1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
18 #include <linux/of_pci.h>
19 #include <linux/pci.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/log2.h>
26 #include <linux/logic_pio.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
36 #include <linux/aer.h>
39 DEFINE_MUTEX(pci_slot_mutex);
41 const char *pci_power_names[] = {
42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
44 EXPORT_SYMBOL_GPL(pci_power_names);
46 int isa_dma_bridge_buggy;
47 EXPORT_SYMBOL(isa_dma_bridge_buggy);
50 EXPORT_SYMBOL(pci_pci_problems);
52 unsigned int pci_pm_d3_delay;
54 static void pci_pme_list_scan(struct work_struct *work);
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
60 struct pci_pme_device {
61 struct list_head list;
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
69 unsigned int delay = dev->d3_delay;
71 if (delay < pci_pm_d3_delay)
72 delay = pci_pm_d3_delay;
78 #ifdef CONFIG_PCI_DOMAINS
79 int pci_domains_supported = 1;
82 #define DEFAULT_CARDBUS_IO_SIZE (256)
83 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
88 #define DEFAULT_HOTPLUG_IO_SIZE (256)
89 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
91 /* hpiosize=nn can override this */
92 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96 * pci=hpmemsize=nnM overrides both
98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
101 #define DEFAULT_HOTPLUG_BUS_SIZE 1
102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
107 * The default CLS is used if arch didn't set CLS explicitly and not
108 * all pci devices agree on the same value. Arch can override either
109 * the dfl or actual value as it sees fit. Don't forget this is
110 * measured in 32-bit words, not bytes.
112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
113 u8 pci_cache_line_size;
116 * If we set up a device for bus mastering, we need to check the latency
117 * timer as certain BIOSes forget to set it properly.
119 unsigned int pcibios_max_latency = 255;
121 /* If set, the PCIe ARI capability will not be used. */
122 static bool pcie_ari_disabled;
124 /* If set, the PCIe ATS capability will not be used. */
125 static bool pcie_ats_disabled;
127 /* If set, the PCI config space of each device is printed during boot. */
130 bool pci_ats_disabled(void)
132 return pcie_ats_disabled;
134 EXPORT_SYMBOL_GPL(pci_ats_disabled);
136 /* Disable bridge_d3 for all PCIe ports */
137 static bool pci_bridge_d3_disable;
138 /* Force bridge_d3 for all PCIe ports */
139 static bool pci_bridge_d3_force;
141 static int __init pcie_port_pm_setup(char *str)
143 if (!strcmp(str, "off"))
144 pci_bridge_d3_disable = true;
145 else if (!strcmp(str, "force"))
146 pci_bridge_d3_force = true;
149 __setup("pcie_port_pm=", pcie_port_pm_setup);
151 /* Time to wait after a reset for device to become responsive */
152 #define PCIE_RESET_READY_POLL_MS 60000
155 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
156 * @bus: pointer to PCI bus structure to search
158 * Given a PCI bus, returns the highest PCI bus number present in the set
159 * including the given PCI bus and its list of child PCI buses.
161 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
164 unsigned char max, n;
166 max = bus->busn_res.end;
167 list_for_each_entry(tmp, &bus->children, node) {
168 n = pci_bus_max_busnr(tmp);
174 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
177 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
178 * @pdev: the PCI device
180 * Returns error bits set in PCI_STATUS and clears them.
182 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
187 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
188 if (ret != PCIBIOS_SUCCESSFUL)
191 status &= PCI_STATUS_ERROR_BITS;
193 pci_write_config_word(pdev, PCI_STATUS, status);
197 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
199 #ifdef CONFIG_HAS_IOMEM
200 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
202 struct resource *res = &pdev->resource[bar];
205 * Make sure the BAR is actually a memory resource, not an IO resource
207 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
208 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
211 return ioremap(res->start, resource_size(res));
213 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
215 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
218 * Make sure the BAR is actually a memory resource, not an IO resource
220 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
224 return ioremap_wc(pci_resource_start(pdev, bar),
225 pci_resource_len(pdev, bar));
227 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
231 * pci_dev_str_match_path - test if a path string matches a device
232 * @dev: the PCI device to test
233 * @path: string to match the device against
234 * @endptr: pointer to the string after the match
236 * Test if a string (typically from a kernel parameter) formatted as a
237 * path of device/function addresses matches a PCI device. The string must
240 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
242 * A path for a device can be obtained using 'lspci -t'. Using a path
243 * is more robust against bus renumbering than using only a single bus,
244 * device and function address.
246 * Returns 1 if the string matches the device, 0 if it does not and
247 * a negative error code if it fails to parse the string.
249 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
253 int seg, bus, slot, func;
257 *endptr = strchrnul(path, ';');
259 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
264 p = strrchr(wpath, '/');
267 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
273 if (dev->devfn != PCI_DEVFN(slot, func)) {
279 * Note: we don't need to get a reference to the upstream
280 * bridge because we hold a reference to the top level
281 * device which should hold a reference to the bridge,
284 dev = pci_upstream_bridge(dev);
293 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
297 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
304 ret = (seg == pci_domain_nr(dev->bus) &&
305 bus == dev->bus->number &&
306 dev->devfn == PCI_DEVFN(slot, func));
314 * pci_dev_str_match - test if a string matches a device
315 * @dev: the PCI device to test
316 * @p: string to match the device against
317 * @endptr: pointer to the string after the match
319 * Test if a string (typically from a kernel parameter) matches a specified
320 * PCI device. The string may be of one of the following formats:
322 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
323 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
325 * The first format specifies a PCI bus/device/function address which
326 * may change if new hardware is inserted, if motherboard firmware changes,
327 * or due to changes caused in kernel parameters. If the domain is
328 * left unspecified, it is taken to be 0. In order to be robust against
329 * bus renumbering issues, a path of PCI device/function numbers may be used
330 * to address the specific device. The path for a device can be determined
331 * through the use of 'lspci -t'.
333 * The second format matches devices using IDs in the configuration
334 * space which may match multiple devices in the system. A value of 0
335 * for any field will match all devices. (Note: this differs from
336 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
337 * legacy reasons and convenience so users don't have to specify
338 * FFFFFFFFs on the command line.)
340 * Returns 1 if the string matches the device, 0 if it does not and
341 * a negative error code if the string cannot be parsed.
343 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
348 unsigned short vendor, device, subsystem_vendor, subsystem_device;
350 if (strncmp(p, "pci:", 4) == 0) {
351 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
353 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
354 &subsystem_vendor, &subsystem_device, &count);
356 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
360 subsystem_vendor = 0;
361 subsystem_device = 0;
366 if ((!vendor || vendor == dev->vendor) &&
367 (!device || device == dev->device) &&
368 (!subsystem_vendor ||
369 subsystem_vendor == dev->subsystem_vendor) &&
370 (!subsystem_device ||
371 subsystem_device == dev->subsystem_device))
375 * PCI Bus, Device, Function IDs are specified
376 * (optionally, may include a path of devfns following it)
378 ret = pci_dev_str_match_path(dev, p, &p);
393 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
394 u8 pos, int cap, int *ttl)
399 pci_bus_read_config_byte(bus, devfn, pos, &pos);
405 pci_bus_read_config_word(bus, devfn, pos, &ent);
417 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
420 int ttl = PCI_FIND_CAP_TTL;
422 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
425 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
427 return __pci_find_next_cap(dev->bus, dev->devfn,
428 pos + PCI_CAP_LIST_NEXT, cap);
430 EXPORT_SYMBOL_GPL(pci_find_next_capability);
432 static int __pci_bus_find_cap_start(struct pci_bus *bus,
433 unsigned int devfn, u8 hdr_type)
437 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
438 if (!(status & PCI_STATUS_CAP_LIST))
442 case PCI_HEADER_TYPE_NORMAL:
443 case PCI_HEADER_TYPE_BRIDGE:
444 return PCI_CAPABILITY_LIST;
445 case PCI_HEADER_TYPE_CARDBUS:
446 return PCI_CB_CAPABILITY_LIST;
453 * pci_find_capability - query for devices' capabilities
454 * @dev: PCI device to query
455 * @cap: capability code
457 * Tell if a device supports a given PCI capability.
458 * Returns the address of the requested capability structure within the
459 * device's PCI configuration space or 0 in case the device does not
460 * support it. Possible values for @cap include:
462 * %PCI_CAP_ID_PM Power Management
463 * %PCI_CAP_ID_AGP Accelerated Graphics Port
464 * %PCI_CAP_ID_VPD Vital Product Data
465 * %PCI_CAP_ID_SLOTID Slot Identification
466 * %PCI_CAP_ID_MSI Message Signalled Interrupts
467 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
468 * %PCI_CAP_ID_PCIX PCI-X
469 * %PCI_CAP_ID_EXP PCI Express
471 int pci_find_capability(struct pci_dev *dev, int cap)
475 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
477 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
481 EXPORT_SYMBOL(pci_find_capability);
484 * pci_bus_find_capability - query for devices' capabilities
485 * @bus: the PCI bus to query
486 * @devfn: PCI device to query
487 * @cap: capability code
489 * Like pci_find_capability() but works for PCI devices that do not have a
490 * pci_dev structure set up yet.
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
496 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
501 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
503 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
505 pos = __pci_find_next_cap(bus, devfn, pos, cap);
509 EXPORT_SYMBOL(pci_bus_find_capability);
512 * pci_find_next_ext_capability - Find an extended capability
513 * @dev: PCI device to query
514 * @start: address at which to start looking (0 to start at beginning of list)
515 * @cap: capability code
517 * Returns the address of the next matching extended capability structure
518 * within the device's PCI configuration space or 0 if the device does
519 * not support it. Some capabilities can occur several times, e.g., the
520 * vendor-specific capability, and this provides a way to find them all.
522 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
526 int pos = PCI_CFG_SPACE_SIZE;
528 /* minimum 8 bytes per capability */
529 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
531 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
537 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
541 * If we have no capabilities, this is indicated by cap ID,
542 * cap version and next pointer all being 0.
548 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
551 pos = PCI_EXT_CAP_NEXT(header);
552 if (pos < PCI_CFG_SPACE_SIZE)
555 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
561 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
564 * pci_find_ext_capability - Find an extended capability
565 * @dev: PCI device to query
566 * @cap: capability code
568 * Returns the address of the requested extended capability structure
569 * within the device's PCI configuration space or 0 if the device does
570 * not support it. Possible values for @cap include:
572 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
573 * %PCI_EXT_CAP_ID_VC Virtual Channel
574 * %PCI_EXT_CAP_ID_DSN Device Serial Number
575 * %PCI_EXT_CAP_ID_PWR Power Budgeting
577 int pci_find_ext_capability(struct pci_dev *dev, int cap)
579 return pci_find_next_ext_capability(dev, 0, cap);
581 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
584 * pci_get_dsn - Read and return the 8-byte Device Serial Number
585 * @dev: PCI device to query
587 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
590 * Returns the DSN, or zero if the capability does not exist.
592 u64 pci_get_dsn(struct pci_dev *dev)
598 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
603 * The Device Serial Number is two dwords offset 4 bytes from the
604 * capability position. The specification says that the first dword is
605 * the lower half, and the second dword is the upper half.
608 pci_read_config_dword(dev, pos, &dword);
610 pci_read_config_dword(dev, pos + 4, &dword);
611 dsn |= ((u64)dword) << 32;
615 EXPORT_SYMBOL_GPL(pci_get_dsn);
617 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
619 int rc, ttl = PCI_FIND_CAP_TTL;
622 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
623 mask = HT_3BIT_CAP_MASK;
625 mask = HT_5BIT_CAP_MASK;
627 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
628 PCI_CAP_ID_HT, &ttl);
630 rc = pci_read_config_byte(dev, pos + 3, &cap);
631 if (rc != PCIBIOS_SUCCESSFUL)
634 if ((cap & mask) == ht_cap)
637 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
638 pos + PCI_CAP_LIST_NEXT,
639 PCI_CAP_ID_HT, &ttl);
645 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
646 * @dev: PCI device to query
647 * @pos: Position from which to continue searching
648 * @ht_cap: Hypertransport capability code
650 * To be used in conjunction with pci_find_ht_capability() to search for
651 * all capabilities matching @ht_cap. @pos should always be a value returned
652 * from pci_find_ht_capability().
654 * NB. To be 100% safe against broken PCI devices, the caller should take
655 * steps to avoid an infinite loop.
657 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
659 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
661 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
664 * pci_find_ht_capability - query a device's Hypertransport capabilities
665 * @dev: PCI device to query
666 * @ht_cap: Hypertransport capability code
668 * Tell if a device supports a given Hypertransport capability.
669 * Returns an address within the device's PCI configuration space
670 * or 0 in case the device does not support the request capability.
671 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
672 * which has a Hypertransport capability matching @ht_cap.
674 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
678 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
680 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
684 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
687 * pci_find_parent_resource - return resource region of parent bus of given
689 * @dev: PCI device structure contains resources to be searched
690 * @res: child resource record for which parent is sought
692 * For given resource region of given device, return the resource region of
693 * parent bus the given region is contained in.
695 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
696 struct resource *res)
698 const struct pci_bus *bus = dev->bus;
702 pci_bus_for_each_resource(bus, r, i) {
705 if (resource_contains(r, res)) {
708 * If the window is prefetchable but the BAR is
709 * not, the allocator made a mistake.
711 if (r->flags & IORESOURCE_PREFETCH &&
712 !(res->flags & IORESOURCE_PREFETCH))
716 * If we're below a transparent bridge, there may
717 * be both a positively-decoded aperture and a
718 * subtractively-decoded region that contain the BAR.
719 * We want the positively-decoded one, so this depends
720 * on pci_bus_for_each_resource() giving us those
728 EXPORT_SYMBOL(pci_find_parent_resource);
731 * pci_find_resource - Return matching PCI device resource
732 * @dev: PCI device to query
733 * @res: Resource to look for
735 * Goes over standard PCI resources (BARs) and checks if the given resource
736 * is partially or fully contained in any of them. In that case the
737 * matching resource is returned, %NULL otherwise.
739 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
743 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
744 struct resource *r = &dev->resource[i];
746 if (r->start && resource_contains(r, res))
752 EXPORT_SYMBOL(pci_find_resource);
755 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
756 * @dev: the PCI device to operate on
757 * @pos: config space offset of status word
758 * @mask: mask of bit(s) to care about in status word
760 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
762 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
766 /* Wait for Transaction Pending bit clean */
767 for (i = 0; i < 4; i++) {
770 msleep((1 << (i - 1)) * 100);
772 pci_read_config_word(dev, pos, &status);
773 if (!(status & mask))
781 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
782 * @dev: PCI device to have its BARs restored
784 * Restore the BAR values for a given device, so as to make it
785 * accessible by its driver.
787 static void pci_restore_bars(struct pci_dev *dev)
791 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
792 pci_update_resource(dev, i);
795 static const struct pci_platform_pm_ops *pci_platform_pm;
797 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
799 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
800 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
802 pci_platform_pm = ops;
806 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
808 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
811 static inline int platform_pci_set_power_state(struct pci_dev *dev,
814 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
817 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
819 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
822 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
824 if (pci_platform_pm && pci_platform_pm->refresh_state)
825 pci_platform_pm->refresh_state(dev);
828 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
830 return pci_platform_pm ?
831 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
834 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
836 return pci_platform_pm ?
837 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
840 static inline bool platform_pci_need_resume(struct pci_dev *dev)
842 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
845 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
847 if (pci_platform_pm && pci_platform_pm->bridge_d3)
848 return pci_platform_pm->bridge_d3(dev);
853 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
855 * @dev: PCI device to handle.
856 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
859 * -EINVAL if the requested state is invalid.
860 * -EIO if device does not support PCI PM or its PM capabilities register has a
861 * wrong version, or device doesn't support the requested state.
862 * 0 if device already is in the requested state.
863 * 0 if device's power state has been successfully changed.
865 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
868 bool need_restore = false;
870 /* Check if we're already there */
871 if (dev->current_state == state)
877 if (state < PCI_D0 || state > PCI_D3hot)
881 * Validate transition: We can enter D0 from any state, but if
882 * we're already in a low-power state, we can only go deeper. E.g.,
883 * we can go from D1 to D3, but we can't go directly from D3 to D1;
884 * we'd have to go from D3 to D0, then to D1.
886 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
887 && dev->current_state > state) {
888 pci_err(dev, "invalid power transition (from %s to %s)\n",
889 pci_power_name(dev->current_state),
890 pci_power_name(state));
894 /* Check if this device supports the desired state */
895 if ((state == PCI_D1 && !dev->d1_support)
896 || (state == PCI_D2 && !dev->d2_support))
899 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
900 if (pmcsr == (u16) ~0) {
901 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
902 pci_power_name(dev->current_state),
903 pci_power_name(state));
908 * If we're (effectively) in D3, force entire word to 0.
909 * This doesn't affect PME_Status, disables PME_En, and
910 * sets PowerState to 0.
912 switch (dev->current_state) {
916 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
921 case PCI_UNKNOWN: /* Boot-up */
922 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
923 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
925 /* Fall-through - force to D0 */
931 /* Enter specified state */
932 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
935 * Mandatory power management transition delays; see PCI PM 1.1
938 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
939 pci_dev_d3_sleep(dev);
940 else if (state == PCI_D2 || dev->current_state == PCI_D2)
941 msleep(PCI_PM_D2_DELAY);
943 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
944 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
945 if (dev->current_state != state)
946 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
947 pci_power_name(dev->current_state),
948 pci_power_name(state));
951 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
952 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
953 * from D3hot to D0 _may_ perform an internal reset, thereby
954 * going to "D0 Uninitialized" rather than "D0 Initialized".
955 * For example, at least some versions of the 3c905B and the
956 * 3c556B exhibit this behaviour.
958 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
959 * devices in a D3hot state at boot. Consequently, we need to
960 * restore at least the BARs so that the device will be
961 * accessible to its driver.
964 pci_restore_bars(dev);
967 pcie_aspm_pm_state_change(dev->bus->self);
973 * pci_update_current_state - Read power state of given device and cache it
974 * @dev: PCI device to handle.
975 * @state: State to cache in case the device doesn't have the PM capability
977 * The power state is read from the PMCSR register, which however is
978 * inaccessible in D3cold. The platform firmware is therefore queried first
979 * to detect accessibility of the register. In case the platform firmware
980 * reports an incorrect state or the device isn't power manageable by the
981 * platform at all, we try to detect D3cold by testing accessibility of the
982 * vendor ID in config space.
984 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
986 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
987 !pci_device_is_present(dev)) {
988 dev->current_state = PCI_D3cold;
989 } else if (dev->pm_cap) {
992 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
993 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
995 dev->current_state = state;
1000 * pci_refresh_power_state - Refresh the given device's power state data
1001 * @dev: Target PCI device.
1003 * Ask the platform to refresh the devices power state information and invoke
1004 * pci_update_current_state() to update its current PCI power state.
1006 void pci_refresh_power_state(struct pci_dev *dev)
1008 if (platform_pci_power_manageable(dev))
1009 platform_pci_refresh_power_state(dev);
1011 pci_update_current_state(dev, dev->current_state);
1015 * pci_platform_power_transition - Use platform to change device power state
1016 * @dev: PCI device to handle.
1017 * @state: State to put the device into.
1019 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1023 if (platform_pci_power_manageable(dev)) {
1024 error = platform_pci_set_power_state(dev, state);
1026 pci_update_current_state(dev, state);
1030 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1031 dev->current_state = PCI_D0;
1035 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1038 * pci_wakeup - Wake up a PCI device
1039 * @pci_dev: Device to handle.
1040 * @ign: ignored parameter
1042 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1044 pci_wakeup_event(pci_dev);
1045 pm_request_resume(&pci_dev->dev);
1050 * pci_wakeup_bus - Walk given bus and wake up devices on it
1051 * @bus: Top bus of the subtree to walk.
1053 void pci_wakeup_bus(struct pci_bus *bus)
1056 pci_walk_bus(bus, pci_wakeup, NULL);
1059 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1065 * After reset, the device should not silently discard config
1066 * requests, but it may still indicate that it needs more time by
1067 * responding to them with CRS completions. The Root Port will
1068 * generally synthesize ~0 data to complete the read (except when
1069 * CRS SV is enabled and the read was for the Vendor ID; in that
1070 * case it synthesizes 0x0001 data).
1072 * Wait for the device to return a non-CRS completion. Read the
1073 * Command register instead of Vendor ID so we don't have to
1074 * contend with the CRS SV value.
1076 pci_read_config_dword(dev, PCI_COMMAND, &id);
1078 if (delay > timeout) {
1079 pci_warn(dev, "not ready %dms after %s; giving up\n",
1080 delay - 1, reset_type);
1085 pci_info(dev, "not ready %dms after %s; waiting\n",
1086 delay - 1, reset_type);
1090 pci_read_config_dword(dev, PCI_COMMAND, &id);
1094 pci_info(dev, "ready %dms after %s\n", delay - 1,
1101 * pci_power_up - Put the given device into D0
1102 * @dev: PCI device to power up
1104 int pci_power_up(struct pci_dev *dev)
1106 pci_platform_power_transition(dev, PCI_D0);
1109 * Mandatory power management transition delays are handled in
1110 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1111 * corresponding bridge.
1113 if (dev->runtime_d3cold) {
1115 * When powering on a bridge from D3cold, the whole hierarchy
1116 * may be powered on into D0uninitialized state, resume them to
1117 * give them a chance to suspend again
1119 pci_wakeup_bus(dev->subordinate);
1122 return pci_raw_set_power_state(dev, PCI_D0);
1126 * __pci_dev_set_current_state - Set current state of a PCI device
1127 * @dev: Device to handle
1128 * @data: pointer to state to be set
1130 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1132 pci_power_t state = *(pci_power_t *)data;
1134 dev->current_state = state;
1139 * pci_bus_set_current_state - Walk given bus and set current state of devices
1140 * @bus: Top bus of the subtree to walk.
1141 * @state: state to be set
1143 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1146 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1150 * pci_set_power_state - Set the power state of a PCI device
1151 * @dev: PCI device to handle.
1152 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1154 * Transition a device to a new power state, using the platform firmware and/or
1155 * the device's PCI PM registers.
1158 * -EINVAL if the requested state is invalid.
1159 * -EIO if device does not support PCI PM or its PM capabilities register has a
1160 * wrong version, or device doesn't support the requested state.
1161 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1162 * 0 if device already is in the requested state.
1163 * 0 if the transition is to D3 but D3 is not supported.
1164 * 0 if device's power state has been successfully changed.
1166 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1170 /* Bound the state we're entering */
1171 if (state > PCI_D3cold)
1173 else if (state < PCI_D0)
1175 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1178 * If the device or the parent bridge do not support PCI
1179 * PM, ignore the request if we're doing anything other
1180 * than putting it into D0 (which would only happen on
1185 /* Check if we're already there */
1186 if (dev->current_state == state)
1189 if (state == PCI_D0)
1190 return pci_power_up(dev);
1193 * This device is quirked not to be put into D3, so don't put it in
1196 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1200 * To put device in D3cold, we put device into D3hot in native
1201 * way, then put device into D3cold with platform ops
1203 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1206 if (pci_platform_power_transition(dev, state))
1209 /* Powering off a bridge may power off the whole hierarchy */
1210 if (state == PCI_D3cold)
1211 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1215 EXPORT_SYMBOL(pci_set_power_state);
1218 * pci_choose_state - Choose the power state of a PCI device
1219 * @dev: PCI device to be suspended
1220 * @state: target sleep state for the whole system. This is the value
1221 * that is passed to suspend() function.
1223 * Returns PCI power state suitable for given device and given system
1226 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1233 ret = platform_pci_choose_state(dev);
1234 if (ret != PCI_POWER_ERROR)
1237 switch (state.event) {
1240 case PM_EVENT_FREEZE:
1241 case PM_EVENT_PRETHAW:
1242 /* REVISIT both freeze and pre-thaw "should" use D0 */
1243 case PM_EVENT_SUSPEND:
1244 case PM_EVENT_HIBERNATE:
1247 pci_info(dev, "unrecognized suspend event %d\n",
1253 EXPORT_SYMBOL(pci_choose_state);
1255 #define PCI_EXP_SAVE_REGS 7
1257 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1258 u16 cap, bool extended)
1260 struct pci_cap_saved_state *tmp;
1262 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1263 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1269 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1271 return _pci_find_saved_cap(dev, cap, false);
1274 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1276 return _pci_find_saved_cap(dev, cap, true);
1279 static int pci_save_pcie_state(struct pci_dev *dev)
1282 struct pci_cap_saved_state *save_state;
1285 if (!pci_is_pcie(dev))
1288 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1290 pci_err(dev, "buffer not found in %s\n", __func__);
1294 cap = (u16 *)&save_state->cap.data[0];
1295 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1296 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1297 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1298 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1299 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1300 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1301 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1306 static void pci_restore_pcie_state(struct pci_dev *dev)
1309 struct pci_cap_saved_state *save_state;
1312 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1316 cap = (u16 *)&save_state->cap.data[0];
1317 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1318 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1319 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1320 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1321 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1322 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1323 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1326 static int pci_save_pcix_state(struct pci_dev *dev)
1329 struct pci_cap_saved_state *save_state;
1331 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1335 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1337 pci_err(dev, "buffer not found in %s\n", __func__);
1341 pci_read_config_word(dev, pos + PCI_X_CMD,
1342 (u16 *)save_state->cap.data);
1347 static void pci_restore_pcix_state(struct pci_dev *dev)
1350 struct pci_cap_saved_state *save_state;
1353 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1354 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1355 if (!save_state || !pos)
1357 cap = (u16 *)&save_state->cap.data[0];
1359 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1362 static void pci_save_ltr_state(struct pci_dev *dev)
1365 struct pci_cap_saved_state *save_state;
1368 if (!pci_is_pcie(dev))
1371 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1375 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1377 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1381 cap = (u16 *)&save_state->cap.data[0];
1382 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1383 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1386 static void pci_restore_ltr_state(struct pci_dev *dev)
1388 struct pci_cap_saved_state *save_state;
1392 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1393 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1394 if (!save_state || !ltr)
1397 cap = (u16 *)&save_state->cap.data[0];
1398 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1399 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1403 * pci_save_state - save the PCI configuration space of a device before
1405 * @dev: PCI device that we're dealing with
1407 int pci_save_state(struct pci_dev *dev)
1410 /* XXX: 100% dword access ok here? */
1411 for (i = 0; i < 16; i++) {
1412 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1413 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1414 i * 4, dev->saved_config_space[i]);
1416 dev->state_saved = true;
1418 i = pci_save_pcie_state(dev);
1422 i = pci_save_pcix_state(dev);
1426 pci_save_ltr_state(dev);
1427 pci_save_dpc_state(dev);
1428 pci_save_aer_state(dev);
1429 return pci_save_vc_state(dev);
1431 EXPORT_SYMBOL(pci_save_state);
1433 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1434 u32 saved_val, int retry, bool force)
1438 pci_read_config_dword(pdev, offset, &val);
1439 if (!force && val == saved_val)
1443 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1444 offset, val, saved_val);
1445 pci_write_config_dword(pdev, offset, saved_val);
1449 pci_read_config_dword(pdev, offset, &val);
1450 if (val == saved_val)
1457 static void pci_restore_config_space_range(struct pci_dev *pdev,
1458 int start, int end, int retry,
1463 for (index = end; index >= start; index--)
1464 pci_restore_config_dword(pdev, 4 * index,
1465 pdev->saved_config_space[index],
1469 static void pci_restore_config_space(struct pci_dev *pdev)
1471 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1472 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1473 /* Restore BARs before the command register. */
1474 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1475 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1476 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1477 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1480 * Force rewriting of prefetch registers to avoid S3 resume
1481 * issues on Intel PCI bridges that occur when these
1482 * registers are not explicitly written.
1484 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1485 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1487 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1491 static void pci_restore_rebar_state(struct pci_dev *pdev)
1493 unsigned int pos, nbars, i;
1496 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1500 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1501 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1502 PCI_REBAR_CTRL_NBAR_SHIFT;
1504 for (i = 0; i < nbars; i++, pos += 8) {
1505 struct resource *res;
1508 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1509 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1510 res = pdev->resource + bar_idx;
1511 size = ilog2(resource_size(res)) - 20;
1512 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1513 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1514 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1519 * pci_restore_state - Restore the saved state of a PCI device
1520 * @dev: PCI device that we're dealing with
1522 void pci_restore_state(struct pci_dev *dev)
1524 if (!dev->state_saved)
1528 * Restore max latencies (in the LTR capability) before enabling
1529 * LTR itself (in the PCIe capability).
1531 pci_restore_ltr_state(dev);
1533 pci_restore_pcie_state(dev);
1534 pci_restore_pasid_state(dev);
1535 pci_restore_pri_state(dev);
1536 pci_restore_ats_state(dev);
1537 pci_restore_vc_state(dev);
1538 pci_restore_rebar_state(dev);
1539 pci_restore_dpc_state(dev);
1541 pci_aer_clear_status(dev);
1542 pci_restore_aer_state(dev);
1544 pci_restore_config_space(dev);
1546 pci_restore_pcix_state(dev);
1547 pci_restore_msi_state(dev);
1549 /* Restore ACS and IOV configuration state */
1550 pci_enable_acs(dev);
1551 pci_restore_iov_state(dev);
1553 dev->state_saved = false;
1555 EXPORT_SYMBOL(pci_restore_state);
1557 struct pci_saved_state {
1558 u32 config_space[16];
1559 struct pci_cap_saved_data cap[];
1563 * pci_store_saved_state - Allocate and return an opaque struct containing
1564 * the device saved state.
1565 * @dev: PCI device that we're dealing with
1567 * Return NULL if no state or error.
1569 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1571 struct pci_saved_state *state;
1572 struct pci_cap_saved_state *tmp;
1573 struct pci_cap_saved_data *cap;
1576 if (!dev->state_saved)
1579 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1581 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1582 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1584 state = kzalloc(size, GFP_KERNEL);
1588 memcpy(state->config_space, dev->saved_config_space,
1589 sizeof(state->config_space));
1592 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1593 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1594 memcpy(cap, &tmp->cap, len);
1595 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1597 /* Empty cap_save terminates list */
1601 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1604 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1605 * @dev: PCI device that we're dealing with
1606 * @state: Saved state returned from pci_store_saved_state()
1608 int pci_load_saved_state(struct pci_dev *dev,
1609 struct pci_saved_state *state)
1611 struct pci_cap_saved_data *cap;
1613 dev->state_saved = false;
1618 memcpy(dev->saved_config_space, state->config_space,
1619 sizeof(state->config_space));
1623 struct pci_cap_saved_state *tmp;
1625 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1626 if (!tmp || tmp->cap.size != cap->size)
1629 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1630 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1631 sizeof(struct pci_cap_saved_data) + cap->size);
1634 dev->state_saved = true;
1637 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1640 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1641 * and free the memory allocated for it.
1642 * @dev: PCI device that we're dealing with
1643 * @state: Pointer to saved state returned from pci_store_saved_state()
1645 int pci_load_and_free_saved_state(struct pci_dev *dev,
1646 struct pci_saved_state **state)
1648 int ret = pci_load_saved_state(dev, *state);
1653 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1655 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1657 return pci_enable_resources(dev, bars);
1660 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1663 struct pci_dev *bridge;
1667 err = pci_set_power_state(dev, PCI_D0);
1668 if (err < 0 && err != -EIO)
1671 bridge = pci_upstream_bridge(dev);
1673 pcie_aspm_powersave_config_link(bridge);
1675 err = pcibios_enable_device(dev, bars);
1678 pci_fixup_device(pci_fixup_enable, dev);
1680 if (dev->msi_enabled || dev->msix_enabled)
1683 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1685 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1686 if (cmd & PCI_COMMAND_INTX_DISABLE)
1687 pci_write_config_word(dev, PCI_COMMAND,
1688 cmd & ~PCI_COMMAND_INTX_DISABLE);
1695 * pci_reenable_device - Resume abandoned device
1696 * @dev: PCI device to be resumed
1698 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1699 * to be called by normal code, write proper resume handler and use it instead.
1701 int pci_reenable_device(struct pci_dev *dev)
1703 if (pci_is_enabled(dev))
1704 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1707 EXPORT_SYMBOL(pci_reenable_device);
1709 static void pci_enable_bridge(struct pci_dev *dev)
1711 struct pci_dev *bridge;
1714 bridge = pci_upstream_bridge(dev);
1716 pci_enable_bridge(bridge);
1718 if (pci_is_enabled(dev)) {
1719 if (!dev->is_busmaster)
1720 pci_set_master(dev);
1724 retval = pci_enable_device(dev);
1726 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1728 pci_set_master(dev);
1731 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1733 struct pci_dev *bridge;
1738 * Power state could be unknown at this point, either due to a fresh
1739 * boot or a device removal call. So get the current power state
1740 * so that things like MSI message writing will behave as expected
1741 * (e.g. if the device really is in D0 at enable time).
1745 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1746 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1749 if (atomic_inc_return(&dev->enable_cnt) > 1)
1750 return 0; /* already enabled */
1752 bridge = pci_upstream_bridge(dev);
1754 pci_enable_bridge(bridge);
1756 /* only skip sriov related */
1757 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1758 if (dev->resource[i].flags & flags)
1760 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1761 if (dev->resource[i].flags & flags)
1764 err = do_pci_enable_device(dev, bars);
1766 atomic_dec(&dev->enable_cnt);
1771 * pci_enable_device_io - Initialize a device for use with IO space
1772 * @dev: PCI device to be initialized
1774 * Initialize device before it's used by a driver. Ask low-level code
1775 * to enable I/O resources. Wake up the device if it was suspended.
1776 * Beware, this function can fail.
1778 int pci_enable_device_io(struct pci_dev *dev)
1780 return pci_enable_device_flags(dev, IORESOURCE_IO);
1782 EXPORT_SYMBOL(pci_enable_device_io);
1785 * pci_enable_device_mem - Initialize a device for use with Memory space
1786 * @dev: PCI device to be initialized
1788 * Initialize device before it's used by a driver. Ask low-level code
1789 * to enable Memory resources. Wake up the device if it was suspended.
1790 * Beware, this function can fail.
1792 int pci_enable_device_mem(struct pci_dev *dev)
1794 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1796 EXPORT_SYMBOL(pci_enable_device_mem);
1799 * pci_enable_device - Initialize device before it's used by a driver.
1800 * @dev: PCI device to be initialized
1802 * Initialize device before it's used by a driver. Ask low-level code
1803 * to enable I/O and memory. Wake up the device if it was suspended.
1804 * Beware, this function can fail.
1806 * Note we don't actually enable the device many times if we call
1807 * this function repeatedly (we just increment the count).
1809 int pci_enable_device(struct pci_dev *dev)
1811 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1813 EXPORT_SYMBOL(pci_enable_device);
1816 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1817 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1818 * there's no need to track it separately. pci_devres is initialized
1819 * when a device is enabled using managed PCI device enable interface.
1822 unsigned int enabled:1;
1823 unsigned int pinned:1;
1824 unsigned int orig_intx:1;
1825 unsigned int restore_intx:1;
1830 static void pcim_release(struct device *gendev, void *res)
1832 struct pci_dev *dev = to_pci_dev(gendev);
1833 struct pci_devres *this = res;
1836 if (dev->msi_enabled)
1837 pci_disable_msi(dev);
1838 if (dev->msix_enabled)
1839 pci_disable_msix(dev);
1841 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1842 if (this->region_mask & (1 << i))
1843 pci_release_region(dev, i);
1848 if (this->restore_intx)
1849 pci_intx(dev, this->orig_intx);
1851 if (this->enabled && !this->pinned)
1852 pci_disable_device(dev);
1855 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1857 struct pci_devres *dr, *new_dr;
1859 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1863 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1866 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1869 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1871 if (pci_is_managed(pdev))
1872 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1877 * pcim_enable_device - Managed pci_enable_device()
1878 * @pdev: PCI device to be initialized
1880 * Managed pci_enable_device().
1882 int pcim_enable_device(struct pci_dev *pdev)
1884 struct pci_devres *dr;
1887 dr = get_pci_dr(pdev);
1893 rc = pci_enable_device(pdev);
1895 pdev->is_managed = 1;
1900 EXPORT_SYMBOL(pcim_enable_device);
1903 * pcim_pin_device - Pin managed PCI device
1904 * @pdev: PCI device to pin
1906 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1907 * driver detach. @pdev must have been enabled with
1908 * pcim_enable_device().
1910 void pcim_pin_device(struct pci_dev *pdev)
1912 struct pci_devres *dr;
1914 dr = find_pci_dr(pdev);
1915 WARN_ON(!dr || !dr->enabled);
1919 EXPORT_SYMBOL(pcim_pin_device);
1922 * pcibios_add_device - provide arch specific hooks when adding device dev
1923 * @dev: the PCI device being added
1925 * Permits the platform to provide architecture specific functionality when
1926 * devices are added. This is the default implementation. Architecture
1927 * implementations can override this.
1929 int __weak pcibios_add_device(struct pci_dev *dev)
1935 * pcibios_release_device - provide arch specific hooks when releasing
1937 * @dev: the PCI device being released
1939 * Permits the platform to provide architecture specific functionality when
1940 * devices are released. This is the default implementation. Architecture
1941 * implementations can override this.
1943 void __weak pcibios_release_device(struct pci_dev *dev) {}
1946 * pcibios_disable_device - disable arch specific PCI resources for device dev
1947 * @dev: the PCI device to disable
1949 * Disables architecture specific PCI resources for the device. This
1950 * is the default implementation. Architecture implementations can
1953 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1956 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1957 * @irq: ISA IRQ to penalize
1958 * @active: IRQ active or not
1960 * Permits the platform to provide architecture-specific functionality when
1961 * penalizing ISA IRQs. This is the default implementation. Architecture
1962 * implementations can override this.
1964 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1966 static void do_pci_disable_device(struct pci_dev *dev)
1970 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1971 if (pci_command & PCI_COMMAND_MASTER) {
1972 pci_command &= ~PCI_COMMAND_MASTER;
1973 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1976 pcibios_disable_device(dev);
1980 * pci_disable_enabled_device - Disable device without updating enable_cnt
1981 * @dev: PCI device to disable
1983 * NOTE: This function is a backend of PCI power management routines and is
1984 * not supposed to be called drivers.
1986 void pci_disable_enabled_device(struct pci_dev *dev)
1988 if (pci_is_enabled(dev))
1989 do_pci_disable_device(dev);
1993 * pci_disable_device - Disable PCI device after use
1994 * @dev: PCI device to be disabled
1996 * Signal to the system that the PCI device is not in use by the system
1997 * anymore. This only involves disabling PCI bus-mastering, if active.
1999 * Note we don't actually disable the device until all callers of
2000 * pci_enable_device() have called pci_disable_device().
2002 void pci_disable_device(struct pci_dev *dev)
2004 struct pci_devres *dr;
2006 dr = find_pci_dr(dev);
2010 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2011 "disabling already-disabled device");
2013 if (atomic_dec_return(&dev->enable_cnt) != 0)
2016 do_pci_disable_device(dev);
2018 dev->is_busmaster = 0;
2020 EXPORT_SYMBOL(pci_disable_device);
2023 * pcibios_set_pcie_reset_state - set reset state for device dev
2024 * @dev: the PCIe device reset
2025 * @state: Reset state to enter into
2027 * Set the PCIe reset state for the device. This is the default
2028 * implementation. Architecture implementations can override this.
2030 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2031 enum pcie_reset_state state)
2037 * pci_set_pcie_reset_state - set reset state for device dev
2038 * @dev: the PCIe device reset
2039 * @state: Reset state to enter into
2041 * Sets the PCI reset state for the device.
2043 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2045 return pcibios_set_pcie_reset_state(dev, state);
2047 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2050 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2051 * @dev: PCIe root port or event collector.
2053 void pcie_clear_root_pme_status(struct pci_dev *dev)
2055 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2059 * pci_check_pme_status - Check if given device has generated PME.
2060 * @dev: Device to check.
2062 * Check the PME status of the device and if set, clear it and clear PME enable
2063 * (if set). Return 'true' if PME status and PME enable were both set or
2064 * 'false' otherwise.
2066 bool pci_check_pme_status(struct pci_dev *dev)
2075 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2076 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2077 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2080 /* Clear PME status. */
2081 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2082 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2083 /* Disable PME to avoid interrupt flood. */
2084 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2088 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2094 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2095 * @dev: Device to handle.
2096 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2098 * Check if @dev has generated PME and queue a resume request for it in that
2101 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2103 if (pme_poll_reset && dev->pme_poll)
2104 dev->pme_poll = false;
2106 if (pci_check_pme_status(dev)) {
2107 pci_wakeup_event(dev);
2108 pm_request_resume(&dev->dev);
2114 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2115 * @bus: Top bus of the subtree to walk.
2117 void pci_pme_wakeup_bus(struct pci_bus *bus)
2120 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2125 * pci_pme_capable - check the capability of PCI device to generate PME#
2126 * @dev: PCI device to handle.
2127 * @state: PCI state from which device will issue PME#.
2129 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2134 return !!(dev->pme_support & (1 << state));
2136 EXPORT_SYMBOL(pci_pme_capable);
2138 static void pci_pme_list_scan(struct work_struct *work)
2140 struct pci_pme_device *pme_dev, *n;
2142 mutex_lock(&pci_pme_list_mutex);
2143 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2144 if (pme_dev->dev->pme_poll) {
2145 struct pci_dev *bridge;
2147 bridge = pme_dev->dev->bus->self;
2149 * If bridge is in low power state, the
2150 * configuration space of subordinate devices
2151 * may be not accessible
2153 if (bridge && bridge->current_state != PCI_D0)
2156 * If the device is in D3cold it should not be
2159 if (pme_dev->dev->current_state == PCI_D3cold)
2162 pci_pme_wakeup(pme_dev->dev, NULL);
2164 list_del(&pme_dev->list);
2168 if (!list_empty(&pci_pme_list))
2169 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2170 msecs_to_jiffies(PME_TIMEOUT));
2171 mutex_unlock(&pci_pme_list_mutex);
2174 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2178 if (!dev->pme_support)
2181 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2182 /* Clear PME_Status by writing 1 to it and enable PME# */
2183 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2185 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2187 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2191 * pci_pme_restore - Restore PME configuration after config space restore.
2192 * @dev: PCI device to update.
2194 void pci_pme_restore(struct pci_dev *dev)
2198 if (!dev->pme_support)
2201 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2202 if (dev->wakeup_prepared) {
2203 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2204 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2206 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2207 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2209 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2213 * pci_pme_active - enable or disable PCI device's PME# function
2214 * @dev: PCI device to handle.
2215 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2217 * The caller must verify that the device is capable of generating PME# before
2218 * calling this function with @enable equal to 'true'.
2220 void pci_pme_active(struct pci_dev *dev, bool enable)
2222 __pci_pme_active(dev, enable);
2225 * PCI (as opposed to PCIe) PME requires that the device have
2226 * its PME# line hooked up correctly. Not all hardware vendors
2227 * do this, so the PME never gets delivered and the device
2228 * remains asleep. The easiest way around this is to
2229 * periodically walk the list of suspended devices and check
2230 * whether any have their PME flag set. The assumption is that
2231 * we'll wake up often enough anyway that this won't be a huge
2232 * hit, and the power savings from the devices will still be a
2235 * Although PCIe uses in-band PME message instead of PME# line
2236 * to report PME, PME does not work for some PCIe devices in
2237 * reality. For example, there are devices that set their PME
2238 * status bits, but don't really bother to send a PME message;
2239 * there are PCI Express Root Ports that don't bother to
2240 * trigger interrupts when they receive PME messages from the
2241 * devices below. So PME poll is used for PCIe devices too.
2244 if (dev->pme_poll) {
2245 struct pci_pme_device *pme_dev;
2247 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2250 pci_warn(dev, "can't enable PME#\n");
2254 mutex_lock(&pci_pme_list_mutex);
2255 list_add(&pme_dev->list, &pci_pme_list);
2256 if (list_is_singular(&pci_pme_list))
2257 queue_delayed_work(system_freezable_wq,
2259 msecs_to_jiffies(PME_TIMEOUT));
2260 mutex_unlock(&pci_pme_list_mutex);
2262 mutex_lock(&pci_pme_list_mutex);
2263 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2264 if (pme_dev->dev == dev) {
2265 list_del(&pme_dev->list);
2270 mutex_unlock(&pci_pme_list_mutex);
2274 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2276 EXPORT_SYMBOL(pci_pme_active);
2279 * __pci_enable_wake - enable PCI device as wakeup event source
2280 * @dev: PCI device affected
2281 * @state: PCI state from which device will issue wakeup events
2282 * @enable: True to enable event generation; false to disable
2284 * This enables the device as a wakeup event source, or disables it.
2285 * When such events involves platform-specific hooks, those hooks are
2286 * called automatically by this routine.
2288 * Devices with legacy power management (no standard PCI PM capabilities)
2289 * always require such platform hooks.
2292 * 0 is returned on success
2293 * -EINVAL is returned if device is not supposed to wake up the system
2294 * Error code depending on the platform is returned if both the platform and
2295 * the native mechanism fail to enable the generation of wake-up events
2297 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2302 * Bridges that are not power-manageable directly only signal
2303 * wakeup on behalf of subordinate devices which is set up
2304 * elsewhere, so skip them. However, bridges that are
2305 * power-manageable may signal wakeup for themselves (for example,
2306 * on a hotplug event) and they need to be covered here.
2308 if (!pci_power_manageable(dev))
2311 /* Don't do the same thing twice in a row for one device. */
2312 if (!!enable == !!dev->wakeup_prepared)
2316 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2317 * Anderson we should be doing PME# wake enable followed by ACPI wake
2318 * enable. To disable wake-up we call the platform first, for symmetry.
2324 if (pci_pme_capable(dev, state))
2325 pci_pme_active(dev, true);
2328 error = platform_pci_set_wakeup(dev, true);
2332 dev->wakeup_prepared = true;
2334 platform_pci_set_wakeup(dev, false);
2335 pci_pme_active(dev, false);
2336 dev->wakeup_prepared = false;
2343 * pci_enable_wake - change wakeup settings for a PCI device
2344 * @pci_dev: Target device
2345 * @state: PCI state from which device will issue wakeup events
2346 * @enable: Whether or not to enable event generation
2348 * If @enable is set, check device_may_wakeup() for the device before calling
2349 * __pci_enable_wake() for it.
2351 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2353 if (enable && !device_may_wakeup(&pci_dev->dev))
2356 return __pci_enable_wake(pci_dev, state, enable);
2358 EXPORT_SYMBOL(pci_enable_wake);
2361 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2362 * @dev: PCI device to prepare
2363 * @enable: True to enable wake-up event generation; false to disable
2365 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2366 * and this function allows them to set that up cleanly - pci_enable_wake()
2367 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2368 * ordering constraints.
2370 * This function only returns error code if the device is not allowed to wake
2371 * up the system from sleep or it is not capable of generating PME# from both
2372 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2374 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2376 return pci_pme_capable(dev, PCI_D3cold) ?
2377 pci_enable_wake(dev, PCI_D3cold, enable) :
2378 pci_enable_wake(dev, PCI_D3hot, enable);
2380 EXPORT_SYMBOL(pci_wake_from_d3);
2383 * pci_target_state - find an appropriate low power state for a given PCI dev
2385 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2387 * Use underlying platform code to find a supported low power state for @dev.
2388 * If the platform can't manage @dev, return the deepest state from which it
2389 * can generate wake events, based on any available PME info.
2391 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2393 pci_power_t target_state = PCI_D3hot;
2395 if (platform_pci_power_manageable(dev)) {
2397 * Call the platform to find the target state for the device.
2399 pci_power_t state = platform_pci_choose_state(dev);
2402 case PCI_POWER_ERROR:
2407 if (pci_no_d1d2(dev))
2409 /* else, fall through */
2411 target_state = state;
2414 return target_state;
2418 target_state = PCI_D0;
2421 * If the device is in D3cold even though it's not power-manageable by
2422 * the platform, it may have been powered down by non-standard means.
2423 * Best to let it slumber.
2425 if (dev->current_state == PCI_D3cold)
2426 target_state = PCI_D3cold;
2430 * Find the deepest state from which the device can generate
2433 if (dev->pme_support) {
2435 && !(dev->pme_support & (1 << target_state)))
2440 return target_state;
2444 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2445 * into a sleep state
2446 * @dev: Device to handle.
2448 * Choose the power state appropriate for the device depending on whether
2449 * it can wake up the system and/or is power manageable by the platform
2450 * (PCI_D3hot is the default) and put the device into that state.
2452 int pci_prepare_to_sleep(struct pci_dev *dev)
2454 bool wakeup = device_may_wakeup(&dev->dev);
2455 pci_power_t target_state = pci_target_state(dev, wakeup);
2458 if (target_state == PCI_POWER_ERROR)
2461 pci_enable_wake(dev, target_state, wakeup);
2463 error = pci_set_power_state(dev, target_state);
2466 pci_enable_wake(dev, target_state, false);
2470 EXPORT_SYMBOL(pci_prepare_to_sleep);
2473 * pci_back_from_sleep - turn PCI device on during system-wide transition
2474 * into working state
2475 * @dev: Device to handle.
2477 * Disable device's system wake-up capability and put it into D0.
2479 int pci_back_from_sleep(struct pci_dev *dev)
2481 pci_enable_wake(dev, PCI_D0, false);
2482 return pci_set_power_state(dev, PCI_D0);
2484 EXPORT_SYMBOL(pci_back_from_sleep);
2487 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2488 * @dev: PCI device being suspended.
2490 * Prepare @dev to generate wake-up events at run time and put it into a low
2493 int pci_finish_runtime_suspend(struct pci_dev *dev)
2495 pci_power_t target_state;
2498 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2499 if (target_state == PCI_POWER_ERROR)
2502 dev->runtime_d3cold = target_state == PCI_D3cold;
2504 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2506 error = pci_set_power_state(dev, target_state);
2509 pci_enable_wake(dev, target_state, false);
2510 dev->runtime_d3cold = false;
2517 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2518 * @dev: Device to check.
2520 * Return true if the device itself is capable of generating wake-up events
2521 * (through the platform or using the native PCIe PME) or if the device supports
2522 * PME and one of its upstream bridges can generate wake-up events.
2524 bool pci_dev_run_wake(struct pci_dev *dev)
2526 struct pci_bus *bus = dev->bus;
2528 if (!dev->pme_support)
2531 /* PME-capable in principle, but not from the target power state */
2532 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2535 if (device_can_wakeup(&dev->dev))
2538 while (bus->parent) {
2539 struct pci_dev *bridge = bus->self;
2541 if (device_can_wakeup(&bridge->dev))
2547 /* We have reached the root bus. */
2549 return device_can_wakeup(bus->bridge);
2553 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2556 * pci_dev_need_resume - Check if it is necessary to resume the device.
2557 * @pci_dev: Device to check.
2559 * Return 'true' if the device is not runtime-suspended or it has to be
2560 * reconfigured due to wakeup settings difference between system and runtime
2561 * suspend, or the current power state of it is not suitable for the upcoming
2562 * (system-wide) transition.
2564 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2566 struct device *dev = &pci_dev->dev;
2567 pci_power_t target_state;
2569 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2572 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2575 * If the earlier platform check has not triggered, D3cold is just power
2576 * removal on top of D3hot, so no need to resume the device in that
2579 return target_state != pci_dev->current_state &&
2580 target_state != PCI_D3cold &&
2581 pci_dev->current_state != PCI_D3hot;
2585 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2586 * @pci_dev: Device to check.
2588 * If the device is suspended and it is not configured for system wakeup,
2589 * disable PME for it to prevent it from waking up the system unnecessarily.
2591 * Note that if the device's power state is D3cold and the platform check in
2592 * pci_dev_need_resume() has not triggered, the device's configuration need not
2595 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2597 struct device *dev = &pci_dev->dev;
2599 spin_lock_irq(&dev->power.lock);
2601 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2602 pci_dev->current_state < PCI_D3cold)
2603 __pci_pme_active(pci_dev, false);
2605 spin_unlock_irq(&dev->power.lock);
2609 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2610 * @pci_dev: Device to handle.
2612 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2613 * it might have been disabled during the prepare phase of system suspend if
2614 * the device was not configured for system wakeup.
2616 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2618 struct device *dev = &pci_dev->dev;
2620 if (!pci_dev_run_wake(pci_dev))
2623 spin_lock_irq(&dev->power.lock);
2625 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2626 __pci_pme_active(pci_dev, true);
2628 spin_unlock_irq(&dev->power.lock);
2631 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2633 struct device *dev = &pdev->dev;
2634 struct device *parent = dev->parent;
2637 pm_runtime_get_sync(parent);
2638 pm_runtime_get_noresume(dev);
2640 * pdev->current_state is set to PCI_D3cold during suspending,
2641 * so wait until suspending completes
2643 pm_runtime_barrier(dev);
2645 * Only need to resume devices in D3cold, because config
2646 * registers are still accessible for devices suspended but
2649 if (pdev->current_state == PCI_D3cold)
2650 pm_runtime_resume(dev);
2653 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2655 struct device *dev = &pdev->dev;
2656 struct device *parent = dev->parent;
2658 pm_runtime_put(dev);
2660 pm_runtime_put_sync(parent);
2663 static const struct dmi_system_id bridge_d3_blacklist[] = {
2667 * Gigabyte X299 root port is not marked as hotplug capable
2668 * which allows Linux to power manage it. However, this
2669 * confuses the BIOS SMI handler so don't power manage root
2670 * ports on that system.
2672 .ident = "X299 DESIGNARE EX-CF",
2674 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2675 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2683 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2684 * @bridge: Bridge to check
2686 * This function checks if it is possible to move the bridge to D3.
2687 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2689 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2691 if (!pci_is_pcie(bridge))
2694 switch (pci_pcie_type(bridge)) {
2695 case PCI_EXP_TYPE_ROOT_PORT:
2696 case PCI_EXP_TYPE_UPSTREAM:
2697 case PCI_EXP_TYPE_DOWNSTREAM:
2698 if (pci_bridge_d3_disable)
2702 * Hotplug ports handled by firmware in System Management Mode
2703 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2705 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2708 if (pci_bridge_d3_force)
2711 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2712 if (bridge->is_thunderbolt)
2715 /* Platform might know better if the bridge supports D3 */
2716 if (platform_pci_bridge_d3(bridge))
2720 * Hotplug ports handled natively by the OS were not validated
2721 * by vendors for runtime D3 at least until 2018 because there
2722 * was no OS support.
2724 if (bridge->is_hotplug_bridge)
2727 if (dmi_check_system(bridge_d3_blacklist))
2731 * It should be safe to put PCIe ports from 2015 or newer
2734 if (dmi_get_bios_year() >= 2015)
2742 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2744 bool *d3cold_ok = data;
2746 if (/* The device needs to be allowed to go D3cold ... */
2747 dev->no_d3cold || !dev->d3cold_allowed ||
2749 /* ... and if it is wakeup capable to do so from D3cold. */
2750 (device_may_wakeup(&dev->dev) &&
2751 !pci_pme_capable(dev, PCI_D3cold)) ||
2753 /* If it is a bridge it must be allowed to go to D3. */
2754 !pci_power_manageable(dev))
2762 * pci_bridge_d3_update - Update bridge D3 capabilities
2763 * @dev: PCI device which is changed
2765 * Update upstream bridge PM capabilities accordingly depending on if the
2766 * device PM configuration was changed or the device is being removed. The
2767 * change is also propagated upstream.
2769 void pci_bridge_d3_update(struct pci_dev *dev)
2771 bool remove = !device_is_registered(&dev->dev);
2772 struct pci_dev *bridge;
2773 bool d3cold_ok = true;
2775 bridge = pci_upstream_bridge(dev);
2776 if (!bridge || !pci_bridge_d3_possible(bridge))
2780 * If D3 is currently allowed for the bridge, removing one of its
2781 * children won't change that.
2783 if (remove && bridge->bridge_d3)
2787 * If D3 is currently allowed for the bridge and a child is added or
2788 * changed, disallowance of D3 can only be caused by that child, so
2789 * we only need to check that single device, not any of its siblings.
2791 * If D3 is currently not allowed for the bridge, checking the device
2792 * first may allow us to skip checking its siblings.
2795 pci_dev_check_d3cold(dev, &d3cold_ok);
2798 * If D3 is currently not allowed for the bridge, this may be caused
2799 * either by the device being changed/removed or any of its siblings,
2800 * so we need to go through all children to find out if one of them
2801 * continues to block D3.
2803 if (d3cold_ok && !bridge->bridge_d3)
2804 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2807 if (bridge->bridge_d3 != d3cold_ok) {
2808 bridge->bridge_d3 = d3cold_ok;
2809 /* Propagate change to upstream bridges */
2810 pci_bridge_d3_update(bridge);
2815 * pci_d3cold_enable - Enable D3cold for device
2816 * @dev: PCI device to handle
2818 * This function can be used in drivers to enable D3cold from the device
2819 * they handle. It also updates upstream PCI bridge PM capabilities
2822 void pci_d3cold_enable(struct pci_dev *dev)
2824 if (dev->no_d3cold) {
2825 dev->no_d3cold = false;
2826 pci_bridge_d3_update(dev);
2829 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2832 * pci_d3cold_disable - Disable D3cold for device
2833 * @dev: PCI device to handle
2835 * This function can be used in drivers to disable D3cold from the device
2836 * they handle. It also updates upstream PCI bridge PM capabilities
2839 void pci_d3cold_disable(struct pci_dev *dev)
2841 if (!dev->no_d3cold) {
2842 dev->no_d3cold = true;
2843 pci_bridge_d3_update(dev);
2846 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2849 * pci_pm_init - Initialize PM functions of given PCI device
2850 * @dev: PCI device to handle.
2852 void pci_pm_init(struct pci_dev *dev)
2858 pm_runtime_forbid(&dev->dev);
2859 pm_runtime_set_active(&dev->dev);
2860 pm_runtime_enable(&dev->dev);
2861 device_enable_async_suspend(&dev->dev);
2862 dev->wakeup_prepared = false;
2865 dev->pme_support = 0;
2867 /* find PCI PM capability in list */
2868 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2871 /* Check device's ability to generate PME# */
2872 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2874 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2875 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2876 pmc & PCI_PM_CAP_VER_MASK);
2881 dev->d3_delay = PCI_PM_D3_WAIT;
2882 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2883 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2884 dev->d3cold_allowed = true;
2886 dev->d1_support = false;
2887 dev->d2_support = false;
2888 if (!pci_no_d1d2(dev)) {
2889 if (pmc & PCI_PM_CAP_D1)
2890 dev->d1_support = true;
2891 if (pmc & PCI_PM_CAP_D2)
2892 dev->d2_support = true;
2894 if (dev->d1_support || dev->d2_support)
2895 pci_info(dev, "supports%s%s\n",
2896 dev->d1_support ? " D1" : "",
2897 dev->d2_support ? " D2" : "");
2900 pmc &= PCI_PM_CAP_PME_MASK;
2902 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2903 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2904 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2905 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2906 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2907 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2908 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2909 dev->pme_poll = true;
2911 * Make device's PM flags reflect the wake-up capability, but
2912 * let the user space enable it to wake up the system as needed.
2914 device_set_wakeup_capable(&dev->dev, true);
2915 /* Disable the PME# generation functionality */
2916 pci_pme_active(dev, false);
2919 pci_read_config_word(dev, PCI_STATUS, &status);
2920 if (status & PCI_STATUS_IMM_READY)
2924 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2926 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2930 case PCI_EA_P_VF_MEM:
2931 flags |= IORESOURCE_MEM;
2933 case PCI_EA_P_MEM_PREFETCH:
2934 case PCI_EA_P_VF_MEM_PREFETCH:
2935 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2938 flags |= IORESOURCE_IO;
2947 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2950 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2951 return &dev->resource[bei];
2952 #ifdef CONFIG_PCI_IOV
2953 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2954 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2955 return &dev->resource[PCI_IOV_RESOURCES +
2956 bei - PCI_EA_BEI_VF_BAR0];
2958 else if (bei == PCI_EA_BEI_ROM)
2959 return &dev->resource[PCI_ROM_RESOURCE];
2964 /* Read an Enhanced Allocation (EA) entry */
2965 static int pci_ea_read(struct pci_dev *dev, int offset)
2967 struct resource *res;
2968 int ent_size, ent_offset = offset;
2969 resource_size_t start, end;
2970 unsigned long flags;
2971 u32 dw0, bei, base, max_offset;
2973 bool support_64 = (sizeof(resource_size_t) >= 8);
2975 pci_read_config_dword(dev, ent_offset, &dw0);
2978 /* Entry size field indicates DWORDs after 1st */
2979 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2981 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2984 bei = (dw0 & PCI_EA_BEI) >> 4;
2985 prop = (dw0 & PCI_EA_PP) >> 8;
2988 * If the Property is in the reserved range, try the Secondary
2991 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2992 prop = (dw0 & PCI_EA_SP) >> 16;
2993 if (prop > PCI_EA_P_BRIDGE_IO)
2996 res = pci_ea_get_resource(dev, bei, prop);
2998 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3002 flags = pci_ea_flags(dev, prop);
3004 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3009 pci_read_config_dword(dev, ent_offset, &base);
3010 start = (base & PCI_EA_FIELD_MASK);
3013 /* Read MaxOffset */
3014 pci_read_config_dword(dev, ent_offset, &max_offset);
3017 /* Read Base MSBs (if 64-bit entry) */
3018 if (base & PCI_EA_IS_64) {
3021 pci_read_config_dword(dev, ent_offset, &base_upper);
3024 flags |= IORESOURCE_MEM_64;
3026 /* entry starts above 32-bit boundary, can't use */
3027 if (!support_64 && base_upper)
3031 start |= ((u64)base_upper << 32);
3034 end = start + (max_offset | 0x03);
3036 /* Read MaxOffset MSBs (if 64-bit entry) */
3037 if (max_offset & PCI_EA_IS_64) {
3038 u32 max_offset_upper;
3040 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3043 flags |= IORESOURCE_MEM_64;
3045 /* entry too big, can't use */
3046 if (!support_64 && max_offset_upper)
3050 end += ((u64)max_offset_upper << 32);
3054 pci_err(dev, "EA Entry crosses address boundary\n");
3058 if (ent_size != ent_offset - offset) {
3059 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3060 ent_size, ent_offset - offset);
3064 res->name = pci_name(dev);
3069 if (bei <= PCI_EA_BEI_BAR5)
3070 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3072 else if (bei == PCI_EA_BEI_ROM)
3073 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3075 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3076 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3077 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3079 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3083 return offset + ent_size;
3086 /* Enhanced Allocation Initialization */
3087 void pci_ea_init(struct pci_dev *dev)
3094 /* find PCI EA capability in list */
3095 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3099 /* determine the number of entries */
3100 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3102 num_ent &= PCI_EA_NUM_ENT_MASK;
3104 offset = ea + PCI_EA_FIRST_ENT;
3106 /* Skip DWORD 2 for type 1 functions */
3107 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3110 /* parse each EA entry */
3111 for (i = 0; i < num_ent; ++i)
3112 offset = pci_ea_read(dev, offset);
3115 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3116 struct pci_cap_saved_state *new_cap)
3118 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3122 * _pci_add_cap_save_buffer - allocate buffer for saving given
3123 * capability registers
3124 * @dev: the PCI device
3125 * @cap: the capability to allocate the buffer for
3126 * @extended: Standard or Extended capability ID
3127 * @size: requested size of the buffer
3129 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3130 bool extended, unsigned int size)
3133 struct pci_cap_saved_state *save_state;
3136 pos = pci_find_ext_capability(dev, cap);
3138 pos = pci_find_capability(dev, cap);
3143 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3147 save_state->cap.cap_nr = cap;
3148 save_state->cap.cap_extended = extended;
3149 save_state->cap.size = size;
3150 pci_add_saved_cap(dev, save_state);
3155 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3157 return _pci_add_cap_save_buffer(dev, cap, false, size);
3160 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3162 return _pci_add_cap_save_buffer(dev, cap, true, size);
3166 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3167 * @dev: the PCI device
3169 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3173 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3174 PCI_EXP_SAVE_REGS * sizeof(u16));
3176 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3178 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3180 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3182 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3185 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3187 pci_allocate_vc_save_buffers(dev);
3190 void pci_free_cap_save_buffers(struct pci_dev *dev)
3192 struct pci_cap_saved_state *tmp;
3193 struct hlist_node *n;
3195 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3200 * pci_configure_ari - enable or disable ARI forwarding
3201 * @dev: the PCI device
3203 * If @dev and its upstream bridge both support ARI, enable ARI in the
3204 * bridge. Otherwise, disable ARI in the bridge.
3206 void pci_configure_ari(struct pci_dev *dev)
3209 struct pci_dev *bridge;
3211 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3214 bridge = dev->bus->self;
3218 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3219 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3222 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3223 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3224 PCI_EXP_DEVCTL2_ARI);
3225 bridge->ari_enabled = 1;
3227 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3228 PCI_EXP_DEVCTL2_ARI);
3229 bridge->ari_enabled = 0;
3233 static int pci_acs_enable;
3236 * pci_request_acs - ask for ACS to be enabled if supported
3238 void pci_request_acs(void)
3243 static const char *disable_acs_redir_param;
3246 * pci_disable_acs_redir - disable ACS redirect capabilities
3247 * @dev: the PCI device
3249 * For only devices specified in the disable_acs_redir parameter.
3251 static void pci_disable_acs_redir(struct pci_dev *dev)
3258 if (!disable_acs_redir_param)
3261 p = disable_acs_redir_param;
3263 ret = pci_dev_str_match(dev, p, &p);
3265 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3266 disable_acs_redir_param);
3269 } else if (ret == 1) {
3274 if (*p != ';' && *p != ',') {
3275 /* End of param or invalid format */
3284 if (!pci_dev_specific_disable_acs_redir(dev))
3287 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3289 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3293 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3295 /* P2P Request & Completion Redirect */
3296 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3298 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3300 pci_info(dev, "disabled ACS redirect\n");
3304 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3305 * @dev: the PCI device
3307 static void pci_std_enable_acs(struct pci_dev *dev)
3313 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3317 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3318 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3320 /* Source Validation */
3321 ctrl |= (cap & PCI_ACS_SV);
3323 /* P2P Request Redirect */
3324 ctrl |= (cap & PCI_ACS_RR);
3326 /* P2P Completion Redirect */
3327 ctrl |= (cap & PCI_ACS_CR);
3329 /* Upstream Forwarding */
3330 ctrl |= (cap & PCI_ACS_UF);
3332 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3336 * pci_enable_acs - enable ACS if hardware support it
3337 * @dev: the PCI device
3339 void pci_enable_acs(struct pci_dev *dev)
3341 if (!pci_acs_enable)
3342 goto disable_acs_redir;
3344 if (!pci_dev_specific_enable_acs(dev))
3345 goto disable_acs_redir;
3347 pci_std_enable_acs(dev);
3351 * Note: pci_disable_acs_redir() must be called even if ACS was not
3352 * enabled by the kernel because it may have been enabled by
3353 * platform firmware. So if we are told to disable it, we should
3354 * always disable it after setting the kernel's default
3357 pci_disable_acs_redir(dev);
3360 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3365 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3370 * Except for egress control, capabilities are either required
3371 * or only required if controllable. Features missing from the
3372 * capability field can therefore be assumed as hard-wired enabled.
3374 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3375 acs_flags &= (cap | PCI_ACS_EC);
3377 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3378 return (ctrl & acs_flags) == acs_flags;
3382 * pci_acs_enabled - test ACS against required flags for a given device
3383 * @pdev: device to test
3384 * @acs_flags: required PCI ACS flags
3386 * Return true if the device supports the provided flags. Automatically
3387 * filters out flags that are not implemented on multifunction devices.
3389 * Note that this interface checks the effective ACS capabilities of the
3390 * device rather than the actual capabilities. For instance, most single
3391 * function endpoints are not required to support ACS because they have no
3392 * opportunity for peer-to-peer access. We therefore return 'true'
3393 * regardless of whether the device exposes an ACS capability. This makes
3394 * it much easier for callers of this function to ignore the actual type
3395 * or topology of the device when testing ACS support.
3397 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3401 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3406 * Conventional PCI and PCI-X devices never support ACS, either
3407 * effectively or actually. The shared bus topology implies that
3408 * any device on the bus can receive or snoop DMA.
3410 if (!pci_is_pcie(pdev))
3413 switch (pci_pcie_type(pdev)) {
3415 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3416 * but since their primary interface is PCI/X, we conservatively
3417 * handle them as we would a non-PCIe device.
3419 case PCI_EXP_TYPE_PCIE_BRIDGE:
3421 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3422 * applicable... must never implement an ACS Extended Capability...".
3423 * This seems arbitrary, but we take a conservative interpretation
3424 * of this statement.
3426 case PCI_EXP_TYPE_PCI_BRIDGE:
3427 case PCI_EXP_TYPE_RC_EC:
3430 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3431 * implement ACS in order to indicate their peer-to-peer capabilities,
3432 * regardless of whether they are single- or multi-function devices.
3434 case PCI_EXP_TYPE_DOWNSTREAM:
3435 case PCI_EXP_TYPE_ROOT_PORT:
3436 return pci_acs_flags_enabled(pdev, acs_flags);
3438 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3439 * implemented by the remaining PCIe types to indicate peer-to-peer
3440 * capabilities, but only when they are part of a multifunction
3441 * device. The footnote for section 6.12 indicates the specific
3442 * PCIe types included here.
3444 case PCI_EXP_TYPE_ENDPOINT:
3445 case PCI_EXP_TYPE_UPSTREAM:
3446 case PCI_EXP_TYPE_LEG_END:
3447 case PCI_EXP_TYPE_RC_END:
3448 if (!pdev->multifunction)
3451 return pci_acs_flags_enabled(pdev, acs_flags);
3455 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3456 * to single function devices with the exception of downstream ports.
3462 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3463 * @start: starting downstream device
3464 * @end: ending upstream device or NULL to search to the root bus
3465 * @acs_flags: required flags
3467 * Walk up a device tree from start to end testing PCI ACS support. If
3468 * any step along the way does not support the required flags, return false.
3470 bool pci_acs_path_enabled(struct pci_dev *start,
3471 struct pci_dev *end, u16 acs_flags)
3473 struct pci_dev *pdev, *parent = start;
3478 if (!pci_acs_enabled(pdev, acs_flags))
3481 if (pci_is_root_bus(pdev->bus))
3482 return (end == NULL);
3484 parent = pdev->bus->self;
3485 } while (pdev != end);
3491 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3495 * Helper to find the position of the ctrl register for a BAR.
3496 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3497 * Returns -ENOENT if no ctrl register for the BAR could be found.
3499 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3501 unsigned int pos, nbars, i;
3504 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3508 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3509 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3510 PCI_REBAR_CTRL_NBAR_SHIFT;
3512 for (i = 0; i < nbars; i++, pos += 8) {
3515 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3516 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3525 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3527 * @bar: BAR to query
3529 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3530 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3532 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3537 pos = pci_rebar_find_pos(pdev, bar);
3541 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3542 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3546 * pci_rebar_get_current_size - get the current size of a BAR
3548 * @bar: BAR to set size to
3550 * Read the size of a BAR from the resizable BAR config.
3551 * Returns size if found or negative error code.
3553 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3558 pos = pci_rebar_find_pos(pdev, bar);
3562 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3563 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3567 * pci_rebar_set_size - set a new size for a BAR
3569 * @bar: BAR to set size to
3570 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3572 * Set the new size of a BAR as defined in the spec.
3573 * Returns zero if resizing was successful, error code otherwise.
3575 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3580 pos = pci_rebar_find_pos(pdev, bar);
3584 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3585 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3586 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3587 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3592 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3593 * @dev: the PCI device
3594 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3595 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3596 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3597 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3599 * Return 0 if all upstream bridges support AtomicOp routing, egress
3600 * blocking is disabled on all upstream ports, and the root port supports
3601 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3602 * AtomicOp completion), or negative otherwise.
3604 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3606 struct pci_bus *bus = dev->bus;
3607 struct pci_dev *bridge;
3610 if (!pci_is_pcie(dev))
3614 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3615 * AtomicOp requesters. For now, we only support endpoints as
3616 * requesters and root ports as completers. No endpoints as
3617 * completers, and no peer-to-peer.
3620 switch (pci_pcie_type(dev)) {
3621 case PCI_EXP_TYPE_ENDPOINT:
3622 case PCI_EXP_TYPE_LEG_END:
3623 case PCI_EXP_TYPE_RC_END:
3629 while (bus->parent) {
3632 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3634 switch (pci_pcie_type(bridge)) {
3635 /* Ensure switch ports support AtomicOp routing */
3636 case PCI_EXP_TYPE_UPSTREAM:
3637 case PCI_EXP_TYPE_DOWNSTREAM:
3638 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3642 /* Ensure root port supports all the sizes we care about */
3643 case PCI_EXP_TYPE_ROOT_PORT:
3644 if ((cap & cap_mask) != cap_mask)
3649 /* Ensure upstream ports don't block AtomicOps on egress */
3650 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3651 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3653 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3660 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3661 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3664 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3667 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3668 * @dev: the PCI device
3669 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3671 * Perform INTx swizzling for a device behind one level of bridge. This is
3672 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3673 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3674 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3675 * the PCI Express Base Specification, Revision 2.1)
3677 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3681 if (pci_ari_enabled(dev->bus))
3684 slot = PCI_SLOT(dev->devfn);
3686 return (((pin - 1) + slot) % 4) + 1;
3689 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3697 while (!pci_is_root_bus(dev->bus)) {
3698 pin = pci_swizzle_interrupt_pin(dev, pin);
3699 dev = dev->bus->self;
3706 * pci_common_swizzle - swizzle INTx all the way to root bridge
3707 * @dev: the PCI device
3708 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3710 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3711 * bridges all the way up to a PCI root bus.
3713 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3717 while (!pci_is_root_bus(dev->bus)) {
3718 pin = pci_swizzle_interrupt_pin(dev, pin);
3719 dev = dev->bus->self;
3722 return PCI_SLOT(dev->devfn);
3724 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3727 * pci_release_region - Release a PCI bar
3728 * @pdev: PCI device whose resources were previously reserved by
3729 * pci_request_region()
3730 * @bar: BAR to release
3732 * Releases the PCI I/O and memory resources previously reserved by a
3733 * successful call to pci_request_region(). Call this function only
3734 * after all use of the PCI regions has ceased.
3736 void pci_release_region(struct pci_dev *pdev, int bar)
3738 struct pci_devres *dr;
3740 if (pci_resource_len(pdev, bar) == 0)
3742 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3743 release_region(pci_resource_start(pdev, bar),
3744 pci_resource_len(pdev, bar));
3745 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3746 release_mem_region(pci_resource_start(pdev, bar),
3747 pci_resource_len(pdev, bar));
3749 dr = find_pci_dr(pdev);
3751 dr->region_mask &= ~(1 << bar);
3753 EXPORT_SYMBOL(pci_release_region);
3756 * __pci_request_region - Reserved PCI I/O and memory resource
3757 * @pdev: PCI device whose resources are to be reserved
3758 * @bar: BAR to be reserved
3759 * @res_name: Name to be associated with resource.
3760 * @exclusive: whether the region access is exclusive or not
3762 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3763 * being reserved by owner @res_name. Do not access any
3764 * address inside the PCI regions unless this call returns
3767 * If @exclusive is set, then the region is marked so that userspace
3768 * is explicitly not allowed to map the resource via /dev/mem or
3769 * sysfs MMIO access.
3771 * Returns 0 on success, or %EBUSY on error. A warning
3772 * message is also printed on failure.
3774 static int __pci_request_region(struct pci_dev *pdev, int bar,
3775 const char *res_name, int exclusive)
3777 struct pci_devres *dr;
3779 if (pci_resource_len(pdev, bar) == 0)
3782 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3783 if (!request_region(pci_resource_start(pdev, bar),
3784 pci_resource_len(pdev, bar), res_name))
3786 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3787 if (!__request_mem_region(pci_resource_start(pdev, bar),
3788 pci_resource_len(pdev, bar), res_name,
3793 dr = find_pci_dr(pdev);
3795 dr->region_mask |= 1 << bar;
3800 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3801 &pdev->resource[bar]);
3806 * pci_request_region - Reserve PCI I/O and memory resource
3807 * @pdev: PCI device whose resources are to be reserved
3808 * @bar: BAR to be reserved
3809 * @res_name: Name to be associated with resource
3811 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3812 * being reserved by owner @res_name. Do not access any
3813 * address inside the PCI regions unless this call returns
3816 * Returns 0 on success, or %EBUSY on error. A warning
3817 * message is also printed on failure.
3819 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3821 return __pci_request_region(pdev, bar, res_name, 0);
3823 EXPORT_SYMBOL(pci_request_region);
3826 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3827 * @pdev: PCI device whose resources were previously reserved
3828 * @bars: Bitmask of BARs to be released
3830 * Release selected PCI I/O and memory resources previously reserved.
3831 * Call this function only after all use of the PCI regions has ceased.
3833 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3837 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3838 if (bars & (1 << i))
3839 pci_release_region(pdev, i);
3841 EXPORT_SYMBOL(pci_release_selected_regions);
3843 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3844 const char *res_name, int excl)
3848 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3849 if (bars & (1 << i))
3850 if (__pci_request_region(pdev, i, res_name, excl))
3856 if (bars & (1 << i))
3857 pci_release_region(pdev, i);
3864 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3865 * @pdev: PCI device whose resources are to be reserved
3866 * @bars: Bitmask of BARs to be requested
3867 * @res_name: Name to be associated with resource
3869 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3870 const char *res_name)
3872 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3874 EXPORT_SYMBOL(pci_request_selected_regions);
3876 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3877 const char *res_name)
3879 return __pci_request_selected_regions(pdev, bars, res_name,
3880 IORESOURCE_EXCLUSIVE);
3882 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3885 * pci_release_regions - Release reserved PCI I/O and memory resources
3886 * @pdev: PCI device whose resources were previously reserved by
3887 * pci_request_regions()
3889 * Releases all PCI I/O and memory resources previously reserved by a
3890 * successful call to pci_request_regions(). Call this function only
3891 * after all use of the PCI regions has ceased.
3894 void pci_release_regions(struct pci_dev *pdev)
3896 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3898 EXPORT_SYMBOL(pci_release_regions);
3901 * pci_request_regions - Reserve PCI I/O and memory resources
3902 * @pdev: PCI device whose resources are to be reserved
3903 * @res_name: Name to be associated with resource.
3905 * Mark all PCI regions associated with PCI device @pdev as
3906 * being reserved by owner @res_name. Do not access any
3907 * address inside the PCI regions unless this call returns
3910 * Returns 0 on success, or %EBUSY on error. A warning
3911 * message is also printed on failure.
3913 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3915 return pci_request_selected_regions(pdev,
3916 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3918 EXPORT_SYMBOL(pci_request_regions);
3921 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3922 * @pdev: PCI device whose resources are to be reserved
3923 * @res_name: Name to be associated with resource.
3925 * Mark all PCI regions associated with PCI device @pdev as being reserved
3926 * by owner @res_name. Do not access any address inside the PCI regions
3927 * unless this call returns successfully.
3929 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3930 * and the sysfs MMIO access will not be allowed.
3932 * Returns 0 on success, or %EBUSY on error. A warning message is also
3933 * printed on failure.
3935 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3937 return pci_request_selected_regions_exclusive(pdev,
3938 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3940 EXPORT_SYMBOL(pci_request_regions_exclusive);
3943 * Record the PCI IO range (expressed as CPU physical address + size).
3944 * Return a negative value if an error has occurred, zero otherwise
3946 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3947 resource_size_t size)
3951 struct logic_pio_hwaddr *range;
3953 if (!size || addr + size < addr)
3956 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3960 range->fwnode = fwnode;
3962 range->hw_start = addr;
3963 range->flags = LOGIC_PIO_CPU_MMIO;
3965 ret = logic_pio_register_range(range);
3973 phys_addr_t pci_pio_to_address(unsigned long pio)
3975 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3978 if (pio >= MMIO_UPPER_LIMIT)
3981 address = logic_pio_to_hwaddr(pio);
3987 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3990 return logic_pio_trans_cpuaddr(address);
3992 if (address > IO_SPACE_LIMIT)
3993 return (unsigned long)-1;
3995 return (unsigned long) address;
4000 * pci_remap_iospace - Remap the memory mapped I/O space
4001 * @res: Resource describing the I/O space
4002 * @phys_addr: physical address of range to be mapped
4004 * Remap the memory mapped I/O space described by the @res and the CPU
4005 * physical address @phys_addr into virtual address space. Only
4006 * architectures that have memory mapped IO functions defined (and the
4007 * PCI_IOBASE value defined) should call this function.
4009 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4011 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4012 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4014 if (!(res->flags & IORESOURCE_IO))
4017 if (res->end > IO_SPACE_LIMIT)
4020 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4021 pgprot_device(PAGE_KERNEL));
4024 * This architecture does not have memory mapped I/O space,
4025 * so this function should never be called
4027 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4031 EXPORT_SYMBOL(pci_remap_iospace);
4034 * pci_unmap_iospace - Unmap the memory mapped I/O space
4035 * @res: resource to be unmapped
4037 * Unmap the CPU virtual address @res from virtual address space. Only
4038 * architectures that have memory mapped IO functions defined (and the
4039 * PCI_IOBASE value defined) should call this function.
4041 void pci_unmap_iospace(struct resource *res)
4043 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4044 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4046 unmap_kernel_range(vaddr, resource_size(res));
4049 EXPORT_SYMBOL(pci_unmap_iospace);
4051 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4053 struct resource **res = ptr;
4055 pci_unmap_iospace(*res);
4059 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4060 * @dev: Generic device to remap IO address for
4061 * @res: Resource describing the I/O space
4062 * @phys_addr: physical address of range to be mapped
4064 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4067 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4068 phys_addr_t phys_addr)
4070 const struct resource **ptr;
4073 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4077 error = pci_remap_iospace(res, phys_addr);
4082 devres_add(dev, ptr);
4087 EXPORT_SYMBOL(devm_pci_remap_iospace);
4090 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4091 * @dev: Generic device to remap IO address for
4092 * @offset: Resource address to map
4093 * @size: Size of map
4095 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4098 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4099 resource_size_t offset,
4100 resource_size_t size)
4102 void __iomem **ptr, *addr;
4104 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4108 addr = pci_remap_cfgspace(offset, size);
4111 devres_add(dev, ptr);
4117 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4120 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4121 * @dev: generic device to handle the resource for
4122 * @res: configuration space resource to be handled
4124 * Checks that a resource is a valid memory region, requests the memory
4125 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4126 * proper PCI configuration space memory attributes are guaranteed.
4128 * All operations are managed and will be undone on driver detach.
4130 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4131 * on failure. Usage example::
4133 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4134 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4136 * return PTR_ERR(base);
4138 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4139 struct resource *res)
4141 resource_size_t size;
4143 void __iomem *dest_ptr;
4147 if (!res || resource_type(res) != IORESOURCE_MEM) {
4148 dev_err(dev, "invalid resource\n");
4149 return IOMEM_ERR_PTR(-EINVAL);
4152 size = resource_size(res);
4153 name = res->name ?: dev_name(dev);
4155 if (!devm_request_mem_region(dev, res->start, size, name)) {
4156 dev_err(dev, "can't request region for resource %pR\n", res);
4157 return IOMEM_ERR_PTR(-EBUSY);
4160 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4162 dev_err(dev, "ioremap failed for resource %pR\n", res);
4163 devm_release_mem_region(dev, res->start, size);
4164 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4169 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4171 static void __pci_set_master(struct pci_dev *dev, bool enable)
4175 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4177 cmd = old_cmd | PCI_COMMAND_MASTER;
4179 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4180 if (cmd != old_cmd) {
4181 pci_dbg(dev, "%s bus mastering\n",
4182 enable ? "enabling" : "disabling");
4183 pci_write_config_word(dev, PCI_COMMAND, cmd);
4185 dev->is_busmaster = enable;
4189 * pcibios_setup - process "pci=" kernel boot arguments
4190 * @str: string used to pass in "pci=" kernel boot arguments
4192 * Process kernel boot arguments. This is the default implementation.
4193 * Architecture specific implementations can override this as necessary.
4195 char * __weak __init pcibios_setup(char *str)
4201 * pcibios_set_master - enable PCI bus-mastering for device dev
4202 * @dev: the PCI device to enable
4204 * Enables PCI bus-mastering for the device. This is the default
4205 * implementation. Architecture specific implementations can override
4206 * this if necessary.
4208 void __weak pcibios_set_master(struct pci_dev *dev)
4212 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4213 if (pci_is_pcie(dev))
4216 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4218 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4219 else if (lat > pcibios_max_latency)
4220 lat = pcibios_max_latency;
4224 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4228 * pci_set_master - enables bus-mastering for device dev
4229 * @dev: the PCI device to enable
4231 * Enables bus-mastering on the device and calls pcibios_set_master()
4232 * to do the needed arch specific settings.
4234 void pci_set_master(struct pci_dev *dev)
4236 __pci_set_master(dev, true);
4237 pcibios_set_master(dev);
4239 EXPORT_SYMBOL(pci_set_master);
4242 * pci_clear_master - disables bus-mastering for device dev
4243 * @dev: the PCI device to disable
4245 void pci_clear_master(struct pci_dev *dev)
4247 __pci_set_master(dev, false);
4249 EXPORT_SYMBOL(pci_clear_master);
4252 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4253 * @dev: the PCI device for which MWI is to be enabled
4255 * Helper function for pci_set_mwi.
4256 * Originally copied from drivers/net/acenic.c.
4259 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4261 int pci_set_cacheline_size(struct pci_dev *dev)
4265 if (!pci_cache_line_size)
4268 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4269 equal to or multiple of the right value. */
4270 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4271 if (cacheline_size >= pci_cache_line_size &&
4272 (cacheline_size % pci_cache_line_size) == 0)
4275 /* Write the correct value. */
4276 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4278 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4279 if (cacheline_size == pci_cache_line_size)
4282 pci_info(dev, "cache line size of %d is not supported\n",
4283 pci_cache_line_size << 2);
4287 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4290 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4291 * @dev: the PCI device for which MWI is enabled
4293 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4295 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4297 int pci_set_mwi(struct pci_dev *dev)
4299 #ifdef PCI_DISABLE_MWI
4305 rc = pci_set_cacheline_size(dev);
4309 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4310 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4311 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4312 cmd |= PCI_COMMAND_INVALIDATE;
4313 pci_write_config_word(dev, PCI_COMMAND, cmd);
4318 EXPORT_SYMBOL(pci_set_mwi);
4321 * pcim_set_mwi - a device-managed pci_set_mwi()
4322 * @dev: the PCI device for which MWI is enabled
4324 * Managed pci_set_mwi().
4326 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4328 int pcim_set_mwi(struct pci_dev *dev)
4330 struct pci_devres *dr;
4332 dr = find_pci_dr(dev);
4337 return pci_set_mwi(dev);
4339 EXPORT_SYMBOL(pcim_set_mwi);
4342 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4343 * @dev: the PCI device for which MWI is enabled
4345 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4346 * Callers are not required to check the return value.
4348 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4350 int pci_try_set_mwi(struct pci_dev *dev)
4352 #ifdef PCI_DISABLE_MWI
4355 return pci_set_mwi(dev);
4358 EXPORT_SYMBOL(pci_try_set_mwi);
4361 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4362 * @dev: the PCI device to disable
4364 * Disables PCI Memory-Write-Invalidate transaction on the device
4366 void pci_clear_mwi(struct pci_dev *dev)
4368 #ifndef PCI_DISABLE_MWI
4371 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4372 if (cmd & PCI_COMMAND_INVALIDATE) {
4373 cmd &= ~PCI_COMMAND_INVALIDATE;
4374 pci_write_config_word(dev, PCI_COMMAND, cmd);
4378 EXPORT_SYMBOL(pci_clear_mwi);
4381 * pci_intx - enables/disables PCI INTx for device dev
4382 * @pdev: the PCI device to operate on
4383 * @enable: boolean: whether to enable or disable PCI INTx
4385 * Enables/disables PCI INTx for device @pdev
4387 void pci_intx(struct pci_dev *pdev, int enable)
4389 u16 pci_command, new;
4391 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4394 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4396 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4398 if (new != pci_command) {
4399 struct pci_devres *dr;
4401 pci_write_config_word(pdev, PCI_COMMAND, new);
4403 dr = find_pci_dr(pdev);
4404 if (dr && !dr->restore_intx) {
4405 dr->restore_intx = 1;
4406 dr->orig_intx = !enable;
4410 EXPORT_SYMBOL_GPL(pci_intx);
4412 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4414 struct pci_bus *bus = dev->bus;
4415 bool mask_updated = true;
4416 u32 cmd_status_dword;
4417 u16 origcmd, newcmd;
4418 unsigned long flags;
4422 * We do a single dword read to retrieve both command and status.
4423 * Document assumptions that make this possible.
4425 BUILD_BUG_ON(PCI_COMMAND % 4);
4426 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4428 raw_spin_lock_irqsave(&pci_lock, flags);
4430 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4432 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4435 * Check interrupt status register to see whether our device
4436 * triggered the interrupt (when masking) or the next IRQ is
4437 * already pending (when unmasking).
4439 if (mask != irq_pending) {
4440 mask_updated = false;
4444 origcmd = cmd_status_dword;
4445 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4447 newcmd |= PCI_COMMAND_INTX_DISABLE;
4448 if (newcmd != origcmd)
4449 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4452 raw_spin_unlock_irqrestore(&pci_lock, flags);
4454 return mask_updated;
4458 * pci_check_and_mask_intx - mask INTx on pending interrupt
4459 * @dev: the PCI device to operate on
4461 * Check if the device dev has its INTx line asserted, mask it and return
4462 * true in that case. False is returned if no interrupt was pending.
4464 bool pci_check_and_mask_intx(struct pci_dev *dev)
4466 return pci_check_and_set_intx_mask(dev, true);
4468 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4471 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4472 * @dev: the PCI device to operate on
4474 * Check if the device dev has its INTx line asserted, unmask it if not and
4475 * return true. False is returned and the mask remains active if there was
4476 * still an interrupt pending.
4478 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4480 return pci_check_and_set_intx_mask(dev, false);
4482 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4485 * pci_wait_for_pending_transaction - wait for pending transaction
4486 * @dev: the PCI device to operate on
4488 * Return 0 if transaction is pending 1 otherwise.
4490 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4492 if (!pci_is_pcie(dev))
4495 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4496 PCI_EXP_DEVSTA_TRPND);
4498 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4501 * pcie_has_flr - check if a device supports function level resets
4502 * @dev: device to check
4504 * Returns true if the device advertises support for PCIe function level
4507 bool pcie_has_flr(struct pci_dev *dev)
4511 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4514 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4515 return cap & PCI_EXP_DEVCAP_FLR;
4517 EXPORT_SYMBOL_GPL(pcie_has_flr);
4520 * pcie_flr - initiate a PCIe function level reset
4521 * @dev: device to reset
4523 * Initiate a function level reset on @dev. The caller should ensure the
4524 * device supports FLR before calling this function, e.g. by using the
4525 * pcie_has_flr() helper.
4527 int pcie_flr(struct pci_dev *dev)
4529 if (!pci_wait_for_pending_transaction(dev))
4530 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4532 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4538 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4539 * 100ms, but may silently discard requests while the FLR is in
4540 * progress. Wait 100ms before trying to access the device.
4544 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4546 EXPORT_SYMBOL_GPL(pcie_flr);
4548 static int pci_af_flr(struct pci_dev *dev, int probe)
4553 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4557 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4560 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4561 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4568 * Wait for Transaction Pending bit to clear. A word-aligned test
4569 * is used, so we use the control offset rather than status and shift
4570 * the test bit to match.
4572 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4573 PCI_AF_STATUS_TP << 8))
4574 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4576 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4582 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4583 * updated 27 July 2006; a device must complete an FLR within
4584 * 100ms, but may silently discard requests while the FLR is in
4585 * progress. Wait 100ms before trying to access the device.
4589 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4593 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4594 * @dev: Device to reset.
4595 * @probe: If set, only check if the device can be reset this way.
4597 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4598 * unset, it will be reinitialized internally when going from PCI_D3hot to
4599 * PCI_D0. If that's the case and the device is not in a low-power state
4600 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4602 * NOTE: This causes the caller to sleep for twice the device power transition
4603 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4604 * by default (i.e. unless the @dev's d3_delay field has a different value).
4605 * Moreover, only devices in D0 can be reset by this function.
4607 static int pci_pm_reset(struct pci_dev *dev, int probe)
4611 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4614 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4615 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4621 if (dev->current_state != PCI_D0)
4624 csr &= ~PCI_PM_CTRL_STATE_MASK;
4626 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4627 pci_dev_d3_sleep(dev);
4629 csr &= ~PCI_PM_CTRL_STATE_MASK;
4631 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4632 pci_dev_d3_sleep(dev);
4634 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4638 * pcie_wait_for_link_delay - Wait until link is active or inactive
4639 * @pdev: Bridge device
4640 * @active: waiting for active or inactive?
4641 * @delay: Delay to wait after link has become active (in ms). Specify %0
4644 * Use this to wait till link becomes active or inactive.
4646 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4654 * Some controllers might not implement link active reporting. In this
4655 * case, we wait for 1000 ms + any delay requested by the caller.
4657 if (!pdev->link_active_reporting) {
4658 msleep(timeout + delay);
4663 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4664 * after which we should expect an link active if the reset was
4665 * successful. If so, software must wait a minimum 100ms before sending
4666 * configuration requests to devices downstream this port.
4668 * If the link fails to activate, either the device was physically
4669 * removed or the link is permanently failed.
4674 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4675 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4683 if (active && ret && delay)
4685 else if (ret != active)
4686 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4687 active ? "set" : "cleared");
4688 return ret == active;
4692 * pcie_wait_for_link - Wait until link is active or inactive
4693 * @pdev: Bridge device
4694 * @active: waiting for active or inactive?
4696 * Use this to wait till link becomes active or inactive.
4698 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4700 return pcie_wait_for_link_delay(pdev, active, 100);
4704 * Find maximum D3cold delay required by all the devices on the bus. The
4705 * spec says 100 ms, but firmware can lower it and we allow drivers to
4706 * increase it as well.
4708 * Called with @pci_bus_sem locked for reading.
4710 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4712 const struct pci_dev *pdev;
4713 int min_delay = 100;
4716 list_for_each_entry(pdev, &bus->devices, bus_list) {
4717 if (pdev->d3cold_delay < min_delay)
4718 min_delay = pdev->d3cold_delay;
4719 if (pdev->d3cold_delay > max_delay)
4720 max_delay = pdev->d3cold_delay;
4723 return max(min_delay, max_delay);
4727 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4730 * Handle necessary delays before access to the devices on the secondary
4731 * side of the bridge are permitted after D3cold to D0 transition.
4733 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4734 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4737 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4739 struct pci_dev *child;
4742 if (pci_dev_is_disconnected(dev))
4745 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4748 down_read(&pci_bus_sem);
4751 * We only deal with devices that are present currently on the bus.
4752 * For any hot-added devices the access delay is handled in pciehp
4753 * board_added(). In case of ACPI hotplug the firmware is expected
4754 * to configure the devices before OS is notified.
4756 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4757 up_read(&pci_bus_sem);
4761 /* Take d3cold_delay requirements into account */
4762 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4764 up_read(&pci_bus_sem);
4768 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4770 up_read(&pci_bus_sem);
4773 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4774 * accessing the device after reset (that is 1000 ms + 100 ms). In
4775 * practice this should not be needed because we don't do power
4776 * management for them (see pci_bridge_d3_possible()).
4778 if (!pci_is_pcie(dev)) {
4779 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4780 msleep(1000 + delay);
4785 * For PCIe downstream and root ports that do not support speeds
4786 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4787 * speeds (gen3) we need to wait first for the data link layer to
4790 * However, 100 ms is the minimum and the PCIe spec says the
4791 * software must allow at least 1s before it can determine that the
4792 * device that did not respond is a broken device. There is
4793 * evidence that 100 ms is not always enough, for example certain
4794 * Titan Ridge xHCI controller does not always respond to
4795 * configuration requests if we only wait for 100 ms (see
4796 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4798 * Therefore we wait for 100 ms and check for the device presence.
4799 * If it is still not present give it an additional 100 ms.
4801 if (!pcie_downstream_port(dev))
4805 * Per PCIe r5.0, sec 6.6.1, for downstream ports that support
4806 * speeds > 5 GT/s, we must wait for link training to complete
4807 * before the mandatory delay.
4809 * We can only tell when link training completes via DLL Link
4810 * Active, which is required for downstream ports that support
4811 * speeds > 5 GT/s (sec 7.5.3.6). Unfortunately some common
4812 * devices do not implement Link Active reporting even when it's
4813 * required, so we'll check for that directly instead of checking
4814 * the supported link speed. We assume devices without Link Active
4815 * reporting can train in 100 ms regardless of speed.
4817 if (dev->link_active_reporting) {
4818 pci_dbg(dev, "waiting for link to train\n");
4819 if (!pcie_wait_for_link_delay(dev, true, 0)) {
4820 /* Did not train, no need to wait any further */
4824 pci_dbg(child, "waiting %d ms to become accessible\n", delay);
4827 if (!pci_device_is_present(child)) {
4828 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4833 void pci_reset_secondary_bus(struct pci_dev *dev)
4837 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4838 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4839 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4842 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4843 * this to 2ms to ensure that we meet the minimum requirement.
4847 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4848 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4851 * Trhfa for conventional PCI is 2^25 clock cycles.
4852 * Assuming a minimum 33MHz clock this results in a 1s
4853 * delay before we can consider subordinate devices to
4854 * be re-initialized. PCIe has some ways to shorten this,
4855 * but we don't make use of them yet.
4860 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4862 pci_reset_secondary_bus(dev);
4866 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4867 * @dev: Bridge device
4869 * Use the bridge control register to assert reset on the secondary bus.
4870 * Devices on the secondary bus are left in power-on state.
4872 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4874 pcibios_reset_secondary_bus(dev);
4876 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4878 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4880 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4882 struct pci_dev *pdev;
4884 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4885 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4888 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4895 return pci_bridge_secondary_bus_reset(dev->bus->self);
4898 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4902 if (!hotplug || !try_module_get(hotplug->owner))
4905 if (hotplug->ops->reset_slot)
4906 rc = hotplug->ops->reset_slot(hotplug, probe);
4908 module_put(hotplug->owner);
4913 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4915 struct pci_dev *pdev;
4917 if (dev->subordinate || !dev->slot ||
4918 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4921 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4922 if (pdev != dev && pdev->slot == dev->slot)
4925 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4928 static void pci_dev_lock(struct pci_dev *dev)
4930 pci_cfg_access_lock(dev);
4931 /* block PM suspend, driver probe, etc. */
4932 device_lock(&dev->dev);
4935 /* Return 1 on successful lock, 0 on contention */
4936 static int pci_dev_trylock(struct pci_dev *dev)
4938 if (pci_cfg_access_trylock(dev)) {
4939 if (device_trylock(&dev->dev))
4941 pci_cfg_access_unlock(dev);
4947 static void pci_dev_unlock(struct pci_dev *dev)
4949 device_unlock(&dev->dev);
4950 pci_cfg_access_unlock(dev);
4953 static void pci_dev_save_and_disable(struct pci_dev *dev)
4955 const struct pci_error_handlers *err_handler =
4956 dev->driver ? dev->driver->err_handler : NULL;
4959 * dev->driver->err_handler->reset_prepare() is protected against
4960 * races with ->remove() by the device lock, which must be held by
4963 if (err_handler && err_handler->reset_prepare)
4964 err_handler->reset_prepare(dev);
4967 * Wake-up device prior to save. PM registers default to D0 after
4968 * reset and a simple register restore doesn't reliably return
4969 * to a non-D0 state anyway.
4971 pci_set_power_state(dev, PCI_D0);
4973 pci_save_state(dev);
4975 * Disable the device by clearing the Command register, except for
4976 * INTx-disable which is set. This not only disables MMIO and I/O port
4977 * BARs, but also prevents the device from being Bus Master, preventing
4978 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4979 * compliant devices, INTx-disable prevents legacy interrupts.
4981 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4984 static void pci_dev_restore(struct pci_dev *dev)
4986 const struct pci_error_handlers *err_handler =
4987 dev->driver ? dev->driver->err_handler : NULL;
4989 pci_restore_state(dev);
4992 * dev->driver->err_handler->reset_done() is protected against
4993 * races with ->remove() by the device lock, which must be held by
4996 if (err_handler && err_handler->reset_done)
4997 err_handler->reset_done(dev);
5001 * __pci_reset_function_locked - reset a PCI device function while holding
5002 * the @dev mutex lock.
5003 * @dev: PCI device to reset
5005 * Some devices allow an individual function to be reset without affecting
5006 * other functions in the same device. The PCI device must be responsive
5007 * to PCI config space in order to use this function.
5009 * The device function is presumed to be unused and the caller is holding
5010 * the device mutex lock when this function is called.
5012 * Resetting the device will make the contents of PCI configuration space
5013 * random, so any caller of this must be prepared to reinitialise the
5014 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5017 * Returns 0 if the device function was successfully reset or negative if the
5018 * device doesn't support resetting a single function.
5020 int __pci_reset_function_locked(struct pci_dev *dev)
5027 * A reset method returns -ENOTTY if it doesn't support this device
5028 * and we should try the next method.
5030 * If it returns 0 (success), we're finished. If it returns any
5031 * other error, we're also finished: this indicates that further
5032 * reset mechanisms might be broken on the device.
5034 rc = pci_dev_specific_reset(dev, 0);
5037 if (pcie_has_flr(dev)) {
5042 rc = pci_af_flr(dev, 0);
5045 rc = pci_pm_reset(dev, 0);
5048 rc = pci_dev_reset_slot_function(dev, 0);
5051 return pci_parent_bus_reset(dev, 0);
5053 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5056 * pci_probe_reset_function - check whether the device can be safely reset
5057 * @dev: PCI device to reset
5059 * Some devices allow an individual function to be reset without affecting
5060 * other functions in the same device. The PCI device must be responsive
5061 * to PCI config space in order to use this function.
5063 * Returns 0 if the device function can be reset or negative if the
5064 * device doesn't support resetting a single function.
5066 int pci_probe_reset_function(struct pci_dev *dev)
5072 rc = pci_dev_specific_reset(dev, 1);
5075 if (pcie_has_flr(dev))
5077 rc = pci_af_flr(dev, 1);
5080 rc = pci_pm_reset(dev, 1);
5083 rc = pci_dev_reset_slot_function(dev, 1);
5087 return pci_parent_bus_reset(dev, 1);
5091 * pci_reset_function - quiesce and reset a PCI device function
5092 * @dev: PCI device to reset
5094 * Some devices allow an individual function to be reset without affecting
5095 * other functions in the same device. The PCI device must be responsive
5096 * to PCI config space in order to use this function.
5098 * This function does not just reset the PCI portion of a device, but
5099 * clears all the state associated with the device. This function differs
5100 * from __pci_reset_function_locked() in that it saves and restores device state
5101 * over the reset and takes the PCI device lock.
5103 * Returns 0 if the device function was successfully reset or negative if the
5104 * device doesn't support resetting a single function.
5106 int pci_reset_function(struct pci_dev *dev)
5114 pci_dev_save_and_disable(dev);
5116 rc = __pci_reset_function_locked(dev);
5118 pci_dev_restore(dev);
5119 pci_dev_unlock(dev);
5123 EXPORT_SYMBOL_GPL(pci_reset_function);
5126 * pci_reset_function_locked - quiesce and reset a PCI device function
5127 * @dev: PCI device to reset
5129 * Some devices allow an individual function to be reset without affecting
5130 * other functions in the same device. The PCI device must be responsive
5131 * to PCI config space in order to use this function.
5133 * This function does not just reset the PCI portion of a device, but
5134 * clears all the state associated with the device. This function differs
5135 * from __pci_reset_function_locked() in that it saves and restores device state
5136 * over the reset. It also differs from pci_reset_function() in that it
5137 * requires the PCI device lock to be held.
5139 * Returns 0 if the device function was successfully reset or negative if the
5140 * device doesn't support resetting a single function.
5142 int pci_reset_function_locked(struct pci_dev *dev)
5149 pci_dev_save_and_disable(dev);
5151 rc = __pci_reset_function_locked(dev);
5153 pci_dev_restore(dev);
5157 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5160 * pci_try_reset_function - quiesce and reset a PCI device function
5161 * @dev: PCI device to reset
5163 * Same as above, except return -EAGAIN if unable to lock device.
5165 int pci_try_reset_function(struct pci_dev *dev)
5172 if (!pci_dev_trylock(dev))
5175 pci_dev_save_and_disable(dev);
5176 rc = __pci_reset_function_locked(dev);
5177 pci_dev_restore(dev);
5178 pci_dev_unlock(dev);
5182 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5184 /* Do any devices on or below this bus prevent a bus reset? */
5185 static bool pci_bus_resetable(struct pci_bus *bus)
5187 struct pci_dev *dev;
5190 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5193 list_for_each_entry(dev, &bus->devices, bus_list) {
5194 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5195 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5202 /* Lock devices from the top of the tree down */
5203 static void pci_bus_lock(struct pci_bus *bus)
5205 struct pci_dev *dev;
5207 list_for_each_entry(dev, &bus->devices, bus_list) {
5209 if (dev->subordinate)
5210 pci_bus_lock(dev->subordinate);
5214 /* Unlock devices from the bottom of the tree up */
5215 static void pci_bus_unlock(struct pci_bus *bus)
5217 struct pci_dev *dev;
5219 list_for_each_entry(dev, &bus->devices, bus_list) {
5220 if (dev->subordinate)
5221 pci_bus_unlock(dev->subordinate);
5222 pci_dev_unlock(dev);
5226 /* Return 1 on successful lock, 0 on contention */
5227 static int pci_bus_trylock(struct pci_bus *bus)
5229 struct pci_dev *dev;
5231 list_for_each_entry(dev, &bus->devices, bus_list) {
5232 if (!pci_dev_trylock(dev))
5234 if (dev->subordinate) {
5235 if (!pci_bus_trylock(dev->subordinate)) {
5236 pci_dev_unlock(dev);
5244 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5245 if (dev->subordinate)
5246 pci_bus_unlock(dev->subordinate);
5247 pci_dev_unlock(dev);
5252 /* Do any devices on or below this slot prevent a bus reset? */
5253 static bool pci_slot_resetable(struct pci_slot *slot)
5255 struct pci_dev *dev;
5257 if (slot->bus->self &&
5258 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5261 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5262 if (!dev->slot || dev->slot != slot)
5264 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5265 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5272 /* Lock devices from the top of the tree down */
5273 static void pci_slot_lock(struct pci_slot *slot)
5275 struct pci_dev *dev;
5277 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5278 if (!dev->slot || dev->slot != slot)
5281 if (dev->subordinate)
5282 pci_bus_lock(dev->subordinate);
5286 /* Unlock devices from the bottom of the tree up */
5287 static void pci_slot_unlock(struct pci_slot *slot)
5289 struct pci_dev *dev;
5291 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5292 if (!dev->slot || dev->slot != slot)
5294 if (dev->subordinate)
5295 pci_bus_unlock(dev->subordinate);
5296 pci_dev_unlock(dev);
5300 /* Return 1 on successful lock, 0 on contention */
5301 static int pci_slot_trylock(struct pci_slot *slot)
5303 struct pci_dev *dev;
5305 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5306 if (!dev->slot || dev->slot != slot)
5308 if (!pci_dev_trylock(dev))
5310 if (dev->subordinate) {
5311 if (!pci_bus_trylock(dev->subordinate)) {
5312 pci_dev_unlock(dev);
5320 list_for_each_entry_continue_reverse(dev,
5321 &slot->bus->devices, bus_list) {
5322 if (!dev->slot || dev->slot != slot)
5324 if (dev->subordinate)
5325 pci_bus_unlock(dev->subordinate);
5326 pci_dev_unlock(dev);
5332 * Save and disable devices from the top of the tree down while holding
5333 * the @dev mutex lock for the entire tree.
5335 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5337 struct pci_dev *dev;
5339 list_for_each_entry(dev, &bus->devices, bus_list) {
5340 pci_dev_save_and_disable(dev);
5341 if (dev->subordinate)
5342 pci_bus_save_and_disable_locked(dev->subordinate);
5347 * Restore devices from top of the tree down while holding @dev mutex lock
5348 * for the entire tree. Parent bridges need to be restored before we can
5349 * get to subordinate devices.
5351 static void pci_bus_restore_locked(struct pci_bus *bus)
5353 struct pci_dev *dev;
5355 list_for_each_entry(dev, &bus->devices, bus_list) {
5356 pci_dev_restore(dev);
5357 if (dev->subordinate)
5358 pci_bus_restore_locked(dev->subordinate);
5363 * Save and disable devices from the top of the tree down while holding
5364 * the @dev mutex lock for the entire tree.
5366 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5368 struct pci_dev *dev;
5370 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5371 if (!dev->slot || dev->slot != slot)
5373 pci_dev_save_and_disable(dev);
5374 if (dev->subordinate)
5375 pci_bus_save_and_disable_locked(dev->subordinate);
5380 * Restore devices from top of the tree down while holding @dev mutex lock
5381 * for the entire tree. Parent bridges need to be restored before we can
5382 * get to subordinate devices.
5384 static void pci_slot_restore_locked(struct pci_slot *slot)
5386 struct pci_dev *dev;
5388 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5389 if (!dev->slot || dev->slot != slot)
5391 pci_dev_restore(dev);
5392 if (dev->subordinate)
5393 pci_bus_restore_locked(dev->subordinate);
5397 static int pci_slot_reset(struct pci_slot *slot, int probe)
5401 if (!slot || !pci_slot_resetable(slot))
5405 pci_slot_lock(slot);
5409 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5412 pci_slot_unlock(slot);
5418 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5419 * @slot: PCI slot to probe
5421 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5423 int pci_probe_reset_slot(struct pci_slot *slot)
5425 return pci_slot_reset(slot, 1);
5427 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5430 * __pci_reset_slot - Try to reset a PCI slot
5431 * @slot: PCI slot to reset
5433 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5434 * independent of other slots. For instance, some slots may support slot power
5435 * control. In the case of a 1:1 bus to slot architecture, this function may
5436 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5437 * Generally a slot reset should be attempted before a bus reset. All of the
5438 * function of the slot and any subordinate buses behind the slot are reset
5439 * through this function. PCI config space of all devices in the slot and
5440 * behind the slot is saved before and restored after reset.
5442 * Same as above except return -EAGAIN if the slot cannot be locked
5444 static int __pci_reset_slot(struct pci_slot *slot)
5448 rc = pci_slot_reset(slot, 1);
5452 if (pci_slot_trylock(slot)) {
5453 pci_slot_save_and_disable_locked(slot);
5455 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5456 pci_slot_restore_locked(slot);
5457 pci_slot_unlock(slot);
5464 static int pci_bus_reset(struct pci_bus *bus, int probe)
5468 if (!bus->self || !pci_bus_resetable(bus))
5478 ret = pci_bridge_secondary_bus_reset(bus->self);
5480 pci_bus_unlock(bus);
5486 * pci_bus_error_reset - reset the bridge's subordinate bus
5487 * @bridge: The parent device that connects to the bus to reset
5489 * This function will first try to reset the slots on this bus if the method is
5490 * available. If slot reset fails or is not available, this will fall back to a
5491 * secondary bus reset.
5493 int pci_bus_error_reset(struct pci_dev *bridge)
5495 struct pci_bus *bus = bridge->subordinate;
5496 struct pci_slot *slot;
5501 mutex_lock(&pci_slot_mutex);
5502 if (list_empty(&bus->slots))
5505 list_for_each_entry(slot, &bus->slots, list)
5506 if (pci_probe_reset_slot(slot))
5509 list_for_each_entry(slot, &bus->slots, list)
5510 if (pci_slot_reset(slot, 0))
5513 mutex_unlock(&pci_slot_mutex);
5516 mutex_unlock(&pci_slot_mutex);
5517 return pci_bus_reset(bridge->subordinate, 0);
5521 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5522 * @bus: PCI bus to probe
5524 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5526 int pci_probe_reset_bus(struct pci_bus *bus)
5528 return pci_bus_reset(bus, 1);
5530 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5533 * __pci_reset_bus - Try to reset a PCI bus
5534 * @bus: top level PCI bus to reset
5536 * Same as above except return -EAGAIN if the bus cannot be locked
5538 static int __pci_reset_bus(struct pci_bus *bus)
5542 rc = pci_bus_reset(bus, 1);
5546 if (pci_bus_trylock(bus)) {
5547 pci_bus_save_and_disable_locked(bus);
5549 rc = pci_bridge_secondary_bus_reset(bus->self);
5550 pci_bus_restore_locked(bus);
5551 pci_bus_unlock(bus);
5559 * pci_reset_bus - Try to reset a PCI bus
5560 * @pdev: top level PCI device to reset via slot/bus
5562 * Same as above except return -EAGAIN if the bus cannot be locked
5564 int pci_reset_bus(struct pci_dev *pdev)
5566 return (!pci_probe_reset_slot(pdev->slot)) ?
5567 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5569 EXPORT_SYMBOL_GPL(pci_reset_bus);
5572 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5573 * @dev: PCI device to query
5575 * Returns mmrbc: maximum designed memory read count in bytes or
5576 * appropriate error value.
5578 int pcix_get_max_mmrbc(struct pci_dev *dev)
5583 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5587 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5590 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5592 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5595 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5596 * @dev: PCI device to query
5598 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5601 int pcix_get_mmrbc(struct pci_dev *dev)
5606 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5610 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5613 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5615 EXPORT_SYMBOL(pcix_get_mmrbc);
5618 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5619 * @dev: PCI device to query
5620 * @mmrbc: maximum memory read count in bytes
5621 * valid values are 512, 1024, 2048, 4096
5623 * If possible sets maximum memory read byte count, some bridges have errata
5624 * that prevent this.
5626 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5632 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5635 v = ffs(mmrbc) - 10;
5637 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5641 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5644 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5647 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5650 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5652 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5655 cmd &= ~PCI_X_CMD_MAX_READ;
5657 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5662 EXPORT_SYMBOL(pcix_set_mmrbc);
5665 * pcie_get_readrq - get PCI Express read request size
5666 * @dev: PCI device to query
5668 * Returns maximum memory read request in bytes or appropriate error value.
5670 int pcie_get_readrq(struct pci_dev *dev)
5674 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5676 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5678 EXPORT_SYMBOL(pcie_get_readrq);
5681 * pcie_set_readrq - set PCI Express maximum memory read request
5682 * @dev: PCI device to query
5683 * @rq: maximum memory read count in bytes
5684 * valid values are 128, 256, 512, 1024, 2048, 4096
5686 * If possible sets maximum memory read request in bytes
5688 int pcie_set_readrq(struct pci_dev *dev, int rq)
5692 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5696 * If using the "performance" PCIe config, we clamp the read rq
5697 * size to the max packet size to keep the host bridge from
5698 * generating requests larger than we can cope with.
5700 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5701 int mps = pcie_get_mps(dev);
5707 v = (ffs(rq) - 8) << 12;
5709 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5710 PCI_EXP_DEVCTL_READRQ, v);
5712 EXPORT_SYMBOL(pcie_set_readrq);
5715 * pcie_get_mps - get PCI Express maximum payload size
5716 * @dev: PCI device to query
5718 * Returns maximum payload size in bytes
5720 int pcie_get_mps(struct pci_dev *dev)
5724 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5726 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5728 EXPORT_SYMBOL(pcie_get_mps);
5731 * pcie_set_mps - set PCI Express maximum payload size
5732 * @dev: PCI device to query
5733 * @mps: maximum payload size in bytes
5734 * valid values are 128, 256, 512, 1024, 2048, 4096
5736 * If possible sets maximum payload size
5738 int pcie_set_mps(struct pci_dev *dev, int mps)
5742 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5746 if (v > dev->pcie_mpss)
5750 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5751 PCI_EXP_DEVCTL_PAYLOAD, v);
5753 EXPORT_SYMBOL(pcie_set_mps);
5756 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5757 * device and its bandwidth limitation
5758 * @dev: PCI device to query
5759 * @limiting_dev: storage for device causing the bandwidth limitation
5760 * @speed: storage for speed of limiting device
5761 * @width: storage for width of limiting device
5763 * Walk up the PCI device chain and find the point where the minimum
5764 * bandwidth is available. Return the bandwidth available there and (if
5765 * limiting_dev, speed, and width pointers are supplied) information about
5766 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5769 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5770 enum pci_bus_speed *speed,
5771 enum pcie_link_width *width)
5774 enum pci_bus_speed next_speed;
5775 enum pcie_link_width next_width;
5779 *speed = PCI_SPEED_UNKNOWN;
5781 *width = PCIE_LNK_WIDTH_UNKNOWN;
5786 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5788 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5789 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5790 PCI_EXP_LNKSTA_NLW_SHIFT;
5792 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5794 /* Check if current device limits the total bandwidth */
5795 if (!bw || next_bw <= bw) {
5799 *limiting_dev = dev;
5801 *speed = next_speed;
5803 *width = next_width;
5806 dev = pci_upstream_bridge(dev);
5811 EXPORT_SYMBOL(pcie_bandwidth_available);
5814 * pcie_get_speed_cap - query for the PCI device's link speed capability
5815 * @dev: PCI device to query
5817 * Query the PCI device speed capability. Return the maximum link speed
5818 * supported by the device.
5820 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5822 u32 lnkcap2, lnkcap;
5825 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5826 * implementation note there recommends using the Supported Link
5827 * Speeds Vector in Link Capabilities 2 when supported.
5829 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5830 * should use the Supported Link Speeds field in Link Capabilities,
5831 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5833 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5835 /* PCIe r3.0-compliant */
5837 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5839 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5840 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5841 return PCIE_SPEED_5_0GT;
5842 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5843 return PCIE_SPEED_2_5GT;
5845 return PCI_SPEED_UNKNOWN;
5847 EXPORT_SYMBOL(pcie_get_speed_cap);
5850 * pcie_get_width_cap - query for the PCI device's link width capability
5851 * @dev: PCI device to query
5853 * Query the PCI device width capability. Return the maximum link width
5854 * supported by the device.
5856 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5860 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5862 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5864 return PCIE_LNK_WIDTH_UNKNOWN;
5866 EXPORT_SYMBOL(pcie_get_width_cap);
5869 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5871 * @speed: storage for link speed
5872 * @width: storage for link width
5874 * Calculate a PCI device's link bandwidth by querying for its link speed
5875 * and width, multiplying them, and applying encoding overhead. The result
5876 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5878 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5879 enum pcie_link_width *width)
5881 *speed = pcie_get_speed_cap(dev);
5882 *width = pcie_get_width_cap(dev);
5884 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5887 return *width * PCIE_SPEED2MBS_ENC(*speed);
5891 * __pcie_print_link_status - Report the PCI device's link speed and width
5892 * @dev: PCI device to query
5893 * @verbose: Print info even when enough bandwidth is available
5895 * If the available bandwidth at the device is less than the device is
5896 * capable of, report the device's maximum possible bandwidth and the
5897 * upstream link that limits its performance. If @verbose, always print
5898 * the available bandwidth, even if the device isn't constrained.
5900 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5902 enum pcie_link_width width, width_cap;
5903 enum pci_bus_speed speed, speed_cap;
5904 struct pci_dev *limiting_dev = NULL;
5905 u32 bw_avail, bw_cap;
5907 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5908 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5910 if (bw_avail >= bw_cap && verbose)
5911 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5912 bw_cap / 1000, bw_cap % 1000,
5913 pci_speed_string(speed_cap), width_cap);
5914 else if (bw_avail < bw_cap)
5915 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5916 bw_avail / 1000, bw_avail % 1000,
5917 pci_speed_string(speed), width,
5918 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5919 bw_cap / 1000, bw_cap % 1000,
5920 pci_speed_string(speed_cap), width_cap);
5924 * pcie_print_link_status - Report the PCI device's link speed and width
5925 * @dev: PCI device to query
5927 * Report the available bandwidth at the device.
5929 void pcie_print_link_status(struct pci_dev *dev)
5931 __pcie_print_link_status(dev, true);
5933 EXPORT_SYMBOL(pcie_print_link_status);
5936 * pci_select_bars - Make BAR mask from the type of resource
5937 * @dev: the PCI device for which BAR mask is made
5938 * @flags: resource type mask to be selected
5940 * This helper routine makes bar mask from the type of resource.
5942 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5945 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5946 if (pci_resource_flags(dev, i) & flags)
5950 EXPORT_SYMBOL(pci_select_bars);
5952 /* Some architectures require additional programming to enable VGA */
5953 static arch_set_vga_state_t arch_set_vga_state;
5955 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5957 arch_set_vga_state = func; /* NULL disables */
5960 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5961 unsigned int command_bits, u32 flags)
5963 if (arch_set_vga_state)
5964 return arch_set_vga_state(dev, decode, command_bits,
5970 * pci_set_vga_state - set VGA decode state on device and parents if requested
5971 * @dev: the PCI device
5972 * @decode: true = enable decoding, false = disable decoding
5973 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5974 * @flags: traverse ancestors and change bridges
5975 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5977 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5978 unsigned int command_bits, u32 flags)
5980 struct pci_bus *bus;
5981 struct pci_dev *bridge;
5985 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5987 /* ARCH specific VGA enables */
5988 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5992 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5993 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5995 cmd |= command_bits;
5997 cmd &= ~command_bits;
5998 pci_write_config_word(dev, PCI_COMMAND, cmd);
6001 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6008 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6011 cmd |= PCI_BRIDGE_CTL_VGA;
6013 cmd &= ~PCI_BRIDGE_CTL_VGA;
6014 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6023 bool pci_pr3_present(struct pci_dev *pdev)
6025 struct acpi_device *adev;
6030 adev = ACPI_COMPANION(&pdev->dev);
6034 return adev->power.flags.power_resources &&
6035 acpi_has_method(adev->handle, "_PR3");
6037 EXPORT_SYMBOL_GPL(pci_pr3_present);
6041 * pci_add_dma_alias - Add a DMA devfn alias for a device
6042 * @dev: the PCI device for which alias is added
6043 * @devfn_from: alias slot and function
6044 * @nr_devfns: number of subsequent devfns to alias
6046 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6047 * which is used to program permissible bus-devfn source addresses for DMA
6048 * requests in an IOMMU. These aliases factor into IOMMU group creation
6049 * and are useful for devices generating DMA requests beyond or different
6050 * from their logical bus-devfn. Examples include device quirks where the
6051 * device simply uses the wrong devfn, as well as non-transparent bridges
6052 * where the alias may be a proxy for devices in another domain.
6054 * IOMMU group creation is performed during device discovery or addition,
6055 * prior to any potential DMA mapping and therefore prior to driver probing
6056 * (especially for userspace assigned devices where IOMMU group definition
6057 * cannot be left as a userspace activity). DMA aliases should therefore
6058 * be configured via quirks, such as the PCI fixup header quirk.
6060 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6064 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6065 devfn_to = devfn_from + nr_devfns - 1;
6067 if (!dev->dma_alias_mask)
6068 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6069 if (!dev->dma_alias_mask) {
6070 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6074 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6077 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6078 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6079 else if (nr_devfns > 1)
6080 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6081 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6082 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6085 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6087 return (dev1->dma_alias_mask &&
6088 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6089 (dev2->dma_alias_mask &&
6090 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6091 pci_real_dma_dev(dev1) == dev2 ||
6092 pci_real_dma_dev(dev2) == dev1;
6095 bool pci_device_is_present(struct pci_dev *pdev)
6099 if (pci_dev_is_disconnected(pdev))
6101 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6103 EXPORT_SYMBOL_GPL(pci_device_is_present);
6105 void pci_ignore_hotplug(struct pci_dev *dev)
6107 struct pci_dev *bridge = dev->bus->self;
6109 dev->ignore_hotplug = 1;
6110 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6112 bridge->ignore_hotplug = 1;
6114 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6117 * pci_real_dma_dev - Get PCI DMA device for PCI device
6118 * @dev: the PCI device that may have a PCI DMA alias
6120 * Permits the platform to provide architecture-specific functionality to
6121 * devices needing to alias DMA to another PCI device on another PCI bus. If
6122 * the PCI device is on the same bus, it is recommended to use
6123 * pci_add_dma_alias(). This is the default implementation. Architecture
6124 * implementations can override this.
6126 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6131 resource_size_t __weak pcibios_default_alignment(void)
6137 * Arches that don't want to expose struct resource to userland as-is in
6138 * sysfs and /proc can implement their own pci_resource_to_user().
6140 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6141 const struct resource *rsrc,
6142 resource_size_t *start, resource_size_t *end)
6144 *start = rsrc->start;
6148 static char *resource_alignment_param;
6149 static DEFINE_SPINLOCK(resource_alignment_lock);
6152 * pci_specified_resource_alignment - get resource alignment specified by user.
6153 * @dev: the PCI device to get
6154 * @resize: whether or not to change resources' size when reassigning alignment
6156 * RETURNS: Resource alignment if it is specified.
6157 * Zero if it is not specified.
6159 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6162 int align_order, count;
6163 resource_size_t align = pcibios_default_alignment();
6167 spin_lock(&resource_alignment_lock);
6168 p = resource_alignment_param;
6171 if (pci_has_flag(PCI_PROBE_ONLY)) {
6173 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6179 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6186 ret = pci_dev_str_match(dev, p, &p);
6189 if (align_order == -1)
6192 align = 1 << align_order;
6194 } else if (ret < 0) {
6195 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6200 if (*p != ';' && *p != ',') {
6201 /* End of param or invalid format */
6207 spin_unlock(&resource_alignment_lock);
6211 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6212 resource_size_t align, bool resize)
6214 struct resource *r = &dev->resource[bar];
6215 resource_size_t size;
6217 if (!(r->flags & IORESOURCE_MEM))
6220 if (r->flags & IORESOURCE_PCI_FIXED) {
6221 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6222 bar, r, (unsigned long long)align);
6226 size = resource_size(r);
6231 * Increase the alignment of the resource. There are two ways we
6234 * 1) Increase the size of the resource. BARs are aligned on their
6235 * size, so when we reallocate space for this resource, we'll
6236 * allocate it with the larger alignment. This also prevents
6237 * assignment of any other BARs inside the alignment region, so
6238 * if we're requesting page alignment, this means no other BARs
6239 * will share the page.
6241 * The disadvantage is that this makes the resource larger than
6242 * the hardware BAR, which may break drivers that compute things
6243 * based on the resource size, e.g., to find registers at a
6244 * fixed offset before the end of the BAR.
6246 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6247 * set r->start to the desired alignment. By itself this
6248 * doesn't prevent other BARs being put inside the alignment
6249 * region, but if we realign *every* resource of every device in
6250 * the system, none of them will share an alignment region.
6252 * When the user has requested alignment for only some devices via
6253 * the "pci=resource_alignment" argument, "resize" is true and we
6254 * use the first method. Otherwise we assume we're aligning all
6255 * devices and we use the second.
6258 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6259 bar, r, (unsigned long long)align);
6265 r->flags &= ~IORESOURCE_SIZEALIGN;
6266 r->flags |= IORESOURCE_STARTALIGN;
6268 r->end = r->start + size - 1;
6270 r->flags |= IORESOURCE_UNSET;
6274 * This function disables memory decoding and releases memory resources
6275 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6276 * It also rounds up size to specified alignment.
6277 * Later on, the kernel will assign page-aligned memory resource back
6280 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6284 resource_size_t align;
6286 bool resize = false;
6289 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6290 * 3.4.1.11. Their resources are allocated from the space
6291 * described by the VF BARx register in the PF's SR-IOV capability.
6292 * We can't influence their alignment here.
6297 /* check if specified PCI is target device to reassign */
6298 align = pci_specified_resource_alignment(dev, &resize);
6302 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6303 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6304 pci_warn(dev, "Can't reassign resources to host bridge\n");
6308 pci_read_config_word(dev, PCI_COMMAND, &command);
6309 command &= ~PCI_COMMAND_MEMORY;
6310 pci_write_config_word(dev, PCI_COMMAND, command);
6312 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6313 pci_request_resource_alignment(dev, i, align, resize);
6316 * Need to disable bridge's resource window,
6317 * to enable the kernel to reassign new resource
6320 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6321 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6322 r = &dev->resource[i];
6323 if (!(r->flags & IORESOURCE_MEM))
6325 r->flags |= IORESOURCE_UNSET;
6326 r->end = resource_size(r) - 1;
6329 pci_disable_bridge_window(dev);
6333 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6337 spin_lock(&resource_alignment_lock);
6338 if (resource_alignment_param)
6339 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6340 spin_unlock(&resource_alignment_lock);
6343 * When set by the command line, resource_alignment_param will not
6344 * have a trailing line feed, which is ugly. So conditionally add
6347 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6348 buf[count - 1] = '\n';
6355 static ssize_t resource_alignment_store(struct bus_type *bus,
6356 const char *buf, size_t count)
6358 char *param = kstrndup(buf, count, GFP_KERNEL);
6363 spin_lock(&resource_alignment_lock);
6364 kfree(resource_alignment_param);
6365 resource_alignment_param = param;
6366 spin_unlock(&resource_alignment_lock);
6370 static BUS_ATTR_RW(resource_alignment);
6372 static int __init pci_resource_alignment_sysfs_init(void)
6374 return bus_create_file(&pci_bus_type,
6375 &bus_attr_resource_alignment);
6377 late_initcall(pci_resource_alignment_sysfs_init);
6379 static void pci_no_domains(void)
6381 #ifdef CONFIG_PCI_DOMAINS
6382 pci_domains_supported = 0;
6386 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6387 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6389 static int pci_get_new_domain_nr(void)
6391 return atomic_inc_return(&__domain_nr);
6394 static int of_pci_bus_find_domain_nr(struct device *parent)
6396 static int use_dt_domains = -1;
6400 domain = of_get_pci_domain_nr(parent->of_node);
6403 * Check DT domain and use_dt_domains values.
6405 * If DT domain property is valid (domain >= 0) and
6406 * use_dt_domains != 0, the DT assignment is valid since this means
6407 * we have not previously allocated a domain number by using
6408 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6409 * 1, to indicate that we have just assigned a domain number from
6412 * If DT domain property value is not valid (ie domain < 0), and we
6413 * have not previously assigned a domain number from DT
6414 * (use_dt_domains != 1) we should assign a domain number by
6417 * pci_get_new_domain_nr()
6419 * API and update the use_dt_domains value to keep track of method we
6420 * are using to assign domain numbers (use_dt_domains = 0).
6422 * All other combinations imply we have a platform that is trying
6423 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6424 * which is a recipe for domain mishandling and it is prevented by
6425 * invalidating the domain value (domain = -1) and printing a
6426 * corresponding error.
6428 if (domain >= 0 && use_dt_domains) {
6430 } else if (domain < 0 && use_dt_domains != 1) {
6432 domain = pci_get_new_domain_nr();
6435 pr_err("Node %pOF has ", parent->of_node);
6436 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6443 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6445 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6446 acpi_pci_bus_find_domain_nr(bus);
6451 * pci_ext_cfg_avail - can we access extended PCI config space?
6453 * Returns 1 if we can access PCI extended config space (offsets
6454 * greater than 0xff). This is the default implementation. Architecture
6455 * implementations can override this.
6457 int __weak pci_ext_cfg_avail(void)
6462 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6465 EXPORT_SYMBOL(pci_fixup_cardbus);
6467 static int __init pci_setup(char *str)
6470 char *k = strchr(str, ',');
6473 if (*str && (str = pcibios_setup(str)) && *str) {
6474 if (!strcmp(str, "nomsi")) {
6476 } else if (!strncmp(str, "noats", 5)) {
6477 pr_info("PCIe: ATS is disabled\n");
6478 pcie_ats_disabled = true;
6479 } else if (!strcmp(str, "noaer")) {
6481 } else if (!strcmp(str, "earlydump")) {
6482 pci_early_dump = true;
6483 } else if (!strncmp(str, "realloc=", 8)) {
6484 pci_realloc_get_opt(str + 8);
6485 } else if (!strncmp(str, "realloc", 7)) {
6486 pci_realloc_get_opt("on");
6487 } else if (!strcmp(str, "nodomains")) {
6489 } else if (!strncmp(str, "noari", 5)) {
6490 pcie_ari_disabled = true;
6491 } else if (!strncmp(str, "cbiosize=", 9)) {
6492 pci_cardbus_io_size = memparse(str + 9, &str);
6493 } else if (!strncmp(str, "cbmemsize=", 10)) {
6494 pci_cardbus_mem_size = memparse(str + 10, &str);
6495 } else if (!strncmp(str, "resource_alignment=", 19)) {
6496 resource_alignment_param = str + 19;
6497 } else if (!strncmp(str, "ecrc=", 5)) {
6498 pcie_ecrc_get_policy(str + 5);
6499 } else if (!strncmp(str, "hpiosize=", 9)) {
6500 pci_hotplug_io_size = memparse(str + 9, &str);
6501 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6502 pci_hotplug_mmio_size = memparse(str + 11, &str);
6503 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6504 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6505 } else if (!strncmp(str, "hpmemsize=", 10)) {
6506 pci_hotplug_mmio_size = memparse(str + 10, &str);
6507 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6508 } else if (!strncmp(str, "hpbussize=", 10)) {
6509 pci_hotplug_bus_size =
6510 simple_strtoul(str + 10, &str, 0);
6511 if (pci_hotplug_bus_size > 0xff)
6512 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6513 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6514 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6515 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6516 pcie_bus_config = PCIE_BUS_SAFE;
6517 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6518 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6519 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6520 pcie_bus_config = PCIE_BUS_PEER2PEER;
6521 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6522 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6523 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6524 disable_acs_redir_param = str + 18;
6526 pr_err("PCI: Unknown option `%s'\n", str);
6533 early_param("pci", pci_setup);
6536 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6537 * in pci_setup(), above, to point to data in the __initdata section which
6538 * will be freed after the init sequence is complete. We can't allocate memory
6539 * in pci_setup() because some architectures do not have any memory allocation
6540 * service available during an early_param() call. So we allocate memory and
6541 * copy the variable here before the init section is freed.
6544 static int __init pci_realloc_setup_params(void)
6546 resource_alignment_param = kstrdup(resource_alignment_param,
6548 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6552 pure_initcall(pci_realloc_setup_params);