1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Definitions for the TCP module.
9 * Version: @(#)tcp.h 1.0.5 05/23/93
17 #define FASTRETRANS_DEBUG 1
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
42 #include <net/mptcp.h>
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
49 extern struct inet_hashinfo tcp_hashinfo;
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
56 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS 48
59 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
62 * Never offer a window over 32767 without using window scaling. Some
63 * poor stacks do signed 16bit maths!
65 #define MAX_TCP_WINDOW 32767U
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS 88U
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS 1024
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL 600
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD 8
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS 16U
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE 14U
89 #define TCP_URG_VALID 0x0100
90 #define TCP_URG_NOTYET 0x0200
91 #define TCP_URG_READ 0x0400
93 #define TCP_RETR1 3 /*
94 * This is how many retries it does before it
95 * tries to figure out if the gateway is
96 * down. Minimal RFC value is 3; it corresponds
97 * to ~3sec-8min depending on RTO.
100 #define TCP_RETR2 15 /*
101 * This should take at least
102 * 90 minutes to time out.
103 * RFC1122 says that the limit is 100 sec.
104 * 15 is ~13-30min depending on RTO.
107 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
108 * when active opening a connection.
109 * RFC1122 says the minimum retry MUST
110 * be at least 180secs. Nevertheless
111 * this value is corresponding to
112 * 63secs of retransmission with the
113 * current initial RTO.
116 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
117 * when passive opening a connection.
118 * This is corresponding to 31secs of
119 * retransmission with the current
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 * state, about 60 seconds */
125 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
126 /* BSD style FIN_WAIT2 deadlock breaker.
127 * It used to be 3min, new value is 60sec,
128 * to combine FIN-WAIT-2 timeout with
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
133 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
135 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN ((unsigned)(HZ/25))
138 #define TCP_DELACK_MIN 4U
139 #define TCP_ATO_MIN 4U
141 #define TCP_RTO_MAX ((unsigned)(120*HZ))
142 #define TCP_RTO_MIN ((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
146 * used as a fallback RTO for the
147 * initial data transmission if no
148 * valid RTT sample has been acquired,
149 * most likely due to retrans in 3WHS.
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 * for local resources.
155 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
156 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
157 #define TCP_KEEPALIVE_INTVL (75*HZ)
159 #define MAX_TCP_KEEPIDLE 32767
160 #define MAX_TCP_KEEPINTVL 32767
161 #define MAX_TCP_KEEPCNT 127
162 #define MAX_TCP_SYNCNT 127
164 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
166 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
168 * after this time. It should be equal
169 * (or greater than) TCP_TIMEWAIT_LEN
170 * to provide reliability equal to one
171 * provided by timewait state.
173 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
174 * timestamps. It must be less than
175 * minimal timewait lifetime.
181 #define TCPOPT_NOP 1 /* Padding */
182 #define TCPOPT_EOL 0 /* End of options */
183 #define TCPOPT_MSS 2 /* Segment size negotiating */
184 #define TCPOPT_WINDOW 3 /* Window scaling */
185 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
186 #define TCPOPT_SACK 5 /* SACK Block */
187 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
189 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
190 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
191 #define TCPOPT_EXP 254 /* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
195 #define TCPOPT_FASTOPEN_MAGIC 0xF989
196 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
202 #define TCPOLEN_MSS 4
203 #define TCPOLEN_WINDOW 3
204 #define TCPOLEN_SACK_PERM 2
205 #define TCPOLEN_TIMESTAMP 10
206 #define TCPOLEN_MD5SIG 18
207 #define TCPOLEN_FASTOPEN_BASE 2
208 #define TCPOLEN_EXP_FASTOPEN_BASE 4
209 #define TCPOLEN_EXP_SMC_BASE 6
211 /* But this is what stacks really send out. */
212 #define TCPOLEN_TSTAMP_ALIGNED 12
213 #define TCPOLEN_WSCALE_ALIGNED 4
214 #define TCPOLEN_SACKPERM_ALIGNED 4
215 #define TCPOLEN_SACK_BASE 2
216 #define TCPOLEN_SACK_BASE_ALIGNED 4
217 #define TCPOLEN_SACK_PERBLOCK 8
218 #define TCPOLEN_MD5SIG_ALIGNED 20
219 #define TCPOLEN_MSS_ALIGNED 4
220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
222 /* Flags in tp->nonagle */
223 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
224 #define TCP_NAGLE_CORK 2 /* Socket is corked */
225 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
227 /* TCP thin-stream limits */
228 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
230 /* TCP initial congestion window as per rfc6928 */
231 #define TCP_INIT_CWND 10
233 /* Bit Flags for sysctl_tcp_fastopen */
234 #define TFO_CLIENT_ENABLE 1
235 #define TFO_SERVER_ENABLE 2
236 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
238 /* Accept SYN data w/o any cookie option */
239 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
241 /* Force enable TFO on all listeners, i.e., not requiring the
242 * TCP_FASTOPEN socket option.
244 #define TFO_SERVER_WO_SOCKOPT1 0x400
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_max_orphans;
249 extern long sysctl_tcp_mem[3];
251 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
252 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
253 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
255 extern atomic_long_t tcp_memory_allocated;
256 extern struct percpu_counter tcp_sockets_allocated;
257 extern unsigned long tcp_memory_pressure;
259 /* optimized version of sk_under_memory_pressure() for TCP sockets */
260 static inline bool tcp_under_memory_pressure(const struct sock *sk)
262 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
263 mem_cgroup_under_socket_pressure(sk->sk_memcg))
266 return READ_ONCE(tcp_memory_pressure);
269 * The next routines deal with comparing 32 bit unsigned ints
270 * and worry about wraparound (automatic with unsigned arithmetic).
273 static inline bool before(__u32 seq1, __u32 seq2)
275 return (__s32)(seq1-seq2) < 0;
277 #define after(seq2, seq1) before(seq1, seq2)
279 /* is s2<=s1<=s3 ? */
280 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
282 return seq3 - seq2 >= seq1 - seq2;
285 static inline bool tcp_out_of_memory(struct sock *sk)
287 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
288 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
293 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
295 sk_wmem_queued_add(sk, -skb->truesize);
296 sk_mem_uncharge(sk, skb->truesize);
300 void sk_forced_mem_schedule(struct sock *sk, int size);
302 bool tcp_check_oom(struct sock *sk, int shift);
305 extern struct proto tcp_prot;
307 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
308 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
312 void tcp_tasklet_init(void);
314 int tcp_v4_err(struct sk_buff *skb, u32);
316 void tcp_shutdown(struct sock *sk, int how);
318 int tcp_v4_early_demux(struct sk_buff *skb);
319 int tcp_v4_rcv(struct sk_buff *skb);
321 void tcp_remove_empty_skb(struct sock *sk);
322 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
327 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 size_t size, int flags);
329 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 size_t size, int flags);
331 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
332 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
334 void tcp_release_cb(struct sock *sk);
335 void tcp_wfree(struct sk_buff *skb);
336 void tcp_write_timer_handler(struct sock *sk);
337 void tcp_delack_timer_handler(struct sock *sk);
338 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
339 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
340 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
341 void tcp_rcv_space_adjust(struct sock *sk);
342 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
343 void tcp_twsk_destructor(struct sock *sk);
344 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
345 struct pipe_inode_info *pipe, size_t len,
347 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
348 bool force_schedule);
350 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
351 static inline void tcp_dec_quickack_mode(struct sock *sk,
352 const unsigned int pkts)
354 struct inet_connection_sock *icsk = inet_csk(sk);
356 if (icsk->icsk_ack.quick) {
357 if (pkts >= icsk->icsk_ack.quick) {
358 icsk->icsk_ack.quick = 0;
359 /* Leaving quickack mode we deflate ATO. */
360 icsk->icsk_ack.ato = TCP_ATO_MIN;
362 icsk->icsk_ack.quick -= pkts;
367 #define TCP_ECN_QUEUE_CWR 2
368 #define TCP_ECN_DEMAND_CWR 4
369 #define TCP_ECN_SEEN 8
379 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
381 const struct tcphdr *th);
382 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
383 struct request_sock *req, bool fastopen,
385 int tcp_child_process(struct sock *parent, struct sock *child,
386 struct sk_buff *skb);
387 void tcp_enter_loss(struct sock *sk);
388 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
389 void tcp_clear_retrans(struct tcp_sock *tp);
390 void tcp_update_metrics(struct sock *sk);
391 void tcp_init_metrics(struct sock *sk);
392 void tcp_metrics_init(void);
393 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
394 void __tcp_close(struct sock *sk, long timeout);
395 void tcp_close(struct sock *sk, long timeout);
396 void tcp_init_sock(struct sock *sk);
397 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
398 __poll_t tcp_poll(struct file *file, struct socket *sock,
399 struct poll_table_struct *wait);
400 int tcp_getsockopt(struct sock *sk, int level, int optname,
401 char __user *optval, int __user *optlen);
402 bool tcp_bpf_bypass_getsockopt(int level, int optname);
403 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
404 unsigned int optlen);
405 void tcp_set_keepalive(struct sock *sk, int val);
406 void tcp_syn_ack_timeout(const struct request_sock *req);
407 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
408 int flags, int *addr_len);
409 int tcp_set_rcvlowat(struct sock *sk, int val);
410 int tcp_set_window_clamp(struct sock *sk, int val);
411 void tcp_update_recv_tstamps(struct sk_buff *skb,
412 struct scm_timestamping_internal *tss);
413 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
414 struct scm_timestamping_internal *tss);
415 void tcp_data_ready(struct sock *sk);
417 int tcp_mmap(struct file *file, struct socket *sock,
418 struct vm_area_struct *vma);
420 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
421 struct tcp_options_received *opt_rx,
422 int estab, struct tcp_fastopen_cookie *foc);
423 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
426 * BPF SKB-less helpers
428 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
429 struct tcphdr *th, u32 *cookie);
430 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
431 struct tcphdr *th, u32 *cookie);
432 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
433 const struct tcp_request_sock_ops *af_ops,
434 struct sock *sk, struct tcphdr *th);
436 * TCP v4 functions exported for the inet6 API
439 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
440 void tcp_v4_mtu_reduced(struct sock *sk);
441 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
442 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
443 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
444 struct sock *tcp_create_openreq_child(const struct sock *sk,
445 struct request_sock *req,
446 struct sk_buff *skb);
447 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
448 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
449 struct request_sock *req,
450 struct dst_entry *dst,
451 struct request_sock *req_unhash,
453 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
454 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
455 int tcp_connect(struct sock *sk);
456 enum tcp_synack_type {
461 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
462 struct request_sock *req,
463 struct tcp_fastopen_cookie *foc,
464 enum tcp_synack_type synack_type,
465 struct sk_buff *syn_skb);
466 int tcp_disconnect(struct sock *sk, int flags);
468 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
469 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
470 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
472 /* From syncookies.c */
473 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
474 struct request_sock *req,
475 struct dst_entry *dst, u32 tsoff);
476 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
478 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
479 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
480 struct sock *sk, struct sk_buff *skb);
481 #ifdef CONFIG_SYN_COOKIES
483 /* Syncookies use a monotonic timer which increments every 60 seconds.
484 * This counter is used both as a hash input and partially encoded into
485 * the cookie value. A cookie is only validated further if the delta
486 * between the current counter value and the encoded one is less than this,
487 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
488 * the counter advances immediately after a cookie is generated).
490 #define MAX_SYNCOOKIE_AGE 2
491 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
492 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
494 /* syncookies: remember time of last synqueue overflow
495 * But do not dirty this field too often (once per second is enough)
496 * It is racy as we do not hold a lock, but race is very minor.
498 static inline void tcp_synq_overflow(const struct sock *sk)
500 unsigned int last_overflow;
501 unsigned int now = jiffies;
503 if (sk->sk_reuseport) {
504 struct sock_reuseport *reuse;
506 reuse = rcu_dereference(sk->sk_reuseport_cb);
508 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
509 if (!time_between32(now, last_overflow,
511 WRITE_ONCE(reuse->synq_overflow_ts, now);
516 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
517 if (!time_between32(now, last_overflow, last_overflow + HZ))
518 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
521 /* syncookies: no recent synqueue overflow on this listening socket? */
522 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
524 unsigned int last_overflow;
525 unsigned int now = jiffies;
527 if (sk->sk_reuseport) {
528 struct sock_reuseport *reuse;
530 reuse = rcu_dereference(sk->sk_reuseport_cb);
532 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
533 return !time_between32(now, last_overflow - HZ,
535 TCP_SYNCOOKIE_VALID);
539 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
541 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
542 * then we're under synflood. However, we have to use
543 * 'last_overflow - HZ' as lower bound. That's because a concurrent
544 * tcp_synq_overflow() could update .ts_recent_stamp after we read
545 * jiffies but before we store .ts_recent_stamp into last_overflow,
546 * which could lead to rejecting a valid syncookie.
548 return !time_between32(now, last_overflow - HZ,
549 last_overflow + TCP_SYNCOOKIE_VALID);
552 static inline u32 tcp_cookie_time(void)
554 u64 val = get_jiffies_64();
556 do_div(val, TCP_SYNCOOKIE_PERIOD);
560 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
562 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
563 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
564 bool cookie_timestamp_decode(const struct net *net,
565 struct tcp_options_received *opt);
566 bool cookie_ecn_ok(const struct tcp_options_received *opt,
567 const struct net *net, const struct dst_entry *dst);
569 /* From net/ipv6/syncookies.c */
570 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
572 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
574 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
575 const struct tcphdr *th, u16 *mssp);
576 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
580 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
581 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
582 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
584 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
585 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
586 void tcp_retransmit_timer(struct sock *sk);
587 void tcp_xmit_retransmit_queue(struct sock *);
588 void tcp_simple_retransmit(struct sock *);
589 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
590 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
592 TCP_FRAG_IN_WRITE_QUEUE,
593 TCP_FRAG_IN_RTX_QUEUE,
595 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
596 struct sk_buff *skb, u32 len,
597 unsigned int mss_now, gfp_t gfp);
599 void tcp_send_probe0(struct sock *);
600 void tcp_send_partial(struct sock *);
601 int tcp_write_wakeup(struct sock *, int mib);
602 void tcp_send_fin(struct sock *sk);
603 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
604 int tcp_send_synack(struct sock *);
605 void tcp_push_one(struct sock *, unsigned int mss_now);
606 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
607 void tcp_send_ack(struct sock *sk);
608 void tcp_send_delayed_ack(struct sock *sk);
609 void tcp_send_loss_probe(struct sock *sk);
610 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
611 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
612 const struct sk_buff *next_skb);
615 void tcp_rearm_rto(struct sock *sk);
616 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
617 void tcp_reset(struct sock *sk, struct sk_buff *skb);
618 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
619 void tcp_fin(struct sock *sk);
622 void tcp_init_xmit_timers(struct sock *);
623 static inline void tcp_clear_xmit_timers(struct sock *sk)
625 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
628 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
631 inet_csk_clear_xmit_timers(sk);
634 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
635 unsigned int tcp_current_mss(struct sock *sk);
636 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
638 /* Bound MSS / TSO packet size with the half of the window */
639 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
643 /* When peer uses tiny windows, there is no use in packetizing
644 * to sub-MSS pieces for the sake of SWS or making sure there
645 * are enough packets in the pipe for fast recovery.
647 * On the other hand, for extremely large MSS devices, handling
648 * smaller than MSS windows in this way does make sense.
650 if (tp->max_window > TCP_MSS_DEFAULT)
651 cutoff = (tp->max_window >> 1);
653 cutoff = tp->max_window;
655 if (cutoff && pktsize > cutoff)
656 return max_t(int, cutoff, 68U - tp->tcp_header_len);
662 void tcp_get_info(struct sock *, struct tcp_info *);
664 /* Read 'sendfile()'-style from a TCP socket */
665 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
666 sk_read_actor_t recv_actor);
668 void tcp_initialize_rcv_mss(struct sock *sk);
670 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
671 int tcp_mss_to_mtu(struct sock *sk, int mss);
672 void tcp_mtup_init(struct sock *sk);
674 static inline void tcp_bound_rto(const struct sock *sk)
676 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
677 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
680 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
682 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
685 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
687 /* mptcp hooks are only on the slow path */
688 if (sk_is_mptcp((struct sock *)tp))
691 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
692 ntohl(TCP_FLAG_ACK) |
696 static inline void tcp_fast_path_on(struct tcp_sock *tp)
698 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
701 static inline void tcp_fast_path_check(struct sock *sk)
703 struct tcp_sock *tp = tcp_sk(sk);
705 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
707 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
709 tcp_fast_path_on(tp);
712 /* Compute the actual rto_min value */
713 static inline u32 tcp_rto_min(struct sock *sk)
715 const struct dst_entry *dst = __sk_dst_get(sk);
716 u32 rto_min = inet_csk(sk)->icsk_rto_min;
718 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
719 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
723 static inline u32 tcp_rto_min_us(struct sock *sk)
725 return jiffies_to_usecs(tcp_rto_min(sk));
728 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
730 return dst_metric_locked(dst, RTAX_CC_ALGO);
733 /* Minimum RTT in usec. ~0 means not available. */
734 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
736 return minmax_get(&tp->rtt_min);
739 /* Compute the actual receive window we are currently advertising.
740 * Rcv_nxt can be after the window if our peer push more data
741 * than the offered window.
743 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
745 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
752 /* Choose a new window, without checks for shrinking, and without
753 * scaling applied to the result. The caller does these things
754 * if necessary. This is a "raw" window selection.
756 u32 __tcp_select_window(struct sock *sk);
758 void tcp_send_window_probe(struct sock *sk);
760 /* TCP uses 32bit jiffies to save some space.
761 * Note that this is different from tcp_time_stamp, which
762 * historically has been the same until linux-4.13.
764 #define tcp_jiffies32 ((u32)jiffies)
767 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
768 * It is no longer tied to jiffies, but to 1 ms clock.
769 * Note: double check if you want to use tcp_jiffies32 instead of this.
771 #define TCP_TS_HZ 1000
773 static inline u64 tcp_clock_ns(void)
775 return ktime_get_ns();
778 static inline u64 tcp_clock_us(void)
780 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
783 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
784 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
786 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
789 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
790 static inline u32 tcp_ns_to_ts(u64 ns)
792 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
795 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
796 static inline u32 tcp_time_stamp_raw(void)
798 return tcp_ns_to_ts(tcp_clock_ns());
801 void tcp_mstamp_refresh(struct tcp_sock *tp);
803 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
805 return max_t(s64, t1 - t0, 0);
808 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
810 return tcp_ns_to_ts(skb->skb_mstamp_ns);
813 /* provide the departure time in us unit */
814 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
816 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
820 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
822 #define TCPHDR_FIN 0x01
823 #define TCPHDR_SYN 0x02
824 #define TCPHDR_RST 0x04
825 #define TCPHDR_PSH 0x08
826 #define TCPHDR_ACK 0x10
827 #define TCPHDR_URG 0x20
828 #define TCPHDR_ECE 0x40
829 #define TCPHDR_CWR 0x80
831 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
833 /* This is what the send packet queuing engine uses to pass
834 * TCP per-packet control information to the transmission code.
835 * We also store the host-order sequence numbers in here too.
836 * This is 44 bytes if IPV6 is enabled.
837 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
840 __u32 seq; /* Starting sequence number */
841 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
843 /* Note : tcp_tw_isn is used in input path only
844 * (isn chosen by tcp_timewait_state_process())
846 * tcp_gso_segs/size are used in write queue only,
847 * cf tcp_skb_pcount()/tcp_skb_mss()
855 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
857 __u8 sacked; /* State flags for SACK. */
858 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
859 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
860 #define TCPCB_LOST 0x04 /* SKB is lost */
861 #define TCPCB_TAGBITS 0x07 /* All tag bits */
862 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
863 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
864 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
867 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
868 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
869 eor:1, /* Is skb MSG_EOR marked? */
870 has_rxtstamp:1, /* SKB has a RX timestamp */
872 __u32 ack_seq; /* Sequence number ACK'd */
875 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
876 /* There is space for up to 24 bytes */
877 __u32 is_app_limited:1, /* cwnd not fully used? */
880 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
882 /* start of send pipeline phase */
884 /* when we reached the "delivered" count */
885 u64 delivered_mstamp;
886 } tx; /* only used for outgoing skbs */
888 struct inet_skb_parm h4;
889 #if IS_ENABLED(CONFIG_IPV6)
890 struct inet6_skb_parm h6;
892 } header; /* For incoming skbs */
896 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
898 extern const struct inet_connection_sock_af_ops ipv4_specific;
900 #if IS_ENABLED(CONFIG_IPV6)
901 /* This is the variant of inet6_iif() that must be used by TCP,
902 * as TCP moves IP6CB into a different location in skb->cb[]
904 static inline int tcp_v6_iif(const struct sk_buff *skb)
906 return TCP_SKB_CB(skb)->header.h6.iif;
909 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
911 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
913 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
916 /* TCP_SKB_CB reference means this can not be used from early demux */
917 static inline int tcp_v6_sdif(const struct sk_buff *skb)
919 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
920 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
921 return TCP_SKB_CB(skb)->header.h6.iif;
926 extern const struct inet_connection_sock_af_ops ipv6_specific;
928 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
929 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
930 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
934 /* TCP_SKB_CB reference means this can not be used from early demux */
935 static inline int tcp_v4_sdif(struct sk_buff *skb)
937 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
938 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
939 return TCP_SKB_CB(skb)->header.h4.iif;
944 /* Due to TSO, an SKB can be composed of multiple actual
945 * packets. To keep these tracked properly, we use this.
947 static inline int tcp_skb_pcount(const struct sk_buff *skb)
949 return TCP_SKB_CB(skb)->tcp_gso_segs;
952 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
954 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
957 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
959 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
962 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
963 static inline int tcp_skb_mss(const struct sk_buff *skb)
965 return TCP_SKB_CB(skb)->tcp_gso_size;
968 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
970 return likely(!TCP_SKB_CB(skb)->eor);
973 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
974 const struct sk_buff *from)
976 return likely(tcp_skb_can_collapse_to(to) &&
977 mptcp_skb_can_collapse(to, from));
980 /* Events passed to congestion control interface */
982 CA_EVENT_TX_START, /* first transmit when no packets in flight */
983 CA_EVENT_CWND_RESTART, /* congestion window restart */
984 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
985 CA_EVENT_LOSS, /* loss timeout */
986 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
987 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
990 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
991 enum tcp_ca_ack_event_flags {
992 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
993 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
994 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
998 * Interface for adding new TCP congestion control handlers
1000 #define TCP_CA_NAME_MAX 16
1001 #define TCP_CA_MAX 128
1002 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1004 #define TCP_CA_UNSPEC 0
1006 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1007 #define TCP_CONG_NON_RESTRICTED 0x1
1008 /* Requires ECN/ECT set on all packets */
1009 #define TCP_CONG_NEEDS_ECN 0x2
1010 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1020 /* A rate sample measures the number of (original/retransmitted) data
1021 * packets delivered "delivered" over an interval of time "interval_us".
1022 * The tcp_rate.c code fills in the rate sample, and congestion
1023 * control modules that define a cong_control function to run at the end
1024 * of ACK processing can optionally chose to consult this sample when
1025 * setting cwnd and pacing rate.
1026 * A sample is invalid if "delivered" or "interval_us" is negative.
1028 struct rate_sample {
1029 u64 prior_mstamp; /* starting timestamp for interval */
1030 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1031 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1032 s32 delivered; /* number of packets delivered over interval */
1033 s32 delivered_ce; /* number of packets delivered w/ CE marks*/
1034 long interval_us; /* time for tp->delivered to incr "delivered" */
1035 u32 snd_interval_us; /* snd interval for delivered packets */
1036 u32 rcv_interval_us; /* rcv interval for delivered packets */
1037 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1038 int losses; /* number of packets marked lost upon ACK */
1039 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1040 u32 prior_in_flight; /* in flight before this ACK */
1041 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1042 bool is_retrans; /* is sample from retransmission? */
1043 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1046 struct tcp_congestion_ops {
1047 /* fast path fields are put first to fill one cache line */
1049 /* return slow start threshold (required) */
1050 u32 (*ssthresh)(struct sock *sk);
1052 /* do new cwnd calculation (required) */
1053 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1055 /* call before changing ca_state (optional) */
1056 void (*set_state)(struct sock *sk, u8 new_state);
1058 /* call when cwnd event occurs (optional) */
1059 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1061 /* call when ack arrives (optional) */
1062 void (*in_ack_event)(struct sock *sk, u32 flags);
1064 /* hook for packet ack accounting (optional) */
1065 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1067 /* override sysctl_tcp_min_tso_segs */
1068 u32 (*min_tso_segs)(struct sock *sk);
1070 /* call when packets are delivered to update cwnd and pacing rate,
1071 * after all the ca_state processing. (optional)
1073 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1076 /* new value of cwnd after loss (required) */
1077 u32 (*undo_cwnd)(struct sock *sk);
1078 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1079 u32 (*sndbuf_expand)(struct sock *sk);
1081 /* control/slow paths put last */
1082 /* get info for inet_diag (optional) */
1083 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1084 union tcp_cc_info *info);
1086 char name[TCP_CA_NAME_MAX];
1087 struct module *owner;
1088 struct list_head list;
1092 /* initialize private data (optional) */
1093 void (*init)(struct sock *sk);
1094 /* cleanup private data (optional) */
1095 void (*release)(struct sock *sk);
1096 } ____cacheline_aligned_in_smp;
1098 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1099 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1101 void tcp_assign_congestion_control(struct sock *sk);
1102 void tcp_init_congestion_control(struct sock *sk);
1103 void tcp_cleanup_congestion_control(struct sock *sk);
1104 int tcp_set_default_congestion_control(struct net *net, const char *name);
1105 void tcp_get_default_congestion_control(struct net *net, char *name);
1106 void tcp_get_available_congestion_control(char *buf, size_t len);
1107 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1108 int tcp_set_allowed_congestion_control(char *allowed);
1109 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1110 bool cap_net_admin);
1111 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1112 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1114 u32 tcp_reno_ssthresh(struct sock *sk);
1115 u32 tcp_reno_undo_cwnd(struct sock *sk);
1116 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1117 extern struct tcp_congestion_ops tcp_reno;
1119 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1120 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1121 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1123 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1125 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1131 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1133 const struct inet_connection_sock *icsk = inet_csk(sk);
1135 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1138 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1140 struct inet_connection_sock *icsk = inet_csk(sk);
1142 if (icsk->icsk_ca_ops->set_state)
1143 icsk->icsk_ca_ops->set_state(sk, ca_state);
1144 icsk->icsk_ca_state = ca_state;
1147 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1149 const struct inet_connection_sock *icsk = inet_csk(sk);
1151 if (icsk->icsk_ca_ops->cwnd_event)
1152 icsk->icsk_ca_ops->cwnd_event(sk, event);
1155 /* From tcp_rate.c */
1156 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1157 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1158 struct rate_sample *rs);
1159 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1160 bool is_sack_reneg, struct rate_sample *rs);
1161 void tcp_rate_check_app_limited(struct sock *sk);
1163 /* These functions determine how the current flow behaves in respect of SACK
1164 * handling. SACK is negotiated with the peer, and therefore it can vary
1165 * between different flows.
1167 * tcp_is_sack - SACK enabled
1168 * tcp_is_reno - No SACK
1170 static inline int tcp_is_sack(const struct tcp_sock *tp)
1172 return likely(tp->rx_opt.sack_ok);
1175 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1177 return !tcp_is_sack(tp);
1180 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1182 return tp->sacked_out + tp->lost_out;
1185 /* This determines how many packets are "in the network" to the best
1186 * of our knowledge. In many cases it is conservative, but where
1187 * detailed information is available from the receiver (via SACK
1188 * blocks etc.) we can make more aggressive calculations.
1190 * Use this for decisions involving congestion control, use just
1191 * tp->packets_out to determine if the send queue is empty or not.
1193 * Read this equation as:
1195 * "Packets sent once on transmission queue" MINUS
1196 * "Packets left network, but not honestly ACKed yet" PLUS
1197 * "Packets fast retransmitted"
1199 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1201 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1204 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1206 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1208 return tp->snd_cwnd < tp->snd_ssthresh;
1211 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1213 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1216 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1218 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1219 (1 << inet_csk(sk)->icsk_ca_state);
1222 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1223 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1226 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1228 const struct tcp_sock *tp = tcp_sk(sk);
1230 if (tcp_in_cwnd_reduction(sk))
1231 return tp->snd_ssthresh;
1233 return max(tp->snd_ssthresh,
1234 ((tp->snd_cwnd >> 1) +
1235 (tp->snd_cwnd >> 2)));
1238 /* Use define here intentionally to get WARN_ON location shown at the caller */
1239 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1241 void tcp_enter_cwr(struct sock *sk);
1242 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1244 /* The maximum number of MSS of available cwnd for which TSO defers
1245 * sending if not using sysctl_tcp_tso_win_divisor.
1247 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1252 /* Returns end sequence number of the receiver's advertised window */
1253 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1255 return tp->snd_una + tp->snd_wnd;
1258 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1259 * flexible approach. The RFC suggests cwnd should not be raised unless
1260 * it was fully used previously. And that's exactly what we do in
1261 * congestion avoidance mode. But in slow start we allow cwnd to grow
1262 * as long as the application has used half the cwnd.
1264 * cwnd is 10 (IW10), but application sends 9 frames.
1265 * We allow cwnd to reach 18 when all frames are ACKed.
1266 * This check is safe because it's as aggressive as slow start which already
1267 * risks 100% overshoot. The advantage is that we discourage application to
1268 * either send more filler packets or data to artificially blow up the cwnd
1269 * usage, and allow application-limited process to probe bw more aggressively.
1271 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1273 const struct tcp_sock *tp = tcp_sk(sk);
1275 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1276 if (tcp_in_slow_start(tp))
1277 return tp->snd_cwnd < 2 * tp->max_packets_out;
1279 return tp->is_cwnd_limited;
1282 /* BBR congestion control needs pacing.
1283 * Same remark for SO_MAX_PACING_RATE.
1284 * sch_fq packet scheduler is efficiently handling pacing,
1285 * but is not always installed/used.
1286 * Return true if TCP stack should pace packets itself.
1288 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1290 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1293 /* Estimates in how many jiffies next packet for this flow can be sent.
1294 * Scheduling a retransmit timer too early would be silly.
1296 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1298 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1300 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1303 static inline void tcp_reset_xmit_timer(struct sock *sk,
1306 const unsigned long max_when)
1308 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1312 /* Something is really bad, we could not queue an additional packet,
1313 * because qdisc is full or receiver sent a 0 window, or we are paced.
1314 * We do not want to add fuel to the fire, or abort too early,
1315 * so make sure the timer we arm now is at least 200ms in the future,
1316 * regardless of current icsk_rto value (as it could be ~2ms)
1318 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1320 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1323 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1324 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1325 unsigned long max_when)
1327 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1328 inet_csk(sk)->icsk_backoff);
1329 u64 when = (u64)tcp_probe0_base(sk) << backoff;
1331 return (unsigned long)min_t(u64, when, max_when);
1334 static inline void tcp_check_probe_timer(struct sock *sk)
1336 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1337 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1338 tcp_probe0_base(sk), TCP_RTO_MAX);
1341 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1346 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1352 * Calculate(/check) TCP checksum
1354 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1355 __be32 daddr, __wsum base)
1357 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1360 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1362 return !skb_csum_unnecessary(skb) &&
1363 __skb_checksum_complete(skb);
1366 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1367 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1368 void tcp_set_state(struct sock *sk, int state);
1369 void tcp_done(struct sock *sk);
1370 int tcp_abort(struct sock *sk, int err);
1372 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1375 rx_opt->num_sacks = 0;
1378 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1380 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1382 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1383 struct tcp_sock *tp = tcp_sk(sk);
1386 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1387 ca_ops->cong_control)
1389 delta = tcp_jiffies32 - tp->lsndtime;
1390 if (delta > inet_csk(sk)->icsk_rto)
1391 tcp_cwnd_restart(sk, delta);
1394 /* Determine a window scaling and initial window to offer. */
1395 void tcp_select_initial_window(const struct sock *sk, int __space,
1396 __u32 mss, __u32 *rcv_wnd,
1397 __u32 *window_clamp, int wscale_ok,
1398 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1400 static inline int tcp_win_from_space(const struct sock *sk, int space)
1402 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1404 return tcp_adv_win_scale <= 0 ?
1405 (space>>(-tcp_adv_win_scale)) :
1406 space - (space>>tcp_adv_win_scale);
1409 /* Note: caller must be prepared to deal with negative returns */
1410 static inline int tcp_space(const struct sock *sk)
1412 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1413 READ_ONCE(sk->sk_backlog.len) -
1414 atomic_read(&sk->sk_rmem_alloc));
1417 static inline int tcp_full_space(const struct sock *sk)
1419 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1422 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1424 int unused_mem = sk_unused_reserved_mem(sk);
1425 struct tcp_sock *tp = tcp_sk(sk);
1427 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1429 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1430 tcp_win_from_space(sk, unused_mem));
1433 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1435 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1436 * If 87.5 % (7/8) of the space has been consumed, we want to override
1437 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1438 * len/truesize ratio.
1440 static inline bool tcp_rmem_pressure(const struct sock *sk)
1442 int rcvbuf, threshold;
1444 if (tcp_under_memory_pressure(sk))
1447 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1448 threshold = rcvbuf - (rcvbuf >> 3);
1450 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1453 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1455 const struct tcp_sock *tp = tcp_sk(sk);
1456 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1461 return (avail >= target) || tcp_rmem_pressure(sk) ||
1462 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1465 extern void tcp_openreq_init_rwin(struct request_sock *req,
1466 const struct sock *sk_listener,
1467 const struct dst_entry *dst);
1469 void tcp_enter_memory_pressure(struct sock *sk);
1470 void tcp_leave_memory_pressure(struct sock *sk);
1472 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1474 struct net *net = sock_net((struct sock *)tp);
1476 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1479 static inline int keepalive_time_when(const struct tcp_sock *tp)
1481 struct net *net = sock_net((struct sock *)tp);
1483 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1486 static inline int keepalive_probes(const struct tcp_sock *tp)
1488 struct net *net = sock_net((struct sock *)tp);
1490 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1493 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1495 const struct inet_connection_sock *icsk = &tp->inet_conn;
1497 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1498 tcp_jiffies32 - tp->rcv_tstamp);
1501 static inline int tcp_fin_time(const struct sock *sk)
1503 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1504 const int rto = inet_csk(sk)->icsk_rto;
1506 if (fin_timeout < (rto << 2) - (rto >> 1))
1507 fin_timeout = (rto << 2) - (rto >> 1);
1512 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1515 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1517 if (unlikely(!time_before32(ktime_get_seconds(),
1518 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1521 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1522 * then following tcp messages have valid values. Ignore 0 value,
1523 * or else 'negative' tsval might forbid us to accept their packets.
1525 if (!rx_opt->ts_recent)
1530 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1533 if (tcp_paws_check(rx_opt, 0))
1536 /* RST segments are not recommended to carry timestamp,
1537 and, if they do, it is recommended to ignore PAWS because
1538 "their cleanup function should take precedence over timestamps."
1539 Certainly, it is mistake. It is necessary to understand the reasons
1540 of this constraint to relax it: if peer reboots, clock may go
1541 out-of-sync and half-open connections will not be reset.
1542 Actually, the problem would be not existing if all
1543 the implementations followed draft about maintaining clock
1544 via reboots. Linux-2.2 DOES NOT!
1546 However, we can relax time bounds for RST segments to MSL.
1548 if (rst && !time_before32(ktime_get_seconds(),
1549 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1554 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1555 int mib_idx, u32 *last_oow_ack_time);
1557 static inline void tcp_mib_init(struct net *net)
1560 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1561 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1562 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1563 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1567 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1569 tp->lost_skb_hint = NULL;
1572 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1574 tcp_clear_retrans_hints_partial(tp);
1575 tp->retransmit_skb_hint = NULL;
1578 union tcp_md5_addr {
1580 #if IS_ENABLED(CONFIG_IPV6)
1585 /* - key database */
1586 struct tcp_md5sig_key {
1587 struct hlist_node node;
1589 u8 family; /* AF_INET or AF_INET6 */
1592 union tcp_md5_addr addr;
1593 int l3index; /* set if key added with L3 scope */
1594 u8 key[TCP_MD5SIG_MAXKEYLEN];
1595 struct rcu_head rcu;
1599 struct tcp_md5sig_info {
1600 struct hlist_head head;
1601 struct rcu_head rcu;
1604 /* - pseudo header */
1605 struct tcp4_pseudohdr {
1613 struct tcp6_pseudohdr {
1614 struct in6_addr saddr;
1615 struct in6_addr daddr;
1617 __be32 protocol; /* including padding */
1620 union tcp_md5sum_block {
1621 struct tcp4_pseudohdr ip4;
1622 #if IS_ENABLED(CONFIG_IPV6)
1623 struct tcp6_pseudohdr ip6;
1627 /* - pool: digest algorithm, hash description and scratch buffer */
1628 struct tcp_md5sig_pool {
1629 struct ahash_request *md5_req;
1634 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1635 const struct sock *sk, const struct sk_buff *skb);
1636 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1637 int family, u8 prefixlen, int l3index, u8 flags,
1638 const u8 *newkey, u8 newkeylen, gfp_t gfp);
1639 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1640 int family, u8 prefixlen, int l3index, u8 flags);
1641 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1642 const struct sock *addr_sk);
1644 #ifdef CONFIG_TCP_MD5SIG
1645 #include <linux/jump_label.h>
1646 extern struct static_key_false tcp_md5_needed;
1647 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1648 const union tcp_md5_addr *addr,
1650 static inline struct tcp_md5sig_key *
1651 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1652 const union tcp_md5_addr *addr, int family)
1654 if (!static_branch_unlikely(&tcp_md5_needed))
1656 return __tcp_md5_do_lookup(sk, l3index, addr, family);
1659 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1661 static inline struct tcp_md5sig_key *
1662 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1663 const union tcp_md5_addr *addr, int family)
1667 #define tcp_twsk_md5_key(twsk) NULL
1670 bool tcp_alloc_md5sig_pool(void);
1672 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1673 static inline void tcp_put_md5sig_pool(void)
1678 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1679 unsigned int header_len);
1680 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1681 const struct tcp_md5sig_key *key);
1683 /* From tcp_fastopen.c */
1684 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1685 struct tcp_fastopen_cookie *cookie);
1686 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1687 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1689 struct tcp_fastopen_request {
1690 /* Fast Open cookie. Size 0 means a cookie request */
1691 struct tcp_fastopen_cookie cookie;
1692 struct msghdr *data; /* data in MSG_FASTOPEN */
1694 int copied; /* queued in tcp_connect() */
1695 struct ubuf_info *uarg;
1697 void tcp_free_fastopen_req(struct tcp_sock *tp);
1698 void tcp_fastopen_destroy_cipher(struct sock *sk);
1699 void tcp_fastopen_ctx_destroy(struct net *net);
1700 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1701 void *primary_key, void *backup_key);
1702 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1704 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1705 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1706 struct request_sock *req,
1707 struct tcp_fastopen_cookie *foc,
1708 const struct dst_entry *dst);
1709 void tcp_fastopen_init_key_once(struct net *net);
1710 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1711 struct tcp_fastopen_cookie *cookie);
1712 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1713 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1714 #define TCP_FASTOPEN_KEY_MAX 2
1715 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1716 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1718 /* Fastopen key context */
1719 struct tcp_fastopen_context {
1720 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1722 struct rcu_head rcu;
1725 void tcp_fastopen_active_disable(struct sock *sk);
1726 bool tcp_fastopen_active_should_disable(struct sock *sk);
1727 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1728 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1730 /* Caller needs to wrap with rcu_read_(un)lock() */
1732 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1734 struct tcp_fastopen_context *ctx;
1736 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1738 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1743 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1744 const struct tcp_fastopen_cookie *orig)
1746 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1747 orig->len == foc->len &&
1748 !memcmp(orig->val, foc->val, foc->len))
1754 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1759 /* Latencies incurred by various limits for a sender. They are
1760 * chronograph-like stats that are mutually exclusive.
1764 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1765 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1766 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1770 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1771 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1773 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1774 * the same memory storage than skb->destructor/_skb_refdst
1776 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1778 skb->destructor = NULL;
1779 skb->_skb_refdst = 0UL;
1782 #define tcp_skb_tsorted_save(skb) { \
1783 unsigned long _save = skb->_skb_refdst; \
1784 skb->_skb_refdst = 0UL;
1786 #define tcp_skb_tsorted_restore(skb) \
1787 skb->_skb_refdst = _save; \
1790 void tcp_write_queue_purge(struct sock *sk);
1792 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1794 return skb_rb_first(&sk->tcp_rtx_queue);
1797 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1799 return skb_rb_last(&sk->tcp_rtx_queue);
1802 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1804 return skb_peek(&sk->sk_write_queue);
1807 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1809 return skb_peek_tail(&sk->sk_write_queue);
1812 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1813 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1815 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1817 return skb_peek(&sk->sk_write_queue);
1820 static inline bool tcp_skb_is_last(const struct sock *sk,
1821 const struct sk_buff *skb)
1823 return skb_queue_is_last(&sk->sk_write_queue, skb);
1827 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1830 * Since the write queue can have a temporary empty skb in it,
1831 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1833 static inline bool tcp_write_queue_empty(const struct sock *sk)
1835 const struct tcp_sock *tp = tcp_sk(sk);
1837 return tp->write_seq == tp->snd_nxt;
1840 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1842 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1845 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1847 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1850 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1852 __skb_queue_tail(&sk->sk_write_queue, skb);
1854 /* Queue it, remembering where we must start sending. */
1855 if (sk->sk_write_queue.next == skb)
1856 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1859 /* Insert new before skb on the write queue of sk. */
1860 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1861 struct sk_buff *skb,
1864 __skb_queue_before(&sk->sk_write_queue, skb, new);
1867 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1869 tcp_skb_tsorted_anchor_cleanup(skb);
1870 __skb_unlink(skb, &sk->sk_write_queue);
1873 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1875 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1877 tcp_skb_tsorted_anchor_cleanup(skb);
1878 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1881 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1883 list_del(&skb->tcp_tsorted_anchor);
1884 tcp_rtx_queue_unlink(skb, sk);
1885 tcp_wmem_free_skb(sk, skb);
1888 static inline void tcp_push_pending_frames(struct sock *sk)
1890 if (tcp_send_head(sk)) {
1891 struct tcp_sock *tp = tcp_sk(sk);
1893 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1897 /* Start sequence of the skb just after the highest skb with SACKed
1898 * bit, valid only if sacked_out > 0 or when the caller has ensured
1899 * validity by itself.
1901 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1903 if (!tp->sacked_out)
1906 if (tp->highest_sack == NULL)
1909 return TCP_SKB_CB(tp->highest_sack)->seq;
1912 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1914 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1917 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1919 return tcp_sk(sk)->highest_sack;
1922 static inline void tcp_highest_sack_reset(struct sock *sk)
1924 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1927 /* Called when old skb is about to be deleted and replaced by new skb */
1928 static inline void tcp_highest_sack_replace(struct sock *sk,
1929 struct sk_buff *old,
1930 struct sk_buff *new)
1932 if (old == tcp_highest_sack(sk))
1933 tcp_sk(sk)->highest_sack = new;
1936 /* This helper checks if socket has IP_TRANSPARENT set */
1937 static inline bool inet_sk_transparent(const struct sock *sk)
1939 switch (sk->sk_state) {
1941 return inet_twsk(sk)->tw_transparent;
1942 case TCP_NEW_SYN_RECV:
1943 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1945 return inet_sk(sk)->transparent;
1948 /* Determines whether this is a thin stream (which may suffer from
1949 * increased latency). Used to trigger latency-reducing mechanisms.
1951 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1953 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1957 enum tcp_seq_states {
1958 TCP_SEQ_STATE_LISTENING,
1959 TCP_SEQ_STATE_ESTABLISHED,
1962 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1963 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1964 void tcp_seq_stop(struct seq_file *seq, void *v);
1966 struct tcp_seq_afinfo {
1970 struct tcp_iter_state {
1971 struct seq_net_private p;
1972 enum tcp_seq_states state;
1973 struct sock *syn_wait_sk;
1974 int bucket, offset, sbucket, num;
1978 extern struct request_sock_ops tcp_request_sock_ops;
1979 extern struct request_sock_ops tcp6_request_sock_ops;
1981 void tcp_v4_destroy_sock(struct sock *sk);
1983 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1984 netdev_features_t features);
1985 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1986 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1987 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1988 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1989 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1990 int tcp_gro_complete(struct sk_buff *skb);
1992 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1994 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1996 struct net *net = sock_net((struct sock *)tp);
1997 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
2000 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2002 #ifdef CONFIG_PROC_FS
2003 int tcp4_proc_init(void);
2004 void tcp4_proc_exit(void);
2007 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2008 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2009 const struct tcp_request_sock_ops *af_ops,
2010 struct sock *sk, struct sk_buff *skb);
2012 /* TCP af-specific functions */
2013 struct tcp_sock_af_ops {
2014 #ifdef CONFIG_TCP_MD5SIG
2015 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2016 const struct sock *addr_sk);
2017 int (*calc_md5_hash)(char *location,
2018 const struct tcp_md5sig_key *md5,
2019 const struct sock *sk,
2020 const struct sk_buff *skb);
2021 int (*md5_parse)(struct sock *sk,
2028 struct tcp_request_sock_ops {
2030 #ifdef CONFIG_TCP_MD5SIG
2031 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2032 const struct sock *addr_sk);
2033 int (*calc_md5_hash) (char *location,
2034 const struct tcp_md5sig_key *md5,
2035 const struct sock *sk,
2036 const struct sk_buff *skb);
2038 #ifdef CONFIG_SYN_COOKIES
2039 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2042 struct dst_entry *(*route_req)(const struct sock *sk,
2043 struct sk_buff *skb,
2045 struct request_sock *req);
2046 u32 (*init_seq)(const struct sk_buff *skb);
2047 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2048 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2049 struct flowi *fl, struct request_sock *req,
2050 struct tcp_fastopen_cookie *foc,
2051 enum tcp_synack_type synack_type,
2052 struct sk_buff *syn_skb);
2055 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2056 #if IS_ENABLED(CONFIG_IPV6)
2057 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2060 #ifdef CONFIG_SYN_COOKIES
2061 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2062 const struct sock *sk, struct sk_buff *skb,
2065 tcp_synq_overflow(sk);
2066 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2067 return ops->cookie_init_seq(skb, mss);
2070 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2071 const struct sock *sk, struct sk_buff *skb,
2078 int tcpv4_offload_init(void);
2080 void tcp_v4_init(void);
2081 void tcp_init(void);
2083 /* tcp_recovery.c */
2084 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2085 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2086 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2088 extern bool tcp_rack_mark_lost(struct sock *sk);
2089 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2091 extern void tcp_rack_reo_timeout(struct sock *sk);
2092 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2094 /* At how many usecs into the future should the RTO fire? */
2095 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2097 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2098 u32 rto = inet_csk(sk)->icsk_rto;
2099 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2101 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2105 * Save and compile IPv4 options, return a pointer to it
2107 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2108 struct sk_buff *skb)
2110 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2111 struct ip_options_rcu *dopt = NULL;
2114 int opt_size = sizeof(*dopt) + opt->optlen;
2116 dopt = kmalloc(opt_size, GFP_ATOMIC);
2117 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2125 /* locally generated TCP pure ACKs have skb->truesize == 2
2126 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2127 * This is much faster than dissecting the packet to find out.
2128 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2130 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2132 return skb->truesize == 2;
2135 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2140 static inline int tcp_inq(struct sock *sk)
2142 struct tcp_sock *tp = tcp_sk(sk);
2145 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2147 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2149 before(tp->urg_seq, tp->copied_seq) ||
2150 !before(tp->urg_seq, tp->rcv_nxt)) {
2152 answ = tp->rcv_nxt - tp->copied_seq;
2154 /* Subtract 1, if FIN was received */
2155 if (answ && sock_flag(sk, SOCK_DONE))
2158 answ = tp->urg_seq - tp->copied_seq;
2164 int tcp_peek_len(struct socket *sock);
2166 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2170 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2171 tp->segs_in += segs_in;
2172 if (skb->len > tcp_hdrlen(skb))
2173 tp->data_segs_in += segs_in;
2177 * TCP listen path runs lockless.
2178 * We forced "struct sock" to be const qualified to make sure
2179 * we don't modify one of its field by mistake.
2180 * Here, we increment sk_drops which is an atomic_t, so we can safely
2181 * make sock writable again.
2183 static inline void tcp_listendrop(const struct sock *sk)
2185 atomic_inc(&((struct sock *)sk)->sk_drops);
2186 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2189 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2192 * Interface for adding Upper Level Protocols over TCP
2195 #define TCP_ULP_NAME_MAX 16
2196 #define TCP_ULP_MAX 128
2197 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2199 struct tcp_ulp_ops {
2200 struct list_head list;
2202 /* initialize ulp */
2203 int (*init)(struct sock *sk);
2205 void (*update)(struct sock *sk, struct proto *p,
2206 void (*write_space)(struct sock *sk));
2208 void (*release)(struct sock *sk);
2210 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2211 size_t (*get_info_size)(const struct sock *sk);
2213 void (*clone)(const struct request_sock *req, struct sock *newsk,
2214 const gfp_t priority);
2216 char name[TCP_ULP_NAME_MAX];
2217 struct module *owner;
2219 int tcp_register_ulp(struct tcp_ulp_ops *type);
2220 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2221 int tcp_set_ulp(struct sock *sk, const char *name);
2222 void tcp_get_available_ulp(char *buf, size_t len);
2223 void tcp_cleanup_ulp(struct sock *sk);
2224 void tcp_update_ulp(struct sock *sk, struct proto *p,
2225 void (*write_space)(struct sock *sk));
2227 #define MODULE_ALIAS_TCP_ULP(name) \
2228 __MODULE_INFO(alias, alias_userspace, name); \
2229 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2231 #ifdef CONFIG_NET_SOCK_MSG
2235 #ifdef CONFIG_BPF_SYSCALL
2236 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2237 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2238 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2239 #endif /* CONFIG_BPF_SYSCALL */
2241 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2243 #endif /* CONFIG_NET_SOCK_MSG */
2245 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2246 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2251 #ifdef CONFIG_CGROUP_BPF
2252 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2253 struct sk_buff *skb,
2254 unsigned int end_offset)
2257 skops->skb_data_end = skb->data + end_offset;
2260 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2261 struct sk_buff *skb,
2262 unsigned int end_offset)
2267 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2268 * is < 0, then the BPF op failed (for example if the loaded BPF
2269 * program does not support the chosen operation or there is no BPF
2273 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2275 struct bpf_sock_ops_kern sock_ops;
2278 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2279 if (sk_fullsock(sk)) {
2280 sock_ops.is_fullsock = 1;
2281 sock_owned_by_me(sk);
2287 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2289 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2291 ret = sock_ops.reply;
2297 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2299 u32 args[2] = {arg1, arg2};
2301 return tcp_call_bpf(sk, op, 2, args);
2304 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2307 u32 args[3] = {arg1, arg2, arg3};
2309 return tcp_call_bpf(sk, op, 3, args);
2313 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2318 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2323 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2331 static inline u32 tcp_timeout_init(struct sock *sk)
2335 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2338 timeout = TCP_TIMEOUT_INIT;
2342 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2346 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2353 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2355 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2358 static inline void tcp_bpf_rtt(struct sock *sk)
2360 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2361 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2364 #if IS_ENABLED(CONFIG_SMC)
2365 extern struct static_key_false tcp_have_smc;
2368 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2369 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2370 void (*cad)(struct sock *sk, u32 ack_seq));
2371 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2372 void clean_acked_data_flush(void);
2375 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2376 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2377 const struct tcp_sock *tp)
2379 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2380 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2383 /* Compute Earliest Departure Time for some control packets
2384 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2386 static inline u64 tcp_transmit_time(const struct sock *sk)
2388 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2389 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2390 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2392 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;