]> Git Repo - linux.git/blob - drivers/usb/host/xhci.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned int quirks;
37 module_param(quirks, uint, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * xhci_handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
55 {
56         u32     result;
57
58         do {
59                 result = readl(ptr);
60                 if (result == ~(u32)0)          /* card removed */
61                         return -ENODEV;
62                 result &= mask;
63                 if (result == done)
64                         return 0;
65                 udelay(1);
66                 usec--;
67         } while (usec > 0);
68         return -ETIMEDOUT;
69 }
70
71 /*
72  * Disable interrupts and begin the xHCI halting process.
73  */
74 void xhci_quiesce(struct xhci_hcd *xhci)
75 {
76         u32 halted;
77         u32 cmd;
78         u32 mask;
79
80         mask = ~(XHCI_IRQS);
81         halted = readl(&xhci->op_regs->status) & STS_HALT;
82         if (!halted)
83                 mask &= ~CMD_RUN;
84
85         cmd = readl(&xhci->op_regs->command);
86         cmd &= mask;
87         writel(cmd, &xhci->op_regs->command);
88 }
89
90 /*
91  * Force HC into halt state.
92  *
93  * Disable any IRQs and clear the run/stop bit.
94  * HC will complete any current and actively pipelined transactions, and
95  * should halt within 16 ms of the run/stop bit being cleared.
96  * Read HC Halted bit in the status register to see when the HC is finished.
97  */
98 int xhci_halt(struct xhci_hcd *xhci)
99 {
100         int ret;
101         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
102         xhci_quiesce(xhci);
103
104         ret = xhci_handshake(&xhci->op_regs->status,
105                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106         if (ret) {
107                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
108                 return ret;
109         }
110         xhci->xhc_state |= XHCI_STATE_HALTED;
111         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112         return ret;
113 }
114
115 /*
116  * Set the run bit and wait for the host to be running.
117  */
118 int xhci_start(struct xhci_hcd *xhci)
119 {
120         u32 temp;
121         int ret;
122
123         temp = readl(&xhci->op_regs->command);
124         temp |= (CMD_RUN);
125         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
126                         temp);
127         writel(temp, &xhci->op_regs->command);
128
129         /*
130          * Wait for the HCHalted Status bit to be 0 to indicate the host is
131          * running.
132          */
133         ret = xhci_handshake(&xhci->op_regs->status,
134                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
135         if (ret == -ETIMEDOUT)
136                 xhci_err(xhci, "Host took too long to start, "
137                                 "waited %u microseconds.\n",
138                                 XHCI_MAX_HALT_USEC);
139         if (!ret)
140                 /* clear state flags. Including dying, halted or removing */
141                 xhci->xhc_state = 0;
142
143         return ret;
144 }
145
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155         u32 command;
156         u32 state;
157         int ret, i;
158
159         state = readl(&xhci->op_regs->status);
160
161         if (state == ~(u32)0) {
162                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
163                 return -ENODEV;
164         }
165
166         if ((state & STS_HALT) == 0) {
167                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168                 return 0;
169         }
170
171         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172         command = readl(&xhci->op_regs->command);
173         command |= CMD_RESET;
174         writel(command, &xhci->op_regs->command);
175
176         /* Existing Intel xHCI controllers require a delay of 1 mS,
177          * after setting the CMD_RESET bit, and before accessing any
178          * HC registers. This allows the HC to complete the
179          * reset operation and be ready for HC register access.
180          * Without this delay, the subsequent HC register access,
181          * may result in a system hang very rarely.
182          */
183         if (xhci->quirks & XHCI_INTEL_HOST)
184                 udelay(1000);
185
186         ret = xhci_handshake(&xhci->op_regs->command,
187                         CMD_RESET, 0, 10 * 1000 * 1000);
188         if (ret)
189                 return ret;
190
191         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
193
194         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195                          "Wait for controller to be ready for doorbell rings");
196         /*
197          * xHCI cannot write to any doorbells or operational registers other
198          * than status until the "Controller Not Ready" flag is cleared.
199          */
200         ret = xhci_handshake(&xhci->op_regs->status,
201                         STS_CNR, 0, 10 * 1000 * 1000);
202
203         for (i = 0; i < 2; i++) {
204                 xhci->bus_state[i].port_c_suspend = 0;
205                 xhci->bus_state[i].suspended_ports = 0;
206                 xhci->bus_state[i].resuming_ports = 0;
207         }
208
209         return ret;
210 }
211
212
213 #ifdef CONFIG_USB_PCI
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219         int ret;
220         /*
221          * TODO:Check with MSI Soc for sysdev
222          */
223         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224
225         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
226         if (ret < 0) {
227                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
228                                 "failed to allocate MSI entry");
229                 return ret;
230         }
231
232         ret = request_irq(pdev->irq, xhci_msi_irq,
233                                 0, "xhci_hcd", xhci_to_hcd(xhci));
234         if (ret) {
235                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236                                 "disable MSI interrupt");
237                 pci_free_irq_vectors(pdev);
238         }
239
240         return ret;
241 }
242
243 /*
244  * Set up MSI-X
245  */
246 static int xhci_setup_msix(struct xhci_hcd *xhci)
247 {
248         int i, ret = 0;
249         struct usb_hcd *hcd = xhci_to_hcd(xhci);
250         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
251
252         /*
253          * calculate number of msi-x vectors supported.
254          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
255          *   with max number of interrupters based on the xhci HCSPARAMS1.
256          * - num_online_cpus: maximum msi-x vectors per CPUs core.
257          *   Add additional 1 vector to ensure always available interrupt.
258          */
259         xhci->msix_count = min(num_online_cpus() + 1,
260                                 HCS_MAX_INTRS(xhci->hcs_params1));
261
262         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
263                         PCI_IRQ_MSIX);
264         if (ret < 0) {
265                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
266                                 "Failed to enable MSI-X");
267                 return ret;
268         }
269
270         for (i = 0; i < xhci->msix_count; i++) {
271                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
272                                 "xhci_hcd", xhci_to_hcd(xhci));
273                 if (ret)
274                         goto disable_msix;
275         }
276
277         hcd->msix_enabled = 1;
278         return ret;
279
280 disable_msix:
281         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
282         while (--i >= 0)
283                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
284         pci_free_irq_vectors(pdev);
285         return ret;
286 }
287
288 /* Free any IRQs and disable MSI-X */
289 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
290 {
291         struct usb_hcd *hcd = xhci_to_hcd(xhci);
292         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
293
294         if (xhci->quirks & XHCI_PLAT)
295                 return;
296
297         /* return if using legacy interrupt */
298         if (hcd->irq > 0)
299                 return;
300
301         if (hcd->msix_enabled) {
302                 int i;
303
304                 for (i = 0; i < xhci->msix_count; i++)
305                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
306         } else {
307                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
308         }
309
310         pci_free_irq_vectors(pdev);
311         hcd->msix_enabled = 0;
312 }
313
314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
315 {
316         struct usb_hcd *hcd = xhci_to_hcd(xhci);
317
318         if (hcd->msix_enabled) {
319                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
320                 int i;
321
322                 for (i = 0; i < xhci->msix_count; i++)
323                         synchronize_irq(pci_irq_vector(pdev, i));
324         }
325 }
326
327 static int xhci_try_enable_msi(struct usb_hcd *hcd)
328 {
329         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
330         struct pci_dev  *pdev;
331         int ret;
332
333         /* The xhci platform device has set up IRQs through usb_add_hcd. */
334         if (xhci->quirks & XHCI_PLAT)
335                 return 0;
336
337         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
338         /*
339          * Some Fresco Logic host controllers advertise MSI, but fail to
340          * generate interrupts.  Don't even try to enable MSI.
341          */
342         if (xhci->quirks & XHCI_BROKEN_MSI)
343                 goto legacy_irq;
344
345         /* unregister the legacy interrupt */
346         if (hcd->irq)
347                 free_irq(hcd->irq, hcd);
348         hcd->irq = 0;
349
350         ret = xhci_setup_msix(xhci);
351         if (ret)
352                 /* fall back to msi*/
353                 ret = xhci_setup_msi(xhci);
354
355         if (!ret) {
356                 hcd->msi_enabled = 1;
357                 return 0;
358         }
359
360         if (!pdev->irq) {
361                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
362                 return -EINVAL;
363         }
364
365  legacy_irq:
366         if (!strlen(hcd->irq_descr))
367                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
368                          hcd->driver->description, hcd->self.busnum);
369
370         /* fall back to legacy interrupt*/
371         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
372                         hcd->irq_descr, hcd);
373         if (ret) {
374                 xhci_err(xhci, "request interrupt %d failed\n",
375                                 pdev->irq);
376                 return ret;
377         }
378         hcd->irq = pdev->irq;
379         return 0;
380 }
381
382 #else
383
384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
385 {
386         return 0;
387 }
388
389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
390 {
391 }
392
393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 }
396
397 #endif
398
399 static void compliance_mode_recovery(struct timer_list *t)
400 {
401         struct xhci_hcd *xhci;
402         struct usb_hcd *hcd;
403         u32 temp;
404         int i;
405
406         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
407
408         for (i = 0; i < xhci->num_usb3_ports; i++) {
409                 temp = readl(xhci->usb3_ports[i]);
410                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
411                         /*
412                          * Compliance Mode Detected. Letting USB Core
413                          * handle the Warm Reset
414                          */
415                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
416                                         "Compliance mode detected->port %d",
417                                         i + 1);
418                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
419                                         "Attempting compliance mode recovery");
420                         hcd = xhci->shared_hcd;
421
422                         if (hcd->state == HC_STATE_SUSPENDED)
423                                 usb_hcd_resume_root_hub(hcd);
424
425                         usb_hcd_poll_rh_status(hcd);
426                 }
427         }
428
429         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
430                 mod_timer(&xhci->comp_mode_recovery_timer,
431                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
432 }
433
434 /*
435  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
436  * that causes ports behind that hardware to enter compliance mode sometimes.
437  * The quirk creates a timer that polls every 2 seconds the link state of
438  * each host controller's port and recovers it by issuing a Warm reset
439  * if Compliance mode is detected, otherwise the port will become "dead" (no
440  * device connections or disconnections will be detected anymore). Becasue no
441  * status event is generated when entering compliance mode (per xhci spec),
442  * this quirk is needed on systems that have the failing hardware installed.
443  */
444 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
445 {
446         xhci->port_status_u0 = 0;
447         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
448                     0);
449         xhci->comp_mode_recovery_timer.expires = jiffies +
450                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
451
452         add_timer(&xhci->comp_mode_recovery_timer);
453         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
454                         "Compliance mode recovery timer initialized");
455 }
456
457 /*
458  * This function identifies the systems that have installed the SN65LVPE502CP
459  * USB3.0 re-driver and that need the Compliance Mode Quirk.
460  * Systems:
461  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
462  */
463 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
464 {
465         const char *dmi_product_name, *dmi_sys_vendor;
466
467         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
468         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
469         if (!dmi_product_name || !dmi_sys_vendor)
470                 return false;
471
472         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
473                 return false;
474
475         if (strstr(dmi_product_name, "Z420") ||
476                         strstr(dmi_product_name, "Z620") ||
477                         strstr(dmi_product_name, "Z820") ||
478                         strstr(dmi_product_name, "Z1 Workstation"))
479                 return true;
480
481         return false;
482 }
483
484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
485 {
486         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
487 }
488
489
490 /*
491  * Initialize memory for HCD and xHC (one-time init).
492  *
493  * Program the PAGESIZE register, initialize the device context array, create
494  * device contexts (?), set up a command ring segment (or two?), create event
495  * ring (one for now).
496  */
497 static int xhci_init(struct usb_hcd *hcd)
498 {
499         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
500         int retval = 0;
501
502         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
503         spin_lock_init(&xhci->lock);
504         if (xhci->hci_version == 0x95 && link_quirk) {
505                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
506                                 "QUIRK: Not clearing Link TRB chain bits.");
507                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
508         } else {
509                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
510                                 "xHCI doesn't need link TRB QUIRK");
511         }
512         retval = xhci_mem_init(xhci, GFP_KERNEL);
513         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
514
515         /* Initializing Compliance Mode Recovery Data If Needed */
516         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
517                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
518                 compliance_mode_recovery_timer_init(xhci);
519         }
520
521         return retval;
522 }
523
524 /*-------------------------------------------------------------------------*/
525
526
527 static int xhci_run_finished(struct xhci_hcd *xhci)
528 {
529         if (xhci_start(xhci)) {
530                 xhci_halt(xhci);
531                 return -ENODEV;
532         }
533         xhci->shared_hcd->state = HC_STATE_RUNNING;
534         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
535
536         if (xhci->quirks & XHCI_NEC_HOST)
537                 xhci_ring_cmd_db(xhci);
538
539         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540                         "Finished xhci_run for USB3 roothub");
541         return 0;
542 }
543
544 /*
545  * Start the HC after it was halted.
546  *
547  * This function is called by the USB core when the HC driver is added.
548  * Its opposite is xhci_stop().
549  *
550  * xhci_init() must be called once before this function can be called.
551  * Reset the HC, enable device slot contexts, program DCBAAP, and
552  * set command ring pointer and event ring pointer.
553  *
554  * Setup MSI-X vectors and enable interrupts.
555  */
556 int xhci_run(struct usb_hcd *hcd)
557 {
558         u32 temp;
559         u64 temp_64;
560         int ret;
561         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
562
563         /* Start the xHCI host controller running only after the USB 2.0 roothub
564          * is setup.
565          */
566
567         hcd->uses_new_polling = 1;
568         if (!usb_hcd_is_primary_hcd(hcd))
569                 return xhci_run_finished(xhci);
570
571         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
572
573         ret = xhci_try_enable_msi(hcd);
574         if (ret)
575                 return ret;
576
577         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
578         temp_64 &= ~ERST_PTR_MASK;
579         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
581
582         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583                         "// Set the interrupt modulation register");
584         temp = readl(&xhci->ir_set->irq_control);
585         temp &= ~ER_IRQ_INTERVAL_MASK;
586         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
587         writel(temp, &xhci->ir_set->irq_control);
588
589         /* Set the HCD state before we enable the irqs */
590         temp = readl(&xhci->op_regs->command);
591         temp |= (CMD_EIE);
592         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
593                         "// Enable interrupts, cmd = 0x%x.", temp);
594         writel(temp, &xhci->op_regs->command);
595
596         temp = readl(&xhci->ir_set->irq_pending);
597         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
598                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
599                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
600         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
601
602         if (xhci->quirks & XHCI_NEC_HOST) {
603                 struct xhci_command *command;
604
605                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
606                 if (!command)
607                         return -ENOMEM;
608
609                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
610                                 TRB_TYPE(TRB_NEC_GET_FW));
611                 if (ret)
612                         xhci_free_command(xhci, command);
613         }
614         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
615                         "Finished xhci_run for USB2 roothub");
616
617         xhci_dbc_init(xhci);
618
619         xhci_debugfs_init(xhci);
620
621         return 0;
622 }
623 EXPORT_SYMBOL_GPL(xhci_run);
624
625 /*
626  * Stop xHCI driver.
627  *
628  * This function is called by the USB core when the HC driver is removed.
629  * Its opposite is xhci_run().
630  *
631  * Disable device contexts, disable IRQs, and quiesce the HC.
632  * Reset the HC, finish any completed transactions, and cleanup memory.
633  */
634 static void xhci_stop(struct usb_hcd *hcd)
635 {
636         u32 temp;
637         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
638
639         mutex_lock(&xhci->mutex);
640
641         /* Only halt host and free memory after both hcds are removed */
642         if (!usb_hcd_is_primary_hcd(hcd)) {
643                 /* usb core will free this hcd shortly, unset pointer */
644                 xhci->shared_hcd = NULL;
645                 mutex_unlock(&xhci->mutex);
646                 return;
647         }
648
649         xhci_debugfs_exit(xhci);
650
651         xhci_dbc_exit(xhci);
652
653         spin_lock_irq(&xhci->lock);
654         xhci->xhc_state |= XHCI_STATE_HALTED;
655         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
656         xhci_halt(xhci);
657         xhci_reset(xhci);
658         spin_unlock_irq(&xhci->lock);
659
660         xhci_cleanup_msix(xhci);
661
662         /* Deleting Compliance Mode Recovery Timer */
663         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
664                         (!(xhci_all_ports_seen_u0(xhci)))) {
665                 del_timer_sync(&xhci->comp_mode_recovery_timer);
666                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
667                                 "%s: compliance mode recovery timer deleted",
668                                 __func__);
669         }
670
671         if (xhci->quirks & XHCI_AMD_PLL_FIX)
672                 usb_amd_dev_put();
673
674         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
675                         "// Disabling event ring interrupts");
676         temp = readl(&xhci->op_regs->status);
677         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
678         temp = readl(&xhci->ir_set->irq_pending);
679         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
680
681         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
682         xhci_mem_cleanup(xhci);
683         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
684                         "xhci_stop completed - status = %x",
685                         readl(&xhci->op_regs->status));
686         mutex_unlock(&xhci->mutex);
687 }
688
689 /*
690  * Shutdown HC (not bus-specific)
691  *
692  * This is called when the machine is rebooting or halting.  We assume that the
693  * machine will be powered off, and the HC's internal state will be reset.
694  * Don't bother to free memory.
695  *
696  * This will only ever be called with the main usb_hcd (the USB3 roothub).
697  */
698 static void xhci_shutdown(struct usb_hcd *hcd)
699 {
700         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
701
702         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
703                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
704
705         spin_lock_irq(&xhci->lock);
706         xhci_halt(xhci);
707         /* Workaround for spurious wakeups at shutdown with HSW */
708         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
709                 xhci_reset(xhci);
710         spin_unlock_irq(&xhci->lock);
711
712         xhci_cleanup_msix(xhci);
713
714         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
715                         "xhci_shutdown completed - status = %x",
716                         readl(&xhci->op_regs->status));
717
718         /* Yet another workaround for spurious wakeups at shutdown with HSW */
719         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
720                 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
721 }
722
723 #ifdef CONFIG_PM
724 static void xhci_save_registers(struct xhci_hcd *xhci)
725 {
726         xhci->s3.command = readl(&xhci->op_regs->command);
727         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
728         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
729         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
730         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
731         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
732         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
733         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
734         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
735 }
736
737 static void xhci_restore_registers(struct xhci_hcd *xhci)
738 {
739         writel(xhci->s3.command, &xhci->op_regs->command);
740         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
741         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
742         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
743         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
744         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
745         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
746         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
747         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
748 }
749
750 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
751 {
752         u64     val_64;
753
754         /* step 2: initialize command ring buffer */
755         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
756         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
757                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
758                                       xhci->cmd_ring->dequeue) &
759                  (u64) ~CMD_RING_RSVD_BITS) |
760                 xhci->cmd_ring->cycle_state;
761         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762                         "// Setting command ring address to 0x%llx",
763                         (long unsigned long) val_64);
764         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
765 }
766
767 /*
768  * The whole command ring must be cleared to zero when we suspend the host.
769  *
770  * The host doesn't save the command ring pointer in the suspend well, so we
771  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
772  * aligned, because of the reserved bits in the command ring dequeue pointer
773  * register.  Therefore, we can't just set the dequeue pointer back in the
774  * middle of the ring (TRBs are 16-byte aligned).
775  */
776 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
777 {
778         struct xhci_ring *ring;
779         struct xhci_segment *seg;
780
781         ring = xhci->cmd_ring;
782         seg = ring->deq_seg;
783         do {
784                 memset(seg->trbs, 0,
785                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
786                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
787                         cpu_to_le32(~TRB_CYCLE);
788                 seg = seg->next;
789         } while (seg != ring->deq_seg);
790
791         /* Reset the software enqueue and dequeue pointers */
792         ring->deq_seg = ring->first_seg;
793         ring->dequeue = ring->first_seg->trbs;
794         ring->enq_seg = ring->deq_seg;
795         ring->enqueue = ring->dequeue;
796
797         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
798         /*
799          * Ring is now zeroed, so the HW should look for change of ownership
800          * when the cycle bit is set to 1.
801          */
802         ring->cycle_state = 1;
803
804         /*
805          * Reset the hardware dequeue pointer.
806          * Yes, this will need to be re-written after resume, but we're paranoid
807          * and want to make sure the hardware doesn't access bogus memory
808          * because, say, the BIOS or an SMI started the host without changing
809          * the command ring pointers.
810          */
811         xhci_set_cmd_ring_deq(xhci);
812 }
813
814 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
815 {
816         int port_index;
817         __le32 __iomem **port_array;
818         unsigned long flags;
819         u32 t1, t2;
820
821         spin_lock_irqsave(&xhci->lock, flags);
822
823         /* disable usb3 ports Wake bits */
824         port_index = xhci->num_usb3_ports;
825         port_array = xhci->usb3_ports;
826         while (port_index--) {
827                 t1 = readl(port_array[port_index]);
828                 t1 = xhci_port_state_to_neutral(t1);
829                 t2 = t1 & ~PORT_WAKE_BITS;
830                 if (t1 != t2)
831                         writel(t2, port_array[port_index]);
832         }
833
834         /* disable usb2 ports Wake bits */
835         port_index = xhci->num_usb2_ports;
836         port_array = xhci->usb2_ports;
837         while (port_index--) {
838                 t1 = readl(port_array[port_index]);
839                 t1 = xhci_port_state_to_neutral(t1);
840                 t2 = t1 & ~PORT_WAKE_BITS;
841                 if (t1 != t2)
842                         writel(t2, port_array[port_index]);
843         }
844
845         spin_unlock_irqrestore(&xhci->lock, flags);
846 }
847
848 /*
849  * Stop HC (not bus-specific)
850  *
851  * This is called when the machine transition into S3/S4 mode.
852  *
853  */
854 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
855 {
856         int                     rc = 0;
857         unsigned int            delay = XHCI_MAX_HALT_USEC;
858         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
859         u32                     command;
860
861         if (!hcd->state)
862                 return 0;
863
864         if (hcd->state != HC_STATE_SUSPENDED ||
865                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
866                 return -EINVAL;
867
868         xhci_dbc_suspend(xhci);
869
870         /* Clear root port wake on bits if wakeup not allowed. */
871         if (!do_wakeup)
872                 xhci_disable_port_wake_on_bits(xhci);
873
874         /* Don't poll the roothubs on bus suspend. */
875         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
876         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
877         del_timer_sync(&hcd->rh_timer);
878         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
879         del_timer_sync(&xhci->shared_hcd->rh_timer);
880
881         spin_lock_irq(&xhci->lock);
882         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
883         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
884         /* step 1: stop endpoint */
885         /* skipped assuming that port suspend has done */
886
887         /* step 2: clear Run/Stop bit */
888         command = readl(&xhci->op_regs->command);
889         command &= ~CMD_RUN;
890         writel(command, &xhci->op_regs->command);
891
892         /* Some chips from Fresco Logic need an extraordinary delay */
893         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
894
895         if (xhci_handshake(&xhci->op_regs->status,
896                       STS_HALT, STS_HALT, delay)) {
897                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
898                 spin_unlock_irq(&xhci->lock);
899                 return -ETIMEDOUT;
900         }
901         xhci_clear_command_ring(xhci);
902
903         /* step 3: save registers */
904         xhci_save_registers(xhci);
905
906         /* step 4: set CSS flag */
907         command = readl(&xhci->op_regs->command);
908         command |= CMD_CSS;
909         writel(command, &xhci->op_regs->command);
910         if (xhci_handshake(&xhci->op_regs->status,
911                                 STS_SAVE, 0, 10 * 1000)) {
912                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
913                 spin_unlock_irq(&xhci->lock);
914                 return -ETIMEDOUT;
915         }
916         spin_unlock_irq(&xhci->lock);
917
918         /*
919          * Deleting Compliance Mode Recovery Timer because the xHCI Host
920          * is about to be suspended.
921          */
922         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
923                         (!(xhci_all_ports_seen_u0(xhci)))) {
924                 del_timer_sync(&xhci->comp_mode_recovery_timer);
925                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
926                                 "%s: compliance mode recovery timer deleted",
927                                 __func__);
928         }
929
930         /* step 5: remove core well power */
931         /* synchronize irq when using MSI-X */
932         xhci_msix_sync_irqs(xhci);
933
934         return rc;
935 }
936 EXPORT_SYMBOL_GPL(xhci_suspend);
937
938 /*
939  * start xHC (not bus-specific)
940  *
941  * This is called when the machine transition from S3/S4 mode.
942  *
943  */
944 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
945 {
946         u32                     command, temp = 0, status;
947         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
948         struct usb_hcd          *secondary_hcd;
949         int                     retval = 0;
950         bool                    comp_timer_running = false;
951
952         if (!hcd->state)
953                 return 0;
954
955         /* Wait a bit if either of the roothubs need to settle from the
956          * transition into bus suspend.
957          */
958         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
959                         time_before(jiffies,
960                                 xhci->bus_state[1].next_statechange))
961                 msleep(100);
962
963         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
964         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
965
966         spin_lock_irq(&xhci->lock);
967         if (xhci->quirks & XHCI_RESET_ON_RESUME)
968                 hibernated = true;
969
970         if (!hibernated) {
971                 /* step 1: restore register */
972                 xhci_restore_registers(xhci);
973                 /* step 2: initialize command ring buffer */
974                 xhci_set_cmd_ring_deq(xhci);
975                 /* step 3: restore state and start state*/
976                 /* step 3: set CRS flag */
977                 command = readl(&xhci->op_regs->command);
978                 command |= CMD_CRS;
979                 writel(command, &xhci->op_regs->command);
980                 if (xhci_handshake(&xhci->op_regs->status,
981                               STS_RESTORE, 0, 10 * 1000)) {
982                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
983                         spin_unlock_irq(&xhci->lock);
984                         return -ETIMEDOUT;
985                 }
986                 temp = readl(&xhci->op_regs->status);
987         }
988
989         /* If restore operation fails, re-initialize the HC during resume */
990         if ((temp & STS_SRE) || hibernated) {
991
992                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
993                                 !(xhci_all_ports_seen_u0(xhci))) {
994                         del_timer_sync(&xhci->comp_mode_recovery_timer);
995                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
996                                 "Compliance Mode Recovery Timer deleted!");
997                 }
998
999                 /* Let the USB core know _both_ roothubs lost power. */
1000                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1001                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1002
1003                 xhci_dbg(xhci, "Stop HCD\n");
1004                 xhci_halt(xhci);
1005                 xhci_reset(xhci);
1006                 spin_unlock_irq(&xhci->lock);
1007                 xhci_cleanup_msix(xhci);
1008
1009                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1010                 temp = readl(&xhci->op_regs->status);
1011                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1012                 temp = readl(&xhci->ir_set->irq_pending);
1013                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1014
1015                 xhci_dbg(xhci, "cleaning up memory\n");
1016                 xhci_mem_cleanup(xhci);
1017                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1018                             readl(&xhci->op_regs->status));
1019
1020                 /* USB core calls the PCI reinit and start functions twice:
1021                  * first with the primary HCD, and then with the secondary HCD.
1022                  * If we don't do the same, the host will never be started.
1023                  */
1024                 if (!usb_hcd_is_primary_hcd(hcd))
1025                         secondary_hcd = hcd;
1026                 else
1027                         secondary_hcd = xhci->shared_hcd;
1028
1029                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1030                 retval = xhci_init(hcd->primary_hcd);
1031                 if (retval)
1032                         return retval;
1033                 comp_timer_running = true;
1034
1035                 xhci_dbg(xhci, "Start the primary HCD\n");
1036                 retval = xhci_run(hcd->primary_hcd);
1037                 if (!retval) {
1038                         xhci_dbg(xhci, "Start the secondary HCD\n");
1039                         retval = xhci_run(secondary_hcd);
1040                 }
1041                 hcd->state = HC_STATE_SUSPENDED;
1042                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1043                 goto done;
1044         }
1045
1046         /* step 4: set Run/Stop bit */
1047         command = readl(&xhci->op_regs->command);
1048         command |= CMD_RUN;
1049         writel(command, &xhci->op_regs->command);
1050         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1051                   0, 250 * 1000);
1052
1053         /* step 5: walk topology and initialize portsc,
1054          * portpmsc and portli
1055          */
1056         /* this is done in bus_resume */
1057
1058         /* step 6: restart each of the previously
1059          * Running endpoints by ringing their doorbells
1060          */
1061
1062         spin_unlock_irq(&xhci->lock);
1063
1064         xhci_dbc_resume(xhci);
1065
1066  done:
1067         if (retval == 0) {
1068                 /* Resume root hubs only when have pending events. */
1069                 status = readl(&xhci->op_regs->status);
1070                 if (status & STS_EINT) {
1071                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1072                         usb_hcd_resume_root_hub(hcd);
1073                 }
1074         }
1075
1076         /*
1077          * If system is subject to the Quirk, Compliance Mode Timer needs to
1078          * be re-initialized Always after a system resume. Ports are subject
1079          * to suffer the Compliance Mode issue again. It doesn't matter if
1080          * ports have entered previously to U0 before system's suspension.
1081          */
1082         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1083                 compliance_mode_recovery_timer_init(xhci);
1084
1085         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1086                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1087
1088         /* Re-enable port polling. */
1089         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1090         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1091         usb_hcd_poll_rh_status(xhci->shared_hcd);
1092         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1093         usb_hcd_poll_rh_status(hcd);
1094
1095         return retval;
1096 }
1097 EXPORT_SYMBOL_GPL(xhci_resume);
1098 #endif  /* CONFIG_PM */
1099
1100 /*-------------------------------------------------------------------------*/
1101
1102 /**
1103  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1104  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1105  * value to right shift 1 for the bitmask.
1106  *
1107  * Index  = (epnum * 2) + direction - 1,
1108  * where direction = 0 for OUT, 1 for IN.
1109  * For control endpoints, the IN index is used (OUT index is unused), so
1110  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1111  */
1112 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1113 {
1114         unsigned int index;
1115         if (usb_endpoint_xfer_control(desc))
1116                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1117         else
1118                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1119                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1120         return index;
1121 }
1122
1123 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1124  * address from the XHCI endpoint index.
1125  */
1126 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1127 {
1128         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1129         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1130         return direction | number;
1131 }
1132
1133 /* Find the flag for this endpoint (for use in the control context).  Use the
1134  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1135  * bit 1, etc.
1136  */
1137 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1138 {
1139         return 1 << (xhci_get_endpoint_index(desc) + 1);
1140 }
1141
1142 /* Find the flag for this endpoint (for use in the control context).  Use the
1143  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1144  * bit 1, etc.
1145  */
1146 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1147 {
1148         return 1 << (ep_index + 1);
1149 }
1150
1151 /* Compute the last valid endpoint context index.  Basically, this is the
1152  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1153  * we find the most significant bit set in the added contexts flags.
1154  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1155  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1156  */
1157 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1158 {
1159         return fls(added_ctxs) - 1;
1160 }
1161
1162 /* Returns 1 if the arguments are OK;
1163  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1164  */
1165 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1166                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1167                 const char *func) {
1168         struct xhci_hcd *xhci;
1169         struct xhci_virt_device *virt_dev;
1170
1171         if (!hcd || (check_ep && !ep) || !udev) {
1172                 pr_debug("xHCI %s called with invalid args\n", func);
1173                 return -EINVAL;
1174         }
1175         if (!udev->parent) {
1176                 pr_debug("xHCI %s called for root hub\n", func);
1177                 return 0;
1178         }
1179
1180         xhci = hcd_to_xhci(hcd);
1181         if (check_virt_dev) {
1182                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1183                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1184                                         func);
1185                         return -EINVAL;
1186                 }
1187
1188                 virt_dev = xhci->devs[udev->slot_id];
1189                 if (virt_dev->udev != udev) {
1190                         xhci_dbg(xhci, "xHCI %s called with udev and "
1191                                           "virt_dev does not match\n", func);
1192                         return -EINVAL;
1193                 }
1194         }
1195
1196         if (xhci->xhc_state & XHCI_STATE_HALTED)
1197                 return -ENODEV;
1198
1199         return 1;
1200 }
1201
1202 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1203                 struct usb_device *udev, struct xhci_command *command,
1204                 bool ctx_change, bool must_succeed);
1205
1206 /*
1207  * Full speed devices may have a max packet size greater than 8 bytes, but the
1208  * USB core doesn't know that until it reads the first 8 bytes of the
1209  * descriptor.  If the usb_device's max packet size changes after that point,
1210  * we need to issue an evaluate context command and wait on it.
1211  */
1212 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1213                 unsigned int ep_index, struct urb *urb)
1214 {
1215         struct xhci_container_ctx *out_ctx;
1216         struct xhci_input_control_ctx *ctrl_ctx;
1217         struct xhci_ep_ctx *ep_ctx;
1218         struct xhci_command *command;
1219         int max_packet_size;
1220         int hw_max_packet_size;
1221         int ret = 0;
1222
1223         out_ctx = xhci->devs[slot_id]->out_ctx;
1224         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1225         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1226         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1227         if (hw_max_packet_size != max_packet_size) {
1228                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1229                                 "Max Packet Size for ep 0 changed.");
1230                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1231                                 "Max packet size in usb_device = %d",
1232                                 max_packet_size);
1233                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1234                                 "Max packet size in xHCI HW = %d",
1235                                 hw_max_packet_size);
1236                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1237                                 "Issuing evaluate context command.");
1238
1239                 /* Set up the input context flags for the command */
1240                 /* FIXME: This won't work if a non-default control endpoint
1241                  * changes max packet sizes.
1242                  */
1243
1244                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1245                 if (!command)
1246                         return -ENOMEM;
1247
1248                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1249                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1250                 if (!ctrl_ctx) {
1251                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1252                                         __func__);
1253                         ret = -ENOMEM;
1254                         goto command_cleanup;
1255                 }
1256                 /* Set up the modified control endpoint 0 */
1257                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1258                                 xhci->devs[slot_id]->out_ctx, ep_index);
1259
1260                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1261                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1262                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1263
1264                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1265                 ctrl_ctx->drop_flags = 0;
1266
1267                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1268                                 true, false);
1269
1270                 /* Clean up the input context for later use by bandwidth
1271                  * functions.
1272                  */
1273                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1274 command_cleanup:
1275                 kfree(command->completion);
1276                 kfree(command);
1277         }
1278         return ret;
1279 }
1280
1281 /*
1282  * non-error returns are a promise to giveback() the urb later
1283  * we drop ownership so next owner (or urb unlink) can get it
1284  */
1285 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1286 {
1287         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1288         unsigned long flags;
1289         int ret = 0;
1290         unsigned int slot_id, ep_index, ep_state;
1291         struct urb_priv *urb_priv;
1292         int num_tds;
1293
1294         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1295                                         true, true, __func__) <= 0)
1296                 return -EINVAL;
1297
1298         slot_id = urb->dev->slot_id;
1299         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1300
1301         if (!HCD_HW_ACCESSIBLE(hcd)) {
1302                 if (!in_interrupt())
1303                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1304                 return -ESHUTDOWN;
1305         }
1306
1307         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1308                 num_tds = urb->number_of_packets;
1309         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1310             urb->transfer_buffer_length > 0 &&
1311             urb->transfer_flags & URB_ZERO_PACKET &&
1312             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1313                 num_tds = 2;
1314         else
1315                 num_tds = 1;
1316
1317         urb_priv = kzalloc(sizeof(struct urb_priv) +
1318                            num_tds * sizeof(struct xhci_td), mem_flags);
1319         if (!urb_priv)
1320                 return -ENOMEM;
1321
1322         urb_priv->num_tds = num_tds;
1323         urb_priv->num_tds_done = 0;
1324         urb->hcpriv = urb_priv;
1325
1326         trace_xhci_urb_enqueue(urb);
1327
1328         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1329                 /* Check to see if the max packet size for the default control
1330                  * endpoint changed during FS device enumeration
1331                  */
1332                 if (urb->dev->speed == USB_SPEED_FULL) {
1333                         ret = xhci_check_maxpacket(xhci, slot_id,
1334                                         ep_index, urb);
1335                         if (ret < 0) {
1336                                 xhci_urb_free_priv(urb_priv);
1337                                 urb->hcpriv = NULL;
1338                                 return ret;
1339                         }
1340                 }
1341         }
1342
1343         spin_lock_irqsave(&xhci->lock, flags);
1344
1345         if (xhci->xhc_state & XHCI_STATE_DYING) {
1346                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1347                          urb->ep->desc.bEndpointAddress, urb);
1348                 ret = -ESHUTDOWN;
1349                 goto free_priv;
1350         }
1351
1352         switch (usb_endpoint_type(&urb->ep->desc)) {
1353
1354         case USB_ENDPOINT_XFER_CONTROL:
1355                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1356                                          slot_id, ep_index);
1357                 break;
1358         case USB_ENDPOINT_XFER_BULK:
1359                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1360                 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1361                         xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1362                                   ep_state);
1363                         ret = -EINVAL;
1364                         break;
1365                 }
1366                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1367                                          slot_id, ep_index);
1368                 break;
1369
1370
1371         case USB_ENDPOINT_XFER_INT:
1372                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1373                                 slot_id, ep_index);
1374                 break;
1375
1376         case USB_ENDPOINT_XFER_ISOC:
1377                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1378                                 slot_id, ep_index);
1379         }
1380
1381         if (ret) {
1382 free_priv:
1383                 xhci_urb_free_priv(urb_priv);
1384                 urb->hcpriv = NULL;
1385         }
1386         spin_unlock_irqrestore(&xhci->lock, flags);
1387         return ret;
1388 }
1389
1390 /*
1391  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1392  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1393  * should pick up where it left off in the TD, unless a Set Transfer Ring
1394  * Dequeue Pointer is issued.
1395  *
1396  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1397  * the ring.  Since the ring is a contiguous structure, they can't be physically
1398  * removed.  Instead, there are two options:
1399  *
1400  *  1) If the HC is in the middle of processing the URB to be canceled, we
1401  *     simply move the ring's dequeue pointer past those TRBs using the Set
1402  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1403  *     when drivers timeout on the last submitted URB and attempt to cancel.
1404  *
1405  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1406  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1407  *     HC will need to invalidate the any TRBs it has cached after the stop
1408  *     endpoint command, as noted in the xHCI 0.95 errata.
1409  *
1410  *  3) The TD may have completed by the time the Stop Endpoint Command
1411  *     completes, so software needs to handle that case too.
1412  *
1413  * This function should protect against the TD enqueueing code ringing the
1414  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1415  * It also needs to account for multiple cancellations on happening at the same
1416  * time for the same endpoint.
1417  *
1418  * Note that this function can be called in any context, or so says
1419  * usb_hcd_unlink_urb()
1420  */
1421 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1422 {
1423         unsigned long flags;
1424         int ret, i;
1425         u32 temp;
1426         struct xhci_hcd *xhci;
1427         struct urb_priv *urb_priv;
1428         struct xhci_td *td;
1429         unsigned int ep_index;
1430         struct xhci_ring *ep_ring;
1431         struct xhci_virt_ep *ep;
1432         struct xhci_command *command;
1433         struct xhci_virt_device *vdev;
1434
1435         xhci = hcd_to_xhci(hcd);
1436         spin_lock_irqsave(&xhci->lock, flags);
1437
1438         trace_xhci_urb_dequeue(urb);
1439
1440         /* Make sure the URB hasn't completed or been unlinked already */
1441         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1442         if (ret)
1443                 goto done;
1444
1445         /* give back URB now if we can't queue it for cancel */
1446         vdev = xhci->devs[urb->dev->slot_id];
1447         urb_priv = urb->hcpriv;
1448         if (!vdev || !urb_priv)
1449                 goto err_giveback;
1450
1451         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1452         ep = &vdev->eps[ep_index];
1453         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1454         if (!ep || !ep_ring)
1455                 goto err_giveback;
1456
1457         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1458         temp = readl(&xhci->op_regs->status);
1459         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1460                 xhci_hc_died(xhci);
1461                 goto done;
1462         }
1463
1464         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1465                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1466                                 "HC halted, freeing TD manually.");
1467                 for (i = urb_priv->num_tds_done;
1468                      i < urb_priv->num_tds;
1469                      i++) {
1470                         td = &urb_priv->td[i];
1471                         if (!list_empty(&td->td_list))
1472                                 list_del_init(&td->td_list);
1473                         if (!list_empty(&td->cancelled_td_list))
1474                                 list_del_init(&td->cancelled_td_list);
1475                 }
1476                 goto err_giveback;
1477         }
1478
1479         i = urb_priv->num_tds_done;
1480         if (i < urb_priv->num_tds)
1481                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1482                                 "Cancel URB %p, dev %s, ep 0x%x, "
1483                                 "starting at offset 0x%llx",
1484                                 urb, urb->dev->devpath,
1485                                 urb->ep->desc.bEndpointAddress,
1486                                 (unsigned long long) xhci_trb_virt_to_dma(
1487                                         urb_priv->td[i].start_seg,
1488                                         urb_priv->td[i].first_trb));
1489
1490         for (; i < urb_priv->num_tds; i++) {
1491                 td = &urb_priv->td[i];
1492                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1493         }
1494
1495         /* Queue a stop endpoint command, but only if this is
1496          * the first cancellation to be handled.
1497          */
1498         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1499                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1500                 if (!command) {
1501                         ret = -ENOMEM;
1502                         goto done;
1503                 }
1504                 ep->ep_state |= EP_STOP_CMD_PENDING;
1505                 ep->stop_cmd_timer.expires = jiffies +
1506                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1507                 add_timer(&ep->stop_cmd_timer);
1508                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1509                                          ep_index, 0);
1510                 xhci_ring_cmd_db(xhci);
1511         }
1512 done:
1513         spin_unlock_irqrestore(&xhci->lock, flags);
1514         return ret;
1515
1516 err_giveback:
1517         if (urb_priv)
1518                 xhci_urb_free_priv(urb_priv);
1519         usb_hcd_unlink_urb_from_ep(hcd, urb);
1520         spin_unlock_irqrestore(&xhci->lock, flags);
1521         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1522         return ret;
1523 }
1524
1525 /* Drop an endpoint from a new bandwidth configuration for this device.
1526  * Only one call to this function is allowed per endpoint before
1527  * check_bandwidth() or reset_bandwidth() must be called.
1528  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1529  * add the endpoint to the schedule with possibly new parameters denoted by a
1530  * different endpoint descriptor in usb_host_endpoint.
1531  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1532  * not allowed.
1533  *
1534  * The USB core will not allow URBs to be queued to an endpoint that is being
1535  * disabled, so there's no need for mutual exclusion to protect
1536  * the xhci->devs[slot_id] structure.
1537  */
1538 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1539                 struct usb_host_endpoint *ep)
1540 {
1541         struct xhci_hcd *xhci;
1542         struct xhci_container_ctx *in_ctx, *out_ctx;
1543         struct xhci_input_control_ctx *ctrl_ctx;
1544         unsigned int ep_index;
1545         struct xhci_ep_ctx *ep_ctx;
1546         u32 drop_flag;
1547         u32 new_add_flags, new_drop_flags;
1548         int ret;
1549
1550         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1551         if (ret <= 0)
1552                 return ret;
1553         xhci = hcd_to_xhci(hcd);
1554         if (xhci->xhc_state & XHCI_STATE_DYING)
1555                 return -ENODEV;
1556
1557         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1558         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1559         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1560                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1561                                 __func__, drop_flag);
1562                 return 0;
1563         }
1564
1565         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1566         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1567         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1568         if (!ctrl_ctx) {
1569                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1570                                 __func__);
1571                 return 0;
1572         }
1573
1574         ep_index = xhci_get_endpoint_index(&ep->desc);
1575         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1576         /* If the HC already knows the endpoint is disabled,
1577          * or the HCD has noted it is disabled, ignore this request
1578          */
1579         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1580             le32_to_cpu(ctrl_ctx->drop_flags) &
1581             xhci_get_endpoint_flag(&ep->desc)) {
1582                 /* Do not warn when called after a usb_device_reset */
1583                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1584                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1585                                   __func__, ep);
1586                 return 0;
1587         }
1588
1589         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1590         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1591
1592         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1593         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1594
1595         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1596
1597         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1598
1599         if (xhci->quirks & XHCI_MTK_HOST)
1600                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1601
1602         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1603                         (unsigned int) ep->desc.bEndpointAddress,
1604                         udev->slot_id,
1605                         (unsigned int) new_drop_flags,
1606                         (unsigned int) new_add_flags);
1607         return 0;
1608 }
1609
1610 /* Add an endpoint to a new possible bandwidth configuration for this device.
1611  * Only one call to this function is allowed per endpoint before
1612  * check_bandwidth() or reset_bandwidth() must be called.
1613  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1614  * add the endpoint to the schedule with possibly new parameters denoted by a
1615  * different endpoint descriptor in usb_host_endpoint.
1616  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1617  * not allowed.
1618  *
1619  * The USB core will not allow URBs to be queued to an endpoint until the
1620  * configuration or alt setting is installed in the device, so there's no need
1621  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1622  */
1623 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1624                 struct usb_host_endpoint *ep)
1625 {
1626         struct xhci_hcd *xhci;
1627         struct xhci_container_ctx *in_ctx;
1628         unsigned int ep_index;
1629         struct xhci_input_control_ctx *ctrl_ctx;
1630         u32 added_ctxs;
1631         u32 new_add_flags, new_drop_flags;
1632         struct xhci_virt_device *virt_dev;
1633         int ret = 0;
1634
1635         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1636         if (ret <= 0) {
1637                 /* So we won't queue a reset ep command for a root hub */
1638                 ep->hcpriv = NULL;
1639                 return ret;
1640         }
1641         xhci = hcd_to_xhci(hcd);
1642         if (xhci->xhc_state & XHCI_STATE_DYING)
1643                 return -ENODEV;
1644
1645         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1646         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1647                 /* FIXME when we have to issue an evaluate endpoint command to
1648                  * deal with ep0 max packet size changing once we get the
1649                  * descriptors
1650                  */
1651                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1652                                 __func__, added_ctxs);
1653                 return 0;
1654         }
1655
1656         virt_dev = xhci->devs[udev->slot_id];
1657         in_ctx = virt_dev->in_ctx;
1658         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1659         if (!ctrl_ctx) {
1660                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1661                                 __func__);
1662                 return 0;
1663         }
1664
1665         ep_index = xhci_get_endpoint_index(&ep->desc);
1666         /* If this endpoint is already in use, and the upper layers are trying
1667          * to add it again without dropping it, reject the addition.
1668          */
1669         if (virt_dev->eps[ep_index].ring &&
1670                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1671                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1672                                 "without dropping it.\n",
1673                                 (unsigned int) ep->desc.bEndpointAddress);
1674                 return -EINVAL;
1675         }
1676
1677         /* If the HCD has already noted the endpoint is enabled,
1678          * ignore this request.
1679          */
1680         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1681                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1682                                 __func__, ep);
1683                 return 0;
1684         }
1685
1686         /*
1687          * Configuration and alternate setting changes must be done in
1688          * process context, not interrupt context (or so documenation
1689          * for usb_set_interface() and usb_set_configuration() claim).
1690          */
1691         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1692                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1693                                 __func__, ep->desc.bEndpointAddress);
1694                 return -ENOMEM;
1695         }
1696
1697         if (xhci->quirks & XHCI_MTK_HOST) {
1698                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1699                 if (ret < 0) {
1700                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1701                         virt_dev->eps[ep_index].new_ring = NULL;
1702                         return ret;
1703                 }
1704         }
1705
1706         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1707         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1708
1709         /* If xhci_endpoint_disable() was called for this endpoint, but the
1710          * xHC hasn't been notified yet through the check_bandwidth() call,
1711          * this re-adds a new state for the endpoint from the new endpoint
1712          * descriptors.  We must drop and re-add this endpoint, so we leave the
1713          * drop flags alone.
1714          */
1715         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1716
1717         /* Store the usb_device pointer for later use */
1718         ep->hcpriv = udev;
1719
1720         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1721
1722         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1723                         (unsigned int) ep->desc.bEndpointAddress,
1724                         udev->slot_id,
1725                         (unsigned int) new_drop_flags,
1726                         (unsigned int) new_add_flags);
1727         return 0;
1728 }
1729
1730 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1731 {
1732         struct xhci_input_control_ctx *ctrl_ctx;
1733         struct xhci_ep_ctx *ep_ctx;
1734         struct xhci_slot_ctx *slot_ctx;
1735         int i;
1736
1737         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1738         if (!ctrl_ctx) {
1739                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1740                                 __func__);
1741                 return;
1742         }
1743
1744         /* When a device's add flag and drop flag are zero, any subsequent
1745          * configure endpoint command will leave that endpoint's state
1746          * untouched.  Make sure we don't leave any old state in the input
1747          * endpoint contexts.
1748          */
1749         ctrl_ctx->drop_flags = 0;
1750         ctrl_ctx->add_flags = 0;
1751         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1752         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1753         /* Endpoint 0 is always valid */
1754         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1755         for (i = 1; i < 31; i++) {
1756                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1757                 ep_ctx->ep_info = 0;
1758                 ep_ctx->ep_info2 = 0;
1759                 ep_ctx->deq = 0;
1760                 ep_ctx->tx_info = 0;
1761         }
1762 }
1763
1764 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1765                 struct usb_device *udev, u32 *cmd_status)
1766 {
1767         int ret;
1768
1769         switch (*cmd_status) {
1770         case COMP_COMMAND_ABORTED:
1771         case COMP_COMMAND_RING_STOPPED:
1772                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1773                 ret = -ETIME;
1774                 break;
1775         case COMP_RESOURCE_ERROR:
1776                 dev_warn(&udev->dev,
1777                          "Not enough host controller resources for new device state.\n");
1778                 ret = -ENOMEM;
1779                 /* FIXME: can we allocate more resources for the HC? */
1780                 break;
1781         case COMP_BANDWIDTH_ERROR:
1782         case COMP_SECONDARY_BANDWIDTH_ERROR:
1783                 dev_warn(&udev->dev,
1784                          "Not enough bandwidth for new device state.\n");
1785                 ret = -ENOSPC;
1786                 /* FIXME: can we go back to the old state? */
1787                 break;
1788         case COMP_TRB_ERROR:
1789                 /* the HCD set up something wrong */
1790                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1791                                 "add flag = 1, "
1792                                 "and endpoint is not disabled.\n");
1793                 ret = -EINVAL;
1794                 break;
1795         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1796                 dev_warn(&udev->dev,
1797                          "ERROR: Incompatible device for endpoint configure command.\n");
1798                 ret = -ENODEV;
1799                 break;
1800         case COMP_SUCCESS:
1801                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1802                                 "Successful Endpoint Configure command");
1803                 ret = 0;
1804                 break;
1805         default:
1806                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1807                                 *cmd_status);
1808                 ret = -EINVAL;
1809                 break;
1810         }
1811         return ret;
1812 }
1813
1814 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1815                 struct usb_device *udev, u32 *cmd_status)
1816 {
1817         int ret;
1818
1819         switch (*cmd_status) {
1820         case COMP_COMMAND_ABORTED:
1821         case COMP_COMMAND_RING_STOPPED:
1822                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1823                 ret = -ETIME;
1824                 break;
1825         case COMP_PARAMETER_ERROR:
1826                 dev_warn(&udev->dev,
1827                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1828                 ret = -EINVAL;
1829                 break;
1830         case COMP_SLOT_NOT_ENABLED_ERROR:
1831                 dev_warn(&udev->dev,
1832                         "WARN: slot not enabled for evaluate context command.\n");
1833                 ret = -EINVAL;
1834                 break;
1835         case COMP_CONTEXT_STATE_ERROR:
1836                 dev_warn(&udev->dev,
1837                         "WARN: invalid context state for evaluate context command.\n");
1838                 ret = -EINVAL;
1839                 break;
1840         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1841                 dev_warn(&udev->dev,
1842                         "ERROR: Incompatible device for evaluate context command.\n");
1843                 ret = -ENODEV;
1844                 break;
1845         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1846                 /* Max Exit Latency too large error */
1847                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1848                 ret = -EINVAL;
1849                 break;
1850         case COMP_SUCCESS:
1851                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1852                                 "Successful evaluate context command");
1853                 ret = 0;
1854                 break;
1855         default:
1856                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1857                         *cmd_status);
1858                 ret = -EINVAL;
1859                 break;
1860         }
1861         return ret;
1862 }
1863
1864 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1865                 struct xhci_input_control_ctx *ctrl_ctx)
1866 {
1867         u32 valid_add_flags;
1868         u32 valid_drop_flags;
1869
1870         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1871          * (bit 1).  The default control endpoint is added during the Address
1872          * Device command and is never removed until the slot is disabled.
1873          */
1874         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1875         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1876
1877         /* Use hweight32 to count the number of ones in the add flags, or
1878          * number of endpoints added.  Don't count endpoints that are changed
1879          * (both added and dropped).
1880          */
1881         return hweight32(valid_add_flags) -
1882                 hweight32(valid_add_flags & valid_drop_flags);
1883 }
1884
1885 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1886                 struct xhci_input_control_ctx *ctrl_ctx)
1887 {
1888         u32 valid_add_flags;
1889         u32 valid_drop_flags;
1890
1891         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1892         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1893
1894         return hweight32(valid_drop_flags) -
1895                 hweight32(valid_add_flags & valid_drop_flags);
1896 }
1897
1898 /*
1899  * We need to reserve the new number of endpoints before the configure endpoint
1900  * command completes.  We can't subtract the dropped endpoints from the number
1901  * of active endpoints until the command completes because we can oversubscribe
1902  * the host in this case:
1903  *
1904  *  - the first configure endpoint command drops more endpoints than it adds
1905  *  - a second configure endpoint command that adds more endpoints is queued
1906  *  - the first configure endpoint command fails, so the config is unchanged
1907  *  - the second command may succeed, even though there isn't enough resources
1908  *
1909  * Must be called with xhci->lock held.
1910  */
1911 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1912                 struct xhci_input_control_ctx *ctrl_ctx)
1913 {
1914         u32 added_eps;
1915
1916         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1917         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1918                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1919                                 "Not enough ep ctxs: "
1920                                 "%u active, need to add %u, limit is %u.",
1921                                 xhci->num_active_eps, added_eps,
1922                                 xhci->limit_active_eps);
1923                 return -ENOMEM;
1924         }
1925         xhci->num_active_eps += added_eps;
1926         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1927                         "Adding %u ep ctxs, %u now active.", added_eps,
1928                         xhci->num_active_eps);
1929         return 0;
1930 }
1931
1932 /*
1933  * The configure endpoint was failed by the xHC for some other reason, so we
1934  * need to revert the resources that failed configuration would have used.
1935  *
1936  * Must be called with xhci->lock held.
1937  */
1938 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1939                 struct xhci_input_control_ctx *ctrl_ctx)
1940 {
1941         u32 num_failed_eps;
1942
1943         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1944         xhci->num_active_eps -= num_failed_eps;
1945         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1946                         "Removing %u failed ep ctxs, %u now active.",
1947                         num_failed_eps,
1948                         xhci->num_active_eps);
1949 }
1950
1951 /*
1952  * Now that the command has completed, clean up the active endpoint count by
1953  * subtracting out the endpoints that were dropped (but not changed).
1954  *
1955  * Must be called with xhci->lock held.
1956  */
1957 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1958                 struct xhci_input_control_ctx *ctrl_ctx)
1959 {
1960         u32 num_dropped_eps;
1961
1962         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1963         xhci->num_active_eps -= num_dropped_eps;
1964         if (num_dropped_eps)
1965                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1966                                 "Removing %u dropped ep ctxs, %u now active.",
1967                                 num_dropped_eps,
1968                                 xhci->num_active_eps);
1969 }
1970
1971 static unsigned int xhci_get_block_size(struct usb_device *udev)
1972 {
1973         switch (udev->speed) {
1974         case USB_SPEED_LOW:
1975         case USB_SPEED_FULL:
1976                 return FS_BLOCK;
1977         case USB_SPEED_HIGH:
1978                 return HS_BLOCK;
1979         case USB_SPEED_SUPER:
1980         case USB_SPEED_SUPER_PLUS:
1981                 return SS_BLOCK;
1982         case USB_SPEED_UNKNOWN:
1983         case USB_SPEED_WIRELESS:
1984         default:
1985                 /* Should never happen */
1986                 return 1;
1987         }
1988 }
1989
1990 static unsigned int
1991 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1992 {
1993         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1994                 return LS_OVERHEAD;
1995         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1996                 return FS_OVERHEAD;
1997         return HS_OVERHEAD;
1998 }
1999
2000 /* If we are changing a LS/FS device under a HS hub,
2001  * make sure (if we are activating a new TT) that the HS bus has enough
2002  * bandwidth for this new TT.
2003  */
2004 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2005                 struct xhci_virt_device *virt_dev,
2006                 int old_active_eps)
2007 {
2008         struct xhci_interval_bw_table *bw_table;
2009         struct xhci_tt_bw_info *tt_info;
2010
2011         /* Find the bandwidth table for the root port this TT is attached to. */
2012         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2013         tt_info = virt_dev->tt_info;
2014         /* If this TT already had active endpoints, the bandwidth for this TT
2015          * has already been added.  Removing all periodic endpoints (and thus
2016          * making the TT enactive) will only decrease the bandwidth used.
2017          */
2018         if (old_active_eps)
2019                 return 0;
2020         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2021                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2022                         return -ENOMEM;
2023                 return 0;
2024         }
2025         /* Not sure why we would have no new active endpoints...
2026          *
2027          * Maybe because of an Evaluate Context change for a hub update or a
2028          * control endpoint 0 max packet size change?
2029          * FIXME: skip the bandwidth calculation in that case.
2030          */
2031         return 0;
2032 }
2033
2034 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2035                 struct xhci_virt_device *virt_dev)
2036 {
2037         unsigned int bw_reserved;
2038
2039         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2040         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2041                 return -ENOMEM;
2042
2043         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2044         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2045                 return -ENOMEM;
2046
2047         return 0;
2048 }
2049
2050 /*
2051  * This algorithm is a very conservative estimate of the worst-case scheduling
2052  * scenario for any one interval.  The hardware dynamically schedules the
2053  * packets, so we can't tell which microframe could be the limiting factor in
2054  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2055  *
2056  * Obviously, we can't solve an NP complete problem to find the minimum worst
2057  * case scenario.  Instead, we come up with an estimate that is no less than
2058  * the worst case bandwidth used for any one microframe, but may be an
2059  * over-estimate.
2060  *
2061  * We walk the requirements for each endpoint by interval, starting with the
2062  * smallest interval, and place packets in the schedule where there is only one
2063  * possible way to schedule packets for that interval.  In order to simplify
2064  * this algorithm, we record the largest max packet size for each interval, and
2065  * assume all packets will be that size.
2066  *
2067  * For interval 0, we obviously must schedule all packets for each interval.
2068  * The bandwidth for interval 0 is just the amount of data to be transmitted
2069  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2070  * the number of packets).
2071  *
2072  * For interval 1, we have two possible microframes to schedule those packets
2073  * in.  For this algorithm, if we can schedule the same number of packets for
2074  * each possible scheduling opportunity (each microframe), we will do so.  The
2075  * remaining number of packets will be saved to be transmitted in the gaps in
2076  * the next interval's scheduling sequence.
2077  *
2078  * As we move those remaining packets to be scheduled with interval 2 packets,
2079  * we have to double the number of remaining packets to transmit.  This is
2080  * because the intervals are actually powers of 2, and we would be transmitting
2081  * the previous interval's packets twice in this interval.  We also have to be
2082  * sure that when we look at the largest max packet size for this interval, we
2083  * also look at the largest max packet size for the remaining packets and take
2084  * the greater of the two.
2085  *
2086  * The algorithm continues to evenly distribute packets in each scheduling
2087  * opportunity, and push the remaining packets out, until we get to the last
2088  * interval.  Then those packets and their associated overhead are just added
2089  * to the bandwidth used.
2090  */
2091 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2092                 struct xhci_virt_device *virt_dev,
2093                 int old_active_eps)
2094 {
2095         unsigned int bw_reserved;
2096         unsigned int max_bandwidth;
2097         unsigned int bw_used;
2098         unsigned int block_size;
2099         struct xhci_interval_bw_table *bw_table;
2100         unsigned int packet_size = 0;
2101         unsigned int overhead = 0;
2102         unsigned int packets_transmitted = 0;
2103         unsigned int packets_remaining = 0;
2104         unsigned int i;
2105
2106         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2107                 return xhci_check_ss_bw(xhci, virt_dev);
2108
2109         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2110                 max_bandwidth = HS_BW_LIMIT;
2111                 /* Convert percent of bus BW reserved to blocks reserved */
2112                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2113         } else {
2114                 max_bandwidth = FS_BW_LIMIT;
2115                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2116         }
2117
2118         bw_table = virt_dev->bw_table;
2119         /* We need to translate the max packet size and max ESIT payloads into
2120          * the units the hardware uses.
2121          */
2122         block_size = xhci_get_block_size(virt_dev->udev);
2123
2124         /* If we are manipulating a LS/FS device under a HS hub, double check
2125          * that the HS bus has enough bandwidth if we are activing a new TT.
2126          */
2127         if (virt_dev->tt_info) {
2128                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2129                                 "Recalculating BW for rootport %u",
2130                                 virt_dev->real_port);
2131                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2132                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2133                                         "newly activated TT.\n");
2134                         return -ENOMEM;
2135                 }
2136                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2137                                 "Recalculating BW for TT slot %u port %u",
2138                                 virt_dev->tt_info->slot_id,
2139                                 virt_dev->tt_info->ttport);
2140         } else {
2141                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2142                                 "Recalculating BW for rootport %u",
2143                                 virt_dev->real_port);
2144         }
2145
2146         /* Add in how much bandwidth will be used for interval zero, or the
2147          * rounded max ESIT payload + number of packets * largest overhead.
2148          */
2149         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2150                 bw_table->interval_bw[0].num_packets *
2151                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2152
2153         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2154                 unsigned int bw_added;
2155                 unsigned int largest_mps;
2156                 unsigned int interval_overhead;
2157
2158                 /*
2159                  * How many packets could we transmit in this interval?
2160                  * If packets didn't fit in the previous interval, we will need
2161                  * to transmit that many packets twice within this interval.
2162                  */
2163                 packets_remaining = 2 * packets_remaining +
2164                         bw_table->interval_bw[i].num_packets;
2165
2166                 /* Find the largest max packet size of this or the previous
2167                  * interval.
2168                  */
2169                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2170                         largest_mps = 0;
2171                 else {
2172                         struct xhci_virt_ep *virt_ep;
2173                         struct list_head *ep_entry;
2174
2175                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2176                         virt_ep = list_entry(ep_entry,
2177                                         struct xhci_virt_ep, bw_endpoint_list);
2178                         /* Convert to blocks, rounding up */
2179                         largest_mps = DIV_ROUND_UP(
2180                                         virt_ep->bw_info.max_packet_size,
2181                                         block_size);
2182                 }
2183                 if (largest_mps > packet_size)
2184                         packet_size = largest_mps;
2185
2186                 /* Use the larger overhead of this or the previous interval. */
2187                 interval_overhead = xhci_get_largest_overhead(
2188                                 &bw_table->interval_bw[i]);
2189                 if (interval_overhead > overhead)
2190                         overhead = interval_overhead;
2191
2192                 /* How many packets can we evenly distribute across
2193                  * (1 << (i + 1)) possible scheduling opportunities?
2194                  */
2195                 packets_transmitted = packets_remaining >> (i + 1);
2196
2197                 /* Add in the bandwidth used for those scheduled packets */
2198                 bw_added = packets_transmitted * (overhead + packet_size);
2199
2200                 /* How many packets do we have remaining to transmit? */
2201                 packets_remaining = packets_remaining % (1 << (i + 1));
2202
2203                 /* What largest max packet size should those packets have? */
2204                 /* If we've transmitted all packets, don't carry over the
2205                  * largest packet size.
2206                  */
2207                 if (packets_remaining == 0) {
2208                         packet_size = 0;
2209                         overhead = 0;
2210                 } else if (packets_transmitted > 0) {
2211                         /* Otherwise if we do have remaining packets, and we've
2212                          * scheduled some packets in this interval, take the
2213                          * largest max packet size from endpoints with this
2214                          * interval.
2215                          */
2216                         packet_size = largest_mps;
2217                         overhead = interval_overhead;
2218                 }
2219                 /* Otherwise carry over packet_size and overhead from the last
2220                  * time we had a remainder.
2221                  */
2222                 bw_used += bw_added;
2223                 if (bw_used > max_bandwidth) {
2224                         xhci_warn(xhci, "Not enough bandwidth. "
2225                                         "Proposed: %u, Max: %u\n",
2226                                 bw_used, max_bandwidth);
2227                         return -ENOMEM;
2228                 }
2229         }
2230         /*
2231          * Ok, we know we have some packets left over after even-handedly
2232          * scheduling interval 15.  We don't know which microframes they will
2233          * fit into, so we over-schedule and say they will be scheduled every
2234          * microframe.
2235          */
2236         if (packets_remaining > 0)
2237                 bw_used += overhead + packet_size;
2238
2239         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2240                 unsigned int port_index = virt_dev->real_port - 1;
2241
2242                 /* OK, we're manipulating a HS device attached to a
2243                  * root port bandwidth domain.  Include the number of active TTs
2244                  * in the bandwidth used.
2245                  */
2246                 bw_used += TT_HS_OVERHEAD *
2247                         xhci->rh_bw[port_index].num_active_tts;
2248         }
2249
2250         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2251                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2252                 "Available: %u " "percent",
2253                 bw_used, max_bandwidth, bw_reserved,
2254                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2255                 max_bandwidth);
2256
2257         bw_used += bw_reserved;
2258         if (bw_used > max_bandwidth) {
2259                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2260                                 bw_used, max_bandwidth);
2261                 return -ENOMEM;
2262         }
2263
2264         bw_table->bw_used = bw_used;
2265         return 0;
2266 }
2267
2268 static bool xhci_is_async_ep(unsigned int ep_type)
2269 {
2270         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2271                                         ep_type != ISOC_IN_EP &&
2272                                         ep_type != INT_IN_EP);
2273 }
2274
2275 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2276 {
2277         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2278 }
2279
2280 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2281 {
2282         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2283
2284         if (ep_bw->ep_interval == 0)
2285                 return SS_OVERHEAD_BURST +
2286                         (ep_bw->mult * ep_bw->num_packets *
2287                                         (SS_OVERHEAD + mps));
2288         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2289                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2290                                 1 << ep_bw->ep_interval);
2291
2292 }
2293
2294 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2295                 struct xhci_bw_info *ep_bw,
2296                 struct xhci_interval_bw_table *bw_table,
2297                 struct usb_device *udev,
2298                 struct xhci_virt_ep *virt_ep,
2299                 struct xhci_tt_bw_info *tt_info)
2300 {
2301         struct xhci_interval_bw *interval_bw;
2302         int normalized_interval;
2303
2304         if (xhci_is_async_ep(ep_bw->type))
2305                 return;
2306
2307         if (udev->speed >= USB_SPEED_SUPER) {
2308                 if (xhci_is_sync_in_ep(ep_bw->type))
2309                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2310                                 xhci_get_ss_bw_consumed(ep_bw);
2311                 else
2312                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2313                                 xhci_get_ss_bw_consumed(ep_bw);
2314                 return;
2315         }
2316
2317         /* SuperSpeed endpoints never get added to intervals in the table, so
2318          * this check is only valid for HS/FS/LS devices.
2319          */
2320         if (list_empty(&virt_ep->bw_endpoint_list))
2321                 return;
2322         /* For LS/FS devices, we need to translate the interval expressed in
2323          * microframes to frames.
2324          */
2325         if (udev->speed == USB_SPEED_HIGH)
2326                 normalized_interval = ep_bw->ep_interval;
2327         else
2328                 normalized_interval = ep_bw->ep_interval - 3;
2329
2330         if (normalized_interval == 0)
2331                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2332         interval_bw = &bw_table->interval_bw[normalized_interval];
2333         interval_bw->num_packets -= ep_bw->num_packets;
2334         switch (udev->speed) {
2335         case USB_SPEED_LOW:
2336                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2337                 break;
2338         case USB_SPEED_FULL:
2339                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2340                 break;
2341         case USB_SPEED_HIGH:
2342                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2343                 break;
2344         case USB_SPEED_SUPER:
2345         case USB_SPEED_SUPER_PLUS:
2346         case USB_SPEED_UNKNOWN:
2347         case USB_SPEED_WIRELESS:
2348                 /* Should never happen because only LS/FS/HS endpoints will get
2349                  * added to the endpoint list.
2350                  */
2351                 return;
2352         }
2353         if (tt_info)
2354                 tt_info->active_eps -= 1;
2355         list_del_init(&virt_ep->bw_endpoint_list);
2356 }
2357
2358 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2359                 struct xhci_bw_info *ep_bw,
2360                 struct xhci_interval_bw_table *bw_table,
2361                 struct usb_device *udev,
2362                 struct xhci_virt_ep *virt_ep,
2363                 struct xhci_tt_bw_info *tt_info)
2364 {
2365         struct xhci_interval_bw *interval_bw;
2366         struct xhci_virt_ep *smaller_ep;
2367         int normalized_interval;
2368
2369         if (xhci_is_async_ep(ep_bw->type))
2370                 return;
2371
2372         if (udev->speed == USB_SPEED_SUPER) {
2373                 if (xhci_is_sync_in_ep(ep_bw->type))
2374                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2375                                 xhci_get_ss_bw_consumed(ep_bw);
2376                 else
2377                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2378                                 xhci_get_ss_bw_consumed(ep_bw);
2379                 return;
2380         }
2381
2382         /* For LS/FS devices, we need to translate the interval expressed in
2383          * microframes to frames.
2384          */
2385         if (udev->speed == USB_SPEED_HIGH)
2386                 normalized_interval = ep_bw->ep_interval;
2387         else
2388                 normalized_interval = ep_bw->ep_interval - 3;
2389
2390         if (normalized_interval == 0)
2391                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2392         interval_bw = &bw_table->interval_bw[normalized_interval];
2393         interval_bw->num_packets += ep_bw->num_packets;
2394         switch (udev->speed) {
2395         case USB_SPEED_LOW:
2396                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2397                 break;
2398         case USB_SPEED_FULL:
2399                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2400                 break;
2401         case USB_SPEED_HIGH:
2402                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2403                 break;
2404         case USB_SPEED_SUPER:
2405         case USB_SPEED_SUPER_PLUS:
2406         case USB_SPEED_UNKNOWN:
2407         case USB_SPEED_WIRELESS:
2408                 /* Should never happen because only LS/FS/HS endpoints will get
2409                  * added to the endpoint list.
2410                  */
2411                 return;
2412         }
2413
2414         if (tt_info)
2415                 tt_info->active_eps += 1;
2416         /* Insert the endpoint into the list, largest max packet size first. */
2417         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2418                         bw_endpoint_list) {
2419                 if (ep_bw->max_packet_size >=
2420                                 smaller_ep->bw_info.max_packet_size) {
2421                         /* Add the new ep before the smaller endpoint */
2422                         list_add_tail(&virt_ep->bw_endpoint_list,
2423                                         &smaller_ep->bw_endpoint_list);
2424                         return;
2425                 }
2426         }
2427         /* Add the new endpoint at the end of the list. */
2428         list_add_tail(&virt_ep->bw_endpoint_list,
2429                         &interval_bw->endpoints);
2430 }
2431
2432 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2433                 struct xhci_virt_device *virt_dev,
2434                 int old_active_eps)
2435 {
2436         struct xhci_root_port_bw_info *rh_bw_info;
2437         if (!virt_dev->tt_info)
2438                 return;
2439
2440         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2441         if (old_active_eps == 0 &&
2442                                 virt_dev->tt_info->active_eps != 0) {
2443                 rh_bw_info->num_active_tts += 1;
2444                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2445         } else if (old_active_eps != 0 &&
2446                                 virt_dev->tt_info->active_eps == 0) {
2447                 rh_bw_info->num_active_tts -= 1;
2448                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2449         }
2450 }
2451
2452 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2453                 struct xhci_virt_device *virt_dev,
2454                 struct xhci_container_ctx *in_ctx)
2455 {
2456         struct xhci_bw_info ep_bw_info[31];
2457         int i;
2458         struct xhci_input_control_ctx *ctrl_ctx;
2459         int old_active_eps = 0;
2460
2461         if (virt_dev->tt_info)
2462                 old_active_eps = virt_dev->tt_info->active_eps;
2463
2464         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2465         if (!ctrl_ctx) {
2466                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2467                                 __func__);
2468                 return -ENOMEM;
2469         }
2470
2471         for (i = 0; i < 31; i++) {
2472                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2473                         continue;
2474
2475                 /* Make a copy of the BW info in case we need to revert this */
2476                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2477                                 sizeof(ep_bw_info[i]));
2478                 /* Drop the endpoint from the interval table if the endpoint is
2479                  * being dropped or changed.
2480                  */
2481                 if (EP_IS_DROPPED(ctrl_ctx, i))
2482                         xhci_drop_ep_from_interval_table(xhci,
2483                                         &virt_dev->eps[i].bw_info,
2484                                         virt_dev->bw_table,
2485                                         virt_dev->udev,
2486                                         &virt_dev->eps[i],
2487                                         virt_dev->tt_info);
2488         }
2489         /* Overwrite the information stored in the endpoints' bw_info */
2490         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2491         for (i = 0; i < 31; i++) {
2492                 /* Add any changed or added endpoints to the interval table */
2493                 if (EP_IS_ADDED(ctrl_ctx, i))
2494                         xhci_add_ep_to_interval_table(xhci,
2495                                         &virt_dev->eps[i].bw_info,
2496                                         virt_dev->bw_table,
2497                                         virt_dev->udev,
2498                                         &virt_dev->eps[i],
2499                                         virt_dev->tt_info);
2500         }
2501
2502         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2503                 /* Ok, this fits in the bandwidth we have.
2504                  * Update the number of active TTs.
2505                  */
2506                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2507                 return 0;
2508         }
2509
2510         /* We don't have enough bandwidth for this, revert the stored info. */
2511         for (i = 0; i < 31; i++) {
2512                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2513                         continue;
2514
2515                 /* Drop the new copies of any added or changed endpoints from
2516                  * the interval table.
2517                  */
2518                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2519                         xhci_drop_ep_from_interval_table(xhci,
2520                                         &virt_dev->eps[i].bw_info,
2521                                         virt_dev->bw_table,
2522                                         virt_dev->udev,
2523                                         &virt_dev->eps[i],
2524                                         virt_dev->tt_info);
2525                 }
2526                 /* Revert the endpoint back to its old information */
2527                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2528                                 sizeof(ep_bw_info[i]));
2529                 /* Add any changed or dropped endpoints back into the table */
2530                 if (EP_IS_DROPPED(ctrl_ctx, i))
2531                         xhci_add_ep_to_interval_table(xhci,
2532                                         &virt_dev->eps[i].bw_info,
2533                                         virt_dev->bw_table,
2534                                         virt_dev->udev,
2535                                         &virt_dev->eps[i],
2536                                         virt_dev->tt_info);
2537         }
2538         return -ENOMEM;
2539 }
2540
2541
2542 /* Issue a configure endpoint command or evaluate context command
2543  * and wait for it to finish.
2544  */
2545 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2546                 struct usb_device *udev,
2547                 struct xhci_command *command,
2548                 bool ctx_change, bool must_succeed)
2549 {
2550         int ret;
2551         unsigned long flags;
2552         struct xhci_input_control_ctx *ctrl_ctx;
2553         struct xhci_virt_device *virt_dev;
2554         struct xhci_slot_ctx *slot_ctx;
2555
2556         if (!command)
2557                 return -EINVAL;
2558
2559         spin_lock_irqsave(&xhci->lock, flags);
2560
2561         if (xhci->xhc_state & XHCI_STATE_DYING) {
2562                 spin_unlock_irqrestore(&xhci->lock, flags);
2563                 return -ESHUTDOWN;
2564         }
2565
2566         virt_dev = xhci->devs[udev->slot_id];
2567
2568         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2569         if (!ctrl_ctx) {
2570                 spin_unlock_irqrestore(&xhci->lock, flags);
2571                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2572                                 __func__);
2573                 return -ENOMEM;
2574         }
2575
2576         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2577                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2578                 spin_unlock_irqrestore(&xhci->lock, flags);
2579                 xhci_warn(xhci, "Not enough host resources, "
2580                                 "active endpoint contexts = %u\n",
2581                                 xhci->num_active_eps);
2582                 return -ENOMEM;
2583         }
2584         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2585             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2586                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2587                         xhci_free_host_resources(xhci, ctrl_ctx);
2588                 spin_unlock_irqrestore(&xhci->lock, flags);
2589                 xhci_warn(xhci, "Not enough bandwidth\n");
2590                 return -ENOMEM;
2591         }
2592
2593         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2594         trace_xhci_configure_endpoint(slot_ctx);
2595
2596         if (!ctx_change)
2597                 ret = xhci_queue_configure_endpoint(xhci, command,
2598                                 command->in_ctx->dma,
2599                                 udev->slot_id, must_succeed);
2600         else
2601                 ret = xhci_queue_evaluate_context(xhci, command,
2602                                 command->in_ctx->dma,
2603                                 udev->slot_id, must_succeed);
2604         if (ret < 0) {
2605                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2606                         xhci_free_host_resources(xhci, ctrl_ctx);
2607                 spin_unlock_irqrestore(&xhci->lock, flags);
2608                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2609                                 "FIXME allocate a new ring segment");
2610                 return -ENOMEM;
2611         }
2612         xhci_ring_cmd_db(xhci);
2613         spin_unlock_irqrestore(&xhci->lock, flags);
2614
2615         /* Wait for the configure endpoint command to complete */
2616         wait_for_completion(command->completion);
2617
2618         if (!ctx_change)
2619                 ret = xhci_configure_endpoint_result(xhci, udev,
2620                                                      &command->status);
2621         else
2622                 ret = xhci_evaluate_context_result(xhci, udev,
2623                                                    &command->status);
2624
2625         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2626                 spin_lock_irqsave(&xhci->lock, flags);
2627                 /* If the command failed, remove the reserved resources.
2628                  * Otherwise, clean up the estimate to include dropped eps.
2629                  */
2630                 if (ret)
2631                         xhci_free_host_resources(xhci, ctrl_ctx);
2632                 else
2633                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2634                 spin_unlock_irqrestore(&xhci->lock, flags);
2635         }
2636         return ret;
2637 }
2638
2639 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2640         struct xhci_virt_device *vdev, int i)
2641 {
2642         struct xhci_virt_ep *ep = &vdev->eps[i];
2643
2644         if (ep->ep_state & EP_HAS_STREAMS) {
2645                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2646                                 xhci_get_endpoint_address(i));
2647                 xhci_free_stream_info(xhci, ep->stream_info);
2648                 ep->stream_info = NULL;
2649                 ep->ep_state &= ~EP_HAS_STREAMS;
2650         }
2651 }
2652
2653 /* Called after one or more calls to xhci_add_endpoint() or
2654  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2655  * to call xhci_reset_bandwidth().
2656  *
2657  * Since we are in the middle of changing either configuration or
2658  * installing a new alt setting, the USB core won't allow URBs to be
2659  * enqueued for any endpoint on the old config or interface.  Nothing
2660  * else should be touching the xhci->devs[slot_id] structure, so we
2661  * don't need to take the xhci->lock for manipulating that.
2662  */
2663 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2664 {
2665         int i;
2666         int ret = 0;
2667         struct xhci_hcd *xhci;
2668         struct xhci_virt_device *virt_dev;
2669         struct xhci_input_control_ctx *ctrl_ctx;
2670         struct xhci_slot_ctx *slot_ctx;
2671         struct xhci_command *command;
2672
2673         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2674         if (ret <= 0)
2675                 return ret;
2676         xhci = hcd_to_xhci(hcd);
2677         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2678                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2679                 return -ENODEV;
2680
2681         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2682         virt_dev = xhci->devs[udev->slot_id];
2683
2684         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2685         if (!command)
2686                 return -ENOMEM;
2687
2688         command->in_ctx = virt_dev->in_ctx;
2689
2690         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2691         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2692         if (!ctrl_ctx) {
2693                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2694                                 __func__);
2695                 ret = -ENOMEM;
2696                 goto command_cleanup;
2697         }
2698         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2699         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2700         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2701
2702         /* Don't issue the command if there's no endpoints to update. */
2703         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2704             ctrl_ctx->drop_flags == 0) {
2705                 ret = 0;
2706                 goto command_cleanup;
2707         }
2708         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2709         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2710         for (i = 31; i >= 1; i--) {
2711                 __le32 le32 = cpu_to_le32(BIT(i));
2712
2713                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2714                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2715                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2716                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2717                         break;
2718                 }
2719         }
2720
2721         ret = xhci_configure_endpoint(xhci, udev, command,
2722                         false, false);
2723         if (ret)
2724                 /* Callee should call reset_bandwidth() */
2725                 goto command_cleanup;
2726
2727         /* Free any rings that were dropped, but not changed. */
2728         for (i = 1; i < 31; i++) {
2729                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2730                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2731                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2732                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2733                 }
2734         }
2735         xhci_zero_in_ctx(xhci, virt_dev);
2736         /*
2737          * Install any rings for completely new endpoints or changed endpoints,
2738          * and free any old rings from changed endpoints.
2739          */
2740         for (i = 1; i < 31; i++) {
2741                 if (!virt_dev->eps[i].new_ring)
2742                         continue;
2743                 /* Only free the old ring if it exists.
2744                  * It may not if this is the first add of an endpoint.
2745                  */
2746                 if (virt_dev->eps[i].ring) {
2747                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2748                 }
2749                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2750                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2751                 virt_dev->eps[i].new_ring = NULL;
2752         }
2753 command_cleanup:
2754         kfree(command->completion);
2755         kfree(command);
2756
2757         return ret;
2758 }
2759
2760 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2761 {
2762         struct xhci_hcd *xhci;
2763         struct xhci_virt_device *virt_dev;
2764         int i, ret;
2765
2766         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2767         if (ret <= 0)
2768                 return;
2769         xhci = hcd_to_xhci(hcd);
2770
2771         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2772         virt_dev = xhci->devs[udev->slot_id];
2773         /* Free any rings allocated for added endpoints */
2774         for (i = 0; i < 31; i++) {
2775                 if (virt_dev->eps[i].new_ring) {
2776                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2777                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2778                         virt_dev->eps[i].new_ring = NULL;
2779                 }
2780         }
2781         xhci_zero_in_ctx(xhci, virt_dev);
2782 }
2783
2784 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2785                 struct xhci_container_ctx *in_ctx,
2786                 struct xhci_container_ctx *out_ctx,
2787                 struct xhci_input_control_ctx *ctrl_ctx,
2788                 u32 add_flags, u32 drop_flags)
2789 {
2790         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2791         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2792         xhci_slot_copy(xhci, in_ctx, out_ctx);
2793         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2794 }
2795
2796 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2797                 unsigned int slot_id, unsigned int ep_index,
2798                 struct xhci_dequeue_state *deq_state)
2799 {
2800         struct xhci_input_control_ctx *ctrl_ctx;
2801         struct xhci_container_ctx *in_ctx;
2802         struct xhci_ep_ctx *ep_ctx;
2803         u32 added_ctxs;
2804         dma_addr_t addr;
2805
2806         in_ctx = xhci->devs[slot_id]->in_ctx;
2807         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2808         if (!ctrl_ctx) {
2809                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2810                                 __func__);
2811                 return;
2812         }
2813
2814         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2815                         xhci->devs[slot_id]->out_ctx, ep_index);
2816         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2817         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2818                         deq_state->new_deq_ptr);
2819         if (addr == 0) {
2820                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2821                                 "reset ep command\n");
2822                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2823                                 deq_state->new_deq_seg,
2824                                 deq_state->new_deq_ptr);
2825                 return;
2826         }
2827         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2828
2829         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2830         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2831                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2832                         added_ctxs, added_ctxs);
2833 }
2834
2835 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2836                                unsigned int stream_id, struct xhci_td *td)
2837 {
2838         struct xhci_dequeue_state deq_state;
2839         struct usb_device *udev = td->urb->dev;
2840
2841         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2842                         "Cleaning up stalled endpoint ring");
2843         /* We need to move the HW's dequeue pointer past this TD,
2844          * or it will attempt to resend it on the next doorbell ring.
2845          */
2846         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2847                         ep_index, stream_id, td, &deq_state);
2848
2849         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2850                 return;
2851
2852         /* HW with the reset endpoint quirk will use the saved dequeue state to
2853          * issue a configure endpoint command later.
2854          */
2855         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2856                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2857                                 "Queueing new dequeue state");
2858                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2859                                 ep_index, &deq_state);
2860         } else {
2861                 /* Better hope no one uses the input context between now and the
2862                  * reset endpoint completion!
2863                  * XXX: No idea how this hardware will react when stream rings
2864                  * are enabled.
2865                  */
2866                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2867                                 "Setting up input context for "
2868                                 "configure endpoint command");
2869                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2870                                 ep_index, &deq_state);
2871         }
2872 }
2873
2874 /* Called when clearing halted device. The core should have sent the control
2875  * message to clear the device halt condition. The host side of the halt should
2876  * already be cleared with a reset endpoint command issued when the STALL tx
2877  * event was received.
2878  *
2879  * Context: in_interrupt
2880  */
2881
2882 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2883                 struct usb_host_endpoint *ep)
2884 {
2885         struct xhci_hcd *xhci;
2886
2887         xhci = hcd_to_xhci(hcd);
2888
2889         /*
2890          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2891          * The Reset Endpoint Command may only be issued to endpoints in the
2892          * Halted state. If software wishes reset the Data Toggle or Sequence
2893          * Number of an endpoint that isn't in the Halted state, then software
2894          * may issue a Configure Endpoint Command with the Drop and Add bits set
2895          * for the target endpoint. that is in the Stopped state.
2896          */
2897
2898         /* For now just print debug to follow the situation */
2899         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2900                  ep->desc.bEndpointAddress);
2901 }
2902
2903 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2904                 struct usb_device *udev, struct usb_host_endpoint *ep,
2905                 unsigned int slot_id)
2906 {
2907         int ret;
2908         unsigned int ep_index;
2909         unsigned int ep_state;
2910
2911         if (!ep)
2912                 return -EINVAL;
2913         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2914         if (ret <= 0)
2915                 return -EINVAL;
2916         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2917                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2918                                 " descriptor for ep 0x%x does not support streams\n",
2919                                 ep->desc.bEndpointAddress);
2920                 return -EINVAL;
2921         }
2922
2923         ep_index = xhci_get_endpoint_index(&ep->desc);
2924         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2925         if (ep_state & EP_HAS_STREAMS ||
2926                         ep_state & EP_GETTING_STREAMS) {
2927                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2928                                 "already has streams set up.\n",
2929                                 ep->desc.bEndpointAddress);
2930                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2931                                 "dynamic stream context array reallocation.\n");
2932                 return -EINVAL;
2933         }
2934         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2935                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2936                                 "endpoint 0x%x; URBs are pending.\n",
2937                                 ep->desc.bEndpointAddress);
2938                 return -EINVAL;
2939         }
2940         return 0;
2941 }
2942
2943 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2944                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2945 {
2946         unsigned int max_streams;
2947
2948         /* The stream context array size must be a power of two */
2949         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2950         /*
2951          * Find out how many primary stream array entries the host controller
2952          * supports.  Later we may use secondary stream arrays (similar to 2nd
2953          * level page entries), but that's an optional feature for xHCI host
2954          * controllers. xHCs must support at least 4 stream IDs.
2955          */
2956         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2957         if (*num_stream_ctxs > max_streams) {
2958                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2959                                 max_streams);
2960                 *num_stream_ctxs = max_streams;
2961                 *num_streams = max_streams;
2962         }
2963 }
2964
2965 /* Returns an error code if one of the endpoint already has streams.
2966  * This does not change any data structures, it only checks and gathers
2967  * information.
2968  */
2969 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2970                 struct usb_device *udev,
2971                 struct usb_host_endpoint **eps, unsigned int num_eps,
2972                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2973 {
2974         unsigned int max_streams;
2975         unsigned int endpoint_flag;
2976         int i;
2977         int ret;
2978
2979         for (i = 0; i < num_eps; i++) {
2980                 ret = xhci_check_streams_endpoint(xhci, udev,
2981                                 eps[i], udev->slot_id);
2982                 if (ret < 0)
2983                         return ret;
2984
2985                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2986                 if (max_streams < (*num_streams - 1)) {
2987                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2988                                         eps[i]->desc.bEndpointAddress,
2989                                         max_streams);
2990                         *num_streams = max_streams+1;
2991                 }
2992
2993                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2994                 if (*changed_ep_bitmask & endpoint_flag)
2995                         return -EINVAL;
2996                 *changed_ep_bitmask |= endpoint_flag;
2997         }
2998         return 0;
2999 }
3000
3001 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3002                 struct usb_device *udev,
3003                 struct usb_host_endpoint **eps, unsigned int num_eps)
3004 {
3005         u32 changed_ep_bitmask = 0;
3006         unsigned int slot_id;
3007         unsigned int ep_index;
3008         unsigned int ep_state;
3009         int i;
3010
3011         slot_id = udev->slot_id;
3012         if (!xhci->devs[slot_id])
3013                 return 0;
3014
3015         for (i = 0; i < num_eps; i++) {
3016                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3017                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3018                 /* Are streams already being freed for the endpoint? */
3019                 if (ep_state & EP_GETTING_NO_STREAMS) {
3020                         xhci_warn(xhci, "WARN Can't disable streams for "
3021                                         "endpoint 0x%x, "
3022                                         "streams are being disabled already\n",
3023                                         eps[i]->desc.bEndpointAddress);
3024                         return 0;
3025                 }
3026                 /* Are there actually any streams to free? */
3027                 if (!(ep_state & EP_HAS_STREAMS) &&
3028                                 !(ep_state & EP_GETTING_STREAMS)) {
3029                         xhci_warn(xhci, "WARN Can't disable streams for "
3030                                         "endpoint 0x%x, "
3031                                         "streams are already disabled!\n",
3032                                         eps[i]->desc.bEndpointAddress);
3033                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3034                                         "with non-streams endpoint\n");
3035                         return 0;
3036                 }
3037                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3038         }
3039         return changed_ep_bitmask;
3040 }
3041
3042 /*
3043  * The USB device drivers use this function (through the HCD interface in USB
3044  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3045  * coordinate mass storage command queueing across multiple endpoints (basically
3046  * a stream ID == a task ID).
3047  *
3048  * Setting up streams involves allocating the same size stream context array
3049  * for each endpoint and issuing a configure endpoint command for all endpoints.
3050  *
3051  * Don't allow the call to succeed if one endpoint only supports one stream
3052  * (which means it doesn't support streams at all).
3053  *
3054  * Drivers may get less stream IDs than they asked for, if the host controller
3055  * hardware or endpoints claim they can't support the number of requested
3056  * stream IDs.
3057  */
3058 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3059                 struct usb_host_endpoint **eps, unsigned int num_eps,
3060                 unsigned int num_streams, gfp_t mem_flags)
3061 {
3062         int i, ret;
3063         struct xhci_hcd *xhci;
3064         struct xhci_virt_device *vdev;
3065         struct xhci_command *config_cmd;
3066         struct xhci_input_control_ctx *ctrl_ctx;
3067         unsigned int ep_index;
3068         unsigned int num_stream_ctxs;
3069         unsigned int max_packet;
3070         unsigned long flags;
3071         u32 changed_ep_bitmask = 0;
3072
3073         if (!eps)
3074                 return -EINVAL;
3075
3076         /* Add one to the number of streams requested to account for
3077          * stream 0 that is reserved for xHCI usage.
3078          */
3079         num_streams += 1;
3080         xhci = hcd_to_xhci(hcd);
3081         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3082                         num_streams);
3083
3084         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3085         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3086                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3087                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3088                 return -ENOSYS;
3089         }
3090
3091         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3092         if (!config_cmd)
3093                 return -ENOMEM;
3094
3095         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3096         if (!ctrl_ctx) {
3097                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3098                                 __func__);
3099                 xhci_free_command(xhci, config_cmd);
3100                 return -ENOMEM;
3101         }
3102
3103         /* Check to make sure all endpoints are not already configured for
3104          * streams.  While we're at it, find the maximum number of streams that
3105          * all the endpoints will support and check for duplicate endpoints.
3106          */
3107         spin_lock_irqsave(&xhci->lock, flags);
3108         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3109                         num_eps, &num_streams, &changed_ep_bitmask);
3110         if (ret < 0) {
3111                 xhci_free_command(xhci, config_cmd);
3112                 spin_unlock_irqrestore(&xhci->lock, flags);
3113                 return ret;
3114         }
3115         if (num_streams <= 1) {
3116                 xhci_warn(xhci, "WARN: endpoints can't handle "
3117                                 "more than one stream.\n");
3118                 xhci_free_command(xhci, config_cmd);
3119                 spin_unlock_irqrestore(&xhci->lock, flags);
3120                 return -EINVAL;
3121         }
3122         vdev = xhci->devs[udev->slot_id];
3123         /* Mark each endpoint as being in transition, so
3124          * xhci_urb_enqueue() will reject all URBs.
3125          */
3126         for (i = 0; i < num_eps; i++) {
3127                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3128                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3129         }
3130         spin_unlock_irqrestore(&xhci->lock, flags);
3131
3132         /* Setup internal data structures and allocate HW data structures for
3133          * streams (but don't install the HW structures in the input context
3134          * until we're sure all memory allocation succeeded).
3135          */
3136         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3137         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3138                         num_stream_ctxs, num_streams);
3139
3140         for (i = 0; i < num_eps; i++) {
3141                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3142                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3143                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3144                                 num_stream_ctxs,
3145                                 num_streams,
3146                                 max_packet, mem_flags);
3147                 if (!vdev->eps[ep_index].stream_info)
3148                         goto cleanup;
3149                 /* Set maxPstreams in endpoint context and update deq ptr to
3150                  * point to stream context array. FIXME
3151                  */
3152         }
3153
3154         /* Set up the input context for a configure endpoint command. */
3155         for (i = 0; i < num_eps; i++) {
3156                 struct xhci_ep_ctx *ep_ctx;
3157
3158                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3159                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3160
3161                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3162                                 vdev->out_ctx, ep_index);
3163                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3164                                 vdev->eps[ep_index].stream_info);
3165         }
3166         /* Tell the HW to drop its old copy of the endpoint context info
3167          * and add the updated copy from the input context.
3168          */
3169         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3170                         vdev->out_ctx, ctrl_ctx,
3171                         changed_ep_bitmask, changed_ep_bitmask);
3172
3173         /* Issue and wait for the configure endpoint command */
3174         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3175                         false, false);
3176
3177         /* xHC rejected the configure endpoint command for some reason, so we
3178          * leave the old ring intact and free our internal streams data
3179          * structure.
3180          */
3181         if (ret < 0)
3182                 goto cleanup;
3183
3184         spin_lock_irqsave(&xhci->lock, flags);
3185         for (i = 0; i < num_eps; i++) {
3186                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3187                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3188                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3189                          udev->slot_id, ep_index);
3190                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3191         }
3192         xhci_free_command(xhci, config_cmd);
3193         spin_unlock_irqrestore(&xhci->lock, flags);
3194
3195         /* Subtract 1 for stream 0, which drivers can't use */
3196         return num_streams - 1;
3197
3198 cleanup:
3199         /* If it didn't work, free the streams! */
3200         for (i = 0; i < num_eps; i++) {
3201                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3202                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3203                 vdev->eps[ep_index].stream_info = NULL;
3204                 /* FIXME Unset maxPstreams in endpoint context and
3205                  * update deq ptr to point to normal string ring.
3206                  */
3207                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3208                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3209                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3210         }
3211         xhci_free_command(xhci, config_cmd);
3212         return -ENOMEM;
3213 }
3214
3215 /* Transition the endpoint from using streams to being a "normal" endpoint
3216  * without streams.
3217  *
3218  * Modify the endpoint context state, submit a configure endpoint command,
3219  * and free all endpoint rings for streams if that completes successfully.
3220  */
3221 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3222                 struct usb_host_endpoint **eps, unsigned int num_eps,
3223                 gfp_t mem_flags)
3224 {
3225         int i, ret;
3226         struct xhci_hcd *xhci;
3227         struct xhci_virt_device *vdev;
3228         struct xhci_command *command;
3229         struct xhci_input_control_ctx *ctrl_ctx;
3230         unsigned int ep_index;
3231         unsigned long flags;
3232         u32 changed_ep_bitmask;
3233
3234         xhci = hcd_to_xhci(hcd);
3235         vdev = xhci->devs[udev->slot_id];
3236
3237         /* Set up a configure endpoint command to remove the streams rings */
3238         spin_lock_irqsave(&xhci->lock, flags);
3239         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3240                         udev, eps, num_eps);
3241         if (changed_ep_bitmask == 0) {
3242                 spin_unlock_irqrestore(&xhci->lock, flags);
3243                 return -EINVAL;
3244         }
3245
3246         /* Use the xhci_command structure from the first endpoint.  We may have
3247          * allocated too many, but the driver may call xhci_free_streams() for
3248          * each endpoint it grouped into one call to xhci_alloc_streams().
3249          */
3250         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3251         command = vdev->eps[ep_index].stream_info->free_streams_command;
3252         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3253         if (!ctrl_ctx) {
3254                 spin_unlock_irqrestore(&xhci->lock, flags);
3255                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3256                                 __func__);
3257                 return -EINVAL;
3258         }
3259
3260         for (i = 0; i < num_eps; i++) {
3261                 struct xhci_ep_ctx *ep_ctx;
3262
3263                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3264                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3265                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3266                         EP_GETTING_NO_STREAMS;
3267
3268                 xhci_endpoint_copy(xhci, command->in_ctx,
3269                                 vdev->out_ctx, ep_index);
3270                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3271                                 &vdev->eps[ep_index]);
3272         }
3273         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3274                         vdev->out_ctx, ctrl_ctx,
3275                         changed_ep_bitmask, changed_ep_bitmask);
3276         spin_unlock_irqrestore(&xhci->lock, flags);
3277
3278         /* Issue and wait for the configure endpoint command,
3279          * which must succeed.
3280          */
3281         ret = xhci_configure_endpoint(xhci, udev, command,
3282                         false, true);
3283
3284         /* xHC rejected the configure endpoint command for some reason, so we
3285          * leave the streams rings intact.
3286          */
3287         if (ret < 0)
3288                 return ret;
3289
3290         spin_lock_irqsave(&xhci->lock, flags);
3291         for (i = 0; i < num_eps; i++) {
3292                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3293                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3294                 vdev->eps[ep_index].stream_info = NULL;
3295                 /* FIXME Unset maxPstreams in endpoint context and
3296                  * update deq ptr to point to normal string ring.
3297                  */
3298                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3299                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3300         }
3301         spin_unlock_irqrestore(&xhci->lock, flags);
3302
3303         return 0;
3304 }
3305
3306 /*
3307  * Deletes endpoint resources for endpoints that were active before a Reset
3308  * Device command, or a Disable Slot command.  The Reset Device command leaves
3309  * the control endpoint intact, whereas the Disable Slot command deletes it.
3310  *
3311  * Must be called with xhci->lock held.
3312  */
3313 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3314         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3315 {
3316         int i;
3317         unsigned int num_dropped_eps = 0;
3318         unsigned int drop_flags = 0;
3319
3320         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3321                 if (virt_dev->eps[i].ring) {
3322                         drop_flags |= 1 << i;
3323                         num_dropped_eps++;
3324                 }
3325         }
3326         xhci->num_active_eps -= num_dropped_eps;
3327         if (num_dropped_eps)
3328                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3329                                 "Dropped %u ep ctxs, flags = 0x%x, "
3330                                 "%u now active.",
3331                                 num_dropped_eps, drop_flags,
3332                                 xhci->num_active_eps);
3333 }
3334
3335 /*
3336  * This submits a Reset Device Command, which will set the device state to 0,
3337  * set the device address to 0, and disable all the endpoints except the default
3338  * control endpoint.  The USB core should come back and call
3339  * xhci_address_device(), and then re-set up the configuration.  If this is
3340  * called because of a usb_reset_and_verify_device(), then the old alternate
3341  * settings will be re-installed through the normal bandwidth allocation
3342  * functions.
3343  *
3344  * Wait for the Reset Device command to finish.  Remove all structures
3345  * associated with the endpoints that were disabled.  Clear the input device
3346  * structure? Reset the control endpoint 0 max packet size?
3347  *
3348  * If the virt_dev to be reset does not exist or does not match the udev,
3349  * it means the device is lost, possibly due to the xHC restore error and
3350  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3351  * re-allocate the device.
3352  */
3353 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3354                 struct usb_device *udev)
3355 {
3356         int ret, i;
3357         unsigned long flags;
3358         struct xhci_hcd *xhci;
3359         unsigned int slot_id;
3360         struct xhci_virt_device *virt_dev;
3361         struct xhci_command *reset_device_cmd;
3362         struct xhci_slot_ctx *slot_ctx;
3363         int old_active_eps = 0;
3364
3365         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3366         if (ret <= 0)
3367                 return ret;
3368         xhci = hcd_to_xhci(hcd);
3369         slot_id = udev->slot_id;
3370         virt_dev = xhci->devs[slot_id];
3371         if (!virt_dev) {
3372                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3373                                 "not exist. Re-allocate the device\n", slot_id);
3374                 ret = xhci_alloc_dev(hcd, udev);
3375                 if (ret == 1)
3376                         return 0;
3377                 else
3378                         return -EINVAL;
3379         }
3380
3381         if (virt_dev->tt_info)
3382                 old_active_eps = virt_dev->tt_info->active_eps;
3383
3384         if (virt_dev->udev != udev) {
3385                 /* If the virt_dev and the udev does not match, this virt_dev
3386                  * may belong to another udev.
3387                  * Re-allocate the device.
3388                  */
3389                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3390                                 "not match the udev. Re-allocate the device\n",
3391                                 slot_id);
3392                 ret = xhci_alloc_dev(hcd, udev);
3393                 if (ret == 1)
3394                         return 0;
3395                 else
3396                         return -EINVAL;
3397         }
3398
3399         /* If device is not setup, there is no point in resetting it */
3400         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3401         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3402                                                 SLOT_STATE_DISABLED)
3403                 return 0;
3404
3405         trace_xhci_discover_or_reset_device(slot_ctx);
3406
3407         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3408         /* Allocate the command structure that holds the struct completion.
3409          * Assume we're in process context, since the normal device reset
3410          * process has to wait for the device anyway.  Storage devices are
3411          * reset as part of error handling, so use GFP_NOIO instead of
3412          * GFP_KERNEL.
3413          */
3414         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3415         if (!reset_device_cmd) {
3416                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3417                 return -ENOMEM;
3418         }
3419
3420         /* Attempt to submit the Reset Device command to the command ring */
3421         spin_lock_irqsave(&xhci->lock, flags);
3422
3423         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3424         if (ret) {
3425                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3426                 spin_unlock_irqrestore(&xhci->lock, flags);
3427                 goto command_cleanup;
3428         }
3429         xhci_ring_cmd_db(xhci);
3430         spin_unlock_irqrestore(&xhci->lock, flags);
3431
3432         /* Wait for the Reset Device command to finish */
3433         wait_for_completion(reset_device_cmd->completion);
3434
3435         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3436          * unless we tried to reset a slot ID that wasn't enabled,
3437          * or the device wasn't in the addressed or configured state.
3438          */
3439         ret = reset_device_cmd->status;
3440         switch (ret) {
3441         case COMP_COMMAND_ABORTED:
3442         case COMP_COMMAND_RING_STOPPED:
3443                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3444                 ret = -ETIME;
3445                 goto command_cleanup;
3446         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3447         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3448                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3449                                 slot_id,
3450                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3451                 xhci_dbg(xhci, "Not freeing device rings.\n");
3452                 /* Don't treat this as an error.  May change my mind later. */
3453                 ret = 0;
3454                 goto command_cleanup;
3455         case COMP_SUCCESS:
3456                 xhci_dbg(xhci, "Successful reset device command.\n");
3457                 break;
3458         default:
3459                 if (xhci_is_vendor_info_code(xhci, ret))
3460                         break;
3461                 xhci_warn(xhci, "Unknown completion code %u for "
3462                                 "reset device command.\n", ret);
3463                 ret = -EINVAL;
3464                 goto command_cleanup;
3465         }
3466
3467         /* Free up host controller endpoint resources */
3468         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3469                 spin_lock_irqsave(&xhci->lock, flags);
3470                 /* Don't delete the default control endpoint resources */
3471                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3472                 spin_unlock_irqrestore(&xhci->lock, flags);
3473         }
3474
3475         /* Everything but endpoint 0 is disabled, so free the rings. */
3476         for (i = 1; i < 31; i++) {
3477                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3478
3479                 if (ep->ep_state & EP_HAS_STREAMS) {
3480                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3481                                         xhci_get_endpoint_address(i));
3482                         xhci_free_stream_info(xhci, ep->stream_info);
3483                         ep->stream_info = NULL;
3484                         ep->ep_state &= ~EP_HAS_STREAMS;
3485                 }
3486
3487                 if (ep->ring) {
3488                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3489                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3490                 }
3491                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3492                         xhci_drop_ep_from_interval_table(xhci,
3493                                         &virt_dev->eps[i].bw_info,
3494                                         virt_dev->bw_table,
3495                                         udev,
3496                                         &virt_dev->eps[i],
3497                                         virt_dev->tt_info);
3498                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3499         }
3500         /* If necessary, update the number of active TTs on this root port */
3501         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3502         ret = 0;
3503
3504 command_cleanup:
3505         xhci_free_command(xhci, reset_device_cmd);
3506         return ret;
3507 }
3508
3509 /*
3510  * At this point, the struct usb_device is about to go away, the device has
3511  * disconnected, and all traffic has been stopped and the endpoints have been
3512  * disabled.  Free any HC data structures associated with that device.
3513  */
3514 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3515 {
3516         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3517         struct xhci_virt_device *virt_dev;
3518         struct xhci_slot_ctx *slot_ctx;
3519         int i, ret;
3520
3521 #ifndef CONFIG_USB_DEFAULT_PERSIST
3522         /*
3523          * We called pm_runtime_get_noresume when the device was attached.
3524          * Decrement the counter here to allow controller to runtime suspend
3525          * if no devices remain.
3526          */
3527         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3528                 pm_runtime_put_noidle(hcd->self.controller);
3529 #endif
3530
3531         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3532         /* If the host is halted due to driver unload, we still need to free the
3533          * device.
3534          */
3535         if (ret <= 0 && ret != -ENODEV)
3536                 return;
3537
3538         virt_dev = xhci->devs[udev->slot_id];
3539         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3540         trace_xhci_free_dev(slot_ctx);
3541
3542         /* Stop any wayward timer functions (which may grab the lock) */
3543         for (i = 0; i < 31; i++) {
3544                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3545                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3546         }
3547
3548         ret = xhci_disable_slot(xhci, udev->slot_id);
3549         if (ret) {
3550                 xhci_debugfs_remove_slot(xhci, udev->slot_id);
3551                 xhci_free_virt_device(xhci, udev->slot_id);
3552         }
3553 }
3554
3555 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3556 {
3557         struct xhci_command *command;
3558         unsigned long flags;
3559         u32 state;
3560         int ret = 0;
3561
3562         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3563         if (!command)
3564                 return -ENOMEM;
3565
3566         spin_lock_irqsave(&xhci->lock, flags);
3567         /* Don't disable the slot if the host controller is dead. */
3568         state = readl(&xhci->op_regs->status);
3569         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3570                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3571                 spin_unlock_irqrestore(&xhci->lock, flags);
3572                 kfree(command);
3573                 return -ENODEV;
3574         }
3575
3576         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3577                                 slot_id);
3578         if (ret) {
3579                 spin_unlock_irqrestore(&xhci->lock, flags);
3580                 kfree(command);
3581                 return ret;
3582         }
3583         xhci_ring_cmd_db(xhci);
3584         spin_unlock_irqrestore(&xhci->lock, flags);
3585         return ret;
3586 }
3587
3588 /*
3589  * Checks if we have enough host controller resources for the default control
3590  * endpoint.
3591  *
3592  * Must be called with xhci->lock held.
3593  */
3594 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3595 {
3596         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3597                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3598                                 "Not enough ep ctxs: "
3599                                 "%u active, need to add 1, limit is %u.",
3600                                 xhci->num_active_eps, xhci->limit_active_eps);
3601                 return -ENOMEM;
3602         }
3603         xhci->num_active_eps += 1;
3604         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3605                         "Adding 1 ep ctx, %u now active.",
3606                         xhci->num_active_eps);
3607         return 0;
3608 }
3609
3610
3611 /*
3612  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3613  * timed out, or allocating memory failed.  Returns 1 on success.
3614  */
3615 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3616 {
3617         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3618         struct xhci_virt_device *vdev;
3619         struct xhci_slot_ctx *slot_ctx;
3620         unsigned long flags;
3621         int ret, slot_id;
3622         struct xhci_command *command;
3623
3624         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3625         if (!command)
3626                 return 0;
3627
3628         spin_lock_irqsave(&xhci->lock, flags);
3629         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3630         if (ret) {
3631                 spin_unlock_irqrestore(&xhci->lock, flags);
3632                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3633                 xhci_free_command(xhci, command);
3634                 return 0;
3635         }
3636         xhci_ring_cmd_db(xhci);
3637         spin_unlock_irqrestore(&xhci->lock, flags);
3638
3639         wait_for_completion(command->completion);
3640         slot_id = command->slot_id;
3641
3642         if (!slot_id || command->status != COMP_SUCCESS) {
3643                 xhci_err(xhci, "Error while assigning device slot ID\n");
3644                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3645                                 HCS_MAX_SLOTS(
3646                                         readl(&xhci->cap_regs->hcs_params1)));
3647                 xhci_free_command(xhci, command);
3648                 return 0;
3649         }
3650
3651         xhci_free_command(xhci, command);
3652
3653         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3654                 spin_lock_irqsave(&xhci->lock, flags);
3655                 ret = xhci_reserve_host_control_ep_resources(xhci);
3656                 if (ret) {
3657                         spin_unlock_irqrestore(&xhci->lock, flags);
3658                         xhci_warn(xhci, "Not enough host resources, "
3659                                         "active endpoint contexts = %u\n",
3660                                         xhci->num_active_eps);
3661                         goto disable_slot;
3662                 }
3663                 spin_unlock_irqrestore(&xhci->lock, flags);
3664         }
3665         /* Use GFP_NOIO, since this function can be called from
3666          * xhci_discover_or_reset_device(), which may be called as part of
3667          * mass storage driver error handling.
3668          */
3669         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3670                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3671                 goto disable_slot;
3672         }
3673         vdev = xhci->devs[slot_id];
3674         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3675         trace_xhci_alloc_dev(slot_ctx);
3676
3677         udev->slot_id = slot_id;
3678
3679         xhci_debugfs_create_slot(xhci, slot_id);
3680
3681 #ifndef CONFIG_USB_DEFAULT_PERSIST
3682         /*
3683          * If resetting upon resume, we can't put the controller into runtime
3684          * suspend if there is a device attached.
3685          */
3686         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3687                 pm_runtime_get_noresume(hcd->self.controller);
3688 #endif
3689
3690         /* Is this a LS or FS device under a HS hub? */
3691         /* Hub or peripherial? */
3692         return 1;
3693
3694 disable_slot:
3695         ret = xhci_disable_slot(xhci, udev->slot_id);
3696         if (ret)
3697                 xhci_free_virt_device(xhci, udev->slot_id);
3698
3699         return 0;
3700 }
3701
3702 /*
3703  * Issue an Address Device command and optionally send a corresponding
3704  * SetAddress request to the device.
3705  */
3706 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3707                              enum xhci_setup_dev setup)
3708 {
3709         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3710         unsigned long flags;
3711         struct xhci_virt_device *virt_dev;
3712         int ret = 0;
3713         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3714         struct xhci_slot_ctx *slot_ctx;
3715         struct xhci_input_control_ctx *ctrl_ctx;
3716         u64 temp_64;
3717         struct xhci_command *command = NULL;
3718
3719         mutex_lock(&xhci->mutex);
3720
3721         if (xhci->xhc_state) {  /* dying, removing or halted */
3722                 ret = -ESHUTDOWN;
3723                 goto out;
3724         }
3725
3726         if (!udev->slot_id) {
3727                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3728                                 "Bad Slot ID %d", udev->slot_id);
3729                 ret = -EINVAL;
3730                 goto out;
3731         }
3732
3733         virt_dev = xhci->devs[udev->slot_id];
3734
3735         if (WARN_ON(!virt_dev)) {
3736                 /*
3737                  * In plug/unplug torture test with an NEC controller,
3738                  * a zero-dereference was observed once due to virt_dev = 0.
3739                  * Print useful debug rather than crash if it is observed again!
3740                  */
3741                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3742                         udev->slot_id);
3743                 ret = -EINVAL;
3744                 goto out;
3745         }
3746         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3747         trace_xhci_setup_device_slot(slot_ctx);
3748
3749         if (setup == SETUP_CONTEXT_ONLY) {
3750                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3751                     SLOT_STATE_DEFAULT) {
3752                         xhci_dbg(xhci, "Slot already in default state\n");
3753                         goto out;
3754                 }
3755         }
3756
3757         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3758         if (!command) {
3759                 ret = -ENOMEM;
3760                 goto out;
3761         }
3762
3763         command->in_ctx = virt_dev->in_ctx;
3764
3765         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3766         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3767         if (!ctrl_ctx) {
3768                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3769                                 __func__);
3770                 ret = -EINVAL;
3771                 goto out;
3772         }
3773         /*
3774          * If this is the first Set Address since device plug-in or
3775          * virt_device realloaction after a resume with an xHCI power loss,
3776          * then set up the slot context.
3777          */
3778         if (!slot_ctx->dev_info)
3779                 xhci_setup_addressable_virt_dev(xhci, udev);
3780         /* Otherwise, update the control endpoint ring enqueue pointer. */
3781         else
3782                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3783         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3784         ctrl_ctx->drop_flags = 0;
3785
3786         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3787                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3788
3789         spin_lock_irqsave(&xhci->lock, flags);
3790         trace_xhci_setup_device(virt_dev);
3791         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3792                                         udev->slot_id, setup);
3793         if (ret) {
3794                 spin_unlock_irqrestore(&xhci->lock, flags);
3795                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3796                                 "FIXME: allocate a command ring segment");
3797                 goto out;
3798         }
3799         xhci_ring_cmd_db(xhci);
3800         spin_unlock_irqrestore(&xhci->lock, flags);
3801
3802         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3803         wait_for_completion(command->completion);
3804
3805         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3806          * the SetAddress() "recovery interval" required by USB and aborting the
3807          * command on a timeout.
3808          */
3809         switch (command->status) {
3810         case COMP_COMMAND_ABORTED:
3811         case COMP_COMMAND_RING_STOPPED:
3812                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3813                 ret = -ETIME;
3814                 break;
3815         case COMP_CONTEXT_STATE_ERROR:
3816         case COMP_SLOT_NOT_ENABLED_ERROR:
3817                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3818                          act, udev->slot_id);
3819                 ret = -EINVAL;
3820                 break;
3821         case COMP_USB_TRANSACTION_ERROR:
3822                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3823
3824                 mutex_unlock(&xhci->mutex);
3825                 ret = xhci_disable_slot(xhci, udev->slot_id);
3826                 if (!ret)
3827                         xhci_alloc_dev(hcd, udev);
3828                 kfree(command->completion);
3829                 kfree(command);
3830                 return -EPROTO;
3831         case COMP_INCOMPATIBLE_DEVICE_ERROR:
3832                 dev_warn(&udev->dev,
3833                          "ERROR: Incompatible device for setup %s command\n", act);
3834                 ret = -ENODEV;
3835                 break;
3836         case COMP_SUCCESS:
3837                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3838                                "Successful setup %s command", act);
3839                 break;
3840         default:
3841                 xhci_err(xhci,
3842                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3843                          act, command->status);
3844                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3845                 ret = -EINVAL;
3846                 break;
3847         }
3848         if (ret)
3849                 goto out;
3850         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3851         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3852                         "Op regs DCBAA ptr = %#016llx", temp_64);
3853         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3854                 "Slot ID %d dcbaa entry @%p = %#016llx",
3855                 udev->slot_id,
3856                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3857                 (unsigned long long)
3858                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3859         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3860                         "Output Context DMA address = %#08llx",
3861                         (unsigned long long)virt_dev->out_ctx->dma);
3862         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3863                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3864         /*
3865          * USB core uses address 1 for the roothubs, so we add one to the
3866          * address given back to us by the HC.
3867          */
3868         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3869                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3870         /* Zero the input context control for later use */
3871         ctrl_ctx->add_flags = 0;
3872         ctrl_ctx->drop_flags = 0;
3873
3874         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3875                        "Internal device address = %d",
3876                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3877 out:
3878         mutex_unlock(&xhci->mutex);
3879         if (command) {
3880                 kfree(command->completion);
3881                 kfree(command);
3882         }
3883         return ret;
3884 }
3885
3886 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3887 {
3888         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3889 }
3890
3891 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3892 {
3893         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3894 }
3895
3896 /*
3897  * Transfer the port index into real index in the HW port status
3898  * registers. Caculate offset between the port's PORTSC register
3899  * and port status base. Divide the number of per port register
3900  * to get the real index. The raw port number bases 1.
3901  */
3902 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3903 {
3904         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3905         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3906         __le32 __iomem *addr;
3907         int raw_port;
3908
3909         if (hcd->speed < HCD_USB3)
3910                 addr = xhci->usb2_ports[port1 - 1];
3911         else
3912                 addr = xhci->usb3_ports[port1 - 1];
3913
3914         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3915         return raw_port;
3916 }
3917
3918 /*
3919  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3920  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3921  */
3922 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3923                         struct usb_device *udev, u16 max_exit_latency)
3924 {
3925         struct xhci_virt_device *virt_dev;
3926         struct xhci_command *command;
3927         struct xhci_input_control_ctx *ctrl_ctx;
3928         struct xhci_slot_ctx *slot_ctx;
3929         unsigned long flags;
3930         int ret;
3931
3932         spin_lock_irqsave(&xhci->lock, flags);
3933
3934         virt_dev = xhci->devs[udev->slot_id];
3935
3936         /*
3937          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3938          * xHC was re-initialized. Exit latency will be set later after
3939          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3940          */
3941
3942         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3943                 spin_unlock_irqrestore(&xhci->lock, flags);
3944                 return 0;
3945         }
3946
3947         /* Attempt to issue an Evaluate Context command to change the MEL. */
3948         command = xhci->lpm_command;
3949         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3950         if (!ctrl_ctx) {
3951                 spin_unlock_irqrestore(&xhci->lock, flags);
3952                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3953                                 __func__);
3954                 return -ENOMEM;
3955         }
3956
3957         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3958         spin_unlock_irqrestore(&xhci->lock, flags);
3959
3960         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3961         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3962         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3963         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3964         slot_ctx->dev_state = 0;
3965
3966         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3967                         "Set up evaluate context for LPM MEL change.");
3968
3969         /* Issue and wait for the evaluate context command. */
3970         ret = xhci_configure_endpoint(xhci, udev, command,
3971                         true, true);
3972
3973         if (!ret) {
3974                 spin_lock_irqsave(&xhci->lock, flags);
3975                 virt_dev->current_mel = max_exit_latency;
3976                 spin_unlock_irqrestore(&xhci->lock, flags);
3977         }
3978         return ret;
3979 }
3980
3981 #ifdef CONFIG_PM
3982
3983 /* BESL to HIRD Encoding array for USB2 LPM */
3984 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3985         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3986
3987 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3988 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3989                                         struct usb_device *udev)
3990 {
3991         int u2del, besl, besl_host;
3992         int besl_device = 0;
3993         u32 field;
3994
3995         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3996         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3997
3998         if (field & USB_BESL_SUPPORT) {
3999                 for (besl_host = 0; besl_host < 16; besl_host++) {
4000                         if (xhci_besl_encoding[besl_host] >= u2del)
4001                                 break;
4002                 }
4003                 /* Use baseline BESL value as default */
4004                 if (field & USB_BESL_BASELINE_VALID)
4005                         besl_device = USB_GET_BESL_BASELINE(field);
4006                 else if (field & USB_BESL_DEEP_VALID)
4007                         besl_device = USB_GET_BESL_DEEP(field);
4008         } else {
4009                 if (u2del <= 50)
4010                         besl_host = 0;
4011                 else
4012                         besl_host = (u2del - 51) / 75 + 1;
4013         }
4014
4015         besl = besl_host + besl_device;
4016         if (besl > 15)
4017                 besl = 15;
4018
4019         return besl;
4020 }
4021
4022 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4023 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4024 {
4025         u32 field;
4026         int l1;
4027         int besld = 0;
4028         int hirdm = 0;
4029
4030         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4031
4032         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4033         l1 = udev->l1_params.timeout / 256;
4034
4035         /* device has preferred BESLD */
4036         if (field & USB_BESL_DEEP_VALID) {
4037                 besld = USB_GET_BESL_DEEP(field);
4038                 hirdm = 1;
4039         }
4040
4041         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4042 }
4043
4044 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4045                         struct usb_device *udev, int enable)
4046 {
4047         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4048         __le32 __iomem  **port_array;
4049         __le32 __iomem  *pm_addr, *hlpm_addr;
4050         u32             pm_val, hlpm_val, field;
4051         unsigned int    port_num;
4052         unsigned long   flags;
4053         int             hird, exit_latency;
4054         int             ret;
4055
4056         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4057                         !udev->lpm_capable)
4058                 return -EPERM;
4059
4060         if (!udev->parent || udev->parent->parent ||
4061                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4062                 return -EPERM;
4063
4064         if (udev->usb2_hw_lpm_capable != 1)
4065                 return -EPERM;
4066
4067         spin_lock_irqsave(&xhci->lock, flags);
4068
4069         port_array = xhci->usb2_ports;
4070         port_num = udev->portnum - 1;
4071         pm_addr = port_array[port_num] + PORTPMSC;
4072         pm_val = readl(pm_addr);
4073         hlpm_addr = port_array[port_num] + PORTHLPMC;
4074         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4075
4076         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4077                         enable ? "enable" : "disable", port_num + 1);
4078
4079         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4080                 /* Host supports BESL timeout instead of HIRD */
4081                 if (udev->usb2_hw_lpm_besl_capable) {
4082                         /* if device doesn't have a preferred BESL value use a
4083                          * default one which works with mixed HIRD and BESL
4084                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4085                          */
4086                         if ((field & USB_BESL_SUPPORT) &&
4087                             (field & USB_BESL_BASELINE_VALID))
4088                                 hird = USB_GET_BESL_BASELINE(field);
4089                         else
4090                                 hird = udev->l1_params.besl;
4091
4092                         exit_latency = xhci_besl_encoding[hird];
4093                         spin_unlock_irqrestore(&xhci->lock, flags);
4094
4095                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4096                          * input context for link powermanagement evaluate
4097                          * context commands. It is protected by hcd->bandwidth
4098                          * mutex and is shared by all devices. We need to set
4099                          * the max ext latency in USB 2 BESL LPM as well, so
4100                          * use the same mutex and xhci_change_max_exit_latency()
4101                          */
4102                         mutex_lock(hcd->bandwidth_mutex);
4103                         ret = xhci_change_max_exit_latency(xhci, udev,
4104                                                            exit_latency);
4105                         mutex_unlock(hcd->bandwidth_mutex);
4106
4107                         if (ret < 0)
4108                                 return ret;
4109                         spin_lock_irqsave(&xhci->lock, flags);
4110
4111                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4112                         writel(hlpm_val, hlpm_addr);
4113                         /* flush write */
4114                         readl(hlpm_addr);
4115                 } else {
4116                         hird = xhci_calculate_hird_besl(xhci, udev);
4117                 }
4118
4119                 pm_val &= ~PORT_HIRD_MASK;
4120                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4121                 writel(pm_val, pm_addr);
4122                 pm_val = readl(pm_addr);
4123                 pm_val |= PORT_HLE;
4124                 writel(pm_val, pm_addr);
4125                 /* flush write */
4126                 readl(pm_addr);
4127         } else {
4128                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4129                 writel(pm_val, pm_addr);
4130                 /* flush write */
4131                 readl(pm_addr);
4132                 if (udev->usb2_hw_lpm_besl_capable) {
4133                         spin_unlock_irqrestore(&xhci->lock, flags);
4134                         mutex_lock(hcd->bandwidth_mutex);
4135                         xhci_change_max_exit_latency(xhci, udev, 0);
4136                         mutex_unlock(hcd->bandwidth_mutex);
4137                         return 0;
4138                 }
4139         }
4140
4141         spin_unlock_irqrestore(&xhci->lock, flags);
4142         return 0;
4143 }
4144
4145 /* check if a usb2 port supports a given extened capability protocol
4146  * only USB2 ports extended protocol capability values are cached.
4147  * Return 1 if capability is supported
4148  */
4149 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4150                                            unsigned capability)
4151 {
4152         u32 port_offset, port_count;
4153         int i;
4154
4155         for (i = 0; i < xhci->num_ext_caps; i++) {
4156                 if (xhci->ext_caps[i] & capability) {
4157                         /* port offsets starts at 1 */
4158                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4159                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4160                         if (port >= port_offset &&
4161                             port < port_offset + port_count)
4162                                 return 1;
4163                 }
4164         }
4165         return 0;
4166 }
4167
4168 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4169 {
4170         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4171         int             portnum = udev->portnum - 1;
4172
4173         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4174                         !udev->lpm_capable)
4175                 return 0;
4176
4177         /* we only support lpm for non-hub device connected to root hub yet */
4178         if (!udev->parent || udev->parent->parent ||
4179                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4180                 return 0;
4181
4182         if (xhci->hw_lpm_support == 1 &&
4183                         xhci_check_usb2_port_capability(
4184                                 xhci, portnum, XHCI_HLC)) {
4185                 udev->usb2_hw_lpm_capable = 1;
4186                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4187                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4188                 if (xhci_check_usb2_port_capability(xhci, portnum,
4189                                         XHCI_BLC))
4190                         udev->usb2_hw_lpm_besl_capable = 1;
4191         }
4192
4193         return 0;
4194 }
4195
4196 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4197
4198 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4199 static unsigned long long xhci_service_interval_to_ns(
4200                 struct usb_endpoint_descriptor *desc)
4201 {
4202         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4203 }
4204
4205 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4206                 enum usb3_link_state state)
4207 {
4208         unsigned long long sel;
4209         unsigned long long pel;
4210         unsigned int max_sel_pel;
4211         char *state_name;
4212
4213         switch (state) {
4214         case USB3_LPM_U1:
4215                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4216                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4217                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4218                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4219                 state_name = "U1";
4220                 break;
4221         case USB3_LPM_U2:
4222                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4223                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4224                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4225                 state_name = "U2";
4226                 break;
4227         default:
4228                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4229                                 __func__);
4230                 return USB3_LPM_DISABLED;
4231         }
4232
4233         if (sel <= max_sel_pel && pel <= max_sel_pel)
4234                 return USB3_LPM_DEVICE_INITIATED;
4235
4236         if (sel > max_sel_pel)
4237                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4238                                 "due to long SEL %llu ms\n",
4239                                 state_name, sel);
4240         else
4241                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4242                                 "due to long PEL %llu ms\n",
4243                                 state_name, pel);
4244         return USB3_LPM_DISABLED;
4245 }
4246
4247 /* The U1 timeout should be the maximum of the following values:
4248  *  - For control endpoints, U1 system exit latency (SEL) * 3
4249  *  - For bulk endpoints, U1 SEL * 5
4250  *  - For interrupt endpoints:
4251  *    - Notification EPs, U1 SEL * 3
4252  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4253  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4254  */
4255 static unsigned long long xhci_calculate_intel_u1_timeout(
4256                 struct usb_device *udev,
4257                 struct usb_endpoint_descriptor *desc)
4258 {
4259         unsigned long long timeout_ns;
4260         int ep_type;
4261         int intr_type;
4262
4263         ep_type = usb_endpoint_type(desc);
4264         switch (ep_type) {
4265         case USB_ENDPOINT_XFER_CONTROL:
4266                 timeout_ns = udev->u1_params.sel * 3;
4267                 break;
4268         case USB_ENDPOINT_XFER_BULK:
4269                 timeout_ns = udev->u1_params.sel * 5;
4270                 break;
4271         case USB_ENDPOINT_XFER_INT:
4272                 intr_type = usb_endpoint_interrupt_type(desc);
4273                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4274                         timeout_ns = udev->u1_params.sel * 3;
4275                         break;
4276                 }
4277                 /* Otherwise the calculation is the same as isoc eps */
4278                 /* fall through */
4279         case USB_ENDPOINT_XFER_ISOC:
4280                 timeout_ns = xhci_service_interval_to_ns(desc);
4281                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4282                 if (timeout_ns < udev->u1_params.sel * 2)
4283                         timeout_ns = udev->u1_params.sel * 2;
4284                 break;
4285         default:
4286                 return 0;
4287         }
4288
4289         return timeout_ns;
4290 }
4291
4292 /* Returns the hub-encoded U1 timeout value. */
4293 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4294                 struct usb_device *udev,
4295                 struct usb_endpoint_descriptor *desc)
4296 {
4297         unsigned long long timeout_ns;
4298
4299         if (xhci->quirks & XHCI_INTEL_HOST)
4300                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4301         else
4302                 timeout_ns = udev->u1_params.sel;
4303
4304         /* The U1 timeout is encoded in 1us intervals.
4305          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4306          */
4307         if (timeout_ns == USB3_LPM_DISABLED)
4308                 timeout_ns = 1;
4309         else
4310                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4311
4312         /* If the necessary timeout value is bigger than what we can set in the
4313          * USB 3.0 hub, we have to disable hub-initiated U1.
4314          */
4315         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4316                 return timeout_ns;
4317         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4318                         "due to long timeout %llu ms\n", timeout_ns);
4319         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4320 }
4321
4322 /* The U2 timeout should be the maximum of:
4323  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4324  *  - largest bInterval of any active periodic endpoint (to avoid going
4325  *    into lower power link states between intervals).
4326  *  - the U2 Exit Latency of the device
4327  */
4328 static unsigned long long xhci_calculate_intel_u2_timeout(
4329                 struct usb_device *udev,
4330                 struct usb_endpoint_descriptor *desc)
4331 {
4332         unsigned long long timeout_ns;
4333         unsigned long long u2_del_ns;
4334
4335         timeout_ns = 10 * 1000 * 1000;
4336
4337         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4338                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4339                 timeout_ns = xhci_service_interval_to_ns(desc);
4340
4341         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4342         if (u2_del_ns > timeout_ns)
4343                 timeout_ns = u2_del_ns;
4344
4345         return timeout_ns;
4346 }
4347
4348 /* Returns the hub-encoded U2 timeout value. */
4349 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4350                 struct usb_device *udev,
4351                 struct usb_endpoint_descriptor *desc)
4352 {
4353         unsigned long long timeout_ns;
4354
4355         if (xhci->quirks & XHCI_INTEL_HOST)
4356                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4357         else
4358                 timeout_ns = udev->u2_params.sel;
4359
4360         /* The U2 timeout is encoded in 256us intervals */
4361         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4362         /* If the necessary timeout value is bigger than what we can set in the
4363          * USB 3.0 hub, we have to disable hub-initiated U2.
4364          */
4365         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4366                 return timeout_ns;
4367         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4368                         "due to long timeout %llu ms\n", timeout_ns);
4369         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4370 }
4371
4372 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4373                 struct usb_device *udev,
4374                 struct usb_endpoint_descriptor *desc,
4375                 enum usb3_link_state state,
4376                 u16 *timeout)
4377 {
4378         if (state == USB3_LPM_U1)
4379                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4380         else if (state == USB3_LPM_U2)
4381                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4382
4383         return USB3_LPM_DISABLED;
4384 }
4385
4386 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4387                 struct usb_device *udev,
4388                 struct usb_endpoint_descriptor *desc,
4389                 enum usb3_link_state state,
4390                 u16 *timeout)
4391 {
4392         u16 alt_timeout;
4393
4394         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4395                 desc, state, timeout);
4396
4397         /* If we found we can't enable hub-initiated LPM, or
4398          * the U1 or U2 exit latency was too high to allow
4399          * device-initiated LPM as well, just stop searching.
4400          */
4401         if (alt_timeout == USB3_LPM_DISABLED ||
4402                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4403                 *timeout = alt_timeout;
4404                 return -E2BIG;
4405         }
4406         if (alt_timeout > *timeout)
4407                 *timeout = alt_timeout;
4408         return 0;
4409 }
4410
4411 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4412                 struct usb_device *udev,
4413                 struct usb_host_interface *alt,
4414                 enum usb3_link_state state,
4415                 u16 *timeout)
4416 {
4417         int j;
4418
4419         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4420                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4421                                         &alt->endpoint[j].desc, state, timeout))
4422                         return -E2BIG;
4423                 continue;
4424         }
4425         return 0;
4426 }
4427
4428 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4429                 enum usb3_link_state state)
4430 {
4431         struct usb_device *parent;
4432         unsigned int num_hubs;
4433
4434         if (state == USB3_LPM_U2)
4435                 return 0;
4436
4437         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4438         for (parent = udev->parent, num_hubs = 0; parent->parent;
4439                         parent = parent->parent)
4440                 num_hubs++;
4441
4442         if (num_hubs < 2)
4443                 return 0;
4444
4445         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4446                         " below second-tier hub.\n");
4447         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4448                         "to decrease power consumption.\n");
4449         return -E2BIG;
4450 }
4451
4452 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4453                 struct usb_device *udev,
4454                 enum usb3_link_state state)
4455 {
4456         if (xhci->quirks & XHCI_INTEL_HOST)
4457                 return xhci_check_intel_tier_policy(udev, state);
4458         else
4459                 return 0;
4460 }
4461
4462 /* Returns the U1 or U2 timeout that should be enabled.
4463  * If the tier check or timeout setting functions return with a non-zero exit
4464  * code, that means the timeout value has been finalized and we shouldn't look
4465  * at any more endpoints.
4466  */
4467 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4468                         struct usb_device *udev, enum usb3_link_state state)
4469 {
4470         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4471         struct usb_host_config *config;
4472         char *state_name;
4473         int i;
4474         u16 timeout = USB3_LPM_DISABLED;
4475
4476         if (state == USB3_LPM_U1)
4477                 state_name = "U1";
4478         else if (state == USB3_LPM_U2)
4479                 state_name = "U2";
4480         else {
4481                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4482                                 state);
4483                 return timeout;
4484         }
4485
4486         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4487                 return timeout;
4488
4489         /* Gather some information about the currently installed configuration
4490          * and alternate interface settings.
4491          */
4492         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4493                         state, &timeout))
4494                 return timeout;
4495
4496         config = udev->actconfig;
4497         if (!config)
4498                 return timeout;
4499
4500         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4501                 struct usb_driver *driver;
4502                 struct usb_interface *intf = config->interface[i];
4503
4504                 if (!intf)
4505                         continue;
4506
4507                 /* Check if any currently bound drivers want hub-initiated LPM
4508                  * disabled.
4509                  */
4510                 if (intf->dev.driver) {
4511                         driver = to_usb_driver(intf->dev.driver);
4512                         if (driver && driver->disable_hub_initiated_lpm) {
4513                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4514                                                 "at request of driver %s\n",
4515                                                 state_name, driver->name);
4516                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4517                         }
4518                 }
4519
4520                 /* Not sure how this could happen... */
4521                 if (!intf->cur_altsetting)
4522                         continue;
4523
4524                 if (xhci_update_timeout_for_interface(xhci, udev,
4525                                         intf->cur_altsetting,
4526                                         state, &timeout))
4527                         return timeout;
4528         }
4529         return timeout;
4530 }
4531
4532 static int calculate_max_exit_latency(struct usb_device *udev,
4533                 enum usb3_link_state state_changed,
4534                 u16 hub_encoded_timeout)
4535 {
4536         unsigned long long u1_mel_us = 0;
4537         unsigned long long u2_mel_us = 0;
4538         unsigned long long mel_us = 0;
4539         bool disabling_u1;
4540         bool disabling_u2;
4541         bool enabling_u1;
4542         bool enabling_u2;
4543
4544         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4545                         hub_encoded_timeout == USB3_LPM_DISABLED);
4546         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4547                         hub_encoded_timeout == USB3_LPM_DISABLED);
4548
4549         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4550                         hub_encoded_timeout != USB3_LPM_DISABLED);
4551         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4552                         hub_encoded_timeout != USB3_LPM_DISABLED);
4553
4554         /* If U1 was already enabled and we're not disabling it,
4555          * or we're going to enable U1, account for the U1 max exit latency.
4556          */
4557         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4558                         enabling_u1)
4559                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4560         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4561                         enabling_u2)
4562                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4563
4564         if (u1_mel_us > u2_mel_us)
4565                 mel_us = u1_mel_us;
4566         else
4567                 mel_us = u2_mel_us;
4568         /* xHCI host controller max exit latency field is only 16 bits wide. */
4569         if (mel_us > MAX_EXIT) {
4570                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4571                                 "is too big.\n", mel_us);
4572                 return -E2BIG;
4573         }
4574         return mel_us;
4575 }
4576
4577 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4578 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4579                         struct usb_device *udev, enum usb3_link_state state)
4580 {
4581         struct xhci_hcd *xhci;
4582         u16 hub_encoded_timeout;
4583         int mel;
4584         int ret;
4585
4586         xhci = hcd_to_xhci(hcd);
4587         /* The LPM timeout values are pretty host-controller specific, so don't
4588          * enable hub-initiated timeouts unless the vendor has provided
4589          * information about their timeout algorithm.
4590          */
4591         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4592                         !xhci->devs[udev->slot_id])
4593                 return USB3_LPM_DISABLED;
4594
4595         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4596         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4597         if (mel < 0) {
4598                 /* Max Exit Latency is too big, disable LPM. */
4599                 hub_encoded_timeout = USB3_LPM_DISABLED;
4600                 mel = 0;
4601         }
4602
4603         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4604         if (ret)
4605                 return ret;
4606         return hub_encoded_timeout;
4607 }
4608
4609 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4610                         struct usb_device *udev, enum usb3_link_state state)
4611 {
4612         struct xhci_hcd *xhci;
4613         u16 mel;
4614
4615         xhci = hcd_to_xhci(hcd);
4616         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4617                         !xhci->devs[udev->slot_id])
4618                 return 0;
4619
4620         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4621         return xhci_change_max_exit_latency(xhci, udev, mel);
4622 }
4623 #else /* CONFIG_PM */
4624
4625 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4626                                 struct usb_device *udev, int enable)
4627 {
4628         return 0;
4629 }
4630
4631 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4632 {
4633         return 0;
4634 }
4635
4636 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4637                         struct usb_device *udev, enum usb3_link_state state)
4638 {
4639         return USB3_LPM_DISABLED;
4640 }
4641
4642 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4643                         struct usb_device *udev, enum usb3_link_state state)
4644 {
4645         return 0;
4646 }
4647 #endif  /* CONFIG_PM */
4648
4649 /*-------------------------------------------------------------------------*/
4650
4651 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4652  * internal data structures for the device.
4653  */
4654 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4655                         struct usb_tt *tt, gfp_t mem_flags)
4656 {
4657         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4658         struct xhci_virt_device *vdev;
4659         struct xhci_command *config_cmd;
4660         struct xhci_input_control_ctx *ctrl_ctx;
4661         struct xhci_slot_ctx *slot_ctx;
4662         unsigned long flags;
4663         unsigned think_time;
4664         int ret;
4665
4666         /* Ignore root hubs */
4667         if (!hdev->parent)
4668                 return 0;
4669
4670         vdev = xhci->devs[hdev->slot_id];
4671         if (!vdev) {
4672                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4673                 return -EINVAL;
4674         }
4675
4676         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4677         if (!config_cmd)
4678                 return -ENOMEM;
4679
4680         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4681         if (!ctrl_ctx) {
4682                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4683                                 __func__);
4684                 xhci_free_command(xhci, config_cmd);
4685                 return -ENOMEM;
4686         }
4687
4688         spin_lock_irqsave(&xhci->lock, flags);
4689         if (hdev->speed == USB_SPEED_HIGH &&
4690                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4691                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4692                 xhci_free_command(xhci, config_cmd);
4693                 spin_unlock_irqrestore(&xhci->lock, flags);
4694                 return -ENOMEM;
4695         }
4696
4697         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4698         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4699         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4700         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4701         /*
4702          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4703          * but it may be already set to 1 when setup an xHCI virtual
4704          * device, so clear it anyway.
4705          */
4706         if (tt->multi)
4707                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4708         else if (hdev->speed == USB_SPEED_FULL)
4709                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4710
4711         if (xhci->hci_version > 0x95) {
4712                 xhci_dbg(xhci, "xHCI version %x needs hub "
4713                                 "TT think time and number of ports\n",
4714                                 (unsigned int) xhci->hci_version);
4715                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4716                 /* Set TT think time - convert from ns to FS bit times.
4717                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4718                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4719                  *
4720                  * xHCI 1.0: this field shall be 0 if the device is not a
4721                  * High-spped hub.
4722                  */
4723                 think_time = tt->think_time;
4724                 if (think_time != 0)
4725                         think_time = (think_time / 666) - 1;
4726                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4727                         slot_ctx->tt_info |=
4728                                 cpu_to_le32(TT_THINK_TIME(think_time));
4729         } else {
4730                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4731                                 "TT think time or number of ports\n",
4732                                 (unsigned int) xhci->hci_version);
4733         }
4734         slot_ctx->dev_state = 0;
4735         spin_unlock_irqrestore(&xhci->lock, flags);
4736
4737         xhci_dbg(xhci, "Set up %s for hub device.\n",
4738                         (xhci->hci_version > 0x95) ?
4739                         "configure endpoint" : "evaluate context");
4740
4741         /* Issue and wait for the configure endpoint or
4742          * evaluate context command.
4743          */
4744         if (xhci->hci_version > 0x95)
4745                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4746                                 false, false);
4747         else
4748                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4749                                 true, false);
4750
4751         xhci_free_command(xhci, config_cmd);
4752         return ret;
4753 }
4754
4755 static int xhci_get_frame(struct usb_hcd *hcd)
4756 {
4757         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4758         /* EHCI mods by the periodic size.  Why? */
4759         return readl(&xhci->run_regs->microframe_index) >> 3;
4760 }
4761
4762 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4763 {
4764         struct xhci_hcd         *xhci;
4765         /*
4766          * TODO: Check with DWC3 clients for sysdev according to
4767          * quirks
4768          */
4769         struct device           *dev = hcd->self.sysdev;
4770         int                     retval;
4771
4772         /* Accept arbitrarily long scatter-gather lists */
4773         hcd->self.sg_tablesize = ~0;
4774
4775         /* support to build packet from discontinuous buffers */
4776         hcd->self.no_sg_constraint = 1;
4777
4778         /* XHCI controllers don't stop the ep queue on short packets :| */
4779         hcd->self.no_stop_on_short = 1;
4780
4781         xhci = hcd_to_xhci(hcd);
4782
4783         if (usb_hcd_is_primary_hcd(hcd)) {
4784                 xhci->main_hcd = hcd;
4785                 /* Mark the first roothub as being USB 2.0.
4786                  * The xHCI driver will register the USB 3.0 roothub.
4787                  */
4788                 hcd->speed = HCD_USB2;
4789                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4790                 /*
4791                  * USB 2.0 roothub under xHCI has an integrated TT,
4792                  * (rate matching hub) as opposed to having an OHCI/UHCI
4793                  * companion controller.
4794                  */
4795                 hcd->has_tt = 1;
4796         } else {
4797                 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4798                 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4799                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4800                         hcd->speed = HCD_USB31;
4801                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4802                 }
4803                 /* xHCI private pointer was set in xhci_pci_probe for the second
4804                  * registered roothub.
4805                  */
4806                 return 0;
4807         }
4808
4809         mutex_init(&xhci->mutex);
4810         xhci->cap_regs = hcd->regs;
4811         xhci->op_regs = hcd->regs +
4812                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4813         xhci->run_regs = hcd->regs +
4814                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4815         /* Cache read-only capability registers */
4816         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4817         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4818         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4819         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4820         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4821         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4822         if (xhci->hci_version > 0x100)
4823                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4824
4825         xhci->quirks |= quirks;
4826
4827         get_quirks(dev, xhci);
4828
4829         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4830          * success event after a short transfer. This quirk will ignore such
4831          * spurious event.
4832          */
4833         if (xhci->hci_version > 0x96)
4834                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4835
4836         /* Make sure the HC is halted. */
4837         retval = xhci_halt(xhci);
4838         if (retval)
4839                 return retval;
4840
4841         xhci_dbg(xhci, "Resetting HCD\n");
4842         /* Reset the internal HC memory state and registers. */
4843         retval = xhci_reset(xhci);
4844         if (retval)
4845                 return retval;
4846         xhci_dbg(xhci, "Reset complete\n");
4847
4848         /*
4849          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4850          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4851          * address memory pointers actually. So, this driver clears the AC64
4852          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4853          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4854          */
4855         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4856                 xhci->hcc_params &= ~BIT(0);
4857
4858         /* Set dma_mask and coherent_dma_mask to 64-bits,
4859          * if xHC supports 64-bit addressing */
4860         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4861                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4862                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4863                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4864         } else {
4865                 /*
4866                  * This is to avoid error in cases where a 32-bit USB
4867                  * controller is used on a 64-bit capable system.
4868                  */
4869                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4870                 if (retval)
4871                         return retval;
4872                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4873                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4874         }
4875
4876         xhci_dbg(xhci, "Calling HCD init\n");
4877         /* Initialize HCD and host controller data structures. */
4878         retval = xhci_init(hcd);
4879         if (retval)
4880                 return retval;
4881         xhci_dbg(xhci, "Called HCD init\n");
4882
4883         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4884                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4885
4886         return 0;
4887 }
4888 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4889
4890 static const struct hc_driver xhci_hc_driver = {
4891         .description =          "xhci-hcd",
4892         .product_desc =         "xHCI Host Controller",
4893         .hcd_priv_size =        sizeof(struct xhci_hcd),
4894
4895         /*
4896          * generic hardware linkage
4897          */
4898         .irq =                  xhci_irq,
4899         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4900
4901         /*
4902          * basic lifecycle operations
4903          */
4904         .reset =                NULL, /* set in xhci_init_driver() */
4905         .start =                xhci_run,
4906         .stop =                 xhci_stop,
4907         .shutdown =             xhci_shutdown,
4908
4909         /*
4910          * managing i/o requests and associated device resources
4911          */
4912         .urb_enqueue =          xhci_urb_enqueue,
4913         .urb_dequeue =          xhci_urb_dequeue,
4914         .alloc_dev =            xhci_alloc_dev,
4915         .free_dev =             xhci_free_dev,
4916         .alloc_streams =        xhci_alloc_streams,
4917         .free_streams =         xhci_free_streams,
4918         .add_endpoint =         xhci_add_endpoint,
4919         .drop_endpoint =        xhci_drop_endpoint,
4920         .endpoint_reset =       xhci_endpoint_reset,
4921         .check_bandwidth =      xhci_check_bandwidth,
4922         .reset_bandwidth =      xhci_reset_bandwidth,
4923         .address_device =       xhci_address_device,
4924         .enable_device =        xhci_enable_device,
4925         .update_hub_device =    xhci_update_hub_device,
4926         .reset_device =         xhci_discover_or_reset_device,
4927
4928         /*
4929          * scheduling support
4930          */
4931         .get_frame_number =     xhci_get_frame,
4932
4933         /*
4934          * root hub support
4935          */
4936         .hub_control =          xhci_hub_control,
4937         .hub_status_data =      xhci_hub_status_data,
4938         .bus_suspend =          xhci_bus_suspend,
4939         .bus_resume =           xhci_bus_resume,
4940
4941         /*
4942          * call back when device connected and addressed
4943          */
4944         .update_device =        xhci_update_device,
4945         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
4946         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
4947         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
4948         .find_raw_port_number = xhci_find_raw_port_number,
4949 };
4950
4951 void xhci_init_driver(struct hc_driver *drv,
4952                       const struct xhci_driver_overrides *over)
4953 {
4954         BUG_ON(!over);
4955
4956         /* Copy the generic table to drv then apply the overrides */
4957         *drv = xhci_hc_driver;
4958
4959         if (over) {
4960                 drv->hcd_priv_size += over->extra_priv_size;
4961                 if (over->reset)
4962                         drv->reset = over->reset;
4963                 if (over->start)
4964                         drv->start = over->start;
4965         }
4966 }
4967 EXPORT_SYMBOL_GPL(xhci_init_driver);
4968
4969 MODULE_DESCRIPTION(DRIVER_DESC);
4970 MODULE_AUTHOR(DRIVER_AUTHOR);
4971 MODULE_LICENSE("GPL");
4972
4973 static int __init xhci_hcd_init(void)
4974 {
4975         /*
4976          * Check the compiler generated sizes of structures that must be laid
4977          * out in specific ways for hardware access.
4978          */
4979         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4980         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4981         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4982         /* xhci_device_control has eight fields, and also
4983          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4984          */
4985         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4986         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4987         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4988         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4989         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4990         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4991         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4992
4993         if (usb_disabled())
4994                 return -ENODEV;
4995
4996         xhci_debugfs_create_root();
4997
4998         return 0;
4999 }
5000
5001 /*
5002  * If an init function is provided, an exit function must also be provided
5003  * to allow module unload.
5004  */
5005 static void __exit xhci_hcd_fini(void)
5006 {
5007         xhci_debugfs_remove_root();
5008 }
5009
5010 module_init(xhci_hcd_init);
5011 module_exit(xhci_hcd_fini);
This page took 0.3434 seconds and 4 git commands to generate.