3962                 return -EINVAL;
3963         memcpy(tmp, buf, count);
3964         tmp[count] = '\0';
3965         if (count && tmp[count - 1] == '\n')
3966                 tmp[count - 1] = '\0';
3967
3968         huge = shmem_parse_huge(tmp);
3969         if (huge == -EINVAL)
3970                 return -EINVAL;
3971         if (!has_transparent_hugepage() &&
3972                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3973                 return -EINVAL;
3974
3975         shmem_huge = huge;
3976         if (shmem_huge > SHMEM_HUGE_DENY)
3977                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3978         return count;
3979 }
3980
3981 struct kobj_attribute shmem_enabled_attr =
3982         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3983 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3984
3985 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3986 bool shmem_huge_enabled(struct vm_area_struct *vma)
3987 {
3988         struct inode *inode = file_inode(vma->vm_file);
3989         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3990         loff_t i_size;
3991         pgoff_t off;
3992
3993         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3994             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3995                 return false;
3996         if (shmem_huge == SHMEM_HUGE_FORCE)
3997                 return true;
3998         if (shmem_huge == SHMEM_HUGE_DENY)
3999                 return false;
4000         switch (sbinfo->huge) {
4001                 case SHMEM_HUGE_NEVER:
4002                         return false;
4003                 case SHMEM_HUGE_ALWAYS:
4004                         return true;
4005                 case SHMEM_HUGE_WITHIN_SIZE:
4006                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4007                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4008                         if (i_size >= HPAGE_PMD_SIZE &&
4009                                         i_size >> PAGE_SHIFT >= off)
4010                                 return true;
4011                         /* fall through */
4012                 case SHMEM_HUGE_ADVISE:
4013                         /* TODO: implement fadvise() hints */
4014                         return (vma->vm_flags & VM_HUGEPAGE);
4015                 default:
4016                         VM_BUG_ON(1);
4017                         return false;
4018         }
4019 }
4020 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4021
4022 #else /* !CONFIG_SHMEM */
4023
4024 /*
4025  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4026  *
4027  * This is intended for small system where the benefits of the full
4028  * shmem code (swap-backed and resource-limited) are outweighed by
4029  * their complexity. On systems without swap this code should be
4030  * effectively equivalent, but much lighter weight.
4031  */
4032
4033 static struct file_system_type shmem_fs_type = {
4034         .name           = "tmpfs",
4035         .init_fs_context = ramfs_init_fs_context,
4036         .parameters     = ramfs_fs_parameters,
4037         .kill_sb        = kill_litter_super,
4038         .fs_flags       = FS_USERNS_MOUNT,
4039 };
4040
4041 int __init shmem_init(void)
4042 {
4043         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4044
4045         shm_mnt = kern_mount(&shmem_fs_type);
4046         BUG_ON(IS_ERR(shm_mnt));
4047
4048         return 0;
4049 }
4050
4051 int shmem_unuse(unsigned int type, bool frontswap,
4052                 unsigned long *fs_pages_to_unuse)
4053 {
4054         return 0;
4055 }
4056
4057 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4058 {
4059         return 0;
4060 }
4061
4062 void shmem_unlock_mapping(struct address_space *mapping)
4063 {
4064 }
4065
4066 #ifdef CONFIG_MMU
4067 unsigned long shmem_get_unmapped_area(struct file *file,
4068                                       unsigned long addr, unsigned long len,
4069                                       unsigned long pgoff, unsigned long flags)
4070 {
4071         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4072 }
4073 #endif
4074
4075 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4076 {
4077         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4078 }
4079 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4080
4081 #define shmem_vm_ops                            generic_file_vm_ops
4082 #define shmem_file_operations                   ramfs_file_operations
4083 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4084 #define shmem_acct_size(flags, size)            0
4085 #define shmem_unacct_size(flags, size)          do {} while (0)
4086
4087 #endif /* CONFIG_SHMEM */
4088
4089 /* common code */
4090
4091 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4092                                        unsigned long flags, unsigned int i_flags)
4093 {
4094         struct inode *inode;
4095         struct file *res;
4096
4097         if (IS_ERR(mnt))
4098                 return ERR_CAST(mnt);
4099
4100         if (size < 0 || size > MAX_LFS_FILESIZE)
4101                 return ERR_PTR(-EINVAL);
4102
4103         if (shmem_acct_size(flags, size))
4104                 return ERR_PTR(-ENOMEM);
4105
4106         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4107                                 flags);
4108         if (unlikely(!inode)) {
4109                 shmem_unacct_size(flags, size);
4110                 return ERR_PTR(-ENOSPC);
4111         }
4112         inode->i_flags |= i_flags;
4113         inode->i_size = size;
4114         clear_nlink(inode);     /* It is unlinked */
4115         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4116         if (!IS_ERR(res))
4117                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4118                                 &shmem_file_operations);
4119         if (IS_ERR(res))
4120                 iput(inode);
4121         return res;
4122 }
4123
4124 /**
4125  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4126  *      kernel internal.  There will be NO LSM permission checks against the
4127  *      underlying inode.  So users of this interface must do LSM checks at a
4128  *      higher layer.  The users are the big_key and shm implementations.  LSM
4129  *      checks are provided at the key or shm level rather than the inode.
4130  * @name: name for dentry (to be seen in /proc/<pid>/maps
4131  * @size: size to be set for the file
4132  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4133  */
4134 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4135 {
4136         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4137 }
4138
4139 /**
4140  * shmem_file_setup - get an unlinked file living in tmpfs
4141  * @name: name for dentry (to be seen in /proc/<pid>/maps
4142  * @size: size to be set for the file
4143  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4144  */
4145 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4146 {
4147         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4148 }
4149 EXPORT_SYMBOL_GPL(shmem_file_setup);
4150
4151 /**
4152  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4153  * @mnt: the tmpfs mount where the file will be created
4154  * @name: name for dentry (to be seen in /proc/<pid>/maps
4155  * @size: size to be set for the file
4156  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4157  */
4158 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4159                                        loff_t size, unsigned long flags)
4160 {
4161         return __shmem_file_setup(mnt, name, size, flags, 0);
4162 }
4163 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4164
4165 /**
4166  * shmem_zero_setup - setup a shared anonymous mapping
4167  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4168  */
4169 int shmem_zero_setup(struct vm_area_struct *vma)
4170 {
4171         struct file *file;
4172         loff_t size = vma->vm_end - vma->vm_start;
4173
4174         /*
4175          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4176          * between XFS directory reading and selinux: since this file is only
4177          * accessible to the user through its mapping, use S_PRIVATE flag to
4178          * bypass file security, in the same way as shmem_kernel_file_setup().
4179          */
4180         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4181         if (IS_ERR(file))
4182                 return PTR_ERR(file);
4183
4184         if (vma->vm_file)
4185                 fput(vma->vm_file);
4186         vma->vm_file = file;
4187         vma->vm_ops = &shmem_vm_ops;
4188
4189         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4190                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4191                         (vma->vm_end & HPAGE_PMD_MASK)) {
4192                 khugepaged_enter(vma, vma->vm_flags);
4193         }
4194
4195         return 0;
4196 }
4197
4198 /**
4199  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4200  * @mapping:    the page's address_space
4201  * @index:      the page index
4202  * @gfp:        the page allocator flags to use if allocating
4203  *
4204  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4205  * with any new page allocations done using the specified allocation flags.
4206  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4207  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4208  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4209  *
4210  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4211  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4212  */
4213 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4214                                          pgoff_t index, gfp_t gfp)
4215 {
4216 #ifdef CONFIG_SHMEM
4217         struct inode *inode = mapping->host;
4218         struct page *page;
4219         int error;
4220
4221         BUG_ON(mapping->a_ops != &shmem_aops);
4222         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4223                                   gfp, NULL, NULL, NULL);
4224         if (error)
4225                 page = ERR_PTR(error);
4226         else
4227                 unlock_page(page);
4228         return page;
4229 #else
4230         /*
4231          * The tiny !SHMEM case uses ramfs without swap
4232          */
4233         return read_cache_page_gfp(mapping, index, gfp);
4234 #endif
4235 }
4236 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.277151 seconds and 4 git commands to generate.