2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
47 #include "transaction.h"
48 #include "btrfs_inode.h"
50 #include "print-tree.h"
53 #include "inode-map.h"
56 /* Mask out flags that are inappropriate for the given type of inode. */
57 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
61 else if (S_ISREG(mode))
62 return flags & ~FS_DIRSYNC_FL;
64 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
68 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
70 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
72 unsigned int iflags = 0;
74 if (flags & BTRFS_INODE_SYNC)
76 if (flags & BTRFS_INODE_IMMUTABLE)
77 iflags |= FS_IMMUTABLE_FL;
78 if (flags & BTRFS_INODE_APPEND)
79 iflags |= FS_APPEND_FL;
80 if (flags & BTRFS_INODE_NODUMP)
81 iflags |= FS_NODUMP_FL;
82 if (flags & BTRFS_INODE_NOATIME)
83 iflags |= FS_NOATIME_FL;
84 if (flags & BTRFS_INODE_DIRSYNC)
85 iflags |= FS_DIRSYNC_FL;
86 if (flags & BTRFS_INODE_NODATACOW)
87 iflags |= FS_NOCOW_FL;
89 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
90 iflags |= FS_COMPR_FL;
91 else if (flags & BTRFS_INODE_NOCOMPRESS)
92 iflags |= FS_NOCOMP_FL;
98 * Update inode->i_flags based on the btrfs internal flags.
100 void btrfs_update_iflags(struct inode *inode)
102 struct btrfs_inode *ip = BTRFS_I(inode);
104 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
106 if (ip->flags & BTRFS_INODE_SYNC)
107 inode->i_flags |= S_SYNC;
108 if (ip->flags & BTRFS_INODE_IMMUTABLE)
109 inode->i_flags |= S_IMMUTABLE;
110 if (ip->flags & BTRFS_INODE_APPEND)
111 inode->i_flags |= S_APPEND;
112 if (ip->flags & BTRFS_INODE_NOATIME)
113 inode->i_flags |= S_NOATIME;
114 if (ip->flags & BTRFS_INODE_DIRSYNC)
115 inode->i_flags |= S_DIRSYNC;
119 * Inherit flags from the parent inode.
121 * Currently only the compression flags and the cow flags are inherited.
123 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
130 flags = BTRFS_I(dir)->flags;
132 if (flags & BTRFS_INODE_NOCOMPRESS) {
133 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
134 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
135 } else if (flags & BTRFS_INODE_COMPRESS) {
136 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
137 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
140 if (flags & BTRFS_INODE_NODATACOW)
141 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
143 btrfs_update_iflags(inode);
146 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
148 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
149 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
151 if (copy_to_user(arg, &flags, sizeof(flags)))
156 static int check_flags(unsigned int flags)
158 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
159 FS_NOATIME_FL | FS_NODUMP_FL | \
160 FS_SYNC_FL | FS_DIRSYNC_FL | \
161 FS_NOCOMP_FL | FS_COMPR_FL |
165 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
171 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
173 struct inode *inode = file->f_path.dentry->d_inode;
174 struct btrfs_inode *ip = BTRFS_I(inode);
175 struct btrfs_root *root = ip->root;
176 struct btrfs_trans_handle *trans;
177 unsigned int flags, oldflags;
180 unsigned int i_oldflags;
182 if (btrfs_root_readonly(root))
185 if (copy_from_user(&flags, arg, sizeof(flags)))
188 ret = check_flags(flags);
192 if (!inode_owner_or_capable(inode))
195 mutex_lock(&inode->i_mutex);
197 ip_oldflags = ip->flags;
198 i_oldflags = inode->i_flags;
200 flags = btrfs_mask_flags(inode->i_mode, flags);
201 oldflags = btrfs_flags_to_ioctl(ip->flags);
202 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
203 if (!capable(CAP_LINUX_IMMUTABLE)) {
209 ret = mnt_want_write_file(file);
213 if (flags & FS_SYNC_FL)
214 ip->flags |= BTRFS_INODE_SYNC;
216 ip->flags &= ~BTRFS_INODE_SYNC;
217 if (flags & FS_IMMUTABLE_FL)
218 ip->flags |= BTRFS_INODE_IMMUTABLE;
220 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
221 if (flags & FS_APPEND_FL)
222 ip->flags |= BTRFS_INODE_APPEND;
224 ip->flags &= ~BTRFS_INODE_APPEND;
225 if (flags & FS_NODUMP_FL)
226 ip->flags |= BTRFS_INODE_NODUMP;
228 ip->flags &= ~BTRFS_INODE_NODUMP;
229 if (flags & FS_NOATIME_FL)
230 ip->flags |= BTRFS_INODE_NOATIME;
232 ip->flags &= ~BTRFS_INODE_NOATIME;
233 if (flags & FS_DIRSYNC_FL)
234 ip->flags |= BTRFS_INODE_DIRSYNC;
236 ip->flags &= ~BTRFS_INODE_DIRSYNC;
237 if (flags & FS_NOCOW_FL)
238 ip->flags |= BTRFS_INODE_NODATACOW;
240 ip->flags &= ~BTRFS_INODE_NODATACOW;
243 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
244 * flag may be changed automatically if compression code won't make
247 if (flags & FS_NOCOMP_FL) {
248 ip->flags &= ~BTRFS_INODE_COMPRESS;
249 ip->flags |= BTRFS_INODE_NOCOMPRESS;
250 } else if (flags & FS_COMPR_FL) {
251 ip->flags |= BTRFS_INODE_COMPRESS;
252 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
254 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
257 trans = btrfs_start_transaction(root, 1);
259 ret = PTR_ERR(trans);
263 btrfs_update_iflags(inode);
264 inode->i_ctime = CURRENT_TIME;
265 ret = btrfs_update_inode(trans, root, inode);
267 btrfs_end_transaction(trans, root);
270 ip->flags = ip_oldflags;
271 inode->i_flags = i_oldflags;
274 mnt_drop_write_file(file);
276 mutex_unlock(&inode->i_mutex);
280 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
282 struct inode *inode = file->f_path.dentry->d_inode;
284 return put_user(inode->i_generation, arg);
287 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
289 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
290 struct btrfs_device *device;
291 struct request_queue *q;
292 struct fstrim_range range;
293 u64 minlen = ULLONG_MAX;
295 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
298 if (!capable(CAP_SYS_ADMIN))
302 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
306 q = bdev_get_queue(device->bdev);
307 if (blk_queue_discard(q)) {
309 minlen = min((u64)q->limits.discard_granularity,
317 if (copy_from_user(&range, arg, sizeof(range)))
319 if (range.start > total_bytes)
322 range.len = min(range.len, total_bytes - range.start);
323 range.minlen = max(range.minlen, minlen);
324 ret = btrfs_trim_fs(fs_info->tree_root, &range);
328 if (copy_to_user(arg, &range, sizeof(range)))
334 static noinline int create_subvol(struct btrfs_root *root,
335 struct dentry *dentry,
336 char *name, int namelen,
339 struct btrfs_trans_handle *trans;
340 struct btrfs_key key;
341 struct btrfs_root_item root_item;
342 struct btrfs_inode_item *inode_item;
343 struct extent_buffer *leaf;
344 struct btrfs_root *new_root;
345 struct dentry *parent = dentry->d_parent;
350 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
353 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
357 dir = parent->d_inode;
365 trans = btrfs_start_transaction(root, 6);
367 return PTR_ERR(trans);
369 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
370 0, objectid, NULL, 0, 0, 0, 0);
376 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
377 btrfs_set_header_bytenr(leaf, leaf->start);
378 btrfs_set_header_generation(leaf, trans->transid);
379 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
380 btrfs_set_header_owner(leaf, objectid);
382 write_extent_buffer(leaf, root->fs_info->fsid,
383 (unsigned long)btrfs_header_fsid(leaf),
385 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
386 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
388 btrfs_mark_buffer_dirty(leaf);
390 inode_item = &root_item.inode;
391 memset(inode_item, 0, sizeof(*inode_item));
392 inode_item->generation = cpu_to_le64(1);
393 inode_item->size = cpu_to_le64(3);
394 inode_item->nlink = cpu_to_le32(1);
395 inode_item->nbytes = cpu_to_le64(root->leafsize);
396 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
399 root_item.byte_limit = 0;
400 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
402 btrfs_set_root_bytenr(&root_item, leaf->start);
403 btrfs_set_root_generation(&root_item, trans->transid);
404 btrfs_set_root_level(&root_item, 0);
405 btrfs_set_root_refs(&root_item, 1);
406 btrfs_set_root_used(&root_item, leaf->len);
407 btrfs_set_root_last_snapshot(&root_item, 0);
409 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
410 root_item.drop_level = 0;
412 btrfs_tree_unlock(leaf);
413 free_extent_buffer(leaf);
416 btrfs_set_root_dirid(&root_item, new_dirid);
418 key.objectid = objectid;
420 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
421 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
426 key.offset = (u64)-1;
427 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
428 if (IS_ERR(new_root)) {
429 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
430 ret = PTR_ERR(new_root);
434 btrfs_record_root_in_trans(trans, new_root);
436 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
438 /* We potentially lose an unused inode item here */
439 btrfs_abort_transaction(trans, root, ret);
444 * insert the directory item
446 ret = btrfs_set_inode_index(dir, &index);
448 btrfs_abort_transaction(trans, root, ret);
452 ret = btrfs_insert_dir_item(trans, root,
453 name, namelen, dir, &key,
454 BTRFS_FT_DIR, index);
456 btrfs_abort_transaction(trans, root, ret);
460 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
461 ret = btrfs_update_inode(trans, root, dir);
464 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
465 objectid, root->root_key.objectid,
466 btrfs_ino(dir), index, name, namelen);
470 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
473 *async_transid = trans->transid;
474 err = btrfs_commit_transaction_async(trans, root, 1);
476 err = btrfs_commit_transaction(trans, root);
483 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
484 char *name, int namelen, u64 *async_transid,
488 struct btrfs_pending_snapshot *pending_snapshot;
489 struct btrfs_trans_handle *trans;
495 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
496 if (!pending_snapshot)
499 btrfs_init_block_rsv(&pending_snapshot->block_rsv);
500 pending_snapshot->dentry = dentry;
501 pending_snapshot->root = root;
502 pending_snapshot->readonly = readonly;
504 trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
506 ret = PTR_ERR(trans);
510 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
513 spin_lock(&root->fs_info->trans_lock);
514 list_add(&pending_snapshot->list,
515 &trans->transaction->pending_snapshots);
516 spin_unlock(&root->fs_info->trans_lock);
518 *async_transid = trans->transid;
519 ret = btrfs_commit_transaction_async(trans,
520 root->fs_info->extent_root, 1);
522 ret = btrfs_commit_transaction(trans,
523 root->fs_info->extent_root);
527 ret = pending_snapshot->error;
531 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
535 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
537 ret = PTR_ERR(inode);
541 d_instantiate(dentry, inode);
544 kfree(pending_snapshot);
548 /* copy of check_sticky in fs/namei.c()
549 * It's inline, so penalty for filesystems that don't use sticky bit is
552 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
554 uid_t fsuid = current_fsuid();
556 if (!(dir->i_mode & S_ISVTX))
558 if (inode->i_uid == fsuid)
560 if (dir->i_uid == fsuid)
562 return !capable(CAP_FOWNER);
565 /* copy of may_delete in fs/namei.c()
566 * Check whether we can remove a link victim from directory dir, check
567 * whether the type of victim is right.
568 * 1. We can't do it if dir is read-only (done in permission())
569 * 2. We should have write and exec permissions on dir
570 * 3. We can't remove anything from append-only dir
571 * 4. We can't do anything with immutable dir (done in permission())
572 * 5. If the sticky bit on dir is set we should either
573 * a. be owner of dir, or
574 * b. be owner of victim, or
575 * c. have CAP_FOWNER capability
576 * 6. If the victim is append-only or immutable we can't do antyhing with
577 * links pointing to it.
578 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
579 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
580 * 9. We can't remove a root or mountpoint.
581 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
582 * nfs_async_unlink().
585 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
589 if (!victim->d_inode)
592 BUG_ON(victim->d_parent->d_inode != dir);
593 audit_inode_child(victim, dir);
595 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
600 if (btrfs_check_sticky(dir, victim->d_inode)||
601 IS_APPEND(victim->d_inode)||
602 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
605 if (!S_ISDIR(victim->d_inode->i_mode))
609 } else if (S_ISDIR(victim->d_inode->i_mode))
613 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
618 /* copy of may_create in fs/namei.c() */
619 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
625 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
629 * Create a new subvolume below @parent. This is largely modeled after
630 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
631 * inside this filesystem so it's quite a bit simpler.
633 static noinline int btrfs_mksubvol(struct path *parent,
634 char *name, int namelen,
635 struct btrfs_root *snap_src,
636 u64 *async_transid, bool readonly)
638 struct inode *dir = parent->dentry->d_inode;
639 struct dentry *dentry;
642 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
644 dentry = lookup_one_len(name, parent->dentry, namelen);
645 error = PTR_ERR(dentry);
653 error = mnt_want_write(parent->mnt);
657 error = btrfs_may_create(dir, dentry);
661 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
663 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
667 error = create_snapshot(snap_src, dentry,
668 name, namelen, async_transid, readonly);
670 error = create_subvol(BTRFS_I(dir)->root, dentry,
671 name, namelen, async_transid);
674 fsnotify_mkdir(dir, dentry);
676 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
678 mnt_drop_write(parent->mnt);
682 mutex_unlock(&dir->i_mutex);
687 * When we're defragging a range, we don't want to kick it off again
688 * if it is really just waiting for delalloc to send it down.
689 * If we find a nice big extent or delalloc range for the bytes in the
690 * file you want to defrag, we return 0 to let you know to skip this
693 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
695 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
696 struct extent_map *em = NULL;
697 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
700 read_lock(&em_tree->lock);
701 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
702 read_unlock(&em_tree->lock);
705 end = extent_map_end(em);
707 if (end - offset > thresh)
710 /* if we already have a nice delalloc here, just stop */
712 end = count_range_bits(io_tree, &offset, offset + thresh,
713 thresh, EXTENT_DELALLOC, 1);
720 * helper function to walk through a file and find extents
721 * newer than a specific transid, and smaller than thresh.
723 * This is used by the defragging code to find new and small
726 static int find_new_extents(struct btrfs_root *root,
727 struct inode *inode, u64 newer_than,
728 u64 *off, int thresh)
730 struct btrfs_path *path;
731 struct btrfs_key min_key;
732 struct btrfs_key max_key;
733 struct extent_buffer *leaf;
734 struct btrfs_file_extent_item *extent;
737 u64 ino = btrfs_ino(inode);
739 path = btrfs_alloc_path();
743 min_key.objectid = ino;
744 min_key.type = BTRFS_EXTENT_DATA_KEY;
745 min_key.offset = *off;
747 max_key.objectid = ino;
748 max_key.type = (u8)-1;
749 max_key.offset = (u64)-1;
751 path->keep_locks = 1;
754 ret = btrfs_search_forward(root, &min_key, &max_key,
755 path, 0, newer_than);
758 if (min_key.objectid != ino)
760 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
763 leaf = path->nodes[0];
764 extent = btrfs_item_ptr(leaf, path->slots[0],
765 struct btrfs_file_extent_item);
767 type = btrfs_file_extent_type(leaf, extent);
768 if (type == BTRFS_FILE_EXTENT_REG &&
769 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
770 check_defrag_in_cache(inode, min_key.offset, thresh)) {
771 *off = min_key.offset;
772 btrfs_free_path(path);
776 if (min_key.offset == (u64)-1)
780 btrfs_release_path(path);
783 btrfs_free_path(path);
788 * Validaty check of prev em and next em:
790 * 2) prev/next em is an hole/inline extent
792 static int check_adjacent_extents(struct inode *inode, struct extent_map *em)
794 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
795 struct extent_map *prev = NULL, *next = NULL;
798 read_lock(&em_tree->lock);
799 prev = lookup_extent_mapping(em_tree, em->start - 1, (u64)-1);
800 next = lookup_extent_mapping(em_tree, em->start + em->len, (u64)-1);
801 read_unlock(&em_tree->lock);
803 if ((!prev || prev->block_start >= EXTENT_MAP_LAST_BYTE) &&
804 (!next || next->block_start >= EXTENT_MAP_LAST_BYTE))
806 free_extent_map(prev);
807 free_extent_map(next);
812 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
813 int thresh, u64 *last_len, u64 *skip,
816 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
817 struct extent_map *em = NULL;
818 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
822 * make sure that once we start defragging an extent, we keep on
825 if (start < *defrag_end)
831 * hopefully we have this extent in the tree already, try without
832 * the full extent lock
834 read_lock(&em_tree->lock);
835 em = lookup_extent_mapping(em_tree, start, len);
836 read_unlock(&em_tree->lock);
839 /* get the big lock and read metadata off disk */
840 lock_extent(io_tree, start, start + len - 1);
841 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
842 unlock_extent(io_tree, start, start + len - 1);
848 /* this will cover holes, and inline extents */
849 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
854 /* If we have nothing to merge with us, just skip. */
855 if (check_adjacent_extents(inode, em)) {
861 * we hit a real extent, if it is big don't bother defragging it again
863 if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
868 * last_len ends up being a counter of how many bytes we've defragged.
869 * every time we choose not to defrag an extent, we reset *last_len
870 * so that the next tiny extent will force a defrag.
872 * The end result of this is that tiny extents before a single big
873 * extent will force at least part of that big extent to be defragged.
876 *defrag_end = extent_map_end(em);
879 *skip = extent_map_end(em);
888 * it doesn't do much good to defrag one or two pages
889 * at a time. This pulls in a nice chunk of pages
892 * It also makes sure the delalloc code has enough
893 * dirty data to avoid making new small extents as part
896 * It's a good idea to start RA on this range
897 * before calling this.
899 static int cluster_pages_for_defrag(struct inode *inode,
901 unsigned long start_index,
904 unsigned long file_end;
905 u64 isize = i_size_read(inode);
912 struct btrfs_ordered_extent *ordered;
913 struct extent_state *cached_state = NULL;
914 struct extent_io_tree *tree;
915 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
917 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
918 if (!isize || start_index > file_end)
921 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
923 ret = btrfs_delalloc_reserve_space(inode,
924 page_cnt << PAGE_CACHE_SHIFT);
928 tree = &BTRFS_I(inode)->io_tree;
930 /* step one, lock all the pages */
931 for (i = 0; i < page_cnt; i++) {
934 page = find_or_create_page(inode->i_mapping,
935 start_index + i, mask);
939 page_start = page_offset(page);
940 page_end = page_start + PAGE_CACHE_SIZE - 1;
942 lock_extent(tree, page_start, page_end);
943 ordered = btrfs_lookup_ordered_extent(inode,
945 unlock_extent(tree, page_start, page_end);
950 btrfs_start_ordered_extent(inode, ordered, 1);
951 btrfs_put_ordered_extent(ordered);
954 * we unlocked the page above, so we need check if
955 * it was released or not.
957 if (page->mapping != inode->i_mapping) {
959 page_cache_release(page);
964 if (!PageUptodate(page)) {
965 btrfs_readpage(NULL, page);
967 if (!PageUptodate(page)) {
969 page_cache_release(page);
975 if (page->mapping != inode->i_mapping) {
977 page_cache_release(page);
987 if (!(inode->i_sb->s_flags & MS_ACTIVE))
991 * so now we have a nice long stream of locked
992 * and up to date pages, lets wait on them
994 for (i = 0; i < i_done; i++)
995 wait_on_page_writeback(pages[i]);
997 page_start = page_offset(pages[0]);
998 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1000 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1001 page_start, page_end - 1, 0, &cached_state);
1002 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1003 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1004 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1007 if (i_done != page_cnt) {
1008 spin_lock(&BTRFS_I(inode)->lock);
1009 BTRFS_I(inode)->outstanding_extents++;
1010 spin_unlock(&BTRFS_I(inode)->lock);
1011 btrfs_delalloc_release_space(inode,
1012 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1016 btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
1019 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1020 page_start, page_end - 1, &cached_state,
1023 for (i = 0; i < i_done; i++) {
1024 clear_page_dirty_for_io(pages[i]);
1025 ClearPageChecked(pages[i]);
1026 set_page_extent_mapped(pages[i]);
1027 set_page_dirty(pages[i]);
1028 unlock_page(pages[i]);
1029 page_cache_release(pages[i]);
1033 for (i = 0; i < i_done; i++) {
1034 unlock_page(pages[i]);
1035 page_cache_release(pages[i]);
1037 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1042 int btrfs_defrag_file(struct inode *inode, struct file *file,
1043 struct btrfs_ioctl_defrag_range_args *range,
1044 u64 newer_than, unsigned long max_to_defrag)
1046 struct btrfs_root *root = BTRFS_I(inode)->root;
1047 struct btrfs_super_block *disk_super;
1048 struct file_ra_state *ra = NULL;
1049 unsigned long last_index;
1050 u64 isize = i_size_read(inode);
1055 u64 newer_off = range->start;
1057 unsigned long ra_index = 0;
1059 int defrag_count = 0;
1060 int compress_type = BTRFS_COMPRESS_ZLIB;
1061 int extent_thresh = range->extent_thresh;
1062 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1063 int cluster = max_cluster;
1064 u64 new_align = ~((u64)128 * 1024 - 1);
1065 struct page **pages = NULL;
1067 if (extent_thresh == 0)
1068 extent_thresh = 256 * 1024;
1070 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1071 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1073 if (range->compress_type)
1074 compress_type = range->compress_type;
1081 * if we were not given a file, allocate a readahead
1085 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1088 file_ra_state_init(ra, inode->i_mapping);
1093 pages = kmalloc(sizeof(struct page *) * max_cluster,
1100 /* find the last page to defrag */
1101 if (range->start + range->len > range->start) {
1102 last_index = min_t(u64, isize - 1,
1103 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1105 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1109 ret = find_new_extents(root, inode, newer_than,
1110 &newer_off, 64 * 1024);
1112 range->start = newer_off;
1114 * we always align our defrag to help keep
1115 * the extents in the file evenly spaced
1117 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1121 i = range->start >> PAGE_CACHE_SHIFT;
1124 max_to_defrag = last_index + 1;
1127 * make writeback starts from i, so the defrag range can be
1128 * written sequentially.
1130 if (i < inode->i_mapping->writeback_index)
1131 inode->i_mapping->writeback_index = i;
1133 while (i <= last_index && defrag_count < max_to_defrag &&
1134 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1135 PAGE_CACHE_SHIFT)) {
1137 * make sure we stop running if someone unmounts
1140 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1143 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1144 PAGE_CACHE_SIZE, extent_thresh,
1145 &last_len, &skip, &defrag_end)) {
1148 * the should_defrag function tells us how much to skip
1149 * bump our counter by the suggested amount
1151 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1152 i = max(i + 1, next);
1157 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1158 PAGE_CACHE_SHIFT) - i;
1159 cluster = min(cluster, max_cluster);
1161 cluster = max_cluster;
1164 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1165 BTRFS_I(inode)->force_compress = compress_type;
1167 if (i + cluster > ra_index) {
1168 ra_index = max(i, ra_index);
1169 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1171 ra_index += max_cluster;
1174 mutex_lock(&inode->i_mutex);
1175 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1177 mutex_unlock(&inode->i_mutex);
1181 defrag_count += ret;
1182 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1183 mutex_unlock(&inode->i_mutex);
1186 if (newer_off == (u64)-1)
1192 newer_off = max(newer_off + 1,
1193 (u64)i << PAGE_CACHE_SHIFT);
1195 ret = find_new_extents(root, inode,
1196 newer_than, &newer_off,
1199 range->start = newer_off;
1200 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1207 last_len += ret << PAGE_CACHE_SHIFT;
1215 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1216 filemap_flush(inode->i_mapping);
1218 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1219 /* the filemap_flush will queue IO into the worker threads, but
1220 * we have to make sure the IO is actually started and that
1221 * ordered extents get created before we return
1223 atomic_inc(&root->fs_info->async_submit_draining);
1224 while (atomic_read(&root->fs_info->nr_async_submits) ||
1225 atomic_read(&root->fs_info->async_delalloc_pages)) {
1226 wait_event(root->fs_info->async_submit_wait,
1227 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1228 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1230 atomic_dec(&root->fs_info->async_submit_draining);
1232 mutex_lock(&inode->i_mutex);
1233 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1234 mutex_unlock(&inode->i_mutex);
1237 disk_super = root->fs_info->super_copy;
1238 features = btrfs_super_incompat_flags(disk_super);
1239 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1240 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1241 btrfs_set_super_incompat_flags(disk_super, features);
1253 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1259 struct btrfs_ioctl_vol_args *vol_args;
1260 struct btrfs_trans_handle *trans;
1261 struct btrfs_device *device = NULL;
1263 char *devstr = NULL;
1267 if (root->fs_info->sb->s_flags & MS_RDONLY)
1270 if (!capable(CAP_SYS_ADMIN))
1273 mutex_lock(&root->fs_info->volume_mutex);
1274 if (root->fs_info->balance_ctl) {
1275 printk(KERN_INFO "btrfs: balance in progress\n");
1280 vol_args = memdup_user(arg, sizeof(*vol_args));
1281 if (IS_ERR(vol_args)) {
1282 ret = PTR_ERR(vol_args);
1286 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1288 sizestr = vol_args->name;
1289 devstr = strchr(sizestr, ':');
1292 sizestr = devstr + 1;
1294 devstr = vol_args->name;
1295 devid = simple_strtoull(devstr, &end, 10);
1296 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1297 (unsigned long long)devid);
1299 device = btrfs_find_device(root, devid, NULL, NULL);
1301 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1302 (unsigned long long)devid);
1306 if (!strcmp(sizestr, "max"))
1307 new_size = device->bdev->bd_inode->i_size;
1309 if (sizestr[0] == '-') {
1312 } else if (sizestr[0] == '+') {
1316 new_size = memparse(sizestr, NULL);
1317 if (new_size == 0) {
1323 old_size = device->total_bytes;
1326 if (new_size > old_size) {
1330 new_size = old_size - new_size;
1331 } else if (mod > 0) {
1332 new_size = old_size + new_size;
1335 if (new_size < 256 * 1024 * 1024) {
1339 if (new_size > device->bdev->bd_inode->i_size) {
1344 do_div(new_size, root->sectorsize);
1345 new_size *= root->sectorsize;
1347 printk(KERN_INFO "btrfs: new size for %s is %llu\n",
1348 device->name, (unsigned long long)new_size);
1350 if (new_size > old_size) {
1351 trans = btrfs_start_transaction(root, 0);
1352 if (IS_ERR(trans)) {
1353 ret = PTR_ERR(trans);
1356 ret = btrfs_grow_device(trans, device, new_size);
1357 btrfs_commit_transaction(trans, root);
1358 } else if (new_size < old_size) {
1359 ret = btrfs_shrink_device(device, new_size);
1365 mutex_unlock(&root->fs_info->volume_mutex);
1369 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1376 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1377 struct file *src_file;
1381 if (root->fs_info->sb->s_flags & MS_RDONLY)
1384 namelen = strlen(name);
1385 if (strchr(name, '/')) {
1390 if (name[0] == '.' &&
1391 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1397 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1398 NULL, transid, readonly);
1400 struct inode *src_inode;
1401 src_file = fget(fd);
1407 src_inode = src_file->f_path.dentry->d_inode;
1408 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1409 printk(KERN_INFO "btrfs: Snapshot src from "
1415 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1416 BTRFS_I(src_inode)->root,
1424 static noinline int btrfs_ioctl_snap_create(struct file *file,
1425 void __user *arg, int subvol)
1427 struct btrfs_ioctl_vol_args *vol_args;
1430 vol_args = memdup_user(arg, sizeof(*vol_args));
1431 if (IS_ERR(vol_args))
1432 return PTR_ERR(vol_args);
1433 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1435 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1436 vol_args->fd, subvol,
1443 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1444 void __user *arg, int subvol)
1446 struct btrfs_ioctl_vol_args_v2 *vol_args;
1450 bool readonly = false;
1452 vol_args = memdup_user(arg, sizeof(*vol_args));
1453 if (IS_ERR(vol_args))
1454 return PTR_ERR(vol_args);
1455 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1457 if (vol_args->flags &
1458 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1463 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1465 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1468 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1469 vol_args->fd, subvol,
1472 if (ret == 0 && ptr &&
1474 offsetof(struct btrfs_ioctl_vol_args_v2,
1475 transid), ptr, sizeof(*ptr)))
1482 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1485 struct inode *inode = fdentry(file)->d_inode;
1486 struct btrfs_root *root = BTRFS_I(inode)->root;
1490 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1493 down_read(&root->fs_info->subvol_sem);
1494 if (btrfs_root_readonly(root))
1495 flags |= BTRFS_SUBVOL_RDONLY;
1496 up_read(&root->fs_info->subvol_sem);
1498 if (copy_to_user(arg, &flags, sizeof(flags)))
1504 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1507 struct inode *inode = fdentry(file)->d_inode;
1508 struct btrfs_root *root = BTRFS_I(inode)->root;
1509 struct btrfs_trans_handle *trans;
1514 if (root->fs_info->sb->s_flags & MS_RDONLY)
1517 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1520 if (copy_from_user(&flags, arg, sizeof(flags)))
1523 if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1526 if (flags & ~BTRFS_SUBVOL_RDONLY)
1529 if (!inode_owner_or_capable(inode))
1532 down_write(&root->fs_info->subvol_sem);
1535 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1538 root_flags = btrfs_root_flags(&root->root_item);
1539 if (flags & BTRFS_SUBVOL_RDONLY)
1540 btrfs_set_root_flags(&root->root_item,
1541 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1543 btrfs_set_root_flags(&root->root_item,
1544 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1546 trans = btrfs_start_transaction(root, 1);
1547 if (IS_ERR(trans)) {
1548 ret = PTR_ERR(trans);
1552 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1553 &root->root_key, &root->root_item);
1555 btrfs_commit_transaction(trans, root);
1558 btrfs_set_root_flags(&root->root_item, root_flags);
1560 up_write(&root->fs_info->subvol_sem);
1565 * helper to check if the subvolume references other subvolumes
1567 static noinline int may_destroy_subvol(struct btrfs_root *root)
1569 struct btrfs_path *path;
1570 struct btrfs_key key;
1573 path = btrfs_alloc_path();
1577 key.objectid = root->root_key.objectid;
1578 key.type = BTRFS_ROOT_REF_KEY;
1579 key.offset = (u64)-1;
1581 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1588 if (path->slots[0] > 0) {
1590 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1591 if (key.objectid == root->root_key.objectid &&
1592 key.type == BTRFS_ROOT_REF_KEY)
1596 btrfs_free_path(path);
1600 static noinline int key_in_sk(struct btrfs_key *key,
1601 struct btrfs_ioctl_search_key *sk)
1603 struct btrfs_key test;
1606 test.objectid = sk->min_objectid;
1607 test.type = sk->min_type;
1608 test.offset = sk->min_offset;
1610 ret = btrfs_comp_cpu_keys(key, &test);
1614 test.objectid = sk->max_objectid;
1615 test.type = sk->max_type;
1616 test.offset = sk->max_offset;
1618 ret = btrfs_comp_cpu_keys(key, &test);
1624 static noinline int copy_to_sk(struct btrfs_root *root,
1625 struct btrfs_path *path,
1626 struct btrfs_key *key,
1627 struct btrfs_ioctl_search_key *sk,
1629 unsigned long *sk_offset,
1633 struct extent_buffer *leaf;
1634 struct btrfs_ioctl_search_header sh;
1635 unsigned long item_off;
1636 unsigned long item_len;
1642 leaf = path->nodes[0];
1643 slot = path->slots[0];
1644 nritems = btrfs_header_nritems(leaf);
1646 if (btrfs_header_generation(leaf) > sk->max_transid) {
1650 found_transid = btrfs_header_generation(leaf);
1652 for (i = slot; i < nritems; i++) {
1653 item_off = btrfs_item_ptr_offset(leaf, i);
1654 item_len = btrfs_item_size_nr(leaf, i);
1656 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1659 if (sizeof(sh) + item_len + *sk_offset >
1660 BTRFS_SEARCH_ARGS_BUFSIZE) {
1665 btrfs_item_key_to_cpu(leaf, key, i);
1666 if (!key_in_sk(key, sk))
1669 sh.objectid = key->objectid;
1670 sh.offset = key->offset;
1671 sh.type = key->type;
1673 sh.transid = found_transid;
1675 /* copy search result header */
1676 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1677 *sk_offset += sizeof(sh);
1680 char *p = buf + *sk_offset;
1682 read_extent_buffer(leaf, p,
1683 item_off, item_len);
1684 *sk_offset += item_len;
1688 if (*num_found >= sk->nr_items)
1693 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1695 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1698 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1708 static noinline int search_ioctl(struct inode *inode,
1709 struct btrfs_ioctl_search_args *args)
1711 struct btrfs_root *root;
1712 struct btrfs_key key;
1713 struct btrfs_key max_key;
1714 struct btrfs_path *path;
1715 struct btrfs_ioctl_search_key *sk = &args->key;
1716 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1719 unsigned long sk_offset = 0;
1721 path = btrfs_alloc_path();
1725 if (sk->tree_id == 0) {
1726 /* search the root of the inode that was passed */
1727 root = BTRFS_I(inode)->root;
1729 key.objectid = sk->tree_id;
1730 key.type = BTRFS_ROOT_ITEM_KEY;
1731 key.offset = (u64)-1;
1732 root = btrfs_read_fs_root_no_name(info, &key);
1734 printk(KERN_ERR "could not find root %llu\n",
1736 btrfs_free_path(path);
1741 key.objectid = sk->min_objectid;
1742 key.type = sk->min_type;
1743 key.offset = sk->min_offset;
1745 max_key.objectid = sk->max_objectid;
1746 max_key.type = sk->max_type;
1747 max_key.offset = sk->max_offset;
1749 path->keep_locks = 1;
1752 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1759 ret = copy_to_sk(root, path, &key, sk, args->buf,
1760 &sk_offset, &num_found);
1761 btrfs_release_path(path);
1762 if (ret || num_found >= sk->nr_items)
1768 sk->nr_items = num_found;
1769 btrfs_free_path(path);
1773 static noinline int btrfs_ioctl_tree_search(struct file *file,
1776 struct btrfs_ioctl_search_args *args;
1777 struct inode *inode;
1780 if (!capable(CAP_SYS_ADMIN))
1783 args = memdup_user(argp, sizeof(*args));
1785 return PTR_ERR(args);
1787 inode = fdentry(file)->d_inode;
1788 ret = search_ioctl(inode, args);
1789 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1796 * Search INODE_REFs to identify path name of 'dirid' directory
1797 * in a 'tree_id' tree. and sets path name to 'name'.
1799 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1800 u64 tree_id, u64 dirid, char *name)
1802 struct btrfs_root *root;
1803 struct btrfs_key key;
1809 struct btrfs_inode_ref *iref;
1810 struct extent_buffer *l;
1811 struct btrfs_path *path;
1813 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1818 path = btrfs_alloc_path();
1822 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1824 key.objectid = tree_id;
1825 key.type = BTRFS_ROOT_ITEM_KEY;
1826 key.offset = (u64)-1;
1827 root = btrfs_read_fs_root_no_name(info, &key);
1829 printk(KERN_ERR "could not find root %llu\n", tree_id);
1834 key.objectid = dirid;
1835 key.type = BTRFS_INODE_REF_KEY;
1836 key.offset = (u64)-1;
1839 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1844 slot = path->slots[0];
1845 if (ret > 0 && slot > 0)
1847 btrfs_item_key_to_cpu(l, &key, slot);
1849 if (ret > 0 && (key.objectid != dirid ||
1850 key.type != BTRFS_INODE_REF_KEY)) {
1855 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1856 len = btrfs_inode_ref_name_len(l, iref);
1858 total_len += len + 1;
1863 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1865 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1868 btrfs_release_path(path);
1869 key.objectid = key.offset;
1870 key.offset = (u64)-1;
1871 dirid = key.objectid;
1875 memmove(name, ptr, total_len);
1876 name[total_len]='\0';
1879 btrfs_free_path(path);
1883 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1886 struct btrfs_ioctl_ino_lookup_args *args;
1887 struct inode *inode;
1890 if (!capable(CAP_SYS_ADMIN))
1893 args = memdup_user(argp, sizeof(*args));
1895 return PTR_ERR(args);
1897 inode = fdentry(file)->d_inode;
1899 if (args->treeid == 0)
1900 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1902 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1903 args->treeid, args->objectid,
1906 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1913 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1916 struct dentry *parent = fdentry(file);
1917 struct dentry *dentry;
1918 struct inode *dir = parent->d_inode;
1919 struct inode *inode;
1920 struct btrfs_root *root = BTRFS_I(dir)->root;
1921 struct btrfs_root *dest = NULL;
1922 struct btrfs_ioctl_vol_args *vol_args;
1923 struct btrfs_trans_handle *trans;
1928 vol_args = memdup_user(arg, sizeof(*vol_args));
1929 if (IS_ERR(vol_args))
1930 return PTR_ERR(vol_args);
1932 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1933 namelen = strlen(vol_args->name);
1934 if (strchr(vol_args->name, '/') ||
1935 strncmp(vol_args->name, "..", namelen) == 0) {
1940 err = mnt_want_write_file(file);
1944 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1945 dentry = lookup_one_len(vol_args->name, parent, namelen);
1946 if (IS_ERR(dentry)) {
1947 err = PTR_ERR(dentry);
1948 goto out_unlock_dir;
1951 if (!dentry->d_inode) {
1956 inode = dentry->d_inode;
1957 dest = BTRFS_I(inode)->root;
1958 if (!capable(CAP_SYS_ADMIN)){
1960 * Regular user. Only allow this with a special mount
1961 * option, when the user has write+exec access to the
1962 * subvol root, and when rmdir(2) would have been
1965 * Note that this is _not_ check that the subvol is
1966 * empty or doesn't contain data that we wouldn't
1967 * otherwise be able to delete.
1969 * Users who want to delete empty subvols should try
1973 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1977 * Do not allow deletion if the parent dir is the same
1978 * as the dir to be deleted. That means the ioctl
1979 * must be called on the dentry referencing the root
1980 * of the subvol, not a random directory contained
1987 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1991 /* check if subvolume may be deleted by a non-root user */
1992 err = btrfs_may_delete(dir, dentry, 1);
1997 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2002 mutex_lock(&inode->i_mutex);
2003 err = d_invalidate(dentry);
2007 down_write(&root->fs_info->subvol_sem);
2009 err = may_destroy_subvol(dest);
2013 trans = btrfs_start_transaction(root, 0);
2014 if (IS_ERR(trans)) {
2015 err = PTR_ERR(trans);
2018 trans->block_rsv = &root->fs_info->global_block_rsv;
2020 ret = btrfs_unlink_subvol(trans, root, dir,
2021 dest->root_key.objectid,
2022 dentry->d_name.name,
2023 dentry->d_name.len);
2026 btrfs_abort_transaction(trans, root, ret);
2030 btrfs_record_root_in_trans(trans, dest);
2032 memset(&dest->root_item.drop_progress, 0,
2033 sizeof(dest->root_item.drop_progress));
2034 dest->root_item.drop_level = 0;
2035 btrfs_set_root_refs(&dest->root_item, 0);
2037 if (!xchg(&dest->orphan_item_inserted, 1)) {
2038 ret = btrfs_insert_orphan_item(trans,
2039 root->fs_info->tree_root,
2040 dest->root_key.objectid);
2042 btrfs_abort_transaction(trans, root, ret);
2048 ret = btrfs_end_transaction(trans, root);
2051 inode->i_flags |= S_DEAD;
2053 up_write(&root->fs_info->subvol_sem);
2055 mutex_unlock(&inode->i_mutex);
2057 shrink_dcache_sb(root->fs_info->sb);
2058 btrfs_invalidate_inodes(dest);
2064 mutex_unlock(&dir->i_mutex);
2065 mnt_drop_write_file(file);
2071 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2073 struct inode *inode = fdentry(file)->d_inode;
2074 struct btrfs_root *root = BTRFS_I(inode)->root;
2075 struct btrfs_ioctl_defrag_range_args *range;
2078 if (btrfs_root_readonly(root))
2081 ret = mnt_want_write_file(file);
2085 switch (inode->i_mode & S_IFMT) {
2087 if (!capable(CAP_SYS_ADMIN)) {
2091 ret = btrfs_defrag_root(root, 0);
2094 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2097 if (!(file->f_mode & FMODE_WRITE)) {
2102 range = kzalloc(sizeof(*range), GFP_KERNEL);
2109 if (copy_from_user(range, argp,
2115 /* compression requires us to start the IO */
2116 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2117 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2118 range->extent_thresh = (u32)-1;
2121 /* the rest are all set to zero by kzalloc */
2122 range->len = (u64)-1;
2124 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2134 mnt_drop_write_file(file);
2138 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2140 struct btrfs_ioctl_vol_args *vol_args;
2143 if (!capable(CAP_SYS_ADMIN))
2146 mutex_lock(&root->fs_info->volume_mutex);
2147 if (root->fs_info->balance_ctl) {
2148 printk(KERN_INFO "btrfs: balance in progress\n");
2153 vol_args = memdup_user(arg, sizeof(*vol_args));
2154 if (IS_ERR(vol_args)) {
2155 ret = PTR_ERR(vol_args);
2159 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2160 ret = btrfs_init_new_device(root, vol_args->name);
2164 mutex_unlock(&root->fs_info->volume_mutex);
2168 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2170 struct btrfs_ioctl_vol_args *vol_args;
2173 if (!capable(CAP_SYS_ADMIN))
2176 if (root->fs_info->sb->s_flags & MS_RDONLY)
2179 mutex_lock(&root->fs_info->volume_mutex);
2180 if (root->fs_info->balance_ctl) {
2181 printk(KERN_INFO "btrfs: balance in progress\n");
2186 vol_args = memdup_user(arg, sizeof(*vol_args));
2187 if (IS_ERR(vol_args)) {
2188 ret = PTR_ERR(vol_args);
2192 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2193 ret = btrfs_rm_device(root, vol_args->name);
2197 mutex_unlock(&root->fs_info->volume_mutex);
2201 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2203 struct btrfs_ioctl_fs_info_args *fi_args;
2204 struct btrfs_device *device;
2205 struct btrfs_device *next;
2206 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2209 if (!capable(CAP_SYS_ADMIN))
2212 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2216 fi_args->num_devices = fs_devices->num_devices;
2217 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2219 mutex_lock(&fs_devices->device_list_mutex);
2220 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2221 if (device->devid > fi_args->max_id)
2222 fi_args->max_id = device->devid;
2224 mutex_unlock(&fs_devices->device_list_mutex);
2226 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2233 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2235 struct btrfs_ioctl_dev_info_args *di_args;
2236 struct btrfs_device *dev;
2237 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2239 char *s_uuid = NULL;
2240 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2242 if (!capable(CAP_SYS_ADMIN))
2245 di_args = memdup_user(arg, sizeof(*di_args));
2246 if (IS_ERR(di_args))
2247 return PTR_ERR(di_args);
2249 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2250 s_uuid = di_args->uuid;
2252 mutex_lock(&fs_devices->device_list_mutex);
2253 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2254 mutex_unlock(&fs_devices->device_list_mutex);
2261 di_args->devid = dev->devid;
2262 di_args->bytes_used = dev->bytes_used;
2263 di_args->total_bytes = dev->total_bytes;
2264 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2266 strncpy(di_args->path, dev->name, sizeof(di_args->path));
2268 di_args->path[0] = '\0';
2271 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2278 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2279 u64 off, u64 olen, u64 destoff)
2281 struct inode *inode = fdentry(file)->d_inode;
2282 struct btrfs_root *root = BTRFS_I(inode)->root;
2283 struct file *src_file;
2285 struct btrfs_trans_handle *trans;
2286 struct btrfs_path *path;
2287 struct extent_buffer *leaf;
2289 struct btrfs_key key;
2294 u64 bs = root->fs_info->sb->s_blocksize;
2299 * - split compressed inline extents. annoying: we need to
2300 * decompress into destination's address_space (the file offset
2301 * may change, so source mapping won't do), then recompress (or
2302 * otherwise reinsert) a subrange.
2303 * - allow ranges within the same file to be cloned (provided
2304 * they don't overlap)?
2307 /* the destination must be opened for writing */
2308 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2311 if (btrfs_root_readonly(root))
2314 ret = mnt_want_write_file(file);
2318 src_file = fget(srcfd);
2321 goto out_drop_write;
2324 src = src_file->f_dentry->d_inode;
2330 /* the src must be open for reading */
2331 if (!(src_file->f_mode & FMODE_READ))
2334 /* don't make the dst file partly checksummed */
2335 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2336 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2340 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2344 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2348 buf = vmalloc(btrfs_level_size(root, 0));
2352 path = btrfs_alloc_path();
2360 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2361 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2363 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2364 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2367 /* determine range to clone */
2369 if (off + len > src->i_size || off + len < off)
2372 olen = len = src->i_size - off;
2373 /* if we extend to eof, continue to block boundary */
2374 if (off + len == src->i_size)
2375 len = ALIGN(src->i_size, bs) - off;
2377 /* verify the end result is block aligned */
2378 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2379 !IS_ALIGNED(destoff, bs))
2382 if (destoff > inode->i_size) {
2383 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2388 /* truncate page cache pages from target inode range */
2389 truncate_inode_pages_range(&inode->i_data, destoff,
2390 PAGE_CACHE_ALIGN(destoff + len) - 1);
2392 /* do any pending delalloc/csum calc on src, one way or
2393 another, and lock file content */
2395 struct btrfs_ordered_extent *ordered;
2396 lock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2397 ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2399 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2400 EXTENT_DELALLOC, 0, NULL))
2402 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2404 btrfs_put_ordered_extent(ordered);
2405 btrfs_wait_ordered_range(src, off, len);
2409 key.objectid = btrfs_ino(src);
2410 key.type = BTRFS_EXTENT_DATA_KEY;
2415 * note the key will change type as we walk through the
2418 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2422 nritems = btrfs_header_nritems(path->nodes[0]);
2423 if (path->slots[0] >= nritems) {
2424 ret = btrfs_next_leaf(root, path);
2429 nritems = btrfs_header_nritems(path->nodes[0]);
2431 leaf = path->nodes[0];
2432 slot = path->slots[0];
2434 btrfs_item_key_to_cpu(leaf, &key, slot);
2435 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2436 key.objectid != btrfs_ino(src))
2439 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2440 struct btrfs_file_extent_item *extent;
2443 struct btrfs_key new_key;
2444 u64 disko = 0, diskl = 0;
2445 u64 datao = 0, datal = 0;
2449 size = btrfs_item_size_nr(leaf, slot);
2450 read_extent_buffer(leaf, buf,
2451 btrfs_item_ptr_offset(leaf, slot),
2454 extent = btrfs_item_ptr(leaf, slot,
2455 struct btrfs_file_extent_item);
2456 comp = btrfs_file_extent_compression(leaf, extent);
2457 type = btrfs_file_extent_type(leaf, extent);
2458 if (type == BTRFS_FILE_EXTENT_REG ||
2459 type == BTRFS_FILE_EXTENT_PREALLOC) {
2460 disko = btrfs_file_extent_disk_bytenr(leaf,
2462 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2464 datao = btrfs_file_extent_offset(leaf, extent);
2465 datal = btrfs_file_extent_num_bytes(leaf,
2467 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2468 /* take upper bound, may be compressed */
2469 datal = btrfs_file_extent_ram_bytes(leaf,
2472 btrfs_release_path(path);
2474 if (key.offset + datal <= off ||
2475 key.offset >= off+len)
2478 memcpy(&new_key, &key, sizeof(new_key));
2479 new_key.objectid = btrfs_ino(inode);
2480 if (off <= key.offset)
2481 new_key.offset = key.offset + destoff - off;
2483 new_key.offset = destoff;
2486 * 1 - adjusting old extent (we may have to split it)
2487 * 1 - add new extent
2490 trans = btrfs_start_transaction(root, 3);
2491 if (IS_ERR(trans)) {
2492 ret = PTR_ERR(trans);
2496 if (type == BTRFS_FILE_EXTENT_REG ||
2497 type == BTRFS_FILE_EXTENT_PREALLOC) {
2499 * a | --- range to clone ---| b
2500 * | ------------- extent ------------- |
2503 /* substract range b */
2504 if (key.offset + datal > off + len)
2505 datal = off + len - key.offset;
2507 /* substract range a */
2508 if (off > key.offset) {
2509 datao += off - key.offset;
2510 datal -= off - key.offset;
2513 ret = btrfs_drop_extents(trans, inode,
2515 new_key.offset + datal,
2518 btrfs_abort_transaction(trans, root,
2520 btrfs_end_transaction(trans, root);
2524 ret = btrfs_insert_empty_item(trans, root, path,
2527 btrfs_abort_transaction(trans, root,
2529 btrfs_end_transaction(trans, root);
2533 leaf = path->nodes[0];
2534 slot = path->slots[0];
2535 write_extent_buffer(leaf, buf,
2536 btrfs_item_ptr_offset(leaf, slot),
2539 extent = btrfs_item_ptr(leaf, slot,
2540 struct btrfs_file_extent_item);
2542 /* disko == 0 means it's a hole */
2546 btrfs_set_file_extent_offset(leaf, extent,
2548 btrfs_set_file_extent_num_bytes(leaf, extent,
2551 inode_add_bytes(inode, datal);
2552 ret = btrfs_inc_extent_ref(trans, root,
2554 root->root_key.objectid,
2556 new_key.offset - datao,
2559 btrfs_abort_transaction(trans,
2562 btrfs_end_transaction(trans,
2568 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2571 if (off > key.offset) {
2572 skip = off - key.offset;
2573 new_key.offset += skip;
2576 if (key.offset + datal > off+len)
2577 trim = key.offset + datal - (off+len);
2579 if (comp && (skip || trim)) {
2581 btrfs_end_transaction(trans, root);
2584 size -= skip + trim;
2585 datal -= skip + trim;
2587 ret = btrfs_drop_extents(trans, inode,
2589 new_key.offset + datal,
2592 btrfs_abort_transaction(trans, root,
2594 btrfs_end_transaction(trans, root);
2598 ret = btrfs_insert_empty_item(trans, root, path,
2601 btrfs_abort_transaction(trans, root,
2603 btrfs_end_transaction(trans, root);
2609 btrfs_file_extent_calc_inline_size(0);
2610 memmove(buf+start, buf+start+skip,
2614 leaf = path->nodes[0];
2615 slot = path->slots[0];
2616 write_extent_buffer(leaf, buf,
2617 btrfs_item_ptr_offset(leaf, slot),
2619 inode_add_bytes(inode, datal);
2622 btrfs_mark_buffer_dirty(leaf);
2623 btrfs_release_path(path);
2625 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2628 * we round up to the block size at eof when
2629 * determining which extents to clone above,
2630 * but shouldn't round up the file size
2632 endoff = new_key.offset + datal;
2633 if (endoff > destoff+olen)
2634 endoff = destoff+olen;
2635 if (endoff > inode->i_size)
2636 btrfs_i_size_write(inode, endoff);
2638 ret = btrfs_update_inode(trans, root, inode);
2640 btrfs_abort_transaction(trans, root, ret);
2641 btrfs_end_transaction(trans, root);
2644 ret = btrfs_end_transaction(trans, root);
2647 btrfs_release_path(path);
2652 btrfs_release_path(path);
2653 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2655 mutex_unlock(&src->i_mutex);
2656 mutex_unlock(&inode->i_mutex);
2658 btrfs_free_path(path);
2662 mnt_drop_write_file(file);
2666 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2668 struct btrfs_ioctl_clone_range_args args;
2670 if (copy_from_user(&args, argp, sizeof(args)))
2672 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2673 args.src_length, args.dest_offset);
2677 * there are many ways the trans_start and trans_end ioctls can lead
2678 * to deadlocks. They should only be used by applications that
2679 * basically own the machine, and have a very in depth understanding
2680 * of all the possible deadlocks and enospc problems.
2682 static long btrfs_ioctl_trans_start(struct file *file)
2684 struct inode *inode = fdentry(file)->d_inode;
2685 struct btrfs_root *root = BTRFS_I(inode)->root;
2686 struct btrfs_trans_handle *trans;
2690 if (!capable(CAP_SYS_ADMIN))
2694 if (file->private_data)
2698 if (btrfs_root_readonly(root))
2701 ret = mnt_want_write_file(file);
2705 atomic_inc(&root->fs_info->open_ioctl_trans);
2708 trans = btrfs_start_ioctl_transaction(root);
2712 file->private_data = trans;
2716 atomic_dec(&root->fs_info->open_ioctl_trans);
2717 mnt_drop_write_file(file);
2722 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2724 struct inode *inode = fdentry(file)->d_inode;
2725 struct btrfs_root *root = BTRFS_I(inode)->root;
2726 struct btrfs_root *new_root;
2727 struct btrfs_dir_item *di;
2728 struct btrfs_trans_handle *trans;
2729 struct btrfs_path *path;
2730 struct btrfs_key location;
2731 struct btrfs_disk_key disk_key;
2732 struct btrfs_super_block *disk_super;
2737 if (!capable(CAP_SYS_ADMIN))
2740 if (copy_from_user(&objectid, argp, sizeof(objectid)))
2744 objectid = root->root_key.objectid;
2746 location.objectid = objectid;
2747 location.type = BTRFS_ROOT_ITEM_KEY;
2748 location.offset = (u64)-1;
2750 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2751 if (IS_ERR(new_root))
2752 return PTR_ERR(new_root);
2754 if (btrfs_root_refs(&new_root->root_item) == 0)
2757 path = btrfs_alloc_path();
2760 path->leave_spinning = 1;
2762 trans = btrfs_start_transaction(root, 1);
2763 if (IS_ERR(trans)) {
2764 btrfs_free_path(path);
2765 return PTR_ERR(trans);
2768 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2769 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2770 dir_id, "default", 7, 1);
2771 if (IS_ERR_OR_NULL(di)) {
2772 btrfs_free_path(path);
2773 btrfs_end_transaction(trans, root);
2774 printk(KERN_ERR "Umm, you don't have the default dir item, "
2775 "this isn't going to work\n");
2779 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2780 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2781 btrfs_mark_buffer_dirty(path->nodes[0]);
2782 btrfs_free_path(path);
2784 disk_super = root->fs_info->super_copy;
2785 features = btrfs_super_incompat_flags(disk_super);
2786 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2787 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2788 btrfs_set_super_incompat_flags(disk_super, features);
2790 btrfs_end_transaction(trans, root);
2795 static void get_block_group_info(struct list_head *groups_list,
2796 struct btrfs_ioctl_space_info *space)
2798 struct btrfs_block_group_cache *block_group;
2800 space->total_bytes = 0;
2801 space->used_bytes = 0;
2803 list_for_each_entry(block_group, groups_list, list) {
2804 space->flags = block_group->flags;
2805 space->total_bytes += block_group->key.offset;
2806 space->used_bytes +=
2807 btrfs_block_group_used(&block_group->item);
2811 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2813 struct btrfs_ioctl_space_args space_args;
2814 struct btrfs_ioctl_space_info space;
2815 struct btrfs_ioctl_space_info *dest;
2816 struct btrfs_ioctl_space_info *dest_orig;
2817 struct btrfs_ioctl_space_info __user *user_dest;
2818 struct btrfs_space_info *info;
2819 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2820 BTRFS_BLOCK_GROUP_SYSTEM,
2821 BTRFS_BLOCK_GROUP_METADATA,
2822 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2829 if (copy_from_user(&space_args,
2830 (struct btrfs_ioctl_space_args __user *)arg,
2831 sizeof(space_args)))
2834 for (i = 0; i < num_types; i++) {
2835 struct btrfs_space_info *tmp;
2839 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2841 if (tmp->flags == types[i]) {
2851 down_read(&info->groups_sem);
2852 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2853 if (!list_empty(&info->block_groups[c]))
2856 up_read(&info->groups_sem);
2859 /* space_slots == 0 means they are asking for a count */
2860 if (space_args.space_slots == 0) {
2861 space_args.total_spaces = slot_count;
2865 slot_count = min_t(u64, space_args.space_slots, slot_count);
2867 alloc_size = sizeof(*dest) * slot_count;
2869 /* we generally have at most 6 or so space infos, one for each raid
2870 * level. So, a whole page should be more than enough for everyone
2872 if (alloc_size > PAGE_CACHE_SIZE)
2875 space_args.total_spaces = 0;
2876 dest = kmalloc(alloc_size, GFP_NOFS);
2881 /* now we have a buffer to copy into */
2882 for (i = 0; i < num_types; i++) {
2883 struct btrfs_space_info *tmp;
2890 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2892 if (tmp->flags == types[i]) {
2901 down_read(&info->groups_sem);
2902 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2903 if (!list_empty(&info->block_groups[c])) {
2904 get_block_group_info(&info->block_groups[c],
2906 memcpy(dest, &space, sizeof(space));
2908 space_args.total_spaces++;
2914 up_read(&info->groups_sem);
2917 user_dest = (struct btrfs_ioctl_space_info *)
2918 (arg + sizeof(struct btrfs_ioctl_space_args));
2920 if (copy_to_user(user_dest, dest_orig, alloc_size))
2925 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2932 * there are many ways the trans_start and trans_end ioctls can lead
2933 * to deadlocks. They should only be used by applications that
2934 * basically own the machine, and have a very in depth understanding
2935 * of all the possible deadlocks and enospc problems.
2937 long btrfs_ioctl_trans_end(struct file *file)
2939 struct inode *inode = fdentry(file)->d_inode;
2940 struct btrfs_root *root = BTRFS_I(inode)->root;
2941 struct btrfs_trans_handle *trans;
2943 trans = file->private_data;
2946 file->private_data = NULL;
2948 btrfs_end_transaction(trans, root);
2950 atomic_dec(&root->fs_info->open_ioctl_trans);
2952 mnt_drop_write_file(file);
2956 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2958 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2959 struct btrfs_trans_handle *trans;
2963 trans = btrfs_start_transaction(root, 0);
2965 return PTR_ERR(trans);
2966 transid = trans->transid;
2967 ret = btrfs_commit_transaction_async(trans, root, 0);
2969 btrfs_end_transaction(trans, root);
2974 if (copy_to_user(argp, &transid, sizeof(transid)))
2979 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
2981 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2985 if (copy_from_user(&transid, argp, sizeof(transid)))
2988 transid = 0; /* current trans */
2990 return btrfs_wait_for_commit(root, transid);
2993 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
2996 struct btrfs_ioctl_scrub_args *sa;
2998 if (!capable(CAP_SYS_ADMIN))
3001 sa = memdup_user(arg, sizeof(*sa));
3005 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
3006 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
3008 if (copy_to_user(arg, sa, sizeof(*sa)))
3015 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3017 if (!capable(CAP_SYS_ADMIN))
3020 return btrfs_scrub_cancel(root);
3023 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3026 struct btrfs_ioctl_scrub_args *sa;
3029 if (!capable(CAP_SYS_ADMIN))
3032 sa = memdup_user(arg, sizeof(*sa));
3036 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3038 if (copy_to_user(arg, sa, sizeof(*sa)))
3045 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3051 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3052 struct inode_fs_paths *ipath = NULL;
3053 struct btrfs_path *path;
3055 if (!capable(CAP_SYS_ADMIN))
3058 path = btrfs_alloc_path();
3064 ipa = memdup_user(arg, sizeof(*ipa));
3071 size = min_t(u32, ipa->size, 4096);
3072 ipath = init_ipath(size, root, path);
3073 if (IS_ERR(ipath)) {
3074 ret = PTR_ERR(ipath);
3079 ret = paths_from_inode(ipa->inum, ipath);
3083 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3084 rel_ptr = ipath->fspath->val[i] -
3085 (u64)(unsigned long)ipath->fspath->val;
3086 ipath->fspath->val[i] = rel_ptr;
3089 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3090 (void *)(unsigned long)ipath->fspath, size);
3097 btrfs_free_path(path);
3104 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3106 struct btrfs_data_container *inodes = ctx;
3107 const size_t c = 3 * sizeof(u64);
3109 if (inodes->bytes_left >= c) {
3110 inodes->bytes_left -= c;
3111 inodes->val[inodes->elem_cnt] = inum;
3112 inodes->val[inodes->elem_cnt + 1] = offset;
3113 inodes->val[inodes->elem_cnt + 2] = root;
3114 inodes->elem_cnt += 3;
3116 inodes->bytes_missing += c - inodes->bytes_left;
3117 inodes->bytes_left = 0;
3118 inodes->elem_missed += 3;
3124 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3129 u64 extent_item_pos;
3130 struct btrfs_ioctl_logical_ino_args *loi;
3131 struct btrfs_data_container *inodes = NULL;
3132 struct btrfs_path *path = NULL;
3133 struct btrfs_key key;
3135 if (!capable(CAP_SYS_ADMIN))
3138 loi = memdup_user(arg, sizeof(*loi));
3145 path = btrfs_alloc_path();
3151 size = min_t(u32, loi->size, 4096);
3152 inodes = init_data_container(size);
3153 if (IS_ERR(inodes)) {
3154 ret = PTR_ERR(inodes);
3159 ret = extent_from_logical(root->fs_info, loi->logical, path, &key);
3160 btrfs_release_path(path);
3162 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3167 extent_item_pos = loi->logical - key.objectid;
3168 ret = iterate_extent_inodes(root->fs_info, key.objectid,
3169 extent_item_pos, 0, build_ino_list,
3175 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3176 (void *)(unsigned long)inodes, size);
3181 btrfs_free_path(path);
3188 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3189 struct btrfs_ioctl_balance_args *bargs)
3191 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3193 bargs->flags = bctl->flags;
3195 if (atomic_read(&fs_info->balance_running))
3196 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3197 if (atomic_read(&fs_info->balance_pause_req))
3198 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3199 if (atomic_read(&fs_info->balance_cancel_req))
3200 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3202 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3203 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3204 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3207 spin_lock(&fs_info->balance_lock);
3208 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3209 spin_unlock(&fs_info->balance_lock);
3211 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3215 static long btrfs_ioctl_balance(struct btrfs_root *root, void __user *arg)
3217 struct btrfs_fs_info *fs_info = root->fs_info;
3218 struct btrfs_ioctl_balance_args *bargs;
3219 struct btrfs_balance_control *bctl;
3222 if (!capable(CAP_SYS_ADMIN))
3225 if (fs_info->sb->s_flags & MS_RDONLY)
3228 mutex_lock(&fs_info->volume_mutex);
3229 mutex_lock(&fs_info->balance_mutex);
3232 bargs = memdup_user(arg, sizeof(*bargs));
3233 if (IS_ERR(bargs)) {
3234 ret = PTR_ERR(bargs);
3238 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3239 if (!fs_info->balance_ctl) {
3244 bctl = fs_info->balance_ctl;
3245 spin_lock(&fs_info->balance_lock);
3246 bctl->flags |= BTRFS_BALANCE_RESUME;
3247 spin_unlock(&fs_info->balance_lock);
3255 if (fs_info->balance_ctl) {
3260 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3266 bctl->fs_info = fs_info;
3268 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3269 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3270 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3272 bctl->flags = bargs->flags;
3274 /* balance everything - no filters */
3275 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3279 ret = btrfs_balance(bctl, bargs);
3281 * bctl is freed in __cancel_balance or in free_fs_info if
3282 * restriper was paused all the way until unmount
3285 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3292 mutex_unlock(&fs_info->balance_mutex);
3293 mutex_unlock(&fs_info->volume_mutex);
3297 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3299 if (!capable(CAP_SYS_ADMIN))
3303 case BTRFS_BALANCE_CTL_PAUSE:
3304 return btrfs_pause_balance(root->fs_info);
3305 case BTRFS_BALANCE_CTL_CANCEL:
3306 return btrfs_cancel_balance(root->fs_info);
3312 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3315 struct btrfs_fs_info *fs_info = root->fs_info;
3316 struct btrfs_ioctl_balance_args *bargs;
3319 if (!capable(CAP_SYS_ADMIN))
3322 mutex_lock(&fs_info->balance_mutex);
3323 if (!fs_info->balance_ctl) {
3328 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3334 update_ioctl_balance_args(fs_info, 1, bargs);
3336 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3341 mutex_unlock(&fs_info->balance_mutex);
3345 long btrfs_ioctl(struct file *file, unsigned int
3346 cmd, unsigned long arg)
3348 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3349 void __user *argp = (void __user *)arg;
3352 case FS_IOC_GETFLAGS:
3353 return btrfs_ioctl_getflags(file, argp);
3354 case FS_IOC_SETFLAGS:
3355 return btrfs_ioctl_setflags(file, argp);
3356 case FS_IOC_GETVERSION:
3357 return btrfs_ioctl_getversion(file, argp);
3359 return btrfs_ioctl_fitrim(file, argp);
3360 case BTRFS_IOC_SNAP_CREATE:
3361 return btrfs_ioctl_snap_create(file, argp, 0);
3362 case BTRFS_IOC_SNAP_CREATE_V2:
3363 return btrfs_ioctl_snap_create_v2(file, argp, 0);
3364 case BTRFS_IOC_SUBVOL_CREATE:
3365 return btrfs_ioctl_snap_create(file, argp, 1);
3366 case BTRFS_IOC_SNAP_DESTROY:
3367 return btrfs_ioctl_snap_destroy(file, argp);
3368 case BTRFS_IOC_SUBVOL_GETFLAGS:
3369 return btrfs_ioctl_subvol_getflags(file, argp);
3370 case BTRFS_IOC_SUBVOL_SETFLAGS:
3371 return btrfs_ioctl_subvol_setflags(file, argp);
3372 case BTRFS_IOC_DEFAULT_SUBVOL:
3373 return btrfs_ioctl_default_subvol(file, argp);
3374 case BTRFS_IOC_DEFRAG:
3375 return btrfs_ioctl_defrag(file, NULL);
3376 case BTRFS_IOC_DEFRAG_RANGE:
3377 return btrfs_ioctl_defrag(file, argp);
3378 case BTRFS_IOC_RESIZE:
3379 return btrfs_ioctl_resize(root, argp);
3380 case BTRFS_IOC_ADD_DEV:
3381 return btrfs_ioctl_add_dev(root, argp);
3382 case BTRFS_IOC_RM_DEV:
3383 return btrfs_ioctl_rm_dev(root, argp);
3384 case BTRFS_IOC_FS_INFO:
3385 return btrfs_ioctl_fs_info(root, argp);
3386 case BTRFS_IOC_DEV_INFO:
3387 return btrfs_ioctl_dev_info(root, argp);
3388 case BTRFS_IOC_BALANCE:
3389 return btrfs_ioctl_balance(root, NULL);
3390 case BTRFS_IOC_CLONE:
3391 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3392 case BTRFS_IOC_CLONE_RANGE:
3393 return btrfs_ioctl_clone_range(file, argp);
3394 case BTRFS_IOC_TRANS_START:
3395 return btrfs_ioctl_trans_start(file);
3396 case BTRFS_IOC_TRANS_END:
3397 return btrfs_ioctl_trans_end(file);
3398 case BTRFS_IOC_TREE_SEARCH:
3399 return btrfs_ioctl_tree_search(file, argp);
3400 case BTRFS_IOC_INO_LOOKUP:
3401 return btrfs_ioctl_ino_lookup(file, argp);
3402 case BTRFS_IOC_INO_PATHS:
3403 return btrfs_ioctl_ino_to_path(root, argp);
3404 case BTRFS_IOC_LOGICAL_INO:
3405 return btrfs_ioctl_logical_to_ino(root, argp);
3406 case BTRFS_IOC_SPACE_INFO:
3407 return btrfs_ioctl_space_info(root, argp);
3408 case BTRFS_IOC_SYNC:
3409 btrfs_sync_fs(file->f_dentry->d_sb, 1);
3411 case BTRFS_IOC_START_SYNC:
3412 return btrfs_ioctl_start_sync(file, argp);
3413 case BTRFS_IOC_WAIT_SYNC:
3414 return btrfs_ioctl_wait_sync(file, argp);
3415 case BTRFS_IOC_SCRUB:
3416 return btrfs_ioctl_scrub(root, argp);
3417 case BTRFS_IOC_SCRUB_CANCEL:
3418 return btrfs_ioctl_scrub_cancel(root, argp);
3419 case BTRFS_IOC_SCRUB_PROGRESS:
3420 return btrfs_ioctl_scrub_progress(root, argp);
3421 case BTRFS_IOC_BALANCE_V2:
3422 return btrfs_ioctl_balance(root, argp);
3423 case BTRFS_IOC_BALANCE_CTL:
3424 return btrfs_ioctl_balance_ctl(root, arg);
3425 case BTRFS_IOC_BALANCE_PROGRESS:
3426 return btrfs_ioctl_balance_progress(root, argp);