1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
7 #include <linux/acpi.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
18 #include <linux/memremap.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
38 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
44 #define NVME_MAX_KB_SZ 4096
45 #define NVME_MAX_SEGS 127
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0444);
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0444);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 static unsigned int sgl_threshold = SZ_32K;
60 module_param(sgl_threshold, uint, 0644);
61 MODULE_PARM_DESC(sgl_threshold,
62 "Use SGLs when average request segment size is larger or equal to "
63 "this size. Use 0 to disable SGLs.");
65 #define NVME_PCI_MIN_QUEUE_SIZE 2
66 #define NVME_PCI_MAX_QUEUE_SIZE 4095
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69 .set = io_queue_depth_set,
70 .get = param_get_uint,
73 static unsigned int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
82 ret = kstrtouint(val, 10, &n);
83 if (ret != 0 || n > num_possible_cpus())
85 return param_set_uint(val, kp);
88 static const struct kernel_param_ops io_queue_count_ops = {
89 .set = io_queue_count_set,
90 .get = param_get_uint,
93 static unsigned int write_queues;
94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
95 MODULE_PARM_DESC(write_queues,
96 "Number of queues to use for writes. If not set, reads and writes "
97 "will share a queue set.");
99 static unsigned int poll_queues;
100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
104 module_param(noacpi, bool, 0444);
105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
114 * Represents an NVM Express device. Each nvme_dev is a PCI function.
117 struct nvme_queue *queues;
118 struct blk_mq_tag_set tagset;
119 struct blk_mq_tag_set admin_tagset;
122 struct dma_pool *prp_page_pool;
123 struct dma_pool *prp_small_pool;
124 unsigned online_queues;
126 unsigned io_queues[HCTX_MAX_TYPES];
127 unsigned int num_vecs;
132 unsigned long bar_mapped_size;
133 struct work_struct remove_work;
134 struct mutex shutdown_lock;
140 struct nvme_ctrl ctrl;
144 mempool_t *iod_mempool;
146 /* shadow doorbell buffer support: */
148 dma_addr_t dbbuf_dbs_dma_addr;
150 dma_addr_t dbbuf_eis_dma_addr;
152 /* host memory buffer support: */
154 u32 nr_host_mem_descs;
155 dma_addr_t host_mem_descs_dma;
156 struct nvme_host_mem_buf_desc *host_mem_descs;
157 void **host_mem_desc_bufs;
158 unsigned int nr_allocated_queues;
159 unsigned int nr_write_queues;
160 unsigned int nr_poll_queues;
165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
167 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 NVME_PCI_MAX_QUEUE_SIZE);
171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
173 return qid * 2 * stride;
176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
178 return (qid * 2 + 1) * stride;
181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
183 return container_of(ctrl, struct nvme_dev, ctrl);
187 * An NVM Express queue. Each device has at least two (one for admin
188 * commands and one for I/O commands).
191 struct nvme_dev *dev;
194 /* only used for poll queues: */
195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 struct nvme_completion *cqes;
197 dma_addr_t sq_dma_addr;
198 dma_addr_t cq_dma_addr;
209 #define NVMEQ_ENABLED 0
210 #define NVMEQ_SQ_CMB 1
211 #define NVMEQ_DELETE_ERROR 2
212 #define NVMEQ_POLLED 3
217 struct completion delete_done;
221 * The nvme_iod describes the data in an I/O.
223 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224 * to the actual struct scatterlist.
227 struct nvme_request req;
228 struct nvme_command cmd;
229 struct nvme_queue *nvmeq;
232 int npages; /* In the PRP list. 0 means small pool in use */
233 int nents; /* Used in scatterlist */
234 dma_addr_t first_dma;
235 unsigned int dma_len; /* length of single DMA segment mapping */
237 struct scatterlist *sg;
240 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
242 return dev->nr_allocated_queues * 8 * dev->db_stride;
245 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
247 unsigned int mem_size = nvme_dbbuf_size(dev);
249 if (dev->dbbuf_dbs) {
251 * Clear the dbbuf memory so the driver doesn't observe stale
252 * values from the previous instantiation.
254 memset(dev->dbbuf_dbs, 0, mem_size);
255 memset(dev->dbbuf_eis, 0, mem_size);
259 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
260 &dev->dbbuf_dbs_dma_addr,
264 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
265 &dev->dbbuf_eis_dma_addr,
267 if (!dev->dbbuf_eis) {
268 dma_free_coherent(dev->dev, mem_size,
269 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
270 dev->dbbuf_dbs = NULL;
277 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
279 unsigned int mem_size = nvme_dbbuf_size(dev);
281 if (dev->dbbuf_dbs) {
282 dma_free_coherent(dev->dev, mem_size,
283 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
284 dev->dbbuf_dbs = NULL;
286 if (dev->dbbuf_eis) {
287 dma_free_coherent(dev->dev, mem_size,
288 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
289 dev->dbbuf_eis = NULL;
293 static void nvme_dbbuf_init(struct nvme_dev *dev,
294 struct nvme_queue *nvmeq, int qid)
296 if (!dev->dbbuf_dbs || !qid)
299 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
300 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
301 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
302 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
305 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
310 nvmeq->dbbuf_sq_db = NULL;
311 nvmeq->dbbuf_cq_db = NULL;
312 nvmeq->dbbuf_sq_ei = NULL;
313 nvmeq->dbbuf_cq_ei = NULL;
316 static void nvme_dbbuf_set(struct nvme_dev *dev)
318 struct nvme_command c = { };
324 c.dbbuf.opcode = nvme_admin_dbbuf;
325 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
326 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
328 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
329 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
330 /* Free memory and continue on */
331 nvme_dbbuf_dma_free(dev);
333 for (i = 1; i <= dev->online_queues; i++)
334 nvme_dbbuf_free(&dev->queues[i]);
338 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
340 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
343 /* Update dbbuf and return true if an MMIO is required */
344 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
345 volatile u32 *dbbuf_ei)
351 * Ensure that the queue is written before updating
352 * the doorbell in memory
356 old_value = *dbbuf_db;
360 * Ensure that the doorbell is updated before reading the event
361 * index from memory. The controller needs to provide similar
362 * ordering to ensure the envent index is updated before reading
367 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
375 * Will slightly overestimate the number of pages needed. This is OK
376 * as it only leads to a small amount of wasted memory for the lifetime of
379 static int nvme_pci_npages_prp(void)
381 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
382 NVME_CTRL_PAGE_SIZE);
383 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
387 * Calculates the number of pages needed for the SGL segments. For example a 4k
388 * page can accommodate 256 SGL descriptors.
390 static int nvme_pci_npages_sgl(void)
392 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
396 static size_t nvme_pci_iod_alloc_size(void)
398 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
400 return sizeof(__le64 *) * npages +
401 sizeof(struct scatterlist) * NVME_MAX_SEGS;
404 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
405 unsigned int hctx_idx)
407 struct nvme_dev *dev = data;
408 struct nvme_queue *nvmeq = &dev->queues[0];
410 WARN_ON(hctx_idx != 0);
411 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
413 hctx->driver_data = nvmeq;
417 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
418 unsigned int hctx_idx)
420 struct nvme_dev *dev = data;
421 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
423 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
424 hctx->driver_data = nvmeq;
428 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
429 struct request *req, unsigned int hctx_idx,
430 unsigned int numa_node)
432 struct nvme_dev *dev = set->driver_data;
433 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
434 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
435 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
440 nvme_req(req)->ctrl = &dev->ctrl;
441 nvme_req(req)->cmd = &iod->cmd;
445 static int queue_irq_offset(struct nvme_dev *dev)
447 /* if we have more than 1 vec, admin queue offsets us by 1 */
448 if (dev->num_vecs > 1)
454 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
456 struct nvme_dev *dev = set->driver_data;
459 offset = queue_irq_offset(dev);
460 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
461 struct blk_mq_queue_map *map = &set->map[i];
463 map->nr_queues = dev->io_queues[i];
464 if (!map->nr_queues) {
465 BUG_ON(i == HCTX_TYPE_DEFAULT);
470 * The poll queue(s) doesn't have an IRQ (and hence IRQ
471 * affinity), so use the regular blk-mq cpu mapping
473 map->queue_offset = qoff;
474 if (i != HCTX_TYPE_POLL && offset)
475 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
477 blk_mq_map_queues(map);
478 qoff += map->nr_queues;
479 offset += map->nr_queues;
486 * Write sq tail if we are asked to, or if the next command would wrap.
488 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
491 u16 next_tail = nvmeq->sq_tail + 1;
493 if (next_tail == nvmeq->q_depth)
495 if (next_tail != nvmeq->last_sq_tail)
499 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
500 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
501 writel(nvmeq->sq_tail, nvmeq->q_db);
502 nvmeq->last_sq_tail = nvmeq->sq_tail;
505 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
506 struct nvme_command *cmd)
508 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
509 absolute_pointer(cmd), sizeof(*cmd));
510 if (++nvmeq->sq_tail == nvmeq->q_depth)
514 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
516 struct nvme_queue *nvmeq = hctx->driver_data;
518 spin_lock(&nvmeq->sq_lock);
519 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
520 nvme_write_sq_db(nvmeq, true);
521 spin_unlock(&nvmeq->sq_lock);
524 static void **nvme_pci_iod_list(struct request *req)
526 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
527 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
530 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
532 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
533 int nseg = blk_rq_nr_phys_segments(req);
534 unsigned int avg_seg_size;
536 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
538 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
540 if (!iod->nvmeq->qid)
542 if (!sgl_threshold || avg_seg_size < sgl_threshold)
547 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
549 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
550 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
551 dma_addr_t dma_addr = iod->first_dma;
554 for (i = 0; i < iod->npages; i++) {
555 __le64 *prp_list = nvme_pci_iod_list(req)[i];
556 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
558 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
559 dma_addr = next_dma_addr;
563 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
565 const int last_sg = SGES_PER_PAGE - 1;
566 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
567 dma_addr_t dma_addr = iod->first_dma;
570 for (i = 0; i < iod->npages; i++) {
571 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
572 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
574 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
575 dma_addr = next_dma_addr;
579 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
581 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583 if (is_pci_p2pdma_page(sg_page(iod->sg)))
584 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
587 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
590 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
592 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
595 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
600 WARN_ON_ONCE(!iod->nents);
602 nvme_unmap_sg(dev, req);
603 if (iod->npages == 0)
604 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
606 else if (iod->use_sgl)
607 nvme_free_sgls(dev, req);
609 nvme_free_prps(dev, req);
610 mempool_free(iod->sg, dev->iod_mempool);
613 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
616 struct scatterlist *sg;
618 for_each_sg(sgl, sg, nents, i) {
619 dma_addr_t phys = sg_phys(sg);
620 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
621 "dma_address:%pad dma_length:%d\n",
622 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
627 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
628 struct request *req, struct nvme_rw_command *cmnd)
630 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
631 struct dma_pool *pool;
632 int length = blk_rq_payload_bytes(req);
633 struct scatterlist *sg = iod->sg;
634 int dma_len = sg_dma_len(sg);
635 u64 dma_addr = sg_dma_address(sg);
636 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
638 void **list = nvme_pci_iod_list(req);
642 length -= (NVME_CTRL_PAGE_SIZE - offset);
648 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
650 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
653 dma_addr = sg_dma_address(sg);
654 dma_len = sg_dma_len(sg);
657 if (length <= NVME_CTRL_PAGE_SIZE) {
658 iod->first_dma = dma_addr;
662 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
663 if (nprps <= (256 / 8)) {
664 pool = dev->prp_small_pool;
667 pool = dev->prp_page_pool;
671 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
673 iod->first_dma = dma_addr;
675 return BLK_STS_RESOURCE;
678 iod->first_dma = prp_dma;
681 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
682 __le64 *old_prp_list = prp_list;
683 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
686 list[iod->npages++] = prp_list;
687 prp_list[0] = old_prp_list[i - 1];
688 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
691 prp_list[i++] = cpu_to_le64(dma_addr);
692 dma_len -= NVME_CTRL_PAGE_SIZE;
693 dma_addr += NVME_CTRL_PAGE_SIZE;
694 length -= NVME_CTRL_PAGE_SIZE;
699 if (unlikely(dma_len < 0))
702 dma_addr = sg_dma_address(sg);
703 dma_len = sg_dma_len(sg);
706 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
707 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
710 nvme_free_prps(dev, req);
711 return BLK_STS_RESOURCE;
713 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
714 "Invalid SGL for payload:%d nents:%d\n",
715 blk_rq_payload_bytes(req), iod->nents);
716 return BLK_STS_IOERR;
719 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
720 struct scatterlist *sg)
722 sge->addr = cpu_to_le64(sg_dma_address(sg));
723 sge->length = cpu_to_le32(sg_dma_len(sg));
724 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
727 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
728 dma_addr_t dma_addr, int entries)
730 sge->addr = cpu_to_le64(dma_addr);
731 if (entries < SGES_PER_PAGE) {
732 sge->length = cpu_to_le32(entries * sizeof(*sge));
733 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
735 sge->length = cpu_to_le32(PAGE_SIZE);
736 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
740 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
741 struct request *req, struct nvme_rw_command *cmd, int entries)
743 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
744 struct dma_pool *pool;
745 struct nvme_sgl_desc *sg_list;
746 struct scatterlist *sg = iod->sg;
750 /* setting the transfer type as SGL */
751 cmd->flags = NVME_CMD_SGL_METABUF;
754 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
758 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
759 pool = dev->prp_small_pool;
762 pool = dev->prp_page_pool;
766 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
769 return BLK_STS_RESOURCE;
772 nvme_pci_iod_list(req)[0] = sg_list;
773 iod->first_dma = sgl_dma;
775 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
778 if (i == SGES_PER_PAGE) {
779 struct nvme_sgl_desc *old_sg_desc = sg_list;
780 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
782 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
787 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
788 sg_list[i++] = *link;
789 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
792 nvme_pci_sgl_set_data(&sg_list[i++], sg);
794 } while (--entries > 0);
798 nvme_free_sgls(dev, req);
799 return BLK_STS_RESOURCE;
802 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
803 struct request *req, struct nvme_rw_command *cmnd,
806 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
807 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
808 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
810 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
811 if (dma_mapping_error(dev->dev, iod->first_dma))
812 return BLK_STS_RESOURCE;
813 iod->dma_len = bv->bv_len;
815 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
816 if (bv->bv_len > first_prp_len)
817 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
821 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
822 struct request *req, struct nvme_rw_command *cmnd,
825 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
827 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
828 if (dma_mapping_error(dev->dev, iod->first_dma))
829 return BLK_STS_RESOURCE;
830 iod->dma_len = bv->bv_len;
832 cmnd->flags = NVME_CMD_SGL_METABUF;
833 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
834 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
835 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
839 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
840 struct nvme_command *cmnd)
842 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
843 blk_status_t ret = BLK_STS_RESOURCE;
846 if (blk_rq_nr_phys_segments(req) == 1) {
847 struct bio_vec bv = req_bvec(req);
849 if (!is_pci_p2pdma_page(bv.bv_page)) {
850 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
851 return nvme_setup_prp_simple(dev, req,
854 if (iod->nvmeq->qid && sgl_threshold &&
855 nvme_ctrl_sgl_supported(&dev->ctrl))
856 return nvme_setup_sgl_simple(dev, req,
862 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
864 return BLK_STS_RESOURCE;
865 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
866 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
870 if (is_pci_p2pdma_page(sg_page(iod->sg)))
871 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
872 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
874 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
875 rq_dma_dir(req), DMA_ATTR_NO_WARN);
879 iod->use_sgl = nvme_pci_use_sgls(dev, req);
881 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
883 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
884 if (ret != BLK_STS_OK)
889 nvme_unmap_sg(dev, req);
891 mempool_free(iod->sg, dev->iod_mempool);
895 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
896 struct nvme_command *cmnd)
898 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
900 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
902 if (dma_mapping_error(dev->dev, iod->meta_dma))
903 return BLK_STS_IOERR;
904 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
908 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
910 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
917 ret = nvme_setup_cmd(req->q->queuedata, req);
921 if (blk_rq_nr_phys_segments(req)) {
922 ret = nvme_map_data(dev, req, &iod->cmd);
927 if (blk_integrity_rq(req)) {
928 ret = nvme_map_metadata(dev, req, &iod->cmd);
933 blk_mq_start_request(req);
936 nvme_unmap_data(dev, req);
938 nvme_cleanup_cmd(req);
943 * NOTE: ns is NULL when called on the admin queue.
945 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
946 const struct blk_mq_queue_data *bd)
948 struct nvme_queue *nvmeq = hctx->driver_data;
949 struct nvme_dev *dev = nvmeq->dev;
950 struct request *req = bd->rq;
951 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
955 * We should not need to do this, but we're still using this to
956 * ensure we can drain requests on a dying queue.
958 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
959 return BLK_STS_IOERR;
961 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
962 return nvme_fail_nonready_command(&dev->ctrl, req);
964 ret = nvme_prep_rq(dev, req);
967 spin_lock(&nvmeq->sq_lock);
968 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
969 nvme_write_sq_db(nvmeq, bd->last);
970 spin_unlock(&nvmeq->sq_lock);
974 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
976 spin_lock(&nvmeq->sq_lock);
977 while (!rq_list_empty(*rqlist)) {
978 struct request *req = rq_list_pop(rqlist);
979 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
981 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
983 nvme_write_sq_db(nvmeq, true);
984 spin_unlock(&nvmeq->sq_lock);
987 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
990 * We should not need to do this, but we're still using this to
991 * ensure we can drain requests on a dying queue.
993 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
995 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
998 req->mq_hctx->tags->rqs[req->tag] = req;
999 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
1002 static void nvme_queue_rqs(struct request **rqlist)
1004 struct request *req, *next, *prev = NULL;
1005 struct request *requeue_list = NULL;
1007 rq_list_for_each_safe(rqlist, req, next) {
1008 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1010 if (!nvme_prep_rq_batch(nvmeq, req)) {
1011 /* detach 'req' and add to remainder list */
1012 rq_list_move(rqlist, &requeue_list, req, prev);
1019 if (!next || req->mq_hctx != next->mq_hctx) {
1020 /* detach rest of list, and submit */
1021 req->rq_next = NULL;
1022 nvme_submit_cmds(nvmeq, rqlist);
1029 *rqlist = requeue_list;
1032 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1034 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1035 struct nvme_dev *dev = iod->nvmeq->dev;
1037 if (blk_integrity_rq(req))
1038 dma_unmap_page(dev->dev, iod->meta_dma,
1039 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1040 if (blk_rq_nr_phys_segments(req))
1041 nvme_unmap_data(dev, req);
1044 static void nvme_pci_complete_rq(struct request *req)
1046 nvme_pci_unmap_rq(req);
1047 nvme_complete_rq(req);
1050 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1052 nvme_complete_batch(iob, nvme_pci_unmap_rq);
1055 /* We read the CQE phase first to check if the rest of the entry is valid */
1056 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1058 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1060 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1063 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1065 u16 head = nvmeq->cq_head;
1067 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1068 nvmeq->dbbuf_cq_ei))
1069 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1072 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1075 return nvmeq->dev->admin_tagset.tags[0];
1076 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1079 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1080 struct io_comp_batch *iob, u16 idx)
1082 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1083 __u16 command_id = READ_ONCE(cqe->command_id);
1084 struct request *req;
1087 * AEN requests are special as they don't time out and can
1088 * survive any kind of queue freeze and often don't respond to
1089 * aborts. We don't even bother to allocate a struct request
1090 * for them but rather special case them here.
1092 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1093 nvme_complete_async_event(&nvmeq->dev->ctrl,
1094 cqe->status, &cqe->result);
1098 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1099 if (unlikely(!req)) {
1100 dev_warn(nvmeq->dev->ctrl.device,
1101 "invalid id %d completed on queue %d\n",
1102 command_id, le16_to_cpu(cqe->sq_id));
1106 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1107 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1108 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1109 nvme_pci_complete_batch))
1110 nvme_pci_complete_rq(req);
1113 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1115 u32 tmp = nvmeq->cq_head + 1;
1117 if (tmp == nvmeq->q_depth) {
1119 nvmeq->cq_phase ^= 1;
1121 nvmeq->cq_head = tmp;
1125 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1126 struct io_comp_batch *iob)
1130 while (nvme_cqe_pending(nvmeq)) {
1133 * load-load control dependency between phase and the rest of
1134 * the cqe requires a full read memory barrier
1137 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1138 nvme_update_cq_head(nvmeq);
1142 nvme_ring_cq_doorbell(nvmeq);
1146 static irqreturn_t nvme_irq(int irq, void *data)
1148 struct nvme_queue *nvmeq = data;
1149 DEFINE_IO_COMP_BATCH(iob);
1151 if (nvme_poll_cq(nvmeq, &iob)) {
1152 if (!rq_list_empty(iob.req_list))
1153 nvme_pci_complete_batch(&iob);
1159 static irqreturn_t nvme_irq_check(int irq, void *data)
1161 struct nvme_queue *nvmeq = data;
1163 if (nvme_cqe_pending(nvmeq))
1164 return IRQ_WAKE_THREAD;
1169 * Poll for completions for any interrupt driven queue
1170 * Can be called from any context.
1172 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1174 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1176 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1178 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1179 nvme_poll_cq(nvmeq, NULL);
1180 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1183 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1185 struct nvme_queue *nvmeq = hctx->driver_data;
1188 if (!nvme_cqe_pending(nvmeq))
1191 spin_lock(&nvmeq->cq_poll_lock);
1192 found = nvme_poll_cq(nvmeq, iob);
1193 spin_unlock(&nvmeq->cq_poll_lock);
1198 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1200 struct nvme_dev *dev = to_nvme_dev(ctrl);
1201 struct nvme_queue *nvmeq = &dev->queues[0];
1202 struct nvme_command c = { };
1204 c.common.opcode = nvme_admin_async_event;
1205 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1207 spin_lock(&nvmeq->sq_lock);
1208 nvme_sq_copy_cmd(nvmeq, &c);
1209 nvme_write_sq_db(nvmeq, true);
1210 spin_unlock(&nvmeq->sq_lock);
1213 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1215 struct nvme_command c = { };
1217 c.delete_queue.opcode = opcode;
1218 c.delete_queue.qid = cpu_to_le16(id);
1220 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1223 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1224 struct nvme_queue *nvmeq, s16 vector)
1226 struct nvme_command c = { };
1227 int flags = NVME_QUEUE_PHYS_CONTIG;
1229 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1230 flags |= NVME_CQ_IRQ_ENABLED;
1233 * Note: we (ab)use the fact that the prp fields survive if no data
1234 * is attached to the request.
1236 c.create_cq.opcode = nvme_admin_create_cq;
1237 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1238 c.create_cq.cqid = cpu_to_le16(qid);
1239 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1240 c.create_cq.cq_flags = cpu_to_le16(flags);
1241 c.create_cq.irq_vector = cpu_to_le16(vector);
1243 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1246 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1247 struct nvme_queue *nvmeq)
1249 struct nvme_ctrl *ctrl = &dev->ctrl;
1250 struct nvme_command c = { };
1251 int flags = NVME_QUEUE_PHYS_CONTIG;
1254 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1255 * set. Since URGENT priority is zeroes, it makes all queues
1258 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1259 flags |= NVME_SQ_PRIO_MEDIUM;
1262 * Note: we (ab)use the fact that the prp fields survive if no data
1263 * is attached to the request.
1265 c.create_sq.opcode = nvme_admin_create_sq;
1266 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1267 c.create_sq.sqid = cpu_to_le16(qid);
1268 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1269 c.create_sq.sq_flags = cpu_to_le16(flags);
1270 c.create_sq.cqid = cpu_to_le16(qid);
1272 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1275 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1277 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1280 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1282 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1285 static void abort_endio(struct request *req, blk_status_t error)
1287 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1288 struct nvme_queue *nvmeq = iod->nvmeq;
1290 dev_warn(nvmeq->dev->ctrl.device,
1291 "Abort status: 0x%x", nvme_req(req)->status);
1292 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1293 blk_mq_free_request(req);
1296 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1298 /* If true, indicates loss of adapter communication, possibly by a
1299 * NVMe Subsystem reset.
1301 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1303 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1304 switch (dev->ctrl.state) {
1305 case NVME_CTRL_RESETTING:
1306 case NVME_CTRL_CONNECTING:
1312 /* We shouldn't reset unless the controller is on fatal error state
1313 * _or_ if we lost the communication with it.
1315 if (!(csts & NVME_CSTS_CFS) && !nssro)
1321 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1323 /* Read a config register to help see what died. */
1327 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1329 if (result == PCIBIOS_SUCCESSFUL)
1330 dev_warn(dev->ctrl.device,
1331 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1334 dev_warn(dev->ctrl.device,
1335 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1339 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1341 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1342 struct nvme_queue *nvmeq = iod->nvmeq;
1343 struct nvme_dev *dev = nvmeq->dev;
1344 struct request *abort_req;
1345 struct nvme_command cmd = { };
1346 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1348 /* If PCI error recovery process is happening, we cannot reset or
1349 * the recovery mechanism will surely fail.
1352 if (pci_channel_offline(to_pci_dev(dev->dev)))
1353 return BLK_EH_RESET_TIMER;
1356 * Reset immediately if the controller is failed
1358 if (nvme_should_reset(dev, csts)) {
1359 nvme_warn_reset(dev, csts);
1360 nvme_dev_disable(dev, false);
1361 nvme_reset_ctrl(&dev->ctrl);
1366 * Did we miss an interrupt?
1368 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1369 nvme_poll(req->mq_hctx, NULL);
1371 nvme_poll_irqdisable(nvmeq);
1373 if (blk_mq_request_completed(req)) {
1374 dev_warn(dev->ctrl.device,
1375 "I/O %d QID %d timeout, completion polled\n",
1376 req->tag, nvmeq->qid);
1381 * Shutdown immediately if controller times out while starting. The
1382 * reset work will see the pci device disabled when it gets the forced
1383 * cancellation error. All outstanding requests are completed on
1384 * shutdown, so we return BLK_EH_DONE.
1386 switch (dev->ctrl.state) {
1387 case NVME_CTRL_CONNECTING:
1388 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1390 case NVME_CTRL_DELETING:
1391 dev_warn_ratelimited(dev->ctrl.device,
1392 "I/O %d QID %d timeout, disable controller\n",
1393 req->tag, nvmeq->qid);
1394 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1395 nvme_dev_disable(dev, true);
1397 case NVME_CTRL_RESETTING:
1398 return BLK_EH_RESET_TIMER;
1404 * Shutdown the controller immediately and schedule a reset if the
1405 * command was already aborted once before and still hasn't been
1406 * returned to the driver, or if this is the admin queue.
1408 if (!nvmeq->qid || iod->aborted) {
1409 dev_warn(dev->ctrl.device,
1410 "I/O %d QID %d timeout, reset controller\n",
1411 req->tag, nvmeq->qid);
1412 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1413 nvme_dev_disable(dev, false);
1414 nvme_reset_ctrl(&dev->ctrl);
1419 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1420 atomic_inc(&dev->ctrl.abort_limit);
1421 return BLK_EH_RESET_TIMER;
1425 cmd.abort.opcode = nvme_admin_abort_cmd;
1426 cmd.abort.cid = nvme_cid(req);
1427 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1429 dev_warn(nvmeq->dev->ctrl.device,
1430 "I/O %d QID %d timeout, aborting\n",
1431 req->tag, nvmeq->qid);
1433 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1435 if (IS_ERR(abort_req)) {
1436 atomic_inc(&dev->ctrl.abort_limit);
1437 return BLK_EH_RESET_TIMER;
1439 nvme_init_request(abort_req, &cmd);
1441 abort_req->end_io_data = NULL;
1442 blk_execute_rq_nowait(abort_req, false, abort_endio);
1445 * The aborted req will be completed on receiving the abort req.
1446 * We enable the timer again. If hit twice, it'll cause a device reset,
1447 * as the device then is in a faulty state.
1449 return BLK_EH_RESET_TIMER;
1452 static void nvme_free_queue(struct nvme_queue *nvmeq)
1454 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1455 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1456 if (!nvmeq->sq_cmds)
1459 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1460 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1461 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1463 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1464 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1468 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1472 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1473 dev->ctrl.queue_count--;
1474 nvme_free_queue(&dev->queues[i]);
1479 * nvme_suspend_queue - put queue into suspended state
1480 * @nvmeq: queue to suspend
1482 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1484 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1487 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1490 nvmeq->dev->online_queues--;
1491 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1492 nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1493 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1494 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1498 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1502 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1503 nvme_suspend_queue(&dev->queues[i]);
1506 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1508 struct nvme_queue *nvmeq = &dev->queues[0];
1511 nvme_shutdown_ctrl(&dev->ctrl);
1513 nvme_disable_ctrl(&dev->ctrl);
1515 nvme_poll_irqdisable(nvmeq);
1519 * Called only on a device that has been disabled and after all other threads
1520 * that can check this device's completion queues have synced, except
1521 * nvme_poll(). This is the last chance for the driver to see a natural
1522 * completion before nvme_cancel_request() terminates all incomplete requests.
1524 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1528 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1529 spin_lock(&dev->queues[i].cq_poll_lock);
1530 nvme_poll_cq(&dev->queues[i], NULL);
1531 spin_unlock(&dev->queues[i].cq_poll_lock);
1535 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1538 int q_depth = dev->q_depth;
1539 unsigned q_size_aligned = roundup(q_depth * entry_size,
1540 NVME_CTRL_PAGE_SIZE);
1542 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1543 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1545 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1546 q_depth = div_u64(mem_per_q, entry_size);
1549 * Ensure the reduced q_depth is above some threshold where it
1550 * would be better to map queues in system memory with the
1560 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1563 struct pci_dev *pdev = to_pci_dev(dev->dev);
1565 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1566 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1567 if (nvmeq->sq_cmds) {
1568 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1570 if (nvmeq->sq_dma_addr) {
1571 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1575 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1579 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1580 &nvmeq->sq_dma_addr, GFP_KERNEL);
1581 if (!nvmeq->sq_cmds)
1586 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1588 struct nvme_queue *nvmeq = &dev->queues[qid];
1590 if (dev->ctrl.queue_count > qid)
1593 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1594 nvmeq->q_depth = depth;
1595 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1596 &nvmeq->cq_dma_addr, GFP_KERNEL);
1600 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1604 spin_lock_init(&nvmeq->sq_lock);
1605 spin_lock_init(&nvmeq->cq_poll_lock);
1607 nvmeq->cq_phase = 1;
1608 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1610 dev->ctrl.queue_count++;
1615 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1616 nvmeq->cq_dma_addr);
1621 static int queue_request_irq(struct nvme_queue *nvmeq)
1623 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1624 int nr = nvmeq->dev->ctrl.instance;
1626 if (use_threaded_interrupts) {
1627 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1628 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1630 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1631 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1635 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1637 struct nvme_dev *dev = nvmeq->dev;
1640 nvmeq->last_sq_tail = 0;
1642 nvmeq->cq_phase = 1;
1643 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1644 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1645 nvme_dbbuf_init(dev, nvmeq, qid);
1646 dev->online_queues++;
1647 wmb(); /* ensure the first interrupt sees the initialization */
1651 * Try getting shutdown_lock while setting up IO queues.
1653 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1656 * Give up if the lock is being held by nvme_dev_disable.
1658 if (!mutex_trylock(&dev->shutdown_lock))
1662 * Controller is in wrong state, fail early.
1664 if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1665 mutex_unlock(&dev->shutdown_lock);
1672 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1674 struct nvme_dev *dev = nvmeq->dev;
1678 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1681 * A queue's vector matches the queue identifier unless the controller
1682 * has only one vector available.
1685 vector = dev->num_vecs == 1 ? 0 : qid;
1687 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1689 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1693 result = adapter_alloc_sq(dev, qid, nvmeq);
1699 nvmeq->cq_vector = vector;
1701 result = nvme_setup_io_queues_trylock(dev);
1704 nvme_init_queue(nvmeq, qid);
1706 result = queue_request_irq(nvmeq);
1711 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1712 mutex_unlock(&dev->shutdown_lock);
1716 dev->online_queues--;
1717 mutex_unlock(&dev->shutdown_lock);
1718 adapter_delete_sq(dev, qid);
1720 adapter_delete_cq(dev, qid);
1724 static const struct blk_mq_ops nvme_mq_admin_ops = {
1725 .queue_rq = nvme_queue_rq,
1726 .complete = nvme_pci_complete_rq,
1727 .init_hctx = nvme_admin_init_hctx,
1728 .init_request = nvme_pci_init_request,
1729 .timeout = nvme_timeout,
1732 static const struct blk_mq_ops nvme_mq_ops = {
1733 .queue_rq = nvme_queue_rq,
1734 .queue_rqs = nvme_queue_rqs,
1735 .complete = nvme_pci_complete_rq,
1736 .commit_rqs = nvme_commit_rqs,
1737 .init_hctx = nvme_init_hctx,
1738 .init_request = nvme_pci_init_request,
1739 .map_queues = nvme_pci_map_queues,
1740 .timeout = nvme_timeout,
1744 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1746 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1748 * If the controller was reset during removal, it's possible
1749 * user requests may be waiting on a stopped queue. Start the
1750 * queue to flush these to completion.
1752 nvme_start_admin_queue(&dev->ctrl);
1753 blk_cleanup_queue(dev->ctrl.admin_q);
1754 blk_mq_free_tag_set(&dev->admin_tagset);
1758 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1760 if (!dev->ctrl.admin_q) {
1761 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1762 dev->admin_tagset.nr_hw_queues = 1;
1764 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1765 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1766 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1767 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1768 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1769 dev->admin_tagset.driver_data = dev;
1771 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1773 dev->ctrl.admin_tagset = &dev->admin_tagset;
1775 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1776 if (IS_ERR(dev->ctrl.admin_q)) {
1777 blk_mq_free_tag_set(&dev->admin_tagset);
1780 if (!blk_get_queue(dev->ctrl.admin_q)) {
1781 nvme_dev_remove_admin(dev);
1782 dev->ctrl.admin_q = NULL;
1786 nvme_start_admin_queue(&dev->ctrl);
1791 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1793 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1796 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1798 struct pci_dev *pdev = to_pci_dev(dev->dev);
1800 if (size <= dev->bar_mapped_size)
1802 if (size > pci_resource_len(pdev, 0))
1806 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1808 dev->bar_mapped_size = 0;
1811 dev->bar_mapped_size = size;
1812 dev->dbs = dev->bar + NVME_REG_DBS;
1817 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1821 struct nvme_queue *nvmeq;
1823 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1827 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1828 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1830 if (dev->subsystem &&
1831 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1832 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1834 result = nvme_disable_ctrl(&dev->ctrl);
1838 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1842 dev->ctrl.numa_node = dev_to_node(dev->dev);
1844 nvmeq = &dev->queues[0];
1845 aqa = nvmeq->q_depth - 1;
1848 writel(aqa, dev->bar + NVME_REG_AQA);
1849 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1850 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1852 result = nvme_enable_ctrl(&dev->ctrl);
1856 nvmeq->cq_vector = 0;
1857 nvme_init_queue(nvmeq, 0);
1858 result = queue_request_irq(nvmeq);
1860 dev->online_queues--;
1864 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1868 static int nvme_create_io_queues(struct nvme_dev *dev)
1870 unsigned i, max, rw_queues;
1873 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1874 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1880 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1881 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1882 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1883 dev->io_queues[HCTX_TYPE_READ];
1888 for (i = dev->online_queues; i <= max; i++) {
1889 bool polled = i > rw_queues;
1891 ret = nvme_create_queue(&dev->queues[i], i, polled);
1897 * Ignore failing Create SQ/CQ commands, we can continue with less
1898 * than the desired amount of queues, and even a controller without
1899 * I/O queues can still be used to issue admin commands. This might
1900 * be useful to upgrade a buggy firmware for example.
1902 return ret >= 0 ? 0 : ret;
1905 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1907 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1909 return 1ULL << (12 + 4 * szu);
1912 static u32 nvme_cmb_size(struct nvme_dev *dev)
1914 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1917 static void nvme_map_cmb(struct nvme_dev *dev)
1920 resource_size_t bar_size;
1921 struct pci_dev *pdev = to_pci_dev(dev->dev);
1927 if (NVME_CAP_CMBS(dev->ctrl.cap))
1928 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1930 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1933 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1935 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1936 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1937 bar = NVME_CMB_BIR(dev->cmbloc);
1938 bar_size = pci_resource_len(pdev, bar);
1940 if (offset > bar_size)
1944 * Tell the controller about the host side address mapping the CMB,
1945 * and enable CMB decoding for the NVMe 1.4+ scheme:
1947 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1948 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1949 (pci_bus_address(pdev, bar) + offset),
1950 dev->bar + NVME_REG_CMBMSC);
1954 * Controllers may support a CMB size larger than their BAR,
1955 * for example, due to being behind a bridge. Reduce the CMB to
1956 * the reported size of the BAR
1958 if (size > bar_size - offset)
1959 size = bar_size - offset;
1961 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1962 dev_warn(dev->ctrl.device,
1963 "failed to register the CMB\n");
1967 dev->cmb_size = size;
1968 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1970 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1971 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1972 pci_p2pmem_publish(pdev, true);
1975 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1977 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1978 u64 dma_addr = dev->host_mem_descs_dma;
1979 struct nvme_command c = { };
1982 c.features.opcode = nvme_admin_set_features;
1983 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1984 c.features.dword11 = cpu_to_le32(bits);
1985 c.features.dword12 = cpu_to_le32(host_mem_size);
1986 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1987 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1988 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1990 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1992 dev_warn(dev->ctrl.device,
1993 "failed to set host mem (err %d, flags %#x).\n",
1996 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2001 static void nvme_free_host_mem(struct nvme_dev *dev)
2005 for (i = 0; i < dev->nr_host_mem_descs; i++) {
2006 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2007 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2009 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2010 le64_to_cpu(desc->addr),
2011 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2014 kfree(dev->host_mem_desc_bufs);
2015 dev->host_mem_desc_bufs = NULL;
2016 dma_free_coherent(dev->dev,
2017 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2018 dev->host_mem_descs, dev->host_mem_descs_dma);
2019 dev->host_mem_descs = NULL;
2020 dev->nr_host_mem_descs = 0;
2023 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2026 struct nvme_host_mem_buf_desc *descs;
2027 u32 max_entries, len;
2028 dma_addr_t descs_dma;
2033 tmp = (preferred + chunk_size - 1);
2034 do_div(tmp, chunk_size);
2037 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2038 max_entries = dev->ctrl.hmmaxd;
2040 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2041 &descs_dma, GFP_KERNEL);
2045 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2047 goto out_free_descs;
2049 for (size = 0; size < preferred && i < max_entries; size += len) {
2050 dma_addr_t dma_addr;
2052 len = min_t(u64, chunk_size, preferred - size);
2053 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2054 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2058 descs[i].addr = cpu_to_le64(dma_addr);
2059 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2066 dev->nr_host_mem_descs = i;
2067 dev->host_mem_size = size;
2068 dev->host_mem_descs = descs;
2069 dev->host_mem_descs_dma = descs_dma;
2070 dev->host_mem_desc_bufs = bufs;
2075 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2077 dma_free_attrs(dev->dev, size, bufs[i],
2078 le64_to_cpu(descs[i].addr),
2079 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2084 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2087 dev->host_mem_descs = NULL;
2091 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2093 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2094 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2097 /* start big and work our way down */
2098 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2099 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2100 if (!min || dev->host_mem_size >= min)
2102 nvme_free_host_mem(dev);
2109 static int nvme_setup_host_mem(struct nvme_dev *dev)
2111 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2112 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2113 u64 min = (u64)dev->ctrl.hmmin * 4096;
2114 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2117 preferred = min(preferred, max);
2119 dev_warn(dev->ctrl.device,
2120 "min host memory (%lld MiB) above limit (%d MiB).\n",
2121 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2122 nvme_free_host_mem(dev);
2127 * If we already have a buffer allocated check if we can reuse it.
2129 if (dev->host_mem_descs) {
2130 if (dev->host_mem_size >= min)
2131 enable_bits |= NVME_HOST_MEM_RETURN;
2133 nvme_free_host_mem(dev);
2136 if (!dev->host_mem_descs) {
2137 if (nvme_alloc_host_mem(dev, min, preferred)) {
2138 dev_warn(dev->ctrl.device,
2139 "failed to allocate host memory buffer.\n");
2140 return 0; /* controller must work without HMB */
2143 dev_info(dev->ctrl.device,
2144 "allocated %lld MiB host memory buffer.\n",
2145 dev->host_mem_size >> ilog2(SZ_1M));
2148 ret = nvme_set_host_mem(dev, enable_bits);
2150 nvme_free_host_mem(dev);
2154 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2157 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2159 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2160 ndev->cmbloc, ndev->cmbsz);
2162 static DEVICE_ATTR_RO(cmb);
2164 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2167 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2169 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2171 static DEVICE_ATTR_RO(cmbloc);
2173 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2176 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2178 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2180 static DEVICE_ATTR_RO(cmbsz);
2182 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2185 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2187 return sysfs_emit(buf, "%d\n", ndev->hmb);
2190 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2191 const char *buf, size_t count)
2193 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2197 if (strtobool(buf, &new) < 0)
2200 if (new == ndev->hmb)
2204 ret = nvme_setup_host_mem(ndev);
2206 ret = nvme_set_host_mem(ndev, 0);
2208 nvme_free_host_mem(ndev);
2216 static DEVICE_ATTR_RW(hmb);
2218 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2219 struct attribute *a, int n)
2221 struct nvme_ctrl *ctrl =
2222 dev_get_drvdata(container_of(kobj, struct device, kobj));
2223 struct nvme_dev *dev = to_nvme_dev(ctrl);
2225 if (a == &dev_attr_cmb.attr ||
2226 a == &dev_attr_cmbloc.attr ||
2227 a == &dev_attr_cmbsz.attr) {
2231 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2237 static struct attribute *nvme_pci_attrs[] = {
2239 &dev_attr_cmbloc.attr,
2240 &dev_attr_cmbsz.attr,
2245 static const struct attribute_group nvme_pci_attr_group = {
2246 .attrs = nvme_pci_attrs,
2247 .is_visible = nvme_pci_attrs_are_visible,
2251 * nirqs is the number of interrupts available for write and read
2252 * queues. The core already reserved an interrupt for the admin queue.
2254 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2256 struct nvme_dev *dev = affd->priv;
2257 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2260 * If there is no interrupt available for queues, ensure that
2261 * the default queue is set to 1. The affinity set size is
2262 * also set to one, but the irq core ignores it for this case.
2264 * If only one interrupt is available or 'write_queue' == 0, combine
2265 * write and read queues.
2267 * If 'write_queues' > 0, ensure it leaves room for at least one read
2273 } else if (nrirqs == 1 || !nr_write_queues) {
2275 } else if (nr_write_queues >= nrirqs) {
2278 nr_read_queues = nrirqs - nr_write_queues;
2281 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2282 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2283 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2284 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2285 affd->nr_sets = nr_read_queues ? 2 : 1;
2288 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2290 struct pci_dev *pdev = to_pci_dev(dev->dev);
2291 struct irq_affinity affd = {
2293 .calc_sets = nvme_calc_irq_sets,
2296 unsigned int irq_queues, poll_queues;
2299 * Poll queues don't need interrupts, but we need at least one I/O queue
2300 * left over for non-polled I/O.
2302 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2303 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2306 * Initialize for the single interrupt case, will be updated in
2307 * nvme_calc_irq_sets().
2309 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2310 dev->io_queues[HCTX_TYPE_READ] = 0;
2313 * We need interrupts for the admin queue and each non-polled I/O queue,
2314 * but some Apple controllers require all queues to use the first
2318 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2319 irq_queues += (nr_io_queues - poll_queues);
2320 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2321 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2324 static void nvme_disable_io_queues(struct nvme_dev *dev)
2326 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2327 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2330 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2333 * If tags are shared with admin queue (Apple bug), then
2334 * make sure we only use one IO queue.
2336 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2338 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2341 static int nvme_setup_io_queues(struct nvme_dev *dev)
2343 struct nvme_queue *adminq = &dev->queues[0];
2344 struct pci_dev *pdev = to_pci_dev(dev->dev);
2345 unsigned int nr_io_queues;
2350 * Sample the module parameters once at reset time so that we have
2351 * stable values to work with.
2353 dev->nr_write_queues = write_queues;
2354 dev->nr_poll_queues = poll_queues;
2356 nr_io_queues = dev->nr_allocated_queues - 1;
2357 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2361 if (nr_io_queues == 0)
2365 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2366 * from set to unset. If there is a window to it is truely freed,
2367 * pci_free_irq_vectors() jumping into this window will crash.
2368 * And take lock to avoid racing with pci_free_irq_vectors() in
2369 * nvme_dev_disable() path.
2371 result = nvme_setup_io_queues_trylock(dev);
2374 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2375 pci_free_irq(pdev, 0, adminq);
2377 if (dev->cmb_use_sqes) {
2378 result = nvme_cmb_qdepth(dev, nr_io_queues,
2379 sizeof(struct nvme_command));
2381 dev->q_depth = result;
2383 dev->cmb_use_sqes = false;
2387 size = db_bar_size(dev, nr_io_queues);
2388 result = nvme_remap_bar(dev, size);
2391 if (!--nr_io_queues) {
2396 adminq->q_db = dev->dbs;
2399 /* Deregister the admin queue's interrupt */
2400 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2401 pci_free_irq(pdev, 0, adminq);
2404 * If we enable msix early due to not intx, disable it again before
2405 * setting up the full range we need.
2407 pci_free_irq_vectors(pdev);
2409 result = nvme_setup_irqs(dev, nr_io_queues);
2415 dev->num_vecs = result;
2416 result = max(result - 1, 1);
2417 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2420 * Should investigate if there's a performance win from allocating
2421 * more queues than interrupt vectors; it might allow the submission
2422 * path to scale better, even if the receive path is limited by the
2423 * number of interrupts.
2425 result = queue_request_irq(adminq);
2428 set_bit(NVMEQ_ENABLED, &adminq->flags);
2429 mutex_unlock(&dev->shutdown_lock);
2431 result = nvme_create_io_queues(dev);
2432 if (result || dev->online_queues < 2)
2435 if (dev->online_queues - 1 < dev->max_qid) {
2436 nr_io_queues = dev->online_queues - 1;
2437 nvme_disable_io_queues(dev);
2438 result = nvme_setup_io_queues_trylock(dev);
2441 nvme_suspend_io_queues(dev);
2444 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2445 dev->io_queues[HCTX_TYPE_DEFAULT],
2446 dev->io_queues[HCTX_TYPE_READ],
2447 dev->io_queues[HCTX_TYPE_POLL]);
2450 mutex_unlock(&dev->shutdown_lock);
2454 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2456 struct nvme_queue *nvmeq = req->end_io_data;
2458 blk_mq_free_request(req);
2459 complete(&nvmeq->delete_done);
2462 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2464 struct nvme_queue *nvmeq = req->end_io_data;
2467 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2469 nvme_del_queue_end(req, error);
2472 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2474 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2475 struct request *req;
2476 struct nvme_command cmd = { };
2478 cmd.delete_queue.opcode = opcode;
2479 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2481 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2483 return PTR_ERR(req);
2484 nvme_init_request(req, &cmd);
2486 req->end_io_data = nvmeq;
2488 init_completion(&nvmeq->delete_done);
2489 blk_execute_rq_nowait(req, false, opcode == nvme_admin_delete_cq ?
2490 nvme_del_cq_end : nvme_del_queue_end);
2494 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2496 int nr_queues = dev->online_queues - 1, sent = 0;
2497 unsigned long timeout;
2500 timeout = NVME_ADMIN_TIMEOUT;
2501 while (nr_queues > 0) {
2502 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2508 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2510 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2522 static void nvme_dev_add(struct nvme_dev *dev)
2526 if (!dev->ctrl.tagset) {
2527 dev->tagset.ops = &nvme_mq_ops;
2528 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2529 dev->tagset.nr_maps = 2; /* default + read */
2530 if (dev->io_queues[HCTX_TYPE_POLL])
2531 dev->tagset.nr_maps++;
2532 dev->tagset.timeout = NVME_IO_TIMEOUT;
2533 dev->tagset.numa_node = dev->ctrl.numa_node;
2534 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2535 BLK_MQ_MAX_DEPTH) - 1;
2536 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2537 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2538 dev->tagset.driver_data = dev;
2541 * Some Apple controllers requires tags to be unique
2542 * across admin and IO queue, so reserve the first 32
2543 * tags of the IO queue.
2545 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2546 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2548 ret = blk_mq_alloc_tag_set(&dev->tagset);
2550 dev_warn(dev->ctrl.device,
2551 "IO queues tagset allocation failed %d\n", ret);
2554 dev->ctrl.tagset = &dev->tagset;
2556 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2558 /* Free previously allocated queues that are no longer usable */
2559 nvme_free_queues(dev, dev->online_queues);
2562 nvme_dbbuf_set(dev);
2565 static int nvme_pci_enable(struct nvme_dev *dev)
2567 int result = -ENOMEM;
2568 struct pci_dev *pdev = to_pci_dev(dev->dev);
2569 int dma_address_bits = 64;
2571 if (pci_enable_device_mem(pdev))
2574 pci_set_master(pdev);
2576 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2577 dma_address_bits = 48;
2578 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2581 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2587 * Some devices and/or platforms don't advertise or work with INTx
2588 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2589 * adjust this later.
2591 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2595 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2597 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2599 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2600 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2601 dev->dbs = dev->bar + 4096;
2604 * Some Apple controllers require a non-standard SQE size.
2605 * Interestingly they also seem to ignore the CC:IOSQES register
2606 * so we don't bother updating it here.
2608 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2611 dev->io_sqes = NVME_NVM_IOSQES;
2614 * Temporary fix for the Apple controller found in the MacBook8,1 and
2615 * some MacBook7,1 to avoid controller resets and data loss.
2617 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2619 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2620 "set queue depth=%u to work around controller resets\n",
2622 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2623 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2624 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2626 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2627 "set queue depth=%u\n", dev->q_depth);
2631 * Controllers with the shared tags quirk need the IO queue to be
2632 * big enough so that we get 32 tags for the admin queue
2634 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2635 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2636 dev->q_depth = NVME_AQ_DEPTH + 2;
2637 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2644 pci_enable_pcie_error_reporting(pdev);
2645 pci_save_state(pdev);
2649 pci_disable_device(pdev);
2653 static void nvme_dev_unmap(struct nvme_dev *dev)
2657 pci_release_mem_regions(to_pci_dev(dev->dev));
2660 static void nvme_pci_disable(struct nvme_dev *dev)
2662 struct pci_dev *pdev = to_pci_dev(dev->dev);
2664 pci_free_irq_vectors(pdev);
2666 if (pci_is_enabled(pdev)) {
2667 pci_disable_pcie_error_reporting(pdev);
2668 pci_disable_device(pdev);
2672 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2674 bool dead = true, freeze = false;
2675 struct pci_dev *pdev = to_pci_dev(dev->dev);
2677 mutex_lock(&dev->shutdown_lock);
2678 if (pci_is_enabled(pdev)) {
2679 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2681 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2682 dev->ctrl.state == NVME_CTRL_RESETTING) {
2684 nvme_start_freeze(&dev->ctrl);
2686 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2687 pdev->error_state != pci_channel_io_normal);
2691 * Give the controller a chance to complete all entered requests if
2692 * doing a safe shutdown.
2694 if (!dead && shutdown && freeze)
2695 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2697 nvme_stop_queues(&dev->ctrl);
2699 if (!dead && dev->ctrl.queue_count > 0) {
2700 nvme_disable_io_queues(dev);
2701 nvme_disable_admin_queue(dev, shutdown);
2703 nvme_suspend_io_queues(dev);
2704 nvme_suspend_queue(&dev->queues[0]);
2705 nvme_pci_disable(dev);
2706 nvme_reap_pending_cqes(dev);
2708 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2709 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2710 blk_mq_tagset_wait_completed_request(&dev->tagset);
2711 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2714 * The driver will not be starting up queues again if shutting down so
2715 * must flush all entered requests to their failed completion to avoid
2716 * deadlocking blk-mq hot-cpu notifier.
2719 nvme_start_queues(&dev->ctrl);
2720 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2721 nvme_start_admin_queue(&dev->ctrl);
2723 mutex_unlock(&dev->shutdown_lock);
2726 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2728 if (!nvme_wait_reset(&dev->ctrl))
2730 nvme_dev_disable(dev, shutdown);
2734 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2736 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2737 NVME_CTRL_PAGE_SIZE,
2738 NVME_CTRL_PAGE_SIZE, 0);
2739 if (!dev->prp_page_pool)
2742 /* Optimisation for I/Os between 4k and 128k */
2743 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2745 if (!dev->prp_small_pool) {
2746 dma_pool_destroy(dev->prp_page_pool);
2752 static void nvme_release_prp_pools(struct nvme_dev *dev)
2754 dma_pool_destroy(dev->prp_page_pool);
2755 dma_pool_destroy(dev->prp_small_pool);
2758 static void nvme_free_tagset(struct nvme_dev *dev)
2760 if (dev->tagset.tags)
2761 blk_mq_free_tag_set(&dev->tagset);
2762 dev->ctrl.tagset = NULL;
2765 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2767 struct nvme_dev *dev = to_nvme_dev(ctrl);
2769 nvme_dbbuf_dma_free(dev);
2770 nvme_free_tagset(dev);
2771 if (dev->ctrl.admin_q)
2772 blk_put_queue(dev->ctrl.admin_q);
2773 free_opal_dev(dev->ctrl.opal_dev);
2774 mempool_destroy(dev->iod_mempool);
2775 put_device(dev->dev);
2780 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2783 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2784 * may be holding this pci_dev's device lock.
2786 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2787 nvme_get_ctrl(&dev->ctrl);
2788 nvme_dev_disable(dev, false);
2789 nvme_kill_queues(&dev->ctrl);
2790 if (!queue_work(nvme_wq, &dev->remove_work))
2791 nvme_put_ctrl(&dev->ctrl);
2794 static void nvme_reset_work(struct work_struct *work)
2796 struct nvme_dev *dev =
2797 container_of(work, struct nvme_dev, ctrl.reset_work);
2798 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2801 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2802 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2809 * If we're called to reset a live controller first shut it down before
2812 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2813 nvme_dev_disable(dev, false);
2814 nvme_sync_queues(&dev->ctrl);
2816 mutex_lock(&dev->shutdown_lock);
2817 result = nvme_pci_enable(dev);
2821 result = nvme_pci_configure_admin_queue(dev);
2825 result = nvme_alloc_admin_tags(dev);
2830 * Limit the max command size to prevent iod->sg allocations going
2831 * over a single page.
2833 dev->ctrl.max_hw_sectors = min_t(u32,
2834 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2835 dev->ctrl.max_segments = NVME_MAX_SEGS;
2838 * Don't limit the IOMMU merged segment size.
2840 dma_set_max_seg_size(dev->dev, 0xffffffff);
2841 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2843 mutex_unlock(&dev->shutdown_lock);
2846 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2847 * initializing procedure here.
2849 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2850 dev_warn(dev->ctrl.device,
2851 "failed to mark controller CONNECTING\n");
2857 * We do not support an SGL for metadata (yet), so we are limited to a
2858 * single integrity segment for the separate metadata pointer.
2860 dev->ctrl.max_integrity_segments = 1;
2862 result = nvme_init_ctrl_finish(&dev->ctrl);
2866 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2867 if (!dev->ctrl.opal_dev)
2868 dev->ctrl.opal_dev =
2869 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2870 else if (was_suspend)
2871 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2873 free_opal_dev(dev->ctrl.opal_dev);
2874 dev->ctrl.opal_dev = NULL;
2877 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2878 result = nvme_dbbuf_dma_alloc(dev);
2881 "unable to allocate dma for dbbuf\n");
2884 if (dev->ctrl.hmpre) {
2885 result = nvme_setup_host_mem(dev);
2890 result = nvme_setup_io_queues(dev);
2895 * Keep the controller around but remove all namespaces if we don't have
2896 * any working I/O queue.
2898 if (dev->online_queues < 2) {
2899 dev_warn(dev->ctrl.device, "IO queues not created\n");
2900 nvme_kill_queues(&dev->ctrl);
2901 nvme_remove_namespaces(&dev->ctrl);
2902 nvme_free_tagset(dev);
2904 nvme_start_queues(&dev->ctrl);
2905 nvme_wait_freeze(&dev->ctrl);
2907 nvme_unfreeze(&dev->ctrl);
2911 * If only admin queue live, keep it to do further investigation or
2914 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2915 dev_warn(dev->ctrl.device,
2916 "failed to mark controller live state\n");
2921 if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2922 &nvme_pci_attr_group))
2923 dev->attrs_added = true;
2925 nvme_start_ctrl(&dev->ctrl);
2929 mutex_unlock(&dev->shutdown_lock);
2932 dev_warn(dev->ctrl.device,
2933 "Removing after probe failure status: %d\n", result);
2934 nvme_remove_dead_ctrl(dev);
2937 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2939 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2940 struct pci_dev *pdev = to_pci_dev(dev->dev);
2942 if (pci_get_drvdata(pdev))
2943 device_release_driver(&pdev->dev);
2944 nvme_put_ctrl(&dev->ctrl);
2947 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2949 *val = readl(to_nvme_dev(ctrl)->bar + off);
2953 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2955 writel(val, to_nvme_dev(ctrl)->bar + off);
2959 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2961 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2965 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2967 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2969 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2972 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2974 .module = THIS_MODULE,
2975 .flags = NVME_F_METADATA_SUPPORTED |
2977 .reg_read32 = nvme_pci_reg_read32,
2978 .reg_write32 = nvme_pci_reg_write32,
2979 .reg_read64 = nvme_pci_reg_read64,
2980 .free_ctrl = nvme_pci_free_ctrl,
2981 .submit_async_event = nvme_pci_submit_async_event,
2982 .get_address = nvme_pci_get_address,
2985 static int nvme_dev_map(struct nvme_dev *dev)
2987 struct pci_dev *pdev = to_pci_dev(dev->dev);
2989 if (pci_request_mem_regions(pdev, "nvme"))
2992 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2997 pci_release_mem_regions(pdev);
3001 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3003 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3005 * Several Samsung devices seem to drop off the PCIe bus
3006 * randomly when APST is on and uses the deepest sleep state.
3007 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3008 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3009 * 950 PRO 256GB", but it seems to be restricted to two Dell
3012 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3013 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3014 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3015 return NVME_QUIRK_NO_DEEPEST_PS;
3016 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3018 * Samsung SSD 960 EVO drops off the PCIe bus after system
3019 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3020 * within few minutes after bootup on a Coffee Lake board -
3023 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3024 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3025 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3026 return NVME_QUIRK_NO_APST;
3027 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3028 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3029 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3031 * Forcing to use host managed nvme power settings for
3032 * lowest idle power with quick resume latency on
3033 * Samsung and Toshiba SSDs based on suspend behavior
3034 * on Coffee Lake board for LENOVO C640
3036 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3037 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3038 return NVME_QUIRK_SIMPLE_SUSPEND;
3044 static void nvme_async_probe(void *data, async_cookie_t cookie)
3046 struct nvme_dev *dev = data;
3048 flush_work(&dev->ctrl.reset_work);
3049 flush_work(&dev->ctrl.scan_work);
3050 nvme_put_ctrl(&dev->ctrl);
3053 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3055 int node, result = -ENOMEM;
3056 struct nvme_dev *dev;
3057 unsigned long quirks = id->driver_data;
3060 node = dev_to_node(&pdev->dev);
3061 if (node == NUMA_NO_NODE)
3062 set_dev_node(&pdev->dev, first_memory_node);
3064 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3068 dev->nr_write_queues = write_queues;
3069 dev->nr_poll_queues = poll_queues;
3070 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3071 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3072 sizeof(struct nvme_queue), GFP_KERNEL, node);
3076 dev->dev = get_device(&pdev->dev);
3077 pci_set_drvdata(pdev, dev);
3079 result = nvme_dev_map(dev);
3083 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3084 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3085 mutex_init(&dev->shutdown_lock);
3087 result = nvme_setup_prp_pools(dev);
3091 quirks |= check_vendor_combination_bug(pdev);
3093 if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3095 * Some systems use a bios work around to ask for D3 on
3096 * platforms that support kernel managed suspend.
3098 dev_info(&pdev->dev,
3099 "platform quirk: setting simple suspend\n");
3100 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3104 * Double check that our mempool alloc size will cover the biggest
3105 * command we support.
3107 alloc_size = nvme_pci_iod_alloc_size();
3108 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3110 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3112 (void *) alloc_size,
3114 if (!dev->iod_mempool) {
3119 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3122 goto release_mempool;
3124 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3126 nvme_reset_ctrl(&dev->ctrl);
3127 async_schedule(nvme_async_probe, dev);
3132 mempool_destroy(dev->iod_mempool);
3134 nvme_release_prp_pools(dev);
3136 nvme_dev_unmap(dev);
3138 put_device(dev->dev);
3145 static void nvme_reset_prepare(struct pci_dev *pdev)
3147 struct nvme_dev *dev = pci_get_drvdata(pdev);
3150 * We don't need to check the return value from waiting for the reset
3151 * state as pci_dev device lock is held, making it impossible to race
3154 nvme_disable_prepare_reset(dev, false);
3155 nvme_sync_queues(&dev->ctrl);
3158 static void nvme_reset_done(struct pci_dev *pdev)
3160 struct nvme_dev *dev = pci_get_drvdata(pdev);
3162 if (!nvme_try_sched_reset(&dev->ctrl))
3163 flush_work(&dev->ctrl.reset_work);
3166 static void nvme_shutdown(struct pci_dev *pdev)
3168 struct nvme_dev *dev = pci_get_drvdata(pdev);
3170 nvme_disable_prepare_reset(dev, true);
3173 static void nvme_remove_attrs(struct nvme_dev *dev)
3175 if (dev->attrs_added)
3176 sysfs_remove_group(&dev->ctrl.device->kobj,
3177 &nvme_pci_attr_group);
3181 * The driver's remove may be called on a device in a partially initialized
3182 * state. This function must not have any dependencies on the device state in
3185 static void nvme_remove(struct pci_dev *pdev)
3187 struct nvme_dev *dev = pci_get_drvdata(pdev);
3189 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3190 pci_set_drvdata(pdev, NULL);
3192 if (!pci_device_is_present(pdev)) {
3193 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3194 nvme_dev_disable(dev, true);
3197 flush_work(&dev->ctrl.reset_work);
3198 nvme_stop_ctrl(&dev->ctrl);
3199 nvme_remove_namespaces(&dev->ctrl);
3200 nvme_dev_disable(dev, true);
3201 nvme_remove_attrs(dev);
3202 nvme_free_host_mem(dev);
3203 nvme_dev_remove_admin(dev);
3204 nvme_free_queues(dev, 0);
3205 nvme_release_prp_pools(dev);
3206 nvme_dev_unmap(dev);
3207 nvme_uninit_ctrl(&dev->ctrl);
3210 #ifdef CONFIG_PM_SLEEP
3211 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3213 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3216 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3218 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3221 static int nvme_resume(struct device *dev)
3223 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3224 struct nvme_ctrl *ctrl = &ndev->ctrl;
3226 if (ndev->last_ps == U32_MAX ||
3227 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3229 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3234 return nvme_try_sched_reset(ctrl);
3237 static int nvme_suspend(struct device *dev)
3239 struct pci_dev *pdev = to_pci_dev(dev);
3240 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3241 struct nvme_ctrl *ctrl = &ndev->ctrl;
3244 ndev->last_ps = U32_MAX;
3247 * The platform does not remove power for a kernel managed suspend so
3248 * use host managed nvme power settings for lowest idle power if
3249 * possible. This should have quicker resume latency than a full device
3250 * shutdown. But if the firmware is involved after the suspend or the
3251 * device does not support any non-default power states, shut down the
3254 * If ASPM is not enabled for the device, shut down the device and allow
3255 * the PCI bus layer to put it into D3 in order to take the PCIe link
3256 * down, so as to allow the platform to achieve its minimum low-power
3257 * state (which may not be possible if the link is up).
3259 if (pm_suspend_via_firmware() || !ctrl->npss ||
3260 !pcie_aspm_enabled(pdev) ||
3261 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3262 return nvme_disable_prepare_reset(ndev, true);
3264 nvme_start_freeze(ctrl);
3265 nvme_wait_freeze(ctrl);
3266 nvme_sync_queues(ctrl);
3268 if (ctrl->state != NVME_CTRL_LIVE)
3272 * Host memory access may not be successful in a system suspend state,
3273 * but the specification allows the controller to access memory in a
3274 * non-operational power state.
3277 ret = nvme_set_host_mem(ndev, 0);
3282 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3287 * A saved state prevents pci pm from generically controlling the
3288 * device's power. If we're using protocol specific settings, we don't
3289 * want pci interfering.
3291 pci_save_state(pdev);
3293 ret = nvme_set_power_state(ctrl, ctrl->npss);
3298 /* discard the saved state */
3299 pci_load_saved_state(pdev, NULL);
3302 * Clearing npss forces a controller reset on resume. The
3303 * correct value will be rediscovered then.
3305 ret = nvme_disable_prepare_reset(ndev, true);
3309 nvme_unfreeze(ctrl);
3313 static int nvme_simple_suspend(struct device *dev)
3315 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3317 return nvme_disable_prepare_reset(ndev, true);
3320 static int nvme_simple_resume(struct device *dev)
3322 struct pci_dev *pdev = to_pci_dev(dev);
3323 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3325 return nvme_try_sched_reset(&ndev->ctrl);
3328 static const struct dev_pm_ops nvme_dev_pm_ops = {
3329 .suspend = nvme_suspend,
3330 .resume = nvme_resume,
3331 .freeze = nvme_simple_suspend,
3332 .thaw = nvme_simple_resume,
3333 .poweroff = nvme_simple_suspend,
3334 .restore = nvme_simple_resume,
3336 #endif /* CONFIG_PM_SLEEP */
3338 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3339 pci_channel_state_t state)
3341 struct nvme_dev *dev = pci_get_drvdata(pdev);
3344 * A frozen channel requires a reset. When detected, this method will
3345 * shutdown the controller to quiesce. The controller will be restarted
3346 * after the slot reset through driver's slot_reset callback.
3349 case pci_channel_io_normal:
3350 return PCI_ERS_RESULT_CAN_RECOVER;
3351 case pci_channel_io_frozen:
3352 dev_warn(dev->ctrl.device,
3353 "frozen state error detected, reset controller\n");
3354 nvme_dev_disable(dev, false);
3355 return PCI_ERS_RESULT_NEED_RESET;
3356 case pci_channel_io_perm_failure:
3357 dev_warn(dev->ctrl.device,
3358 "failure state error detected, request disconnect\n");
3359 return PCI_ERS_RESULT_DISCONNECT;
3361 return PCI_ERS_RESULT_NEED_RESET;
3364 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3366 struct nvme_dev *dev = pci_get_drvdata(pdev);
3368 dev_info(dev->ctrl.device, "restart after slot reset\n");
3369 pci_restore_state(pdev);
3370 nvme_reset_ctrl(&dev->ctrl);
3371 return PCI_ERS_RESULT_RECOVERED;
3374 static void nvme_error_resume(struct pci_dev *pdev)
3376 struct nvme_dev *dev = pci_get_drvdata(pdev);
3378 flush_work(&dev->ctrl.reset_work);
3381 static const struct pci_error_handlers nvme_err_handler = {
3382 .error_detected = nvme_error_detected,
3383 .slot_reset = nvme_slot_reset,
3384 .resume = nvme_error_resume,
3385 .reset_prepare = nvme_reset_prepare,
3386 .reset_done = nvme_reset_done,
3389 static const struct pci_device_id nvme_id_table[] = {
3390 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3391 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3392 NVME_QUIRK_DEALLOCATE_ZEROES, },
3393 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3394 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3395 NVME_QUIRK_DEALLOCATE_ZEROES, },
3396 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3397 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3398 NVME_QUIRK_DEALLOCATE_ZEROES |
3399 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3400 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3401 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3402 NVME_QUIRK_DEALLOCATE_ZEROES, },
3403 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3404 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3405 NVME_QUIRK_MEDIUM_PRIO_SQ |
3406 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3407 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3408 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3409 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3410 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3411 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3412 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3413 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3414 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3415 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3416 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3417 NVME_QUIRK_NO_NS_DESC_LIST, },
3418 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3419 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3420 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3421 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3422 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3423 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3424 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3425 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3426 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3427 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3428 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3429 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3430 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3431 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3432 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3433 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3434 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3435 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3436 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3437 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3438 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3439 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3440 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3441 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3442 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3443 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3444 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3445 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3446 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3447 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3448 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3449 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3450 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3451 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3452 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3453 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3454 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3455 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3456 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3457 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3458 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3459 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3460 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3461 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3462 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3463 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3464 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3465 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3466 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3467 NVME_QUIRK_128_BYTES_SQES |
3468 NVME_QUIRK_SHARED_TAGS |
3469 NVME_QUIRK_SKIP_CID_GEN },
3470 { PCI_DEVICE(0x144d, 0xa808), /* Samsung X5 */
3471 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY|
3472 NVME_QUIRK_NO_DEEPEST_PS |
3473 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3474 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3477 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3479 static struct pci_driver nvme_driver = {
3481 .id_table = nvme_id_table,
3482 .probe = nvme_probe,
3483 .remove = nvme_remove,
3484 .shutdown = nvme_shutdown,
3485 #ifdef CONFIG_PM_SLEEP
3487 .pm = &nvme_dev_pm_ops,
3490 .sriov_configure = pci_sriov_configure_simple,
3491 .err_handler = &nvme_err_handler,
3494 static int __init nvme_init(void)
3496 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3497 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3498 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3499 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3501 return pci_register_driver(&nvme_driver);
3504 static void __exit nvme_exit(void)
3506 pci_unregister_driver(&nvme_driver);
3507 flush_workqueue(nvme_wq);
3511 MODULE_LICENSE("GPL");
3512 MODULE_VERSION("1.0");
3513 module_init(nvme_init);
3514 module_exit(nvme_exit);