1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
60 #include <asm/tlbflush.h>
61 #include <asm/div64.h>
63 #include <linux/swapops.h>
64 #include <linux/balloon_compaction.h>
65 #include <linux/sched/sysctl.h>
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/vmscan.h>
74 /* How many pages shrink_list() should reclaim */
75 unsigned long nr_to_reclaim;
78 * Nodemask of nodes allowed by the caller. If NULL, all nodes
84 * The memory cgroup that hit its limit and as a result is the
85 * primary target of this reclaim invocation.
87 struct mem_cgroup *target_mem_cgroup;
90 * Scan pressure balancing between anon and file LRUs
92 unsigned long anon_cost;
93 unsigned long file_cost;
95 /* Can active folios be deactivated as part of reclaim? */
96 #define DEACTIVATE_ANON 1
97 #define DEACTIVATE_FILE 2
98 unsigned int may_deactivate:2;
99 unsigned int force_deactivate:1;
100 unsigned int skipped_deactivate:1;
102 /* Writepage batching in laptop mode; RECLAIM_WRITE */
103 unsigned int may_writepage:1;
105 /* Can mapped folios be reclaimed? */
106 unsigned int may_unmap:1;
108 /* Can folios be swapped as part of reclaim? */
109 unsigned int may_swap:1;
111 /* Not allow cache_trim_mode to be turned on as part of reclaim? */
112 unsigned int no_cache_trim_mode:1;
114 /* Has cache_trim_mode failed at least once? */
115 unsigned int cache_trim_mode_failed:1;
117 /* Proactive reclaim invoked by userspace through memory.reclaim */
118 unsigned int proactive:1;
121 * Cgroup memory below memory.low is protected as long as we
122 * don't threaten to OOM. If any cgroup is reclaimed at
123 * reduced force or passed over entirely due to its memory.low
124 * setting (memcg_low_skipped), and nothing is reclaimed as a
125 * result, then go back for one more cycle that reclaims the protected
126 * memory (memcg_low_reclaim) to avert OOM.
128 unsigned int memcg_low_reclaim:1;
129 unsigned int memcg_low_skipped:1;
131 unsigned int hibernation_mode:1;
133 /* One of the zones is ready for compaction */
134 unsigned int compaction_ready:1;
136 /* There is easily reclaimable cold cache in the current node */
137 unsigned int cache_trim_mode:1;
139 /* The file folios on the current node are dangerously low */
140 unsigned int file_is_tiny:1;
142 /* Always discard instead of demoting to lower tier memory */
143 unsigned int no_demotion:1;
145 /* Allocation order */
148 /* Scan (total_size >> priority) pages at once */
151 /* The highest zone to isolate folios for reclaim from */
154 /* This context's GFP mask */
157 /* Incremented by the number of inactive pages that were scanned */
158 unsigned long nr_scanned;
160 /* Number of pages freed so far during a call to shrink_zones() */
161 unsigned long nr_reclaimed;
165 unsigned int unqueued_dirty;
166 unsigned int congested;
167 unsigned int writeback;
168 unsigned int immediate;
169 unsigned int file_taken;
173 /* for recording the reclaimed slab by now */
174 struct reclaim_state reclaim_state;
177 #ifdef ARCH_HAS_PREFETCHW
178 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
180 if ((_folio)->lru.prev != _base) { \
181 struct folio *prev; \
183 prev = lru_to_folio(&(_folio->lru)); \
184 prefetchw(&prev->_field); \
188 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
192 * From 0 .. 200. Higher means more swappy.
194 int vm_swappiness = 60;
198 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
199 static bool cgroup_reclaim(struct scan_control *sc)
201 return sc->target_mem_cgroup;
205 * Returns true for reclaim on the root cgroup. This is true for direct
206 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
208 static bool root_reclaim(struct scan_control *sc)
210 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
214 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
215 * @sc: scan_control in question
217 * The normal page dirty throttling mechanism in balance_dirty_pages() is
218 * completely broken with the legacy memcg and direct stalling in
219 * shrink_folio_list() is used for throttling instead, which lacks all the
220 * niceties such as fairness, adaptive pausing, bandwidth proportional
221 * allocation and configurability.
223 * This function tests whether the vmscan currently in progress can assume
224 * that the normal dirty throttling mechanism is operational.
226 static bool writeback_throttling_sane(struct scan_control *sc)
228 if (!cgroup_reclaim(sc))
230 #ifdef CONFIG_CGROUP_WRITEBACK
231 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
237 static bool cgroup_reclaim(struct scan_control *sc)
242 static bool root_reclaim(struct scan_control *sc)
247 static bool writeback_throttling_sane(struct scan_control *sc)
253 static void set_task_reclaim_state(struct task_struct *task,
254 struct reclaim_state *rs)
256 /* Check for an overwrite */
257 WARN_ON_ONCE(rs && task->reclaim_state);
259 /* Check for the nulling of an already-nulled member */
260 WARN_ON_ONCE(!rs && !task->reclaim_state);
262 task->reclaim_state = rs;
266 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
267 * scan_control->nr_reclaimed.
269 static void flush_reclaim_state(struct scan_control *sc)
272 * Currently, reclaim_state->reclaimed includes three types of pages
273 * freed outside of vmscan:
275 * (2) Clean file pages from pruned inodes (on highmem systems).
276 * (3) XFS freed buffer pages.
278 * For all of these cases, we cannot universally link the pages to a
279 * single memcg. For example, a memcg-aware shrinker can free one object
280 * charged to the target memcg, causing an entire page to be freed.
281 * If we count the entire page as reclaimed from the memcg, we end up
282 * overestimating the reclaimed amount (potentially under-reclaiming).
284 * Only count such pages for global reclaim to prevent under-reclaiming
285 * from the target memcg; preventing unnecessary retries during memcg
286 * charging and false positives from proactive reclaim.
288 * For uncommon cases where the freed pages were actually mostly
289 * charged to the target memcg, we end up underestimating the reclaimed
290 * amount. This should be fine. The freed pages will be uncharged
291 * anyway, even if they are not counted here properly, and we will be
292 * able to make forward progress in charging (which is usually in a
295 * We can go one step further, and report the uncharged objcg pages in
296 * memcg reclaim, to make reporting more accurate and reduce
297 * underestimation, but it's probably not worth the complexity for now.
299 if (current->reclaim_state && root_reclaim(sc)) {
300 sc->nr_reclaimed += current->reclaim_state->reclaimed;
301 current->reclaim_state->reclaimed = 0;
305 static bool can_demote(int nid, struct scan_control *sc)
307 if (!numa_demotion_enabled)
309 if (sc && sc->no_demotion)
311 if (next_demotion_node(nid) == NUMA_NO_NODE)
317 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
319 struct scan_control *sc)
323 * For non-memcg reclaim, is there
324 * space in any swap device?
326 if (get_nr_swap_pages() > 0)
329 /* Is the memcg below its swap limit? */
330 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
335 * The page can not be swapped.
337 * Can it be reclaimed from this node via demotion?
339 return can_demote(nid, sc);
343 * This misses isolated folios which are not accounted for to save counters.
344 * As the data only determines if reclaim or compaction continues, it is
345 * not expected that isolated folios will be a dominating factor.
347 unsigned long zone_reclaimable_pages(struct zone *zone)
351 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
352 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
353 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
354 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
355 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
361 * lruvec_lru_size - Returns the number of pages on the given LRU list.
362 * @lruvec: lru vector
364 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
366 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
369 unsigned long size = 0;
372 for (zid = 0; zid <= zone_idx; zid++) {
373 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
375 if (!managed_zone(zone))
378 if (!mem_cgroup_disabled())
379 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
381 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
386 static unsigned long drop_slab_node(int nid)
388 unsigned long freed = 0;
389 struct mem_cgroup *memcg = NULL;
391 memcg = mem_cgroup_iter(NULL, NULL, NULL);
393 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
394 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
407 for_each_online_node(nid) {
408 if (fatal_signal_pending(current))
411 freed += drop_slab_node(nid);
413 } while ((freed >> shift++) > 1);
416 static int reclaimer_offset(void)
418 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
419 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
420 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
421 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
422 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
423 PGSCAN_DIRECT - PGSCAN_KSWAPD);
424 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
425 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
427 if (current_is_kswapd())
429 if (current_is_khugepaged())
430 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
431 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
434 static inline int is_page_cache_freeable(struct folio *folio)
437 * A freeable page cache folio is referenced only by the caller
438 * that isolated the folio, the page cache and optional filesystem
439 * private data at folio->private.
441 return folio_ref_count(folio) - folio_test_private(folio) ==
442 1 + folio_nr_pages(folio);
446 * We detected a synchronous write error writing a folio out. Probably
447 * -ENOSPC. We need to propagate that into the address_space for a subsequent
448 * fsync(), msync() or close().
450 * The tricky part is that after writepage we cannot touch the mapping: nothing
451 * prevents it from being freed up. But we have a ref on the folio and once
452 * that folio is locked, the mapping is pinned.
454 * We're allowed to run sleeping folio_lock() here because we know the caller has
457 static void handle_write_error(struct address_space *mapping,
458 struct folio *folio, int error)
461 if (folio_mapping(folio) == mapping)
462 mapping_set_error(mapping, error);
466 static bool skip_throttle_noprogress(pg_data_t *pgdat)
468 int reclaimable = 0, write_pending = 0;
472 * If kswapd is disabled, reschedule if necessary but do not
473 * throttle as the system is likely near OOM.
475 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
479 * If there are a lot of dirty/writeback folios then do not
480 * throttle as throttling will occur when the folios cycle
481 * towards the end of the LRU if still under writeback.
483 for (i = 0; i < MAX_NR_ZONES; i++) {
484 struct zone *zone = pgdat->node_zones + i;
486 if (!managed_zone(zone))
489 reclaimable += zone_reclaimable_pages(zone);
490 write_pending += zone_page_state_snapshot(zone,
491 NR_ZONE_WRITE_PENDING);
493 if (2 * write_pending <= reclaimable)
499 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
501 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
506 * Do not throttle user workers, kthreads other than kswapd or
507 * workqueues. They may be required for reclaim to make
508 * forward progress (e.g. journalling workqueues or kthreads).
510 if (!current_is_kswapd() &&
511 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
517 * These figures are pulled out of thin air.
518 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
519 * parallel reclaimers which is a short-lived event so the timeout is
520 * short. Failing to make progress or waiting on writeback are
521 * potentially long-lived events so use a longer timeout. This is shaky
522 * logic as a failure to make progress could be due to anything from
523 * writeback to a slow device to excessive referenced folios at the tail
524 * of the inactive LRU.
527 case VMSCAN_THROTTLE_WRITEBACK:
530 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
531 WRITE_ONCE(pgdat->nr_reclaim_start,
532 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
536 case VMSCAN_THROTTLE_CONGESTED:
538 case VMSCAN_THROTTLE_NOPROGRESS:
539 if (skip_throttle_noprogress(pgdat)) {
547 case VMSCAN_THROTTLE_ISOLATED:
556 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
557 ret = schedule_timeout(timeout);
558 finish_wait(wqh, &wait);
560 if (reason == VMSCAN_THROTTLE_WRITEBACK)
561 atomic_dec(&pgdat->nr_writeback_throttled);
563 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
564 jiffies_to_usecs(timeout - ret),
569 * Account for folios written if tasks are throttled waiting on dirty
570 * folios to clean. If enough folios have been cleaned since throttling
571 * started then wakeup the throttled tasks.
573 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
576 unsigned long nr_written;
578 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
581 * This is an inaccurate read as the per-cpu deltas may not
582 * be synchronised. However, given that the system is
583 * writeback throttled, it is not worth taking the penalty
584 * of getting an accurate count. At worst, the throttle
585 * timeout guarantees forward progress.
587 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
588 READ_ONCE(pgdat->nr_reclaim_start);
590 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
591 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
594 /* possible outcome of pageout() */
596 /* failed to write folio out, folio is locked */
598 /* move folio to the active list, folio is locked */
600 /* folio has been sent to the disk successfully, folio is unlocked */
602 /* folio is clean and locked */
607 * pageout is called by shrink_folio_list() for each dirty folio.
608 * Calls ->writepage().
610 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
611 struct swap_iocb **plug)
614 * If the folio is dirty, only perform writeback if that write
615 * will be non-blocking. To prevent this allocation from being
616 * stalled by pagecache activity. But note that there may be
617 * stalls if we need to run get_block(). We could test
618 * PagePrivate for that.
620 * If this process is currently in __generic_file_write_iter() against
621 * this folio's queue, we can perform writeback even if that
624 * If the folio is swapcache, write it back even if that would
625 * block, for some throttling. This happens by accident, because
626 * swap_backing_dev_info is bust: it doesn't reflect the
627 * congestion state of the swapdevs. Easy to fix, if needed.
629 if (!is_page_cache_freeable(folio))
633 * Some data journaling orphaned folios can have
634 * folio->mapping == NULL while being dirty with clean buffers.
636 if (folio_test_private(folio)) {
637 if (try_to_free_buffers(folio)) {
638 folio_clear_dirty(folio);
639 pr_info("%s: orphaned folio\n", __func__);
645 if (mapping->a_ops->writepage == NULL)
646 return PAGE_ACTIVATE;
648 if (folio_clear_dirty_for_io(folio)) {
650 struct writeback_control wbc = {
651 .sync_mode = WB_SYNC_NONE,
652 .nr_to_write = SWAP_CLUSTER_MAX,
654 .range_end = LLONG_MAX,
659 folio_set_reclaim(folio);
660 res = mapping->a_ops->writepage(&folio->page, &wbc);
662 handle_write_error(mapping, folio, res);
663 if (res == AOP_WRITEPAGE_ACTIVATE) {
664 folio_clear_reclaim(folio);
665 return PAGE_ACTIVATE;
668 if (!folio_test_writeback(folio)) {
669 /* synchronous write or broken a_ops? */
670 folio_clear_reclaim(folio);
672 trace_mm_vmscan_write_folio(folio);
673 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
681 * Same as remove_mapping, but if the folio is removed from the mapping, it
682 * gets returned with a refcount of 0.
684 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
685 bool reclaimed, struct mem_cgroup *target_memcg)
690 BUG_ON(!folio_test_locked(folio));
691 BUG_ON(mapping != folio_mapping(folio));
693 if (!folio_test_swapcache(folio))
694 spin_lock(&mapping->host->i_lock);
695 xa_lock_irq(&mapping->i_pages);
697 * The non racy check for a busy folio.
699 * Must be careful with the order of the tests. When someone has
700 * a ref to the folio, it may be possible that they dirty it then
701 * drop the reference. So if the dirty flag is tested before the
702 * refcount here, then the following race may occur:
704 * get_user_pages(&page);
705 * [user mapping goes away]
707 * !folio_test_dirty(folio) [good]
708 * folio_set_dirty(folio);
710 * !refcount(folio) [good, discard it]
712 * [oops, our write_to data is lost]
714 * Reversing the order of the tests ensures such a situation cannot
715 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
716 * load is not satisfied before that of folio->_refcount.
718 * Note that if the dirty flag is always set via folio_mark_dirty,
719 * and thus under the i_pages lock, then this ordering is not required.
721 refcount = 1 + folio_nr_pages(folio);
722 if (!folio_ref_freeze(folio, refcount))
724 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
725 if (unlikely(folio_test_dirty(folio))) {
726 folio_ref_unfreeze(folio, refcount);
730 if (folio_test_swapcache(folio)) {
731 swp_entry_t swap = folio->swap;
733 if (reclaimed && !mapping_exiting(mapping))
734 shadow = workingset_eviction(folio, target_memcg);
735 __delete_from_swap_cache(folio, swap, shadow);
736 mem_cgroup_swapout(folio, swap);
737 xa_unlock_irq(&mapping->i_pages);
738 put_swap_folio(folio, swap);
740 void (*free_folio)(struct folio *);
742 free_folio = mapping->a_ops->free_folio;
744 * Remember a shadow entry for reclaimed file cache in
745 * order to detect refaults, thus thrashing, later on.
747 * But don't store shadows in an address space that is
748 * already exiting. This is not just an optimization,
749 * inode reclaim needs to empty out the radix tree or
750 * the nodes are lost. Don't plant shadows behind its
753 * We also don't store shadows for DAX mappings because the
754 * only page cache folios found in these are zero pages
755 * covering holes, and because we don't want to mix DAX
756 * exceptional entries and shadow exceptional entries in the
757 * same address_space.
759 if (reclaimed && folio_is_file_lru(folio) &&
760 !mapping_exiting(mapping) && !dax_mapping(mapping))
761 shadow = workingset_eviction(folio, target_memcg);
762 __filemap_remove_folio(folio, shadow);
763 xa_unlock_irq(&mapping->i_pages);
764 if (mapping_shrinkable(mapping))
765 inode_add_lru(mapping->host);
766 spin_unlock(&mapping->host->i_lock);
775 xa_unlock_irq(&mapping->i_pages);
776 if (!folio_test_swapcache(folio))
777 spin_unlock(&mapping->host->i_lock);
782 * remove_mapping() - Attempt to remove a folio from its mapping.
783 * @mapping: The address space.
784 * @folio: The folio to remove.
786 * If the folio is dirty, under writeback or if someone else has a ref
787 * on it, removal will fail.
788 * Return: The number of pages removed from the mapping. 0 if the folio
789 * could not be removed.
790 * Context: The caller should have a single refcount on the folio and
793 long remove_mapping(struct address_space *mapping, struct folio *folio)
795 if (__remove_mapping(mapping, folio, false, NULL)) {
797 * Unfreezing the refcount with 1 effectively
798 * drops the pagecache ref for us without requiring another
801 folio_ref_unfreeze(folio, 1);
802 return folio_nr_pages(folio);
808 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
809 * @folio: Folio to be returned to an LRU list.
811 * Add previously isolated @folio to appropriate LRU list.
812 * The folio may still be unevictable for other reasons.
814 * Context: lru_lock must not be held, interrupts must be enabled.
816 void folio_putback_lru(struct folio *folio)
818 folio_add_lru(folio);
819 folio_put(folio); /* drop ref from isolate */
822 enum folio_references {
824 FOLIOREF_RECLAIM_CLEAN,
829 static enum folio_references folio_check_references(struct folio *folio,
830 struct scan_control *sc)
832 int referenced_ptes, referenced_folio;
833 unsigned long vm_flags;
835 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
837 referenced_folio = folio_test_clear_referenced(folio);
840 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
841 * Let the folio, now marked Mlocked, be moved to the unevictable list.
843 if (vm_flags & VM_LOCKED)
844 return FOLIOREF_ACTIVATE;
846 /* rmap lock contention: rotate */
847 if (referenced_ptes == -1)
848 return FOLIOREF_KEEP;
850 if (referenced_ptes) {
852 * All mapped folios start out with page table
853 * references from the instantiating fault, so we need
854 * to look twice if a mapped file/anon folio is used more
857 * Mark it and spare it for another trip around the
858 * inactive list. Another page table reference will
859 * lead to its activation.
861 * Note: the mark is set for activated folios as well
862 * so that recently deactivated but used folios are
865 folio_set_referenced(folio);
867 if (referenced_folio || referenced_ptes > 1)
868 return FOLIOREF_ACTIVATE;
871 * Activate file-backed executable folios after first usage.
873 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
874 return FOLIOREF_ACTIVATE;
876 return FOLIOREF_KEEP;
879 /* Reclaim if clean, defer dirty folios to writeback */
880 if (referenced_folio && folio_is_file_lru(folio))
881 return FOLIOREF_RECLAIM_CLEAN;
883 return FOLIOREF_RECLAIM;
886 /* Check if a folio is dirty or under writeback */
887 static void folio_check_dirty_writeback(struct folio *folio,
888 bool *dirty, bool *writeback)
890 struct address_space *mapping;
893 * Anonymous folios are not handled by flushers and must be written
894 * from reclaim context. Do not stall reclaim based on them.
895 * MADV_FREE anonymous folios are put into inactive file list too.
896 * They could be mistakenly treated as file lru. So further anon
899 if (!folio_is_file_lru(folio) ||
900 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
906 /* By default assume that the folio flags are accurate */
907 *dirty = folio_test_dirty(folio);
908 *writeback = folio_test_writeback(folio);
910 /* Verify dirty/writeback state if the filesystem supports it */
911 if (!folio_test_private(folio))
914 mapping = folio_mapping(folio);
915 if (mapping && mapping->a_ops->is_dirty_writeback)
916 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
919 static struct folio *alloc_demote_folio(struct folio *src,
920 unsigned long private)
923 nodemask_t *allowed_mask;
924 struct migration_target_control *mtc;
926 mtc = (struct migration_target_control *)private;
928 allowed_mask = mtc->nmask;
930 * make sure we allocate from the target node first also trying to
931 * demote or reclaim pages from the target node via kswapd if we are
932 * low on free memory on target node. If we don't do this and if
933 * we have free memory on the slower(lower) memtier, we would start
934 * allocating pages from slower(lower) memory tiers without even forcing
935 * a demotion of cold pages from the target memtier. This can result
936 * in the kernel placing hot pages in slower(lower) memory tiers.
939 mtc->gfp_mask |= __GFP_THISNODE;
940 dst = alloc_migration_target(src, (unsigned long)mtc);
944 mtc->gfp_mask &= ~__GFP_THISNODE;
945 mtc->nmask = allowed_mask;
947 return alloc_migration_target(src, (unsigned long)mtc);
951 * Take folios on @demote_folios and attempt to demote them to another node.
952 * Folios which are not demoted are left on @demote_folios.
954 static unsigned int demote_folio_list(struct list_head *demote_folios,
955 struct pglist_data *pgdat)
957 int target_nid = next_demotion_node(pgdat->node_id);
958 unsigned int nr_succeeded;
959 nodemask_t allowed_mask;
961 struct migration_target_control mtc = {
963 * Allocate from 'node', or fail quickly and quietly.
964 * When this happens, 'page' will likely just be discarded
965 * instead of migrated.
967 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
968 __GFP_NOMEMALLOC | GFP_NOWAIT,
970 .nmask = &allowed_mask,
971 .reason = MR_DEMOTION,
974 if (list_empty(demote_folios))
977 if (target_nid == NUMA_NO_NODE)
980 node_get_allowed_targets(pgdat, &allowed_mask);
982 /* Demotion ignores all cpuset and mempolicy settings */
983 migrate_pages(demote_folios, alloc_demote_folio, NULL,
984 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
987 mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(),
993 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
995 if (gfp_mask & __GFP_FS)
997 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1000 * We can "enter_fs" for swap-cache with only __GFP_IO
1001 * providing this isn't SWP_FS_OPS.
1002 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1003 * but that will never affect SWP_FS_OPS, so the data_race
1006 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1010 * shrink_folio_list() returns the number of reclaimed pages
1012 static unsigned int shrink_folio_list(struct list_head *folio_list,
1013 struct pglist_data *pgdat, struct scan_control *sc,
1014 struct reclaim_stat *stat, bool ignore_references)
1016 struct folio_batch free_folios;
1017 LIST_HEAD(ret_folios);
1018 LIST_HEAD(demote_folios);
1019 unsigned int nr_reclaimed = 0;
1020 unsigned int pgactivate = 0;
1021 bool do_demote_pass;
1022 struct swap_iocb *plug = NULL;
1024 folio_batch_init(&free_folios);
1025 memset(stat, 0, sizeof(*stat));
1027 do_demote_pass = can_demote(pgdat->node_id, sc);
1030 while (!list_empty(folio_list)) {
1031 struct address_space *mapping;
1032 struct folio *folio;
1033 enum folio_references references = FOLIOREF_RECLAIM;
1034 bool dirty, writeback;
1035 unsigned int nr_pages;
1039 folio = lru_to_folio(folio_list);
1040 list_del(&folio->lru);
1042 if (!folio_trylock(folio))
1045 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1047 nr_pages = folio_nr_pages(folio);
1049 /* Account the number of base pages */
1050 sc->nr_scanned += nr_pages;
1052 if (unlikely(!folio_evictable(folio)))
1053 goto activate_locked;
1055 if (!sc->may_unmap && folio_mapped(folio))
1058 /* folio_update_gen() tried to promote this page? */
1059 if (lru_gen_enabled() && !ignore_references &&
1060 folio_mapped(folio) && folio_test_referenced(folio))
1064 * The number of dirty pages determines if a node is marked
1065 * reclaim_congested. kswapd will stall and start writing
1066 * folios if the tail of the LRU is all dirty unqueued folios.
1068 folio_check_dirty_writeback(folio, &dirty, &writeback);
1069 if (dirty || writeback)
1070 stat->nr_dirty += nr_pages;
1072 if (dirty && !writeback)
1073 stat->nr_unqueued_dirty += nr_pages;
1076 * Treat this folio as congested if folios are cycling
1077 * through the LRU so quickly that the folios marked
1078 * for immediate reclaim are making it to the end of
1079 * the LRU a second time.
1081 if (writeback && folio_test_reclaim(folio))
1082 stat->nr_congested += nr_pages;
1085 * If a folio at the tail of the LRU is under writeback, there
1086 * are three cases to consider.
1088 * 1) If reclaim is encountering an excessive number
1089 * of folios under writeback and this folio has both
1090 * the writeback and reclaim flags set, then it
1091 * indicates that folios are being queued for I/O but
1092 * are being recycled through the LRU before the I/O
1093 * can complete. Waiting on the folio itself risks an
1094 * indefinite stall if it is impossible to writeback
1095 * the folio due to I/O error or disconnected storage
1096 * so instead note that the LRU is being scanned too
1097 * quickly and the caller can stall after the folio
1098 * list has been processed.
1100 * 2) Global or new memcg reclaim encounters a folio that is
1101 * not marked for immediate reclaim, or the caller does not
1102 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1103 * not to fs). In this case mark the folio for immediate
1104 * reclaim and continue scanning.
1106 * Require may_enter_fs() because we would wait on fs, which
1107 * may not have submitted I/O yet. And the loop driver might
1108 * enter reclaim, and deadlock if it waits on a folio for
1109 * which it is needed to do the write (loop masks off
1110 * __GFP_IO|__GFP_FS for this reason); but more thought
1111 * would probably show more reasons.
1113 * 3) Legacy memcg encounters a folio that already has the
1114 * reclaim flag set. memcg does not have any dirty folio
1115 * throttling so we could easily OOM just because too many
1116 * folios are in writeback and there is nothing else to
1117 * reclaim. Wait for the writeback to complete.
1119 * In cases 1) and 2) we activate the folios to get them out of
1120 * the way while we continue scanning for clean folios on the
1121 * inactive list and refilling from the active list. The
1122 * observation here is that waiting for disk writes is more
1123 * expensive than potentially causing reloads down the line.
1124 * Since they're marked for immediate reclaim, they won't put
1125 * memory pressure on the cache working set any longer than it
1126 * takes to write them to disk.
1128 if (folio_test_writeback(folio)) {
1130 if (current_is_kswapd() &&
1131 folio_test_reclaim(folio) &&
1132 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1133 stat->nr_immediate += nr_pages;
1134 goto activate_locked;
1137 } else if (writeback_throttling_sane(sc) ||
1138 !folio_test_reclaim(folio) ||
1139 !may_enter_fs(folio, sc->gfp_mask)) {
1141 * This is slightly racy -
1142 * folio_end_writeback() might have
1143 * just cleared the reclaim flag, then
1144 * setting the reclaim flag here ends up
1145 * interpreted as the readahead flag - but
1146 * that does not matter enough to care.
1147 * What we do want is for this folio to
1148 * have the reclaim flag set next time
1149 * memcg reclaim reaches the tests above,
1150 * so it will then wait for writeback to
1151 * avoid OOM; and it's also appropriate
1152 * in global reclaim.
1154 folio_set_reclaim(folio);
1155 stat->nr_writeback += nr_pages;
1156 goto activate_locked;
1160 folio_unlock(folio);
1161 folio_wait_writeback(folio);
1162 /* then go back and try same folio again */
1163 list_add_tail(&folio->lru, folio_list);
1168 if (!ignore_references)
1169 references = folio_check_references(folio, sc);
1171 switch (references) {
1172 case FOLIOREF_ACTIVATE:
1173 goto activate_locked;
1175 stat->nr_ref_keep += nr_pages;
1177 case FOLIOREF_RECLAIM:
1178 case FOLIOREF_RECLAIM_CLEAN:
1179 ; /* try to reclaim the folio below */
1183 * Before reclaiming the folio, try to relocate
1184 * its contents to another node.
1186 if (do_demote_pass &&
1187 (thp_migration_supported() || !folio_test_large(folio))) {
1188 list_add(&folio->lru, &demote_folios);
1189 folio_unlock(folio);
1194 * Anonymous process memory has backing store?
1195 * Try to allocate it some swap space here.
1196 * Lazyfree folio could be freed directly
1198 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1199 if (!folio_test_swapcache(folio)) {
1200 if (!(sc->gfp_mask & __GFP_IO))
1202 if (folio_maybe_dma_pinned(folio))
1204 if (folio_test_large(folio)) {
1205 /* cannot split folio, skip it */
1206 if (!can_split_folio(folio, NULL))
1207 goto activate_locked;
1209 * Split folios without a PMD map right
1210 * away. Chances are some or all of the
1211 * tail pages can be freed without IO.
1213 if (!folio_entire_mapcount(folio) &&
1214 split_folio_to_list(folio,
1216 goto activate_locked;
1218 if (!add_to_swap(folio)) {
1219 if (!folio_test_large(folio))
1220 goto activate_locked_split;
1221 /* Fallback to swap normal pages */
1222 if (split_folio_to_list(folio,
1224 goto activate_locked;
1225 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1226 count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1);
1227 count_vm_event(THP_SWPOUT_FALLBACK);
1229 if (!add_to_swap(folio))
1230 goto activate_locked_split;
1233 } else if (folio_test_swapbacked(folio) &&
1234 folio_test_large(folio)) {
1235 /* Split shmem folio */
1236 if (split_folio_to_list(folio, folio_list))
1241 * If the folio was split above, the tail pages will make
1242 * their own pass through this function and be accounted
1245 if ((nr_pages > 1) && !folio_test_large(folio)) {
1246 sc->nr_scanned -= (nr_pages - 1);
1251 * The folio is mapped into the page tables of one or more
1252 * processes. Try to unmap it here.
1254 if (folio_mapped(folio)) {
1255 enum ttu_flags flags = TTU_BATCH_FLUSH;
1256 bool was_swapbacked = folio_test_swapbacked(folio);
1258 if (folio_test_pmd_mappable(folio))
1259 flags |= TTU_SPLIT_HUGE_PMD;
1261 * Without TTU_SYNC, try_to_unmap will only begin to
1262 * hold PTL from the first present PTE within a large
1263 * folio. Some initial PTEs might be skipped due to
1264 * races with parallel PTE writes in which PTEs can be
1265 * cleared temporarily before being written new present
1266 * values. This will lead to a large folio is still
1267 * mapped while some subpages have been partially
1268 * unmapped after try_to_unmap; TTU_SYNC helps
1269 * try_to_unmap acquire PTL from the first PTE,
1270 * eliminating the influence of temporary PTE values.
1272 if (folio_test_large(folio) && list_empty(&folio->_deferred_list))
1275 try_to_unmap(folio, flags);
1276 if (folio_mapped(folio)) {
1277 stat->nr_unmap_fail += nr_pages;
1278 if (!was_swapbacked &&
1279 folio_test_swapbacked(folio))
1280 stat->nr_lazyfree_fail += nr_pages;
1281 goto activate_locked;
1286 * Folio is unmapped now so it cannot be newly pinned anymore.
1287 * No point in trying to reclaim folio if it is pinned.
1288 * Furthermore we don't want to reclaim underlying fs metadata
1289 * if the folio is pinned and thus potentially modified by the
1290 * pinning process as that may upset the filesystem.
1292 if (folio_maybe_dma_pinned(folio))
1293 goto activate_locked;
1295 mapping = folio_mapping(folio);
1296 if (folio_test_dirty(folio)) {
1298 * Only kswapd can writeback filesystem folios
1299 * to avoid risk of stack overflow. But avoid
1300 * injecting inefficient single-folio I/O into
1301 * flusher writeback as much as possible: only
1302 * write folios when we've encountered many
1303 * dirty folios, and when we've already scanned
1304 * the rest of the LRU for clean folios and see
1305 * the same dirty folios again (with the reclaim
1308 if (folio_is_file_lru(folio) &&
1309 (!current_is_kswapd() ||
1310 !folio_test_reclaim(folio) ||
1311 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1313 * Immediately reclaim when written back.
1314 * Similar in principle to folio_deactivate()
1315 * except we already have the folio isolated
1316 * and know it's dirty
1318 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1320 folio_set_reclaim(folio);
1322 goto activate_locked;
1325 if (references == FOLIOREF_RECLAIM_CLEAN)
1327 if (!may_enter_fs(folio, sc->gfp_mask))
1329 if (!sc->may_writepage)
1333 * Folio is dirty. Flush the TLB if a writable entry
1334 * potentially exists to avoid CPU writes after I/O
1335 * starts and then write it out here.
1337 try_to_unmap_flush_dirty();
1338 switch (pageout(folio, mapping, &plug)) {
1342 goto activate_locked;
1344 stat->nr_pageout += nr_pages;
1346 if (folio_test_writeback(folio))
1348 if (folio_test_dirty(folio))
1352 * A synchronous write - probably a ramdisk. Go
1353 * ahead and try to reclaim the folio.
1355 if (!folio_trylock(folio))
1357 if (folio_test_dirty(folio) ||
1358 folio_test_writeback(folio))
1360 mapping = folio_mapping(folio);
1363 ; /* try to free the folio below */
1368 * If the folio has buffers, try to free the buffer
1369 * mappings associated with this folio. If we succeed
1370 * we try to free the folio as well.
1372 * We do this even if the folio is dirty.
1373 * filemap_release_folio() does not perform I/O, but it
1374 * is possible for a folio to have the dirty flag set,
1375 * but it is actually clean (all its buffers are clean).
1376 * This happens if the buffers were written out directly,
1377 * with submit_bh(). ext3 will do this, as well as
1378 * the blockdev mapping. filemap_release_folio() will
1379 * discover that cleanness and will drop the buffers
1380 * and mark the folio clean - it can be freed.
1382 * Rarely, folios can have buffers and no ->mapping.
1383 * These are the folios which were not successfully
1384 * invalidated in truncate_cleanup_folio(). We try to
1385 * drop those buffers here and if that worked, and the
1386 * folio is no longer mapped into process address space
1387 * (refcount == 1) it can be freed. Otherwise, leave
1388 * the folio on the LRU so it is swappable.
1390 if (folio_needs_release(folio)) {
1391 if (!filemap_release_folio(folio, sc->gfp_mask))
1392 goto activate_locked;
1393 if (!mapping && folio_ref_count(folio) == 1) {
1394 folio_unlock(folio);
1395 if (folio_put_testzero(folio))
1399 * rare race with speculative reference.
1400 * the speculative reference will free
1401 * this folio shortly, so we may
1402 * increment nr_reclaimed here (and
1403 * leave it off the LRU).
1405 nr_reclaimed += nr_pages;
1411 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1412 /* follow __remove_mapping for reference */
1413 if (!folio_ref_freeze(folio, 1))
1416 * The folio has only one reference left, which is
1417 * from the isolation. After the caller puts the
1418 * folio back on the lru and drops the reference, the
1419 * folio will be freed anyway. It doesn't matter
1420 * which lru it goes on. So we don't bother checking
1421 * the dirty flag here.
1423 count_vm_events(PGLAZYFREED, nr_pages);
1424 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1425 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1426 sc->target_mem_cgroup))
1429 folio_unlock(folio);
1432 * Folio may get swapped out as a whole, need to account
1435 nr_reclaimed += nr_pages;
1437 if (folio_test_large(folio) &&
1438 folio_test_large_rmappable(folio))
1439 folio_undo_large_rmappable(folio);
1440 if (folio_batch_add(&free_folios, folio) == 0) {
1441 mem_cgroup_uncharge_folios(&free_folios);
1442 try_to_unmap_flush();
1443 free_unref_folios(&free_folios);
1447 activate_locked_split:
1449 * The tail pages that are failed to add into swap cache
1450 * reach here. Fixup nr_scanned and nr_pages.
1453 sc->nr_scanned -= (nr_pages - 1);
1457 /* Not a candidate for swapping, so reclaim swap space. */
1458 if (folio_test_swapcache(folio) &&
1459 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1460 folio_free_swap(folio);
1461 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1462 if (!folio_test_mlocked(folio)) {
1463 int type = folio_is_file_lru(folio);
1464 folio_set_active(folio);
1465 stat->nr_activate[type] += nr_pages;
1466 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1469 folio_unlock(folio);
1471 list_add(&folio->lru, &ret_folios);
1472 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1473 folio_test_unevictable(folio), folio);
1475 /* 'folio_list' is always empty here */
1477 /* Migrate folios selected for demotion */
1478 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
1479 /* Folios that could not be demoted are still in @demote_folios */
1480 if (!list_empty(&demote_folios)) {
1481 /* Folios which weren't demoted go back on @folio_list */
1482 list_splice_init(&demote_folios, folio_list);
1485 * goto retry to reclaim the undemoted folios in folio_list if
1488 * Reclaiming directly from top tier nodes is not often desired
1489 * due to it breaking the LRU ordering: in general memory
1490 * should be reclaimed from lower tier nodes and demoted from
1493 * However, disabling reclaim from top tier nodes entirely
1494 * would cause ooms in edge scenarios where lower tier memory
1495 * is unreclaimable for whatever reason, eg memory being
1496 * mlocked or too hot to reclaim. We can disable reclaim
1497 * from top tier nodes in proactive reclaim though as that is
1498 * not real memory pressure.
1500 if (!sc->proactive) {
1501 do_demote_pass = false;
1506 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1508 mem_cgroup_uncharge_folios(&free_folios);
1509 try_to_unmap_flush();
1510 free_unref_folios(&free_folios);
1512 list_splice(&ret_folios, folio_list);
1513 count_vm_events(PGACTIVATE, pgactivate);
1516 swap_write_unplug(plug);
1517 return nr_reclaimed;
1520 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1521 struct list_head *folio_list)
1523 struct scan_control sc = {
1524 .gfp_mask = GFP_KERNEL,
1527 struct reclaim_stat stat;
1528 unsigned int nr_reclaimed;
1529 struct folio *folio, *next;
1530 LIST_HEAD(clean_folios);
1531 unsigned int noreclaim_flag;
1533 list_for_each_entry_safe(folio, next, folio_list, lru) {
1534 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1535 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1536 !folio_test_unevictable(folio)) {
1537 folio_clear_active(folio);
1538 list_move(&folio->lru, &clean_folios);
1543 * We should be safe here since we are only dealing with file pages and
1544 * we are not kswapd and therefore cannot write dirty file pages. But
1545 * call memalloc_noreclaim_save() anyway, just in case these conditions
1546 * change in the future.
1548 noreclaim_flag = memalloc_noreclaim_save();
1549 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1551 memalloc_noreclaim_restore(noreclaim_flag);
1553 list_splice(&clean_folios, folio_list);
1554 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1555 -(long)nr_reclaimed);
1557 * Since lazyfree pages are isolated from file LRU from the beginning,
1558 * they will rotate back to anonymous LRU in the end if it failed to
1559 * discard so isolated count will be mismatched.
1560 * Compensate the isolated count for both LRU lists.
1562 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1563 stat.nr_lazyfree_fail);
1564 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1565 -(long)stat.nr_lazyfree_fail);
1566 return nr_reclaimed;
1570 * Update LRU sizes after isolating pages. The LRU size updates must
1571 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1573 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1574 enum lru_list lru, unsigned long *nr_zone_taken)
1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 if (!nr_zone_taken[zid])
1582 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1589 * It is waste of effort to scan and reclaim CMA pages if it is not available
1590 * for current allocation context. Kswapd can not be enrolled as it can not
1591 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1593 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1595 return !current_is_kswapd() &&
1596 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
1597 folio_migratetype(folio) == MIGRATE_CMA;
1600 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1607 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1609 * lruvec->lru_lock is heavily contended. Some of the functions that
1610 * shrink the lists perform better by taking out a batch of pages
1611 * and working on them outside the LRU lock.
1613 * For pagecache intensive workloads, this function is the hottest
1614 * spot in the kernel (apart from copy_*_user functions).
1616 * Lru_lock must be held before calling this function.
1618 * @nr_to_scan: The number of eligible pages to look through on the list.
1619 * @lruvec: The LRU vector to pull pages from.
1620 * @dst: The temp list to put pages on to.
1621 * @nr_scanned: The number of pages that were scanned.
1622 * @sc: The scan_control struct for this reclaim session
1623 * @lru: LRU list id for isolating
1625 * returns how many pages were moved onto *@dst.
1627 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1628 struct lruvec *lruvec, struct list_head *dst,
1629 unsigned long *nr_scanned, struct scan_control *sc,
1632 struct list_head *src = &lruvec->lists[lru];
1633 unsigned long nr_taken = 0;
1634 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1635 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1636 unsigned long skipped = 0;
1637 unsigned long scan, total_scan, nr_pages;
1638 LIST_HEAD(folios_skipped);
1642 while (scan < nr_to_scan && !list_empty(src)) {
1643 struct list_head *move_to = src;
1644 struct folio *folio;
1646 folio = lru_to_folio(src);
1647 prefetchw_prev_lru_folio(folio, src, flags);
1649 nr_pages = folio_nr_pages(folio);
1650 total_scan += nr_pages;
1652 if (folio_zonenum(folio) > sc->reclaim_idx ||
1653 skip_cma(folio, sc)) {
1654 nr_skipped[folio_zonenum(folio)] += nr_pages;
1655 move_to = &folios_skipped;
1660 * Do not count skipped folios because that makes the function
1661 * return with no isolated folios if the LRU mostly contains
1662 * ineligible folios. This causes the VM to not reclaim any
1663 * folios, triggering a premature OOM.
1664 * Account all pages in a folio.
1668 if (!folio_test_lru(folio))
1670 if (!sc->may_unmap && folio_mapped(folio))
1674 * Be careful not to clear the lru flag until after we're
1675 * sure the folio is not being freed elsewhere -- the
1676 * folio release code relies on it.
1678 if (unlikely(!folio_try_get(folio)))
1681 if (!folio_test_clear_lru(folio)) {
1682 /* Another thread is already isolating this folio */
1687 nr_taken += nr_pages;
1688 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1691 list_move(&folio->lru, move_to);
1695 * Splice any skipped folios to the start of the LRU list. Note that
1696 * this disrupts the LRU order when reclaiming for lower zones but
1697 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1698 * scanning would soon rescan the same folios to skip and waste lots
1701 if (!list_empty(&folios_skipped)) {
1704 list_splice(&folios_skipped, src);
1705 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1706 if (!nr_skipped[zid])
1709 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1710 skipped += nr_skipped[zid];
1713 *nr_scanned = total_scan;
1714 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1715 total_scan, skipped, nr_taken, lru);
1716 update_lru_sizes(lruvec, lru, nr_zone_taken);
1721 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1722 * @folio: Folio to isolate from its LRU list.
1724 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1725 * corresponding to whatever LRU list the folio was on.
1727 * The folio will have its LRU flag cleared. If it was found on the
1728 * active list, it will have the Active flag set. If it was found on the
1729 * unevictable list, it will have the Unevictable flag set. These flags
1730 * may need to be cleared by the caller before letting the page go.
1734 * (1) Must be called with an elevated refcount on the folio. This is a
1735 * fundamental difference from isolate_lru_folios() (which is called
1736 * without a stable reference).
1737 * (2) The lru_lock must not be held.
1738 * (3) Interrupts must be enabled.
1740 * Return: true if the folio was removed from an LRU list.
1741 * false if the folio was not on an LRU list.
1743 bool folio_isolate_lru(struct folio *folio)
1747 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1749 if (folio_test_clear_lru(folio)) {
1750 struct lruvec *lruvec;
1753 lruvec = folio_lruvec_lock_irq(folio);
1754 lruvec_del_folio(lruvec, folio);
1755 unlock_page_lruvec_irq(lruvec);
1763 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1764 * then get rescheduled. When there are massive number of tasks doing page
1765 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1766 * the LRU list will go small and be scanned faster than necessary, leading to
1767 * unnecessary swapping, thrashing and OOM.
1769 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1770 struct scan_control *sc)
1772 unsigned long inactive, isolated;
1775 if (current_is_kswapd())
1778 if (!writeback_throttling_sane(sc))
1782 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1783 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1785 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1786 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1790 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1791 * won't get blocked by normal direct-reclaimers, forming a circular
1794 if (gfp_has_io_fs(sc->gfp_mask))
1797 too_many = isolated > inactive;
1799 /* Wake up tasks throttled due to too_many_isolated. */
1801 wake_throttle_isolated(pgdat);
1807 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1809 * Returns the number of pages moved to the given lruvec.
1811 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1812 struct list_head *list)
1814 int nr_pages, nr_moved = 0;
1815 struct folio_batch free_folios;
1817 folio_batch_init(&free_folios);
1818 while (!list_empty(list)) {
1819 struct folio *folio = lru_to_folio(list);
1821 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1822 list_del(&folio->lru);
1823 if (unlikely(!folio_evictable(folio))) {
1824 spin_unlock_irq(&lruvec->lru_lock);
1825 folio_putback_lru(folio);
1826 spin_lock_irq(&lruvec->lru_lock);
1831 * The folio_set_lru needs to be kept here for list integrity.
1833 * #0 move_folios_to_lru #1 release_pages
1834 * if (!folio_put_testzero())
1835 * if (folio_put_testzero())
1836 * !lru //skip lru_lock
1838 * list_add(&folio->lru,)
1839 * list_add(&folio->lru,)
1841 folio_set_lru(folio);
1843 if (unlikely(folio_put_testzero(folio))) {
1844 __folio_clear_lru_flags(folio);
1846 if (folio_test_large(folio) &&
1847 folio_test_large_rmappable(folio))
1848 folio_undo_large_rmappable(folio);
1849 if (folio_batch_add(&free_folios, folio) == 0) {
1850 spin_unlock_irq(&lruvec->lru_lock);
1851 mem_cgroup_uncharge_folios(&free_folios);
1852 free_unref_folios(&free_folios);
1853 spin_lock_irq(&lruvec->lru_lock);
1860 * All pages were isolated from the same lruvec (and isolation
1861 * inhibits memcg migration).
1863 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1864 lruvec_add_folio(lruvec, folio);
1865 nr_pages = folio_nr_pages(folio);
1866 nr_moved += nr_pages;
1867 if (folio_test_active(folio))
1868 workingset_age_nonresident(lruvec, nr_pages);
1871 if (free_folios.nr) {
1872 spin_unlock_irq(&lruvec->lru_lock);
1873 mem_cgroup_uncharge_folios(&free_folios);
1874 free_unref_folios(&free_folios);
1875 spin_lock_irq(&lruvec->lru_lock);
1882 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1883 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1884 * we should not throttle. Otherwise it is safe to do so.
1886 static int current_may_throttle(void)
1888 return !(current->flags & PF_LOCAL_THROTTLE);
1892 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1893 * of reclaimed pages
1895 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1896 struct lruvec *lruvec, struct scan_control *sc,
1899 LIST_HEAD(folio_list);
1900 unsigned long nr_scanned;
1901 unsigned int nr_reclaimed = 0;
1902 unsigned long nr_taken;
1903 struct reclaim_stat stat;
1904 bool file = is_file_lru(lru);
1905 enum vm_event_item item;
1906 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1907 bool stalled = false;
1909 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1913 /* wait a bit for the reclaimer. */
1915 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1917 /* We are about to die and free our memory. Return now. */
1918 if (fatal_signal_pending(current))
1919 return SWAP_CLUSTER_MAX;
1924 spin_lock_irq(&lruvec->lru_lock);
1926 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1927 &nr_scanned, sc, lru);
1929 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1930 item = PGSCAN_KSWAPD + reclaimer_offset();
1931 if (!cgroup_reclaim(sc))
1932 __count_vm_events(item, nr_scanned);
1933 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1934 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1936 spin_unlock_irq(&lruvec->lru_lock);
1941 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1943 spin_lock_irq(&lruvec->lru_lock);
1944 move_folios_to_lru(lruvec, &folio_list);
1946 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1947 item = PGSTEAL_KSWAPD + reclaimer_offset();
1948 if (!cgroup_reclaim(sc))
1949 __count_vm_events(item, nr_reclaimed);
1950 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1951 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1952 spin_unlock_irq(&lruvec->lru_lock);
1954 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1957 * If dirty folios are scanned that are not queued for IO, it
1958 * implies that flushers are not doing their job. This can
1959 * happen when memory pressure pushes dirty folios to the end of
1960 * the LRU before the dirty limits are breached and the dirty
1961 * data has expired. It can also happen when the proportion of
1962 * dirty folios grows not through writes but through memory
1963 * pressure reclaiming all the clean cache. And in some cases,
1964 * the flushers simply cannot keep up with the allocation
1965 * rate. Nudge the flusher threads in case they are asleep.
1967 if (stat.nr_unqueued_dirty == nr_taken) {
1968 wakeup_flusher_threads(WB_REASON_VMSCAN);
1970 * For cgroupv1 dirty throttling is achieved by waking up
1971 * the kernel flusher here and later waiting on folios
1972 * which are in writeback to finish (see shrink_folio_list()).
1974 * Flusher may not be able to issue writeback quickly
1975 * enough for cgroupv1 writeback throttling to work
1976 * on a large system.
1978 if (!writeback_throttling_sane(sc))
1979 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
1982 sc->nr.dirty += stat.nr_dirty;
1983 sc->nr.congested += stat.nr_congested;
1984 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1985 sc->nr.writeback += stat.nr_writeback;
1986 sc->nr.immediate += stat.nr_immediate;
1987 sc->nr.taken += nr_taken;
1989 sc->nr.file_taken += nr_taken;
1991 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1992 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1993 return nr_reclaimed;
1997 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
1999 * We move them the other way if the folio is referenced by one or more
2002 * If the folios are mostly unmapped, the processing is fast and it is
2003 * appropriate to hold lru_lock across the whole operation. But if
2004 * the folios are mapped, the processing is slow (folio_referenced()), so
2005 * we should drop lru_lock around each folio. It's impossible to balance
2006 * this, so instead we remove the folios from the LRU while processing them.
2007 * It is safe to rely on the active flag against the non-LRU folios in here
2008 * because nobody will play with that bit on a non-LRU folio.
2010 * The downside is that we have to touch folio->_refcount against each folio.
2011 * But we had to alter folio->flags anyway.
2013 static void shrink_active_list(unsigned long nr_to_scan,
2014 struct lruvec *lruvec,
2015 struct scan_control *sc,
2018 unsigned long nr_taken;
2019 unsigned long nr_scanned;
2020 unsigned long vm_flags;
2021 LIST_HEAD(l_hold); /* The folios which were snipped off */
2022 LIST_HEAD(l_active);
2023 LIST_HEAD(l_inactive);
2024 unsigned nr_deactivate, nr_activate;
2025 unsigned nr_rotated = 0;
2026 bool file = is_file_lru(lru);
2027 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2031 spin_lock_irq(&lruvec->lru_lock);
2033 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2034 &nr_scanned, sc, lru);
2036 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2038 if (!cgroup_reclaim(sc))
2039 __count_vm_events(PGREFILL, nr_scanned);
2040 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2042 spin_unlock_irq(&lruvec->lru_lock);
2044 while (!list_empty(&l_hold)) {
2045 struct folio *folio;
2048 folio = lru_to_folio(&l_hold);
2049 list_del(&folio->lru);
2051 if (unlikely(!folio_evictable(folio))) {
2052 folio_putback_lru(folio);
2056 if (unlikely(buffer_heads_over_limit)) {
2057 if (folio_needs_release(folio) &&
2058 folio_trylock(folio)) {
2059 filemap_release_folio(folio, 0);
2060 folio_unlock(folio);
2064 /* Referenced or rmap lock contention: rotate */
2065 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2068 * Identify referenced, file-backed active folios and
2069 * give them one more trip around the active list. So
2070 * that executable code get better chances to stay in
2071 * memory under moderate memory pressure. Anon folios
2072 * are not likely to be evicted by use-once streaming
2073 * IO, plus JVM can create lots of anon VM_EXEC folios,
2074 * so we ignore them here.
2076 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2077 nr_rotated += folio_nr_pages(folio);
2078 list_add(&folio->lru, &l_active);
2083 folio_clear_active(folio); /* we are de-activating */
2084 folio_set_workingset(folio);
2085 list_add(&folio->lru, &l_inactive);
2089 * Move folios back to the lru list.
2091 spin_lock_irq(&lruvec->lru_lock);
2093 nr_activate = move_folios_to_lru(lruvec, &l_active);
2094 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2096 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2097 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2099 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2100 spin_unlock_irq(&lruvec->lru_lock);
2103 lru_note_cost(lruvec, file, 0, nr_rotated);
2104 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2105 nr_deactivate, nr_rotated, sc->priority, file);
2108 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2109 struct pglist_data *pgdat,
2110 bool ignore_references)
2112 struct reclaim_stat dummy_stat;
2113 unsigned int nr_reclaimed;
2114 struct folio *folio;
2115 struct scan_control sc = {
2116 .gfp_mask = GFP_KERNEL,
2123 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, ignore_references);
2124 while (!list_empty(folio_list)) {
2125 folio = lru_to_folio(folio_list);
2126 list_del(&folio->lru);
2127 folio_putback_lru(folio);
2130 return nr_reclaimed;
2133 unsigned long reclaim_pages(struct list_head *folio_list, bool ignore_references)
2136 unsigned int nr_reclaimed = 0;
2137 LIST_HEAD(node_folio_list);
2138 unsigned int noreclaim_flag;
2140 if (list_empty(folio_list))
2141 return nr_reclaimed;
2143 noreclaim_flag = memalloc_noreclaim_save();
2145 nid = folio_nid(lru_to_folio(folio_list));
2147 struct folio *folio = lru_to_folio(folio_list);
2149 if (nid == folio_nid(folio)) {
2150 folio_clear_active(folio);
2151 list_move(&folio->lru, &node_folio_list);
2155 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid),
2157 nid = folio_nid(lru_to_folio(folio_list));
2158 } while (!list_empty(folio_list));
2160 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid), ignore_references);
2162 memalloc_noreclaim_restore(noreclaim_flag);
2164 return nr_reclaimed;
2167 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2168 struct lruvec *lruvec, struct scan_control *sc)
2170 if (is_active_lru(lru)) {
2171 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2172 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2174 sc->skipped_deactivate = 1;
2178 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2182 * The inactive anon list should be small enough that the VM never has
2183 * to do too much work.
2185 * The inactive file list should be small enough to leave most memory
2186 * to the established workingset on the scan-resistant active list,
2187 * but large enough to avoid thrashing the aggregate readahead window.
2189 * Both inactive lists should also be large enough that each inactive
2190 * folio has a chance to be referenced again before it is reclaimed.
2192 * If that fails and refaulting is observed, the inactive list grows.
2194 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2195 * on this LRU, maintained by the pageout code. An inactive_ratio
2196 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2199 * memory ratio inactive
2200 * -------------------------------------
2209 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2211 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2212 unsigned long inactive, active;
2213 unsigned long inactive_ratio;
2216 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2217 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2219 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2221 inactive_ratio = int_sqrt(10 * gb);
2225 return inactive * inactive_ratio < active;
2235 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2238 struct lruvec *target_lruvec;
2240 if (lru_gen_enabled())
2243 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2246 * Flush the memory cgroup stats, so that we read accurate per-memcg
2247 * lruvec stats for heuristics.
2249 mem_cgroup_flush_stats(sc->target_mem_cgroup);
2252 * Determine the scan balance between anon and file LRUs.
2254 spin_lock_irq(&target_lruvec->lru_lock);
2255 sc->anon_cost = target_lruvec->anon_cost;
2256 sc->file_cost = target_lruvec->file_cost;
2257 spin_unlock_irq(&target_lruvec->lru_lock);
2260 * Target desirable inactive:active list ratios for the anon
2261 * and file LRU lists.
2263 if (!sc->force_deactivate) {
2264 unsigned long refaults;
2267 * When refaults are being observed, it means a new
2268 * workingset is being established. Deactivate to get
2269 * rid of any stale active pages quickly.
2271 refaults = lruvec_page_state(target_lruvec,
2272 WORKINGSET_ACTIVATE_ANON);
2273 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2274 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2275 sc->may_deactivate |= DEACTIVATE_ANON;
2277 sc->may_deactivate &= ~DEACTIVATE_ANON;
2279 refaults = lruvec_page_state(target_lruvec,
2280 WORKINGSET_ACTIVATE_FILE);
2281 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2282 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2283 sc->may_deactivate |= DEACTIVATE_FILE;
2285 sc->may_deactivate &= ~DEACTIVATE_FILE;
2287 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2290 * If we have plenty of inactive file pages that aren't
2291 * thrashing, try to reclaim those first before touching
2294 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2295 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2296 !sc->no_cache_trim_mode)
2297 sc->cache_trim_mode = 1;
2299 sc->cache_trim_mode = 0;
2302 * Prevent the reclaimer from falling into the cache trap: as
2303 * cache pages start out inactive, every cache fault will tip
2304 * the scan balance towards the file LRU. And as the file LRU
2305 * shrinks, so does the window for rotation from references.
2306 * This means we have a runaway feedback loop where a tiny
2307 * thrashing file LRU becomes infinitely more attractive than
2308 * anon pages. Try to detect this based on file LRU size.
2310 if (!cgroup_reclaim(sc)) {
2311 unsigned long total_high_wmark = 0;
2312 unsigned long free, anon;
2315 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2316 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2317 node_page_state(pgdat, NR_INACTIVE_FILE);
2319 for (z = 0; z < MAX_NR_ZONES; z++) {
2320 struct zone *zone = &pgdat->node_zones[z];
2322 if (!managed_zone(zone))
2325 total_high_wmark += high_wmark_pages(zone);
2329 * Consider anon: if that's low too, this isn't a
2330 * runaway file reclaim problem, but rather just
2331 * extreme pressure. Reclaim as per usual then.
2333 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2336 file + free <= total_high_wmark &&
2337 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2338 anon >> sc->priority;
2343 * Determine how aggressively the anon and file LRU lists should be
2346 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2347 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2349 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2352 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2353 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2354 unsigned long anon_cost, file_cost, total_cost;
2355 int swappiness = mem_cgroup_swappiness(memcg);
2356 u64 fraction[ANON_AND_FILE];
2357 u64 denominator = 0; /* gcc */
2358 enum scan_balance scan_balance;
2359 unsigned long ap, fp;
2362 /* If we have no swap space, do not bother scanning anon folios. */
2363 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2364 scan_balance = SCAN_FILE;
2369 * Global reclaim will swap to prevent OOM even with no
2370 * swappiness, but memcg users want to use this knob to
2371 * disable swapping for individual groups completely when
2372 * using the memory controller's swap limit feature would be
2375 if (cgroup_reclaim(sc) && !swappiness) {
2376 scan_balance = SCAN_FILE;
2381 * Do not apply any pressure balancing cleverness when the
2382 * system is close to OOM, scan both anon and file equally
2383 * (unless the swappiness setting disagrees with swapping).
2385 if (!sc->priority && swappiness) {
2386 scan_balance = SCAN_EQUAL;
2391 * If the system is almost out of file pages, force-scan anon.
2393 if (sc->file_is_tiny) {
2394 scan_balance = SCAN_ANON;
2399 * If there is enough inactive page cache, we do not reclaim
2400 * anything from the anonymous working right now.
2402 if (sc->cache_trim_mode) {
2403 scan_balance = SCAN_FILE;
2407 scan_balance = SCAN_FRACT;
2409 * Calculate the pressure balance between anon and file pages.
2411 * The amount of pressure we put on each LRU is inversely
2412 * proportional to the cost of reclaiming each list, as
2413 * determined by the share of pages that are refaulting, times
2414 * the relative IO cost of bringing back a swapped out
2415 * anonymous page vs reloading a filesystem page (swappiness).
2417 * Although we limit that influence to ensure no list gets
2418 * left behind completely: at least a third of the pressure is
2419 * applied, before swappiness.
2421 * With swappiness at 100, anon and file have equal IO cost.
2423 total_cost = sc->anon_cost + sc->file_cost;
2424 anon_cost = total_cost + sc->anon_cost;
2425 file_cost = total_cost + sc->file_cost;
2426 total_cost = anon_cost + file_cost;
2428 ap = swappiness * (total_cost + 1);
2429 ap /= anon_cost + 1;
2431 fp = (200 - swappiness) * (total_cost + 1);
2432 fp /= file_cost + 1;
2436 denominator = ap + fp;
2438 for_each_evictable_lru(lru) {
2439 bool file = is_file_lru(lru);
2440 unsigned long lruvec_size;
2441 unsigned long low, min;
2444 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2445 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2450 * Scale a cgroup's reclaim pressure by proportioning
2451 * its current usage to its memory.low or memory.min
2454 * This is important, as otherwise scanning aggression
2455 * becomes extremely binary -- from nothing as we
2456 * approach the memory protection threshold, to totally
2457 * nominal as we exceed it. This results in requiring
2458 * setting extremely liberal protection thresholds. It
2459 * also means we simply get no protection at all if we
2460 * set it too low, which is not ideal.
2462 * If there is any protection in place, we reduce scan
2463 * pressure by how much of the total memory used is
2464 * within protection thresholds.
2466 * There is one special case: in the first reclaim pass,
2467 * we skip over all groups that are within their low
2468 * protection. If that fails to reclaim enough pages to
2469 * satisfy the reclaim goal, we come back and override
2470 * the best-effort low protection. However, we still
2471 * ideally want to honor how well-behaved groups are in
2472 * that case instead of simply punishing them all
2473 * equally. As such, we reclaim them based on how much
2474 * memory they are using, reducing the scan pressure
2475 * again by how much of the total memory used is under
2478 unsigned long cgroup_size = mem_cgroup_size(memcg);
2479 unsigned long protection;
2481 /* memory.low scaling, make sure we retry before OOM */
2482 if (!sc->memcg_low_reclaim && low > min) {
2484 sc->memcg_low_skipped = 1;
2489 /* Avoid TOCTOU with earlier protection check */
2490 cgroup_size = max(cgroup_size, protection);
2492 scan = lruvec_size - lruvec_size * protection /
2496 * Minimally target SWAP_CLUSTER_MAX pages to keep
2497 * reclaim moving forwards, avoiding decrementing
2498 * sc->priority further than desirable.
2500 scan = max(scan, SWAP_CLUSTER_MAX);
2505 scan >>= sc->priority;
2508 * If the cgroup's already been deleted, make sure to
2509 * scrape out the remaining cache.
2511 if (!scan && !mem_cgroup_online(memcg))
2512 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2514 switch (scan_balance) {
2516 /* Scan lists relative to size */
2520 * Scan types proportional to swappiness and
2521 * their relative recent reclaim efficiency.
2522 * Make sure we don't miss the last page on
2523 * the offlined memory cgroups because of a
2526 scan = mem_cgroup_online(memcg) ?
2527 div64_u64(scan * fraction[file], denominator) :
2528 DIV64_U64_ROUND_UP(scan * fraction[file],
2533 /* Scan one type exclusively */
2534 if ((scan_balance == SCAN_FILE) != file)
2538 /* Look ma, no brain */
2547 * Anonymous LRU management is a waste if there is
2548 * ultimately no way to reclaim the memory.
2550 static bool can_age_anon_pages(struct pglist_data *pgdat,
2551 struct scan_control *sc)
2553 /* Aging the anon LRU is valuable if swap is present: */
2554 if (total_swap_pages > 0)
2557 /* Also valuable if anon pages can be demoted: */
2558 return can_demote(pgdat->node_id, sc);
2561 #ifdef CONFIG_LRU_GEN
2563 #ifdef CONFIG_LRU_GEN_ENABLED
2564 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2565 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
2567 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2568 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
2571 static bool should_walk_mmu(void)
2573 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2576 static bool should_clear_pmd_young(void)
2578 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2581 /******************************************************************************
2583 ******************************************************************************/
2585 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
2587 #define DEFINE_MAX_SEQ(lruvec) \
2588 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2590 #define DEFINE_MIN_SEQ(lruvec) \
2591 unsigned long min_seq[ANON_AND_FILE] = { \
2592 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
2593 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
2596 #define for_each_gen_type_zone(gen, type, zone) \
2597 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
2598 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
2599 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2601 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
2602 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
2604 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2606 struct pglist_data *pgdat = NODE_DATA(nid);
2610 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2612 /* see the comment in mem_cgroup_lruvec() */
2614 lruvec->pgdat = pgdat;
2619 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2621 return &pgdat->__lruvec;
2624 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2626 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2627 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2632 if (!can_demote(pgdat->node_id, sc) &&
2633 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2636 return mem_cgroup_swappiness(memcg);
2639 static int get_nr_gens(struct lruvec *lruvec, int type)
2641 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2644 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2646 /* see the comment on lru_gen_folio */
2647 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2648 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2649 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2652 /******************************************************************************
2654 ******************************************************************************/
2657 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2658 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2659 * bits in a bitmap, k is the number of hash functions and n is the number of
2662 * Page table walkers use one of the two filters to reduce their search space.
2663 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2664 * aging uses the double-buffering technique to flip to the other filter each
2665 * time it produces a new generation. For non-leaf entries that have enough
2666 * leaf entries, the aging carries them over to the next generation in
2667 * walk_pmd_range(); the eviction also report them when walking the rmap
2668 * in lru_gen_look_around().
2670 * For future optimizations:
2671 * 1. It's not necessary to keep both filters all the time. The spare one can be
2672 * freed after the RCU grace period and reallocated if needed again.
2673 * 2. And when reallocating, it's worth scaling its size according to the number
2674 * of inserted entries in the other filter, to reduce the memory overhead on
2675 * small systems and false positives on large systems.
2676 * 3. Jenkins' hash function is an alternative to Knuth's.
2678 #define BLOOM_FILTER_SHIFT 15
2680 static inline int filter_gen_from_seq(unsigned long seq)
2682 return seq % NR_BLOOM_FILTERS;
2685 static void get_item_key(void *item, int *key)
2687 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2689 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2691 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2692 key[1] = hash >> BLOOM_FILTER_SHIFT;
2695 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2699 unsigned long *filter;
2700 int gen = filter_gen_from_seq(seq);
2702 filter = READ_ONCE(mm_state->filters[gen]);
2706 get_item_key(item, key);
2708 return test_bit(key[0], filter) && test_bit(key[1], filter);
2711 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2715 unsigned long *filter;
2716 int gen = filter_gen_from_seq(seq);
2718 filter = READ_ONCE(mm_state->filters[gen]);
2722 get_item_key(item, key);
2724 if (!test_bit(key[0], filter))
2725 set_bit(key[0], filter);
2726 if (!test_bit(key[1], filter))
2727 set_bit(key[1], filter);
2730 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2732 unsigned long *filter;
2733 int gen = filter_gen_from_seq(seq);
2735 filter = mm_state->filters[gen];
2737 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2741 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2742 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2743 WRITE_ONCE(mm_state->filters[gen], filter);
2746 /******************************************************************************
2748 ******************************************************************************/
2750 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2752 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2754 static struct lru_gen_mm_list mm_list = {
2755 .fifo = LIST_HEAD_INIT(mm_list.fifo),
2756 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2761 return &memcg->mm_list;
2763 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2768 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2770 return &lruvec->mm_state;
2773 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2776 struct mm_struct *mm;
2777 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2778 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2780 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2781 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2783 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2786 clear_bit(key, &mm->lru_gen.bitmap);
2788 return mmget_not_zero(mm) ? mm : NULL;
2791 void lru_gen_add_mm(struct mm_struct *mm)
2794 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2795 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2797 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2799 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2800 mm->lru_gen.memcg = memcg;
2802 spin_lock(&mm_list->lock);
2804 for_each_node_state(nid, N_MEMORY) {
2805 struct lruvec *lruvec = get_lruvec(memcg, nid);
2806 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2808 /* the first addition since the last iteration */
2809 if (mm_state->tail == &mm_list->fifo)
2810 mm_state->tail = &mm->lru_gen.list;
2813 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2815 spin_unlock(&mm_list->lock);
2818 void lru_gen_del_mm(struct mm_struct *mm)
2821 struct lru_gen_mm_list *mm_list;
2822 struct mem_cgroup *memcg = NULL;
2824 if (list_empty(&mm->lru_gen.list))
2828 memcg = mm->lru_gen.memcg;
2830 mm_list = get_mm_list(memcg);
2832 spin_lock(&mm_list->lock);
2834 for_each_node(nid) {
2835 struct lruvec *lruvec = get_lruvec(memcg, nid);
2836 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2838 /* where the current iteration continues after */
2839 if (mm_state->head == &mm->lru_gen.list)
2840 mm_state->head = mm_state->head->prev;
2842 /* where the last iteration ended before */
2843 if (mm_state->tail == &mm->lru_gen.list)
2844 mm_state->tail = mm_state->tail->next;
2847 list_del_init(&mm->lru_gen.list);
2849 spin_unlock(&mm_list->lock);
2852 mem_cgroup_put(mm->lru_gen.memcg);
2853 mm->lru_gen.memcg = NULL;
2858 void lru_gen_migrate_mm(struct mm_struct *mm)
2860 struct mem_cgroup *memcg;
2861 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2863 VM_WARN_ON_ONCE(task->mm != mm);
2864 lockdep_assert_held(&task->alloc_lock);
2866 /* for mm_update_next_owner() */
2867 if (mem_cgroup_disabled())
2870 /* migration can happen before addition */
2871 if (!mm->lru_gen.memcg)
2875 memcg = mem_cgroup_from_task(task);
2877 if (memcg == mm->lru_gen.memcg)
2880 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2887 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2889 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2894 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2899 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2906 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
2910 struct lruvec *lruvec = walk->lruvec;
2911 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2913 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2915 hist = lru_hist_from_seq(walk->seq);
2917 for (i = 0; i < NR_MM_STATS; i++) {
2918 WRITE_ONCE(mm_state->stats[hist][i],
2919 mm_state->stats[hist][i] + walk->mm_stats[i]);
2920 walk->mm_stats[i] = 0;
2923 if (NR_HIST_GENS > 1 && last) {
2924 hist = lru_hist_from_seq(walk->seq + 1);
2926 for (i = 0; i < NR_MM_STATS; i++)
2927 WRITE_ONCE(mm_state->stats[hist][i], 0);
2931 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
2935 struct mm_struct *mm = NULL;
2936 struct lruvec *lruvec = walk->lruvec;
2937 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2938 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2939 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2942 * mm_state->seq is incremented after each iteration of mm_list. There
2943 * are three interesting cases for this page table walker:
2944 * 1. It tries to start a new iteration with a stale max_seq: there is
2945 * nothing left to do.
2946 * 2. It started the next iteration: it needs to reset the Bloom filter
2947 * so that a fresh set of PTE tables can be recorded.
2948 * 3. It ended the current iteration: it needs to reset the mm stats
2949 * counters and tell its caller to increment max_seq.
2951 spin_lock(&mm_list->lock);
2953 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
2955 if (walk->seq <= mm_state->seq)
2958 if (!mm_state->head)
2959 mm_state->head = &mm_list->fifo;
2961 if (mm_state->head == &mm_list->fifo)
2965 mm_state->head = mm_state->head->next;
2966 if (mm_state->head == &mm_list->fifo) {
2967 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2972 /* force scan for those added after the last iteration */
2973 if (!mm_state->tail || mm_state->tail == mm_state->head) {
2974 mm_state->tail = mm_state->head->next;
2975 walk->force_scan = true;
2977 } while (!(mm = get_next_mm(walk)));
2980 reset_mm_stats(walk, last);
2982 spin_unlock(&mm_list->lock);
2985 reset_bloom_filter(mm_state, walk->seq + 1);
2995 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
2997 bool success = false;
2998 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2999 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3000 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3002 spin_lock(&mm_list->lock);
3004 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3006 if (seq > mm_state->seq) {
3007 mm_state->head = NULL;
3008 mm_state->tail = NULL;
3009 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3013 spin_unlock(&mm_list->lock);
3018 /******************************************************************************
3020 ******************************************************************************/
3023 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3025 * The P term is refaulted/(evicted+protected) from a tier in the generation
3026 * currently being evicted; the I term is the exponential moving average of the
3027 * P term over the generations previously evicted, using the smoothing factor
3028 * 1/2; the D term isn't supported.
3030 * The setpoint (SP) is always the first tier of one type; the process variable
3031 * (PV) is either any tier of the other type or any other tier of the same
3034 * The error is the difference between the SP and the PV; the correction is to
3035 * turn off protection when SP>PV or turn on protection when SP<PV.
3037 * For future optimizations:
3038 * 1. The D term may discount the other two terms over time so that long-lived
3039 * generations can resist stale information.
3042 unsigned long refaulted;
3043 unsigned long total;
3047 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3048 struct ctrl_pos *pos)
3050 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3051 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3053 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3054 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3055 pos->total = lrugen->avg_total[type][tier] +
3056 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3058 pos->total += lrugen->protected[hist][type][tier - 1];
3062 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3065 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3066 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3067 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3069 lockdep_assert_held(&lruvec->lru_lock);
3071 if (!carryover && !clear)
3074 hist = lru_hist_from_seq(seq);
3076 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3080 sum = lrugen->avg_refaulted[type][tier] +
3081 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3082 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3084 sum = lrugen->avg_total[type][tier] +
3085 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3087 sum += lrugen->protected[hist][type][tier - 1];
3088 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3092 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3093 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3095 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3100 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3103 * Return true if the PV has a limited number of refaults or a lower
3104 * refaulted/total than the SP.
3106 return pv->refaulted < MIN_LRU_BATCH ||
3107 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3108 (sp->refaulted + 1) * pv->total * pv->gain;
3111 /******************************************************************************
3113 ******************************************************************************/
3115 /* promote pages accessed through page tables */
3116 static int folio_update_gen(struct folio *folio, int gen)
3118 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3120 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3121 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3124 /* lru_gen_del_folio() has isolated this page? */
3125 if (!(old_flags & LRU_GEN_MASK)) {
3126 /* for shrink_folio_list() */
3127 new_flags = old_flags | BIT(PG_referenced);
3131 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3132 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3133 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3135 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3138 /* protect pages accessed multiple times through file descriptors */
3139 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3141 int type = folio_is_file_lru(folio);
3142 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3143 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3144 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3146 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3149 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3150 /* folio_update_gen() has promoted this page? */
3151 if (new_gen >= 0 && new_gen != old_gen)
3154 new_gen = (old_gen + 1) % MAX_NR_GENS;
3156 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3157 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3158 /* for folio_end_writeback() */
3160 new_flags |= BIT(PG_reclaim);
3161 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3163 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3168 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3169 int old_gen, int new_gen)
3171 int type = folio_is_file_lru(folio);
3172 int zone = folio_zonenum(folio);
3173 int delta = folio_nr_pages(folio);
3175 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3176 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3180 walk->nr_pages[old_gen][type][zone] -= delta;
3181 walk->nr_pages[new_gen][type][zone] += delta;
3184 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3186 int gen, type, zone;
3187 struct lruvec *lruvec = walk->lruvec;
3188 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3192 for_each_gen_type_zone(gen, type, zone) {
3193 enum lru_list lru = type * LRU_INACTIVE_FILE;
3194 int delta = walk->nr_pages[gen][type][zone];
3199 walk->nr_pages[gen][type][zone] = 0;
3200 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3201 lrugen->nr_pages[gen][type][zone] + delta);
3203 if (lru_gen_is_active(lruvec, gen))
3205 __update_lru_size(lruvec, lru, zone, delta);
3209 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3211 struct address_space *mapping;
3212 struct vm_area_struct *vma = args->vma;
3213 struct lru_gen_mm_walk *walk = args->private;
3215 if (!vma_is_accessible(vma))
3218 if (is_vm_hugetlb_page(vma))
3221 if (!vma_has_recency(vma))
3224 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3227 if (vma == get_gate_vma(vma->vm_mm))
3230 if (vma_is_anonymous(vma))
3231 return !walk->can_swap;
3233 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3236 mapping = vma->vm_file->f_mapping;
3237 if (mapping_unevictable(mapping))
3240 if (shmem_mapping(mapping))
3241 return !walk->can_swap;
3243 /* to exclude special mappings like dax, etc. */
3244 return !mapping->a_ops->read_folio;
3248 * Some userspace memory allocators map many single-page VMAs. Instead of
3249 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3250 * table to reduce zigzags and improve cache performance.
3252 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3253 unsigned long *vm_start, unsigned long *vm_end)
3255 unsigned long start = round_up(*vm_end, size);
3256 unsigned long end = (start | ~mask) + 1;
3257 VMA_ITERATOR(vmi, args->mm, start);
3259 VM_WARN_ON_ONCE(mask & size);
3260 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3262 for_each_vma(vmi, args->vma) {
3263 if (end && end <= args->vma->vm_start)
3266 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3269 *vm_start = max(start, args->vma->vm_start);
3270 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3278 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3280 unsigned long pfn = pte_pfn(pte);
3282 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3284 if (!pte_present(pte) || is_zero_pfn(pfn))
3287 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3290 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3296 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3298 unsigned long pfn = pmd_pfn(pmd);
3300 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3302 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3305 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3308 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3314 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3315 struct pglist_data *pgdat, bool can_swap)
3317 struct folio *folio;
3319 /* try to avoid unnecessary memory loads */
3320 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3323 folio = pfn_folio(pfn);
3324 if (folio_nid(folio) != pgdat->node_id)
3327 if (folio_memcg_rcu(folio) != memcg)
3330 /* file VMAs can contain anon pages from COW */
3331 if (!folio_is_file_lru(folio) && !can_swap)
3337 static bool suitable_to_scan(int total, int young)
3339 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3341 /* suitable if the average number of young PTEs per cacheline is >=1 */
3342 return young * n >= total;
3345 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3346 struct mm_walk *args)
3354 struct lru_gen_mm_walk *walk = args->private;
3355 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3356 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3357 DEFINE_MAX_SEQ(walk->lruvec);
3358 int old_gen, new_gen = lru_gen_from_seq(max_seq);
3360 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3363 if (!spin_trylock(ptl)) {
3368 arch_enter_lazy_mmu_mode();
3370 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3372 struct folio *folio;
3373 pte_t ptent = ptep_get(pte + i);
3376 walk->mm_stats[MM_LEAF_TOTAL]++;
3378 pfn = get_pte_pfn(ptent, args->vma, addr);
3382 if (!pte_young(ptent)) {
3383 walk->mm_stats[MM_LEAF_OLD]++;
3387 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3391 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3392 VM_WARN_ON_ONCE(true);
3395 walk->mm_stats[MM_LEAF_YOUNG]++;
3397 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3398 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3399 !folio_test_swapcache(folio)))
3400 folio_mark_dirty(folio);
3402 old_gen = folio_update_gen(folio, new_gen);
3403 if (old_gen >= 0 && old_gen != new_gen)
3404 update_batch_size(walk, folio, old_gen, new_gen);
3407 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3410 arch_leave_lazy_mmu_mode();
3411 pte_unmap_unlock(pte, ptl);
3413 return suitable_to_scan(total, young);
3416 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3417 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3422 struct lru_gen_mm_walk *walk = args->private;
3423 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3424 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3425 DEFINE_MAX_SEQ(walk->lruvec);
3426 int old_gen, new_gen = lru_gen_from_seq(max_seq);
3428 VM_WARN_ON_ONCE(pud_leaf(*pud));
3430 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3433 bitmap_zero(bitmap, MIN_LRU_BATCH);
3437 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3438 if (i && i <= MIN_LRU_BATCH) {
3439 __set_bit(i - 1, bitmap);
3443 pmd = pmd_offset(pud, *first);
3445 ptl = pmd_lockptr(args->mm, pmd);
3446 if (!spin_trylock(ptl))
3449 arch_enter_lazy_mmu_mode();
3453 struct folio *folio;
3455 /* don't round down the first address */
3456 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3458 pfn = get_pmd_pfn(pmd[i], vma, addr);
3462 if (!pmd_trans_huge(pmd[i])) {
3463 if (should_clear_pmd_young())
3464 pmdp_test_and_clear_young(vma, addr, pmd + i);
3468 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3472 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3475 walk->mm_stats[MM_LEAF_YOUNG]++;
3477 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3478 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3479 !folio_test_swapcache(folio)))
3480 folio_mark_dirty(folio);
3482 old_gen = folio_update_gen(folio, new_gen);
3483 if (old_gen >= 0 && old_gen != new_gen)
3484 update_batch_size(walk, folio, old_gen, new_gen);
3486 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3487 } while (i <= MIN_LRU_BATCH);
3489 arch_leave_lazy_mmu_mode();
3495 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3496 struct mm_walk *args)
3502 struct vm_area_struct *vma;
3503 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3504 unsigned long first = -1;
3505 struct lru_gen_mm_walk *walk = args->private;
3506 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3508 VM_WARN_ON_ONCE(pud_leaf(*pud));
3511 * Finish an entire PMD in two passes: the first only reaches to PTE
3512 * tables to avoid taking the PMD lock; the second, if necessary, takes
3513 * the PMD lock to clear the accessed bit in PMD entries.
3515 pmd = pmd_offset(pud, start & PUD_MASK);
3517 /* walk_pte_range() may call get_next_vma() */
3519 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3520 pmd_t val = pmdp_get_lockless(pmd + i);
3522 next = pmd_addr_end(addr, end);
3524 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3525 walk->mm_stats[MM_LEAF_TOTAL]++;
3529 if (pmd_trans_huge(val)) {
3530 unsigned long pfn = pmd_pfn(val);
3531 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3533 walk->mm_stats[MM_LEAF_TOTAL]++;
3535 if (!pmd_young(val)) {
3536 walk->mm_stats[MM_LEAF_OLD]++;
3540 /* try to avoid unnecessary memory loads */
3541 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3544 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3548 walk->mm_stats[MM_NONLEAF_TOTAL]++;
3550 if (should_clear_pmd_young()) {
3551 if (!pmd_young(val))
3554 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3557 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3560 walk->mm_stats[MM_NONLEAF_FOUND]++;
3562 if (!walk_pte_range(&val, addr, next, args))
3565 walk->mm_stats[MM_NONLEAF_ADDED]++;
3567 /* carry over to the next generation */
3568 update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3571 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3573 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3577 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3578 struct mm_walk *args)
3584 struct lru_gen_mm_walk *walk = args->private;
3586 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3588 pud = pud_offset(p4d, start & P4D_MASK);
3590 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3591 pud_t val = READ_ONCE(pud[i]);
3593 next = pud_addr_end(addr, end);
3595 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3598 walk_pmd_range(&val, addr, next, args);
3600 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3601 end = (addr | ~PUD_MASK) + 1;
3606 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3609 end = round_up(end, P4D_SIZE);
3611 if (!end || !args->vma)
3614 walk->next_addr = max(end, args->vma->vm_start);
3619 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3621 static const struct mm_walk_ops mm_walk_ops = {
3622 .test_walk = should_skip_vma,
3623 .p4d_entry = walk_pud_range,
3624 .walk_lock = PGWALK_RDLOCK,
3628 struct lruvec *lruvec = walk->lruvec;
3629 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3631 walk->next_addr = FIRST_USER_ADDRESS;
3634 DEFINE_MAX_SEQ(lruvec);
3638 /* another thread might have called inc_max_seq() */
3639 if (walk->seq != max_seq)
3642 /* folio_update_gen() requires stable folio_memcg() */
3643 if (!mem_cgroup_trylock_pages(memcg))
3646 /* the caller might be holding the lock for write */
3647 if (mmap_read_trylock(mm)) {
3648 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3650 mmap_read_unlock(mm);
3653 mem_cgroup_unlock_pages();
3655 if (walk->batched) {
3656 spin_lock_irq(&lruvec->lru_lock);
3657 reset_batch_size(walk);
3658 spin_unlock_irq(&lruvec->lru_lock);
3662 } while (err == -EAGAIN);
3665 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3667 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3669 if (pgdat && current_is_kswapd()) {
3670 VM_WARN_ON_ONCE(walk);
3672 walk = &pgdat->mm_walk;
3673 } else if (!walk && force_alloc) {
3674 VM_WARN_ON_ONCE(current_is_kswapd());
3676 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3679 current->reclaim_state->mm_walk = walk;
3684 static void clear_mm_walk(void)
3686 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3688 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3689 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3691 current->reclaim_state->mm_walk = NULL;
3693 if (!current_is_kswapd())
3697 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3700 int remaining = MAX_LRU_BATCH;
3701 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3702 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3704 if (type == LRU_GEN_ANON && !can_swap)
3707 /* prevent cold/hot inversion if force_scan is true */
3708 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3709 struct list_head *head = &lrugen->folios[old_gen][type][zone];
3711 while (!list_empty(head)) {
3712 struct folio *folio = lru_to_folio(head);
3714 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3715 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3716 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3717 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3719 new_gen = folio_inc_gen(lruvec, folio, false);
3720 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3727 reset_ctrl_pos(lruvec, type, true);
3728 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3733 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3735 int gen, type, zone;
3736 bool success = false;
3737 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3738 DEFINE_MIN_SEQ(lruvec);
3740 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3742 /* find the oldest populated generation */
3743 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3744 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3745 gen = lru_gen_from_seq(min_seq[type]);
3747 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3748 if (!list_empty(&lrugen->folios[gen][type][zone]))
3758 /* see the comment on lru_gen_folio */
3760 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3761 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3764 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3765 if (min_seq[type] == lrugen->min_seq[type])
3768 reset_ctrl_pos(lruvec, type, true);
3769 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3776 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3777 bool can_swap, bool force_scan)
3782 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3784 if (seq < READ_ONCE(lrugen->max_seq))
3787 spin_lock_irq(&lruvec->lru_lock);
3789 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3791 success = seq == lrugen->max_seq;
3795 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3796 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3799 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3801 if (inc_min_seq(lruvec, type, can_swap))
3804 spin_unlock_irq(&lruvec->lru_lock);
3810 * Update the active/inactive LRU sizes for compatibility. Both sides of
3811 * the current max_seq need to be covered, since max_seq+1 can overlap
3812 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3813 * overlap, cold/hot inversion happens.
3815 prev = lru_gen_from_seq(lrugen->max_seq - 1);
3816 next = lru_gen_from_seq(lrugen->max_seq + 1);
3818 for (type = 0; type < ANON_AND_FILE; type++) {
3819 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3820 enum lru_list lru = type * LRU_INACTIVE_FILE;
3821 long delta = lrugen->nr_pages[prev][type][zone] -
3822 lrugen->nr_pages[next][type][zone];
3827 __update_lru_size(lruvec, lru, zone, delta);
3828 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3832 for (type = 0; type < ANON_AND_FILE; type++)
3833 reset_ctrl_pos(lruvec, type, false);
3835 WRITE_ONCE(lrugen->timestamps[next], jiffies);
3836 /* make sure preceding modifications appear */
3837 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3839 spin_unlock_irq(&lruvec->lru_lock);
3844 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3845 bool can_swap, bool force_scan)
3848 struct lru_gen_mm_walk *walk;
3849 struct mm_struct *mm = NULL;
3850 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3851 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3853 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
3856 return inc_max_seq(lruvec, seq, can_swap, force_scan);
3858 /* see the comment in iterate_mm_list() */
3859 if (seq <= READ_ONCE(mm_state->seq))
3863 * If the hardware doesn't automatically set the accessed bit, fallback
3864 * to lru_gen_look_around(), which only clears the accessed bit in a
3865 * handful of PTEs. Spreading the work out over a period of time usually
3866 * is less efficient, but it avoids bursty page faults.
3868 if (!should_walk_mmu()) {
3869 success = iterate_mm_list_nowalk(lruvec, seq);
3873 walk = set_mm_walk(NULL, true);
3875 success = iterate_mm_list_nowalk(lruvec, seq);
3879 walk->lruvec = lruvec;
3881 walk->can_swap = can_swap;
3882 walk->force_scan = force_scan;
3885 success = iterate_mm_list(walk, &mm);
3891 success = inc_max_seq(lruvec, seq, can_swap, force_scan);
3892 WARN_ON_ONCE(!success);
3898 /******************************************************************************
3899 * working set protection
3900 ******************************************************************************/
3902 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3904 int gen, type, zone;
3905 unsigned long total = 0;
3906 bool can_swap = get_swappiness(lruvec, sc);
3907 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3908 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3909 DEFINE_MAX_SEQ(lruvec);
3910 DEFINE_MIN_SEQ(lruvec);
3912 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3915 for (seq = min_seq[type]; seq <= max_seq; seq++) {
3916 gen = lru_gen_from_seq(seq);
3918 for (zone = 0; zone < MAX_NR_ZONES; zone++)
3919 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3923 /* whether the size is big enough to be helpful */
3924 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3927 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3928 unsigned long min_ttl)
3931 unsigned long birth;
3932 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3933 DEFINE_MIN_SEQ(lruvec);
3935 /* see the comment on lru_gen_folio */
3936 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3937 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3939 if (time_is_after_jiffies(birth + min_ttl))
3942 if (!lruvec_is_sizable(lruvec, sc))
3945 mem_cgroup_calculate_protection(NULL, memcg);
3947 return !mem_cgroup_below_min(NULL, memcg);
3950 /* to protect the working set of the last N jiffies */
3951 static unsigned long lru_gen_min_ttl __read_mostly;
3953 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3955 struct mem_cgroup *memcg;
3956 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3958 VM_WARN_ON_ONCE(!current_is_kswapd());
3960 /* check the order to exclude compaction-induced reclaim */
3961 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
3964 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3966 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3968 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
3969 mem_cgroup_iter_break(NULL, memcg);
3974 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
3977 * The main goal is to OOM kill if every generation from all memcgs is
3978 * younger than min_ttl. However, another possibility is all memcgs are
3979 * either too small or below min.
3981 if (mutex_trylock(&oom_lock)) {
3982 struct oom_control oc = {
3983 .gfp_mask = sc->gfp_mask,
3988 mutex_unlock(&oom_lock);
3992 /******************************************************************************
3993 * rmap/PT walk feedback
3994 ******************************************************************************/
3997 * This function exploits spatial locality when shrink_folio_list() walks the
3998 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
3999 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4000 * the PTE table to the Bloom filter. This forms a feedback loop between the
4001 * eviction and the aging.
4003 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4006 unsigned long start;
4008 struct lru_gen_mm_walk *walk;
4010 pte_t *pte = pvmw->pte;
4011 unsigned long addr = pvmw->address;
4012 struct vm_area_struct *vma = pvmw->vma;
4013 struct folio *folio = pfn_folio(pvmw->pfn);
4014 bool can_swap = !folio_is_file_lru(folio);
4015 struct mem_cgroup *memcg = folio_memcg(folio);
4016 struct pglist_data *pgdat = folio_pgdat(folio);
4017 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4018 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4019 DEFINE_MAX_SEQ(lruvec);
4020 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4022 lockdep_assert_held(pvmw->ptl);
4023 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4025 if (spin_is_contended(pvmw->ptl))
4028 /* exclude special VMAs containing anon pages from COW */
4029 if (vma->vm_flags & VM_SPECIAL)
4032 /* avoid taking the LRU lock under the PTL when possible */
4033 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4035 start = max(addr & PMD_MASK, vma->vm_start);
4036 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4038 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4039 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4040 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4041 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4042 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4044 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4045 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4049 /* folio_update_gen() requires stable folio_memcg() */
4050 if (!mem_cgroup_trylock_pages(memcg))
4053 arch_enter_lazy_mmu_mode();
4055 pte -= (addr - start) / PAGE_SIZE;
4057 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4059 pte_t ptent = ptep_get(pte + i);
4061 pfn = get_pte_pfn(ptent, vma, addr);
4065 if (!pte_young(ptent))
4068 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4072 if (!ptep_test_and_clear_young(vma, addr, pte + i))
4073 VM_WARN_ON_ONCE(true);
4077 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4078 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4079 !folio_test_swapcache(folio)))
4080 folio_mark_dirty(folio);
4083 old_gen = folio_update_gen(folio, new_gen);
4084 if (old_gen >= 0 && old_gen != new_gen)
4085 update_batch_size(walk, folio, old_gen, new_gen);
4090 old_gen = folio_lru_gen(folio);
4092 folio_set_referenced(folio);
4093 else if (old_gen != new_gen)
4094 folio_activate(folio);
4097 arch_leave_lazy_mmu_mode();
4098 mem_cgroup_unlock_pages();
4100 /* feedback from rmap walkers to page table walkers */
4101 if (mm_state && suitable_to_scan(i, young))
4102 update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4105 /******************************************************************************
4107 ******************************************************************************/
4109 /* see the comment on MEMCG_NR_GENS */
4118 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4122 unsigned long flags;
4123 int bin = get_random_u32_below(MEMCG_NR_BINS);
4124 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4126 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4128 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4131 new = old = lruvec->lrugen.gen;
4133 /* see the comment on MEMCG_NR_GENS */
4134 if (op == MEMCG_LRU_HEAD)
4135 seg = MEMCG_LRU_HEAD;
4136 else if (op == MEMCG_LRU_TAIL)
4137 seg = MEMCG_LRU_TAIL;
4138 else if (op == MEMCG_LRU_OLD)
4139 new = get_memcg_gen(pgdat->memcg_lru.seq);
4140 else if (op == MEMCG_LRU_YOUNG)
4141 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4143 VM_WARN_ON_ONCE(true);
4145 WRITE_ONCE(lruvec->lrugen.seg, seg);
4146 WRITE_ONCE(lruvec->lrugen.gen, new);
4148 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4150 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4151 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4153 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4155 pgdat->memcg_lru.nr_memcgs[old]--;
4156 pgdat->memcg_lru.nr_memcgs[new]++;
4158 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4159 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4161 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4166 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4170 int bin = get_random_u32_below(MEMCG_NR_BINS);
4172 for_each_node(nid) {
4173 struct pglist_data *pgdat = NODE_DATA(nid);
4174 struct lruvec *lruvec = get_lruvec(memcg, nid);
4176 spin_lock_irq(&pgdat->memcg_lru.lock);
4178 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4180 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4182 lruvec->lrugen.gen = gen;
4184 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4185 pgdat->memcg_lru.nr_memcgs[gen]++;
4187 spin_unlock_irq(&pgdat->memcg_lru.lock);
4191 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4195 for_each_node(nid) {
4196 struct lruvec *lruvec = get_lruvec(memcg, nid);
4198 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4202 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4207 for_each_node(nid) {
4208 struct pglist_data *pgdat = NODE_DATA(nid);
4209 struct lruvec *lruvec = get_lruvec(memcg, nid);
4211 spin_lock_irq(&pgdat->memcg_lru.lock);
4213 if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4216 gen = lruvec->lrugen.gen;
4218 hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4219 pgdat->memcg_lru.nr_memcgs[gen]--;
4221 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4222 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4224 spin_unlock_irq(&pgdat->memcg_lru.lock);
4228 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4230 struct lruvec *lruvec = get_lruvec(memcg, nid);
4232 /* see the comment on MEMCG_NR_GENS */
4233 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4234 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4237 #endif /* CONFIG_MEMCG */
4239 /******************************************************************************
4241 ******************************************************************************/
4243 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4247 int gen = folio_lru_gen(folio);
4248 int type = folio_is_file_lru(folio);
4249 int zone = folio_zonenum(folio);
4250 int delta = folio_nr_pages(folio);
4251 int refs = folio_lru_refs(folio);
4252 int tier = lru_tier_from_refs(refs);
4253 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4255 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4258 if (!folio_evictable(folio)) {
4259 success = lru_gen_del_folio(lruvec, folio, true);
4260 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4261 folio_set_unevictable(folio);
4262 lruvec_add_folio(lruvec, folio);
4263 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4267 /* dirty lazyfree */
4268 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4269 success = lru_gen_del_folio(lruvec, folio, true);
4270 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4271 folio_set_swapbacked(folio);
4272 lruvec_add_folio_tail(lruvec, folio);
4277 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4278 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4283 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4284 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4286 gen = folio_inc_gen(lruvec, folio, false);
4287 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4289 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4290 lrugen->protected[hist][type][tier - 1] + delta);
4295 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) {
4296 gen = folio_inc_gen(lruvec, folio, false);
4297 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4301 /* waiting for writeback */
4302 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4303 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4304 gen = folio_inc_gen(lruvec, folio, true);
4305 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4312 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4316 /* swap constrained */
4317 if (!(sc->gfp_mask & __GFP_IO) &&
4318 (folio_test_dirty(folio) ||
4319 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4322 /* raced with release_pages() */
4323 if (!folio_try_get(folio))
4326 /* raced with another isolation */
4327 if (!folio_test_clear_lru(folio)) {
4332 /* see the comment on MAX_NR_TIERS */
4333 if (!folio_test_referenced(folio))
4334 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4336 /* for shrink_folio_list() */
4337 folio_clear_reclaim(folio);
4338 folio_clear_referenced(folio);
4340 success = lru_gen_del_folio(lruvec, folio, true);
4341 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4346 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4347 int type, int tier, struct list_head *list)
4351 enum vm_event_item item;
4356 int remaining = MAX_LRU_BATCH;
4357 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4358 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4360 VM_WARN_ON_ONCE(!list_empty(list));
4362 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4365 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4367 for (i = MAX_NR_ZONES; i > 0; i--) {
4369 int skipped_zone = 0;
4370 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4371 struct list_head *head = &lrugen->folios[gen][type][zone];
4373 while (!list_empty(head)) {
4374 struct folio *folio = lru_to_folio(head);
4375 int delta = folio_nr_pages(folio);
4377 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4378 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4379 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4380 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4384 if (sort_folio(lruvec, folio, sc, tier))
4386 else if (isolate_folio(lruvec, folio, sc)) {
4387 list_add(&folio->lru, list);
4390 list_move(&folio->lru, &moved);
4391 skipped_zone += delta;
4394 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4399 list_splice(&moved, head);
4400 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4401 skipped += skipped_zone;
4404 if (!remaining || isolated >= MIN_LRU_BATCH)
4408 item = PGSCAN_KSWAPD + reclaimer_offset();
4409 if (!cgroup_reclaim(sc)) {
4410 __count_vm_events(item, isolated);
4411 __count_vm_events(PGREFILL, sorted);
4413 __count_memcg_events(memcg, item, isolated);
4414 __count_memcg_events(memcg, PGREFILL, sorted);
4415 __count_vm_events(PGSCAN_ANON + type, isolated);
4416 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4417 scanned, skipped, isolated,
4418 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4421 * There might not be eligible folios due to reclaim_idx. Check the
4422 * remaining to prevent livelock if it's not making progress.
4424 return isolated || !remaining ? scanned : 0;
4427 static int get_tier_idx(struct lruvec *lruvec, int type)
4430 struct ctrl_pos sp, pv;
4433 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4434 * This value is chosen because any other tier would have at least twice
4435 * as many refaults as the first tier.
4437 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4438 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4439 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4440 if (!positive_ctrl_err(&sp, &pv))
4447 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4450 struct ctrl_pos sp, pv;
4451 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4454 * Compare the first tier of anon with that of file to determine which
4455 * type to scan. Also need to compare other tiers of the selected type
4456 * with the first tier of the other type to determine the last tier (of
4457 * the selected type) to evict.
4459 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4460 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4461 type = positive_ctrl_err(&sp, &pv);
4463 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4464 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4465 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4466 if (!positive_ctrl_err(&sp, &pv))
4470 *tier_idx = tier - 1;
4475 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4476 int *type_scanned, struct list_head *list)
4482 DEFINE_MIN_SEQ(lruvec);
4485 * Try to make the obvious choice first, and if anon and file are both
4486 * available from the same generation,
4487 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4489 * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4490 * exist than clean swapcache.
4493 type = LRU_GEN_FILE;
4494 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4495 type = LRU_GEN_ANON;
4496 else if (swappiness == 1)
4497 type = LRU_GEN_FILE;
4498 else if (swappiness == 200)
4499 type = LRU_GEN_ANON;
4500 else if (!(sc->gfp_mask & __GFP_IO))
4501 type = LRU_GEN_FILE;
4503 type = get_type_to_scan(lruvec, swappiness, &tier);
4505 for (i = !swappiness; i < ANON_AND_FILE; i++) {
4507 tier = get_tier_idx(lruvec, type);
4509 scanned = scan_folios(lruvec, sc, type, tier, list);
4517 *type_scanned = type;
4522 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4529 struct folio *folio;
4531 enum vm_event_item item;
4532 struct reclaim_stat stat;
4533 struct lru_gen_mm_walk *walk;
4534 bool skip_retry = false;
4535 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4536 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4538 spin_lock_irq(&lruvec->lru_lock);
4540 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4542 scanned += try_to_inc_min_seq(lruvec, swappiness);
4544 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4547 spin_unlock_irq(&lruvec->lru_lock);
4549 if (list_empty(&list))
4552 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4553 sc->nr_reclaimed += reclaimed;
4554 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4555 scanned, reclaimed, &stat, sc->priority,
4556 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4558 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4559 if (!folio_evictable(folio)) {
4560 list_del(&folio->lru);
4561 folio_putback_lru(folio);
4565 if (folio_test_reclaim(folio) &&
4566 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4567 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4568 if (folio_test_workingset(folio))
4569 folio_set_referenced(folio);
4573 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4574 folio_mapped(folio) || folio_test_locked(folio) ||
4575 folio_test_dirty(folio) || folio_test_writeback(folio)) {
4576 /* don't add rejected folios to the oldest generation */
4577 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4582 /* retry folios that may have missed folio_rotate_reclaimable() */
4583 list_move(&folio->lru, &clean);
4584 sc->nr_scanned -= folio_nr_pages(folio);
4587 spin_lock_irq(&lruvec->lru_lock);
4589 move_folios_to_lru(lruvec, &list);
4591 walk = current->reclaim_state->mm_walk;
4592 if (walk && walk->batched) {
4593 walk->lruvec = lruvec;
4594 reset_batch_size(walk);
4597 item = PGSTEAL_KSWAPD + reclaimer_offset();
4598 if (!cgroup_reclaim(sc))
4599 __count_vm_events(item, reclaimed);
4600 __count_memcg_events(memcg, item, reclaimed);
4601 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
4603 spin_unlock_irq(&lruvec->lru_lock);
4605 list_splice_init(&clean, &list);
4607 if (!list_empty(&list)) {
4615 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4616 bool can_swap, unsigned long *nr_to_scan)
4618 int gen, type, zone;
4619 unsigned long old = 0;
4620 unsigned long young = 0;
4621 unsigned long total = 0;
4622 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4623 DEFINE_MIN_SEQ(lruvec);
4625 /* whether this lruvec is completely out of cold folios */
4626 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4631 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4634 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4635 unsigned long size = 0;
4637 gen = lru_gen_from_seq(seq);
4639 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4640 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4645 else if (seq + MIN_NR_GENS == max_seq)
4650 *nr_to_scan = total;
4653 * The aging tries to be lazy to reduce the overhead, while the eviction
4654 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4655 * ideal number of generations is MIN_NR_GENS+1.
4657 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4661 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4662 * of the total number of pages for each generation. A reasonable range
4663 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4664 * aging cares about the upper bound of hot pages, while the eviction
4665 * cares about the lower bound of cold pages.
4667 if (young * MIN_NR_GENS > total)
4669 if (old * (MIN_NR_GENS + 2) < total)
4676 * For future optimizations:
4677 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4680 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4683 unsigned long nr_to_scan;
4684 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4685 DEFINE_MAX_SEQ(lruvec);
4687 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4690 success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan);
4692 /* try to scrape all its memory if this memcg was deleted */
4693 if (nr_to_scan && !mem_cgroup_online(memcg))
4696 /* try to get away with not aging at the default priority */
4697 if (!success || sc->priority == DEF_PRIORITY)
4698 return nr_to_scan >> sc->priority;
4700 /* stop scanning this lruvec as it's low on cold folios */
4701 return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0;
4704 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4707 enum zone_watermarks mark;
4709 /* don't abort memcg reclaim to ensure fairness */
4710 if (!root_reclaim(sc))
4713 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4716 /* check the order to exclude compaction-induced reclaim */
4717 if (!current_is_kswapd() || sc->order)
4720 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4721 WMARK_PROMO : WMARK_HIGH;
4723 for (i = 0; i <= sc->reclaim_idx; i++) {
4724 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4725 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4727 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4731 /* kswapd should abort if all eligible zones are safe */
4735 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4738 unsigned long scanned = 0;
4739 int swappiness = get_swappiness(lruvec, sc);
4744 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4745 if (nr_to_scan <= 0)
4748 delta = evict_folios(lruvec, sc, swappiness);
4753 if (scanned >= nr_to_scan)
4756 if (should_abort_scan(lruvec, sc))
4762 /* whether this lruvec should be rotated */
4763 return nr_to_scan < 0;
4766 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4769 unsigned long scanned = sc->nr_scanned;
4770 unsigned long reclaimed = sc->nr_reclaimed;
4771 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4772 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4774 mem_cgroup_calculate_protection(NULL, memcg);
4776 if (mem_cgroup_below_min(NULL, memcg))
4777 return MEMCG_LRU_YOUNG;
4779 if (mem_cgroup_below_low(NULL, memcg)) {
4780 /* see the comment on MEMCG_NR_GENS */
4781 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4782 return MEMCG_LRU_TAIL;
4784 memcg_memory_event(memcg, MEMCG_LOW);
4787 success = try_to_shrink_lruvec(lruvec, sc);
4789 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4792 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4793 sc->nr_reclaimed - reclaimed);
4795 flush_reclaim_state(sc);
4797 if (success && mem_cgroup_online(memcg))
4798 return MEMCG_LRU_YOUNG;
4800 if (!success && lruvec_is_sizable(lruvec, sc))
4803 /* one retry if offlined or too small */
4804 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4805 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4808 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4814 struct lruvec *lruvec;
4815 struct lru_gen_folio *lrugen;
4816 struct mem_cgroup *memcg;
4817 struct hlist_nulls_node *pos;
4819 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4820 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4827 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4829 lru_gen_rotate_memcg(lruvec, op);
4833 mem_cgroup_put(memcg);
4836 if (gen != READ_ONCE(lrugen->gen))
4839 lruvec = container_of(lrugen, struct lruvec, lrugen);
4840 memcg = lruvec_memcg(lruvec);
4842 if (!mem_cgroup_tryget(memcg)) {
4843 lru_gen_release_memcg(memcg);
4850 op = shrink_one(lruvec, sc);
4854 if (should_abort_scan(lruvec, sc))
4861 lru_gen_rotate_memcg(lruvec, op);
4863 mem_cgroup_put(memcg);
4865 if (!is_a_nulls(pos))
4868 /* restart if raced with lru_gen_rotate_memcg() */
4869 if (gen != get_nulls_value(pos))
4872 /* try the rest of the bins of the current generation */
4873 bin = get_memcg_bin(bin + 1);
4874 if (bin != first_bin)
4878 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4880 struct blk_plug plug;
4882 VM_WARN_ON_ONCE(root_reclaim(sc));
4883 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4887 blk_start_plug(&plug);
4889 set_mm_walk(NULL, sc->proactive);
4891 if (try_to_shrink_lruvec(lruvec, sc))
4892 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4896 blk_finish_plug(&plug);
4899 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4902 unsigned long reclaimable;
4904 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4907 * Determine the initial priority based on
4908 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4909 * where reclaimed_to_scanned_ratio = inactive / total.
4911 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4912 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4913 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4915 /* round down reclaimable and round up sc->nr_to_reclaim */
4916 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4918 sc->priority = clamp(priority, 0, DEF_PRIORITY);
4921 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4923 struct blk_plug plug;
4924 unsigned long reclaimed = sc->nr_reclaimed;
4926 VM_WARN_ON_ONCE(!root_reclaim(sc));
4929 * Unmapped clean folios are already prioritized. Scanning for more of
4930 * them is likely futile and can cause high reclaim latency when there
4931 * is a large number of memcgs.
4933 if (!sc->may_writepage || !sc->may_unmap)
4938 blk_start_plug(&plug);
4940 set_mm_walk(pgdat, sc->proactive);
4942 set_initial_priority(pgdat, sc);
4944 if (current_is_kswapd())
4945 sc->nr_reclaimed = 0;
4947 if (mem_cgroup_disabled())
4948 shrink_one(&pgdat->__lruvec, sc);
4950 shrink_many(pgdat, sc);
4952 if (current_is_kswapd())
4953 sc->nr_reclaimed += reclaimed;
4957 blk_finish_plug(&plug);
4959 /* kswapd should never fail */
4960 pgdat->kswapd_failures = 0;
4963 /******************************************************************************
4965 ******************************************************************************/
4967 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4969 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4971 if (lrugen->enabled) {
4974 for_each_evictable_lru(lru) {
4975 if (!list_empty(&lruvec->lists[lru]))
4979 int gen, type, zone;
4981 for_each_gen_type_zone(gen, type, zone) {
4982 if (!list_empty(&lrugen->folios[gen][type][zone]))
4990 static bool fill_evictable(struct lruvec *lruvec)
4993 int remaining = MAX_LRU_BATCH;
4995 for_each_evictable_lru(lru) {
4996 int type = is_file_lru(lru);
4997 bool active = is_active_lru(lru);
4998 struct list_head *head = &lruvec->lists[lru];
5000 while (!list_empty(head)) {
5002 struct folio *folio = lru_to_folio(head);
5004 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5005 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5006 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5007 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5009 lruvec_del_folio(lruvec, folio);
5010 success = lru_gen_add_folio(lruvec, folio, false);
5011 VM_WARN_ON_ONCE(!success);
5021 static bool drain_evictable(struct lruvec *lruvec)
5023 int gen, type, zone;
5024 int remaining = MAX_LRU_BATCH;
5026 for_each_gen_type_zone(gen, type, zone) {
5027 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5029 while (!list_empty(head)) {
5031 struct folio *folio = lru_to_folio(head);
5033 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5034 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5035 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5036 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5038 success = lru_gen_del_folio(lruvec, folio, false);
5039 VM_WARN_ON_ONCE(!success);
5040 lruvec_add_folio(lruvec, folio);
5050 static void lru_gen_change_state(bool enabled)
5052 static DEFINE_MUTEX(state_mutex);
5054 struct mem_cgroup *memcg;
5059 mutex_lock(&state_mutex);
5061 if (enabled == lru_gen_enabled())
5065 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5067 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5069 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5073 for_each_node(nid) {
5074 struct lruvec *lruvec = get_lruvec(memcg, nid);
5076 spin_lock_irq(&lruvec->lru_lock);
5078 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5079 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5081 lruvec->lrugen.enabled = enabled;
5083 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5084 spin_unlock_irq(&lruvec->lru_lock);
5086 spin_lock_irq(&lruvec->lru_lock);
5089 spin_unlock_irq(&lruvec->lru_lock);
5093 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5095 mutex_unlock(&state_mutex);
5101 /******************************************************************************
5103 ******************************************************************************/
5105 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5107 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5110 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5111 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5112 const char *buf, size_t len)
5116 if (kstrtouint(buf, 0, &msecs))
5119 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5124 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5126 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5128 unsigned int caps = 0;
5130 if (get_cap(LRU_GEN_CORE))
5131 caps |= BIT(LRU_GEN_CORE);
5133 if (should_walk_mmu())
5134 caps |= BIT(LRU_GEN_MM_WALK);
5136 if (should_clear_pmd_young())
5137 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5139 return sysfs_emit(buf, "0x%04x\n", caps);
5142 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5143 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5144 const char *buf, size_t len)
5149 if (tolower(*buf) == 'n')
5151 else if (tolower(*buf) == 'y')
5153 else if (kstrtouint(buf, 0, &caps))
5156 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5157 bool enabled = caps & BIT(i);
5159 if (i == LRU_GEN_CORE)
5160 lru_gen_change_state(enabled);
5162 static_branch_enable(&lru_gen_caps[i]);
5164 static_branch_disable(&lru_gen_caps[i]);
5170 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5172 static struct attribute *lru_gen_attrs[] = {
5173 &lru_gen_min_ttl_attr.attr,
5174 &lru_gen_enabled_attr.attr,
5178 static const struct attribute_group lru_gen_attr_group = {
5180 .attrs = lru_gen_attrs,
5183 /******************************************************************************
5185 ******************************************************************************/
5187 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5189 struct mem_cgroup *memcg;
5190 loff_t nr_to_skip = *pos;
5192 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5194 return ERR_PTR(-ENOMEM);
5196 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5200 for_each_node_state(nid, N_MEMORY) {
5202 return get_lruvec(memcg, nid);
5204 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5209 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5211 if (!IS_ERR_OR_NULL(v))
5212 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5218 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5220 int nid = lruvec_pgdat(v)->node_id;
5221 struct mem_cgroup *memcg = lruvec_memcg(v);
5225 nid = next_memory_node(nid);
5226 if (nid == MAX_NUMNODES) {
5227 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5231 nid = first_memory_node;
5234 return get_lruvec(memcg, nid);
5237 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5238 unsigned long max_seq, unsigned long *min_seq,
5243 int hist = lru_hist_from_seq(seq);
5244 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5245 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5247 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5248 seq_printf(m, " %10d", tier);
5249 for (type = 0; type < ANON_AND_FILE; type++) {
5250 const char *s = " ";
5251 unsigned long n[3] = {};
5253 if (seq == max_seq) {
5255 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5256 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5257 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5259 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5260 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5262 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5265 for (i = 0; i < 3; i++)
5266 seq_printf(m, " %10lu%c", n[i], s[i]);
5275 for (i = 0; i < NR_MM_STATS; i++) {
5276 const char *s = " ";
5277 unsigned long n = 0;
5279 if (seq == max_seq && NR_HIST_GENS == 1) {
5281 n = READ_ONCE(mm_state->stats[hist][i]);
5282 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5284 n = READ_ONCE(mm_state->stats[hist][i]);
5287 seq_printf(m, " %10lu%c", n, s[i]);
5292 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5293 static int lru_gen_seq_show(struct seq_file *m, void *v)
5296 bool full = !debugfs_real_fops(m->file)->write;
5297 struct lruvec *lruvec = v;
5298 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5299 int nid = lruvec_pgdat(lruvec)->node_id;
5300 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5301 DEFINE_MAX_SEQ(lruvec);
5302 DEFINE_MIN_SEQ(lruvec);
5304 if (nid == first_memory_node) {
5305 const char *path = memcg ? m->private : "";
5309 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5311 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5314 seq_printf(m, " node %5d\n", nid);
5317 seq = min_seq[LRU_GEN_ANON];
5318 else if (max_seq >= MAX_NR_GENS)
5319 seq = max_seq - MAX_NR_GENS + 1;
5323 for (; seq <= max_seq; seq++) {
5325 int gen = lru_gen_from_seq(seq);
5326 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5328 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5330 for (type = 0; type < ANON_AND_FILE; type++) {
5331 unsigned long size = 0;
5332 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5334 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5335 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5337 seq_printf(m, " %10lu%c", size, mark);
5343 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5349 static const struct seq_operations lru_gen_seq_ops = {
5350 .start = lru_gen_seq_start,
5351 .stop = lru_gen_seq_stop,
5352 .next = lru_gen_seq_next,
5353 .show = lru_gen_seq_show,
5356 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5357 bool can_swap, bool force_scan)
5359 DEFINE_MAX_SEQ(lruvec);
5360 DEFINE_MIN_SEQ(lruvec);
5368 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5371 try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan);
5376 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5377 int swappiness, unsigned long nr_to_reclaim)
5379 DEFINE_MAX_SEQ(lruvec);
5381 if (seq + MIN_NR_GENS > max_seq)
5384 sc->nr_reclaimed = 0;
5386 while (!signal_pending(current)) {
5387 DEFINE_MIN_SEQ(lruvec);
5389 if (seq < min_seq[!swappiness])
5392 if (sc->nr_reclaimed >= nr_to_reclaim)
5395 if (!evict_folios(lruvec, sc, swappiness))
5404 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5405 struct scan_control *sc, int swappiness, unsigned long opt)
5407 struct lruvec *lruvec;
5409 struct mem_cgroup *memcg = NULL;
5411 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5414 if (!mem_cgroup_disabled()) {
5417 memcg = mem_cgroup_from_id(memcg_id);
5418 if (!mem_cgroup_tryget(memcg))
5427 if (memcg_id != mem_cgroup_id(memcg))
5430 lruvec = get_lruvec(memcg, nid);
5433 swappiness = get_swappiness(lruvec, sc);
5434 else if (swappiness > 200)
5439 err = run_aging(lruvec, seq, swappiness, opt);
5442 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5446 mem_cgroup_put(memcg);
5451 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5452 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5453 size_t len, loff_t *pos)
5458 struct blk_plug plug;
5460 struct scan_control sc = {
5461 .may_writepage = true,
5464 .reclaim_idx = MAX_NR_ZONES - 1,
5465 .gfp_mask = GFP_KERNEL,
5468 buf = kvmalloc(len + 1, GFP_KERNEL);
5472 if (copy_from_user(buf, src, len)) {
5477 set_task_reclaim_state(current, &sc.reclaim_state);
5478 flags = memalloc_noreclaim_save();
5479 blk_start_plug(&plug);
5480 if (!set_mm_walk(NULL, true)) {
5488 while ((cur = strsep(&next, ",;\n"))) {
5492 unsigned int memcg_id;
5495 unsigned int swappiness = -1;
5496 unsigned long opt = -1;
5498 cur = skip_spaces(cur);
5502 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5503 &seq, &end, &swappiness, &end, &opt, &end);
5504 if (n < 4 || cur[end]) {
5509 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5515 blk_finish_plug(&plug);
5516 memalloc_noreclaim_restore(flags);
5517 set_task_reclaim_state(current, NULL);
5524 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5526 return seq_open(file, &lru_gen_seq_ops);
5529 static const struct file_operations lru_gen_rw_fops = {
5530 .open = lru_gen_seq_open,
5532 .write = lru_gen_seq_write,
5533 .llseek = seq_lseek,
5534 .release = seq_release,
5537 static const struct file_operations lru_gen_ro_fops = {
5538 .open = lru_gen_seq_open,
5540 .llseek = seq_lseek,
5541 .release = seq_release,
5544 /******************************************************************************
5546 ******************************************************************************/
5548 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5552 spin_lock_init(&pgdat->memcg_lru.lock);
5554 for (i = 0; i < MEMCG_NR_GENS; i++) {
5555 for (j = 0; j < MEMCG_NR_BINS; j++)
5556 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5560 void lru_gen_init_lruvec(struct lruvec *lruvec)
5563 int gen, type, zone;
5564 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5565 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5567 lrugen->max_seq = MIN_NR_GENS + 1;
5568 lrugen->enabled = lru_gen_enabled();
5570 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5571 lrugen->timestamps[i] = jiffies;
5573 for_each_gen_type_zone(gen, type, zone)
5574 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5577 mm_state->seq = MIN_NR_GENS;
5582 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5584 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5589 INIT_LIST_HEAD(&mm_list->fifo);
5590 spin_lock_init(&mm_list->lock);
5593 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5597 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5599 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5601 for_each_node(nid) {
5602 struct lruvec *lruvec = get_lruvec(memcg, nid);
5603 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5605 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5606 sizeof(lruvec->lrugen.nr_pages)));
5608 lruvec->lrugen.list.next = LIST_POISON1;
5613 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5614 bitmap_free(mm_state->filters[i]);
5615 mm_state->filters[i] = NULL;
5620 #endif /* CONFIG_MEMCG */
5622 static int __init init_lru_gen(void)
5624 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5625 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5627 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5628 pr_err("lru_gen: failed to create sysfs group\n");
5630 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5631 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5635 late_initcall(init_lru_gen);
5637 #else /* !CONFIG_LRU_GEN */
5639 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5644 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5649 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5654 #endif /* CONFIG_LRU_GEN */
5656 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5658 unsigned long nr[NR_LRU_LISTS];
5659 unsigned long targets[NR_LRU_LISTS];
5660 unsigned long nr_to_scan;
5662 unsigned long nr_reclaimed = 0;
5663 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5664 bool proportional_reclaim;
5665 struct blk_plug plug;
5667 if (lru_gen_enabled() && !root_reclaim(sc)) {
5668 lru_gen_shrink_lruvec(lruvec, sc);
5672 get_scan_count(lruvec, sc, nr);
5674 /* Record the original scan target for proportional adjustments later */
5675 memcpy(targets, nr, sizeof(nr));
5678 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5679 * event that can occur when there is little memory pressure e.g.
5680 * multiple streaming readers/writers. Hence, we do not abort scanning
5681 * when the requested number of pages are reclaimed when scanning at
5682 * DEF_PRIORITY on the assumption that the fact we are direct
5683 * reclaiming implies that kswapd is not keeping up and it is best to
5684 * do a batch of work at once. For memcg reclaim one check is made to
5685 * abort proportional reclaim if either the file or anon lru has already
5686 * dropped to zero at the first pass.
5688 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5689 sc->priority == DEF_PRIORITY);
5691 blk_start_plug(&plug);
5692 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5693 nr[LRU_INACTIVE_FILE]) {
5694 unsigned long nr_anon, nr_file, percentage;
5695 unsigned long nr_scanned;
5697 for_each_evictable_lru(lru) {
5699 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5700 nr[lru] -= nr_to_scan;
5702 nr_reclaimed += shrink_list(lru, nr_to_scan,
5709 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5713 * For kswapd and memcg, reclaim at least the number of pages
5714 * requested. Ensure that the anon and file LRUs are scanned
5715 * proportionally what was requested by get_scan_count(). We
5716 * stop reclaiming one LRU and reduce the amount scanning
5717 * proportional to the original scan target.
5719 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5720 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5723 * It's just vindictive to attack the larger once the smaller
5724 * has gone to zero. And given the way we stop scanning the
5725 * smaller below, this makes sure that we only make one nudge
5726 * towards proportionality once we've got nr_to_reclaim.
5728 if (!nr_file || !nr_anon)
5731 if (nr_file > nr_anon) {
5732 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5733 targets[LRU_ACTIVE_ANON] + 1;
5735 percentage = nr_anon * 100 / scan_target;
5737 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5738 targets[LRU_ACTIVE_FILE] + 1;
5740 percentage = nr_file * 100 / scan_target;
5743 /* Stop scanning the smaller of the LRU */
5745 nr[lru + LRU_ACTIVE] = 0;
5748 * Recalculate the other LRU scan count based on its original
5749 * scan target and the percentage scanning already complete
5751 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5752 nr_scanned = targets[lru] - nr[lru];
5753 nr[lru] = targets[lru] * (100 - percentage) / 100;
5754 nr[lru] -= min(nr[lru], nr_scanned);
5757 nr_scanned = targets[lru] - nr[lru];
5758 nr[lru] = targets[lru] * (100 - percentage) / 100;
5759 nr[lru] -= min(nr[lru], nr_scanned);
5761 blk_finish_plug(&plug);
5762 sc->nr_reclaimed += nr_reclaimed;
5765 * Even if we did not try to evict anon pages at all, we want to
5766 * rebalance the anon lru active/inactive ratio.
5768 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5769 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5770 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5771 sc, LRU_ACTIVE_ANON);
5774 /* Use reclaim/compaction for costly allocs or under memory pressure */
5775 static bool in_reclaim_compaction(struct scan_control *sc)
5777 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5778 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5779 sc->priority < DEF_PRIORITY - 2))
5786 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5787 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5788 * true if more pages should be reclaimed such that when the page allocator
5789 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5790 * It will give up earlier than that if there is difficulty reclaiming pages.
5792 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5793 unsigned long nr_reclaimed,
5794 struct scan_control *sc)
5796 unsigned long pages_for_compaction;
5797 unsigned long inactive_lru_pages;
5800 /* If not in reclaim/compaction mode, stop */
5801 if (!in_reclaim_compaction(sc))
5805 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5806 * number of pages that were scanned. This will return to the caller
5807 * with the risk reclaim/compaction and the resulting allocation attempt
5808 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5809 * allocations through requiring that the full LRU list has been scanned
5810 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5811 * scan, but that approximation was wrong, and there were corner cases
5812 * where always a non-zero amount of pages were scanned.
5817 /* If compaction would go ahead or the allocation would succeed, stop */
5818 for (z = 0; z <= sc->reclaim_idx; z++) {
5819 struct zone *zone = &pgdat->node_zones[z];
5820 if (!managed_zone(zone))
5823 /* Allocation can already succeed, nothing to do */
5824 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5825 sc->reclaim_idx, 0))
5828 if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5833 * If we have not reclaimed enough pages for compaction and the
5834 * inactive lists are large enough, continue reclaiming
5836 pages_for_compaction = compact_gap(sc->order);
5837 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5838 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5839 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5841 return inactive_lru_pages > pages_for_compaction;
5844 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5846 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5847 struct mem_cgroup *memcg;
5849 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
5851 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5852 unsigned long reclaimed;
5853 unsigned long scanned;
5856 * This loop can become CPU-bound when target memcgs
5857 * aren't eligible for reclaim - either because they
5858 * don't have any reclaimable pages, or because their
5859 * memory is explicitly protected. Avoid soft lockups.
5863 mem_cgroup_calculate_protection(target_memcg, memcg);
5865 if (mem_cgroup_below_min(target_memcg, memcg)) {
5868 * If there is no reclaimable memory, OOM.
5871 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
5874 * Respect the protection only as long as
5875 * there is an unprotected supply
5876 * of reclaimable memory from other cgroups.
5878 if (!sc->memcg_low_reclaim) {
5879 sc->memcg_low_skipped = 1;
5882 memcg_memory_event(memcg, MEMCG_LOW);
5885 reclaimed = sc->nr_reclaimed;
5886 scanned = sc->nr_scanned;
5888 shrink_lruvec(lruvec, sc);
5890 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5893 /* Record the group's reclaim efficiency */
5895 vmpressure(sc->gfp_mask, memcg, false,
5896 sc->nr_scanned - scanned,
5897 sc->nr_reclaimed - reclaimed);
5899 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
5902 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5904 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5905 struct lruvec *target_lruvec;
5906 bool reclaimable = false;
5908 if (lru_gen_enabled() && root_reclaim(sc)) {
5909 lru_gen_shrink_node(pgdat, sc);
5913 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5916 memset(&sc->nr, 0, sizeof(sc->nr));
5918 nr_reclaimed = sc->nr_reclaimed;
5919 nr_scanned = sc->nr_scanned;
5921 prepare_scan_control(pgdat, sc);
5923 shrink_node_memcgs(pgdat, sc);
5925 flush_reclaim_state(sc);
5927 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5929 /* Record the subtree's reclaim efficiency */
5931 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5932 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5934 if (nr_node_reclaimed)
5937 if (current_is_kswapd()) {
5939 * If reclaim is isolating dirty pages under writeback,
5940 * it implies that the long-lived page allocation rate
5941 * is exceeding the page laundering rate. Either the
5942 * global limits are not being effective at throttling
5943 * processes due to the page distribution throughout
5944 * zones or there is heavy usage of a slow backing
5945 * device. The only option is to throttle from reclaim
5946 * context which is not ideal as there is no guarantee
5947 * the dirtying process is throttled in the same way
5948 * balance_dirty_pages() manages.
5950 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5951 * count the number of pages under pages flagged for
5952 * immediate reclaim and stall if any are encountered
5953 * in the nr_immediate check below.
5955 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5956 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
5958 /* Allow kswapd to start writing pages during reclaim.*/
5959 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5960 set_bit(PGDAT_DIRTY, &pgdat->flags);
5963 * If kswapd scans pages marked for immediate
5964 * reclaim and under writeback (nr_immediate), it
5965 * implies that pages are cycling through the LRU
5966 * faster than they are written so forcibly stall
5967 * until some pages complete writeback.
5969 if (sc->nr.immediate)
5970 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
5974 * Tag a node/memcg as congested if all the dirty pages were marked
5975 * for writeback and immediate reclaim (counted in nr.congested).
5977 * Legacy memcg will stall in page writeback so avoid forcibly
5978 * stalling in reclaim_throttle().
5980 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
5981 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
5982 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
5984 if (current_is_kswapd())
5985 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
5989 * Stall direct reclaim for IO completions if the lruvec is
5990 * node is congested. Allow kswapd to continue until it
5991 * starts encountering unqueued dirty pages or cycling through
5992 * the LRU too quickly.
5994 if (!current_is_kswapd() && current_may_throttle() &&
5995 !sc->hibernation_mode &&
5996 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
5997 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
5998 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6000 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6004 * Kswapd gives up on balancing particular nodes after too
6005 * many failures to reclaim anything from them and goes to
6006 * sleep. On reclaim progress, reset the failure counter. A
6007 * successful direct reclaim run will revive a dormant kswapd.
6010 pgdat->kswapd_failures = 0;
6011 else if (sc->cache_trim_mode)
6012 sc->cache_trim_mode_failed = 1;
6016 * Returns true if compaction should go ahead for a costly-order request, or
6017 * the allocation would already succeed without compaction. Return false if we
6018 * should reclaim first.
6020 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6022 unsigned long watermark;
6024 if (!gfp_compaction_allowed(sc->gfp_mask))
6027 /* Allocation can already succeed, nothing to do */
6028 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6029 sc->reclaim_idx, 0))
6032 /* Compaction cannot yet proceed. Do reclaim. */
6033 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6037 * Compaction is already possible, but it takes time to run and there
6038 * are potentially other callers using the pages just freed. So proceed
6039 * with reclaim to make a buffer of free pages available to give
6040 * compaction a reasonable chance of completing and allocating the page.
6041 * Note that we won't actually reclaim the whole buffer in one attempt
6042 * as the target watermark in should_continue_reclaim() is lower. But if
6043 * we are already above the high+gap watermark, don't reclaim at all.
6045 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6047 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6050 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6053 * If reclaim is making progress greater than 12% efficiency then
6054 * wake all the NOPROGRESS throttled tasks.
6056 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6057 wait_queue_head_t *wqh;
6059 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6060 if (waitqueue_active(wqh))
6067 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6068 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6069 * under writeback and marked for immediate reclaim at the tail of the
6072 if (current_is_kswapd() || cgroup_reclaim(sc))
6075 /* Throttle if making no progress at high prioities. */
6076 if (sc->priority == 1 && !sc->nr_reclaimed)
6077 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6081 * This is the direct reclaim path, for page-allocating processes. We only
6082 * try to reclaim pages from zones which will satisfy the caller's allocation
6085 * If a zone is deemed to be full of pinned pages then just give it a light
6086 * scan then give up on it.
6088 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6092 unsigned long nr_soft_reclaimed;
6093 unsigned long nr_soft_scanned;
6095 pg_data_t *last_pgdat = NULL;
6096 pg_data_t *first_pgdat = NULL;
6099 * If the number of buffer_heads in the machine exceeds the maximum
6100 * allowed level, force direct reclaim to scan the highmem zone as
6101 * highmem pages could be pinning lowmem pages storing buffer_heads
6103 orig_mask = sc->gfp_mask;
6104 if (buffer_heads_over_limit) {
6105 sc->gfp_mask |= __GFP_HIGHMEM;
6106 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6109 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6110 sc->reclaim_idx, sc->nodemask) {
6112 * Take care memory controller reclaiming has small influence
6115 if (!cgroup_reclaim(sc)) {
6116 if (!cpuset_zone_allowed(zone,
6117 GFP_KERNEL | __GFP_HARDWALL))
6121 * If we already have plenty of memory free for
6122 * compaction in this zone, don't free any more.
6123 * Even though compaction is invoked for any
6124 * non-zero order, only frequent costly order
6125 * reclamation is disruptive enough to become a
6126 * noticeable problem, like transparent huge
6129 if (IS_ENABLED(CONFIG_COMPACTION) &&
6130 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6131 compaction_ready(zone, sc)) {
6132 sc->compaction_ready = true;
6137 * Shrink each node in the zonelist once. If the
6138 * zonelist is ordered by zone (not the default) then a
6139 * node may be shrunk multiple times but in that case
6140 * the user prefers lower zones being preserved.
6142 if (zone->zone_pgdat == last_pgdat)
6146 * This steals pages from memory cgroups over softlimit
6147 * and returns the number of reclaimed pages and
6148 * scanned pages. This works for global memory pressure
6149 * and balancing, not for a memcg's limit.
6151 nr_soft_scanned = 0;
6152 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6153 sc->order, sc->gfp_mask,
6155 sc->nr_reclaimed += nr_soft_reclaimed;
6156 sc->nr_scanned += nr_soft_scanned;
6157 /* need some check for avoid more shrink_zone() */
6161 first_pgdat = zone->zone_pgdat;
6163 /* See comment about same check for global reclaim above */
6164 if (zone->zone_pgdat == last_pgdat)
6166 last_pgdat = zone->zone_pgdat;
6167 shrink_node(zone->zone_pgdat, sc);
6171 consider_reclaim_throttle(first_pgdat, sc);
6174 * Restore to original mask to avoid the impact on the caller if we
6175 * promoted it to __GFP_HIGHMEM.
6177 sc->gfp_mask = orig_mask;
6180 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6182 struct lruvec *target_lruvec;
6183 unsigned long refaults;
6185 if (lru_gen_enabled())
6188 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6189 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6190 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6191 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6192 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6196 * This is the main entry point to direct page reclaim.
6198 * If a full scan of the inactive list fails to free enough memory then we
6199 * are "out of memory" and something needs to be killed.
6201 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6202 * high - the zone may be full of dirty or under-writeback pages, which this
6203 * caller can't do much about. We kick the writeback threads and take explicit
6204 * naps in the hope that some of these pages can be written. But if the
6205 * allocating task holds filesystem locks which prevent writeout this might not
6206 * work, and the allocation attempt will fail.
6208 * returns: 0, if no pages reclaimed
6209 * else, the number of pages reclaimed
6211 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6212 struct scan_control *sc)
6214 int initial_priority = sc->priority;
6215 pg_data_t *last_pgdat;
6219 delayacct_freepages_start();
6221 if (!cgroup_reclaim(sc))
6222 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6226 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6229 shrink_zones(zonelist, sc);
6231 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6234 if (sc->compaction_ready)
6238 * If we're getting trouble reclaiming, start doing
6239 * writepage even in laptop mode.
6241 if (sc->priority < DEF_PRIORITY - 2)
6242 sc->may_writepage = 1;
6243 } while (--sc->priority >= 0);
6246 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6248 if (zone->zone_pgdat == last_pgdat)
6250 last_pgdat = zone->zone_pgdat;
6252 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6254 if (cgroup_reclaim(sc)) {
6255 struct lruvec *lruvec;
6257 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6259 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6263 delayacct_freepages_end();
6265 if (sc->nr_reclaimed)
6266 return sc->nr_reclaimed;
6268 /* Aborted reclaim to try compaction? don't OOM, then */
6269 if (sc->compaction_ready)
6273 * We make inactive:active ratio decisions based on the node's
6274 * composition of memory, but a restrictive reclaim_idx or a
6275 * memory.low cgroup setting can exempt large amounts of
6276 * memory from reclaim. Neither of which are very common, so
6277 * instead of doing costly eligibility calculations of the
6278 * entire cgroup subtree up front, we assume the estimates are
6279 * good, and retry with forcible deactivation if that fails.
6281 if (sc->skipped_deactivate) {
6282 sc->priority = initial_priority;
6283 sc->force_deactivate = 1;
6284 sc->skipped_deactivate = 0;
6288 /* Untapped cgroup reserves? Don't OOM, retry. */
6289 if (sc->memcg_low_skipped) {
6290 sc->priority = initial_priority;
6291 sc->force_deactivate = 0;
6292 sc->memcg_low_reclaim = 1;
6293 sc->memcg_low_skipped = 0;
6300 static bool allow_direct_reclaim(pg_data_t *pgdat)
6303 unsigned long pfmemalloc_reserve = 0;
6304 unsigned long free_pages = 0;
6308 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6311 for (i = 0; i <= ZONE_NORMAL; i++) {
6312 zone = &pgdat->node_zones[i];
6313 if (!managed_zone(zone))
6316 if (!zone_reclaimable_pages(zone))
6319 pfmemalloc_reserve += min_wmark_pages(zone);
6320 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6323 /* If there are no reserves (unexpected config) then do not throttle */
6324 if (!pfmemalloc_reserve)
6327 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6329 /* kswapd must be awake if processes are being throttled */
6330 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6331 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6332 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6334 wake_up_interruptible(&pgdat->kswapd_wait);
6341 * Throttle direct reclaimers if backing storage is backed by the network
6342 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6343 * depleted. kswapd will continue to make progress and wake the processes
6344 * when the low watermark is reached.
6346 * Returns true if a fatal signal was delivered during throttling. If this
6347 * happens, the page allocator should not consider triggering the OOM killer.
6349 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6350 nodemask_t *nodemask)
6354 pg_data_t *pgdat = NULL;
6357 * Kernel threads should not be throttled as they may be indirectly
6358 * responsible for cleaning pages necessary for reclaim to make forward
6359 * progress. kjournald for example may enter direct reclaim while
6360 * committing a transaction where throttling it could forcing other
6361 * processes to block on log_wait_commit().
6363 if (current->flags & PF_KTHREAD)
6367 * If a fatal signal is pending, this process should not throttle.
6368 * It should return quickly so it can exit and free its memory
6370 if (fatal_signal_pending(current))
6374 * Check if the pfmemalloc reserves are ok by finding the first node
6375 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6376 * GFP_KERNEL will be required for allocating network buffers when
6377 * swapping over the network so ZONE_HIGHMEM is unusable.
6379 * Throttling is based on the first usable node and throttled processes
6380 * wait on a queue until kswapd makes progress and wakes them. There
6381 * is an affinity then between processes waking up and where reclaim
6382 * progress has been made assuming the process wakes on the same node.
6383 * More importantly, processes running on remote nodes will not compete
6384 * for remote pfmemalloc reserves and processes on different nodes
6385 * should make reasonable progress.
6387 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6388 gfp_zone(gfp_mask), nodemask) {
6389 if (zone_idx(zone) > ZONE_NORMAL)
6392 /* Throttle based on the first usable node */
6393 pgdat = zone->zone_pgdat;
6394 if (allow_direct_reclaim(pgdat))
6399 /* If no zone was usable by the allocation flags then do not throttle */
6403 /* Account for the throttling */
6404 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6407 * If the caller cannot enter the filesystem, it's possible that it
6408 * is due to the caller holding an FS lock or performing a journal
6409 * transaction in the case of a filesystem like ext[3|4]. In this case,
6410 * it is not safe to block on pfmemalloc_wait as kswapd could be
6411 * blocked waiting on the same lock. Instead, throttle for up to a
6412 * second before continuing.
6414 if (!(gfp_mask & __GFP_FS))
6415 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6416 allow_direct_reclaim(pgdat), HZ);
6418 /* Throttle until kswapd wakes the process */
6419 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6420 allow_direct_reclaim(pgdat));
6422 if (fatal_signal_pending(current))
6429 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6430 gfp_t gfp_mask, nodemask_t *nodemask)
6432 unsigned long nr_reclaimed;
6433 struct scan_control sc = {
6434 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6435 .gfp_mask = current_gfp_context(gfp_mask),
6436 .reclaim_idx = gfp_zone(gfp_mask),
6438 .nodemask = nodemask,
6439 .priority = DEF_PRIORITY,
6440 .may_writepage = !laptop_mode,
6446 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6447 * Confirm they are large enough for max values.
6449 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6450 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6451 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6454 * Do not enter reclaim if fatal signal was delivered while throttled.
6455 * 1 is returned so that the page allocator does not OOM kill at this
6458 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6461 set_task_reclaim_state(current, &sc.reclaim_state);
6462 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6464 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6466 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6467 set_task_reclaim_state(current, NULL);
6469 return nr_reclaimed;
6474 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6475 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6476 gfp_t gfp_mask, bool noswap,
6478 unsigned long *nr_scanned)
6480 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6481 struct scan_control sc = {
6482 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6483 .target_mem_cgroup = memcg,
6484 .may_writepage = !laptop_mode,
6486 .reclaim_idx = MAX_NR_ZONES - 1,
6487 .may_swap = !noswap,
6490 WARN_ON_ONCE(!current->reclaim_state);
6492 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6493 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6495 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6499 * NOTE: Although we can get the priority field, using it
6500 * here is not a good idea, since it limits the pages we can scan.
6501 * if we don't reclaim here, the shrink_node from balance_pgdat
6502 * will pick up pages from other mem cgroup's as well. We hack
6503 * the priority and make it zero.
6505 shrink_lruvec(lruvec, &sc);
6507 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6509 *nr_scanned = sc.nr_scanned;
6511 return sc.nr_reclaimed;
6514 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6515 unsigned long nr_pages,
6517 unsigned int reclaim_options)
6519 unsigned long nr_reclaimed;
6520 unsigned int noreclaim_flag;
6521 struct scan_control sc = {
6522 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6523 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6524 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6525 .reclaim_idx = MAX_NR_ZONES - 1,
6526 .target_mem_cgroup = memcg,
6527 .priority = DEF_PRIORITY,
6528 .may_writepage = !laptop_mode,
6530 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6531 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6534 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6535 * equal pressure on all the nodes. This is based on the assumption that
6536 * the reclaim does not bail out early.
6538 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6540 set_task_reclaim_state(current, &sc.reclaim_state);
6541 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6542 noreclaim_flag = memalloc_noreclaim_save();
6544 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6546 memalloc_noreclaim_restore(noreclaim_flag);
6547 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6548 set_task_reclaim_state(current, NULL);
6550 return nr_reclaimed;
6554 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6556 struct mem_cgroup *memcg;
6557 struct lruvec *lruvec;
6559 if (lru_gen_enabled()) {
6560 lru_gen_age_node(pgdat, sc);
6564 if (!can_age_anon_pages(pgdat, sc))
6567 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6568 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6571 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6573 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6574 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6575 sc, LRU_ACTIVE_ANON);
6576 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6580 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6586 * Check for watermark boosts top-down as the higher zones
6587 * are more likely to be boosted. Both watermarks and boosts
6588 * should not be checked at the same time as reclaim would
6589 * start prematurely when there is no boosting and a lower
6592 for (i = highest_zoneidx; i >= 0; i--) {
6593 zone = pgdat->node_zones + i;
6594 if (!managed_zone(zone))
6597 if (zone->watermark_boost)
6605 * Returns true if there is an eligible zone balanced for the request order
6606 * and highest_zoneidx
6608 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6611 unsigned long mark = -1;
6615 * Check watermarks bottom-up as lower zones are more likely to
6618 for (i = 0; i <= highest_zoneidx; i++) {
6619 zone = pgdat->node_zones + i;
6621 if (!managed_zone(zone))
6624 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6625 mark = wmark_pages(zone, WMARK_PROMO);
6627 mark = high_wmark_pages(zone);
6628 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6633 * If a node has no managed zone within highest_zoneidx, it does not
6634 * need balancing by definition. This can happen if a zone-restricted
6635 * allocation tries to wake a remote kswapd.
6643 /* Clear pgdat state for congested, dirty or under writeback. */
6644 static void clear_pgdat_congested(pg_data_t *pgdat)
6646 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6648 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6649 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6650 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6651 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6655 * Prepare kswapd for sleeping. This verifies that there are no processes
6656 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6658 * Returns true if kswapd is ready to sleep
6660 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6661 int highest_zoneidx)
6664 * The throttled processes are normally woken up in balance_pgdat() as
6665 * soon as allow_direct_reclaim() is true. But there is a potential
6666 * race between when kswapd checks the watermarks and a process gets
6667 * throttled. There is also a potential race if processes get
6668 * throttled, kswapd wakes, a large process exits thereby balancing the
6669 * zones, which causes kswapd to exit balance_pgdat() before reaching
6670 * the wake up checks. If kswapd is going to sleep, no process should
6671 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6672 * the wake up is premature, processes will wake kswapd and get
6673 * throttled again. The difference from wake ups in balance_pgdat() is
6674 * that here we are under prepare_to_wait().
6676 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6677 wake_up_all(&pgdat->pfmemalloc_wait);
6679 /* Hopeless node, leave it to direct reclaim */
6680 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6683 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6684 clear_pgdat_congested(pgdat);
6692 * kswapd shrinks a node of pages that are at or below the highest usable
6693 * zone that is currently unbalanced.
6695 * Returns true if kswapd scanned at least the requested number of pages to
6696 * reclaim or if the lack of progress was due to pages under writeback.
6697 * This is used to determine if the scanning priority needs to be raised.
6699 static bool kswapd_shrink_node(pg_data_t *pgdat,
6700 struct scan_control *sc)
6705 /* Reclaim a number of pages proportional to the number of zones */
6706 sc->nr_to_reclaim = 0;
6707 for (z = 0; z <= sc->reclaim_idx; z++) {
6708 zone = pgdat->node_zones + z;
6709 if (!managed_zone(zone))
6712 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6716 * Historically care was taken to put equal pressure on all zones but
6717 * now pressure is applied based on node LRU order.
6719 shrink_node(pgdat, sc);
6722 * Fragmentation may mean that the system cannot be rebalanced for
6723 * high-order allocations. If twice the allocation size has been
6724 * reclaimed then recheck watermarks only at order-0 to prevent
6725 * excessive reclaim. Assume that a process requested a high-order
6726 * can direct reclaim/compact.
6728 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6731 return sc->nr_scanned >= sc->nr_to_reclaim;
6734 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6736 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6741 for (i = 0; i <= highest_zoneidx; i++) {
6742 zone = pgdat->node_zones + i;
6744 if (!managed_zone(zone))
6748 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6750 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6755 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6757 update_reclaim_active(pgdat, highest_zoneidx, true);
6761 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6763 update_reclaim_active(pgdat, highest_zoneidx, false);
6767 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6768 * that are eligible for use by the caller until at least one zone is
6771 * Returns the order kswapd finished reclaiming at.
6773 * kswapd scans the zones in the highmem->normal->dma direction. It skips
6774 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6775 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6776 * or lower is eligible for reclaim until at least one usable zone is
6779 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6782 unsigned long nr_soft_reclaimed;
6783 unsigned long nr_soft_scanned;
6784 unsigned long pflags;
6785 unsigned long nr_boost_reclaim;
6786 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6789 struct scan_control sc = {
6790 .gfp_mask = GFP_KERNEL,
6795 set_task_reclaim_state(current, &sc.reclaim_state);
6796 psi_memstall_enter(&pflags);
6797 __fs_reclaim_acquire(_THIS_IP_);
6799 count_vm_event(PAGEOUTRUN);
6802 * Account for the reclaim boost. Note that the zone boost is left in
6803 * place so that parallel allocations that are near the watermark will
6804 * stall or direct reclaim until kswapd is finished.
6806 nr_boost_reclaim = 0;
6807 for (i = 0; i <= highest_zoneidx; i++) {
6808 zone = pgdat->node_zones + i;
6809 if (!managed_zone(zone))
6812 nr_boost_reclaim += zone->watermark_boost;
6813 zone_boosts[i] = zone->watermark_boost;
6815 boosted = nr_boost_reclaim;
6818 set_reclaim_active(pgdat, highest_zoneidx);
6819 sc.priority = DEF_PRIORITY;
6821 unsigned long nr_reclaimed = sc.nr_reclaimed;
6822 bool raise_priority = true;
6827 sc.reclaim_idx = highest_zoneidx;
6830 * If the number of buffer_heads exceeds the maximum allowed
6831 * then consider reclaiming from all zones. This has a dual
6832 * purpose -- on 64-bit systems it is expected that
6833 * buffer_heads are stripped during active rotation. On 32-bit
6834 * systems, highmem pages can pin lowmem memory and shrinking
6835 * buffers can relieve lowmem pressure. Reclaim may still not
6836 * go ahead if all eligible zones for the original allocation
6837 * request are balanced to avoid excessive reclaim from kswapd.
6839 if (buffer_heads_over_limit) {
6840 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6841 zone = pgdat->node_zones + i;
6842 if (!managed_zone(zone))
6851 * If the pgdat is imbalanced then ignore boosting and preserve
6852 * the watermarks for a later time and restart. Note that the
6853 * zone watermarks will be still reset at the end of balancing
6854 * on the grounds that the normal reclaim should be enough to
6855 * re-evaluate if boosting is required when kswapd next wakes.
6857 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6858 if (!balanced && nr_boost_reclaim) {
6859 nr_boost_reclaim = 0;
6864 * If boosting is not active then only reclaim if there are no
6865 * eligible zones. Note that sc.reclaim_idx is not used as
6866 * buffer_heads_over_limit may have adjusted it.
6868 if (!nr_boost_reclaim && balanced)
6871 /* Limit the priority of boosting to avoid reclaim writeback */
6872 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6873 raise_priority = false;
6876 * Do not writeback or swap pages for boosted reclaim. The
6877 * intent is to relieve pressure not issue sub-optimal IO
6878 * from reclaim context. If no pages are reclaimed, the
6879 * reclaim will be aborted.
6881 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6882 sc.may_swap = !nr_boost_reclaim;
6885 * Do some background aging, to give pages a chance to be
6886 * referenced before reclaiming. All pages are rotated
6887 * regardless of classzone as this is about consistent aging.
6889 kswapd_age_node(pgdat, &sc);
6892 * If we're getting trouble reclaiming, start doing writepage
6893 * even in laptop mode.
6895 if (sc.priority < DEF_PRIORITY - 2)
6896 sc.may_writepage = 1;
6898 /* Call soft limit reclaim before calling shrink_node. */
6900 nr_soft_scanned = 0;
6901 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
6902 sc.gfp_mask, &nr_soft_scanned);
6903 sc.nr_reclaimed += nr_soft_reclaimed;
6906 * There should be no need to raise the scanning priority if
6907 * enough pages are already being scanned that that high
6908 * watermark would be met at 100% efficiency.
6910 if (kswapd_shrink_node(pgdat, &sc))
6911 raise_priority = false;
6914 * If the low watermark is met there is no need for processes
6915 * to be throttled on pfmemalloc_wait as they should not be
6916 * able to safely make forward progress. Wake them
6918 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6919 allow_direct_reclaim(pgdat))
6920 wake_up_all(&pgdat->pfmemalloc_wait);
6922 /* Check if kswapd should be suspending */
6923 __fs_reclaim_release(_THIS_IP_);
6924 ret = kthread_freezable_should_stop(&was_frozen);
6925 __fs_reclaim_acquire(_THIS_IP_);
6926 if (was_frozen || ret)
6930 * Raise priority if scanning rate is too low or there was no
6931 * progress in reclaiming pages
6933 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6934 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6937 * If reclaim made no progress for a boost, stop reclaim as
6938 * IO cannot be queued and it could be an infinite loop in
6939 * extreme circumstances.
6941 if (nr_boost_reclaim && !nr_reclaimed)
6944 if (raise_priority || !nr_reclaimed)
6946 } while (sc.priority >= 1);
6949 * Restart only if it went through the priority loop all the way,
6950 * but cache_trim_mode didn't work.
6952 if (!sc.nr_reclaimed && sc.priority < 1 &&
6953 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
6954 sc.no_cache_trim_mode = 1;
6958 if (!sc.nr_reclaimed)
6959 pgdat->kswapd_failures++;
6962 clear_reclaim_active(pgdat, highest_zoneidx);
6964 /* If reclaim was boosted, account for the reclaim done in this pass */
6966 unsigned long flags;
6968 for (i = 0; i <= highest_zoneidx; i++) {
6969 if (!zone_boosts[i])
6972 /* Increments are under the zone lock */
6973 zone = pgdat->node_zones + i;
6974 spin_lock_irqsave(&zone->lock, flags);
6975 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
6976 spin_unlock_irqrestore(&zone->lock, flags);
6980 * As there is now likely space, wakeup kcompact to defragment
6983 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
6986 snapshot_refaults(NULL, pgdat);
6987 __fs_reclaim_release(_THIS_IP_);
6988 psi_memstall_leave(&pflags);
6989 set_task_reclaim_state(current, NULL);
6992 * Return the order kswapd stopped reclaiming at as
6993 * prepare_kswapd_sleep() takes it into account. If another caller
6994 * entered the allocator slow path while kswapd was awake, order will
6995 * remain at the higher level.
7001 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7002 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7003 * not a valid index then either kswapd runs for first time or kswapd couldn't
7004 * sleep after previous reclaim attempt (node is still unbalanced). In that
7005 * case return the zone index of the previous kswapd reclaim cycle.
7007 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7008 enum zone_type prev_highest_zoneidx)
7010 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7012 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7015 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7016 unsigned int highest_zoneidx)
7021 if (freezing(current) || kthread_should_stop())
7024 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7027 * Try to sleep for a short interval. Note that kcompactd will only be
7028 * woken if it is possible to sleep for a short interval. This is
7029 * deliberate on the assumption that if reclaim cannot keep an
7030 * eligible zone balanced that it's also unlikely that compaction will
7033 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7035 * Compaction records what page blocks it recently failed to
7036 * isolate pages from and skips them in the future scanning.
7037 * When kswapd is going to sleep, it is reasonable to assume
7038 * that pages and compaction may succeed so reset the cache.
7040 reset_isolation_suitable(pgdat);
7043 * We have freed the memory, now we should compact it to make
7044 * allocation of the requested order possible.
7046 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7048 remaining = schedule_timeout(HZ/10);
7051 * If woken prematurely then reset kswapd_highest_zoneidx and
7052 * order. The values will either be from a wakeup request or
7053 * the previous request that slept prematurely.
7056 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7057 kswapd_highest_zoneidx(pgdat,
7060 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7061 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7064 finish_wait(&pgdat->kswapd_wait, &wait);
7065 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7069 * After a short sleep, check if it was a premature sleep. If not, then
7070 * go fully to sleep until explicitly woken up.
7073 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7074 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7077 * vmstat counters are not perfectly accurate and the estimated
7078 * value for counters such as NR_FREE_PAGES can deviate from the
7079 * true value by nr_online_cpus * threshold. To avoid the zone
7080 * watermarks being breached while under pressure, we reduce the
7081 * per-cpu vmstat threshold while kswapd is awake and restore
7082 * them before going back to sleep.
7084 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7086 if (!kthread_should_stop())
7089 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7092 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7094 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7096 finish_wait(&pgdat->kswapd_wait, &wait);
7100 * The background pageout daemon, started as a kernel thread
7101 * from the init process.
7103 * This basically trickles out pages so that we have _some_
7104 * free memory available even if there is no other activity
7105 * that frees anything up. This is needed for things like routing
7106 * etc, where we otherwise might have all activity going on in
7107 * asynchronous contexts that cannot page things out.
7109 * If there are applications that are active memory-allocators
7110 * (most normal use), this basically shouldn't matter.
7112 static int kswapd(void *p)
7114 unsigned int alloc_order, reclaim_order;
7115 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7116 pg_data_t *pgdat = (pg_data_t *)p;
7117 struct task_struct *tsk = current;
7118 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7120 if (!cpumask_empty(cpumask))
7121 set_cpus_allowed_ptr(tsk, cpumask);
7124 * Tell the memory management that we're a "memory allocator",
7125 * and that if we need more memory we should get access to it
7126 * regardless (see "__alloc_pages()"). "kswapd" should
7127 * never get caught in the normal page freeing logic.
7129 * (Kswapd normally doesn't need memory anyway, but sometimes
7130 * you need a small amount of memory in order to be able to
7131 * page out something else, and this flag essentially protects
7132 * us from recursively trying to free more memory as we're
7133 * trying to free the first piece of memory in the first place).
7135 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7138 WRITE_ONCE(pgdat->kswapd_order, 0);
7139 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7140 atomic_set(&pgdat->nr_writeback_throttled, 0);
7144 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7145 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7149 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7152 /* Read the new order and highest_zoneidx */
7153 alloc_order = READ_ONCE(pgdat->kswapd_order);
7154 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7156 WRITE_ONCE(pgdat->kswapd_order, 0);
7157 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7159 if (kthread_freezable_should_stop(&was_frozen))
7163 * We can speed up thawing tasks if we don't call balance_pgdat
7164 * after returning from the refrigerator
7170 * Reclaim begins at the requested order but if a high-order
7171 * reclaim fails then kswapd falls back to reclaiming for
7172 * order-0. If that happens, kswapd will consider sleeping
7173 * for the order it finished reclaiming at (reclaim_order)
7174 * but kcompactd is woken to compact for the original
7175 * request (alloc_order).
7177 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7179 reclaim_order = balance_pgdat(pgdat, alloc_order,
7181 if (reclaim_order < alloc_order)
7182 goto kswapd_try_sleep;
7185 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7191 * A zone is low on free memory or too fragmented for high-order memory. If
7192 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7193 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7194 * has failed or is not needed, still wake up kcompactd if only compaction is
7197 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7198 enum zone_type highest_zoneidx)
7201 enum zone_type curr_idx;
7203 if (!managed_zone(zone))
7206 if (!cpuset_zone_allowed(zone, gfp_flags))
7209 pgdat = zone->zone_pgdat;
7210 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7212 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7213 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7215 if (READ_ONCE(pgdat->kswapd_order) < order)
7216 WRITE_ONCE(pgdat->kswapd_order, order);
7218 if (!waitqueue_active(&pgdat->kswapd_wait))
7221 /* Hopeless node, leave it to direct reclaim if possible */
7222 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7223 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7224 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7226 * There may be plenty of free memory available, but it's too
7227 * fragmented for high-order allocations. Wake up kcompactd
7228 * and rely on compaction_suitable() to determine if it's
7229 * needed. If it fails, it will defer subsequent attempts to
7230 * ratelimit its work.
7232 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7233 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7237 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7239 wake_up_interruptible(&pgdat->kswapd_wait);
7242 #ifdef CONFIG_HIBERNATION
7244 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7247 * Rather than trying to age LRUs the aim is to preserve the overall
7248 * LRU order by reclaiming preferentially
7249 * inactive > active > active referenced > active mapped
7251 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7253 struct scan_control sc = {
7254 .nr_to_reclaim = nr_to_reclaim,
7255 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7256 .reclaim_idx = MAX_NR_ZONES - 1,
7257 .priority = DEF_PRIORITY,
7261 .hibernation_mode = 1,
7263 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7264 unsigned long nr_reclaimed;
7265 unsigned int noreclaim_flag;
7267 fs_reclaim_acquire(sc.gfp_mask);
7268 noreclaim_flag = memalloc_noreclaim_save();
7269 set_task_reclaim_state(current, &sc.reclaim_state);
7271 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7273 set_task_reclaim_state(current, NULL);
7274 memalloc_noreclaim_restore(noreclaim_flag);
7275 fs_reclaim_release(sc.gfp_mask);
7277 return nr_reclaimed;
7279 #endif /* CONFIG_HIBERNATION */
7282 * This kswapd start function will be called by init and node-hot-add.
7284 void __meminit kswapd_run(int nid)
7286 pg_data_t *pgdat = NODE_DATA(nid);
7288 pgdat_kswapd_lock(pgdat);
7289 if (!pgdat->kswapd) {
7290 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7291 if (IS_ERR(pgdat->kswapd)) {
7292 /* failure at boot is fatal */
7293 pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7294 nid, PTR_ERR(pgdat->kswapd));
7295 BUG_ON(system_state < SYSTEM_RUNNING);
7296 pgdat->kswapd = NULL;
7299 pgdat_kswapd_unlock(pgdat);
7303 * Called by memory hotplug when all memory in a node is offlined. Caller must
7304 * be holding mem_hotplug_begin/done().
7306 void __meminit kswapd_stop(int nid)
7308 pg_data_t *pgdat = NODE_DATA(nid);
7309 struct task_struct *kswapd;
7311 pgdat_kswapd_lock(pgdat);
7312 kswapd = pgdat->kswapd;
7314 kthread_stop(kswapd);
7315 pgdat->kswapd = NULL;
7317 pgdat_kswapd_unlock(pgdat);
7320 static int __init kswapd_init(void)
7325 for_each_node_state(nid, N_MEMORY)
7330 module_init(kswapd_init)
7336 * If non-zero call node_reclaim when the number of free pages falls below
7339 int node_reclaim_mode __read_mostly;
7342 * Priority for NODE_RECLAIM. This determines the fraction of pages
7343 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7346 #define NODE_RECLAIM_PRIORITY 4
7349 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7352 int sysctl_min_unmapped_ratio = 1;
7355 * If the number of slab pages in a zone grows beyond this percentage then
7356 * slab reclaim needs to occur.
7358 int sysctl_min_slab_ratio = 5;
7360 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7362 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7363 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7364 node_page_state(pgdat, NR_ACTIVE_FILE);
7367 * It's possible for there to be more file mapped pages than
7368 * accounted for by the pages on the file LRU lists because
7369 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7371 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7374 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7375 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7377 unsigned long nr_pagecache_reclaimable;
7378 unsigned long delta = 0;
7381 * If RECLAIM_UNMAP is set, then all file pages are considered
7382 * potentially reclaimable. Otherwise, we have to worry about
7383 * pages like swapcache and node_unmapped_file_pages() provides
7386 if (node_reclaim_mode & RECLAIM_UNMAP)
7387 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7389 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7391 /* If we can't clean pages, remove dirty pages from consideration */
7392 if (!(node_reclaim_mode & RECLAIM_WRITE))
7393 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7395 /* Watch for any possible underflows due to delta */
7396 if (unlikely(delta > nr_pagecache_reclaimable))
7397 delta = nr_pagecache_reclaimable;
7399 return nr_pagecache_reclaimable - delta;
7403 * Try to free up some pages from this node through reclaim.
7405 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7407 /* Minimum pages needed in order to stay on node */
7408 const unsigned long nr_pages = 1 << order;
7409 struct task_struct *p = current;
7410 unsigned int noreclaim_flag;
7411 struct scan_control sc = {
7412 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7413 .gfp_mask = current_gfp_context(gfp_mask),
7415 .priority = NODE_RECLAIM_PRIORITY,
7416 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7417 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7419 .reclaim_idx = gfp_zone(gfp_mask),
7421 unsigned long pflags;
7423 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7427 psi_memstall_enter(&pflags);
7428 delayacct_freepages_start();
7429 fs_reclaim_acquire(sc.gfp_mask);
7431 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7433 noreclaim_flag = memalloc_noreclaim_save();
7434 set_task_reclaim_state(p, &sc.reclaim_state);
7436 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7437 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7439 * Free memory by calling shrink node with increasing
7440 * priorities until we have enough memory freed.
7443 shrink_node(pgdat, &sc);
7444 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7447 set_task_reclaim_state(p, NULL);
7448 memalloc_noreclaim_restore(noreclaim_flag);
7449 fs_reclaim_release(sc.gfp_mask);
7450 psi_memstall_leave(&pflags);
7451 delayacct_freepages_end();
7453 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7455 return sc.nr_reclaimed >= nr_pages;
7458 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7463 * Node reclaim reclaims unmapped file backed pages and
7464 * slab pages if we are over the defined limits.
7466 * A small portion of unmapped file backed pages is needed for
7467 * file I/O otherwise pages read by file I/O will be immediately
7468 * thrown out if the node is overallocated. So we do not reclaim
7469 * if less than a specified percentage of the node is used by
7470 * unmapped file backed pages.
7472 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7473 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7474 pgdat->min_slab_pages)
7475 return NODE_RECLAIM_FULL;
7478 * Do not scan if the allocation should not be delayed.
7480 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7481 return NODE_RECLAIM_NOSCAN;
7484 * Only run node reclaim on the local node or on nodes that do not
7485 * have associated processors. This will favor the local processor
7486 * over remote processors and spread off node memory allocations
7487 * as wide as possible.
7489 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7490 return NODE_RECLAIM_NOSCAN;
7492 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7493 return NODE_RECLAIM_NOSCAN;
7495 ret = __node_reclaim(pgdat, gfp_mask, order);
7496 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7499 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7506 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7508 * @fbatch: Batch of lru folios to check.
7510 * Checks folios for evictability, if an evictable folio is in the unevictable
7511 * lru list, moves it to the appropriate evictable lru list. This function
7512 * should be only used for lru folios.
7514 void check_move_unevictable_folios(struct folio_batch *fbatch)
7516 struct lruvec *lruvec = NULL;
7521 for (i = 0; i < fbatch->nr; i++) {
7522 struct folio *folio = fbatch->folios[i];
7523 int nr_pages = folio_nr_pages(folio);
7525 pgscanned += nr_pages;
7527 /* block memcg migration while the folio moves between lrus */
7528 if (!folio_test_clear_lru(folio))
7531 lruvec = folio_lruvec_relock_irq(folio, lruvec);
7532 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7533 lruvec_del_folio(lruvec, folio);
7534 folio_clear_unevictable(folio);
7535 lruvec_add_folio(lruvec, folio);
7536 pgrescued += nr_pages;
7538 folio_set_lru(folio);
7542 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7543 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7544 unlock_page_lruvec_irq(lruvec);
7545 } else if (pgscanned) {
7546 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7549 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);